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Abstract

Seismic performance assessment of existing bridges, especially those designed without seismic criteria, is paramount in

earthquake-prone countries. To perform this task, the Displacement-Based Assessment (DBA) represents a satisfactory

trade-off between simplicity and accuracy. After describing the modal analysis-based DBA procedure, a static-based

alternative is proposed in this paper, considering its strengths and limitations. Moreover, an extension of the procedure

is proposed to derive the force-displacement curve of the bridge (pseudo-pushover capacity curve). The effectiveness of the

DBA methodology, implemented via simplified mechanical models, is discussed through parametric analyses to address

its practical applications. The DBA approach, both modal and static, is herein adopted for the transverse analysis of a set

of 36 reinforced concrete continuous-deck bridges up to six spans, with pier height in the range 8-20m and two different

values of the deck transverse stiffness. Additional sensitivity analyses (24 case studies) are conducted to investigate the

accuracy of the two approaches considering: 1) the length of the bridge, 2) the amount of longitudinal reinforcement in

the piers; 3) different pier typologies. The results are compared to numerical pushover and time-history analyses using

three suites of 10 scaled, natural ground motions respectively consistent with low-, medium- and high-seismicity sites.

For the majority of the case studies, the resulting performance assessments fall within one standard deviation of the

results of the time-history analyses. For this reason, the displacement-based modal or static approaches can represent a

valid alternative to numerical non-linear static analyses for continuous bridges with six spans or less.

Keywords: Displacement-based seismic assessment, RC bridges, capacity/demand ratio, capacity spectrum method,

pushover analyses, non-linear time-history analyses.

1. Introduction and motivation

In high earthquake risk countries, the seismic assessment of bridges is particularly important since often such structures

represent crucial nodes of the transportation networks and have strategic functions. This is demonstrated by field

observations in the aftermath of major earthquakes, e.g. the Mw = 7.8, 2016 Kaikoura earthquake [1]. Moreover, in

many countries (e.g. Italy), many of the existing bridges are designed with non-seismic methods, rather than advanced

techniques (e.g. [2]), thus increasing the need for an evaluation of their seismic behaviour.

Non-linear time-history analysis (NLTHA) is arguably the most refined available tool to perform a seismic performance

assessment, provided that significant computational effort is spent, and time/skills are available to setup the numerical

model of the bridge and interpret its results. Similar difficulties can arise adopting advanced non-linear static procedures

(NSPs), such as the adaptive pushover. Based on previous work [3, 4], force-based and displacement-based adaptive

pushover (FAP and DAP) techniques were proposed [5, 6]. These represent improvements of the conventional invariant

pushover since they allow to account for the effect that progressive stiffness degradation might have on the distribution
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of seismic forces. Both the FAP and DAP were tested on reinforced concrete (RC) bridges proving high accuracy [7, 8].

Part of the above-mentioned difficulties in non-linear numerical models are overcome using the Displacement-Based

Assessment (DBA), which represents a satisfactory trade-off between simplicity of the analysis and accuracy of the results.

Such features render DBA also suitable for the analysis of large portfolios, possibly coupled with simplified methods for

the characterisation of structural members (e.g. Cosenza et al., 2011 [9], Gentile et al., 2018a,b [10, 11] for RC members).

The DBA derives from its design counterpart (Priestley et al., 2007 [12]), which was firstly proposed for bridges by

Kowalsky et al. 2002 [13]. Extensions to the procedure that include the effects of higher modes in the design have also

been proposed [14, 15]. The DBA procedure for bridges was proposed by Sadan et al. 2013 [16] for continuous-deck

configurations with pinned abutments, and involves the modal analysis of the bridge based on secant stiffness properties

for the piers (effective modal analysis [13]). The DBA was extended by Ni et al., 2014 [17] to include soil structure

interaction. Further work by Cardone (2014) [8] aimed at proposing performance displacement profiles correspondent to

a limit state in various members of the bridge (piers, abutments, joints, bearing devices and shear keys). In such cases,

the full capacity curve of the bridge is not derived.

After describing the existing DBA procedure based on modal analysis, this paper proposes an alternative procedure

based on a static analysis. Moreover, it is proposed an extension of the DBA procedures, both modal and static, to

calculate the full pseudo-pushover capacity curve of bridges. Finally, an open-access application is provided for the above

calculations. Since a relatively less-complex model and analysis type are used, the static-based DBA is deemed to be

easier in the practical applications, for example allowing to use an electronic spreadsheet (possibly validated against the

provided application) instead of a numerical computer model. Using a static rather than modal analysis is an attempt

to render the procedure “practice oriented” as much as possible, aiming at the adoption of simple mechanical models

constructed by the user, while building refined numerical ones only for the final validation (and vice versa). This could

potentially reduce (or avoid) the “black-box” effect due to the adoption of highly-refined models.

The above-mentioned modal and static approaches are based on the repeated application of the DBA for increasing

values of the displacement profile, and are herein called Displacement-Based Pseudo Pushover (DBPP). The concept is

similar to what done for RC buildings by proposing the Simple Lateral Mechanism Analysis (SLaMA) method [18, 19,

20, 21, 22]. The DBPP allows obtaining a pseudo-pushover curve of the bridge, for which the term ”pseudo” refers to

a series of linear analyses using secant rather than tangent stiffness properties for the members [18]. Using such curve

within a capacity spectrum-based assessment approach, allows calculating a variety of engineering demand parameters

(for one or more spectra). This also allows performing fragility analysis and risk assessment.

The scope of this paper is limited to the transverse analysis of continuous deck bridges. The longitudinal analysis

of such bridges is deemed to be a less-complex application of the proposed solution, since it is based on a much simpler

static scheme (piers in parallel which are forced to the same top displacement). Moreover, multi-span simply-supported

bridges are not considered since in this case each span can be modelled as a Single Degree of Freedom (SDoF) system,

both in the transverse and longitudinal directions. Finally, although the main case-study dataset (Section 3.1) refers

to RC continuous-deck bridges with single-column piers, straightforward modifications in characterising the simplified

structural model allow to consider other deck typologies, pier-to-deck connections, and pier typologies (some of which

are herein considered in an additional sensitivity analysis).

The effectiveness of the DBPP approach is analysed by means of the application to a dataset composed of 36 RC

bridge case studies with continuous deck, comprising wide ranges for the number of spans (2-6), the height distribution

of the piers (8-20m), the force-displacement response of the piers and the moment of inertia of the deck (flexure in the

transverse direction of the bridge). Firstly, the results are compared with refined numerically-based pushover analyses

using two different force profiles. The Capacity Spectrum Method (CSM, Freeman et al., 1998 [23]) is applied using such

curves to derive a performance point. The results are critically compared with the average of time-history analyses using
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three suites of 10 scaled, natural ground motions respectively consistent with low-, medium- and high-seismicity sites.

Finally, additional sensitivity analyses are conducted to investigate the accuracy of both analytical approaches in relation

to the bridge length, the amount of longitudinal reinforcement in the piers and different pier typologies. On the basis of

the obtained outcomes, some applicability limits are suggested to address a practical and appropriate use of these DBA

methodologies.

