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Abstract

Localization is particularly challenging when the environment has mixed line-of-sight (LOS) and

non-LOS paths and even more challenging if the anchors’ positions are also uncertain. In the situations

in which the parameters of the LOS-NLOS propagation error model and the channel states are unknown

and uncertainties for the anchors exist, the likelihood function of a localizing node is computationally

intractable. In this paper, assuming the knowledge of the prior distributions of the error model parameters

and that of the channel states, we formulate the localization problem as the maximization problem of

the posterior distribution of the localizing node. Then we apply variational distributions and importance

sampling to approximate the true posterior distributions and estimate the target’s location using an

asymptotic minimum mean-square-error (MMSE) estimator. Furthermore, we analyze the convergence

and complexity of the proposed variational Bayesian localization (VBL) algorithm. Computer simulation

results demonstrate that the proposed algorithm can approach the performance of the Bayesian Cramer-Rao

bound (BCRB) and outperforms conventional algorithms.
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I. INTRODUCTION

A. Motivation and Literature Review

Localization is essential for many applications such as smart transportation, search-and-rescue

operations and etc. [1–3]. Localization problems in line-of-sight (LOS) only environments were

relatively well understood, e.g., [4–10]. However, challenges arise in harsh environments such

as indoor environments and urban areas [11, 12] and where the positions of the anchor nodes

are uncertain [13–15]. In environments where there are many obstructions or scatterers, the paths

between the anchor nodes and the localizing node may contain non-LOS (NLOS) paths [16]. As a

result, localization needs to be achieved in a mixed LOS-NLOS environment and becomes much

challenging. Another difficult situation is when the anchors’ positions are only known coarsely

[17–19]. Previous research tended to address these two issues in localization separately.

A mixture of LOS-NLOS paths in the measurements confuses localization and greatly degrades

the localization accuracy [20–22]. This problem has been studied in the past and the methods can

be classified into two approaches. One approach is to first identify the NLOS measurements and

discard them when carrying out localization [21, 23, 24]. Another approach attempts to exploit the

NLOS paths together with the LOS measurements to perform localization [25–30]. In the former

approach, the NLOS-LOS identifications are usually based on hypothesis testing [21, 23, 24]

and nonparametric machine learning [26–28]. In [21], the authors developed a NLOS detection

method to discard NLOS measurements assuming that the Gauss-Newton method is unbiased in

LOS environments. In [23], kurtosis was utilized to identify the LOS and NLOS measurements and

then only the LOS measurements were used to complete estimation. In addition, the authors in [24]

used a LOS Gaussian error distribution to design a confidence-region-based detector to distinguish

the LOS pseudo-measured positions and select the LOS positions to complete localization.

Although the above-mentioned methods can achieve good localization accuracy, one would

expect that the accuracy can be improved if the NLOS measurements are also employed in the

localization instead of being discarded. To this end, [16] adopted the Gaussian mixture model

(GMM) to represent the NLOS-LOS measurement errors. By using the extended Kalman filter

(EKF), both NLOS and LOS measurements were combined to estimate the target’s location.

In [31], the localization problem was formulated as a reweighted least square problem given

perfect identification knowledge of the NLOS/LOS measurements. In [32], Gaussian message

passing-based algorithms were proposed for joint synchronization and localization in mixed LOS-

NLOS environments with perfect path identification. It approximated the exponential NLOS bias
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as Gaussian and linearized the non-linear range term so that the messages can be derived in

closed-form for localization.

The assumption of perfect identification knowledge is unfortunately unrealistic especially in

harsh environments, which has led to research to relax such assumption. In [29], the mixed

LOS-NLOS localization problem was formulated as a maximum likelihood (ML) problem, which

was approximately solved by two iterative algorithms based on expectation maximization (EM)

and joint maximum a posterior and ML (JMAP-ML) criteria respectively with all measurements

combined to localize the node using the quasi-Newton method. Moreover, in [26], root-mean-

square (RMS) delay spread, mean excess delay and kurtosis were selected as the features to

build the hypothesis and identify the LOS and NLOS measurements. The whole measurements

were then used for localization using weighted least square (WLS) estimation. Furthermore,

nonparametric methods such as support vector machine (SVM), Gaussian process (GP), relevance

vector machine (RVM) have also been used to approximate the ranging errors in both LOS and

NLOS measurements by selecting the similar features in [26] and then both types of measurements

were used to estimate positions in [27, 28].

While much progress has been made to use both LOS and NLOS measurements for localization,

one key assumption is that the anchors’ locations are perfectly known. Uncertainties in anchors’

locations result in intractable integrals of the likelihood function [13]. There have been efforts to

address the issue of imperfect anchors’ locations in LOS-only environments. In [14], the negative

impact of anchor node uncertainty was analyzed using the Cramer-Rao lower bound (CRLB). Also,

the anchor node uncertainty was considered with the measurements to formulate an ML problem

and a semidefinite programming (SDP) method was proposed to solve it in [15]. In [17, 33],

the uncertainties of anchor nodes were modelled as zero-mean Gaussian distributions and the

estimation problem was solved by WLS and a Taylor expansion. In [34], the uncertainties of

anchor nodes were taken as constraints in the optimization problem. In [35], the EM and Kullbak-

Leibler divergence (KLD) were utilized to approximate the posterior distribution of uncertainty and

estimate the target positions. Moreover, by taking the prior Gaussian distribution of node location

uncertainties into consideration, a variational inference-based positioning algorithm was proposed

based on maximum a posterior criterion in [36]. With respect to NLOS-only envoriments, anchor

location uncertainty has also been considered [37]. However, similarly to LOS-only environments,

no path identification is needed and the localization problem is relatively easier to solve than that

in mixed LOS-NLOS environments.
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TABLE I: Comparisons with the prior works

Works

Assumptions
LOS-only NLOS-only Mixed LOS-NLOS Anchor Node Location Uncertainty

[8], [9] X

[14], [34] X X

[2], [12] X

[37] X X

[21], [29] X

Our Work X X

B. Contributions

In this paper, the uncertainties of the anchors’ (or reference nodes’) positions and the mixed

LOS-NLOS measurements are both considered. This practical scenario widely occurs in harsh

environments, e.g., urban areas with mobile anchor nodes. Moreover, the parameters of the LOS-

NLOS propagation error model are assumed unknown. The estimation task aims to jointly estimate

the error model parameters and the target node’s position. The problem is extremely challenging

due to the mixed measurements from LOS and NLOS paths, the nonlinear distance expression,

and intractable integrals of the likelihood function with unknown error model parameters. To

optimize the estimation performance, a variational Bayesian localization (VBL) algorithm using

the variational Bayesian framework and importance sampling method is proposed. In summary,

this paper has made the following contributions.

• We consider a challenging system model where the environment is composed of a mixture of

NLOS and LOS paths and the anchors’ positions are known with errors. This is significantly

different from prior works as shown in Table I. Localization is also done while the error

model parameters are unknown and jointly estimated.

• Using approximations to the true posterior distributions, we apply the variational framework

to find the optimal variational distributions iteratively and propose a novel VBL algorithm1.

• Also, we present complexity analysis of the proposed algorithm and the BCRB for the joint

estimation problem.

1Although we also apply the variational framework for localization, our algorithm design is more challenging than that in [36]

due to the existence of the mixed LOS/NLOS measurements.
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C. Organization

The remainder of this paper is organized as follows. In Section II, the estimation problem is

formulated as a maximum a posterior problem. Section III introduces the detailed derivations of

variational distributions and the framework of VBL. In order to make specified interpretations of

the proposed algorithm, Section VI gives the BCRB of the proposed algorithm. Finally, we present

the simulation results in Section V and conclude the paper in Section VI.

