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Abstract

Background & Aims. Change in hydration is common in children withexe acute
malnutrition (SAM) including during treatment, batdifficult to assess. We investigated the
utility of bio-electrical impedance vector analy@3VA), a quick non-invasive method, for

indexing hydration during treatment.

Methods: We studied 350 children®14 years of age with SAM (mid-upper arm circurafere
<11.0 cm or weight-for-height <70% of median, and/otritional oedema) admitted to a
hospital nutrition unit, but excluded medically tatsle patients. Weight, height (H), resistance
(R), reactance (Xc) and phase angle (PA) were medsund oedema assessed. Similar data
were collected from 120 healthy infants and prestteohool children for comparison. Means of
height-adjusted vectors (R/H, Xc/H) from SAM chédrwere interpreted using tolerance and

confidence ellipses of corresponding parameters ttee healthy children.

Results: SAM children with oedema were less wasted thasetwithout (p< 0-001), but had
BIVA parameters that differed more from those ddltiey children (P<0-05) than those non-
oedematous. Initially, both oedematous and non+oatieus SAM children had mean vectors
outside the reference 95% tolerance ellipse. Dure@tment, mean vectors migrated differently
in the two SAM groups, indicating fluid loss in @datous patients, and tissue accretion in non-
oedematous patients. At admission, R/H was lowedd€matous) or higher (non-oedematous)

among children who died than those who exited tigpital alive.
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Conclusions: BIVA can be used in children with SAM to distingh tissue- vs. hydration-
related weight changes during treatment, and dksatify children at high risk of death enabling

early clinical interventions.

Keywords: bio-electrical, impedance, BIVA, severe acutemuadition, hydration
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Introduction

Mortality from severe acute malnutrition (SAM) idlshigh, especially among children with
oedema.(1) Most deaths occur during the early pbbsepatient treatment and are associated
with complications, mainly infections and fluid aakctrolyte abnormalities.(2) It is crucial
therefore to monitor treatment intensively withiable and preferably technically simple
methods to improve outcome. The challenge howevtttat SAM-related physical and
physiological changes compromise the applicatiahanturacy of most of the available
techniques.

It is well established that altered hydration canfound the assessment of malnutrition(3), as
excess fluid retention inflates both body weighd ather routinely sampled somatic traits, such
as mid-upper arm circumference. However, befareitisue can be addressed, it is also critical
to identify improved ways for assessing hydratitatus, and its variability during treatment.

For instance, change in the degree of clinicallgdiable oedema is used to distinguish between
tissue- and fluid-related weight changes .(2) Tlmoogth oedema and weight measurements are
simple, in routine clinical practice both are praaesignificant error due to a combination of
factors including unstandardized procedures, phiical skills, faulty equipment or recording
errors. Moreover, peripheral oedema is undetectattieéinterstitial fluid volume is significantly
elevated(4) and hence is insensitive for earlyaliete of fluid retention.(5) Conversely, children
with SAM can develop dehydration with minimal ctial signs.(6) Also, the validity of other
clinical indicators including irritability, poor &k turgor or enlarged liver is poor as they are

associated with non-oedematous SAM as well.(7)
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There are other more valid and operator-indepenaietitods for clinical use including plasma
osmolality, urine osmolality and bio-electrical iegance (BI) methods.(8) Bl has the advantage
over other methods of being rapid, inexpensive;ingasive, and a safe bedside procedure .(9)
The conventional Bl approach involves the predictbtotal body water from the impedance

(2) index (calculated as the square of height @iglidy Z). However, this approach requires
population-specific equations, furthermore the radtassumes normal physiological
state,(10,11) hence conventional Bl is often imved disease states where physiological state is
disturbed, (12) including SAM.(9) To circumvent $leechallenges, a semi-qualitative approach
called Bl vector analysis (BIVA) has been foundfuktor differentiating between tissue- and
fluid-related weight changes in various clinicahddions. (13,14) With fewer assumptions,
BIVA allows indexing and visualization of relativiydration status and assessment of body cell

mass (BCM) reflecting cellular function.

