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Decision-making is a fundamental human activity requiring explanation at the neurocognitive 

level. Current theoretical frameworks assume that, during sensory-based decision-making, 

the stimulus is sampled sequentially. The resulting evidence is accumulated over time as a 

decision variable until a threshold is reached and a response is initiated. Several neural 

signals, including the centroparietal positivity (CPP) measured from the human 

electroencephalogram (EEG), appear to display the accumulation-to-bound profile 

associated with the decision variable. Here, we evaluate the putative computational role of 

the CPP as a model-derived accumulation-to-bound signal, focussing on point-by-point 

correspondence between model predictions and data in order to go beyond simple summary 

measures like average slope. In two experiments, we explored the CPP under two 

manipulations (namely non-stationary evidence and probabilistic decision biases) that 

complement one another by targeting the shape and amplitude of accumulation respectively. 

We fit sequential sampling models to the behavioural data, and used the resulting 

parameters to simulate the decision variable, before directly comparing the simulated profile 

to the CPP waveform. In both experiments, model predictions deviated from our naïve 

expectations, yet showed similarities with the neurodynamic data, illustrating the importance 

of a formal modelling approach. The CPP appears to arise from brain processes that 

implement a decision variable (as formalised in sequential-sampling models) and may 

therefore inform our understanding of decision-making at both the representational and 

implementational levels of analysis, but at this point it is uncertain whether a single model 

can explain how the CPP varies across different kinds of task manipulation. 
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1. General Introduction 

Both mathematical modelling of cognitive processes and the analysis of neural and 

behavioural data have generated important insights about human cognition. 

Recently, the importance of combining these approaches has become increasingly 

apparent. This triangulation of methods (sometimes referred to as model-based 

cognitive neuroscience; Forstmann, Wagenmakers, Eichele, Brown, & Serences, 

2011) provides several obvious advantages over traditional approaches, as neural 

data can inform mathematical models, while models can in turn break complex 

cognitive processes into separate mechanisms, which are easier to test using neural 

data (Turner, Rodriguez, Norcia, McClure, & Steyvers, 2016). 

 

A variety of approaches have now been suggested to combine cognitive 

neuroscience and mathematical modelling (Forstmann, Ratcliff, & Wagenmakers, 

2016; van Ravenzwaaij, Provost, & Brown, 2017). One field in which model-based 

cognitive neuroscience has been particularly fruitful is the study of perceptual 

decision-making (e.g. Mulder, van Maanen, & Forstmann, 2014). Perceptual 

decisions, in which we quickly categorise sensory stimuli, directly trigger some of our 

most basic but essential behaviour, and also provide a building block towards higher 

cognition. Such decisions can be described by sequential sampling models, a group 

of computational models which assume that to make a decision, we accumulate 

sensory evidence over time until a decision threshold is reached, at which point we 

typically initiate the corresponding motor response (Brown & Heathcote, 2008; 

Ratcliff & McKoon, 2008; Usher & McClelland, 2001). 
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Importantly, although these models were developed to explain behavioural data and 

have done so successfully in a large variety of paradigms (Huk & Shadlen, 2005; 

Milosavljevic et al., 2010; Ratcliff, 2002; Ratcliff, Thapar, College & Mckoon, 1992), 

they have been further validated by electrophysiological recordings in non-human 

primates, as several studies have reported accumulation-like neuronal activity while 

monkeys perform perceptual-decision tasks (e.g. Hanes & Schall, 1996; Shadlen & 

Newsome, 1996; for a review see Schall, 2002; Gold & Shadlen, 2007; Hanks & 

Summerfield, 2017). This connection between models and neural data has since 

been successfully used to directly compare electrophysiological signals with 

predictions made by mathematical models (e.g. Hanks, Kiani, & Shadlen, 2014; 

Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012), and provided important 

insights into decision-making processes. For example, by analysing firing rates of 

frontal eye field neurons, Purcell and colleagues (2010) were able to evaluate 

different cognitive models, thereby highlighting the potential role of neural data as a 

model selection tool. 

 

The study of neural substrates of the decision variable (i.e. the decision-related 

accumulation profile) in the human brain, on the other hand, has been advancing 

more slowly. One method which is commonly used to study decision-making within 

model-based cognitive neuroscience is functional magnetic resonance imaging 

(fMRI). In this field, brain activity is analysed in reference to specific model 

parameters, which has led to the association of different brain regions with specific 

sub-processes of decision making (e.g. Forstmann et al., 2010; Heekeren, Marrett, 

Bandettini, & Ungerleider, 2004; for a review, see Mulder et al., 2014). 

 



6 
 

In order to track the decision variable in the human brain, however, 

electroencephalography (EEG) or magnetoencephalography (MEG, which produces 

comparable data) are commonly used, due to their greater temporal resolution. A 

variety of different signals have been proposed to be decision-related, ranging from 

event-related potentials (ERPs; Philiastides, Heekeren, & Sajda, 2014; Philiastides 

et al., 2006; Philiastides & Sajda, 2006; Pisauro, Fouragnan, Retzler, & Philiastides, 

2017; Ratcliff et al., 2009) to changes in theta-band power (van Vugt et al., 2012), 

and motor-related lateralised desynchronisation in beta power (Donner, Siegel, 

Fries, & Engel, 2009; Meindertsma, Kloosterman, Nolte, Engel, & Donner, 2017; 

Siegel, Engel, & Donner, 2011). 

 

A particularly promising approach was introduced by O’Connell, Dockree, and Kelly 

(2012). In a series of experiments, they identified the centroparietal positivity (CPP), 

an ERP component which shows several key properties of the decision variable. It 

displays a build-up over the course of the decision, reflecting the integration of 

sensory evidence, and its crossing of a stereotyped level was shown to predict 

reaction time (RT; Kelly & O’Connell, 2013; O’Connell et al., 2012). Importantly, the 

CPP was shown to be independent of sensory and motor signals, as it was fully 

dissociable from both steady-state visual evoked responses, which provide a readout 

of sensory input, and contralateral beta power, which reflects motor activation. 

Independence from motor signals was later confirmed in a study which directly 

compared the CPP to motor-related beta power, and showed that while both signals 

build up over the course of the decision, the CPP drops back to baseline levels after 

a given threshold is reached, while beta activity persisted until a delayed response 

(Twomey, Murphy, Kelly, & O’Connell, 2016). 
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Interestingly, the CPP was also observed in an auditory decision-making task, 

highlighting its putative role as a supramodal decision signal (O’Connell et al., 2012). 

Following their initial series of experiments, Kelly and O’Connell (2013) provided 

further evidence supporting the role of the CPP as a decision variable by exploring 

the CPP in a perceptual decision-making task with different levels of difficulty. This 

manipulation is known to affect the slope at which sensory evidence is accumulated, 

with easier stimuli leading to a steeper evidence accumulation rate. This was 

confirmed in Kelly and O’Connell’s study based on parameter estimates derived from 

the Diffusion model (Ratcliff & McKoon, 2008). The CPP build-up slope varied 

according to task difficulty level, qualitatively mirroring model predictions regarding 

accumulation rate. Hence, experimental evidence from previous studies consistently 

indicates that summary statistics describing the CPP (such as average slope over 

some arbitrary time window) correspond with the equivalent intuited or abstracted 

characteristics of a decision variable.  

 

Identifying the neural substrates of human perceptual decisions is an important goal, 

because a compelling explanation of behaviour should marry computational 

plausibility with biological reality (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 

Poeppel, 2017; Marr, 2010). To move forward, we must go beyond a broad-brush 

equivalence between brain signals and model predictions, and show that the 

quantitative precision of sequential sampling models extends to both behaviour and 

brain dynamics. Although the CPP appears to be a serious candidate for bridging 

this divide, few studies have formally compared CPP profiles with the decision 

variable exactly as predicted by sequential sampling models. Building on Kelly and 
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O’Connell’s approach, Twomey et al. (2015) added a critical step to their analysis to 

allow for a direct comparison between the model decision variable and the CPP. 

After fitting the Diffusion model, the resulting parameters were used to simulate the 

mean level of evidence accumulation across time predicted by the model. The 

simulated accumulation profile and the CPP were in close agreement. This finding is 

important, as it goes beyond comparing summary measures derived from a potential 

neural substrate of decision-making against a set of abstract characteristics derived 

from intuitions about model behaviour, and instead allows for a direct comparison of 

the entire accumulation profile. Indeed, with more complex sequential sampling 

models (e.g. those incorporating inhibition or leakage; Usher & McClelland, 2001) it 

becomes virtually impossible to intuit how accumulation profiles may change as a 

function of different experimental manipulations, making detailed modelling essential 

(Purcell & Palmeri, 2017). 

 

The current study fulfils this brief, going beyond previous work testing the role of the 

CPP as a decision variable through formal implementation of sequential sampling 

models. As outlined above, the CPP has only been tested in the context of a limited 

number of manipulations (O'Connell et al., 2012; Kelly & O’Connell, 2013), and until 

recently only the impact of decision difficulty has been compared to simulations 

based on behaviourally constrained sequential sampling models (Twomey et al., 

2015). Similar analyses have since been applied to investigate the speed-accuracy 

trade-off (Spieser et al., 2018) and under combined conditions of extreme time 

pressure and value-based bias (Afacan-Seref, Steinemann, Blangero, & Kelly, 2018) 

but comparisons with precise model predictions remain scarce. Hence here we 

compared the CPP profile to exact model predictions in two separate EEG 
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experiments. These experiments tested both probabilistic decision biases, which, to 

our knowledge, have not been previously assessed using the CPP, and non-

stationary evidence profiles, which we believe have not previously been examined 

for the CPP under conditions of speeded choice. In line with previous behavioural 

work (Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Spaniol, Voss, 

Bowen, & Grady, 2011; Summerfield & Koechlin, 2010; Voss, Nagler, & Lerche, 

2013), our estimation of model parameters revealed that decision bias affects the 

amount of evidence required to attain response threshold, while non-stationary 

evidence affects the detailed time-course of evidence accumulation. We then used 

the estimated parameter values to simulate the accumulation profiles as predicted by 

the models and compared them to the recorded CPP. 

 

We chose two types of race accumulator models (Brown & Heathcote, 2008; 

Heathcote & Love, 2012) to account for our behavioural data, namely, the leaky 

competing accumulator model (LCA; Usher & McClelland, 2001), suggested to be 

one of the most neurophysiologically plausible sequential sampling models, and a 

simplified independent race accumulator model. Contrary to random walk models 

such as the Diffusion model, in which evidence is integrated in a single accumulator 

(Smith & Ratcliff, 2004), and which are motivated more by mathematical optimality 

than neurobiological plausibility (Ratcliff et al., 2016; Usher & McClelland, 2001), 

what we here refer to as ‘race accumulator models’ assume that evidence for each 

response alternative is integrated in separate accumulators, which race to reach a 

common threshold. Assuming that processes similar to these occur in the brain, with 

each accumulator being associated with a neural population, and given the nature of 

EEG, which records the sum of all underlying electrical activity from the scalp, we 
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propose that the CPP should be best predicted by the summed activity of both 

accumulators in a two-choice task. Across experiments varying the two core 

characteristics of accumulation-to-bound activity, namely the shape of accumulation 

build-up and the extent of baseline-to-bound distance, our results show that CPP 

dynamics can indeed closely match time-varying predictions derived under a 

sequential-sampling modelling framework, but that this match partly reflects the 

flexibility we enjoyed as a result of having several candidate models available.  

 

2.  Experiment 1: Non-stationary Evidence 

 

Most research in the field of perceptual decision-making has focused on binary 

choices with stationary evidence, where information remains virtually unchanged in 

quality and intensity throughout the decision-making process (Gold & Shadlen, 2000; 

Kelly & O’Connell, 2013; Ratcliff & McKoon, 2008; Ratcliff et al., 2010). In everyday 

life, however, decisions typically occur in a dynamic environment, in which sensory 

evidence is continuously changing, and several studies have drawn attention to the 

fact that comprehensive models of decision-making have to be able to account for 

decisions with non-stationary evidence. Researchers have hence started to use 

decisions in response to non-stationary evidence in order to distinguish between 

different sequential sampling models (Bronfman, Brezis, & Usher, 2016; Nunes & 

Gurney, 2016; Tsetsos, Gao, McClelland, & Usher, 2012; Tsetsos, Usher, & 

McClelland, 2011; Zhou, Wong-Lin, & Philip, 2009), which often offer 

indistinguishable accounts of data from more traditional decision-making paradigms 

(Brown & Heathcote, 2008; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013; 

Tsetsos et al., 2012). 
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Tsetsos et al. (2011, 2012), for example, conducted a series of experiments, using a 

paradigm in which the evidence for a given alternative changed dynamically 

throughout a trial to compare race accumulator (Brown & Heathcote, 2008; Usher & 

McClelland, 2001) and random-walk models (Ratcliff & McKoon, 2008). They found 

that the race accumulator model gave a better description of the data (Tsetsos et al., 

2011), and was able to account for various subtleties, including a primacy effect 

which showed that changes in evidence had a larger impact on decisions early on in 

the decision-making process (Tsetsos et al., 2012). Recently, Holmes, Trueblood, 

and Heathcote (2016) showed that a simplified race accumulator model labelled 

‘piecewise LBA’ could provide a good account of participants’ behaviour. In that 

study, participants were asked to discriminate between left and right motion in a 

random dot motion task, in which, halfway through the decision-making process, the 

motion direction switched. The best-fitting race model parameters confirmed that 

accumulation rates were affected by the motion switch. Interestingly, while the switch 

led to motion in the opposite direction but equal in magnitude, estimated changes of 

accumulation rates were not symmetrical between the two accumulators, indicating a 

difference in discrimination after the switch. Incorporating a delay between the switch 

in evidence and the resulting change in accumulation rates was shown to improve 

model fit, revealing that some time is necessary to take a modification of evidence 

into account.  

