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RECOVERY OF NONSMOOTH COEFFICIENTS APPEARING IN
ANISOTROPIC WAVE EQUATIONS\ast 

ALI FEIZMOHAMMADI\dagger AND YAVAR KIAN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study the problem of unique recovery of a nonsmooth one-form \scrA and a scalar
function q from the Dirichlet to Neumann map, \Lambda \scrA ,q , of a hyperbolic equation on a Riemannian
manifold (M, g). We prove uniqueness of the one-form \scrA up to the natural gauge, under weak
regularity conditions on \scrA , q and under the assumption that (M, g) is simple. Under an additional
regularity assumption, we also derive uniqueness of the scalar function q. The proof is based on the
geometric optic construction and inversion of the light ray transform extended as a Fourier integral
operator to nonsmooth parameters and functions.
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transform, time-dependent coefficients, simple manifolds, magnetic potential
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1. Introduction. Let T > 0, and let (M, g) denote a compact connected smooth
n-dimensional Riemannian manifold with smooth boundary \partial M . We consider the
Lorentzian manifold (\scrM , \=g) defined as\scrM = (0, T )\times M with the metric \=g =  - (dt)2+g.
Let div \=g (resp., \nabla \=g) denote the divergence operator (resp., gradient operator) on
(\scrM , \=g), and define the Laplace--Beltrami operator associated with (\scrM , \=g) through
\Delta \=g\cdot = div \=g\nabla \=g\cdot . In local coordinates (t = x0, x1, . . . , xn) = (t, x), we have

\Delta \=g =

n\sum 
i,j=0

1\sqrt{} 
| \=g| 
\partial i(
\sqrt{} 
| \=g| \=gij\partial j \cdot ) = ( - \partial 2t +\Delta g),

where \Delta g is analogously defined on (M, g). In this paper, we will make the standing
assumption that (M, g) is simple, that is to say, it is simply connected, any geodesic
in M has no conjugate points, and the boundary \partial M is strictly convex in the sense
that the second fundamental form is positive for every point on the boundary. Any
two points in a simple manifold can be connected through a unique geodesic.

We consider a scalar function q and a one-form \scrA on (\scrM , \=g). In local coordinates,
we have

(1.1) \scrA (t, x) = b(t, x) dt+

n\sum 
i=1

aj(t, x) dx
j = b(t, x) dt+A(t, x),

where A is a time-dependent one-form on (M, g). Throughout this paper we impose
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4954 ALI FEIZMOHAMMADI AND YAVAR KIAN

the following regularity assumptions on these coefficients:

(1.2)

\scrA \in W 1,1(0, T ;L2(M ;T \ast \scrM )) \cap \scrC (\scrM ;T \ast \scrM ),

div \=g \scrA \in Lp1(0, T ;Lp2(M)),

q \in Lp1(0, T ;Lp2(M)),

where p1 > 1 and p2 \in [n,\infty ] \setminus \{ 2\} . We consider the initial boundary value problem
(IBVP)

(1.3)

\left\{   L\scrA ,qu :=  - \Delta \=gu+\scrA \nabla \=gu+ qu = 0 on \scrM ,
u = f on (0, T )\times \partial M,
u(0, \cdot ) = 0, \partial tu(0, \cdot ) = 0 on M.

This problem is well-posed for any f \in H1
0 ((0, T ]\times \partial M) (see section 2.1) and admits

a unique solution u in the energy space

(1.4) X := \scrC 1(0, T ;L2(M)) \cap \scrC (0, T ;H1(M)).

We define the Dirichlet to Neumann (DN) map

(1.5) \Lambda \scrA ,q : H
1
0 ((0, T ]\times \partial M) \ni f \mapsto \rightarrow 

\biggl( 
\partial \=\nu u - \scrA \=\nu 

2
u

\biggr) 
| (0,T )\times \partial M \in L2((0, T )\times \partial M)

for (1.3). Here \=\nu represents the outward normal unit vector to (0, T )\times \partial M . We refer
the reader to sections 2.1--2.2 for a rigorous presentation of the direct problem (1.3)
and this formulation of the DN map. In this paper, we are interested in determining
the unknown complex valued coefficients \scrA , q, given the map \Lambda \scrA ,q, up to the natural
obstructions for this problem as discussed in [20, section 1.2].

1.1. Main results. Before stating the main theorem, we need to define the set
\scrE \subset \scrM where we recover the coefficients. Let us define the domain of influence

\scrD := \{ (t, x) \in \scrM | dist (x, \partial M) < t < T  - dist (x, \partial M)\} .

By finite speed of propagation, no information can be obtained about the coefficients
\scrA , q from \Lambda \scrA ,q on the set \scrM \setminus \scrD . Thus, \scrD represents the maximal set where one
can, in theory, recover the coefficients. Now, for T > 2Diam(M), we start by fixing
a subset of \scrD given by

\scrE := \{ (t, x) \in \scrM | Dg(x) < t < T  - Dg(x)\} ,

where Dg(x) denotes the length of the longest geodesic passing through the point x
in M . Since (M, g) is simple, this is a well-defined continuous function on M . With
the definition of \scrE complete, we can state the main results in our paper as follows.

Theorem 1.1. Suppose T > 2Diam(M) and that (M, g) is a simple Riemannian
manifold. Let \scrA 1,\scrA 2 denote one-forms and q1, q2 denote scalar functions satisfying
(1.2) and such that

(1.6) supp (\scrA 1  - \scrA 2) \subset \scrE and supp (q1  - q2) \subset \scrE .

Then the condition

(1.7) \Lambda \scrA 1,q1 = \Lambda \scrA 2,q2
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HYPERBOLIC DIRICHLET TO NEUMANN MAP 4955

implies that there exists \psi \in \scrC 1(\scrM ) with \psi | \partial \scrM = 0 such that

(1.8) \scrA 1 = \scrA 2 + \=d\psi \forall (t, x) \in \scrM ,

where \=d denotes the exterior derivative on \scrM .

Theorem 1.2. Let the hypothesis of Theorem 1.1 be fulfilled, and assume addi-
tionally that

(1.9) q1  - q2 \in Lp1(0, T ;L\infty (M)), div \=g(\scrA 1  - \scrA 2) \in Lp1(0, T ;L\infty (M))

holds. Then the condition \Lambda \scrA 1,q1 = \Lambda \scrA 2,q2 implies that there exists \psi \in \scrC 1
0(\scrM ) with

\Delta \=g\psi \in Lp1(0, T ;L\infty (M)) such that

(1.10) \scrA 1 = \scrA 2+ \=d\psi , q1 = q2+
1

2
\Delta \=g\psi  - 1

2
\scrA 2\nabla \=g\psi  - 1

4
\langle \nabla \=g\psi ,\nabla \=g\psi \rangle \=g \forall (t, x) \in \scrM .

The proofs of Theorems 1.1--1.2 rely in part on the inversion of the light ray
transform of one-forms and scalar functions over \scrM under the hypothesis (1.6) and
the regularity conditions (1.2). This has already been accomplished for \scrC 1 one-forms
and continuous scalar functions in [20], but some additional analysis is required here
as we are working with a wider regularity class for the coefficients \scrA and q. Let us
briefly recall the notion of the light ray transform here. We denote by SM \subset TM
the unit sphere bundle of (M, g), and by \gamma (\cdot ;x, v) the geodesic with the initial data
(x, v) \in SM . For all (x, v) \in SM int, we define the exit times

\tau \pm (x, v) = inf\{ r > 0 : \gamma (\pm r;x, v) \in \partial M\} 

and note that since (M, g) is simple, we have \tau \pm (x, v) < Diam(M). Define

\partial \pm SM = \{ (x, v) \in SM | x \in \partial M \pm \langle v, \nu (y)\rangle g > 0\} .