To date, most BIVA studies of disease states hddeeased adults, for example with renal
diseases (15) or anorexia nervosa, (16) and feir@relow-income countries. The use of Bl or
BIVA methods to study children with SAM remainse47-19) In this study, we investigated
the utility of BIVA and primary Bl parameters amodgjldren with SAM treated with standard

protocols at a hospital in a low-income setting.
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Materials and M ethods

Sudy setting and subjects

The study was conducted in the Nutrition RehatidtaUnit (NRU) of Jimma University
Specialized Hospital, Ethiopia, from November 28@%eptember 2011. Eligible children were
those 0-5-14 years of age with SAM, defined as MUAQ- 0 cm or weight-for-height (WFH)
<70 % of the median of the NCHS growth referena# an nutritional oedema. Children with
life threatening illness such as shock or who weeglmitted with SAM were excluded.
Children below 6 months of age were excluded aslidggnosis and treatment of SAM in this
age group is still not well standardized. Childvegre treated according to WHO-based

guidelines.(20)

Data collection

Children were weighed naked or with minimal clothirsing a pediatric scale (Tanita BD 815
MA, Tokyo, Japan) and the weight recorded to trerest 10g. For children less than 2 years of
age or not able to stand, length was measuredeuging a length board (SECA 416, Hamburg,
Germany) and recorded to the nearest 0-1 cm. Vmgith was measured in children older than
2 years of age, 0-5 cm was subtracted from theHehgolder children, height was measured
using a free-standing stadiometer (SECA 214, HamlBermany) and recorded to the nearest
0-1 cm. MUAC was measured using a paper strip (SEC®, Hamburg, Germany) and
recorded to the nearest 0-1 cm. Pitting oedemaciecked by gentle pressure with the thumb
on the feet for 3-5 seconds. Information on infatsi diagnosed at admission were copied from

the child’s clinical record.
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Bl measurement was performed in all children. Tieqezol has been described previously
(9,21) but in brief it measures the oppositionmopédance (Z) of the body to an alternating
electric current. Impedance has two componentstagge (R) and reactance (Xc). R is the
decrease in voltage reflecting conductivity throimhic solutions and Xc is the delay in the flow
of current measured as a phase-shift, indicatinglgndielectric properties of cell membranes.
The phase angle (PA) is the angle the impedandenierms relative to the R vector

(atan(Xc/R) x 180/m).

Though the exact determinants of electrical progexf the normal human body remain poorly
understood, Bl method is based on the assumptairthik body is a network of resistors
(physiological fluids) and capacitors (cell memtas){3). In brief, R represents opposition of
alternate electrical current that flows through giblpgic fluids by the movement of ions, while
Xc reflects the charging of cell membranes andratiterfaces (22). Resistance is inversely
related to the amount of total body water and fatiéree mass, whereas Xc is directly related to

BCM.

Bl parameters (R, Xc and PA) were measured at 5Qiditry a Quadscan 4000 analyser
(Bodystat, UK), multi-frequency and phase-sensijtiiat emitted 200 Micro Amps root mean
square alternating current. In addition to meaguttie raw impedance values at four frequencies
(5, 50,100 and 200), the machine generated estihvatees of including volume and

distribution of body water, nutrition indices anagnostic health indictors. Using protocols

described previously (23), self-adhesive disposalgetrodes were attached at the right hand
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and foot, injecting leads were connected to theteldes just behind the fingers and toes and the
measuring leads were then connected to the elestmal the right wrist and right ankle.
Measurements were taken in triplicate, each sp&grohutes apart, while children were supine
on a stretcher with limbs abducted from the bode Technical error of the mean, calculated on
baseline data using the formula of Ulijaszek and K&4), was as follows: Resistance 9.4 ohms;
Reactance 2.0 ohms; Phase angle 0.18 degrees. Vidiess are very small relative to both the
standard deviation of the same variables at bas@Resistance 254.1 ohms; Reactance 16.5

ohms; Phase anglel.12 degrees) and their longéldianges during treatment.

Children (0-5-14 years of age) with WFH or body snaslex-for-age (BMI, kg/fi) and height-
for-age (HFA) within £ 2SD of WHO growth standar@ém® assessed using the same Bl analyser
and similar procedures. These apparently healthgreh were recruited from vaccination

attendees, children in day-care centres, and pyis@rools.

Caretakers were given verbal and written informmatibout the study before consenting on
behalf of their child. The Research Ethical Revi@gammittee of Jimma University approved the

study. Two research nurses collected the data.