II. PROBLEM FORMULATION

Consider a wireless sensor network (WSN) with M(≥ 3) anchors located at xi, for i = 1, . . . ,M ,

respectively. The anchors are either pre-deployed nodes or mobile nodes which join the WSN

afterwards. When a new node joins into the WSN, it will estimate its location with the help

of the existing anchors. Due to the presence of deployment errors and/or estimation errors, the

locations of the anchors are imperfectly known with uncertainties. Denoting the coarse location of

the ith anchor as x̄i, its location uncertainty ∆xi = xi − x̄i is usually assumed to be a zero-mean

Gaussian random variable with covariance matrix of Σi. In other words, the true location of the

ith anchor follows Gaussian distribution as xi ∼ N (x̄i,Σi). This Gaussian uncertainty model has

been widely adopted in the literature and well justified by the result that the location estimation

error can be well modeled as Gaussian random variable in [35, 36].

When a target node enters into the coverage area of the WSN, it can communicate with the

anchor nodes and obtain range measurements based on time of arrival (TOA) 2 or received signal

strength, etc.. Denoting the location of the target node as x, the location x can be assumed to

follow a Gaussian distribution x ∼ N (x̄,Σ) [36]. Meanwhile, the kth range measurement from

the ith anchor ri,k can be written as

ri,k = ∥x− xi∥2︸ ︷︷ ︸
di

+εi,k, k = 1, . . . , K, (1)

where εi,k denotes the ranging error. In WSNs, LOS path is not always possible between any two

nodes. Thus, the range measurements may be obtained either from an LOS path or NLOS path,

and the ranging error εi,k can be modelled as a two-mode Gaussian random variable as [29]

εi,k ∼

 N (εi,k|µ1,Λ
−1
1 ) LOS error with probability of α1,

N (εi,k|µ2,Λ
−1
2 ) NLOS error with probability of α2,

(2)

2For TOA-based ranging technique, time synchronization among the anchor and target nodes is essential and necessary. Thanks

to the rich literature in synchronization [38, 39], it can be achieved by many well developed algorithms. In our paper, we thus

assume the anchor and target nodes are perfectly synchronized.
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with µ2 ≫ µ1 incorporating extra traveling distance through the NLOS path and
2∑

l=1

αl = 1. To

distinguish between the LOS and NLOS errors, a binary indicator vector yi,k = [yi,k,1, yi,k,2] is

introduced here. Specifically, the indicator vector is defined as

yi,k =

 (1, 0) ri,k ∈ LOS,

(0, 1) ri,k ∈ NLOS.
(3)

Given the probability of α, the indicator vector y = {y1,1,y2,1, . . . ,yM,1, . . . ,y1,K ,y2,K , . . . ,yM,K}

then follows the distribution of

p(y|α) =
M∏
i=1

K∏
k=1

2∏
l=1

αl
yi,k,l . (4)

The probabilities αl, l = 1, 2, can be regarded empirically as the ratios of the number of LOS/NLOS

paths over the total number of paths, respectively. In practice, the range measurements could

come from either LOS or NLOS paths and the ratios of the number of LOS/NLOS paths over

the total number of paths vary from environment to environment and also from time to time. It

is thus reasonable to model the probabilities/ratios as random and unknown with the constraints∑2
l=1 αl = 1 and 0 ≤ αl ≤ 1. Generally, to meet the physical constraints (i.e.,

2∑
l=1

αl = 1 and

0 ≤ αl ≤ 1) of the individual probabilities of NLOS and LOS measurements, the variable α can

be assumed to follow a Dirichlet distribution with order of 2 [40]. The prior distribution of α is

then given by
p(α) = Dir(2, λ̄), (5)

where λ̄ is the parameter of Dirichelet distribution with elements (λ̄1, λ̄2). This model is also

aligned with the facts that the paths are indicated as LOS or NLOS paths by the associated variable

y which follows a multinomial distribution and the Dirichlet distribution is a conjugate prior of

a multinomial distribution. On the other hand, the statistical information of the LOS and NLOS

ranging errors (i.e., µ1, Λ1, µ2, and Λ2 ) is also difficult to obtain in practice and is considered

random and unknown. Since Wishart distribution is the conjugate prior of inverse covariance of a

Gaussian distribution, it is widely adopted to model the distribution of the inverse covariance Λl

of the ranging errors [40]. This Wishart model has been well justified by the experimental data in

[36]. Meanwhile, as shown in [40], given the inverse covariance Λl, the mean µl of the ranging

errors can be modeled using a Gaussian distribution. As a result, the prior distribution p(µ,Λ)

can be written as
p(µ,Λ) =

2∏
l=1

N (µl|m̄l, (β̄lΛl)
−1
)W(Λl|W̄l, v̄l), (6)
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where β̄l is the correlation coefficient between µl and Λl, m̄l, β̄l and Λl are the parameters of the

Gaussian distribution p(µl|Λl) = N (µl|m̄l, (β̄lΛl)
−1
), W̄l and v̄l are the parameters of the Wishart

distribution p(Λl) = W(Λl|W̄l, v̄l) with mean of E(Λl) = W̄lv̄l.

After collecting the range measurements from all the anchor nodes as r = vec [ri,k], the

likelihood probability can be written as

p(r|θ,x) =
M∏
i=1

K∏
k=1

2∏
l=1

[
N (ri,k − di|µl,Λl

−1)
]yi,k,l , (7)

where θ denotes the unknown nuisance parameters as θ = [x1, . . . ,xM , µ1, µ2,Λ1,Λ2,α,y].

Meanwhile, the posterior probability p(θ,x|r) follows

p(θ,x|r) ∝ p(r|θ,x)p(θ,x). (8)

Location estimation can be conducted based on ML or the maximum a posterior (Bayesian)

criterion. Bayesian estimation incorporates the prior information of the unknown parameters and

generally leads to better performance. In this paper, we thus adopt the Bayesian criterion for

location estimation.

Based on the Bayesian rules, the formulated posterior distribution in (8) can be factorized as

follows:

p (θ,x|r) ∝ p (r|θ,x) p (θ,x) = p (r|θ,x) p (y|α) p (α)
2∏

l=1

p (µl,Λl)
M∏
i=1

p (xi)p (x) . (9)

In the considered WSN, mixed LOS/NLOS range measurements are collected with anchor loca-

tion uncertainties and unknown ranging error statistics. Moreover, nonlinear distance term di =

∥x− xi∥2 is involved. The Bayesian posterior probability in (9) is a very complicated expression

and direct maximization is intractable. To solve this problem, a VBL method will be proposed to

estimate the target location based on an approximated posterior distribution and infer the nuisance

parameters.

III. VBL

Since the Bayesian posterior probability (9) is too complicated for direct maximization, we

propose to find an approximation of the Bayesian posterior distribution based on mean-field

variational inference. Essentially, it is to find a variational distribution q (θ,x) to approximate

the Bayesian posterior distribution p (θ,x|r) such that the KLD between them is minimized. As

defined in [41], the KLD between two distributions has the non-negative property as

KL (q (θ,x) ||p (θ,x|r)) , −
∫
θ,x

q (θ,x) ln
p (θ,x|r)
q (θ,x)

dθdx ≥ 0, (10)
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where the equality holds when q (θ,x) = p (θ,x|r). The minimization of the KLD therefore can

lead to a good approximation of the Bayesian posterior distribution.