2. Description of the DBA for bridges and proposed extensions

The DBA procedure for bridges aims at the identification of their displacement capacity (for a given limit state)

expressed in terms of equivalent SDoF properties. The assessment is performed comparing the displacement capacity and

demand at the corresponding limit state, which depends on effective structural period and equivalent viscous damping of

the SDoF system.

An initial knowledge phase is required to define the geometry and detailing of the investigated bridge. Subsequently,

limit displacements (or drifts) should be defined for each member composing the bridge (e.g. piers, abutments, bearings).

The DBA allows to identify the displacement profile, and related base shear, associated with the limit displacement/drift

for one or more members in the bridge.

2.1. Overview of the DBA procedure based on modal analysis

The DBA procedure based on modal analysis [16] is described herein. Firstly, the force-displacement characterisation

of the piers and abutments should be provided. While an elastic behaviour is often appropriate for the abutments, the

non-linear force-displacement curve of the piers is needed. For RC single-column piers this can be calculated based on

equivalent cantilever models [2] which take into account the mass distribution along the pier height (including the pier

cap and a portion of the deck). The model choice (with particular reference to the shear span of the pier) can change

depending on the boundary conditions at the deck connection [2]. The height H of the equivalent cantilever can be

calculated according to Eq. 1, where Hp and Hd are respectively the height of the pier and the deck centre of mass. The

equivalent cantilever mass m involves the mass of pier mp, the pier cap mpc and the deck portion between two mid-spans

md. Alternatively, the height of the equivalent cantilever can be set equal to the height of the deck centre of mass. If a

high degree of deck torsional restraint is present, a different formulation [12] of the equivalent cantilever height should

be chosen.

H =
(mpc + 0.3mp)Hp +mdHd

m
where m = 0.3mp +mpc +md (1)

The force-displacement characterisation of each equivalent cantilever requires the (bi-linear) moment-curvature re-

lationship for the base section of the pier. This can be calculated with simplified formulations [10, 11] or numerical

approaches such as the computer code CUMBIA [24]. The force-displacement curve can be calculated with Equations

2 to 7 (Priestley et al., 2007 [12]), in which ϕY and ϕU are the yielding and ultimate curvatures, MY and MU are the

yielding and ultimate moments, ∆Y and ∆U are the yielding and ultimate displacements. LSP is the strain penetration

length, fy and fu are the yielding and ultimate steel stresses and dbl is the mean bar diameter in the pier. It is worth

mentioning that alternative failure modes should be considered, such as lap-splice [2] or buckling [25] of the longitudinal

bars or shear failure [26]. If one or more alternative failure modes anticipates (or prevents) the flexural hinging, the

force-displacement relationship of the piers should be modified in the pre-processing phase, before using it in the analysis.

FY/U =
MY/U

H + LSP
(2)
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∆Y =
ϕY (H + LSP )2

3
(3)

∆U = ∆Y + ∆P = ∆Y + (ϕY − ϕU )LPH (4)

LSP = 0.022fydbl (5)

LP = kH + LSP (6)

k = 0.2(
fu
fy

− 1) ≤ 0.08 (7)

The DBA procedure based on modal analysis (Figure 1) starts with the individuation of the member that controls

the considered limit state, which in turn allows to select a ”control node” in the structural model of the bridge, and

to set its displacement (∆c). To this aim, the so-called structural component modelling approach by Priestley et al.,

1996 [2] is used. For analyses in the transverse direction, such scheme (Figure 1) is composed by an elastic beam (the

deck) on spring supports (piers and abutments). In the longitudinal direction, the bridge can be modelled considering

springs in parallel (piers and abutments) which are forced to the same displacement. Each pier in multi-span simply-

supported bridges can be modelled as individual SDoF systems [2] (one per each pier), which are calibrated according to

their tributary mass. Finally, the behaviour of other structural members (e.g. bearings, shear keys, abutment backfill)

should be considered in the pre-processing phase of the analysis. In particular, each non-linear spring member should be

considered as a combination (in series or in parallel) of two or more members (e.g. pier + bearing + shear key). The

resulting force-displacement curve should be used in the analysis. For brevity, such situation is not explicitly considered

in the case-study dataset of this paper.

An initial guess of the displacement shape is scaled in such a way that the displacement of the control node is equal

to ∆c. This allows to calculate the displacement shape ∆i. The shear force in each pier or abutment (Vi) is derived

using the appropriate force-displacement curve, and the secant stiffness (ki) is calculated according to Eq. 8. A first

modal (eigenvalue) analysis is carried out, deriving the first transverse modal shape (φi) and its participating mass (M∗1 ).

The first modal shape is scaled according to Eq. 9 to derive a new displacement profile (∆′i), which is compared to

the previous guess (∆i). The secant stiffness is updated (Eq. 8) and a new eigenvalue analysis is performed until the

calculated displacement profile stabilises. It is worth mentioning that, using a reasonable value of the tolerance (e.g.

0.001), three or four iterations are usually sufficient.

ki =
Vi
∆i

(8)

∆′i = ∆c
φi
φc

(9)

If the participating mass of the first vibration mode is less than a given threshold (e.g. 70%), the effect of higher

modes should be taken into account in each iteration. This can be done calculating the Effective Mode Shape (EMS [13]),

considering a number of vibration modes such that the cumulative participating mass is equal or greater than 90%. The

performance displacement for each considered mode j is calculated according to Eq. 10, where Γj and Tj are the modal

participation factor and the period of vibration of mode j. Moreover, Sd(Tj) is the displacement demand calculated

with an hazard-specific 5% damped elastic spectrum. The final displacement profile ∆i is finally obtained with a modal
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Figure 1: DBA procedure based on modal analysis.

combination method such as the Square Root of the Sum of the Squares (SRSS) or the Complete Quadratic Combination

(CQC).

∆i,j = φi,jΓjSd(Tj) (10)

The final step of the procedure is the characterisation of the equivalent (effective) SDoF system which represents

the bridge. This is done consistently with the approach by Priestley et al. [12]. The effective displacement (∆eff ) and

effective mass (meff ) are computed according to Equations 11 and 12. The effective damping of the system is calculated

accounting for the contribution of all the bridge members, including their elastic and possible hysteretic contributions.

Equations 13 and 14 allow to calculate it considering 5% elastic damping for the abutments and 2% for the deck. In such

equations, ∆ab and Vab are the displacement and shear of one abutment, ∆pier,k and Vpier,k are the displacement and

shear of the kth pier and µk = ∆pier,k/∆Y pier,k. The seismic assessment can be performed comparing the displacement

capacity of the SDoF with the displacement demand calculated on an hazard-compatible displacement spectrum.

∆eff =

∑
mi∆

2
i∑

mi∆i
(11)

meff =

∑
mi∆i

∆eff
(12)

ξeff =
0.05∆ab,1Vab,1 + 0.05∆ab,2Vab,2 + 0.02∆eff (Vab,1 + Vab,2) +

∑
ξpier,k∆pier,kVpier,k

∆ab,1Vab,1 + ∆ab,2Vab,2 + ∆eff (Vab,1 + Vab,2) +
∑

∆pier,kVpier,k
(13)

ξpier,k = 0.05 +
0.444(µk − 1)

µkπ
(14)

2.2. Proposed alternative DBA procedure based on static analysis

To provide a more practice-oriented tool, an alternative DBA procedure is proposed which is based on static analysis.