Satistics and data handling

Descriptive statistics

Data were double-entered into EpiData version Bpl¥ata Association, Odense, Denmark)

and analyzed with Stata/IC 12-1 (StataCorp, Ted84)). Anthropometric z-scores were based
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on WHO child growth standards and were calculateStata and WHO Anthro Plus v 1-0-3
(WHO, Geneva, Switzerland). (25) Data were steditoy the presence of oedema at admission
and patient hospital exit status (recovery, sedtlarge or death). R and Xc were indexed to
height by division, giving R/H and Xc/H. Continuodata were presented as mean + standard
deviation, median (IQR); categorical data were @nésd as n (%). Two-sample t-tests and chi-

squares test were used to compare healthy childtbrchildren having SAM.

Regression analysis

Height-adjusted values of Bl parameters were tipeddent variables. Covariates associated
with changes in the Bl parameters over time weeatifled using linear mixed-effects
regression analysis. The covariates considered aggresex, presence of nutritional oedema at
admission, co-diagnosis, and days of hospitalinatiefore enrolment (stabilization period).
None of these were time-dependent. Both linearquadiratic trends were included in the model.
To investigate whether changes in Bl parametensigareatment depended on oedema at
admission, time-oedema interactions were evalu@edelation between measurements on the
same subject was described by means of subjecifispaadom effects. Simple linear
regression was used to evaluate the associatibaseline Bl parameters with patients’ exit
status; the model included all the above covarigtidinal models were established using

forward selection.

Vector analysis
BIVA was performed by RXc graph method (13) ustngustomized Excel program. (26)

Vectors of children with SAM were compared with t@s of healthy children using the “RXc
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mean graph”; the relationship of R/H, Xc/H, and R¥e plotted vectors over time on “RXc
graph tolerance ellipses” and interpreted thejettary. Generally the 75% tolerance ellipse
represent bioelectrical thresholds or normal tissyeedance; displacements along the major
axis of the ellipse show changes in tissue hydnatibereas vectors following the minor axis
(above or below the major axis) indicate soft tsseu BCM. (27) Vectors of group-means were
compared by Hotelling's T-squaredf§eneralized means test. Changes during treatment
BMI-for-age z-score and the Bl parameters were shioyvmean and 95% confidence interval

plots over five time points during treatment:}, 74" & 215 days.

10
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Results

During the study period, 527 children with SAM (Q@e514 years of age) were admitted to the
paediatric ward at the study site. We excluded(B864%) children since they were medically
unstable. One child was omitted from analysis @uad¢omplete Bl data. The studied and
excluded children had comparable mean age (1-6hs00% % CI, -4-2, 7-4), sex distributions
(38-6 % v. 43-3 % girls, p=0-30) and proportionhwedema (66-1 % 81-1 %, p=0-26). Out
of those excluded children, 105 (60-6%) had exitust data, which showed that they had lower
recovery rate (69-5% vs. 85-9%, p<0.01) and higtwetality (20-0% vs. 3-4%, p<0-001)

compared to those studied.

Table 1 shows that non-oedematous children weragenthan non-oedematous children
(median age, 26 vs. 36 months, p=0-04), needed stabdization time (mean days, 8 vs. 5,
p<0-001) and also had a higher proportion withiciihinfection (51% vs. 43%, p<0-001). But,
stunting was comparable between the two groupsr{iiée, -3.3 vs. -3.2, p=0-70). Table 2
compares the BIVA values between healthy childrehchildren with SAM at enrollment and
also within SAM by presence of oedema. Variabitifyparameters was higher among children
with SAM than healthy children. SAM children hadjhér R/H than healthy children (-204,
95%CI -277 to -131) while their Xc/H (19, 95%CI 23) and PA (1-5, 95%CI 1-3-1-7) were
lower. The oedematous SAM group had the lowestdRXanas also displayed in Figure 1B by

the shortest vector with the least slope.