 

It is clear that dynamically changing evidence also has implications for any neural 

signal posited to reflect the decision-related accumulation of evidence. This was 

observed for instance in the firing rate of lateral intraparietal (LIP) neurons in non-
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human primates. Huk and Shadlen (2005) demonstrated that additional 

positive/negative motion pulses during a random dot motion task had persistent 

effects on LIP activity, which increased/decreased for several hundreds of 

milliseconds. In humans, O’Connell et al. (2012) explored the impact of changing 

evidence on the CPP and motor-related beta band power. In a detection task in 

which stimuli gradually decreased in contrast, the CPP (and, to a lesser extent, beta 

power) was shown to plateau for several hundreds of milliseconds when the gradual 

contrast decrease was interrupted by a 450 ms increase towards the baseline. In this 

study, however, no comparisons were made between a simulated accumulation 

profile and the recorded CPP waveform.  

 

Here, we instead utilise a choice RT task and provide detailed modelling/simulation. 

Participants performed a random dot motion task which required them to 

discriminate between motion to the left or to the right. In one third of the trials, dot 

motion remained unchanged throughout the trial (‘continuous’ condition), while in the 

rest of the trials, it was interrupted for a 200 ms period. In these interrupted trials, dot 

motion was replaced by either coherent motion in the opposite direction, before 

continuing in the original direction (‘reverse’ condition), or by random motion without 

any directional evidence (‘random’ condition; cf. Tsetsos et al., 2012). These 

changes in motion should affect the build-up of the accumulation profile, and be 

visible in any neural signal reflecting the decision variable. While we assumed that 

the decision variable will ‘plateau’ during the coherent motion interruption in the 

‘random’ condition, predictions regarding the impact of the reversal of evidence are 

less clear, and are likely to depend more on the specifications of the model, such as 

the presence or absence of reciprocal inhibition. To determine exactly how a signal 
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reflecting the decision variable is affected, we simulated accumulation profiles 

predicted by sequential sampling models. Importantly, in order to use model 

specifications best resembling the underlying decision processes, we tested several 

models and selected the one providing the best fit to our behavioural data. We then 

directly compared the selected model’s profiles to CPP waveforms. In so doing, we 

confirmed the impact of time-varying evidence on the CPP profile and showed that it 

corresponds closely to the modulations of evidence accumulation predicted by a 

leaky competing accumulator model. 

 

2.1. Methods  

2.1.1. Participants 

In line with commonly reported sample sizes in the CPP literature (e.g. Kelly & 

O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015), a total of 21 

participants (eight males) were recruited. To ensure a reasonable and 

distinguishable task performance at two different difficulty levels, each participant 

completed a staircase procedure to establish the appropriate level of difficulty (see 

below, 2.1.2). In line with criteria defined prior to data collection, one participant was 

excluded from the experiment as the calibrated level of coherence exceeded 98% for 

the ‘easy’ condition, leading to a sample of 20 participants (seven males) with a 

mean age of 27.55 (SD = 8.83). The experiment was approved by the City, 

University of London Psychology Department Ethics Committee. 
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2.1.2. Stimuli and Procedure 

Participants were asked to complete a random dot motion task. The task was written 

in Matlab (The Mathworks, Natick, U.S.A.), making use of Psychtoolbox functions 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). In this task, an array of white dots 

was presented on a black screen. A proportion of dots moved coherently either to 

the left or to the right, while the rest of the dots moved in random directions. 

Participants were instructed to indicate the perceived motion direction by pressing a 

button in their right/left hand for movement to the right/left. For this, digital response 

buttons interfaced via a 16 bit A/D card (National Instruments X-series PCIe-6323, 

sample rate 100,000 Hz) were held between the thumb and index finger of each 

hand. Participants were seated 100 cm away from a cathode ray tube screen (size: 

41 x 30 cm), operating at a refresh rate of 85 Hz and with a resolution of 1240 x 786. 

A total of 300 dots, 0.04 x 0.04 degrees visual angle (dva) in size, were presented 

within a 5 dva circular aperture. During random motion, on each frame, each dot was 

displaced into a random direction. During coherent motion on the other hand, only a 

subset of dots followed this random motion, while the remaining dots (defined by the 

level of coherence, see below) moved uniformly either to the left or to the right, 

depending on the trial. Both random and coherent dot movements occurred at a 

speed of 3.3 dva per second. Additional to this motion, all dots were relocated to a 

random position on the array every five frames. This process was added so that 

participants could not determine the direction of the motion by following one specific 

dot, instead having to consider the entire motion array. 

 

Each trial began with a central fixation cross (size: 0.33 x 0.33 dva) for 500 ms (plus 

a jitter of up to 1000 ms, drawn from a uniform distribution), followed by a period of 
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random motion (1000 ms plus a jitter of up to 1500 ms, drawn from a gamma 

distribution with shape parameter 1 and scaling parameter 1501). Since the onset of 

moving dots on the screen is likely to produce a visual evoked potential which would 

interfere with the recording of the CPP, this period of random motion was introduced 

to allow for the evoked potential to occur before the onset of the decision-making 

process. The random motion was followed by the onset of coherent motion (left/right) 

which continued for up to 2000 ms or until the response (see Figure 1 a). 

 

Participants completed a minimum of 100 practice trials at high levels of coherence 

(i.e. > 80% of dots moving in one direction) to familiarise themselves with the task. In 

order to calibrate suitable levels of difficulty for ‘easy’ and ‘hard’ trials for each 

participant individually, a further 100 trials were completed in which the QUEST 

(Watson & Pelli, 1983) staircase procedure, implemented in Psychtoolbox, estimated 

the coherence level at which each participant responded correctly in 80% of trials. 

This coherence level was then used for the ‘hard’ condition. The ‘easy’ coherence 

level was set as 150% of the ‘hard’ coherence level. Participants had 1300 ms to 

respond, and no feedback was provided during staircase trials. Overall, the 

appropriate difficulty levels estimated for the remaining participants resulted in a 

mean of 27.70% (SD = 14.74) coherence for ‘hard’, and 40.15% (SD = 22.15) for 

‘easy’ trials.  

 

After the staircase procedure, participants were asked to complete a further 100 

practice trials which included all conditions of the main experiment, including the 

                                                
1 A gamma distributed foreperiod with a shape parameter of 1 was chosen as it is associated with a 

uniform hazard function (Luce, 1986). 
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different difficulties and evidence interruptions (see below). Like in the main task 

(described next) participants now had 2000 ms to respond. During this training, 

participants were given feedback in the form of their mean accuracy and RT every 

10 trials. In order to introduce a moderate speed pressure, participants were 

instructed to aim for a mean accuracy of at least 80% and a mean RT of less than 

1000 ms throughout the task.  

 

During the experiment, we manipulated the continuity of the evidence by introducing 

three motion conditions, in addition to the manipulation of difficulty (see Figure 1 a). 

One third of the trials, like the practice and staircase trials, were ‘continuous’ trials, 

i.e. the coherent motion began after a period of random motion and remained 

unchanged throughout the trial. In the ‘random’ condition, the coherent motion was 

interrupted 200 ms after motion onset and replaced by a 200 ms period of random 

motion (i.e., 0% coherence level), before being reinstated. Similarly, in the ‘reverse’ 

condition, the coherent motion was interrupted for the same time period, but 

replaced by coherent motion in the opposite direction (see Figure 1 a). Informal 

questioning of participants indicated that these interruptions were not perceived 

consciously. During the main task, the interruption condition (‘continuous’, ‘random’, 

or ‘reverse’), motion direction (left or right) and coherence level (‘easy’ or ‘hard’) 

varied randomly from trial to trial in an equiprobable factorial design. Each participant 

completed 16 blocks of 60 trials. After each block, participants were given feedback 

in the form of their mean accuracy and RT. No feedback was provided for individual 

trials. 
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2.1.3. EEG Recording and Pre-processing 

During the task, we recorded participants’ EEG using 64 active electrodes, placed 

equidistantly on the scalp (EasyCap, M10 Montage) and referenced to the right 

mastoid. Data were recorded through a BrainAmp amplifier (BrainProducts, sampling 

rate: 1000 Hz).  

 

The data were pre-processed in Matlab (The Mathworks, Natick, U.S.A.), using 

custom scripts and implementing functions from the EEGLAB toolbox (Delorme & 

Makeig, 2004). Data were re-referenced to the average reference and band-pass 

filtered from 0.1 (low cut-off) to 45 Hz (high cut-off), using a Hamming windowed 

finite impulse response filter. We then visually inspected the data to remove noisy 

channels and reject large artifacts, before applying independent component analysis 

to correct for eye blinks. Afterwards, the data were visually inspected a second time 

in order to manually remove any remaining noise. Lastly, we used spherical spline 

interpolation to reconstruct any channels that were previously removed. In line with 

the procedures used in previous CPP studies (Kelly & O’Connell, 2013; O’Connell et 

al., 2012), the data were converted to current source density (CSD) estimates to 

increase spatial selectivity. The CSD transformation was applied using the CSD 

toolbox, which uses a spherical spline algorithm, with the spline interpolation 

constant m set to its default value (m = 4; Kayser & Tenke, 2006). 

 

2.1.3.1. ERP Analysis 

For the ERP analysis, we extracted both stimulus-locked (-200 to 2000 ms, relative 

to coherent motion onset) and response-locked (-1000 to 100 ms, relative to the 

button press) epochs. All epochs were baseline corrected to the average over a 200 
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ms period preceding the coherent motion onset. As only medial electrodes were 

analysed, and initial observations revealed no difference depending on the direction 

of motion, we collapsed over ‘left’ and ‘right’ trials. Further, since high overall 

accuracy scores led to insufficient numbers of error trials to generate reliable ERP 

signals, error trials were excluded. 

 

The appropriate electrode to generate the CPP waveform was chosen individually, 

by visually inspecting each participant’s averaged ERP topography to identify the 

centroparietal region of maximum amplitude (chosen electrodes: 1, 5, or 14, roughly 

equivalent to electrodes Cz, CPz, and Pz in the 10-20 system; see Figure 1 d). The 

activity in the selected electrode was averaged for each condition and for stimulus 

and response-locked signals separately.  

 

2.1.4. Statistical Analysis 

Differences between conditions for behavioural data were inferred using ANOVAs 

and generalized linear mixed models (GLMMs) with logistic link functions, for RTs 

and error rates respectively. GLMMs were chosen for the analysis of accuracy data 

since the non-normal distribution of such data will, at a theoretical level, always 

violate the assumptions of ANOVA (Jaeger, 2008). They were implemented using 

the Matlab fitglme command; all effects of interest (e.g. ‘Difficulty’, ‘Interruption’, and 

their interaction) were clustered within participants and included as random effects in 

the model specifications (e.g. Wilkinson notation: Accuracy ~ 1 + 



19 
 

Interruption*Difficulty + (1+Interruption*Difficulty | 

Participant).2  

 

In order to test the effects of the difficulty and interruption manipulations on the ERP, 

we explored both the slopes and the amplitudes of the waveforms. First, we 

compared the slopes between the different conditions by fitting a straight line to the 

CPP for each participant and each condition and measuring its slope. The resulting 

slopes were then compared in an ‘Interruption’ (‘continuous’, ‘random’, ‘reverse’) x 

‘Difficulty’ (‘easy’, ‘hard’) repeated-measures ANOVA.  

 

We compared slopes during two different time intervals in the stimulus-locked data: 

an early interval between 100 and 300 ms and a late interval between 300 and 500 

ms relative to the onset of coherent motion. Given the interruption interval of 200 to 

400 ms and the assumption of a small lag between stimulus presentation and 

accumulation (typically observed in the CPP, see Kelly & O’Connell, 2013; Spieser et 

al., 2018), we assume that the early interval reflects accumulation mainly before the 

interruption and the late interval reflects accumulation mainly during the interruption. 

However, since these intervals were primarily chosen based on visual inspection, 

and Kelly and O’Connell (2013) suggested a longer 200 ms delay between the 

evidence and its visible effect on the CPP waveform, we also repeated the analysis, 

defining the interruption interval as a 400-600 ms time window. 

 

                                                
2 This represents the ‘maximal’ random effects structure (Barr, Levy, Scheepers, & Tily, 2014) which 

makes the model as equivalent as possible to a traditional repeated-measures ANOVA, whist properly 

respecting the nature of the data. 
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Additionally, we analysed the impact of difficulty and interruption on the amplitude of 

the waveform. Between 0 and 1000 ms in the stimulus-locked data, and 

between -1000 to 0 ms in the response-locked data, we compared conditions using 

an ‘Interruption’ (‘continuous’, ‘random’, ‘reverse’) x ‘Difficulty’ (‘easy’, ‘hard’) ANOVA 

at each time point. The results were controlled for multiple comparisons using the 

false discovery rate (FDR) approach (Benjamini & Hochberg, 1995)3. 

 

2.1.5. Model Fit 

To model the behavioural data, we used two sequential sampling models. Firstly, the 

independent race accumulator model which is, at least conceptually, one of the 

simplest sequential sampling models (Brown & Heathcote, 2008; Usher & 

McClelland, 2001). In this model, evidence for each response alternative is 

integrated in independent accumulators which race towards the decision threshold. 