It starts with the definition of a control node, which is related to the member that controls the considered limit state. A

guess of the displacement shape is defined and it is scaled in such a way that the displacement of the control node is equal
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Figure 2: Proposed alternative DBA procedure based on static analysis.

to ∆c. The displacement of each member (∆i) is used to interpolate the force-displacement curve of the sub-structure

members and derive the shear (Vi) and, in turn, the secant stiffness (ki).

The distribution of inertia forces is calculated with Eq. 15, where VB is the base shear. A static analysis is performed,

and the calculated displacement profile (∆′i) is compared with the initial guess to check for convergence. A new static

analysis is conducted, after updating all the involved parameters, until the displacement profile stabilises. The charac-

terisation of the SDoF system and the final check against the seismic demand are performed according to the same steps

described in Section 2.1.

The displacement profiles by Priestley et al. [12] or Cardone [8] could be adopted to select the initial guess. Nev-

ertheless, a sensitivity analysis in this work demonstrated that the initial guess does not affect the achievement of the

convergence for the case studies herein analysed. In fact, regardless of the initial guess, three of four iterations of the

analysis are normally sufficient if a tolerance of 1mm is adopted. In the specific case of this work, a parabolic displacement

pattern is assumed as initial guess for all the analysed bridges.

Fi =
mi∆i∑
mi∆i

VB (15)

2.3. Analytical displacement-based pseudo pushover

Both the modal (Section 2.1) and the static (Section 2.2) DBA procedures are conceptually simple and they can

be performed using electronic worksheets or code routines, using analytical static schemes rather than finite element

numerical models. Therefore, with the aim of fully exploiting the potentiality of the DBA approaches, it is proposed to

extend them to derive the full capacity curve of the bridge. Such process is herein referred as displacement-based pseudo

pushover (DBPP). An open access, stand-alone application is provided for these calculations [27]. The basic idea is to

repeat the modal or static DBA procedure for increasing displacements, allowing to have a thorough information on the

behaviour of the analysed bridge with a particularly small increase in computational cost. This allows to calculate, for

increasing displacements, the properties of the SDoF system (∆eff , meff , ξeff ) and the Engineering Demand Parameters

(EDP) for each single member (displacements of the deck, shear in the abutments, shear and base moment of the piers,

etc.). Finally, it is possible to plot the base shear vs effective displacement curve.
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The capacity curve deriving from this process is based on series of linear analyses (modal or static) of a system whose

members are characterised by the secant stiffness compatible with increasing levels of displacement. Such idea is similar to

the (more familiar) concept of a pseudo pushover analysis, which refers to a series of linear elastic analyses of a computer

model based on secant stiffness. Such approach, also allowed in international seismic guidelines [18], theoretically allows

to achieve the same results of a standard pushover analysis.

Similarly to a numerical analysis, the number of needed steps (or the size of each step) depends on the “smoothness”

of the capacity curve required by the user and on the adopted force-displacement relationships of the members (e.g. piers,

abutments, bearings, shear keys). If the member capacity curves are multi-linear,
∑m

i=1 bi analysis steps are needed, where

m is the number of non-linear members and bi is the number of linear branches of the capacity curve of member i. In

such case, guidance by Cardone (2014) [8] can be adopted to define the displacement profiles for each analysis step. If the

process is implemented in a routine or electronic spreadsheet, it could be less-demanding to run the analysis for equally-

spaced displacement increments (using a sufficiently-small step size) and to derive the relevant limit state displacement

profiles by post-processing the results. On the other hand, if smooth capacity curves are adopted for the members (e.g.

fibre-based force-displacement analysis for the piers), the latter approach is suggested using a relatively-small step size

(e.g. 1cm).

From the practical point of view, the DBPP starts with the (arbitrary) definition of a control node in the static scheme

of the bridge. It is suggested to select the top of a relatively-central pier as control node, although the resulting capacity

curve is independent from such choice. The displacement of the control node is set and the modal (Figure 1) or static

(Figure 2) DBA is carried out. The process is repeated for an arbitrary number of times, checking for each step if one

or more members in the system have exceeded their displacement capacity. By definition, each analysed step refers to

an independent displacement profile and equivalent SDoF system which are compatible with the related secant stiffness,

i.e. the procedure is ”adaptive”. In the context of the DBPPm, if the EMS is needed in the elastic range (M∗1 < 70%),

it should be carried out in the non-linear range regardless of the participating mass of the effective first mode (i.e. even

if M∗1 > 70%).

Finally, once the DBPP curve is obtained, the seismic assessment evaluation can be performed with an Acceleration-

Displacement Response Spectrum (ADRS) method. As an example, the CSM [23] can be applied using the properties

(meff and ξeff ) of the SDoF defined for each step, as also proposed by Casarotti and Pinho [28]. The defined Performance

Point (PP) is compared with the displacement capacity of the system to perform the final assessment.

Apart from the intrinsic simplicity of the method, the adoption of the DB non-linear curves allows the possibility to

investigate the behaviour of the bridge in a ”what if” fashion, which can be particularly useful for the design of retrofit

options. In other words, by individuating the response of the structure in correspondence of successive performance

limits of the members, it is possible to take into account the redundancy of the bridge and/or design redundant retrofit

strategies.

3. Assumptions for the parametric analysis

3.1. Description of the case study bridges

The dataset of case studies for this parametric analysis is composed of 36 RC, continuous-deck, straight bridges with

pinned deck-pier and deck-abutments connections (Figure 3). Two deck typologies are considered. The first (J50) has a

moment of inertia (for transverse flexure) equal to 52.5m4 and is composed of three V-shaped 1.8m-high pre-cast beams

and a 11.5m-wide slab (0.3m-deep). For the second deck typology (J100), the moment of inertia is equal to 104.1m4, the

number of 1.8m-high beams is equal to four and the slab width is equal to 14m. The dimensions of the pier caps related

to each deck typology are indicated in Figure 3.
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For each deck typology, 18 different bridge geometries are considered, with two, four or six 35m-long spans. Pier

heights of 8m, 15m and 20m are adopted to define regular and irregular geometric configurations (Figure 3). As an

example, the case study labelled as B132 is a four-span bridge with a 8m-, 20m- and 15m-high piers. The pier cross

section, assumed to be equal for all the piers, is circular with 3m diameter. The longitudinal reinforcement is composed

of 63φ26 bars (with ratio ρl = 0.47%) while the transverse reinforcement is composed of 100mm-spaced φ10 bars (with

volumetric ratio ρt = 0.1%). The shear strength [26] of the piers is considerably higher than the corresponding flexural

one, even for the shortest pier.