The four graphs in Figure 2 show trends in both Bisdl BIVA parameters during treatment. It
is evident that though BMI and BIVA parameters heamproved significantly over the four

11
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weeks of treatment, they did not normalize. Intengdy, the change in resistance was divergent
by oedema status whereas, expect for slope, thdgiia reactance and phase angle did not differ
by oedema status. Children with oedema had weagistih the first two follow-up weeks,

followed by weight catch-up. The regression resulffable 3 further demonstrate the temporal
relationship between oedema and Bl parametersmatid between SAM groups during the
course of nutritional therapy. Weight losses weeapanied by significant increases in both
R/H (B =19, 95%CI 13, 25) and Xc/H (B = 0-71, 95P0C26-1-2) However, both of these
changes slowed in rate during the catch-up pehodhildren without oedema, weight increased
linearly throughout treatment and this was acconguhby steady but insignificant reduction in
R/H (B = -2-8 95%CI -6-4 to 0-87) and increased/HX(B = 0-13, 95%CI -0-16 to 0-41) over

time.

The changes in Bl parameters are better visualiz#tkir vector trajectories (Figure 3). Of note,
vectors of both oedematous and non-oedematousehildere notably outside the reference
95% tolerance ellipse (Figure 3A). Subsequently vctor of oedematous children migrated
towards the centre along the major axis of ellipdesonstrating increased R/H and Xc/H. As
noted in Figure 3B the trajectory had faster padelly. The vector migration in non-
oedematous children was also in a central direchahunlike in the oedematous children it
followed the minor axis, showing a reduction in R{Rl an increase in Xc/H. Additionally,
compared with the oedematous children, the paceigration was slower and more uniform in

non-oedematous children throughout the treatmenghe

On one hand, children who had no clinical infecth@d higher mean PA than children who had
at least one recorded infection (mean PA, 2.52\28, 95%CI: 0.12-0.16). On the other hand,
PA was 0.036 higher by each additional day of &tation (95%CI:0.02-0.05, p<0.001).

12



240 Finally, though this study excluded medically ub&achildren, twelve deaths were recorded,
241 nine of them among children who had oedema at lemeat. Most of these deaths occurred
242 before the second Bl measurement (data not shos)shown in Table 4 and Figure 4,
243 extremely low and extremely high baseline resisgtgmedicted death in oedematous and non-
244 oedematous children, respectively.
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Discussion

This study described changes in BIVA parameteichdfiren with SAM during in-patient
treatment using two main analytical approaches.fifsieone, BIVA showed that children with
SAM initially had grossly deranged BI values whiofproved during the course of treatment.
The vector also easily identified the predominafitlid-related weight changes in oedematous
children whilst in non-oedematous children it shdvwiessue accretion. Second, comparison of
the means (actual and adjusted for covariates)dwidual raw parameters (R, Xc and PA)
between healthy and SAM and within SAM has alswiged the aforementioned information.

Finally, extremes of R values at admission weradbio be associated with death.

The initial data points clearly show that BIVA pareters are severely affected in children with
SAM, and also have increased variability. The iasesl variability by itself is useful clinical
information. Among healthy individuals, BIVA varidibty can arise from normal variation in
tissue structure and adipose tissue content. (82)eMer, in disease states, cellular changes due
to morbidities and body composition abnormalitiesyrmcrease this variability (28) , hence
explaining the greater heterogeneity of SAM cl@fdcompared with healthy children. Change

in variability could be when examining group datanfi epidemiologic studies.

The most interesting observation in this studydwse from the vector trajectories that
accompanied the weight changes. Theoretically, gdgm R and Xc represent changes in body
fluid and tissue (BCM), respectiveli#.3’ The trajectory of oedematous children indicates a
combination of major loss of excess fluid and milean tissue accretion, a pattern found in

nephrotic patients losing oedema .(13) The trajgamong non-oedematous children represents

14
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gain in BCM with increasing hydration. Though I@ssnounced, this trajectory is similar to
findings in HIV/AIDS patients. (13) Of note, thafling of weight gain accompanied by
insignificant vector movement may indicate accettdody-fat which often initially

accompanies refeeding.(30)

When examining the individual BIVA parameters, aad&us children had lower values despite
having higher BMI even after loss of oedema. TheeloR could be explained by the
combination of larger muscle mass and excess ¢loliéction which is manifested as oedema. In
addition for a given body water, individuals witlora fluid in extremities will have lower R
since the limbs contribute approximately to halfatfl body R. (31) (32) Cirrhotic patients with
oedema have shorter impedance vectors than cicrpatients without oedema whereas

impedance vectors between those with or withoutessdid not differ. (33)