Given the Bayesian posterior probability in (9) and based on the mean-field theory [42], the

variational distribution can be set to follow the form as

q (θ,x) = q (y) q (α) q (µ,Λ)
M∏
i=1

q (xi)︸ ︷︷ ︸
q(θ)

q (x) , (11)

where the individual variational distributions can be regarded as approximations to the correspond-

ing posterior distributions, e.g., q(x) is the approximation to the posterior distribution p(x|r) and

q(Λ,µ) is the approximation to the posterior distribution q(Λ,µ|r), etc.. Considering the prior

distributions in (5) and (6) and the conjugate prior principle, the variational distributions of α and

(µ,Λ) can also be set respectively as [40]

q(α) = Dir(α|2,λ), (12)

q(µ,Λ) =
2∏

l=1

N (µl|ml, (βlΛl)
−1)W(Λl|Wl, vl), (13)

where λ = (λ1, λ2), and all the parameters including {λ,ml, βl,Wl, vl} are to be determined.

With the expressions in (11)–(13), variational Bayesian inference method is now introduced

to solve the KLD minimization problem and infer the locations and the nuisance parameters.

Specifically, the KLD can be rewritten as

KL (q (θ,x) ||p (θ,x|r)) =−
∫
θ,x

q (θ,x) ln
p (θ,x|r)
q (θ,x)

dθdx =−
∫
θ,x

q (θ,x) ln
p (θ,x, r)

q (θ,x)
dθdx

︸ ︷︷ ︸
F(θ,x)

+ ln p(r).

(14)

Clearly, the divergence minimization is equivalent to the maximization of the term F (θ,x), which

is called as evidence lower bound (ELBO). Putting (11) into (14), we have

F (θ,x) =

∫
θ,x

q (y) q (α) q (µ,Λ)
M∏
i=1

q (xi)q (x) ln
p (θ,x, r)

q (y) q (α) q (µ,Λ)
M∏
i=1

q (xi)q (x)

dθdx.

(15)

Since multiple distributions to be determined are involved in (15), alternating optimization is

adopted to solve the maximization of F (θ,x) iteratively. In each iteration, each of the distributions

q (y), q (α), q (µ,Λ), q (xi) and q (x) is sequentially optimized by fixing the other distributions.

More specifically, in the ηth iteration, given the distribution q(η) (θ), the optimization of q(η) (x)

is formulated as
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max
q(η)(x)

F(η) (θ,x) =

∫
x

q(η) (x) q(η) (θ)

∫
θ

ln
p (θ,x, r)

q(η) (θ) q(η) (x)
dθdx

=

∫
x

q(η) (x)

∫
θ

q(η) (θ) lnp (θ,x, r) dθdx−
∫
x

q(η) (x) lnq(η) (x) dx+ const

= −
∫
x

q(η) (x) ln
q(η) (x)

exp

(∫
θ

q(η) (θ) ln p (θ,x, r) dθ

)dx
︸ ︷︷ ︸

−KL

(
q(η)(x)|| exp

(∫
θ

q(η)(θ) ln p(θ,x,r)dθ

))

+const.

(16)

Clearly, the ELBO in (16) is maximized when the KLD term regarding to q(η) (x) reaches zero,

namely,

q(η) (x) = 1
Zx

exp

(∫
θ

q(η) (θ) ln p (θ,x, r) dθ

)
= 1

Zx
exp

(
Eq(η)(θ) [ln p (θ,x, r)]

)
, (17)

where Eq(η)(θ) denotes the expectation with respect to q(η)(θ) and Zx is the associated normalization

scalar given as
Zx =

∫
x

exp
(
Eq(η)(θ) [ln p (θ,x, r)]

)
dx. (18)

Similarly, given q(η) (x) and q(η)
(
θ\y
)
, the optimal distribution q(η) (y) that maximizes the ELBO

can be derived as
q(η) (y) =

1

Zy

exp
(
Eq(η)(x)q(η)(θ\y) [ln p (θ,x, r)]

)
, (19)

where θ\y denotes the parameter vector of θ excluding y. Other individual distributions can also

be optimized respectively as

q(η) (µ,Λ) =
1

Zµ,Λ

exp
(
Eq(η)(x)q(η)(θ\{µ,Λ}) [ln p (θ,x, r)]

)
, (20)

q(η) (α) =
1

Zα

exp
(
Eq(η)(x)q(η)(θ\α) [ln p (θ,x, r)]

)
, (21)

q(η) (xi) =
1

Zxi

exp
(
Eq(η)(x)q(η)(θ\xi)

[ln p (θ,x, r)]
)
. (22)

Using the mean-field factorization and alternating optimization, an analytical approximation to

the complicated joint posterior distribution can be obtained by the variational Bayesian inference

method. Moreover, the approximation is a product of a number of variational distributions and each

of them is an approximation of the corresponding posterior distribution of one unknown parameter.

With the approximated individual posterior distributions, the locations and the nuisance parameters

can then be estimated. Since the derivations of the variational distributions in (17) and (19)–(22)

are not straightforward, the details are given in the following.
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A. Variational Distribution q(η+1)(y)

By taking logarithm on both sides of (19) and given q(η)
(
θ\y
)

and q(η) (x), the variational

distribution q(η+1) (y) can be written as

ln q(η+1) (y) ∝
∫

θ\y,x

q(η)
(
θ\y
)
q(η) (x) ln p (θ,x, r) dθdx. (23)

Substituting the likelihood probability (7) and the prior distribution (4) into (19) and putting other

terms irrelevant to y as constant, we can obtain

ln q(η+1) (y) ∝
M∑
i=1

K∑
k=1

2∑
l=1

yi,k,lEq(η)(θ\y,x)

(
lnN

(
ri,k − di|µl,Λl

−1
))

+ Eq(η)(θ\y ,x)
[ln p (θ,x)]

=
M∑
i=1

K∑
k=1

2∑
l=1

yi,k,l lnΥ
(η)
i,k,l + const,

(24)

where lnΥ
(η)
i,k,l is given by

lnΥ
(η)
i,k,l = Eq(η)(θ\y,x)

(
lnN

(
ri,k − di|µl,Λl

−1
))

+ Eq(η)(α) [lnαl] . (25)

Putting (12) and (13) into (25) and taking expectations with respect to the variational distributions,

it follows

lnΥ
(η)
i,k,l=

1

2

(
ln 2 + ψ

(
1

2
v
(η)
l

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[
[β

(η)
l ](−1) + v

(η)
l W

(η)
l Eq(η)(x,xi)

(
ri,k − di −m

(η)
l

)2]
+ ψ

(
λ
(η)
l

)
− ψ

(
2∑

l=1

λ
(η)
l

)
,

(26)

where ψ(·) is the digamma function defined as the logarithmic derivative of Gamma function.

Based on (24), the variational distribution q(η+1) (y) can then be reformulated as

q(η+1) (y) ∝
M∏
i=1

K∏
k=1

2∏
l=1

eyi,k,l lnΥ
(η)
i,k,l =

M∏
i=1

K∏
k=1

2∏
l=1

(
Υ

(η)
i,k,l

)yi,k,l
. (27)

Clearly, Υ(η)
i,k,l can roughly be regarded as an approximation of the posterior probability of the path

indicator, i.e., p (yi,k,l|ri,k) [40]. In the calculation of Υ
(η)
i,k,l in (26), the expectation with respect

to q(η)(x,xi) is involved. Due to the presence of the nonlinear distance term di = ∥x− xi∥2, it is

very difficult to obtain the expectation in closed form. We will adopt the technique of importance

sampling to solve it, as introduced later in Section III-E.
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B. Variational Distribution q(η+1)(µ,Λ)

The variational distribution q(η+1) (µ,Λ) in (20) can be rewritten as

q(η+1) (µ,Λ) ∝ exp
(
Eq(η)(θ\{µ,Λ})q(η)(x) [ln p (θ,x, r)]

)
. (28)

By plugging the likelihood probability (7) and the prior distribution (6) into (28), it follows

q(η+1) (µ,Λ) ∝ exp
(
Eq(η)(θ\{µ,Λ})q(η)(x) [ln p (r|θ,x)] + ln p (µ,Λ)

)
∝ exp

(
M∑
j=1

K∑
k=1

2∑
l=1

Eq(η)(θ\{µ,Λ})q(η)(x)
[
yi,k,l lnN

(
ri,k − di|µl,Λ

−1
l

)])
×exp

(
2∑

l=1

ln p (µl,Λl)

)
.