The considered unconfined concrete strength is fc = 20MPa while the steel yield stress is fy = 450MPa. Both the

seismic masses and gravity loads (seismic load combination) are calculated based on a concrete density equal to 25kN/m3

and a uniform deck load equal to 185kN/m (230kN/m for the J100 sub-set) to consider both self weight and superimposed

loads.

The elastic dynamic behaviour of the selected bridges is dominated by the first mode. Indeed, the first mode par-

ticipating mass ranges between 74% and 84%. The elastic (secant-to-yielding) first mode period of the bridges (shown

in Figure 5) is observed in the range [0.25s, 1.45s]. On the other hand, the first mode period of the bridges calculated

adopting the secant-to-performance point stiffness (CSM-based) falls within the range [0.25s, 1.63s] (also shown in Figure

5).

The regularity of the case-study bridges is measured with the relative stiffness index [29] (RS, Eq. 16), which quantifies

- with a degree of approximation - the ratio between the (elastic) stiffness of the super-structure and the sub-structure.

In such equation, EJdeck and Ldeck are the transverse flexural stiffness and the total length of the deck, respectively.

Greater values of RS indicate high regularity of the bridge and low importance of higher modes [15]. The RS is calculated

using both the elastic, RSe, and secant stiffness, RSpp, of the piers (at the CSM-based performance point) to investigate

the regularity of the response for increased seismic intensity.

RS =

384EJdeck

5Ldeck∑
i kpier,i

(16)

3.2. Assumptions for analytical and numerical analyses

Both non-linear static procedures (NSPs) and time-history analyses (NLTHA) are performed in this study. The con-

sidered NSPs include: static and modal displacement-based pseudo pushover (DBPPs and DBPPm); numerical pushover

analysis considering an invariant force profile proportional to the first vibration mode (PUSHm); uniform force profile

pushover (PUSHu).

For both the analytical and numerical analyses, the bi-linear moment-curvature relationship of the base section of

the piers is adopted. This is calculated using the software CUMBIA [24]. Moment-curvature is carried out adopting the

model by Mander et al., 1988 [30] for confined concrete, the model by King et al., 1986 [31] for the steel reinforcement

and considering the gravity axial load on the piers. It is worth mentioning that the upper bounds for concrete and steel

ultimate strains are set to 0.02 and 0.06, respectively [18]. No strength degradation is considered, since the aim of this

work is the analysis of the effectiveness of analytical procedures, rather than capturing strength degradation effects.

The DBPPs and DBPPm procedures are implemented in an ad-hoc Matlab [32] script, allowing for simple and fast

calculations. To this aim, the so-called structural component modelling approach by Priestley, 1996 [2] is used, considering

the transverse response only. In such analytical model (Figure 1), the continuous deck is modelled as an elastic beam

while the piers and the (pinned) abutments are represented by elastic springs. The springs referring to the piers are

characterised by a force-displacement curve. This is based on the calculated moment-curvature and adopting Equations

2 to 7, in which the strain penetration length is neglected. Seismic masses are lumped in the main nodes of the deck,

summing the tributary deck mass, the mass of the pier cap and one-third of the pier.

8



Figure 3: Geometrical configuration of the 36 selected case studies. ρl, ρt: longitudinal and transverse reinforcement ratios.

The pushover and time-history numerical analyses are performed using the non-linear finite element software Ru-

aumoko 3D [33]. The modelling strategy (Figure 4) is based on a lumped plasticity approach in which the deck is an

elastic frame member based on uncracked stiffness. In correspondence of each pier, the deck node is part of a body

constraint along with mass-less nodes for each girder. Those are connected to the elastic pier cap member through a rigid

link and elastic springs representing bearings. Among those, one is modelled as a pinned connection while the others are

sliders. A similar approach is adopted for the abutments. Piers are modelled by means of mono-dimensional Giberson

elements [34]. The non-linear behaviour of the (fully-fixed) base section of the piers is set consistently with their bi-linear

moment-curvature relationship. The cyclic response of the section is modelled with the revised Takeda model [35], using

0.5 and 0 for the unloading and reloading stiffness factors, respectively. The deck mass is distributed on five nodes for

each span. The mass of the piers is assigned to four nodes along their height, while three nodes are adopted for pier caps.

In the pushover analyses (PUSHm and PUSHu), each node assigned with a mass is part of the lateral load pattern. P-∆

effects are considered in both the displacement-control pushover and time-history analyses. For the NLTHA, a tangent

stiffness proportional damping is selected as suggested by Priestley et al. [12] and a constant 5% damping is assigned to

all the principal modes of the bridges.

3.3. Seismic demand

Three ground-motion Intensity Measures (IM) are considered in this study, referring to low-, medium- and high-

seismicity zones (Calcata, Montesilvano and Cosenza, Italy). Figure 5 shows the related 5%-damped acceleration response

spectra provided by the Italian code [36], related to a return period equal to 450 years, soil type C (shear wave velocity

Vs,30 = 180−360m/s) and an importance factor equal to 1.5. The Peak Ground Acceleration (PGA) is respectively equal

to 0.25g, 0.32g and 0.42g. Such spectra are adopted to apply the CSM for both the DBPP curves and the numerical
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Figure 4: Adopted modelling strategy for numerical time-history and pushover analyses.

Figure 5: Elastic acceleration (a) and displacement (b) spectra of the scaled selected ground motions.

pushover ones. The equivalent SDoF conversion related to the numerical pushover curves is applied as per the DBA

procedures (Section 2.1), for consistency. NLTHA are carried out adopting three suites of 10 natural ground motions

selected from the European Strong-motion Database (ESD), using the tool REXEL [37] (Figure 5). Such ground motions

are linearly-scaled in amplitude to achieve the compatibility with the above-mentioned target spectra (maximum scale

factor equal to 5). Spectrum compatibility is ensured in the bandwidth [0.1s, 2s], selected to include the values of elastic

(secant-to-yielding) first mode period of the analysed bridges, also shown in Figure 5. The observed period shift allows

to confirm the appropriateness of the record selection for the time-history analyses. Indeed, all the first mode effective

periods (secant-to-performance point) fall within the adopted matching bandwidth.

4. Results of the parametric analyses

4.1. Calculation of the capacity demand ratio and the bridge index

The analysis results for each case-study bridge are represented by two parameters: the Capacity Demand Ratio

(CDR) and the Bridge Index (BI). Those respectively refer to the seismic performance of a given bridge with respect to

the demand, and to the accuracy of the predicted displacement profile with respect to the time-history analyses, herein

taken as a benchmark. Similarly, the error on the CDR (NSP−TH
TH ) is introduced to have a systematic comparison of the

parametric analysis results and the evaluation of DBPP procedure.

For all the considered analysis methods, it is assumed that the first pier that reaches the Ultimate Limit State (ULS)

causes the bridge ULS. For the NSPs, referring to pushover or DBPP, the CDR is defined by post-processing the results
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according to Eq. 17. The displacement capacity of each pier (∆Upier,k, where k indicates the piers) is compared to the

displacement demand at the performance point (∆PP
pier,k). These refer to the displacement profile consistent with the

performance point calculated with the CSM. To calculate the CDR of the time-history analyses for a suite of records (Eq.