At each time point, a given accumulator i accumulates the input evidence Ii 

supporting response alternative ‘i’, as well as noise N, drawn from a normal 

distribution with mean 0 and standard deviation σ, so that the quantity accumulated 

at each time point is described by:  

𝑑𝑥𝑖 ∝  𝐼𝑖 + 𝑁(0, 𝜎2)  (1) 

 

                                                
3 In this procedure, the uncorrected p-values are sorted from lowest to highest (pi refers to the ith 

lowest value out of m total p-values). The largest i for which 𝑝𝑖 < (
𝑖

𝑚
) ∝ is identified and all p-values 

associated with is smaller or equal to the identified i are considered significant. 
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The strength of input Ii depends on the mean accumulation rate vi, which reflects the 

quality of evidence. To remain physiologically plausible, the accumulation process is 

restricted to positive values at each time step4: 

  𝑥𝑖(𝑡 + 1) = max (0, 𝑥𝑖(𝑡) +  𝑑𝑥𝑖)  (2) 

 

Once either of the accumulators reaches the threshold A, the corresponding 

response (here response ‘i’) is initiated. Potential variations between trials’ starting 

states are introduced by varying accumulation starting point, which is drawn for each 

accumulator and each trial from a uniform distribution between 0 and Sz. The time 

taken to reach the threshold, in addition to a non-decision time which represents any 

time taken for sensory and motor processes before and after the accumulation 

process respectively, defines the modelled RT. The non-decision time is drawn from 

a uniform distribution with width STer, centred on Ter.  

 

In addition to the independent race accumulator model, we also used the more 

physiologically plausible LCA model (Usher & McClelland, 2001) which introduces 

interactions within and between accumulators. In this model, like the simpler 

independent race model described above, evidence for each response alternative is 

accumulated in separate accumulators which race towards response threshold A. 

Additionally, the LCA includes a leakage parameter k as well as a parameter β for 

                                                
4 Strictly, for physiological plausibility, the quantity accumulated should always be positive (as neurons 

cannot have negative firing rates) and also generally begin at a positive baseline (given spontaneous 

neural activity). Many of the models tested in this paper do begin at positive values, although this is 

not always the case for our LCA models (in line with conventional implementations of this model). 
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mutual inhibition between accumulators. Thus, in a binary decision involving the 

accumulators i and j, the change in activation in each accumulator is given by5: 

  𝑑𝑥𝑖 ∝  𝐼𝑖 − 𝑘𝑥𝑖 − 𝛽𝑥𝑗 + 𝑁(0, 𝜎2) 

𝑑𝑥𝑗 ∝  𝐼𝑗 − 𝑘𝑥𝑗 − 𝛽𝑥𝑖 + 𝑁(0, 𝜎2)  

(3) 

 

Where I is the input into the accumulator and N(0,σ2) is noise drawn from a normal 

distribution with a mean of 0 and a standard deviation of σ. Again, the accumulation 

process is limited to positive numbers:  

 𝑥𝑖(𝑡 + 1) = max(0, 𝑥𝑖(𝑡)  + 𝑑𝑥𝑖) 

𝑥𝑗(𝑡 + 1) = max (0, 𝑥𝑗(𝑡)  + 𝑑𝑥𝑗) 

(4) 

 

A decision is made when either of the accumulators reaches the threshold A, and the 

RT is made up of the time required to reach the threshold, and a non-decision time 

drawn from a uniform distribution centred on Ter with width STer, which accounts for 

sensory and motor processes before and after the accumulation process. 

 

To determine which model provided the best fit to our behavioural data, four 

independent race and four LCA models were tested. In all models, the response 

threshold A was chosen as the scaling parameter and fixed to 1. Apart from the 

periods of motion interruption, evidence supporting the correct response alternative 

was accumulated in the ‘correct’ accumulator at a mean accumulation rate vcorrect, 

while evidence for the incorrect response was integrated in the ‘incorrect’ 

                                                
5 In our code, these equations were implemented as: 

𝑑𝑥𝑖 = (𝑣𝑖 −  𝑘𝑥𝑖,𝑡−1 − 𝛽𝑥𝑗,𝑡−1)𝑑𝑡 + 𝑁(0, 𝜎2)√𝑑𝑡 

𝑑𝑥𝑗 = (𝑣𝑗 −  𝑘𝑥𝑗,𝑡−1 − 𝛽𝑥𝑖,𝑡−1)𝑑𝑡 + 𝑁(0, 𝜎2)√𝑑𝑡 

With dt = 0.01s. Hence a correction (by a factor of dt) may be required for comparison with 
parameters reported in some other papers based on finite difference equations. 
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accumulator at a mean rate vincorrect. All models implemented a change in 

accumulation rates during the interruption interval (from 200 to 400 ms relative to the 

decision onset), but each assumed different mechanisms (Holmes et al., 2016), as 

described below. For consistency, ‘correct’ and ‘incorrect’ accumulator labels 

remained constant throughout each trial, such that, during the evidence interruption, 

vcorrect and vincorrect still referred to the correct and incorrect responses according to 

the initial motion direction6. Finally, as trial difficulty influences evidence 

accumulation, accumulation rates were always estimated separately for easy and 

hard trials. 

 

Model 1 was an independent race model defined by eight parameters, assuming 

symmetrical changes in accumulation rates during motion interruption. In 

‘continuous’ trials, evidence was accumulated at mean rates vcorrect and vincorrect 

throughout the whole trial. In ‘random’ trials, in which the evidence becomes random 

during the interruption, we assumed that only noise was accumulated during this 

period, i.e., v-randomcorrect = v-randomincorrect = vincorrect from 200 to 400ms after 

decision onset. Outside of this interval, correct and incorrect rates were set to the 

initial values vcorrect and vincorrect. In the ‘reverse’ condition, the evidence changed 

direction during the interruption interval, but remained at its original strength, which 

may lead to a reversal of drift rates, i.e., v-reversecorrect = vincorrect, v-reverseincorrect = 

vcorrect. Again, outside for the interruption interval, evidence was accumulated at 

mean rates vcorrect and vincorrect. This describes a model with only four accumulation 

rates (vcorrect and vincorrect, estimated separately for easy and hard decisions), as well 

                                                
6 In the ‘reverse’ condition, evidence during interruption supports the incorrect response alternative, 

and is integrated in the ‘incorrect’ accumulator. 
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as the parameters Sz, Ter, STer, and σ2 which were fixed between conditions (see 

Table 1). 

 

Instead of symmetrical changes, model 2 assumed free variation in rates with 

changing evidence leading to a new set of accumulation rates for the ‘random’ and 

‘reverse’ intervals. This results in a total of 12 accumulation rates: for each difficulty 

condition, v-continuouscorrect, v-continuousincorrect, v- randomcorrect, v-randomincorrect, v-

reversecorrect, v-reverseincorrect. All other parameters (Sz, Ter, STer, σ2) were fixed 

between conditions, resulting in a model of 16 free parameters (see Table 1). 

 

Models 3 and 4 were identical to models 1 and 2 respectively, but also included a 

delay parameter d to account for a potential delay between the change in evidence 

and the change in the decision variable (Holmes et al., 2016). Note that the delay 

introduced here is different from simple sensorial delay, caught by the encoding part 

of non-decision time. It instead adds a time lag between the change in evidence and 

accumulation rate modulation to account for potential persistence of accumulation 

even when evidence has changed. 

 

Finally, Models 5, 6, 7, and 8, were LCA models implementing the same modulations 

as Models 1, 2, 3, and 4 respectively (see Table 1). 

 

For each participant, trials with RTs faster than 180 ms or slower than 2000 ms (less 

than 3%) were discarded. RT distributions in each condition were then summarized 

by five quantiles for correct trials, and by the median RT value for incorrect trials (the 

median was used due to the low number of incorrect trials in some cases). Best 
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fitting model parameters were then determined at an individual level. Modelled RTs 

were simulated based on the equations described above and compared to RT data 

using Quantile Maximum Probability Estimation (Heathcote et al., 2002). Parameter 

values were adjusted using a differential evolution algorithm implemented in Matlab 

(The Mathworks, Natick, U.S.A.; Price et al., 2005). 

 

We compared the goodness of fit of models by calculating the mean Bayesian 

information criterion (BIC, Schwarz, 1978) as well as the mean Akaike information 

criterion (AIC; Akaike, 1977). These measures take into account the likelihood of the 

model, but also penalise a model for the number of parameters used in order to 

resolve the problem of overfitting. For our data, AIC and BIC were not in agreement 

regarding the best overall model. We therefore made a (somewhat arbitrary) 

decision to favour BIC, but to also present AIC in all tables for transparency. The 

model which best fitted the data according to the BIC measure was then used to 

generate predictions of the accumulation profile. 

 

In addition, we also performed a recovery study to estimate the accuracy of our 

fitting procedure. This was done by simulating 20 RT datasets using Model 5 (LCA-

symmetric with no delay, i.e., the lowest BIC model, see results). The simulated 

datasets were constructed as per our empirical individual data with the 3 interruption 

conditions and 2 difficulty levels. The number of trials also corresponded to empirical 

data (160 trials per condition, i.e., 960 trials in total). Results of the recovery are 

presented in Appendix A. 



26 
 

2.1.6. Model Prediction (neurodynamics) 

Since EEG recordings reflect the summation of neural activity in a given area, we 

assumed that, if the CPP is a neural correlate of the decision variable, it represents 

the sum of all evidence accumulation. Although a binary choice may recruit separate 

neural populations to accumulate evidence, these neural populations would likely be 

in close proximity. An ERP component recorded at the scalp over these neural 

populations measures the summation of electrical activity and therefore most likely 

the sum of both accumulation processes. In order to compare the model prediction to 

the CPP, we therefore considered the sum of the correct and incorrect accumulation 

profiles of correct choices. 

 

Based on the model equations described above, a total of 10,000 accumulation 

paths (in 10 ms time steps) were computed using individual best-fitting parameters 

obtained for each condition. To account for sensory processes, accumulation started 

after a sensory delay (fixed to 50% of non-decision time). Evidence was then 

accumulated until the response threshold and continued to be accumulated for a 

short period after the threshold was reached to account for motor processes (50% of 

non-decision time; note that we assume that accumulation continues until the offset 

of the stimulus, i.e. during the time to reach the threshold plus the time taken to 

make the motor response and thus stop the stimulus in our paradigm).  

 

To match with EEG processing, the ‘sum of accumulations’ signal was baseline 

corrected by subtracting the first data point value from the whole trial. Finally, we 

averaged accumulation signals in each condition, locked to both the estimated onset 

of the decision process (stimulus-locked) and the response (response-locked). Since 
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the stimulus-locked signal includes varying time spans of post-decision stages, and 

we can only speculate about the behaviour of the accumulator after the response, 

we removed simulated trials from averaging after the response (i.e. after the crossing 

of the threshold plus 50% non-decision time). Both stimulus and response-locked 

individual predictions were then averaged across participants, to obtain “grand 

average” model predictions. 

 

To compare the EEG signal with these model predictions, we recomputed individual 

stimulus-locked CPPs, by removing trials from the average once they reached the 

associated RT, and then recomputed the corresponding grand average. EEG signals 

were then low-pass filtered with a cut-off of 5 Hz for better visualisation, and 

downsampled to match the 10 ms time steps used in the model predictions. To 

quantify the similarity between the two signals, we analysed the correlations between 

the model predictions and the downsampled, but not low-pass filtered EEG data for 

each difference between conditions (stimulus-locked time-window: 0 – 1000 ms, 

response-locked time-window: -1000 – 0 ms).  

 

2.2. Results 

2.2.1. Behavioural Results 

Behavioural data were collapsed over ‘left’ and ‘right’ trials. All trials with very short 

(< 180 ms) or very long (>= 2000 ms) RTs were excluded from the analysis (2.99% 

of trials). The remaining data are displayed in Figure 1 c.  
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As expected, ‘easy’ decisions were faster than ‘hard’ decisions, F(1, 19) = 134.96, p 

< .001, ηp
2 = .88. For the main effect of ‘Interruption’, Mauchley’s test indicated that 

the assumption of sphericity had been violated, χ2(2) = 18.77, p < .001. We therefore 

Greenhouse-Geisser corrected the degrees of freedom (ε = .61). There was a 

significant main effect of ‘Interruption’, F(1.21, 23.07) = 63.45, p < .001, ηp
2 = .77. 

Pairwise comparisons using Fisher’s Least Significant Difference (LSD) revealed that 

all three levels of ‘Interruption’ were significantly different from each other with 

'continuous' trials leading to shorter RTs than 'random' (p = .001) and 'reverse' (p < 

.001) trials, and 'random' trials showing shorter RTs than 'reverse' trials (p = .005). 

There was no significant interaction, F(2, 38) = 2.00, p = .15, ηp
2 = .10. 

 

Additionally, GLMMs showed that accuracy also differed significantly by ‘Difficulty’, 

F(1, 114) = 7.19, p = .008, with ‘easy’ conditions associated with higher accuracy 

than ‘hard’ conditions. ‘Interruption’ was also a significant predictor, F(2, 114) = 

108.88, p < .001. The ‘Interruption * Difficulty’ interaction was not significant, F(2, 

114) = 2.33, p = .10. In order to explore the differences between all three levels of 

‘Interruption’ (‘continuous’, ‘random’, ‘reverse’), we fitted the model a second time, 

but setting the reference level of ‘Interruption’ to ‘random’, rather than ‘continuous’. 