In the oedematous children, consistent and sigmificncrease in R was noted during treatment.
This change was rapid during the period of weigksland may show progressive increase in
tissue specific resistivityp(), a constant that is inversely related to the cotma&on of free ions
.(34) Further support for this explanation comeas &dom the simultaneous increase in the Xc
which indicates an increase in BCM. Extreme altenatin the amount and composition of
extracellular fluids in oedematous children (35ymaodify p of the body. Considering the
direct relationship between R and wasting, high&r Ehildren without oedema indicates their
extreme wasting. Xc and PA may reflect ‘cellulaaltie.(36) The significantly low Xc and PA
values of children with SAM compared with the hieglchildren specially among oedematous

children may show cellular and membrane dysfunstiescribed in SAM.(37)
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PA has been shown as prognostic indicator in varabuical conditions among young age
groups; lower PA indicates poor clinical outcomeiiically ill children (38—41) and has been
used to assess response to different nutritioeahthes in young children with severe-acute
malnutrition. In this study, we have found that S&MIdren with at least one type of infection
had lower PA than those without. On the other h&#dwas directly related with the number of
days SAM children required to stabilize before dmrent. The higher PA could be a proxy
indicator for better clinical stabilization. Howeyas PA varies with age in children, age-
specific z-scores calculated from population-specédference data may be the best way to

approach this issue(42).

The relationship between baseline R and patiemoou indicates a prognostic value of BIVA
parameters, with oedema further influencing thedion of this relationship. The extremely low
values of R in oedematous children might indicateege tissue over-hydration (43) while
extremely high R in children without oedema indesa¢éxtreme wasting compared within their
group of those who were alive at exit. Considethrg medically unstable children were
excluded from this study, it is possible that Bukeboutperform clinical parameters in
identifying SAM children at high risk of death. Hewer, it is important to investigate the
performance of BIVA as a triage tool compared wiith standard appetite test and other clinical
indicators. If proven to function well, its objedty and simplicity could give it an edge over

other methods.
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In terms of additional practical application of BA\parameters, combining anthropometric
measurements and BIVA may broaden and optimizecsspé patient evaluation specially
assuming that repeated Bl measurements assedgonatrstatus, hydration, and “cellular
health” simultaneously. As noted above, BIVA cagatly distinguish whether acute weight
change is due to fluid change or tissue accrekoen though accurate quantification is unlikely
to be made, there is a potential for continuouskirey of relative changes. This, combined with
other clinical parameters could guide clinical m@ntions. For instance, in a clinically
deteriorating child a fall in R without detectalblgange in oedema status could signal excess
fluid accumulation. At the same time, accompanyihgnge in Xc or PA could be clues for

underlying factors like infection which can afféo¢llular health’.

In both types of SAM, the BIVA values for R, Xc aR& were all well outside the reference
range and did not normalize. Based on this findBigA should be considered as a tool for
monitoring post-SAM children. Assuming that BIVArpmeters will normalize if and when
nutritional status and general health improve, meahd/or the individual parameters can be

assessed regularly to monitor children who have lbescharged from SAM treatment programs.

This study has certain limitations. The exclusibdwrdically ill children from the study limited
the assessment of BIVA approach in this group.otiley have been of value to compare the
BIVA data with another indicator of hydration (edguterium or bromide dilution or serum
osmolality). A systematic clinical investigatiom@ging, microbiologic, and blood chemistry) of
the patients would have enhanced clinical integti@b of the BIVA data. Finally, as calibration

device was not available for the BIA analyzer iis #tudy, it was not possible to provide
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calibration data. Strengths include the large sarsge, the protocol of measuring BIVA

parameters in triplicate and the inclusion of dthgacomparison group.

In conclusion, our study demonstrates the utilfti/A for indexing tissue- vs. fluid-related
weight changes in children with SAM during in-pati¢reatment. Moreover, BIVA may predict
survival of children hospitalized for SAM. More dias should be done to understand the
biological correlates of Bl changes in conditioike ISAM which are associated with
multisystem and complex pathophysiological changagthermore, future studies should
identify BIVA patterns and its associated factaorsnedically unstable or critically sick children
with SAM. This will contribute to evaluate the uskfess of Bl in patient triage. Finally, it is

important to investigate the timing for normalizatiof Bl and the determinants.
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Fig. 1 Scatter and RXc mean graph of baseline R/H an#éil X¢/healthy children and children

with severe acute malnutrition, where R is resistaiXc reactance and H height.