(29)

With (27), the expectation of yi,k,l with respect to q(η)(y) is given by

Eq(η)(y) [yi,k,l] = Γ
(η)
i,k,l =

Υ
(η)
i,k,l

2∑
l=1

Υ
(η)
i,k,l

. (30)

Defining

γ
(η)
l =

M∑
i=1

K∑
k=1

Γ
(η)
i,k,l, (31)

and after some tedious derivation as shown in Appendix A, q(η+1) (µ,Λ) can be written as

q(η+1) (µ,Λ) ∝
2∏

l=1

N
(
µl|m(η+1)

l ,
(
β
(η+1)
l Λl

)−1
)
W
(
Λl|W (η+1)

l , v
(η+1)
l

)
, (32)

where the parameters are, respectively, given by

m
(η+1)
l =

β̄lm̄l + γ
(η)
l χ

(η)
l

β̄l + γ
(η)
l

, (33)

v
(η+1)
l = v̄l + γ

(η)
l , (34)(

W
(η+1)
l

)−1

=
(
W̄l

)−1
+ γ

(η)
l

(
ς
(η)
l +∆

(η)
l

)
+

β̄lγ
(η)
l

β̄l + γ
(η)
l

(
χ
(η)
l − m̄l

)2
. (35)

and β(η+1)
l is given in (67).

As aforementioned, q(η+1) (µ,Λ) is an approximation of the posterior distribution q(Λ,µ|r).

With (32), the estimates of µl and Λl based on the minimum mean-square-error (MMSE) criterion

can be obtained, respectively, as [36]

µ
(η+1)
l = m

(η+1)
l , (36)

Λ
(η+1)
l =W

(η+1)
l v

(η+1)
l . (37)
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C. Variational Distribution q(η+1)(α)

By substituting (4)–(7) into (21) and ignoring the terms irrelevant to α, the variational distri-

bution q(η+1) (α) can be written as

q(η+1) (α) ∝ exp
(
Eq(η)(θ\α)q(η)(x) [ln p (θ,x, r)]

)
∝ exp

(
Eq(η)(y) [ln p (y|α)] + ln p (α)

)
. (38)

By taking variational expectation and using (5), (30) and (31), it yields

q(η+1) (α) ∝ exp

(
M∑
i=1

K∑
k=1

2∑
l=1

Eq(η)(y) [yi,k,l lnαl]− lnU(λ) +
2∑

l=1

(
λ̄− 1

)
lnαl

)

=exp

(
2∑

l=1

γ
(η)
l lnαl − lnU(λ) +

2∑
l=1

(
λ̄− 1

)
lnαl

)

=
1

U
(
λ
) 2∏

l=1

αl

(
λ̄l−1+γ

(η)
l

)
,

(39)

where U(·) is the Beta function defined as U
(
λ̄
)
=

ϑ

(
2∑

l=1
λ̄l

)
ϑ(λ̄1)ϑ(λ̄2)

.

Similarly, with conjugate prior principle, the variational distribution q(η+1) (α) follows the

Dirichlet distribution in (12). We then have λ(η+1)
l = λ̄l+γ

(η)
l by mapping (39) into the form (12).

The MMSE estimate of αl can also be obtained as

α
(η+1)
l =

λ
(η+1)
l

l=2∑
l=1

λ
(η+1)
l

, for l = 1, 2. (40)

D. Variational Distributions q(η+1)(x) and q(η+1)(xi)

Substituting (7) into (17) leads to the variational distribution q(η+1) (x) as

ln q(η+1) (x) ∝
∫
θ

q(η) (θ) ln p (θ,x, r) dθ

= Eq(η)(θ)

[
M∑
i=1

K∑
k=1

2∑
l=1

yi,k,l lnN
(
ri,k − di|µl,Λ

−1
l

)]
+ ln p (x) + const.

(41)

By taking exponential operations on both sides and based on (30), we have

q(η+1) (x) ∝ p (x) exp

(
M∑
i=1

K∑
k=1

2∑
l=1

Eq(η)(θ)

[
yi,k,l lnN

(
ri,k − di|µl,Λ

−1
l

)])

= p (x)
M∏
i=1

K∏
k=1

2∏
l=1

exp
(
Γ
(η)
i,k,l ln Υ̃

(η)
i,k,l

)
,

(42)
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where ln Υ̃
(η)
i,k,l is given by

ln Υ̃
(η)
i,k,l = Eq(η)(θ)

[
lnN

(
ri,k − di|µl,Λ

−1
l

)]
=

1

2

(
ln 2 + ψ

(
v
(η)
l /2

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[
[β

(η)
l ]

(−1)
+ v

(η)
l W

(η)
l Eq(η)(xi)

[(
ri,k − di −m

(η)
l

)2]]
.

(43)

It then directly follows

q(η+1) (x) ∝ p (x)
M∏
i=1

K∏
k=1

2∏
l=1

exp
(
Γ
(η)
i,k,l ln Υ̃

(η)
i,k,l

)
= p (x)

M∏
i=1

K∏
k=1

2∏
l=1

(
Υ̃

(η)
i,k,l

)Γ(η)
i,k,l

. (44)

Here Υ̃(η)
i,k,l can be roughly regarded as an approximation of the likelihood probability p (ri,k|yi,k,l=1,x).

Similarly, the variational distribution q(η+1)(xi) in (22) can be derived as

q(η+1) (xi) ∝p (xi)
K∏
k=1

2∏
l=1

exp
(
Γ
(η)
i,k,l ln Ῡ

(η)
i,k,l

)
, (45)

with Ῡ
(η)
i,k,l given by

ln Ῡ
(η)
i,k,l =

1

2

(
ln 2 + ψ

(
v
(η)
l /2

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[
[β

(η)
l ](−1) + v

(η)
l W

(η)
l Eq(η)(x)

[(
ri,k − di −m

(η)
l

)2]]
.

(46)

E. Importance Sampling-Based Expectation Calculation

It is clearly seen in (26), (43) and (46) that the expectations with respect to q(η)(x,xi), q(η)(xi)

and q(η)(x) respectively are necessary to be calculated in the iterative algorithm. Due to the

presence of the nonlinear distance term di = ∥x− xi∥2 and the complicated expressions of

the variational distributions q(η)(xi) and q(η)(x), direct calculation of these expectations is very

difficult. Here we resort to the importance sampling technique [43] for the expectation derivations.