We found that both the ‘continuous’ and the ‘random’ conditions were associated 

with higher accuracy scores than the ‘reverse’ condition (p < .001). There was no 

significant difference between the ‘continuous’ and the ‘random’ conditions (p = .13).  

2.2.2. ERP Results 

The resulting ERPs are displayed in Figure 1 d. The CPP displays a build-up over 

the course of the decision, which seems disrupted by the interruption of evidence in 
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relevant conditions. 

 

Figure 1: a) Experiment 1 random dot motion task trial procedure: in each trial, coherent motion (here: direction: 

right; coherence: 70%) was either continuous (‘continuous’ condition), or was interrupted by either random motion 

(‘random’ condition) or coherent motion in the opposite direction (‘reverse’ condition), before continuing in the 

original direction. b) Model fit: each participant’s quantiles from behavioural data (x-axis) and the LCA model 

(Model 5) simulations (y-axis) for easy (top, filled circles) and hard (bottom, circle outlines) decisions, as well as 

continuous (left), random (middle) and reverse (right) conditions. Increasing quantiles (10%, 30%, 50%, 70%, 

90%) are represented by increasingly dark colours. Small inserted panels show observed and simulated RT 

medians for error trials. c) Behavioural results: mean reaction time (left) and accuracy (right) in each condition. 

Error bars indicate 95% confidence intervals. d) CPP results: Stimulus-locked (left) and response-locked (right) 

CPP waveforms for easy (top), and hard (bottom) trials. Right panels show topography averaged over the 
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stimulus-locked 0 to 1000 ms interval. Electrodes used to generate the waveform are highlighted. Vertical dashed 

lines in the stimulus-locked CPP represent mean RTs per condition. Note that the mean RTs here are computed 

only from trials which were included to generate the waveform and therefore differ slightly from those displayed in 

c. Grey dots at the bottom of the waveforms indicate significance based on FDR-controlled comparisons of 

amplitude: dark grey dots indicate a significant effect of Interruption, while light grey ones indicate a significant 

effect of Difficulty. 

 

First, we compared the slopes of the ERP occurring in response to evidence 

accruing before and during the interruption period. In the first interval (100-300 ms), 

analysis revealed that the slope of the CPP associated with ‘easy’ waveforms was 

higher than ‘hard’ waveforms, F(1, 19) = 12.93, p = .002, ηp
2 = .40. There was no 

main effect of ‘Interruption’, F(2, 38) = 1.01, p = .38, ηp
2 = .05, and no interaction 

effect (p = .82). Conversely, in the second, interruption-driven, interval (300-500 ms), 

the slope of the CPP was affected by the ‘Interruption’ condition, F(2, 38) = 9.52, p < 

.001, ηp
2 = .33, but not by ‘Difficulty’, F(1, 19) = .19, p = .67, ηp

2 = .01, with no 

interaction between the two factors (p = .39).7 Investigating the interruption effect 

with Fisher’s LSD post-hoc tests showed that the slope was significantly higher in the 

‘continuous’ waveform than the ‘random’ and the ‘reverse’ waveforms, t(19) > 3.40, p 

                                                
7 We selected two windows for slope analysis based on the timing of our stimulus (and assumptions 

about the time course with which information feeds through to decision areas of the brain). This 

approach is consistent with previous work on the CPP, but incorporates no correction for familywise 

error, which might raise concerns in the absence of pre-registration for the analysis. For 

completeness, we attempted an analysis that varied the position of the 200 ms window used to 

assess slope (in steps of 1 ms) and incorporated an FDR correction for these multiple comparisons. 

Under this approach, the slope difference associated with difficulty (100-300 ms) remains significant, 

but the later slope difference associated with interruption condition (300-500 ms) fails to reach 

significance. However, subsequent FDR-corrected analyses of amplitude provide an alternative 

source of evidence regarding the impact of the interruption conditions on the CPP. 
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< .003. No significant difference between the ‘random’ and ‘reverse’ conditions was 

observed, t(19) = .76, p = .46. Since the interruption-driven time interval of 300-500 

ms was chosen primarily based on visual inspection, we repeated the analysis using 

a time window which assumes a 200 ms delay between the evidence and its visible 

effect on the CPP, as suggested by Kelly and O’Connell (2013). The analysis of this 

time window (400-600 ms) confirmed our findings (significant main effect of 

‘Interruption’, p = .005, no other effects p > .24). 

 

CPP amplitudes (as opposed to slopes) were also compared, by performing a series 

of FDR-controlled ANOVAs. For brevity, only results showing a corrected p-value of 

< .05 for at least 50 ms continuously are reported. In the stimulus-locked CPP, an 

‘Interruption’ effect was observed between 466 and 783 ms (corrected p < .049; see 

Figure 1 d, where asterisks denote statistical effects on amplitude, not the previously 

described analysis on slopes). Fisher’s LSD-corrected post hoc tests found that the 

‘continuous’ waveform displayed a higher amplitude than both the ‘random’ (between 

466 and 783 ms relative to the onset of coherent motion, corrected p < .02) and the 

‘reverse’ waveforms (between 488 and 783 ms, corrected p < .046). There was no 

significant difference in amplitude between ‘random’ and ‘reverse’ conditions 

(corrected p > .26). Further, we found a significant effect of ‘Difficulty’ in the time 

interval between 276 and 1000 ms relative to stimulus onset, with ‘easy’ waveforms 

reaching higher amplitudes than ‘hard’ waveforms (corrected p < .046). There was 

no significant interaction effect (corrected p > .34). 

 

In the response-locked CPP, we found only a ‘Difficulty’ effect on amplitude, with 

‘easy’ trials displaying a higher amplitude than ‘hard’ trials between -229 and 0 ms 



32 
 

relative to response. There was no main effect of ‘Interruption’ (corrected p > .07), 

and no interaction effect (corrected p > .9). 

2.2.3. Model Fit 

We fitted eight sequential sampling models (four independent race and four LCA) to 

the RT data. In each model type, models differ by assuming either symmetrical 

(models 1,3 and 5,7) or free modulations (models 2,4 and 6,8) of accumulation rates 

during the motion interruption period, which are applied either immediately (models 

1,2 and 5,6) or after a free delay (models 3,4 and 7,8). For most individual 

participants (90% by AIC; 85% by BIC) no model was strongly supported (AIC/BIC 

improvement > 10) relative to all others. We thus averaged individual BICs (Schwarz, 

1978) and AICs for each model to compare goodness of fit (see Table 1). It is clear 

that the exact ordering of models was criterion dependent, although the overall 

preference for the LCA class of model was not, with a pair of 2 (model class) x 2 

(presence of delay) x 2 (presence of asymmetry) repeated-measures ANOVAs on 

both AIC and BIC showing main effects of model class (F(1, 19) = 21.81, p < .001, 

ηp
2 = .53 and F(1, 19) = 13.11, p = .002, ηp

2 = .41, respectively).8 We elected to 

focus on BIC. The best (lowest) BIC was obtained for model 5, an LCA model with 

symmetric variation for the interrupted accumulation rate and no delay (see Table 1). 

Following Tukey correction, this model was reliably better than models 2, 4, 6 & 8 

(i.e. all models allowing free modulation of accumulation rates during the interruption 

                                                
8 For our purposes here, model comparison was a means to an end, in terms of finding a reasonable 

candidate for the subsequent generation of neurodynamic predictions, not an end in itself. Hence we 

do not present detailed results breaking down these ANOVAs, both of which included three-way 

interactions, but instead simply summarise all possible pairwise comparisons (see main text). 
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period; all p < 0.001). Without such correction, it additionally beat model 1 (p = 

0.018). 

 

Table 1: Model Comparison: BIC and AIC values for each independent race (IRA) and LCA model. The BIC and 

AIC values of the chosen model (Model 5) are displayed in bold. 
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As expected, mean accumulation rates (v) for the correct accumulator were higher in 

easy compared to difficult conditions. In this model, interruptions and reversals in 

evidence were modelled parsimoniously by substituting the appropriate parameters 

during this interval, rather than fitting new ones. Note that the exact parameter 

values returned should be treated with some caution, as a recovery study (Appendix 

A) suggested that this LCA model has issues with identifiability, i.e., some 

parameters can trade off to produce equally good fits (see discussion, below). Due to 

these identifiability issues, we do not report the parameter estimates for this model 

here, but have included them in the appendix (see Table A1). 

 

Figure 1 b shows the quality of the model fit by displaying each participant’s 

empirical (x-axis) and modelled (y-axis) RT quantiles (10%, 30%, 50%, 70%, 90%, 

increasing quantiles represented by increasingly dark colours) for each interruption 

condition as well as easy (top) and hard (bottom) trials (for behavioural fits for all 

other models, see Appendix B). The overlap between empirical and modelled 

quantiles indicates that the model fitted the data well.  
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2.2.4. Model Prediction 

The parameters of the chosen model were then used to estimate individual 

accumulation profiles for each condition. Figure 2 displays the mean resulting 

predictions (b) and the corresponding EEG data (a) for stimulus (left) and response-

locked (right) data. The model prediction was produced by summing correct and 

incorrect accumulators (see methods), and these contributory signals are shown 

separately as insets. Visual inspection shows that the EEG and predicted profiles are 

qualitatively very similar. With stimulus-locking, both profiles show an initial build-up 

which is slower (lower slope) in ‘hard’ (dashed lines) compared to ‘easy’ (solid lines) 

conditions, but similar across interruption conditions. Both profiles also show that the 

‘continuous’ waveforms continue the build-up, while ‘random’ and ‘reverse’ 

waveforms display a plateau at approximately the same time, before continuing to 

build up. A further similarity between the model prediction and the EEG signal is the 

unexpected finding of a near complete overlap of the ‘random’ and ‘reverse’ 

conditions during the interruption period.  
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Figure 2: Decision variable (empirical and simulated): a) CPP waveform for easy (top, solid) and hard (bottom, 

dashed) trials, as well as stimulus (left) and response-locked (right) data. The CPP here has been filtered and 

downsampled to match model predictions. b) Accumulation profile (correct and incorrect accumulator summed) 

per Interruption condition as predicted by the best-fitting LCA model, for easy (top, solid lines) and hard (bottom, 

dashed lines) trials, as well as stimulus (left) and response-locked (right) data. Correct and incorrect 
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accumulators were summed to form the prediction, so these contributory signals are shown separately as smaller 

insets.c) Accumulation profile as predicted by the best-fitting independent race accumulator (IRA) model. Details 

as in part b. 

While a degree of positive correlation over time between EEG signals and model 

predictions is to be expected for any ERP that grows across the RT period, the ability 

to predict differences between experimental conditions is more challenging and 

therefore more convincing. Hence, to quantify similarities between model predictions 

and neurodynamic data, we analysed the correlation between differences of 

conditions (differences between ‘continuous – random’, ‘continuous – reverse’, and 

‘random – reverse’, for both easy and hard, as well as stimulus-locked and 

response-locked signals, resulting in a total of 12 correlations between the model 

predictions and the downsampled EEG; see ‘Model Prediction (neurodynamics)’). 

We found that 9 out of 12 tests revealed significantly positive correlations (rmean(98) = 

.67 pmean < .001). All significant positive correlations remained significant after 

Bonferroni correction. Since ‘random’ and ‘reverse’ profiles largely follow the same 

trajectory, correlations between EEG and model signals reflecting the difference 

between these two conditions were naturally the lowest, and in fact, non-significant 

in some cases. The most meaningful correlations are therefore those between 

signals reflecting the difference between ‘continuous’ and ‘random’, and ‘continuous’ 

and ‘reverse’ conditions, specifically the stimulus-locked signals, as the manipulation 

in this experiment targeted the stimulus-locked trajectory of the accumulation. These 

correlations remained significant after Bonferroni correction (rmean(98) = .79, pmean < 

.001). 

 

For reasons of concision, with eight models, our main focus when assessing the 

overlap between model predictions and EEG was on the model which best predicted 
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the behavioural data. However, we also assessed the extent to which the winning 

model from the other broad category (independent race model 3) could predict 

accumulation signals resembling the CPP. Indeed, behaviourally, this model was 

almost indistinguishable from LCA model 5 in terms of its ability to capture RTs. 

Neurodynamic predictions for independent race model 3 are shown in Figure 2 (c). 

As can be seen, although the global accumulation pattern is present, the 

independent race model does not predict the empirical observation of no difference 

during the interruption period between the ‘random’ and ‘reverse’ conditions. 

However, although for this model the raw predictions looked rather less well matched 

to their corresponding EEG signals, correlations based on differences between 

conditions followed a broadly similar pattern to that observed for LCA model 5, i.e., 

the best fitting independent race model also did a good job of predicting the time-

varying ordering of EEG signals in different conditions (10 out of 12 tests revealed 

significant correlations after Bonferroni correction r(98) = .51, p = .001). This 

highlights that the correlations used here should not be used in isolation in order to 

evaluate different models. 

 

2.3.  Discussion Experiment 1 

In the first experiment, we tested the impact of non-stationary evidence on the CPP, 

a potential neural substrate of the decision variable. Assuming that a change in 

evidence must necessarily induce a change in the accumulation profile, the CPP 

waveform should display a similar time-varying build-up in order to support its role as 

a decision variable signal. To test this, we observed the CPP under three different 

conditions: a ‘continuous’ condition in which the evidence was constant throughout 

the trial, a ‘random’ condition in which the evidence was stopped for a brief interval 
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and replaced by random noise, and a ‘reverse’ condition in which the evidence was 

reversed to support the opposite response alternative for a brief period. We also 

added a more established manipulation (task difficulty) as a positive control. We 

expected that the continuous condition would lead to the stereotypical, smooth build-

up, while the random and reverse profiles should deviate from this build-up to 

varying extents. Critically, however, we went beyond intuitive predictions about the 

interrupted decision variable, by first using our RT data to identify and fine-tune a 

plausible behavioural model, and then using this model to formulate exact 

predictions for the CPP under the assumption that this spatially diffuse EEG 

component should represent a sum of accumulators within a race-model framework. 