Fig 1A shows oedema-specific distribution of datangs compared with the healthy children
and fig 1B displays the position of vector meanghaf three groups. The oedematous children
have the shortest vector with the least phase afstigpe) — related indirectly with relative
volume of body water. The oedematous children hthes shortest vector with the least
slope. Separate 95% confidence ellipses of twonmestors is equivalent to a significant

Hotelling’s T2 test, P<0.05.

Fig. 2 Trends in body weight and bio-impedance duringttreent in children with severe acute
malnutrition

The estimated means and 95%CI (error bars) of buodgs index z score, height indexed
resistance and reactance, and phase angle wermtpehasing linear mixed-effects regression

after adjusting for covariates including age. Thezontal dash lines indicate reference values.

Fig 3. Oedema-specific trajectories of weekly mean impedavectors (R/H and Xc/H) of
children with severe acute malnutrition treatedJabhma University Hospital, where R is

resistance, Xc reactance and H height.

Fig 3A shows tolerance ellipses based on data fager matched healthy children. Fig 3B
zooms-in the vectors shown in fig x1 which were suead weekly over the treatment period.
The error bars represent 95%CIl. Among oedematoildret, the vector migrates to the center

mainly along the major axis of ellipses startingsale the 95% tolerance ellipse and thus
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528

indicates combined major loss of excess fluid ambmlean tissue accretion (i.e. increasing in
both R and Xc, but mainly R). The migration pattamong non-oedematous children is to the
center principally along the minor axis and herggreésents gain in cell mas (lean tissue) with

increasing hydration (i.e. reduction R and increase in Xc).

Fig 4. Oedema-specific trajectories of weekly mean impedavectors (R/H and Xc/H) of
children with severe acute malnutrition treatedJabhma University Hospital, where R is

resistance, Xc reactance and H height.

The border for “reference” children represents 396%rance ellipse and was based on data from
age-matched healthy children. The data points deitshe trajectories were from deaths in
oedematous and non-oedematous groups. They werdaseline and hence are to be compared

with similar data points of their respective groups
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529

530

531

Table 1. Selected characteristics of healthy candand children with severe acute malnutrition

(SAM

Healthy SAM

Non-oedematous Oedematous

n=120 n=136 n=214
Age, month 38 (22 - 82) 29 (14 - 60) 36 (24-60) 0.0
Male sex 60 (50.0) 76 (56.0) 122 (57.0) 0.8«
BMI-for-age z-sore -0.1+1.0 -3.6+1.3 -1.7 91, <0.!
Weight-for-age z-sore -0.3+0.8 -43+1.2 -3.2.4 <0.!
Height-for-age z-sore -0.5+1.0 -3.3+1.7 -3.2.6 0.7
Weight-for height z-sor& 0.1+0.1 -3.6+1.2 -1.7+1.6 <0.!
Clinical Infections” - 51 (37.5) 43 (20.1) <0.
Days to stabilizatioh - 8+8.2 5+5.5 <0.!

Data are median (IQR) or number (%) or mean + stahdeviation; zcores were calculated using WH
standard?only for children <5 years of ag®=>1 clinically diagnosed infections during admissidnumber

between hospital admission and enrolment into study
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532 Table 2. Baseline bio-impedance values of childvégh severe acute malnutrition (SAM) and

533

534

535

536

537

538

539

healthy control children

Healthy SAM SAM
Non-oedematous
n=120 n = 350 Diff (95%CI) n=136

Resistance (R), ohm 826 £ 109 888 £ 252 -62 (-169,- 1070 £ 203
Reactance (Xc), ohm 62 +13 37+16 25 (22, 28) +46
Phase angle, degree 43+10 25+1.1 1.8(0)6,2 28+1.2
R / height, ohm/m 878 + 246 1082 + 382 -204 (-2731) 1340 + 369
Xc / height, ohm/m 64 +8.0 45 + 21 19 (15, 23) 4570

Data are mean * standard deviation of tetra-polel@body impedance measured at 50 kHz
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540 Table 3. Estimated coefficients (95%CIl) of changesbio-impedance parameters among 350