18), the displacement capacity of each pier is compared to the average response for the considered ground motion suite

(∆TH
pier,k).

It is worth mentioning that, since no strength degradation is considered in this study, an hardening behaviour is

registered in the force-displacement curves after the attainment of the ULS, and this also affects the calculation of the

performance point for bridges that do not meet the criterion CDR ≥ 1. Clearly, other members in the bridge (abutments,

bearings, etc.) should be considered in the calculation of the CDR. However, this is outside the scope of this paper and

only the piers are herein considered.

CDRNSP = min
(∆Upier,k

∆PP
pier,k

)
(17)

CDRTH = min
(∆Upier,k

∆TH
pier,k

)
(18)

The BI, proposed by Pinho et al., 2007 [7], and adapted by Kohrangi (2015) [38], is herein adopted as an indicator

of the bias of the NSPs with respect to the time-history analysis results in terms of deck displacement profile (∆i). In

particular, the maximum response of each NLTHA run is used to calculate the equivalent SDoF displacement. The average

of such displacements for the considered ground-motion suite is calculated (∆TH
SDoF ). The corresponding displacement

profile (∆NSP
i ) is extracted from the database of a NSP, and the BI is calculated with Eq. 19, where Nsub is the number

of sub-structure members (piers and abutments). Clearly, BI values close to one indicate the accuracy of a NSP in

approaching the refined time-history results.

BI =
1

Nsub

Nsub∑
i=1

∆NSP
i

∆TH
i

(19)

4.2. Detailed results for selected bridge case studies

This section presents the detailed results of three selected case studies. This allows to better interpret the overall

results presented in Section 4.3.

The first selected case study is a four-span bridge (J100 B222) showing high regularity in the seismic response (RSe =

1.26, RSpp = 1.32). Figure 6.a shows the NSP-related curves (PUSHm, PUSHu, DBPPm and DBPPs), representing

the effective SDoF displacement versus the total base shear. Both the CSM-based performance points (for the three

considered IMs) and the ULS are indicated. Moreover, three indicators show the average response of the time-history

analyses (10 runs for each considered suite). In particular, the displacement and shear profiles for each ground motion

record are enveloped, before taking their average. An SDoF approximation (displacement and base shear) is derived

based on such average profiles. To have a measure of the NLTHA response dispersion, the related confidence ellipses

are also shown. Those represent the standard deviation of the effective SDoF displacement and the total base shear,

including their correlation.

Figure 6.a indicates that the DBPPs curve is particularly similar to the PUSHm, while the DBPPm predicts a

slightly-higher base shear (less than 6% over-estimation throughout the entire curve). The worst prediction is provided

by the PUSHu, for which a 16% base shear over-estimation at ULS is observed with respect to the PUSHm. In this case,

using a uniform force profile introduces a higher shear force directly transferred to the abutments, thus increasing the

total base shear. The DBPPs, DBPPm and PUSHm performance points are particularly close to the average NLTHA

response, proving the accuracy of the corresponding procedures. For IM3, the error for the displacement is equal to
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Figure 6: J100 B222 bridge: a) capacity curves and NLTHA response, b) displacement profiles calculated at ∆TH
SDoF .

-1.0%, -2.8% and -0.5%, respectively for DBPPs, DBPPm and PUSHm (+8.3%, +5.4% and +9.7% for IM1). However,

a slightly-higher over-prediction is observed for the IM2 performance-point displacement (respectively +14.0%, +11.6%

and +14.7%). This is possibly related to the damping assumption in the CSM, which may be less accurate in the branch

of the capacity curve where the highest stiffness change is registered.

For this case study, the accuracy of the NSPs based on the first modal shape is evident, since the corresponding capacity

curves are particularly close to the average NLTHA response for the three analysed IMs, and within the corresponding

standard deviation. Moreover, the DBPPs curve is practically identical to the PUSHm one, demonstrating the reliability

of the simplified method for first mode-dominated bridges.

The ULS of the system is predicted consistently by using all the NSPs. The CDR based on time-history analysis is

equal to 1.25 at IM3, while its relative error with respect to the NLTHA is equal to +1.1%, +3.1% and +0.7%, respectively

for the DBPPs, DBPPm and PUSHm. Considering the simplicity of the proposed methods with respect to the NLTHA,

such error trends are deemed to be satisfactory.

Figure 6.b shows the displacement profiles from the NLTHA (average ± standard deviation), for each IM. The

displacement profiles predicted by each NSP are shown for an SDoF displacement equal to the NLTHA average (∆TH
SDoF

defined in Section 4.1). It is worth mentioning that a cubic interpolation is adopted herein, to somehow reflect the

topology of the elastic deformation of the continuous deck. The yielding and ultimate displacements of each pier are also

shown, thus allowing to interpret each stiffness change in the capacity curves. For each IM, the displacement profile of

the bridge is effectively captured by all the adopted NSPs (with respect to the NLTHA). This is confirmed by the BI,

which is always smaller than 1.001.

The second selected case study is the J50 B12321, whose response is more affected by the piers rather than the deck

(RSe = 0.05, RSpp = 0.11). Figure 7.a shows that the DBPPs and DBPPm are affected by a negligible error with respect

to the PUSHm, while the PUSHu consistently over-estimates the base shear (max 23% with respect to PUSHm). The

CSM performance point is closely matching the average NLTHA response, especially for IM1 and IM3 (e.g. the DBPPs

base shear error is respectively equal to +12.0% and -3.0%). A higher error is registered for IM2 (15.9%), although the

CSM performance point is within one standard deviation from the NLTHA average. In fact, close to this displacement

level, the highest stiffness change is registered in the capacity curve(s), and the record-to-record variability has a higher

influence on the NLTHA response (increasing its dispersion). As an example, the yielding of piers 2 and 4 is dependent

on the considered ground-motion record (Figure 7.b). Such results are reflected in the calculation of the CDR. At IM3,

this is equal to 0.84, 0.85, 0.87 and 0.79, respectively for DBPPs, DBPPm, PUSHm and NLTHA.
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Figure 7: J50 B12321 bridge: a) capacity curves and NLTHA response, b) displacement profiles calculated at ∆TH
SDoF . For each pier, a light-

and dark-grey markers show their yielding and ultimate displacements.

Figure 7.b shows that the displacement profiles calculated with the NSPs are in good agreement with the average

NLTHA results. The BI (IM3) related to the PUSHm is equal to 0.978, while a better performance is observed for the

DBPPs and DBPPm (0.999 and 1.002, respectively).

The last selected case study (J100 B1) is a two-span bridge with a 8m-high pier which is clearly dominated by the

deck response (RSe = 6.44, RSpp = 6.44). It is worth repeating that it is herein chosen to define the ULS of the bridge

only according to the piers (not considering bearings, abutments, etc.). For this short bridge, the vast majority of the

lateral load is directly carried by the abutments. Therefore, the estimation of the ULS according to the piers (only) leads

to particularly high displacement values (outside the limits of the plot in Figure 8.a). Clearly, this is reflected on the

CDR.

The results of the analyses show that the bridge remains in the elastic range for all the considered ground motion IMs.