According to importance sampling theory [44] and with (44) and (45), the variational distribu-

tions q(η)(x) and q(η)(xi) can be approximated respectively based on variational particle sets{
xτ , ω

(η)
τ |∀τ = 1 : Np

}
and

{
xi,ι, ω

(η)
i,ι |∀ι = 1 : Np

}
as

q(η)(x) ≈
∑

τ=1:Np

ω(η)
τ δ(x− xτ ), (47)

q(η)(xi) ≈
∑

ι=1:Np

ω
(η)
i,ι δ(xi − xi,ι), (48)

where Np is the number of particles, δ(·) is the Dirac delta function, xτ and xi,ι are the support

points of particles drawn from the priori distributions p(x) and p(xi), respectively, i.e.,
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xτ ∼ p(x), xi,ι ∼ p(xi), (49)

and ω(η)
τ and ω(η)

i,ι denote the corresponding weights, respectively, given by

ω(η)
τ ∝

M∏
i=1

K∏
k=1

2∏
l=1

eΓ
(η−1)
i,k,l ln Υ̃

(η−1)
i,k,l,τ , (50)

ω
(η)
i,ι ∝

K∏
k=1

2∏
l=1

eΓ
(η−1)
i,k,l ln Ῡ

(η−1)
i,k,l,ι . (51)

In (50) and (51), ln Υ̃(η)
i,k,l,τ and ln Ῡ

(η)
i,k,l,ι are defined based on (43) and (46) for given particles xτ

and xi,ι, respectively, namely,

ln Υ̃
(η)
i,k,l,τ =

1

2

(
ln 2 + ψ

(
v
(η)
l /2

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[β(η)
l ](−1) + v

(η)
l W

(η)
l

∑
ι=1:Np

ω
(η)
i,ι

[(
ri,k − ∥xτ − xi,ι∥2 −m

(η)
l

)2] , (52)

ln Ῡ
(η)
i,k,l,ι =

1

2

(
ln 2 + ψ

(
v
(η)
l /2

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[β(η)
l ](−1) + v

(η)
l W

(η)
l

∑
τ=1:Np

ω(η)
τ

[(
ri,k − ∥xτ − xi,ι∥2 −m

(η)
l

)2] . (53)

With the particle-based approximate distributions in (47) and (48), the expectation with respect

to q(η)(x,xi) in (26) can be calculated and lnΥ
(η)
i,k,l can be derived as

lnΥ
(η)
i,k,l ≈

1

2

(
ln 2 + ψ

(
v
(η)
l /2

)
+ ln

∣∣∣W (η)
l

∣∣∣)− 1

2
ln 2π

− 1

2

[β(η)
l ]

(−1)
+ v

(η)
l W

(η)
l

∑
ι=1:Np

∑
τ=1:Np

ω
(η)
i,ι ω

(η)
τ

[(
ri,k − ∥xτ − xi,ι∥2 −m

(η)
l

)2].
(54)

Moreover, the MMSE estimates of the locations x and xi directly follow from (47) and (48),

respectively, as
x(η) =

∑
τ=1:Np

ω
(η)

τ xτ , (55)

x
(η)
i =

∑
ι=1:Np

ω
(η)
i,ι xi,ι. (56)
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F. Summary and Analysis

Our VBL algorithm is an iterative algorithm developed based on mean-field factorization, KLD

minimization and alternating optimization. Specifically, in each iteration, each of the variational

distributions q (y), q (α), q (µ,Λ), q (xi) and q (x) is sequentially optimized by fixing the other

distributions. As shown in (16)–(22), each step in every iteration leads to a higher ELBO, thus, a

lower KLD. Therefore, the KLD is reduced in each iteration, and as a consequence, the proposed

VBL algorithm is guaranteed to converge.

Based on the above derivations, the VBL algorithm is summarized as Algorithm 1. Clearly, the

complexity is dominated by the updates of lnΥ(η)
i,k,l in (54) and the weightings ω(η)

τ and ω(η)
i,ι in (50)

and (51). Each of them involves a complexity linear to KMN2
p . Therefore, the overall complexity

of the VBL algorithm can be given as O(KMNp
2η), where η is the number of iterations in the

algorithm. Notice that the factor of N2
p in the complexity is introduced due to the implementation

of the importance sampling technique. Although the complexity is higher than that of the JMAP-

ML and EM algorithms in [29], i.e., O(KMη), and that of the particle swarm optimization (PSO)

in [45, 46], i.e., O(2KMNpη), our algorithm is robust against location uncertainties of anchor

nodes, which will be demonstrated later in the simulation section.

As shown in Algorithm 1, the proposed VBL algorithm needs the statistical information of

the anchor location uncertainty, target location, and Dirichlet and Wishart distributions, as the

input. The prior information of the anchor location uncertainty can be obtained from empirical

data or through analysis of the location estimator, i.e., the inverse Fisher information matrix of

the Bayesian estimator. Meanwhile, the prior information of target node can be obtained from a

coarse estimator, e.g., a simple triangulation localization algorithm. With respect to the statistical

parameters in the prior distributions, e.g., Dirichlet and Wishart distributions, they can be obtained

from measurements and empirical data. Since statistical information usually can be estimated with

high accuracy, the initialization is not a key issue in our proposed algorithm.

In this paper, only one target node is considered. When multiple target nodes appear, our pro-

posed algorithm is still applicable. Similarly to [4, 11], cooperative localization can be conducted

by utilizing the information from other target nodes. Specifically, the target nodes only need to

exchange their coarse locations and its covariance matrices with their neighbors. Then each node

can collect range measurements and estimate its location in parallel using our proposed VBL

algorithm.
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Algorithm 1 VBL Algorithm

1: Input the prior distributions p(x), p(xi) and (5)-(6) with parameters λ̄l,m̄l,v̄l,W̄l,β̄l;

2: Collect the range measurements r;

3: Generate initial particle sets according to (49)-(51);

4: Set η = 1;

5: while ELBO does not converge or η less than maximum iteration number do

6: Update lnΥ
(η)
i,k,l according to (54) and the variational distribution q(η)(y) in (27);

7: Update m
(η)
l , v(η)l , W (η)

l and β
(η)
l according to (33)-(35) and (67) respectively, and the

variational distribution q(η)(µ,Λ) in (32);

8: Update λ(η)l and the variational distribution q(η)(α) in (39);

9: Update the weighting ω
(η)
i,ι according to (51) and (53) and the variational distribution

q(η)(xi) in (48);

10: Update the weighting ω(η)
τ according to (50) and (52) and the variational distribution q(η)(x)

in (47);

11: η = η + 1;

12: end while

13: Output the location estimate x(η) according to (55) as well as the estimates of the nuisance

parameters x
(η)
i , α(η)

l , Λ(η)
l and µ(η)

l according to (56), (40), (37) and (36), respectively.

IV. BCRB

It is well known that BCRB is an effective bound for Bayesian estimators [47]. It is adopted here

as a benchmark for evaluating the performance of our VBL algorithm. Considering the complete

variable vector ξ = {x,θ}T , the BCRB is derived based on the Bayesian Fisher information

matrix J (ξ) defined as follows [48]

J (ξ) = −Er,ξ

[
∂2 ln p (r|ξ)
∂ξ∂ξT

]
︸ ︷︷ ︸

IM

−Eξ

[
∂2 ln p (ξ)

∂ξ∂ξT

]
︸ ︷︷ ︸

IP

,
(57)

where Er,ξ [·] and Eξ [·] denote the expectations with respect to the joint distribution p(r, ξ) and

prior distribution p(ξ), respectively.
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With the definition ξ = {x,θ}T , the Bayesian Fisher information matrix can be partitioned as

J (ξ)=


−Er,ξ

[
∂2 ln p (r|ξ)
∂x∂xT

]
−Eξ

[
∂2 ln p (ξ)

∂x∂xT

]
︸ ︷︷ ︸

∆

−Er,ξ

[
∂2 ln p (r|ξ)
∂x∂θT

]
−Eξ

[
∂2 ln p (ξ)