541 children during treatment for severe acute maltiatri

Resistancénheight Reactance/height Phase angle
Linear slop&
Non-oedematous -2.8 (-6.4, 0.87) 13 (-0.16, 0.41) 0.007 (0.01
Oedematous 19 (13, 25) 0.71 (0.26, 1.2) 0.0097?
Quadratic slope
Non-oedematous -0.01 (-0.11, 0.09) 0.002 (-0.00mL)0 0.0001 @.00(
Oedematous -0.30 (-0.46, -0.14) -0.016 (-0.0304)0 -0.004 (9.00

Multiple mixed-effects models: interaction betwamtdema at admission and follow-up daggusted for age,
hospital stay for stabilization before enrollmentl@o-diagnosisXl infection diagnosed during admissiéri};
and reactance are Ohm/meter and phase angle egiaal

542

543

544
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545 Table 4. Relationship between baseline bio-impeeland hospital exit status of children with

546 severe acute malnutrition

547

548

549

550

551

552

553

Resistance/height

Reactance/heigPlhase angle

Recovered
Self-discharged
Died

Interaction

Died*oedematous

Self-discharge*oedematous -26 (-210, 158)

Ref.

16 (-106, 137)

655 (345, 967)

-801 (-1161, -

441)

Ref. Ref.

2.5(-5.9,10.9)  0.24 (-0.44, 0.92)

4.2 (-17.1,25.4) -0.34(-2.5, 1.6)

-16.2 (-40.8, 8.3) -0.22 (-3.1, 2.7)

-2.1 (-14.8, 10.5) -0.11 (-1.0, 0.83)

%Coefficient (95%Cl) after adjustment for age, s#ays of hospital stay for stabilization before

enrollment and co-diagnosis]( infection diagnosed during admission). Recovéne®96):

medical discharge after attaining weight for heigl@5% of median and/or complete resolutio

pitting pedal oedema, self-discharged (n=42): disgh against medical advitanddied (n=12).

Resistance and reactance are Ohm/meter and phgleasaim degree.
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Fig. 1 Scatter and RXc mean graph of baseline R/H and Xc/H altlime children and children
with severe acute malnutrition, where R is resistance, Xctence and H height. Fig 1A shows
oedema-specific distribution of data points compared wite healthy children and fig 1B
displays the position of vector means of the three groupg dédematous children have the
shortest vector with the least phase angle (slope)jated indirectly with relative volume of body
water. Separate 95% confidence ellipses of two mean vectors isvalgat to a significant

Hotelling’s T2 test, P<0.05.
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Fig. 2 Trends in body weight and bio-impedance during treatmn children with severe acute
malnutrition. The estimated means and 95%CI (error barbpdf) mass index z score, height indexed
resistance and reactance, and phase angle were genenaigdinesar mixed-effects regression after

adjusting for covariates including age. The horizontaheadines indicate reference values.
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Fig 3. Oedema-specific trajectories of weekly mean impedawectors (R/H and Xc/H) of
children with severe acute malnutrition treated at Jimmaveéisity Hospital, where R is
resistance, Xc reactance and H height. Fig 3A shows toleralipses based on data from age-
matched healthy children. Fig 3B zooms-in the vectors showfig x1 which were measured
weekly over the treatment period. The error bars represgitt(d. Among oedematous children,
the vector migrates to the centre mainly along the major akellipses starting outside the 95%
tolerance ellipse and thus indicates combined major lossxoéss fluid and minor lean tissue
accretion (i.e. increasing in both R and Xc, but mainly R)eThigration pattern among non-
oedematous children is to the centre principally along tirmaxis and hence represents gain in

cell mas (lean tissue) with increasing hydration (i.e. cigun in R and increase in Xc).
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Fig 4. Oedema-specific trajectories of weekly mean impedance vectdks dRd Xc/H) of

children with severe acute malnutrition treated at Jimma Univerdibgpital, where R is
resistance, Xc reactance and H height. The border for “reference” anildngresents 95%
tolerance ellipse and was based on data from age-matched healthy chillieemlata points
outside the trajectories were from deaths in oedematous and non-oedematous greypgeréh

only baseline and hence are to be compared with similar data points of theictresggoups.