All geodesics in M int can be parametrized by \gamma (\cdot ;x, v), (x, v) \in \partial  - SM . The geodesic
ray transform on (M, g) is defined for f \in \scrC \infty (M) by

\scrI f(x, v) =
\int \tau +(x,v)

0

f(\gamma (r;x, v))dr, (x, v) \in \partial  - SM.

Next, we consider the Lorentzian manifold \BbbR \times M with metric \=g =  - (dt)2+ g. Recall
that a curve \beta in \BbbR \times M is called a null geodesic (also called light rays) if

(1.11) \nabla \=g
\.\beta 
\.\beta = 0 and \langle \.\beta , \.\beta \rangle \=g = 0.

One can use the product structure of the Lorentzian manifold \BbbR \times M to see that the
null geodesics \beta can be parametrized as

\beta (r; s, x, v) = (r + s, \gamma (r;x, v)) \forall (s, x, v) \in \BbbR \times \partial  - SM.

Thus, we can identify null geodesics \beta through \beta (\cdot ; s, x, v) with (s, x, v) \in \BbbR \times \partial  - SM
over their maximal intervals [0, \tau +(x, v)]. We define the light ray transform on \BbbR \times M
that is defined for f \in \scrC \infty (\BbbR \times M) by

\scrL f(s, x, v) =
\int \tau +(x,v)

0

f(r + s, \gamma (r;x, v)) dr \forall (s, x, v) \in \BbbR \times \partial  - SM.
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4956 ALI FEIZMOHAMMADI AND YAVAR KIAN

Similarly, we define the light ray transform corresponding to smooth one-forms \scrB 
through the expression

\scrL \scrB (s, y, v) := \scrL (\scrB \.\beta ) (s, y, v).

We will sometimes use the shorthand notation \scrL \beta f,\scrL \beta \scrB in place of the above notation.
In section 2.4, we will show that \scrL \beta f is a Fourier integral operator and that the domain
of definition can be extended to Lp spaces. We will prove the following proposition
in section 5; it is a key step in proving Theorems 1.1--1.2.

Proposition 1.3. Let f \in L1(0, T ;L2(M)) and \scrB \in \scrC (\scrM ;T \ast \scrM ) both vanish on
the set \scrM \setminus \scrE . Then the following statements hold:

(i) If \scrL \beta f = 0 for all maximal null geodesics \beta \subset \scrD , then f \equiv 0.
(ii) If \scrL \beta \scrB = 0 for all maximal null geodesics \beta \subset \scrD , then \scrB \equiv \=d\psi for some

\psi \in \scrC 1(\scrM ) with \psi | \partial \scrM = 0.

The proof of statement (ii) will be identical to that of statement (ii) in [20,
Proposition 1.4], with the only difference being that \scrB \in \scrC (\scrM ;T \ast \scrM ) here as opposed
to \scrC 1(\scrM ;T \ast \scrM ). Reproducing the exact same analysis as in the proof there shows
that one obtains existence of a \psi \in \scrC 1(\scrM ) with \psi | \partial \scrM = 0 such that (ii) holds, and
therefore for the sake of brevity we omit this proof. We will however prove statement
(i) in section 5.

1.2. Previous literature. Historically, uniqueness results for the recovery of
coefficients can be divided into two categories, based on whether or not the geometry
and coefficients are dependent on time. The time-independent case has been studied
extensively, and one can outline at least three general methods for the recovery of the
coefficients in this case. The first approach, stemming from the seminal works [5, 7],
relies on the so-called boundary control (BC) method together with Tataru's sharp
unique continuation theorem [51]. This method yields recovery of time-independent
coefficients under very weak assumptions on the transversal manifold (M, g) (see, for
instance, [39]). We refer the reader to [34] for an introduction to the BC method and
to the recent paper [37] for an example of a state-of-the-art result and finally to [6, 29]
for review. The stability results are in general double logarithmic [12], although in
[42] a stronger low-frequency stability estimate was obtained by using ideas from the
BC method. Tataru's unique continuation theorem fails when the time-dependence
of the metric or the coefficients is not real analytic [1, 2], and therefore adaptations
based on the BC method fail beyond this scenario. We refer the reader to [18, 19]
for recovery of coefficients when the time-dependence is real analytic (see also [17] for
time-independent coefficients). An alternative approach in deriving uniqueness results
in the time-independent category started from the seminal work [13], where Carleman
estimates were used for the first time in the context of inverse problems. Proofs based
on Carleman estimates tend to yield stronger stability estimates compared to the
BC method. Methods based on using the classical geometric optic solutions to the
wave equation have also been quite fruitful in deriving uniqueness results in the time-
independent category (see, for example, [9, 10, 48, 49]).

In the time-dependent category, apart from [18] mentioned above, most of the
results are concerned with wave equations with constant coefficient principal part. In
[47], the author used geometric optic solutions for the wave equation with constant
principal terms and an unknown zeroth order term to prove uniqueness by showing
that the boundary data determines the light ray transform of the unknown scalar
function in Minkowski space and subsequently inverting this transform. We refer the
reader to [8, 11, 26, 30, 31, 35, 43, 44] for similar results in this category.
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Literature dealing with uniqueness results for the case of a wave equation with
time-dependent first and zeroth order coefficients on a Riemannian manifold, where
the time-dependence is nonanalytic, is sparse. We refer the reader to [33, 52] for
the study of recovering a time-dependent zeroth order term appearing in the wave
equation. In the recent paper [50], the authors used Fourier integral operators to
show that a microlocal formulation of the DN map \Lambda \scrA ,q uniquely determines the
light ray transforms of the one-form \scrA and scalar function q. There, it was assumed
that the coefficients are in some \scrC k space with k large enough. It was recently proved
in [20] that if the one-form is \scrC 1 smooth and the scalar function is continuous, then
one can use the classical Gaussian beam construction to uniquely obtain the light ray
transforms of \scrA and q from the knowledge of \Lambda \scrA ,q. The inversion of the light ray
transform was also proved for the first time under the assumption that the geodesic
ray transform is injective on the transversal manifold (M, g) and that the coefficients
are known for some explicit lengths of time near t = 0 and t = T . In this paper, we
generalize the result obtained in [20] to the case of nonsmooth coefficients. We prove
that if (M, g) is simple, the DN map uniquely determines the light ray transform of
the nonsmooth coefficients, and we subsequently show the inversion of the light ray
transform as a Fourier integral operator under the additional assumption that the
coefficients are known on a slightly larger set compared to the sharp domain \scrD where
no information can be obtained about the coefficients. This generalization and the
difficulties therein are discussed in more detail in the subsequent section.