The DBPPs is practically coincident to the PUSHm, since both are based on a force profile proportional to the first modal

shape. Again, this confirms the reliability of the structural component modelling approach. It is worth mentioning that

the DBPPm capacity curve is slightly different from the two previously-mentioned approaches since this is based on a

shear profile (rather than force profile) proportional to the first modal shape. Indeed, using the response of the structure

rather than the applied forces (shear rather than force profile) allows to better consider the influence of the deck, whose

properties affect the shear distribution on the piers/abutments. For this reason, the DBPPs provides equivalent accuracy

with respect to the PUSHm and the DBPPm better captures the average NLTHA response (displacement error equal

to -12.9%, -6.0% and -8.6%, respectively for IM1, IM2 and IM3). The NSPs performance points (for the three IMs) are

observed on the plateau of the target spectra. Therefore, the above-mentioned errors are likely caused by the discrepancy

between the average ground-motion spectrum and the target one, which is highest in the plateau region (Figure 5).

For this case study, and all the two-span case studies, the BI is equal to 1 regardless of the considered method. Indeed,

for such simple bridge configurations, the BI depends solely on the maximum displacement of the pier, and does not

provide any added value in the interpretation of the results.

4.3. Discussion of the results considering the entire dataset

The results for the entire dataset are discussed herein, including the accuracy of the DBPPs and DBPPm. Considering

the NLTHA as a benchmark, Figure 9 shows the error on the CDR while Figure 10 shows the BI. Table 1 shows the CDR

values for IM3. Finally, Figure 11 summarises all the conducted analyses.
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Figure 8: J100 B1 bridge: a) capacity curves and NLTHA response, b) displacement profiles calculated at ∆TH
SDoF . For each pier, a light- and

dark-grey markers show their yielding and ultimate displacements.

Considering RSe index, the case-study dataset can be split in three groups. Considering the J50 cases, the two-span

bridges (3.24 ≤ RSe ≤ 38.20) are dominated by the deck response; for the six-span bridges (0.02 ≤ RSe ≤ 0.28), the piers

are much more likely to govern the response; the four-span bridges (0.13 ≤ RSe ≤ 1.59) represent intermediate cases which

can be dominated either by the deck or the piers. Clearly, the RSe for the J100 sub-set are double with respect to the J50

ones. RSpp = RSe for the two-span bridges (elastic response). For the six-span case studies, the small differences between

RSpp and RSe (∆RS = 0.28 maximum) indicate that the regularity in their response generally remains unchanged. The

response of the four-span case studies is considerably more regular in the inelastic range (∆RS = 0.61 maximum). Indeed,

the stiffness degradation for the piers leads to a deck-dominated behaviour.

Figure 9 shows that the DBPPs provides a similar level of accuracy of the DBPPm. In particular, for all the four-spans

and six-span case studies, negligible differences in the CDR error are observed. On the other hand, for two-span case

studies such differences are higher, indicating a greater accuracy of the DBPPm. This confirms the discussion in Section

4.2, including the higher accuracy of the DBPPm with respect to the PUSHm for two-spans bridges. To validate the

assumed equivalent cantilever height in the DBPP approaches, the pier bending moment profiles (PUSHm) are used to

provide ”numerically-based” estimates of their equivalent height. Repeating the DBPPs using these new height estimates

leads to negligible differences in the capacity curve, thus proving the low influence of the deck torsional stiffness.

Considering the four- and six-span case studies, the capacity curve estimation by both the DBPPs and DBPPm closely

match the results of the PUSHm (Figure 11). Moreover, the response of all the case studies is dominated by the first

vibration mode. The participating mass is always greater than 74% and therefore the EMS is not necessary (only the

first mode is considered). Slightly higher discrepancies are observed for the most irregular configurations in the dataset,

i.e. J50 B32123 (RSe = 0.08, RSpp = 0.25), J50 B211 (RSe = 0.19, RSe = 0.39), J50 B311 (RSe = 0.20, RSe = 0.81),

where the PUSHm provides the highest base shear, since a non-adaptive approach fails to capture the abrupt stiffness

change after the yielding of the shortest piers. The ULS displacement is captured with a relative error (with respect to

the PUSHm) equal to 3.3% and 3.4% (average of absolute values), respectively for the DBPPs and DBPPm approaches.

On the basis of these results, it can be stated that for a wide range of bridge configurations both the DBPPs and DBPPm

allow to estimate capacity curves with a level of accuracy particularly similar to a PUSHm.

The CSM is adopted, in conjunction to the DBPPs and DBPPm curves, to assess the seismic performance of the

bridges. The resulting performance points are compared to the analogous values obtained with the PUSHm. The relative

DBPPs vs PUSHm error is equal to 1.9% and 2.6% (average of absolute values considering the three IMs), respectively
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for displacement and base shear. On the other hand, 5.7% and 2.6% average errors are respectively registered for the

DBPPm. The relative errors with respect to the average NLTHA are equal to 12.4% and 8.4% for the DBPPs while

10.6% and 9.3% for the DBPPm. This indicates that both methods provide reasonable results when compared to NLTHA

analyses, with the DBPPm being slightly better. As shown in Figure 11, for the the majority of the case studies the

DBPPm and DBPPs performance points fall within the confidence ellipses of the NLTHA. For IM3, the coefficient of

variation of the NLTHA analyses is reported in the range [16%-33%] for the effective displacement and [7%-30%] for the

total base shear.

Figure 9 shows the calculated CDR for each analysis approach. It can be firstly stated that, in estimating the seismic

performance, the DBPPs provides a similar accuracy if compared to the PUSHm. By referencing to NLTHA, the average

CDR error is equal to 11.0% and 8.7% respectively for the DBPPs and the PUSHm. The DBPPm allows for a slightly

better accuracy (8.2% average error), since the analyses are based on a shear (rather than force) profile proportional to

one or more modal shapes. Finally, the error trends are not sensitive to the moment of inertia of the deck. Indeed, by

disaggregating the results for J50 and J100 configurations, a maximum 1% shift in the above-mentioned average errors is

registered. Overall, based on the data in Figure 9, it can be further stated that both the DBPPs and DBPPm approaches

provide fairly-accurate seismic performance assessments, if compared to NLTHA analyses.

The PUSHu results greatly over-estimate the base shear capacity for all the case studies (Figure 11). For this reason,

the predicted displacement at the performance point is systematically lower than for the PUSHm, DBPPm and DBPPs.

With respect to the other NSPs, this causes a higher estimated CDR for the entire dataset, and therefore a higher relative

error with respect to NLTHA. In particular, the CDR error falls within the range [-12.8%, +68.3%]. For some case studies

(e.g. J50 B121, B211, B311), the PUSHu CDR error is particularly close to zero. However, this does not correspond to a

better accuracy of the PUSHu approach. An example is shown in Figure 6 (IM1 and IM2), where the performance point

displacement of the PUSHu is particularly similar to the NLTHA one. Although this leads to a low relative error on the

CDR, it is clear that the response predicted using the PUSHu is not satisfactory, i.e. the PUSHu performance point falls

outside the confidence ellipse of the NLTHA.