As we expand below, the resulting correspondence between model predictions and 

CPP was striking. 

 

Both evidence interruption and difficulty manipulations had the expected effects on 

participants’ performance, with faster and more accurate responses in ‘easy’ than 

‘hard’ trials, and when evidence was ‘continuous’. The slowest and least accurate 

responses were observed in ‘reverse’ trials, while the ‘random’ condition lengthened 

RT compared to continuous trials, with a less clear impact on accuracy. Hence, 

interrupted trials led to worse performance, with evidence reversal disrupting the 

decision more than a simple pause. These findings are broadly in line with previous 

research (Holmes et al., 2016; Huk & Shadlen, 2005; O’Connell et al., 2012; Tsetsos 

et al., 2012).  

 

We infer that these changes in performance were caused by modulations of 

decision-related evidence accumulation. It is well-established that difficulty affects 
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the slope of accumulation, with easier stimuli leading to steeper evidence 

accumulation (Brown & Heathcote, 2008; Kelly & O’Connell, 2013; Ratcliff & 

McKoon, 2008; Ratcliff & Rouder, 1998). The interruption of evidence, on the other 

hand, should lead to an interruption in accumulation. To formalise this account of the 

behaviour we observed, we tested several LCA and independent race accumulator 

models, and found that an LCA model with symmetrical changes of accumulation 

rates during the epoch of interruption (and for different difficulty levels) provided the 

best account of our RT data (although other models were viable). 

 

We hypothesised that a pause in evidence would cause the accumulation to stop 

and plateau for the duration of the interruption interval. The impact of the ‘reverse’ 

condition on the accumulation profile is somewhat harder to predict intuitively, and is 

probably more dependent on the specifications of the model. For instance, the 

assumption of reciprocal inhibition between accumulators may attenuate the impact 

of evidence reversal. Specifically, the accumulator corresponding to the initial 

direction of dot motion may inhibit the accumulator receiving the reversed evidence 

in most trials, hence limiting accumulation growth during the reversal period. Issues 

like these led us to emphasise modelling in formulating predictions.  

 

We used the estimated parameters from our best-supported LCA model to simulate 

the accumulation profiles (and, in particular, their sum) associated with each 

condition, and directly compared the resulting patterns to the CPP. We found 

considerable overlap between the model predictions and the neural signal, even 

though these profiles were not fitted to one another directly. As previously reported 

(Kelly & O’Connell, 2013; Twomey et al., 2015), task difficulty affected the slope of 
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the CPP, with lower build-up rates in ‘hard’ decisions. A very similar difference 

appeared in model predictions. Furthermore, we obtained novel evidence that both 

model predictions and the CPP showed the same gradual build-up in the 

‘continuous’ condition, and interruption of this build-up (which plateaued before 

continuing to build up approximately 300 ms later) in the ‘random’ and ‘reverse’ 

conditions. Interestingly, model predictions also mimicked the CPP signal in terms of 

the unexpected similarity between the ‘random’ and ‘reverse’ waveforms. These 

patterns are particularly telling as they show an overlap between neural data and 

evidence accumulation which might not have been predicted based on intuitive 

reasoning alone. Our results build on previous research which found that the 

evolution of the CPP is sensitive to a brief interruption of evidence (O’Connell et al., 

2012) by testing additional conditions, in a choice rather than simple RT task, and 

making more precise model-derived predictions. Overall, the similarities we observed 

seem to support the role of the CPP as a neural substrate of decision-making. 

 

An additional finding worth noting is the delay in the disruption of the CPP build-up 

compared to the timing of the evidence interruption. While the interruption of motion 

took place between 200 and 400 ms after stimulus onset, the divergence in CPP 

amplitude between ‘continuous’ profiles and the two interrupted profiles was 

observed around 470-780 ms post stimulus. This finding supports the role of the 

CPP as an accumulation signal, rather than a mere sensory signal, which would 

arguably display a faster reaction in response to the change in evidence, suggesting 

that it represents a higher-level integration of evidence.  
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The details of our best-fitting model are somewhat suggestive regarding the way 

evidence accumulation follows from operations occurring in sensory regions of the 

brain. Holmes et al. (2016) found that a change in evidence was better explained by 

a new, independent accumulation rate, rather than a symmetric change of rates, 

even when the change in evidence itself was symmetric. We instead found that a 

change in evidence could be explained by a (more parsimonious) swap in 

accumulation rate during the interruption interval. Essentially, Holmes et al. (2016) 

found steeper accumulation rates after evidence reversal, while our results support a 

symmetrical rate change during the reversal period. In fact, some non-linearity in the 

sensory representation of a time-varying motion signal is to be expected (with the 

waterfall effect offering a well-known example of repulsive sensory after-effects, 

which are themselves complemented by assimilative tendencies; Addams, 1834; 

Yarrow, Minaei, & Arnold, 2015). However, the exact time-course of such effects are 

somewhat challenging to predict. The difference in findings here relative to Holmes 

et al. (2016) may perhaps be explained by the different task procedures, as we used 

brief perturbations while the evidence in their study remained reversed for the rest of 

the trial. It is conceivable that sensory evidence rebounds after a change, perhaps 

via sensory repulsion, and is thus accumulated faster, but only after some delay, 

which is why Holmes et al. observed it and we did not. It is interesting to note that 

even for our independent race models (which were more equivalent to Holmes et 

al.’s piecewise LBA) a symmetric change of rates proved sufficient in our 

experiment. Differences between our findings and those reported by Holmes et al. 

(2016) may further be due to methodological differences in the way the models were 

fitted to the data. While in the current study, we used Quantile Maximum Probability 

Estimation, Holmes et al. (2016) fitted reaction time distributions using hierarchical 



43 
 

Bayesian methods, which may be sensitive to different subtleties in the data, leading 

to different findings. 

 

Another divergence between the two studies is that while Holmes et al.’s best model 

introduced a delay between the presentation and the incorporation of the new 

evidence, explaining the temporal lag between the change in evidence and its 

behavioural consequences, positive evidence for this delay was not observed in the 

current study. This difference may be explained by the type of model used. The LCA 

model implements reciprocal inhibition between accumulators, which presumably 

smooths accumulation-rate variations and produces a slow response to the change 

in evidence without the need for a delay parameter. In the case of independent 

accumulators on the other hand, as in Holmes et al.’s piecewise LBA, a delay 

parameter is necessary to model the slow response to changing evidence (note that 

our results using independent race accumulator models were consistent with Holmes 

et al.’s findings). We hence confirm that a change in evidence is explained by 

change in accumulation rates, and that some time is necessary for those changes to 

feed through and become visible in the decision variable. However, while a delay 

parameter was previously introduced to account for this temporal lag, we propose 

that it could naturally arise from reciprocal inhibition between accumulators, as 

implemented in the LCA model. Note, however, that our conclusion favouring an 

LCA model without any delay was dependent on our decision to elevate BIC over 

AIC in model comparison, and that a model with delay performed similarly well. 

 

Finally, although LCA complexity seems advantageous in this case, it is also known 

to induce parameter recovery issues and has been described as a model in which 
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different combinations of parameters values result in similar reaction time 

distributions (Miletić et al., 2017). In a recovery study (Appendix A) we also observed 

poor recovery for several of the parameters, with the implied trade-off being 

consistent with that observed by Miletić et al.’s (2017). Presumably, the values of 

common fractions of accumulation rates, leakage and inhibition trade off, making 

accurate estimation of parameter values hard to achieve. Importantly, however, we 

additionally observed that this only had a moderate impact on CPP predictions 

derived from the fitted parameters, most probably because parameters also trade off 

in the accumulation signal. Hence, although difficulties of parameter estimation must 

be considered when one draws conclusions on parameter values, investigation of 

derived accumulation signals may be less affected.  

 

3. Experiment 2: Decision Bias 

 

Experiment 1 suggested that the CPP reflects the complex decision variable 

generated by a requirement to track time-varying sensory evidence. However, a 

viable neurodynamic correlate should respond appropriately to a wide range of 

manipulations known to affect the decision process. In Experiment 2, we went on to 

test the effects of decision biases on the CPP. Probabilistic decision biases are 

associated with strong behavioural effects, and can often be explained using 

sequential sampling models by varying just one parameter (Summerfield & de 

Lange, 2014; but see Rae, Heathcote, Donkin, Averell & Brown, 2014). In a 

sequential sampling process, evidence is accumulated from a given starting point 

towards a threshold. With the introduction of a bias towards a given alternative (e.g. 

a greater a priori likelihood that that alternative will be evidenced) the starting point 
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moves towards the respective threshold, thereby decreasing the amount of evidence 

required to make the choice in favour of the biased alternative (Bode et al., 2012; 

Gao, Tortell, & McClelland, 2011; Mulder et al., 2012; Spaniol et al., 2011; 

Summerfield & Koechlin, 2010; Teodorescu & Usher, 2013; Voss et al., 2013). In 

contrast to Experiment 1, in which the shape of the accumulation process was 

affected, here, we set out to investigate the impact of varying the magnitude of 

accumulated evidence required for a decision on the CPP waveform. To our 

knowledge, the impact of probabilistic decision biases on the CPP has not been 

tested so far. 

 

The neurodynamics of biased decisions have nonetheless been explored before in 

other ways. Rorie, Gao, McClelland, and Newsome (2010) presented monkeys with 

a binary motion-discrimination task in which the reward for the two choices was 

either equal or unequal. Rewards primarily influenced LIP firing rates prior to the 

motion onset, with unbalanced payoffs leading to a baseline shift towards the 

rewarded threshold. These findings support the notion of a starting point difference in 

accumulation for biased decisions. No difference in the slope of the build-up in firing 

rate throughout the decision was observed. The same finding of a shift in baseline 

activity and unaltered slopes in LIP firing rates was supported when instead of 

unequal payoffs, predictive directional cues were used in a motion discrimination 

task (Rao, DeAngelis, & Snyder, 2012). Similarly, it has been shown that firing rates 

in neurons which show a build-up to threshold profile associated with a given choice 

show a reduction in baseline activity with decreasing probability of this choice (Basso 

& Wurtz, 1998; Dorris & Munoz, 1998), further supporting the role of starting point 

activity in decision biases.  
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Evidence regarding biased neural correlates of evidence accumulation in humans 

remains somewhat scarce. EEG research has focused primarily on motor signals to 

track decision biases. Noorbaloochi et al. (2015) recorded human EEG during a 

decision task with either biased or unbiased payoffs and explored the lateralised 

readiness potential (LRP) as a signal reflecting evidence accumulation. In line with 

findings from non-human primates, it was found that in biased decisions, the LRP 

amplitude was shifted towards the alternative associated with the higher payoff prior 

to stimulus onset, suggesting a starting-point difference. Additionally, de Lange et al. 

(2013) concluded that it is a variation in accumulation starting point which accounts 

for bias-related activity. Using MEG, de Lange and colleagues found that motor-

related activity in the beta frequency range displayed a pre-stimulus bias in the 

direction associated with the biased alternative. Together, these data suggest that 

biases push accumulation signals prior to the accumulation onset towards the 

threshold, without affecting the accumulation slope. However, recently Afacan-Seref 

et al. (2018) have reported somewhat different results in a study recording the CPP 

and LRP during binary choice with strongly biased rewards and extreme time 

pressure. They modelled an accelerating accumulator and found effects on the slope 

of accumulation, with some specific predictions regarding slow, low-valued choices 

mirrored in the CPP. We return to this study in the discussion. 

 

To our knowledge, the effects of probabilistic decision biases on CPP profiles have 

not yet been explored. We therefore set out to explore the CPP waveform under 

different bias conditions. We presented cues which either provided information 

regarding the likely direction of subsequent motion or gave no directional 
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information. Based on the literature summarised above, we expected that the 

presence of a directional cue would lead to a shift in accumulation starting point, 

decreasing the baseline-to-threshold distance in the accumulator corresponding to 

the cued response. Regarding the CPP waveform, this baseline variation would 

appear as a modulation in amplitude, since the CPP computation requires a baseline 

correction (i.e. the decreased baseline-to-threshold distance in correctly cued trials 

would translate to a decrease in the magnitude of the accumulation). However, if we 

assume that the CPP reflects the sum of both accumulators, the CPP waveform 

should also be affected by changes occurring in the accumulator opposed to the cue. 

If a decreased starting point in the non-cued accumulator co-occurs symmetrically 

with the increased starting point in the cued accumulator, it is possible that we would 

observe no difference in the waveforms. Again, fitting a sequential sampling model to 

the resulting behavioural data and directly comparing accumulation profiles 

simulations to the recorded CPP waveforms is crucial to yield insights into the role of 

the CPP as an accumulation signal. 

3.1. Methods 

Methods were, unless otherwise stated, identical to Experiment 1. 

3.1.1. Participants 

Twenty participants (five males), with a mean age of 30.15 (SD = 7.28) were 

recruited. All participants met the pre-defined requirement to achieve an average 

accuracy score of 80% in the random dot motion task at a coherence level no 

greater than 90% (i.e. 90% of dots moving coherently). Each participant took part in 

a session lasting between 2 and 2.5 hours.  
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3.1.2. Stimuli and Procedure 

All participants first completed a minimum of 50 practice trials at a coherence level of 

80%. During the practice trials, feedback was provided after each trial 

(‘correct’/‘incorrect’). Afterwards, each participant completed 100 trials without 

feedback in order to establish an appropriate level of difficulty for the experiment via 

a QUEST staircase procedure targeting 80% correct. The resulting average level of 

coherence was 32.25% (SD = 27.92).  