1.3. Comments about our results. We discuss some of the main novelties of
our result, both by previewing some of the technical challenges and also by motivating
the study of nonsmooth coefficients in their own right. The technical difficulties are
threefold. One difficulty stems from the study of the forward problem and the need
for sharper energy estimates for the determination of the correction terms appearing
in the formal geometric optic ansatz. Another key difficulty stems from the one-form
\scrA , as any lack of smoothness in the one-form appears at the level of the principal term
corresponding to the geometric optic ansatz, thus making the task of a meaningful
geometric optic solution to the wave equation and the reduction to the light ray
transform of the coefficients more challenging. Finally, let us remark that in [20] the
inversion of the light ray transform was proved for smooth coefficients. We generalize
this inversion method to nonsmooth functions by extending the notion of the light
ray transform and the inversion method, in a distributional sense, to nonsmooth
coefficients.

Aside from the technical challenges, it should be remarked that the recovery
of nonsmooth coefficients is a well-motivated question in its own right as it can be
associated with the determination of various unstable phenomena which cannot be
modeled by smooth parameters. For elliptic equations, this topic has received a lot
of attention over the last few decades (see [4, 15, 21, 22, 36]). However, few authors
have addressed this issue for hyperbolic equations. Concerning the recovery of time-
dependent coefficients, [25] seems to be the only paper addressing this issue. The
result of [25] concerns the recovery of a zeroth order coefficient on a flat Lorentzian
manifold with the Minkowski metric. In Theorems 1.1 and 1.2, we prove, for what
seems to be the first time, the extension of this work to the recovery of nonsmooth
first and zeroth order coefficients appearing in a hyperbolic equation associated with
a more general Lorentzian manifold.

Let us observe also that our inverse problem is intricately connected with the
recovery of nonlinear terms appearing in hyperbolic equations. Indeed, following
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the strategy set by [14, 16, 27, 28] for parabolic equations, through a linearization
procedure initially introduced by [27], one can reduce the problem of determining
coefficients appearing in a nonlinear problem to the recovery of time-dependent co-
efficients appearing in a linear equation. In [32] the author proved the extension of
this approach to semilinear hyperbolic equations. Note that, in this procedure, the
time-dependent coefficient under consideration depends explicitly on solutions of the
nonlinear equation. Therefore, following the analysis of [32], the recovery of non-
smooth coefficients can be seen as an important step in the more difficult problem of
determining quasi-linear terms appearing in nonlinear hyperbolic equations.

1.4. Outline of the paper. This paper is organized as follows. In section 2,
we start by considering the direct problem (1.3) and rigorously justify the definition
(1.5), also deriving a key boundary integral identity (see Lemma 2.3). Moreover, we
discuss smooth approximations of the coefficients \scrA , q and also extend the notion of
the light ray transform to Lp functions. Section 3 is concerned with the construction
of geometric optic solutions to (1.3) concentrating on maximal null geodesics in the
set \scrD . In section 4 we prove Theorems 1.1--1.2 by applying the geometric optic
construction and Proposition 1.3. Finally, section 5 is concerned with the proof of
statement (i) in Proposition 1.3. As explained in section 1.1, statement (ii) follows
analogously to statement (ii) in [20, Proposition 1.4].

2. Preliminaries.

2.1. Direct problem. In this section we study the wave equation (1.3) and show
that for \scrA , q satisfying (1.2) and each f \in H1

0 ((0, T ]\times \partial M) it admits a unique solution
u in energy space (1.4). We will repeatedly use the Sobolev embedding theorem as
follows:

(2.1) \| f1f2\| Lp1 (0,T ;L2(M)) \lesssim \| f1\| Lp1 (0,T ;Lp2 (M))\| f2\| \scrC (0,T ;H1(M)).

This estimate holds since H1(M) \subset L
2n

n - 2 (M) for n > 2 and H1(M) \subset Lp(M) for
n = 2 and any p \in [1,\infty ). In order to study the IBVP given by (1.3), we start by
considering the following IBVP:

(2.2)

\left\{    - \Delta \=gv +\scrA \nabla \=gv + qv = F, (t, x) \in \scrM ,
v(0, x) = v0(x), \partial tv(0, x) = v1(x), x \in M,

v(t, x) = 0, (t, x) \in (0, T )\times \partial M.

We have the following well-posedness result for this IBVP.

Proposition 2.1. Let p1 \in (1,+\infty ) and p2 \in [n,+\infty ) \setminus \{ 2\} . For q \in Lp1(0, T ;
Lp2(M)), \scrA \in L\infty (\scrM ;T \ast \scrM ), and F \in Lp1(0, T ;L2(M)), problem (2.2) admits a
unique solution v in the space

(2.3) X0 := \scrC ([0, T ];H1
0 (M)) \cap \scrC 1([0, T ];L2(M))

satisfying \partial \nu v \in L2((0, T )\times \partial M) and the estimate

(2.4) \| \partial \nu v\| L2((0,T )\times \partial M) + \| v\| X0
\leqslant C(\| v0\| H1(M) + \| v1\| L2(M) + \| F\| Lp1 (0,T ;L2(M))),

with C depending only on p1, p2, n, T , M , and any N \geqslant \| q\| Lp1 (0,T ;Lp2 (M)) +

\| \scrA \| L\infty (\scrM ).
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Proof. We will prove this result by following the approach developed in [25, Propo-
sition 2.1]. Our first goal is to show that for any v \in W 2,\infty (0, T ;H1

0 (M)) solving (2.2),
the a priori estimate (2.4) holds true. Then, applying [41, Theorem 8.1, Chapter 3],
[41, Remark 8.2, Chapter 3], and [41, Theorem 8.3, Chapter 3], the proof will be
completed. We introduce the energy E(t) at time t \in [0, T ] given by

E(t) :=

\int 
M

\bigl( 
| \partial tv(t, x)| 2 + | \nabla gv(t, x)| 2

\bigr) 
dVg(x).

Multiplying (2.2) by \partial tv, taking the real part, and integrating by parts, we get
(2.5)

E(t) - E(0) = - 2R

\int t

0

\int 
M

[\scrA (s, x)\nabla \=gv(s, x) + q(s, x)v(s, x)]\partial tv(s, x)dVg(x)ds

+ 2R

\int t

0

\int 
M

F (s, x)\partial tv(s, x)dVg(x)ds.

Repeating the arguments of [25, Proposition 2.1], we get

(2.6)

\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

q(s, x)v(s, x)\partial tv(s, x)dVg(x)ds

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

F (s, x)\partial tv(s, x)dVg(x)ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant \| F\| 2Lp1 (0,T ;L2(M)) + C

\biggl( \int t

0

E(s)
p1

p1 - 1 ds

\biggr) p1 - 1
p1

,

where C depends only on T , M , p1, p2, n, and any N \geqslant \| q\| Lp1 (0,T ;Lp2 (M)). In the
same way, we obtain

(2.7)

\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

[\scrA (s, x)\nabla \=gv(s, x)]\partial tv(s, x)dVg(x)ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant \| \scrA \| L\infty (\scrM )

\int t

0

E(s)ds

\leqslant \| \scrA \| L\infty (\scrM )t
1
p1

\biggl( \int t

0

E(s)
p1

p1 - 1 ds

\biggr) p1 - 1
p1

\leqslant \| \scrA \| L\infty (\scrM )T
1
p1

\biggl( \int t

0

E(s)
p1

p1 - 1 ds

\biggr) p1 - 1
p1

.