Figure 9: Error of the CDR for the entire dataset relatively to NLTHA.

The accuracy in determining the displacement profile is finally measured calculating the BIs, which are shown in

Figure 10.The BIs for the two-span case studies are practically equal to one, and they are not shown in the figure. It
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Figure 10: BIs for the entire dataset.

is evident that the DBPPs and DBPPm are equivalently accurate for all the analysed bridges (1.01 average BI for both

approaches). For the PUSHm and PUSHu, the observed BIs are generally furthest from 1.00, especially for the less

regular bridges (e.g. J50 B211, B311, B12321). This is respectively due to the above-mentioned non-adaptive nature of

these approaches and the inadequacy of the uniform force profile. The BIs values are partially governed by the stiffness

of the deck, which affects the force redistribution after each stiffness change in the non-linear static response. Indeed, the

J100 BIs are considerably closer to 1.00 and they show less dispersion.

Table 1: Capacity Demand Ratio (CDR) for the entire case study dataset, calculated at IM3.

J50 J100

NLTHA DBPPs DBPPm PUSHm PUSHu NLTHA DBPPs DBPPm PUSHm PUSHu

B1 3.29 2.53 3.27 2.68 4.34 4.10 3.47 4.49 3.58 5.80

B2 6.13 5.10 6.58 5.08 8.23 9.25 8.00 10.32 7.98 12.91

B3 10.15 8.44 10.89 8.40 13.60 15.90 13.65 17.61 13.61 22.03

B111 1.00 0.75 0.77 0.78 0.96 0.91 0.75 0.77 0.76 0.90

B222 1.11 1.19 1.22 1.19 1.33 1.25 1.27 1.29 1.26 1.39

B333 1.51 1.58 1.62 1.57 1.76 1.65 1.77 1.81 1.76 1.94

B121 1.00 0.88 0.91 0.90 1.03 0.96 0.89 0.92 0.90 1.02

B123 0.77 0.78 0.79 0.84 0.89 0.78 0.79 0.81 0.82 0.90

B132 0.70 0.71 0.73 0.77 0.82 0.77 0.74 0.76 0.77 0.87

B212 0.65 0.57 0.58 0.58 0.68 0.64 0.59 0.61 0.60 0.69

B211 0.80 0.66 0.68 0.69 0.80 0.79 0.67 0.69 0.69 0.80

B311 0.76 0.65 0.67 0.69 0.79 0.76 0.67 0.69 0.69 0.80

B11111 0.85 0.62 0.62 0.65 0.78 0.81 0.58 0.58 0.60 0.71

B22222 0.92 0.90 0.91 0.89 1.02 0.90 0.89 0.90 0.89 1.00

B33333 1.17 1.14 1.15 1.12 1.26 1.20 1.18 1.19 1.17 1.30

B12321 0.79 0.84 0.85 0.87 0.92 0.74 0.76 0.77 0.78 0.85

B12223 0.93 0.98 0.99 0.95 1.12 0.92 0.79 0.80 0.90 0.87

B32123 0.38 0.40 0.41 0.43 0.46 0.38 0.38 0.39 0.40 0.44
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Figure 11: Results of the analyses for the entire case study. The thin curves and the small markers are associated to J50 deck, while the thick

curves and the big markers refers to J100. First-mode periods, calculated with elastic (secant-to-yielding) and effective (secant-to-performance

displacement, CSM-based) stiffness, are indicated.
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4.4. Sensitivity analysis for long bridges

An additional parametric analysis is conducted to investigate the accuracy of the DBPPs and DBPPm for longer

bridges (8 or more spans). The adopted analysis approaches are the same of the main parametric analysis. The dataset

of case studies is composed of six bridges: four having 8 spans and different pier height distribution along the deck

(B2222222, B1223221, B3332211, B2131332); two bridges having 10 and 12 spans with 15m-high piers. The J50 deck

configuration is provided for all the cases, yielding to 0.01 < RSe < 0.035 for the 8-span bridges and RSe < 0.01 for 10-

and 12-span ones. Only the highest seismic intensity is considered (IM3). Given the low RSe, the seismic response would

be likely governed by the piers. This also increases the sensitivity of higher modes (in both linear and non-linear ranges)

to the pier-height distribution.

Figure 12.a investigates the influence of the bridge length only (for a uniform pier-height distribution), by showing the

capacity curves of the bridges having 15m-high piers. Figure 12.b, instead, shows the influence of pier-height distribution

for the 8-spans cases only (B1223221, B3332211 and B2131332). The DBPPs and PUSHm provide similar capacity

curves (as for the shorter bridges), while DBPPm diverges considerably, and tends to the PUSHu. This is caused by

the EMS calculated in the DBPPm, since the participating mass of the first mode is smaller than 70%. Confirming the

results by Pinho et al., 2007 [7], for long bridge case studies, the NSPs based on the first mode only predict a lower total

base shear with respect to the NLTHA. The PUSHu and DBPPm respectively show -15.1% and -16.4% average relative

errors in terms of base shear. Therefore, they respectively outperform the PUSHm and DBPPs, that yield -38.2% and

-40.1% errors. These results are further explained by Figure 13, that reports the displacement profiles at ∆TH
SDoF for the

B2131332 and the 12 span-bridge. In the former case, the PUSHu and DBPPm better mimic the TH-based displacement

profile, if compared to the first mode-based analysis techniques (PUSHm and DBPPs). Indeed, the PUSHu and DBPPm

provide BIs of 1.10 and 0.96, outperforming the PUSHm and DBPPs respectively (BI equal to 0.67 and 0.71). For the

12-span bridge, the DBPPs and PUSHm fail in capturing the displacement profile (BI < 0.67), as reported for the

8-span case studies. Even if it considers a combination of vibration modes, the DBPPm is not able to approximate the

NLTHA (BI = 0.71). A similar condition is registered for the 10-span case study. Possibly, this relates to the way the

significant vibration modes are combined (i.e. SRSS), which may be inappropriate for bridges with 10 spans or more.

Further investigations are required to confirm such hypothesis. On the other hand, a better accuracy is given by the

PUSHu (BI = 0.92), which better mimics the NLTHA response. The CDR for these bridges are generally smaller than

20%, as reported in Figure 14 in Section 4.5. Although such errors are not excessively high, those mainly refer to the

response of the critical pier (on which the CDR is entirely based). Since the accuracy related to the displacement and

shear profiles is lower (as demonstrated above), NLTHA is suggested for bridges with 10 spans or more (in conjunction

with a non-linear static approach). Based on this sensitivity analysis, the DBPPs and DBPPm procedures are deemed

appropriate for the considered bridges up to six spans (approximately RSe > 0.035). For the considered 8-spans case

studies (approximately RSe > 0.01), the DBPPm may still be adopted while the DBPPs is inadequate. For bridges with

10 spans or more (approximately RSe < 0.01), NLTHA is suggested. For practical applications, the applicability of the

DBPPs and DBPPm may be based on both the number of spans and RSe, whichever is most stringent. However, special

attention should be given if RSe is particularly close to the indicated threshold of 0.01.