∂x∂θT

]
︸ ︷︷ ︸

ΨT

−Er,ξ

[
∂2 ln p (r|ξ)
∂θ∂xT

]
−Eξ

[
∂2 ln p (ξ)

∂θ∂xT

]
︸ ︷︷ ︸

Ψ

−Er,ξ

[
∂2 ln p (r|ξ)
∂θ∂θT

]
−Eξ

[
∂2 ln p (ξ)

∂θ∂θT

]
︸ ︷︷ ︸

Ω


. (58)

Through some tedious derivations as shown in Appendices B–D, the submatrices ∆, Ψ and Ω

can be derived as

∆ =
M∑
i=1

K∑
k=1

2∑
l=1

ᾱlv̄lW̄l

d2i

[
x̄x̄T +Σ− x̄x̄T

i − x̄ix̄
T + x̄ix̄

T
i +Σi

]
+Σ−1, (59)

Ψ =

[
Ix,x1

M , ..., Ix,xM
M , Ix,µ

M︸ ︷︷ ︸
Ψ1

0
]T
. (60)

Ω =

 Ω1 0

0 Ω2

 . (61)

where ᾱl =
λ̄l
2∑

l=1
λ̄l

,

Ix,xi

M = −
K∑
k=1

2∑
l=1

ᾱlv̄lW̄l

d2i

[
x̄x̄T +Σ− x̄x̄T

i − x̄ix̄
T + x̄ix̄

T
i +Σi

]
, (62)

Ix,µl
M =

M∑
i=1

K∑
k=1

ᾱlv̄lW̄l

di
(x̄− x̄i), (63)

and Ω1 and Ω2 are defined in (83) with elements given in (84)–(88).

Based on the Bayesian Fisher information matrix J (ξ), the BCRB corresponding to the estimate

of the target node location is given as BCRBx =
[
J(ξ)−1]

1,1
+
[
J(ξ)−1]

2,2
in [48]. With (59)–(61)

and Using Schur’s complement [1, 49], it follows

BCRBx =
[
J(ξ)−1]

1,1
+
[
J(ξ)−1]

2,2
= tr[(∆−ΨTΩ−1Ψ)−1] = tr[(∆−Ψ1Ω

−1
1 ΨT

1 )
−1]. (64)

Intuitively, the term Ψ1Ω
−1
1 ΨT

1 quantifies the information loss from the imperfectly known pa-

rameters. This BCRB will be used as a lower bound for the mean-square-error (MSE) of the target

location estimate in our paper.

Notice that our BCRB analysis is more challenging than that in [50, 51]. Specifically, the

CRLBs in [50, 51] were derived for the localization problems in LOS-only environments with

anchor location uncertainty. However, our BCRB is derived for the localization problem in mixed

LOS-NLOS environments with anchor location uncertainty. Moreover, the LOS/NLOS ratios
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are unknown and assumed following certain prior distribution, e.g., Dirichlet distribution. From

mathematical point of view, our BCRB derivation can be extended from that in [50, 51] by

introducing additional expectation calculation with respect to the prior distributions. But the

extension is by no means straightforward.

V. SIMULATIONS AND RESULTS

A. Simulation Setup

In this section, we show the convergence property and localization performance of the proposed

VBL algorithm in different scenarios. We consider the 2D localization of a target and five anchor

nodes are both deployed in an area [−150, 150] × [−150, 200] meter (m) in Fig. 1. The hyper

parameters are respectively given as m̄1 = 0 m, m̄2 = 120 m, δ1 = (v̄1W̄1)
−1/2 = 20 m,

δ2 = (v̄2W̄2)
−1/2 = 60 m and β̄1 = β̄2 = 0.1. The maximum iteration number is set to be 30.

The number of particles is Np = 20. By setting λ̄1 = 60 and λ̄2 = 40, the expectation of NLOS

ratio is set to be E (α2) = 0.4. The number of measurements is set to be K = 10. The covariance

matrix of Gaussian distribution of the target node is set to be Σ = 100I. The uncertainties of

anchor nodes are assumed to be identical to each other and are given by Σi = uI. The mentioned

settings keep unaltered otherwise stated differently. The proposed algorithm VBL is compared to

the following algorithms:

• The EM and joint maximum a posterior and ML proposed for localization problem in the

mixed LOS/NLOS environment in [29].

• The PSO optimization algorithm in [45, 46] and the cost function in [29]. We consider the

perfect situation with error model parameters µ and Λ and identification information are all

perfectly known. We also consider the imperfect situation PSO with only 5% identification

error, which means 0.05MK measurements are misidentified.

B. Convergence Properties

We aim at the numerical analysis of the convergence properties of the proposed VBL method

in different scenarios. In Fig. 2, the number of measurements is set to be K = 10 and the number

of particles is set to be Np = 20. The convergence property is validated in the following cases:

• The NLOS ratio E (α2)=0.4 and u = 0 correspond to the case with the mixed NLOS/LOS

measurements and accurate anchor node positions.
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Fig. 1: Geometry of the target node and the anchor nodes with uncertainties.

• The NLOS ratio E (α2)=0.4 and u = 25 correspond to the scenario with the mixed N-

LOS/LOS measurements and anchor node uncertainties of Σi = 25I.

From the results in Fig. 2, the root MSE (RMSE) of the proposed VBL algorithm decreases

monotonically over iterations and this means the variational distribution q(x) approaches the true

posterior distribution gradually, which follows our theoretical derivations. The simulation results

show that the fast convergence property of the VBL algorithm and the robust localization against

the uncertainties of anchor nodes. The RMSE difference in two cases is mainly resulted form

the different level of anchor node uncertainty. Moreover, comparing the results in Fig. 2, the

gaps between the RMSEs and corresponding BCRBs show the significant negative impact of

uncertainties of anchor nodes.

C. Performance Comparisons

In the first experiment, we show the localization performance of the proposed algorithm and

algorithms JMAP-ML and EM in mixed NLOS/LOS environments with different anchor node

uncertainties. The NLOS ratio expectation is set to be E (α2) = 0.4. The uncertainty parameter u

is set to be from 0 to 200 and the variance of LOS error model δ1 is set to be 20.

In Fig. 3, the increase of anchor node uncertainties will degrade the localization accuracy and

the VBL algorithm outperforms other comparison algorithms. For EM and JMAP-ML algorithms,

the ‘hard decision’ in JMAP-ML and ‘soft decision’ in EM do not incorporate the anchor node

uncertainties and it brings more errors in identification of NLOS/LOS measurements. For the
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Fig. 2: The RMSE versus number of iterations in different cases with E(α2) = 0.4, K = 10 and

Np = 20.

imperfect PSO and perfect PSO, the minor identification errors (5%) can result in a significant

increase in localization errors. For the proposed VBL algorithm, the anchor node positions can

be refined by using MMSE estimation, which means that the uncertainty will decrease and brings

benefits to estimate the target. Meanwhile, the increasing RMSEs of JMAP-ML, EM and PSO

over the increase of uncertainty demonstrate the high negative impact of anchor node uncertainty,

especially in large uncertainty cases such as bad preceding estimation of anchor nodes in urban

areas or in the network of unmaned aerial vehicles (UAVs). Essentially, our proposed VBL

algorithm exploits the approximations to posterior distributions to estimate the target node location,

which can achieve better performance than the approximations to likelihood functions in the EM,

JMAP-ML and PSO algorithms.

In the second experiment, we investigate the localization performance of the mentioned al-

gorithms in different level of NLOS measurement ratios E(α2) with anchor node uncertainties.