Combining (2.6)--(2.7) with (2.5), we obtain

E(t) \leqslant E(0) + \| F\| 2Lp1 (0,T ;L2(M)) + C

\biggl( \int t

0

E(s)
p1

p1 - 1 ds

\biggr) p1 - 1
p1

,

where C depends only on T , M , p1, p2, n, and any N \geqslant \| q\| Lp1 (0,T ;Lp2 (M)) +

\| \scrA \| L\infty (\scrM ). Using this last estimate, we can deduce that (2.2) admits a unique solu-
tion v in the space (2.3) satisfying

(2.8) \| v\| X0
\leqslant C(\| v0\| H1(M) + \| v1\| L2(M) + \| F\| Lp1 (0,T ;L2(M)))

by applying arguments similar to the end of the proof of [25, Proposition 2.1]. There-
fore, the proof of the proposition will be completed if we show that \partial \nu v \in L2((0, T )\times 
\partial M) and that the estimate

(2.9) \| \partial \nu v\| L2((0,T )\times \partial M) \leqslant C(\| v0\| H1(M) + \| v1\| L2(M) + \| F\| Lp1 (0,T ;L2(M)))
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4960 ALI FEIZMOHAMMADI AND YAVAR KIAN

is fulfilled. For this purpose, notice that v solves\left\{    - \Delta \=gv(t, x) = Fv(t, x), (t, x) \in \scrM ,
v(0, x) = v0(x), \partial tv(0, x) = v1(x), x \in M,

v(t, x) = 0, (t, x) \in (0, T )\times \partial M,

with Fv =  - \scrA \nabla \=gv  - qv + F . Applying the Sobolev embedding theorem, we deduce
that Fv \in L1(0, T ;L2(M)). Then, applying [29, Lemma 2.39], we deduce that \partial \nu v \in 
L2((0, T )\times \partial M) and

\| \partial \nu v\| L2((0,T )\times \partial M) \leqslant C(\| Fv\| L1(0,T ;L2(M)) + \| v0\| H1(M) + \| v1\| L2(M))

\leqslant C(\| v\| \scrC ([0,T ];H1(M)) + \| v\| \scrC 1([0,T ];L2(M)) + \| F\| Lp1 (0,T ;L2(M))).

Combining this with (2.8), we deduce (2.9), and this completes the proof of the
proposition.

We can use Proposition 2.1 to show that (1.3) admits a unique solution u in
energy space (1.4). Recall the following classical IBVP:

(2.10)

\left\{    - \Delta \=gw = 0, (t, x) \in \scrM ,
w(0, x) = 0, \partial tw(0, x) = 0, x \in M,

w(t, x) = f, (t, x) \in (0, T )\times \partial M.

According to [29, Theorem 2.30] (see also [38]), this equation admits a unique solution
w in the energy space (1.4). We now return to (1.3) and note that we have u = w+v,
where w solves (2.10) with boundary term f , and v solves (2.2) with F :=  - \scrA \nabla \=gw - 
qw. As \scrA , q satisfy (1.2) and since w is in the energy space (1.4), it is immediate that
F \in Lp1(0, T ;L2(M)). Thus, Proposition 2.1 applies to show that u is in the energy
space (1.4), with \partial \nu u \in L2((0, T )\times \partial M), and we have that

\| \partial \nu u\| L2((0,T )\times \partial M) + \| u\| X \leqslant C\| f\| H1
0 ((0,T ]\times \partial M).

Using this estimate, we can define the DNmap as the bounded operator fromH1
0 ((0, T ]

\times \partial M) to L2((0, T )\times \partial M) defined by

\Lambda \scrA ,qf =

\biggl( 
\partial \=\nu u - \scrA \=\nu 

2
u

\biggr) 
| (0,T )\times \partial M

for u the solution of (1.3).
We have the following lemma that will be used in section 3.

Lemma 2.2. Let F \in Lp1(0, T ;L2(M)), and suppose u is the unique solution to
(2.2) subject to u0 = u1 = 0. Then the following estimate holds:

\| u\| \scrC (0,T ;L2(M)) \leqslant C

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

F (s) ds

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp1 (0,T ;L2(M))

.

Proof. We set v(t, x) :=
\int t
0
u(s, x) ds and note that v solves

(2.11)

\left\{    - \Delta \=gv = H, (t, x) \in \scrM ,
v(0, x) = 0, \partial tv(0, x) = 0, x \in M,

v(t, x) = 0, (t, x) \in (0, T )\times \partial M,
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with

H :=  - 
\int t

0

\scrA (s, x)\nabla \=gu(s, x) ds - 
\int t

0

q(s, x)u(s, x)ds+

\int t

0

F (s, x) ds.

Since u is in the energy space (1.4), we deduce that v \in \scrC 2([0, T ];L2(M)) \cap \scrC 1([0, T ];
H1(M)). In addition, since qu \in Lp1(0, T ;L2(M)) (see (2.1)) and \scrA \in L\infty (\scrM ;T \ast \scrM ),
we deduce that H \in W 1,p1(0, T ;L2(M)) \subset L2(\scrM ) and that v solves the elliptic
boundary value problem\biggl\{ 

 - \Delta gv = E, (t, x) \in (0, T )\times M,
v(t, x) = 0, (t, x) \in (0, T )\times \partial M,

with E =  - \partial 2t v +H \in L2(\scrM ). Then, from the elliptic regularity of solutions of this
boundary value problem, we get v \in L2(0, T ;H2(M)), and it follows that v \in H2(\scrM ).
We define the energy E(t) at time t associated with v and given by

E(t) :=

\int 
M

\bigl( 
| \partial tv| 2(t, x) + | \nabla gv| 2g(t, x)

\bigr) 
dVg(x) \geqslant 

\int 
M

| u| 2(t, x) dVg(x).

Multiplying (2.11) by \partial tv and taking the real part, we find

E(t) = - 2R

\biggl( \int t

0

\int 
M

\biggl( \int s

0

q(\tau , x)u(\tau , x) d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

\biggr) 
 - 2R

\biggl( \int t

0

\int 
M

\biggl( \int s

0

\scrA (\tau , x)\nabla \=gu(\tau , x) d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

\biggr) 
(2.12)

+ 2R

\biggl( \int t

0

\int 
M

\biggl( \int s

0

F (\tau , x) d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

\biggr) 
.