 

For the main experiment, each participant completed 450 trials. The trial procedure 

is displayed in Figure 3 a. In each trial, a fixation cross was followed by a cue (500 

ms) that consisted of two arrows, one pointing to the left, and one pointing to the 

right. In one third of the trials, both arrows were white, indicating no specific direction 

(‘uncued’ trials), while in two thirds of the trials, one arrow was yellow, providing a 

cue towards a given direction. Left-pointing and right-pointing cues were 

equiprobable. In each trial, the cue was followed by random dot motion, i.e. at a 

coherence level of 0%. After the random motion, the coherent motion started 

(left/right) and lasted up to 1300 ms or until the response. Note that the deadline is 

shorter here than in experiment 1, due to the decreased difficulty of the task. If a 

directionally specific cue was given, the subsequent dot motion corresponded with 

the cue direction 80% of the time (‘congruent’ trials), and opposed it in 20% of trials 

(‘incongruent’ trials). No feedback was provided after each trial, but every 60 trials, 

participants took self-timed breaks during which they were provided with feedback in 

the form of mean accuracy scores and RTs over that period. 
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3.1.3. Statistical Analysis 

In order to analyse the impact of the different cue conditions on the ERP waveform, 

we again compared both the slope and the amplitude between conditions. Like in 

Experiment 1, we compared the build-up rate by fitting a straight line to the 

waveform. The chosen time intervals to which we fitted a line were 200 to 350 ms for 

the stimulus-locked CPP, and -200 to -150 ms for the response-locked CPP (Kelly & 

O’Connell, 2013). The resulting slopes were then compared using a one-way 

ANOVA to compare ‘congruent’, ‘incongruent’, and ‘uncued’ waveforms. 

3.1.4. Model Fit 

Again, independent race accumulator and LCA classes of models were used to 

model RT data. Within each class we tested a total of five different models, all 

accounting for bias conditions using starting point modulations, but assuming 

different mechanisms in order to account for different bias conditions.  

 

Model 1 was an independent race model assuming that cues induced changes of 

accumulation starting point in the accumulator corresponding to the cued response. 

In ‘cued’ trials, the lower limit of the starting point distribution, Z, was increased by 

the bias parameter in the cued accumulator, and was set to 0 in the accumulator 

opposite to the cue. In ‘uncued’ trials, the value of Z was fixed to 0 in both 

accumulators. Trial-to-trial starting point variability was introduced, such that each 

accumulator starting point was drawn from a uniform distribution on the interval [Z 

Z+Sz]. Hence, on average, the starting point was higher in the cued accumulator 

than the accumulator opposite to the cue, and both accumulators in the neutral 

condition. Note that this results in starting point changes in the ‘correct’ accumulator 

in congruent trials and the ‘incorrect’ accumulator in ‘incongruent’ trials. Specifically, 
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the bias parameter should favour the ‘correct’ accumulator in ‘congruent’ trials and 

the ‘incorrect’ accumulator in ‘incongruent’ trials. All other parameters were fixed 

between conditions, resulting in a model with a total of seven parameters (see Table 

2). 

 

Models 2 and 3 were also independent race models implementing starting point 

variations, but now impacting both cued and opposite accumulators. Model 2 

assumed symmetrical changes while model 3 assumed free variations. In model 2, 

again, the lower limit of the starting point distribution Z was fixed to 0 in the 

accumulator opposite to the cue, and was increased by the bias parameter in the 

cued accumulator. In this case however, in ‘uncued’ trials, the value of Z was fixed in 

both accumulators to half of the bias parameter value. Again, each accumulator 

starting point was drawn from the interval [Z Z+Sz]. Therefore, on average, starting 

point variations of equal magnitude but opposed sign were applied in the cued and 

the opposite accumulators compared to the neutral condition, leading to opposite 

effects on the ‘correct’ and ‘incorrect’ starting point in ‘congruent’ and ‘incongruent’ 

trials. Model 3 assumed similar mechanisms, with free rather than symmetrical 

changes in ‘cued’ compare to ‘uncued’ trials. Here again, Z was fixed to 0 in the 

accumulator opposite to the cue, and increased by the bias parameter in the cued 

accumulator. In this case however, Z was also free to vary in ‘uncued’ trials. As such, 

free variations of the lower limit of starting point interval occurred in ‘cued’ compared 

to ‘uncued’ trials. Again, note that this translated into inverse effects on ‘correct’ and 

‘incorrect’ accumulators between ‘congruent’ and ‘incongruent’ trials (see Table 2) 

but without assuming that uncued accumulators started (on average) midway 

between congruent and incongruent ones. All other parameters were fixed between 
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conditions, resulting in a total of seven parameters in model 2 and eight parameters 

in model 3 (see Table 2). 

 

Finally, models 4 and 5 tested whether cues also influenced the rate of evidence 

accumulation, again assuming either symmetrical or free variations. Model 4 

implemented symmetrical starting point variation as in model 2, plus symmetrical 

changes in accumulation rates. Vcued was added to the cued accumulator rate, and 

was subtracted from the opposite accumulator rate. In model 5, assuming free 

changes, starting point variations were implemented as in model 3, and vcued was 

added to the cued accumulator rate while vopp was subtracted from the opposite rate. 

Again, note that the ‘cued’ accumulator was ‘correct’ in ‘congruent’ trials and 

‘incorrect’ in ‘incongruent’ trials. These manipulations resulted in a total of eight and 

ten parameters in models 4 and 5, respectively (see Table 2).  

 

Model 6 to 10 were LCA implementations of Model 1 to 5 respectively (see Table 2). 

Like in Experiment 1, best-fitting model parameters were determined at the individual 

level. Trials with RTs faster than 180 ms or slower than 1300 ms (less than 6%) were 

discarded.  

3.2. Results 

3.2.1. Behavioural Results 

The data remaining after trimming outlying RTs (5.34%) are displayed in Figure 3 c. 

Statistical analyses revealed RT differences between cue conditions, F(2, 38) = 

42.72, p < .001, ηp
2 = .69. Fisher’s LSD corrected follow-up t-tests showed that all 

conditions differed from each other, with faster RTs in ‘congruent’ than in ‘uncued’, 
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t(19) = 6.21, p < .001, and ‘incongruent’ trials, t(19) = 7.38, p < .001, and in ‘uncued’ 

than ‘incongruent’ trials, t(19) = 5.17, p < .001. 

 

Additionally, a GLMM revealed that the ‘Cue’ condition affected accuracy scores, 

F(2, 57) = 18.56, p < .001. To explore the differences between all three levels, we 

fitted the model a second time, but setting the reference level of ‘Cue’ to 

‘incongruent’, rather than ‘congruent’. Results showed that accuracy was higher in 

‘congruent’ compared to ‘uncued’ trials, with both being higher than accuracy of 

‘incongruent’ trials (all p < .001).  

 

3.2.2. ERP Results 

The CPP waveform for each condition is displayed in Error! Reference source not 

found. 3 d. In both the stimulus-locked and the response-locked CPP, the waveform 

associated with ‘incongruent’ trials displays the highest amplitude, followed by the 

‘uncued’ and ‘congruent’ waveforms. Note that the interpretation of the CPP, when 

related to the predictions of sequential-sampling models, requires that we keep in 

mind the baseline correction applied to ERPs. Higher end points are consistent with 

greater excursions, which may be implemented in models as lower starting points, 

and vice versa. 
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Figure 3: a) Random dot motion task trial procedure: in each trial, a cue consisting of two arrows was presented. 

If both arrows were white (‘uncued’), no directional information was given. If one of the arrows was yellow, this 

cue correctly described the direction of the upcoming motion in 80% of trials (‘congruent’), and was false in 20% 

of trials (‘incongruent’). Here, the right side is cued, and the coherent motion following the random motion is to 

the right (‘congruent’). Note that the size and number of dots have been adjusted for illustration. b) Model fit: each 

participant’s quantiles estimated from behavioural data (x-axis) and race model simulations (y-axis) for each cue 

condition (from left to right: congruent, incongruent, uncued). Increasing quantiles (10%, 30%, 50%, 70%, 90%) 

are represented by increasingly darker colours. Small inserted panels show observed and simulated RT medians 

for error trials.c) Behavioural results: reaction time (left) and accuracy (right) averages for ‘congruent’, 

‘incongruent’, and ‘uncued’ trials. Error bars indicate 95% confidence intervals. d) CPP results: Stimulus-locked 

(left) and response-locked (right) CPP waveforms. Electrodes used to generate the waveforms are highlighted on 

the topography (which shows the averaged signal over the stimulus-locked 0 to 1000 ms interval). Vertical 

dashed lines in the stimulus-locked CPP indicate mean RTs per condition. Note that the mean RTs are based 

only on trials which were included in the generation of the waveform and differ slightly from the ones displayed in 

c. Black dots at the bottom of the waveform indicate time points at which FDR-controlled comparisons of 

amplitude showed a significant ‘Cue’ effect. 
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No difference in the CPP slopes was observed across the different conditions, in 

either the stimulus-locked, F(2, 38) = .39, p = .68, ηp
2 = .02, or the response-locked 

CPP, F(2, 38) = .40, p = .67, ηp
2 = .02. We also tested the variation of amplitudes in 

the CPP using a series of FDR-controlled ANOVAs and found a significant effect of 

‘Cue’ between 518 and 873 ms relative to the onset of coherent motion (corrected p 

< .049). Follow-up t-tests revealed that ‘incongruent’ amplitudes were higher than 

both the ‘congruent’ (for the entire duration of the main effect, corrected p < .02), and 

the ‘uncued’ ones (between 542 and 863 ms relative to stimulus onset, corrected p < 

.05). There was less difference between ‘congruent’ and ‘uncued’ amplitudes 

(corrected p < .05 only between 639 and 645 ms). 

 

In the response-locked CPP, we found a significant main effect between -198 and -

104 ms relative to the response (corrected p < .047). Post-hoc tests showed the 

same patterns as the stimulus-locked data, with higher amplitudes in ‘incongruent’ 

than ‘congruent’ trials (during the entire duration of the main effect, corrected p < 

.018) and in ‘incongruent’ than ‘uncued’ trials (between -198 and -108 ms, corrected 

p < .049). There was no difference between ‘congruent’ and ‘uncued’ trials (p > .09). 

3.2.3. Model Fit 

Ten models assuming changes in starting point across bias conditions were fitted to 

the data. We once again focussed on BIC to help us discriminate between them. For 

individual-level fits, there were no cases where a participant’s data were strongly 

supportive of one model over all others (BIC or AIC difference > 10). The best 

(lowest) group-average BIC was obtained for Model 2, an independent race model 

with a symmetrical cuing bias affecting start points of accumulation (see Table 2). 

Tukey-corrected contrasts suggested that this model significantly outperformed 
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models 3, 5 and 10. Without correction, it additionally beat models 1, 4, 8 and 9, but 

not models 6 or 79. This is somewhat suggestive that the additional bias and/or 

inhibition/leak parameters of many of the other models did not increase the quality of 

the fit enough to warrant the increased model complexity. However, model 6, a 

simple LCA model with only a positive cuing bias, performed best based on AIC. 

Somewhat arbitrarily, we begin by discussing accumulation profiles for model 2, but 

go on to consider them for model 6 as the best performer from the other model class 

(for behavioural fits for all models, see Appendix B). 

 

Table 2: Model Comparison: BIC and AIC values for each independent race (IRA) and LCA model. The BIC and 

AIC values of the chosen model (Model 2) are displayed in bold. 
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9 A 2 (model class) x 5 (model details) repeated-measures ANOVA gave little evidence that 

independent race models were generally better supported than LCA models (with no main effects) for 

either AIC or BIC, but did yield interactions in both cases. 
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Table 3: Mean estimated parameter values for the chosen model (Model 2): note that the response threshold A 

was set to 1 as a scaling parameter, and that all lower limits of the starting point distributions were generated with 

just two free parameters. Note that, due to the raised starting point in the uncued condition, these parameters are 

not directly comparable to the ones displayed in Experiment 1 (Table A1). 

Model 2: Parameters     

Lower limit starting point  

 

‘congruent’ 

correct 0.2598 

incorrect 0 

‘incongruent’ 

correct 0 

incorrect 0.2598 

‘uncued’ 

correct 0.1628 

incorrect 0.1628 

Starting point variability (SZ) 0.3389 

Response threshold (A) 1 

Accumulation rate  

(v) 

correct 1.6709 

incorrect 0.2867 

Non-decision time (Ter) 0.300 

Non-decision time interval (STer) 0.220 

Gaussian noise SD (σ2) 0.5698 
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The parameter estimates of the chosen race model are displayed in Table 3. 

Figure 3 b shows the quality of the model fit by displaying each participant’s 

empirical (x-axis) and modelled (y-axis) RT quantiles in each condition. It indicates 

that independent race accumulator model 2, with varying starting points, can account 

well for our biased decision-making. 

3.2.4. Model Prediction (neurodynamics) 

Model parameters were used to compute the predicted accumulation profile for each 

condition. Figure 4 displays the resulting predictions (b) and the corresponding CPP 

(a) for stimulus (left) and response-locked (right) signals. Components of the 

prediction (correct and incorrect accumulators) are shown as insets. Visual 

inspection shows some qualitative similarities between the best independent race 

accumulator model predictions and the EEG signals. Importantly, both the model 

prediction and the CPP display an amplitude difference in the response-locked 

signal, with ‘incongruent’ decisions being associated with the highest values. 