In this experiment, we set λ̄1 to be fixed at λ̄1 = 60 and λ̄2 ranges in [15, 240], which makes

the NLOS ratio E (α2) ranges in [0.2, 0.8] and covers the slight and severe NLOS measurement

contaminations. The anchor node uncertainty is set to be u = 25.

In the results in Fig. 4, the ‘soft decision’ mechanism of EM algorithm can only provide the

conditional probability of NLOS/LOS identifications not the exact classification of NLOS/LOS

measurements. Hence, the increase of NLOS ratio will inevitably enlarge the identification errors

and the localization performance will degrade. For the JMAP-ML algorithm, the ‘hard decision’
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Fig. 3: RMSE versus different anchor node uncertainties with E(α2) = 0.4, K = 10 and Np = 20.

mechanism can effectively estimate the NLOS/LOS indicators in a binary way. The localization

accuracy of the proposed VBL algorithm slightly degrades with the increase of NLOS ratio and

can achieve better performance than the other algorithms, which is resulted from the advantage

of the statistical information of NLOS ratio and it is better than the perfect PSO.

From the results in Figs. 3-4, we can conclude that our proposed VBL algorithm is more robust

than the other algorithms when the environments become harsher, e.g., larger anchor location

uncertainty and/or higher NLOS measurement contaminations, etc.. The robustness mainly comes

from the adoption of maximum a posterior criterion to fully exploit the prior information of

the anchor locations, range errors and LOS/NLOS ratios for localization. Notice that the JMAP-

ML and EM algorithms follow maximum likelihood criterion for localization and have stronger

assumptions on the localization environments, e.g., no anchor location uncertainty.

D. Parameter Impacts

In this subsection, we study the impacts of level of variances δl, for l = 1, 2, the number of

measurements K and the number of particles Np. In the third experiment, we change the value of

W̄1 and fix the value v̄1 = 30 so that δ1 varies in the range [20, 60]. The NLOS path ratio is set to

be E (α2) = 0.4. The anchor node uncertainty is set to be u = 25. The number of measurements

is set to be K = 10 and the number of particles is set to be Np = 20. In the fourth experiment,

we change the value of W̄2 and fix the value v̄2 = 40 and δ2 varies in the range [20, 60].

Combining the results of two experiments in Figs. 5 and 6, the proposed VBL algorithm
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Fig. 4: The RMSE versus different NLOS ratios with K = 10, Np = 20 and u = 25.

has better performance than the other algorithms. In Fig. 6, the BCRB is scaled by the term(
K

2∑
l=1

ᾱlv̄lW̄l

)−1

=
(
K
(

ᾱ1

δ21
+ ᾱ2

δ22

))−1

in (64) and the scale parameter is approximately dom-

inated by
(
K
(

ᾱ1

δ21

))−1

when δ2 ≫ δ1. Thus, the BCRB is increasing more and more slowly

over the NLOS variance δ2 in Fig. 6. For the results of EM and JMAP-ML in Figs. 5 and 6, the

increase of NLOS and LOS variances have negative impacts over the identification of the mixed

measurements and will degrade the localization accuracy.

In the fifth experiment, the number of measurements K is set to range in [5, 50]. The level of

NLOS measurement is set to be E (α2) = 0.4. The anchor node uncertainty is set to be u = 25.

The number of particles is set to be Np = 20. As shown in Fig. 7, the RMSE is decreasing over

the increase of number of measurements K. As we mentioned above, the EM and JMAP-ML

algorithms have different decision mechanisms, and JMAP-ML can achieve superior identification

that that of EM. While the VBL employs the posterior distribution of indicator variable yi,k,l to

identify the NLOS/LOS mixed measurements. Thus, VBL can achieve more accurate identification

results and localization accuracy. Meanwhile, the RMSE difference between perfect and imperfect

PSO algorithms demonstrates the vulnerability of PSO in identification errors.

In the sixth experiment, the number of particles Np is set to range in [5, 30]. The NLOS paths

are set to be E (α2) = 0.4. The other parameters keep unaltered. In Fig. 8, the RMSE decreases

with the increases of the number of particles, which follows the theoretical derivations. More

particles can capture and approximate the statistical characteristics of the uncertainties for both

the target node and anchor nodes. The choice of the number of particles depends on the tradeoff
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Fig. 5: The RMSE versus different LOS variance δ1 with E(α2) = 0.4, K = 10 and u = 25.
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Fig. 6: The RMSE versus different NLOS variance δ2 with E(α2) = 0.4, K = 10 and u = 25.

between the computational complexity and the performance accuracy.

VI. CONCLUSION

In this paper, we considered a challenging localization problem with node uncertainties and

unknown parameters of error model in mixed NLOS/LOS environment. To this end, we proposed

a VBL algorithm for robust localization. In the proposed algorithm, the underlying measurement

errors are modeled as a mixture Gaussian distribution and the statistical information of uncertainties

has also been considered. Due to the intractable direct position estimation of likelihood function

associated with the target node, the posterior distributions were approximated by variational
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distributions through minimizing the KLD. Moreover, importance sampling was employed to

handle the intractable term of nonlinearity and uncertainties of nodes. As an iterative algorithm,

the convergence and complexity of the proposed VBL algorithm were investigated. Simulation

results have shown the superiority of VBL in convergence, estimation and localization accuracy

through various examples.

APPENDIX A
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A. Derivation of (32)

Expanding the exponential terms in (29) and using the result (30), we can obtain

q(η+1) (µ,Λ) ∝ exp

(
M∑
i=1

K∑
k=1

2∑
l=1

Γ
(η)
i,k,lEq(η)(x,xi)

(
1

2
ln |Λl| −

1

2
ln 2π − 1

2

(
(ri,k − di − µl)

2Λl

)))
×

exp

{
2∑

l=1

[(
−1

2
ln 2π +

1

2
ln
∣∣β̄lΛl

∣∣− 1

2
(µl − m̄l)

2 (β̄lΛl

))]}
×

exp

{
2∑

l=1

lnB
(
W̄l, v̄l

)
+
v̄l − 2

2
ln |Λl| −

1

2

(
W̄l

)−1
Λl

}
,

(65)

where B(·) is defined as B
(
W̄l, v̄l

)
=
∣∣W̄l

∣∣ v̄l2 (2 v̄l
2 ϑ
(
v̄l
2

))−1

with ϑ(·) as Gamma function.

Combining the terms with µl and Λl respectively and with the definition in (31), the variational

distribution in (65) can be reformulated as

q(η+1) (µ,Λ) ∝ exp

(
2∑

l=1

(
v̄l − 2 + γ

(η)
l

2
ln |Λl|+ lnB

(
W̄l, v̄l

)))
×

exp

(
2∑

l=1

(
−1

2
tr

(((
W̄l

)−1
+ γ

(η)
l

(
ς
(η)
l +∆

(η)
l

)
+

β̄lγ
(η)
l

β̄l + γ
(η)
l

(
χ
(η)
l − m̄l

)2)
Λl

)))
×

exp

 2∑
l=1

−1

2

µl−

(
β̄lm̄l+γ

(η)
l χ

(η)
l

)
β̄l+γ

(η)
l

2

β
(η+1)
l Λl−

1

2
ln 2π−

γ
(η)
l

2
ln 2π +

1

2
ln
∣∣∣β(η+1)

l Λl

∣∣∣

 ,

(66)

whereβ(η+1)
l , χ(η)

l , ς(η)l and ∆
(η)
l are, respectively, given by

β
(η+1)
l = β̄l + γ

(η)
l , (67)