Repeating some arguments of [25, Lemma 3.1], we find

(2.13)

\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

\biggl( \int s

0

q(\tau , x)u(\tau , x) d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant C \| q\| 2Lp1 (0,T ;Lp2 (M))

\biggl( \int t

0

E(\tau )
p1

(p1 - 1) d\tau 

\biggr) (p1 - 1)
p1

+
E(t)

5
,

(2.14)

\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

\biggl( \int s

0

F (\tau , x) d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant \| F\ast \| 2Lp1 (0,T ;L2(M)) + T

p1 - 1
p1

\biggl( \int t

0

E(\tau )
p1

p1 - 1 d\tau 

\biggr) p1 - 1
p1

,

where F\ast (t, x) :=
\int t
0
F (s, x)ds and C > 0 depends on M and T . In the same way,

using the fact that div \=g\scrA \in Lp1(0, T ;Lp2(M)) and v \in \scrC 1([0, T ];H1
0 (M)), we get

(2.15)

\int t

0

\int 
M

\biggl( \int s

0

\scrA \nabla \=gu(\tau , x)d\tau 

\biggr) 
\partial tv(s, x) dVg(x) ds

=  - 
\int t

0

\int s

0

\int 
M

(div \=g\scrA )u(\tau , x) \partial tv(s, x) dVg(x) d\tau ds

 - 
\int t

0

\int 
M

\int s

0

u\scrA (\tau , x)\partial t\nabla \=gv(s, x) dVg(x) d\tau ds

 - 
\int t

0

\int 
M

b(s, x)| \partial tv(s, x)| 2 dVg(x) ds.
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Repeating the arguments of (2.13), we find
(2.16)\bigm| \bigm| \bigm| \bigm| \int t

0

\int s

0

\int 
M

(div \=g\scrA )u(\tau , x)\partial tv(s, x) dVg(x) d\tau ds+

\int t

0

\int 
M

b(s, x)| \partial tv(s, x)| 2 dVg(x) ds
\bigm| \bigm| \bigm| \bigm| 

\leqslant C

\biggl( \int t

0

E(\tau )
p1

(p1 - 1) d\tau 

\biggr) (p1 - 1)
p1

+
E(t)

5
,

with C depending on T , M , \| div \=g\scrA \| Lp1 (0,T ;Lp2 (M)), and \| b\| L\infty (\scrM )). Moreover, ap-

plying Fubini's theorem, we have\int t

0

\int 
M

\int s

0

u(\tau , x)\scrA (\tau , x)\partial t\nabla \=gv(s, x) dVg(x) d\tau ds

=

\int 
M

\int t

0

u\scrA (\tau , x)

\biggl( \int t

\tau 

\partial t\nabla \=gv(s, x) ds

\biggr) 
d\tau dVg(x)

=

\int 
M

\int t

0

u\scrA (\tau , x)\nabla \=gv(t, x) dVg(x) d\tau  - 
\int 
M

\int t

0

u\scrA (\tau , x)\nabla \=gv(\tau , x) d\tau dVg(x).

It follows that\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

\int s

0

u\scrA (\tau , x)\partial t\nabla \=gv(s, x) dVg(x) d\tau ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant \| \scrA \| L\infty (\scrM )

\biggl( \int t

0

E(\tau )
1
2 d\tau 

\biggr) 
E(t)

1
2 + \| \scrA \| L\infty (\scrM )

\int t

0

E(\tau ) d\tau 

\leqslant 5 \| \scrA \| 2L\infty (\scrM )

\biggl( \int t

0

E(\tau )
1
2 d\tau 

\biggr) 2

+
E(t)

5
+ \| \scrA \| L\infty (\scrM )

\int t

0

E(\tau ) d\tau 

\leqslant 5 \| \scrA \| 2L\infty (\scrM ) T

\biggl( \int t

0

E(\tau ) d\tau 

\biggr) 
+
E(t)

5
+ \| \scrA \| L\infty (\scrM )

\int t

0

E(\tau ) d\tau 

\leqslant (5 \| \scrA \| 2L\infty (\scrM ) T + \| \scrA \| L\infty (\scrM ))

\biggl( \int t

0

E(\tau ) d\tau 

\biggr) 
+
E(t)

5
.

Applying H\"older's inequality, we get\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

\int s

0

u\scrA (\tau , x)\partial t\nabla \=gv(s, x) dVg(x) d\tau ds

\bigm| \bigm| \bigm| \bigm| 
\leqslant (5 \| \scrA \| 2L\infty (\scrM ) T + \| \scrA \| L\infty (\scrM ))T

1
p1

\biggl( \int t

0

E(\tau )
p1

(p1 - 1) d\tau 

\biggr) (p1 - 1)
p1

+
E(t)

5
.

Combining this with (2.16), we deduce that
(2.17)\bigm| \bigm| \bigm| \bigm| \int t

0

\int 
M

\int s

0

u\scrA (\tau , x)\partial t\nabla \=gv(s, x) dVg(x) d\tau ds

\bigm| \bigm| \bigm| \bigm| \leqslant C

\biggl( \int t

0

E(\tau )
p1

(p1 - 1) d\tau 

\biggr) (p1 - 1)
p1

+
2E(t)

5
,

with C depending only on T and \| \scrA \| L\infty (\scrM ). We deduce that there exists C depending

on T , M , \| q\| Lp1 (0,T ;Lp2 (M)), \| \scrA \| L\infty (\scrM ), and \| div \=g\scrA \| Lp1 (0,T ;Lp2 (M)) such that

E(t) \leqslant 
4E(t)

5
+ C

\biggl( \int t

0

E(\tau )
p1

p1 - 1 d\tau 

\biggr) p1 - 1
p1

+ \| F\ast \| 2Lp1 (0,T ;L2(M))
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and therefore

E(t) \leqslant 5C

\biggl( \int t

0

E(\tau )
p1

p1 - 1 d\tau 

\biggr) p1 - 1
p1

+ 5 \| F\ast \| 2Lp1 (0,T ;L2(M)) .

Applying the Gronwall inequality yields

E(t)
p1

p1 - 1 \leqslant c1 \| F\ast \| 
2p1

p1 - 1

Lp1 (0,T ;L2(M)) e
c2t \leqslant c1 \| F\ast \| 

2p1
p1 - 1

Lp1 (0,T ;L2(M)) e
c2T , t \in [0, T ],

where c1 depends only on p1 and c2 on C and p1. Therefore, we obtain\int 
M

| u| 2(t, x)dVg(x) \leqslant E(t) \leqslant C \| F\ast \| Lp1 (0,T ;L2(M)) , t \in [0, T ],

which completes the proof of the lemma.

2.2. Dirichlet to Neumann map. In this section we will derive a represen-
tation formula involving the DN map (Lemma 2.3) and also recall some invariance
properties of the DN map (Lemma 2.4).

Let us consider the following problem:

(2.18)

\left\{   
L\ast 
\scrA ,qv =  - \Delta \=gv  - \scrA \nabla \=gv + (q  - div \=g\scrA )v = 0 on \scrM ,

v = h on (0, T )\times \partial M,
v(T, \cdot ) = 0, \partial tv(T, \cdot ) = 0 on M.

Here, the differential operator L\ast 
\scrA ,q represents the formal adjoint of L\scrA ,q. Repeating

the arguments of the previous section, we can prove that, for each h \in H1
0 ([0, T )\times \partial M),

this problem admits a unique solution v in energy space (1.4), with \partial \=\nu v \in L2((0, T )\times 
\partial M), satisfying the estimate

\| \partial \=\nu v\| L2((0,T )\times \partial M) + \| v\| X \leqslant C\| h\| H1
0 ([0,T )\times \partial M).

Therefore, we can define the DN map associated with (2.18) as follows:

(2.19) \Lambda \ast 
\scrA ,qh =

\biggl( 
\partial \=\nu v +

\scrA \=\nu 

2
v

\biggr) 
| (0,T )\times \partial M .

It is straightforward to show that

(2.20) \langle \Lambda \scrA ,qf, h\rangle = \langle f,\Lambda \ast 
\scrA ,qh\rangle \forall (f, h) \in H1

0 ((0, T ]\times \partial M)\times H1
0 ([0, T )\times \partial M),

where \langle f1, f2\rangle :=
\int 
(0,T )\times \partial M f1f2 dV\=g. Using this equality together with Green's iden-

tity, we can derive the following classical representation formula.