However, this pattern is not visible in the stimulus-locked prediction, despite 

appearing in the corresponding EEG signal. Furthermore, the amplitude variations 

appear far more pronounced in the EEG signals than in the model predictions.  

 

As in Experiment 1, we analysed the correlation between differences of conditions in 

both the EEG data and the model predictions (differences between ‘congruent – 

incongruent’, ‘congruent – uncued’, and ‘incongruent – uncued’, for both stimulus-

locked and response-locked signals, resulting in a total of 6 correlations). We found 

that 3 out of 6 tests revealed significant positive correlations, all of which remained 

significant after Bonferroni correction (rmean(98) = .44, pmean < .001). Since this 
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experiment targeted the amplitude of the accumulation, which is visible primarily in 

the response-locked profiles, the correlations between response-locked signals, 

which were all significant (rmean(98) = .44, pmean < .001), are arguably most 

meaningful.  

 

Finally, as in Experiment 1, we looked at predictions from the best-performing model 

in the alternative class (LCA model 6, Figure 4c). Here, predictions were noticeably 

less consistent with the EEG signal. In fact, an identical correlation analysis run on 

differences between conditions showed an equal tendency towards both positive and 

negative significant correlations after Bonferroni correction (three correlations 

revealed positive results, rmean(98) = .46, pmean < .001, and two showed negative 

results, rmean(98) = -.46, pmean < .001), i.e. a failure to properly order the EEG signals 

from the three conditions across time. 
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Figure 4: Decision variable (empirical and simulated): a) CPP waveform for stimulus (left) and response-locked 

(right) data. The CPP here has been filtered and downsampled to match model predictions. b) Accumulation 

profile per cue condition as predicted by the best-fitting independent race accumulator model (IRA), for stimulus 

(left) and response-locked (right) data. Correct and incorrect accumulators were summed to form the prediction, 

so these contributory signals are shown separately as smaller insets.c) Accumulation profile as predicted by the 

best-fitting LCA model. Details as in part b. 
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3.3. Discussion Experiment 2 

In Experiment 2, we tested how decision biases affect the CPP waveform and, like in 

Experiment 1, compared its profile to model predictions. To this end, we asked 

participants to complete a motion discrimination task in which cues prior to each trial 

either gave no information about the direction of the upcoming trial (‘uncued’), or 

indicated the upcoming direction either correctly (‘congruent’) or incorrectly 

(‘incongruent’). In accordance with previous research (de Lange et al., 2013; Mulder 

et al., 2012; Teodorescu & Usher, 2013), we observed that participants’ choices 

were biased towards the cued direction. Compared to ‘uncued’ trials, ‘congruent’ 

cues resulted in faster RTs and less errors, while ‘incongruent’ cues led to lower 

accuracy and longer RTs. Note that in order to avoid the co-occurrence of visual 

evoked potentials (associated with a sudden stimulus onset) with the accumulation 

profile, we added a period of random dot motion prior to the coherent motion but 

following the directional cue (Figure 3 a). This means that there was a short period of 

time where participants were presented with a stimulus which was potentially 

inconsistent with the cue, even in congruent trials, which may have weakened the 

effect of the cue. However, since we observed strong behavioural differences 

between all three conditions, we do not believe that this had a qualitative impact on 

our conclusions. Nevertheless, we note that this may hinder the direct comparison 

with versions of decision-making tasks in which the evidence immediately follows the 

cue.  

The observed changes in behaviour were well captured by an independent race 

model with varying start points, and this model predicted some of the trends we 

observed in the CPP as decisions were being made, albeit imperfectly. However, this 

result may be viewed as somewhat fortuitous. Although generating predictions for 
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the independent race model followed a natural logic, because this model (just about) 

won at a behavioural level, the other class of models we considered here, with 

inhibition and leakage, failed to capture nuances in the CPP. 

 

Based on previous research, we hypothesised that prior cues would affect the 

starting point of each accumulator (Bode et al., 2012; Gao et al., 2011; Rorie et al., 

2010; Teodorescu & Usher, 2013)leading to a change in the baseline-to-threshold 

distance, and incorporated free parameters capable of capturing this change. For the 

best-fitting model, the mean starting point was higher in the corresponding cued 

accumulator and lower in the opposite non-cued accumulator compared to the 

neutral, uncued, condition. By modifying the baseline-to-threshold distance, starting 

point variations affect both the time required for accumulation to reach the decision 

threshold and the probability of attaining the threshold due to noise. In incongruent 

trials, for example, where the incorrect response was cued, errors occurred 

frequently due to the small baseline-to-threshold distance in the cued, but incorrect, 

accumulator, and correct RTs were slower due to the larger baseline-to-threshold 

distance in the opposite non-cued accumulator10. In line with many, but not all, 

previous studies, our results hence confirmed that decision biases can be accounted 

for by simply varying accumulation starting point (Basso & Wurtz, 1998; de Lange et 

al., 2013; Rao et al., 2012; but see Rae et al., 2014). 

 

                                                
10 In the case of the best LCA model, which incorporated a change to only the cued starting point, 

correct RTs would instead be slower due to the extra inhibition flowing from the boosted correct 

accumulator towards the non-cued accumulator. 
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The exact pattern these changes would evoke in the CPP waveforms however is 

difficult to predict intuitively. Firstly, due to the baseline correction applied to compute 

the CPP waveform, a starting point difference would not be observed directly, but 

would instead lead to a difference in amplitude, with higher starting points leading to 

lower ERP peaks. Secondly, and as confirmed by model parameters, prior cues 

induced both an increased accumulation starting point for the cued response, and a 

decreased starting point for the non-cued response. Since the EEG signal recorded 

from the scalp is the sum of all underlying neural activities, the CPP presumably 

reflects the sum of all accumulation in a race model. It is hence unclear how opposite 

effects on the activity of ‘correct’ and ‘incorrect’ accumulators affects the global 

activity amplitude. There are a number of possible outcomes which could, at least 

conceptually, be considered in line with sequential sampling models. It is therefore 

particularly important to directly compare a signal to predictions made through model 

fits, in order to comment on its similarity to an accumulation process. However, it is 

worth bearing in mind that the relative nature of the CPP may make it an inherently 

less informative signal (relative to single-cell firing rates, with meaningful zero points) 

for the evaluation of experimental manipulations affecting the start point of 

accumulation. 

 

The pattern we observed in the CPP was somewhat similar to what might be 

expected for just a correct accumulator. We found a clear difference in amplitude 

between the conditions, but no difference in slope. The waveform associated with 

‘incongruent’ decisions showed a greater excursion than ‘congruent’ or ‘uncued’ 

profiles in both the stimulus and the response-locked data. The ‘uncued’ CPP also 

seemed to build up to a slightly higher plateau than the ‘congruent’ waveform, 
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although this difference was not significant in our analysis. However, it is difficult to 

conceive how a non-lateralised EEG signal could represent only one accumulator – 

only a sum, or perhaps absolute difference of accumulators makes sense. In order to 

evaluate to what extent this observed CPP pattern resembled the sum of 

accumulation processes as predicted by sequential sampling models, we simulated 

accumulation profiles predicted in each condition, based on the estimated 

parameters of the best-fitting (independent race) model. The resulting waveforms 

showed that all three conditions are predicted to follow a very similar trajectory, but 

do differ slightly in amplitude. For response-locked signals, the order in which the 

amplitudes differ is identical to the one described by the CPP, with the highest 

amplitude seen for ‘incongruent’ decisions, followed by ‘uncued’ decisions, and 

‘congruent’ waveforms showing the lowest amplitude.  

 

Although both the (race-model) simulated accumulation profiles and the CPP display 

similar patterns, it is not immediately clear what caused them. As outlined above, 

while we expected this pattern for the correct accumulator, summing over the 

accumulators would presumably cancel differences between the conditions. To aid 

our interpretation, we explored the accumulation profiles in more detail. First, we 

found that dividing correct and error trials had an impact. In Figure 4, only correct 

trials are averaged to match with the CPP analysis. However, in the incongruent 

condition in which the mean starting point is higher in the incorrect accumulator, 

correct trials are primarily trials in which noise has favoured the correct accumulator, 

such as trials in which, by chance, the cued incorrect starting point was at the lower 

limit of the distribution, leading to a larger baseline-to-threshold distance.  
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Nonetheless, averaging the accumulation profiles over all correct and error trials still 

resulted in a pattern qualitatively similar to the one for correct trials alone, indicating 

that some additional mechanism/s must help generate the observed differences. 

Inspecting correct and incorrect accumulation traces separately (see figure insets) 

confirmed that starting-point differences resulted in opposing amplitude modulations 

in correct and incorrect accumulators. For correct accumulation, the highest 

amplitude was obtained for incongruent trials, and the lowest trace in congruent 

trials. The reversed pattern was observed in the incorrect accumulator. However, 

differences between conditions were more pronounced on correct than incorrect 

traces, particularly in response-locked signals. We presume that this divergence 

arises from the accumulation rate difference between the accumulators, which 

implies that correct accumulation is less affected than incorrect accumulation by 

noise. Accordingly, incorrect traces are flatter overall and diverge less between 

conditions, such that differences in the correct accumulator contribute more to the 

summed signal.  

 

Regardless of the computational specifics that generate differences between our 

conditions, the CPP and the simulated accumulation profiles display somewhat 

similar patterns, suggesting similar underlying mechanisms, and supporting the role 

of the CPP as an accumulation signal, at least when certain classes of model are 

used to describe the decision process. Furthermore, these findings again emphasise 

the importance of a direct comparison between the CPP and model predictions, as 

the patterns reported here are difficult to predict based on intuitive reasoning alone. 

However, it is also clear that our conclusion was dependent on the models we 

included, and on the particular model that won at a behavioural level (although we 
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gave our models no capacity to adjust to the neurodynamic data, a point we return to 

in the general discussion). 

 

Our findings also contrast in some respects with a very recent but highly relevant 

CPP study, investigating the effect of a decision bias induced through manipulating 

the reward value of different choices under extreme time pressure (Afacan-Seref et 

al., 2018). Their overall conclusion is similar to ours – both studies successfully 

modelled RTs via sequential sampling, and showed correspondence between 

predicted accumulation profiles and the CPP. However, their data supported a non-

standard model incorporating sensory-level dynamics (a linearly increasing 

accumulation rate for a constant stimulus) and a bias affecting accumulation rates 

rather than starting points (leading to an initially negative relative accumulation rate 

for a low valued but strongly evidenced choice). We did not test such a model, which 

may have specific relevance in their somewhat unusual experimental context. The 

extreme time pressure used in their experiment is likely to influence the decision 

dynamics, as the urgency of the choice may accelerate the accumulation in a way 

that is qualitatively different from the decisions made in our experiment. In any case, 

we make no claims that the model we have fitted and illustrated predictions from is 

the only (or best) possible implementation. We do, however, argue that it is a 

plausible choice, and one that is consistent with both the behaviour and, to some 

extent, the neurodynamics that we observed.  

 

4. General Discussion 
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Model-based cognitive neuroscience, which combines the analysis of neural data 

with mathematical modelling, has gained momentum in recent years. However, the 

field of human perceptual decision-making has oftentimes not made full use of this 

approach. Here, we aimed to explore decision-related evidence accumulation in the 

human brain by directly comparing predictions made by different behavioural models 

to the dynamics of the CPP. The CPP is a centroparietal ERP component which has 

previously been suggested to display decision-related accumulation of evidence 

independent of sensory and motor processes (Kelly & O’Connell, 2013; O’Connell et 

al., 2012; Twomey, Kelly, & Connell, 2016). We aimed not only to explore the effect 

of previously untested manipulations on the CPP, but also to evaluate the resulting 

waveforms using sequential sampling modelling. Neural correlates of accumulation 

are often evaluated by deriving summary measures, such as slope of accumulation, 

and comparing them with expectations made with reference to sequential sampling 

models. However, the dynamics of even simple models are difficult to intuit. We 

therefore used sequential sampling models to fit the behavioural data and compared 

neural data to the predicted accumulation profiles based on the estimated 

parameters. The CPP showed a marked degree of correspondence with certain 

model predictions – perhaps fortuitously, the very predictions made by the models 

which best explained the behavioural data in each experiment. 

 

In Experiment 1, we investigated the impact of non-stationary evidence on the CPP 

waveform, under the assumption that changing evidence should affect evidence 

accumulation dynamics. In Experiment 2, we explored the impact of decision bias on 

CPP patterns. We expected that decision biases induced by predictive cues would 

result in shifts of accumulation starting points, hence changing the baseline-to-
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threshold distance. In both experiments, we observed the anticipated behavioural 

changes. Furthermore, sequential sampling model fits confirmed that accumulation 

rates were affected during evidence interruption, while starting point shifts could 

account for decision biases effects. It is worth noting however that when considering 

only behavioural data (for which free parameters in the models could be tuned to 

enhance goodness of fit), Experiment 1 and Experiment 2 supported two different 

model architectures. While a simple independent race accumulator model provided 

the best fit to biased decision data, the LCA model was superior in the case of non-

stationary evidence, although in neither case were the differences between models 

entirely compelling. 