χ
(η)
l =

1

γ
(η)
l

M∑
i=1

K∑
k=1

Γ
(η)
i,k,lEq(η)(x,xi) (ri,k − di) , (68)

ς
(η)
l =

1

γ
(η)
l

M∑
i=1

K∑
k=1

Γ
(η)
i,k,l

[
Eq(η)(x,xi)[ri,k − di]− χ

(η)
l

]2
, (69)

∆
(η)
l =

1

γ
(η)
l

M∑
i=1

K∑
k=1

Γ
(η)
i,k,lΞ

(η)
x,xi

, (70)

with Ξ
(η)
x,xi denoting the variance of the ranging error (ri,k − di) with respect to q(η)(x,xi) as

Ξ(η)
x,xi

= Eq(η)(x,xi)

[
ri,k − di − Eq(η)(x,xi) [ri,k − di]

]2
. (71)
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Denoting the product of the first two terms in (66) as f
(
Λl,W

(η+1)
l , v

(η+1)
l

)
, and with the

definitions of v(η+1)
l and W (η+1)

l in (34) and (35) respectively, we have

f
(
Λl,W

(η+1)
l , v

(η+1)
l

)
=exp

(
2∑

l=1

(
v
(η+1)
l − 2

2
ln |Λl|+ lnB

(
W̄l, v̄l

)))
exp

(
2∑

l=1

(
−1

2
tr
(
W

(η+1)
l Λl

)))

∝
2∏

l=1

W
(
Λl|W (η+1)

l , v
(η+1)
l

)
.

(72)

Meanwhile, the third term in (66) can be rewritten as

exp


2∑

l=1

−1

2

µl −

(
β̄lm̄l + γ

(η)
l χ

(η)
l

)
β̄l + γ

(η)
l︸ ︷︷ ︸

,m
(η+1)
l


2

β
(η+1)
l Λl −

1

2
ln 2π − γ

(η)
l

2
ln 2π +

1

2
ln
∣∣∣β(η+1)

l Λl

∣∣∣



∝

2∏
l=1

N
(
µl|m(η+1)

l ,
(
β
(η+1)
l Λl

)−1
)
.

(73)

Putting (72) and (73) into (66), we can get (32).

B. Submatrix ∆

As shown in (58), the submatrix ∆ is defined as

∆ = −Er,ξ

[
∂2 ln p (r|ξ)
∂x∂xT

]
︸ ︷︷ ︸

Ix,x
M

−Eξ

[
∂2 ln p (ξ)

∂x∂xT

]
︸ ︷︷ ︸

Ix,x
P

. (74)

Based on the prior and likelihood distributions, the term Ix,x
M can be written and derived as

Ix,x
M = −

M∑
i=1

K∑
k=1

Eξ,r

[
∂2ln p (ri,k|ξ)

∂x∂xT

]
=

M∑
i=1

K∑
k=1

2∑
l=1

ᾱlv̄lW̄lEx,xi

[
DDT

]
, (75)

where ᾱl =
λ̄l
2∑

l=1
λ̄l

, D = x−xi

di
, and Ex,xi

[
DDT

]
= 1

d2i

[
x̄x̄T +Σ− x̄x̄T

i − x̄ix̄
T + x̄ix̄

T
i +Σi

]
.

On the other hand, the term Ix,x
P can be derived as

Ix,x
P = −Eξ

[
∂2 ln p(ξ)

∂x∂xT

]
= Σ−1. (76)

The submatrix ∆ then follows from (74), (75) and (76) as

∆ =
M∑
i=1

K∑
k=1

2∑
l=1

ᾱlv̄lW̄l

d2i

[
x̄x̄T +Σ− x̄x̄T

i − x̄ix̄
T + x̄ix̄

T
i +Σi

]
+Σ−1. (77)
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C. Submatrix Ψ

The submatrix Ψ is defined as shown in (58) as

Ψ = −Er,ξ

[
∂2 ln p (r|ξ)
∂θ∂xT

]
− Eξ

[
∂2 ln p (ξ)

∂θ∂xT

]
. (78)

With the independence of the elements in θ with the target location x, the second term Eξ

[
∂2 ln p(ξ)
∂θ∂xT

]
directly follows as 0. With respect to the first term, it can be written as

−Er,ξ

[
∂2 ln p (r|ξ)
∂θ∂xT

]
=

[
Ix,x1

M , ..., Ix,xM
M , Ix,µ

M︸ ︷︷ ︸
Ψ1

, Ix,α
M , Ix,Λ

M , Ix,y
M

]T
(79)

with the element given as Ia,b
M = −Er,ξ

[
∂2 ln p(r|ξ)
∂a∂bT

]
.

Following the similar derivation in (75), we have

Ix,xi

M = −
K∑
k=1

2∑
l=1

ᾱlv̄lW̄lEx,xi

[
DDT

]
, (80)

Ix,µl
M = −

M∑
i=1

K∑
k=1

Er,ξ

[
∂2ln p (ri,k|ξ)

∂x∂µl

]
=

M∑
i=1

K∑
k=1

ᾱlv̄lW̄lEx,xi
[D] , (81)

Ix,α
M = 0, Ix,Λ

M = 0 and Ix,y
M = 0, (82)

where Ex,xi
[D] = 1

di
(x̄− x̄i). Then it follows that Ψ =

[
Ix,x1

M , ..., Ix,xM
M , Ix,µ

M︸ ︷︷ ︸
Ψ1

0
]T

.

D. Submatrix Ω

According to the definition in (58), the submatrix Ω is formulated as

Ω =



Ix1,x1

M + Ix1,x1

P · · · Ix1,xM

M Ix1,µ
M Ix1,α

M Ix1,Λ
M Ix1,y

M
...

. . .
...

...
...

...
...

IxM ,x1

M · · · IxM ,xM

M + IxM ,xM

P IxM ,µ
M IxM ,α

M IxM ,Λ
M IxM ,y

M

Iµ,x1

M · · · Iµ,xM

M Iµ,µ
M + Iµ,µ

P Iµ,α
M Iµ,Λ

M Iµ,y
M

Iα,x1

M · · · Iα,xM

M Iα,µ
M Iα,α

M + Iα,α
P Iα,Λ

M Iα,y
M

IΛ,x1

M · · · IΛ,xM

M IΛ,µ
M IΛ,α

M IΛ,Λ
M + IΛ,Λ

P IΛ,y
M

Iy,x1

M · · · Iy,xM

M Iy,µ
M Iy,α

M Iy,Λ
M Iy,y

M + Iy,y
P


=

 Ω1 ΩT
3

Ω3 Ω2

 ,

(83)

where Ia,b
P = −Eξ

[
∂2 ln p(ξ)
∂a∂bT

]
.
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Similarly, the elements in Ω1 can be derived respectively as

Ixi,xi

M =
K∑
k=1

2∑
l=1

ᾱlv̄lW̄lEx,xi

[
DDT

]
, (84)

Ixi,xi

P = Σ−1
i , (85)

Iµl,xi

M = −
K∑
k=1

ᾱlv̄lW̄lEx,xi

[
DT
]
, (86)

Ixi,xj

M = 0, i ̸= j, (87)

while Iµ,µ
M + Iµ,µ

P is a 2× 2 diagonal matrix with diagonal elements,

Πl = Iµl,µl
M + Iµl,µl

P =
M∑
i=1

K∑
k=1

ᾱlv̄lW̄l + β̄lW̄lv̄l. (88)

Moreover, Ω3 = 0 follows from (82).

Finally, the submatrix Ω can be written as

Ω =

 Ω1 0

0 Ω2

 . (89)
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