Lemma 2.3. Let \scrA 1,\scrA 2, q1, q2 satisfy (1.2). Given any f1 \in H1
0 ((0, T ]\times \partial M) and

f2 \in H1
0 ([0, T )\times \partial M), the following identity holds:

(2.21)

\langle (\Lambda \scrA 1,q1  - \Lambda \scrA 2,q2)f1, f2\rangle =
\int 
\scrM 

\biggl[ 
u2\scrA \nabla \=gu1  - u1\scrA \nabla \=gu2

2
+

\biggl( 
q  - 1

2
div \=g\scrA 

\biggr) 
u1u2

\biggr] 
dV\=g,

where \scrA := \scrA 1 - \scrA 2, q := q1 - q2, and u1 solves (1.3) with \scrA = \scrA 1, q = q1, and lateral
boundary term f1 while u2 solves (2.18) with \scrA = \scrA 2, q = q2, and lateral boundary
term f2.
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4964 ALI FEIZMOHAMMADI AND YAVAR KIAN

We also have the following lemma regarding the gauge equivalence of the DN
map.

Lemma 2.4. Let \scrA , q satisfy (1.2). Suppose \psi \in \scrC 1(\scrM ) vanishes on (0, T )\times \partial M
and satisfies \Delta \=g\psi \in Lp1(0, T ;Lp2(M)). Then

\Lambda \scrA ,q = \Lambda \~\scrA ,\~q,

where

(2.22) \~\scrA = \scrA + \=d\psi and \~q = q +
1

2
\Delta \=g\psi  - 1

2
\scrA \nabla \=g\psi  - 1

4
\langle \nabla \=g\psi ,\nabla \=g\psi \rangle \=g.

Proof. We start by observing that if u solves differential equation (1.3) with co-

efficients \scrA , q and a lateral boundary condition f , then \~u = e
1
2\psi u solves (1.3) with

coefficients \~\scrA , \~q and the same lateral boundary condition f . Then it follows that

\Lambda \~\scrA ,\~qf =

\Biggl( 
\partial \=\nu \~u - 

\~\scrA \=\nu 

2
\~u

\Biggr) 
| (0,T )\times \partial M =

\Biggl( 
\partial \=\nu u+

\partial \=\nu \psi 

2
u - 

\~\scrA \=\nu 

2
u

\Biggr) 
| (0,T )\times \partial M

=

\biggl( 
\partial \=\nu u - \scrA \=\nu 

2
u

\biggr) 
| (0,T )\times \partial M = \Lambda \scrA ,qf.

2.3. Smooth approximation of the coefficients \bfscrA and \bfitq . The goal of this
section is to show that given one-forms \scrA k, k = 1, 2, satisfying (1.2), it is possible to
find smooth approximations \scrA k,\rho that are defined in a slightly larger manifold \^\scrM and

such that (2.24) holds. LetM \subset \^M int \subset \~M int denote a small artificial extension of the
simple manifold M , so that \^M, \~M are also simple manifolds, and define \^\scrM = \BbbR \times \^M .
We first consider the Sobolev extension of \scrA k, k = 1, 2, to the larger manifold \^\scrM 
such that the extension belongs to W 1,1(\BbbR ;L2( \^M ;T \ast \^\scrM )) \cap \scrC ( \^\scrM ;T \ast \^\scrM ), and then
extend this extended one-form to \BbbR \times \~M by setting it equal to zero on \BbbR \times ( \~M \setminus \^M).
The scalar functions qk are extended to \BbbR \times \~M by setting them equal to zero outside
of \scrM . Let p \in \~M \setminus \^M . As \~M is simple, there exists a global coordinate chart on a
neighborhood of \^M given by (y1, . . . , yn). Indeed, one such coordinate system would
be the polar normal coordinates around a point p \in \~M \setminus \^M (see, for example, [46,
Chapter 9, Lemma 15]). We then consider the coordinate chart (t, y1, . . . , yn) on a
neighborhood of \^\scrM in \BbbR \times \~M and note that using this chart we can easily define
smooth approximations of the coefficients \scrA k, qk. Indeed, let \rho > 0, and define the
smooth function \zeta \rho : \^M \rightarrow \BbbR through

\zeta \rho (t, y) = \rho 
n+1
4 \chi (\rho 

1
4

\sqrt{} 
t2 + (y1)2 + \cdot \cdot \cdot + (yn)2),

where \chi : \BbbR \rightarrow \BbbR is a nonnegative smooth function satisfying \chi (t) = 1 for | t| < 1
4 and

\chi = 0 for | t| > 1
2 and \| \chi \| L1(\BbbR ) = 1. We define the smooth approximations \scrA k,\rho of

the coefficients \scrA k through the expressions

(2.23) \scrA k,\rho (t, x) := (\scrA k \ast \zeta \rho )(t, x) = bk,\rho dt+Ak,\rho \forall (t, x) \in \^\scrM , k = 1, 2,

and note that in view of (1.2), the following estimates hold for k = 1, 2:

(2.24)
lim
\rho \rightarrow \infty 

\bigl( 
\| \scrA k,\rho  - \scrA k\| W 1,1(0,T ;L2(M)) + \| \scrA k,\rho  - \scrA k\| Lp(\scrM )

\bigr) 
= 0 \forall p \in [1,\infty ),

\| \scrA k,\rho \| Wk,\infty (\scrM ) \lesssim \rho 
k
4 \forall k \in \BbbN \ast .
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Additionally, since \scrA \in \scrC (\scrM ;T \ast \scrM ), we can write

(2.25) lim
\rho \rightarrow \infty 

\| \scrA k,\rho  - \scrA \| \scrC ((0,T )\times \Omega \rho ) = 0, k = 1, 2,

where \Omega \rho = \{ x \in \~M | dist (x, \partial M) \gtrsim \rho  - 
1
4 \} .

2.4. Light ray transform as a Fourier integral operator. The main goal
of this section is to extend the notion of \scrL \beta over scalar functions in Lp Sobolev
spaces. This extension is based on showing that \scrL is a Fourier integral operator. We
will assume throughout this section that (\scrM , \=g) and (M, g) are as discussed in the
introduction and thatM \subset \^M int with \^M as in section 2.3. We start with the notion of
light ray transform \scrL of scalar functions over null geodesics in \BbbR \times \^M , showing that it
has a unique continuous extension as an operator from \scrE \prime (\BbbR \times \^M) to \scrD \prime (\BbbR \times \partial  - S \^M).
This would naturally show that the light ray transform \scrL \beta of scalar functions over null
geodesics on \scrM has a continuous extension from L1(0, T ;L2(M)) to \scrD \prime (\BbbR \times \partial  - SM)
as L1(0, T ;L2(M)) \subset \scrE \prime (\BbbR \times \^M).