 

We believe that this apparent discrepancy might be explained by the nature of each 

task manipulation, and the universal preference for simpler models. This preference 

is expressed in goodness-of-fit indices such as BIC or AIC by penalising models for 

a higher number of model parameters. Simple independent race models may 

therefore be favoured compared to the more complex LCA (which has a similar basic 

architecture but additional parameters to capture plausible physiological processes), 

especially in the case of fast RTs as observed in Experiment 2, in which the 

influence of inhibition and leakage may be limited. Conversely with longer decisions, 

especially associated with dynamical modulations of each accumulator’s activity as 

in Experiment 1, both reciprocal inhibition and leakage potentially play an important 

role. In this case, a model incorporating these phenomena may be preferred. In other 

words, inhibition and leakage may always be present to some extent, but including 

these parameters in the decision models improves model fit only when decisions are 
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slow and potentially more sensitive to interactions between accumulators11. Indeed, 

in some cases, patterns of behavioural data emerge which seem to demand the 

inclusion of parameters capturing crosstalk between accumulators. For example, we 

have recently found that when up to four manual actions are instructed by a stimulus 

(left/right hand pinch/power grip responses), gross differences in error rates emerge 

based purely on the anatomical adjacency of responses (i.e. without any correlate in 

the stimulus; Kohl, Spieser, Forster, Bestmann, & Yarrow, 2019).  

 

Experiments 1 and 2 were designed to be complementary, because the two types of 

manipulation tested two different predictions about the decision process, each 

realised as a different aspect of evidence accumulation. In Experiment 1, we used 

non-stationary evidence to affect the accumulation process. In their initial CPP 

description, O’Connell et al. (2012) observed that the CPP was susceptible to a 

change in evidence. Our results confirmed that the CPP profile is affected by a time-

varying input, a necessary feature of a signal which could reflect the accumulation of 

evidence, and extended this result to choice-RT settings. While continuous evidence 

led to a gradual build-up of the CPP waveform, interrupted evidence caused a 

disruption in this build-up. Surprisingly, the two different interrupted conditions, one 

in which evidence was stopped, and one in which evidence was reversed, gave rise 

to very similar waveforms, even though they were associated with different 

behavioural patterns. Nevertheless, the pattern of the CPP closely resembled our 

best-fitting model predictions. In other words, our LCA model, combined with realistic 

                                                
11  Another perspective would be that these models are all describing the same fundamental model 
architecture, but with certain strategies requiring additional parameters, as when a non-stable 
environment demands the presence of leak parameters to discount the past (Kilpatrick, Holmes, Eissa 
& Josić, 2019). 
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assumptions about the origin of the CPP signal, successfully predicted the absence 

of an effect that might have been expected based on intuition alone. 

 

In Experiment 2, we used predictive cues to manipulate decision biases. Previous 

research mainly suggests that biases affect the starting point of accumulation, with 

the resulting effect on the EEG signal requiring further clarification (Bode et al., 2012; 

Gao et al., 2011; Rorie et al., 2010, but see Afacan-Seref et al., 2018). We found that 

the CPP differed in amplitude across bias conditions. In particular, decisions in which 

a directional cue was incongruent with subsequent motion were associated with 

higher amplitudes than both decisions in which the cue was congruent with the 

motion and decisions in which there was no directional cue. Once again, a 

sequential sampling model was able to account for all behavioural data, in this case 

by varying the starting points across bias conditions. Furthermore, for the best-fitting 

independent race model, both real and model-predicted EEG signals displayed a 

pattern in which profiles associated with different bias conditions differed only in 

amplitude, with decisions with incongruent cues showing the highest amplitude, 

followed by uncued decisions, and trials with congruent cues showing the lowest 

amplitude, at least for response-locked signals. Hence here, an independent race 

model successfully predicted the presence of an effect that might not have been 

predicted intuitively. The simulations revealed that these differences in amplitude 

were not strictly the result of baseline differences, which in fact largely cancelled out 

on average, but were instead caused by mechanisms such as a biased 

representation of variability parameters in correct trials, or interactions between 

accumulation rate and noise parameters. 
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However, a problematic feature of our results emerges when looking across 

experiments. In our first experiment, an LCA model best fitted the behavioural data, 

and provided a good match to the CPP. A simpler independent race model was 

slightly less successful, but nonetheless showed qualitative agreement on both 

counts. In Experiment 2, an independent race model best fitted the behavioural data, 

and provided a reasonable match to the CPP. However, the more complex LCA 

model failed to predict the precise ordering of conditions in the CPP signal. What are 

we to conclude across both experiments? 

 

When considering this disparity, we would emphasise that our approach gave the 

models leeway to fit the behavioural data, but not the CPP. By exploiting free 

parameters to capture nuances (and even noise) in the behavioural data, models 

may end up producing neurally unrealistic accumulation patterns. The approach we 

apply here has some clear strengths – by fitting only to behaviour, a model’s success 

in predicting the associated neurodynamics becomes all the more striking, because 

no flexibility is provided for achieving this match (a situation somewhat akin to cross 

validation, but on a second form of data). However, it is only one of several ways in 

which model-based cognitive neuroscience might be applied (see e.g. Turner, 

Forstmann, Love, Palmeri, & Van Maanen, 2017, for discussion) and it is not clear 

whether a subsequent comparison of models on this (unfitted) neurodynamic data is 

a fair one. If we accept that signals like the CPP do indeed represent evidence 

accumulation, an important goal for future research will be to produce a consensus 

method for simultaneously fitting models to both RT and EEG data (cf. Turner et al.’s 

“integrative” approach). This is by no means trivial, because EEG data are 
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autocorrelated (to an uncertain extent) which greatly complicates the estimation of 

likelihood when matching model predictions to data.  

 

In fact, one might argue that our observation here, that specific sequential sampling 

models can predict the CPP under a particular manipulation, but that a single model 

may not apply under different manipulations, is the norm in a fragmented literature. 

Thus far, where specific models have been compared to the CPP in terms of the full 

time-varying profile of accumulation, researchers have tended to capture only a 

small subset of possible manipulations. For example, a difficulty manipulation has 

been modelled via a drift-diffusion model (Twomey et al., 2015); a speed-accuracy 

trade-off has been captured via a (reconfigured) race model (Spieser et al., 2018), 

albeit with an unusual take on how the brain might implement this strategic 

adjustment; and value-based biasing under extreme time pressure has been 

modelled via an accelerating accumulation model (Afacan-Seref et al., 2018). 

Whether one views the primary question as “does the CPP represent evidence 

accumulation”, or, having accepted this predicate, as “which model best captures 

both behaviour and neurodynamics”, it seems clear that finding a single (class of) 

model(s) that explains the CPP across multiple experimental manipulations should 

be of central concern in future research. 

 

In line with research which is increasingly emphasising the advantages of combining 

behavioural data, mathematical modeling, and neural dynamics (Ditterich, 2010; 

Forstmann et al., 2011; Mulder et al., 2014; Purcell & Palmeri, 2017), our findings 

also highlight the importance of combining behavioural modeling and neuroimaging 
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methods and directly comparing the dynamics of the neural signals and the model 

predictions, as neither are easily predictable based on conceptual reasoning alone.  

Despite the substantial similarity between the CPP and the predicted accumulation 

profiles observed here, there were also differences worth noting. For example, in 

Experiment 2, the amplitude differences between the conditions are far more 

pronounced in the CPP than in the model predictions even in the response-locked 

signals. This is likely to represent some degree of error in either our choice of 

models or assumptions regarding exactly how accumulators combine to form the 

CPP (something about which there is currently no consensus). However, it is 

important to note that the CPP is unlikely to ever replicate model predictions exactly 

for a number of reasons. Firstly, any model can, at best, be an approximation of true 

biological processes. A second reason for differences between the CPP and the 

model predictions lies in the nature of EEG recordings. EEG is measured from the 

scalp and can only record the sum of all electrical activity underneath each 

electrode, which has presumably been subject to complex filtering by intervening 

biological substrates. Furthermore, since the brain is constantly performing 

computations unrelated to accumulation, the signal-to-noise ratio is low. Most of 

these computations are unlikely to be time-locked to the decisions and are therefore 

averaged out, and the impact of conducted activation from more distal sources is 

reduced using the current source density transform which increases the spatial 

selectivity of the data. Nevertheless, noise and systematic distortions likely remain. 

For reasons like these, the degree of similarity between the CPP and predicted 

accumulation profiles derived from a class of models originally intended to predict 

only behaviour remains remarkable. 
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4.1. Conclusions 

In summary, we provide further support for the role of the CPP as a neural substrate 

of the decision variable, but also highlight how researcher flexibility regarding which 

models to consider and apply might give a false degree of assurance on this front. 

We have shown that the CPP is sensitive to two manipulations which influence 

decision-making behaviour, namely non-stationary evidence and decision biases. 

Importantly, we fitted sequential sampling models to the behavioural data and 

simulated the resulting accumulation profiles. We found that the CPP waveform 

resembled the modelled accumulation in important ways when models were selected 

in a principled, but perhaps somewhat fortuitous, manner. In our opinion, the CPP 

probably reflects the accumulation of evidence and remains a highly plausible 

correlate of the decision variable. Indeed, it may now be time to move beyond mere 

validation of the CPP, to a point where we can instead use it as an additional metric 

to help differentiate competing models of speeded choice.  
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Appendix A 

Parameter identifiability issues have been reported in the LCA model (Miletić et al., 

2017). Hence, we conducted a recovery study to assess the accuracy of parameter 

estimation in Experiment 1. The mean parameter estimates of the chosen LCA 

model (Model 5, LCA-symmetric with no delay) are displayed in Table A112. Based 

on this model, we simulated 20 RT datasets with all 3 interruption conditions and 2 

difficulty levels. We simulated 160 trials in each condition, leading to 960 trials in 

total (i.e., corresponding to the size of one participant’s RT data). Parameters values 

for each of the 20 simulated datasets were drawn from a uniform distribution around 

mean empirical values.  

 

Table A1: Mean estimated parameter values for the chosen model (Model 5), note that the response threshold A 

was set to 1 as a scaling parameter. 

Model 5: Parameters 

Decision threshold (A) 1 

Accumulation rate  

(v) 

easy 

correct 6.0154 

incorrect 1.4110 

hard 

correct 5.0199 

incorrect 1.5039 

Leakage (k) 5.2706 

Inhibition (β) 65.7646 

Non-decision time (Ter) 0.3574 

Non-decision time interval (STer) 0.2763 

                                                
12 Parameter values are only comparable across studies if the same scaling parameter is used. Here 

we fixed the decision threshold but let noise vary, yielding a larger than typical Gaussian noise SD 

(and thus amplified values for many parameters). 
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Gaussian noise SD (σ2) 1.2502 

 

 

 

Figure A1: a) Parameter recovery: fitted parameter values as a function of true values, for 20 simulations of 

individual RTs. Dots show the 20 individual fit values and asterisks show mean fitted value as a function of mean 

true value. Dotted lines show ideal recovery of fitted from true parameters. Red lines show linear regressions 

between true and fitted values. Rate parameters are decomposed in delta-v and common-v (see details in text), 

and both easy (dark) and hard (light) conditions are shown. Circles and squares identify parameter sets used to 

compute predictions in b and c. b) and c) CPP predictions for 2 sets of parameters, computed based on true 

values (b) and fitted values (c). Both parameters sets are identified in a) by circles (predictions on left panel) and 

squares (predictions on right panel). Stimulus-locked (left) and response-locked (right) predictions are shown. 

 

Figure A1 shows the obtained fitted values as a function of true values for each 

parameter. Note that accumulation rates are decomposed into delta-v and common-
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v, corresponding respectively to the difference and the common components of 

correct and incorrect rates (i.e., delta-v equals vcorr minus vinc, and common-v equals 

vinc). Ideally, values recovered from the fit would equal the true parameters, falling on 

the black dotted line. Red lines show best-fitting linear regressions between true and 

fitted parameter values. To assess the accuracy of parameter estimation at a group 

level, we also represented the average of fitted values as a function of the mean true 

value. Consistent with a previous report (Miletić et al., 2017), we observed good 

recovery for delta-v, Ter and σ2, as well as STer, and poor recovery for common-v, k 

and β parameters. At the group level, however, the mean fitted parameter values 

were still a good estimation of mean true values (asterisks in Figure A1a). 

 

Finally, and critically, in order to assess the impact of parameter estimation accuracy 

on derived CPP predictions, we computed predictions based on true and fitted 

parameters values. Predictions are shown for two sets of parameters in Figure A1. 

They have been selected as being both representative of our general findings 

(across all 20 simulations) and illustrative of cases where recovered parameters 

appear to have traded off, and thus differ from true parameters. As can be seen, the 

global pattern is retrieved in fitted parameter predictions, even in those cases where 

common-v and beta parameters were not estimated accurately. 

 

Appendix B 

In both experiments, many of the models performed somewhat similarly. For 

completeness, the behavioural fits of all models are displayed in Figures B1 

(Experiment 1, see Figure 1 b), and B2 (Experiment 2, see Figure 3 b). 
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Figure B1: Experiment 1, Behavioural fits for all models: RT quantiles from behavioural data (x-axis) and 

simulations (y-axis) in seconds for each independent race (IRA, 1 to 4) and LCA (5 to 8) model for easy (filled 

circles, top rows) and hard (empty circles, bottom rows) decisions. Small inserted panels show observed and 

simulated RT medians for error trials. 
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Figure B2: Experiment 2, Behavioural fits for all models: RT quantiles from behavioural data (x-axis) and 

simulations (y-axis) in seconds for each race (IRA, 1 to 5) and LCA (6 to 10) model. Small inserted panels show 

observed and simulated RT medians for error trials. 

 