4.5. Further sensitivity analyses

Two sensitivity analyses are conducted to investigate the effectiveness of the displacement-based approaches to: 1)

the amount of pier reinforcement; 2) the pier typology. A first dataset of 15 case studies is defined changing the amount

of pier longitudinal reinforcement of the J50 B222, B311, B12223, B22222 and B32123 bridges. For each geometrical

configuration, the pier reinforcement is set equal to ρl = 0.35% (LR), ρl = 0.47% (MR) and ρl = 0.70% (HR). Only

the highest intensity subset of ground motions (IM3) is considered. Figure 15.a shows the capacity curves of the B222
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Figure 12: Bridge length sensitivity analysis (capacity curves): a) uniform pier height cases; b) irregular pier height cases.

Figure 13: Bridge length sensitivity analysis (displacement profiles): a) B2131322 case study; b) 12-span case study. For each pier, a light-

and dark-grey markers show their yielding and ultimate displacements.

bridge, for which the above-mentioned errors (on both displacement and base shear) are in the same order of magnitude,

regardless of the pier reinforcement. The relative errors (NSPs vs NLTHA) on the CDRs reported in Figure 14 confirm

this outcome. It is evident that the discrepancy of the DBPPs and DBPPm with respect to the NLTHA is not sensitive

to the pier longitudinal reinforcement.

For the last sensitivity analysis, three additional case studies are considered, which have six spans and different

pier typologies: two-column framed-piers; single-wall piers; and single-column piers with hollow-squared cross section

(Figure 15b). The force-displacement capacity of such piers is derived analytically according to SLaMA, and their

overall behaviour is flexural. It is worth noting that, shear failures can be likewise considered in the displacement-based

procedures by appropriately reducing the displacement capacity of the members and/or modifying their capacity curve

accordingly. The PUSHm, DBPPs and DBPPm curves are particularly similar for these case studies, while the PUSHu

consistently overestimates the base shear. The capacity curves reported in Figure 15.b prove that the pier typology does

not affect the consistency between the NSPs (PUSHm, DBPPs and DBPPm) and the NLTHA, which is instead affected

by the stiffness of the piers (and consequently a lower accuracy is expected for bridges with low RS). Consistently with the

previously-considered parametric analyses, the relative error on the displacement at the performance point with respect
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Figure 14: Relative errors on the CDRs for the case studies in the sensitivity analyses.

Figure 15: a) sensitivity analysis involving the pier longitudinal reinforcement; b) sensitivity analysis involving the pier typology.

to the NLTHA is higher for the case studies with lower RSe. Considering the DBPPm as an example, the relative errors

on the CDRs are equal to +3% for the framed-pier case (RSe = 0.07), -21% for the case study with hollow-squared piers

(RSe = 0.02) and -35% for the wall-piers bridge (RSe = 0.012). This error trend agrees with the previously-discussed

applicability conditions of the DBPP approaches. Indeed, the higher error for wall-piers bridge is expectable, since its

RSe value is particularly close to the suggested threshold of 0.01.

5. Conclusions

This paper deals with the seismic performance assessment of continuous-deck RC bridges using DBA. After describing

the modal analysis-based DBA procedure, a static-based alternative is proposed in this paper, which is deemed to further

increase the simplicity of the DBA approach. Moreover, it is proposed an extension of the DBA procedures, both modal

and static, which allows to derive the displacement-based pseudo-pushover curve of the bridge.

The basic idea is to repeat the modal or static DBA procedure for increasing displacements, deriving a thorough

information on the behaviour of the analysed bridge with a particularly small increase in computational cost. The

process is based on a series of linear analyses based on the secant stiffness of the members compatible with increasing

levels of displacement (pseudo non-linear approach). The CSM is finally adopted to assess the bridge performance. The

procedures can be performed using electronic worksheets or code routines, using analytical static schemes rather than

finite element numerical models. An open-access application is provided for the above calculations.
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The displacement-based pseudo pushover, both modal (DBPPm) and static (DBPPs), are herein adopted for the

transverse analysis of a set of 36 reinforced concrete continuous-deck bridges with two, four or six, 35m-long spans, two

values of the deck moment of inertia (transverse direction) and different combinations of 8m-, 15m- and 20m-high single

column piers. The resulting performance assessments are compared with those calculated by means of pushover (with

force profile proportional to the first vibration mode, PUSHm, or uniform, PUSHu) and time-history analyses using

three suites of 10 scaled, natural ground motions respectively consistent with low-, medium- and high-seismicity sites.

Three additional datasets of (24) bridges are adopted to investigate the accuracy of the DBPPs and DBPPm for: 1)

increasing length of the bridge; 2) amount of pier longitudinal reinforcement; 3) different pier typologies. The results can

be summarised as follows:

• For the analysed bridge configurations up to six spans, the DBPPs and DBPPm approaches allow estimating the

bridge capacity curve with a level of accuracy particularly similar to the PUSHm. On the other hand, the PUSHu

provides a systematic and considerable over-estimation of the base shear;

• Both the DBPPs and DBPPm (coupled with the CSM) provide fairly-accurate seismic performance assessments,

measured in terms of capacity-demand ratio (CDR), with the modal approach being slightly better. For the vast

majority of the cases up to six spans, the performance points fall within one standard deviation from the average

of the time history analyses, both in terms of displacement and base shear of the equivalent SDoF system. The

DBPPm allows for a better accuracy, since the analyses are based on a shear (rather than force) profile proportional

to one or more modal shapes. However, the improvement is substantial for two-span bridges and only slight for the

four- and six-span ones. The error trends are not sensitive to the moment of inertia of the deck and to the amount

of pier longitudinal reinforcement;

• The applicability of the DBPPs and DBPPm may be based on both the number of spans and the relative stiffness

index in the elastic range (RSe), whichever is most stringent. The DBPPs and DBPPm procedures are deemed

appropriate for the considered bridges up to six spans (approximately RSe > 0.035). For the considered 8-spans

case studies (approximately RSe > 0.01), the DBPPm may still be adopted while the DBPPs is inadequate. For

bridges with 10 spans or more (approximately RSe < 0.01), NLTHA is suggested. However, special attention should

be given if the RSe is particularly close to the indicated threshold of 0.01;

• Additional pier typologies are considered: two-column framed-piers; single-wall piers; and single-column piers with

hollow-squared cross section. The pier typology does not affect the consistency between the NSPs (PUSHm, DBPPs

and DBPPm) and the NLTHA;

• The seismic performance assessment of RC continuous bridges in the longitudinal direction can be performed using

the same DBPP approaches. Given the much higher simplicity of the involved static scheme (non-linear springs in

parallel), numerical validation is not deemed necessary in this particular case. Contrarily, validation is needed for

bridge configurations with slider deck-abutment connections (in the transverse direction).

It is finally claimed that the DBPPs and DBPPm can represent a valid alternative to numerical pushover-based

approaches to assess the seismic performance of RC continuous bridges with geometrical/mechanical configurations similar

to the analysed dataset. Such features render these methods also suitable for the mechanics-based analysis of large bridge

portfolios, while containing computational cost.
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