We will now show that the kernel of \scrL is locally represented by an oscillatory
integral. It suffices to consider f \in \scrC \infty 

c (\BbbR \times \^M) that is supported in a coordinate
neighborhood and work in local coordinates on \^M . Let us also extend the geodesics
\gamma (\cdot ; y, v), (y, v) \in \partial  - S \^M , as functions from \BbbR to \^M so that \gamma (s; y, v) /\in supp (f) for
s /\in [0, \tau +(x, v)]. Then in local coordinates

\scrL f(s, y, v) =
\int 
\BbbR 
f(r + s, \gamma (r; y, v)) dr =

\int 
\BbbR 

\int 
\BbbR n

f(t, x)\delta (x - \gamma (t - s; y, v)) dx dt,

and writing \varphi (x, t; s, y, v; \xi ) = \xi (x - \gamma (t - s; y, v)) it holds that

\delta (x - \gamma (t - s; y, v)) =

\int 
\BbbR n

ei\varphi (x,t;s,y,v;\xi ) d\xi .

Moreover, \varphi is an operator phase function in the sense of [23, Def. 1.4.4]. Indeed, for
fixed (s, y, v) it clearly has no critical points when \xi \not = 0. That the same is true for
fixed (t, x) follows from the next lemma.

Lemma 2.5. Let (y0, v0) \in \partial  - S \^M and r0 \in (0, \tau +(y0, v0)), and consider a small
neighborhood U of (r0, y0, v0) in \BbbR \times \partial  - S \^M . Then \gamma (r; y, v) as a map from U to \^M
has surjective differential at (r0, y0, v0).

Proof. Write x0 = \gamma (r0; y0, v0), w0 = \.\gamma (r0; y0, v0), and let \xi \ast \in Tx0
\^M . Choose a

path \alpha in \^M such that \alpha (0) = x0 and \.\alpha (0) = \xi \ast . Consider  - w0 in local coordinates
as a vector in all T\alpha (\varepsilon ) \^M for small \varepsilon > 0. As

\gamma (r0;x0, - w0) = y0, \.\gamma (r0;x0, - w0) =  - v0 /\in Ty0(\partial 
\^M),

it follows from the implicit function theorem that there is unique r(\varepsilon ) near r0 such
that \gamma (r(\varepsilon );\alpha (\varepsilon ), - w0) \in \partial \^M . Writing

y(\varepsilon ) = \gamma (r(\varepsilon );\alpha (\varepsilon ), - w0), v(\varepsilon ) =  - \.\gamma (r(\varepsilon );\alpha (\varepsilon ), - w0),

we have that \gamma (r(\varepsilon ); y(\varepsilon ), v(\varepsilon )) = \alpha (\varepsilon ). Hence the differential of the map \gamma takes
vectors ( \.r(0), \.y(0), \.v(0)) to \xi \ast = \.\alpha (0).

As \varphi is an operator phase function, the light ray transform \scrL has a unique con-
tinuous extension as an operator from \scrE \prime (\BbbR \times \^M) to \scrD \prime (\BbbR \times \partial  - S \^M) by [23, Th. 1.4.1].
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3. Geometric optics. Throughout this section we consider one-forms \scrA 1,\scrA 2

and scalar functions q1, q2 to satisfy regularity conditions given by (1.2) and consider
their extensions to the manifold \~\scrM and their smooth approximations on the manifold
\^\scrM as outlined in section 2.3. We consider a fixed null geodesic \beta \subset \scrD parametrized
with respect to the time variable. The projection of this null geodesic onM is denoted
by the (Riemannian) unit speed geodesic \gamma (\cdot ; y, v) defined over its maximal domain

I = [0, \tau +(y, v)]. We extend \gamma to \~M and let the interval \^I = [ - \^\delta  - , \tau +(y, v) + \^\delta +]
denote the maximal domain of definition of \gamma on the manifold \^M . Subsequently we
can parametrize the extended null geodesic \beta on \^\scrM through

\beta (t; s, y, v) = (s+ t, \gamma (t; y, v)) for t \in \^I,

where s \in \BbbR is a constant. We are interested in constructing the so-called geometric
optic solutions u1, u2 in energy space (1.4) of the problems

(3.1)

\biggl\{ 
 - \Delta \=gu1 +\scrA 1\nabla \=gu1 + q1u1 = 0, (t, x) \in \scrM ,
u1(0, x) = \partial tu1(0, x) = 0, x \in M,\biggl\{ 
 - \Delta \=gu2  - \scrA 2\nabla \=gu2 + (q2  - div \=g\scrA 2)u2 = 0, (t, x) \in \scrM ,
u2(T, x) = \partial tu2(T, x) = 0, x \in M,

taking the form

(3.2) u1(t, x) = ei\rho \Phi (t,x)c1,\rho (t, x) +R1,\rho (t, x), (t, x) \in \scrM ,

(3.3) u2(t, x) = e - i\rho \Phi (t,x)c2,\rho (t, x) +R2,\rho (t, x), (t, x) \in \scrM ,

with \rho > 1. The phase function \Phi and the smooth amplitude functions cj,\rho , j =
1, 2, are constructed in such a way that the principal terms ei\rho \Phi cj,\rho are compactly
supported near the null geodesic \beta . The remainder terms Rj,\rho asymptotically converge
to zero as \rho \rightarrow \infty .

As we are interested in a particular null geodesic \beta , we outline a polar normal
coordinate system specific to this null geodesic. We start by considering a point p on
\{ 0\} \times \gamma with p \in \{ 0\} \times ( \~M \setminus \^M) and construct the polar normal coordinates (t, r, \theta )
about the point p defined for r > 0 and \theta \in Sp \~M = \{ v \in Tp \~M | | v| g = 1\} through the
diffeomorphism (t, x) = (t, exp(r\theta )). In this coordinate system the metric \=g is smooth
away from the point p and takes the form

(3.4) \=g(t, r, \theta ) =  - (dt)2 + (dr)2 + g0(r, \theta ),

where g0 is a Riemannian metric on Sp \~M . As we will only be considering this coor-

dinate system on the manifold \^\scrM , and owing to the fact that \^M is simple, we can
identify \theta with a globally defined coordinate system (\theta 1, . . . , \theta n - 2) \in \BbbR n - 2. This can
in fact be done in such a manner that the null geodesic \beta on \^\scrM can be represented
with coordinates (s+ s0, s, 0, . . . , 0) with s \in \^I.

In order to make the analysis simpler, we will introduce a new coordinate system
near \beta denoted by (z0, z1, . . . , zn) in terms of the polar normal coordinates (t, r, \theta ) on
\^\scrM given by

(i) z0 := 1\surd 
2
(t+ r),

(ii) z1 := 1\surd 
2
( - t+ r + s0),
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(iii) zj := \theta j for j = 2, . . . , n.
In this coordinate system, the null geodesic \beta on \^\scrM is given by the coordinates (s, 0)
with s \in (a0, b0) for some constants a0, b0. Furthermore, the metric \=g takes the form

(3.5) \=g(z) = 2 dz0 dz1 +

n\sum 
j,k=2

gjk(z) dz
j dzk.

We define a tubular neighborhood around the null geodesic \beta where the amplitude
functions are compactly supported, as follows:

(3.6) \scrV \beta = \{ z \in \^\scrM | z0 \in [a0, b0], | z\prime | :=
\sqrt{} 

| z1| 2 + \cdot \cdot \cdot + | zn| 2 < \delta \prime \} ,

where \delta \prime > 0 is sufficiently small that the set \scrV \beta is disjoint from \{ 0\} \times M and \{ T\} \times M .
This can be guaranteed due to the assumption \beta \subset \scrD .

3.1. Construction of the geometric optics. We proceed to carry out the
construction of the geometric optic solutions to (3.1) in detail. We impose to the
remainder term

Rk,\rho \in \scrC ([0, T ];H1
0 (M)) \cap \scrC 1([0, T ];L2(M)), k = 1, 2,

the following decay property:

(3.7) lim
\rho \rightarrow +\infty 

(\| Rk,\rho \| \scrC (0,T ;L2(M)) + \rho  - 1 \| Rk,\rho \| H1(\scrM )) = 0.

To prove the decay of Rk,\rho with respect to \rho , given by (3.7), we need to suitably
construct \Phi , c1,\rho , c2,\rho . We write

(3.8)
L\scrA 1,\rho ,q1(e

i\rho \Phi c1,\rho ) = ei\rho \Phi 
\bigl( 
\rho 2\scrS \Phi  - i\rho \scrT \scrA 1,\rho 

c1,\rho + L\scrA 1,\rho ,q1c1,\rho 
\bigr) 
,

L\ast 
\scrA 2,\rho ,q2(e

 - i\rho \Phi c2,\rho ) = e - i\rho \Phi 
\Bigl( 
\rho 2\scrS \Phi + i\rho \scrT  - \scrA 2,\rho c1,\rho + L\ast 

\scrA 2,\rho ,q2c2,\rho 

\Bigr) 
,

where

(3.9) \scrS \Phi := \langle \nabla \=g\Phi ,\nabla \=g\Phi \rangle \=g and \scrT \scrA \cdot = 2\langle \nabla \=g\Phi ,\nabla \=g\cdot \rangle \=g + ( - \scrA \nabla \=g\Phi +\Delta \=g\Phi ).

We proceed to determine the phase function \Phi (t, x) such that the eikonal equation

(3.10) \scrS \Phi = 0 on \scrM 

is satisfied. The amplitude functions ck,\rho (t, x) for k = 1, 2 are constructed such that
the transport equations

(3.11) \scrT \scrA 1,\rho c1,\rho = 0 and \scrT  - \scrA 2,\rho c2,\rho = 0 on \scrM 

hold. Let us start with the eikonal equation. Existence of global smooth solutions
to this equation is not guaranteed in general, but owing to the assumption that the
manifold is simple, we can find plenty of such solutions. Indeed, for the remainder
of this section, we will be working in the z coordinate system defined earlier. Recall
that this coordinate system is well defined on \^\scrM and the null geodesic \beta on \^\scrM is
represented by (s, 0) with s \in [a0, b0]. Recalling the form of the metric from (3.5), we
pick

(3.12) \Phi (z) = z1.
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To determine the amplitude functions, we first use (3.5) again to rewrite the transport
equations (3.11) as

(3.13) \partial z0c1,\rho +

\biggl( 
\partial z0 log | g| 

4
 - (\scrA 1,\rho )0

2

\biggr) 
c1,\rho = 0,

(3.14) \partial z0c2,\rho +

\biggl( 
\partial z0 log | g| 

4
+

(\scrA 2,\rho )0
2

\biggr) 
c2,\rho = 0,

where (\scrA k,\rho )0 := \scrA k,\rho \nabla \=g\Phi for k = 1, 2 and in particular we have

(3.15) (\scrA k,\rho )0 | \beta = \scrA k,\rho 
\.\beta .

We can take ck,\rho as follows:

(3.16) c1,\rho (z) := | g(z)|  - 1/4\chi 

\biggl( 
| z\prime | 
\delta 

\biggr) 
exp

\Biggl( 
1

2

\int z0

a0

[(\scrA 1,\rho )0(s, z
\prime )] ds

\Biggr) 
,

and

(3.17) c2,\rho (z) := | g(z)|  - 1/4\chi 

\biggl( 
| z\prime | 
\delta 

\biggr) 
exp

\Biggl( 
 - 1

2

\int z0

a0

[(\scrA 2,\rho )0(s, z
\prime )] ds

\Biggr) 
,

where \chi is as defined in section 2.3 and \delta < \delta \prime (see (3.6)). It is clear that the amplitude
functions ck,\rho are compactly supported in the set \scrV \beta and as a result

(3.18) ck,\rho (s, x) = \partial tck,\rho (s, x) = 0 for k = 1, 2, s \in \{ 0, T\} , x \in M.

With the construction of the phase and amplitude functions completed as above, we
let

F1,\rho =  - L\scrA 1,q1

\bigl[ 
c1,\rho e

i\rho \Phi 
\bigr] 
, F2,\rho =  - L\ast 

\scrA 2,q2

\bigl[ 
c2,\rho e

 - i\rho \Phi \bigr] ,
and we recall that (3.10)--(3.11) imply that

(3.19) F1,\rho =  - ei\rho \Phi 
\bigl[ 
L\scrA 1,\rho ,q1c1,\rho + i\rho (\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi c1,\rho 

\bigr] 
,

(3.20) F2,\rho =  - e - i\rho \Phi 
\Bigl[ 
L\ast 
\scrA 2,\rho ,q2c2,\rho + i\rho (\scrA 2  - \scrA 2,\rho )\nabla \=g\Phi c2,\rho 

\Bigr] 
.

We define the expression Rj,\rho , j = 1, 2, by the solution of the following IBVP:

(3.21)

\left\{   L\scrA 1,q1R1,\rho = F1,\rho , (t, x) \in \scrM ,
R1,\rho (0, x) = 0, \partial tR1,\rho (0, x) = 0, x \in M,

R1,\rho (t, x) = 0, (t, x) \in (0, T )\times \partial M,

(3.22)

\left\{   
L\ast 
\scrA 2,q2

R2,\rho = F2,\rho , (t, x) \in \scrM ,

R2,\rho (T, x) = 0, \partial tR2,\rho (T, x) = 0, x \in M,
R2,\rho (t, x) = 0, (t, x) \in (0, T )\times \partial M.
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In order to complete the construction of the solutions u1, u2 of (3.1), we only
need to check the decay of the expression Rk,\rho , k = 1, 2, given by (3.7). According to
(2.23)--(2.24), we have

(3.23)
\| cj,\rho \| Wk,\infty (\scrM ) \leqslant Ck\rho 

k
4 , k \in \BbbN \ast ,

\| cj,\rho \| W 1,1(0,T ;L2(M)) \leqslant C,

with C and Ck independent of \rho . Combining this with (3.19)--(3.20), we find

\| Fj,\rho \| Lp1 (0,T ;L2(M)) \leqslant C(\rho 
1
2 + \rho \| \scrA j,\rho  - \scrA j\| Lp1 (0,T ;L2(M))), j = 1, 2.

Using (2.24) again and the estimate (2.4) it follows that

lim
\rho \rightarrow +\infty 

\rho  - 1 \| Rj,\rho \| H1(\scrM ) \leqslant C lim
\rho \rightarrow +\infty 

\rho  - 1 \| Fj,\rho \| Lp1 (0,T ;L2(M)) = 0, j = 1, 2.

Therefore, in order to prove (3.7), it only remains to prove that

(3.24) lim
\rho \rightarrow +\infty 

\| Rj,\rho \| \scrC (0,T ;L2(M)) = 0, j = 1, 2.

Proof of estimate (3.24). The result for R1,\rho and R2,\rho being similar, we will only
consider this claim for R1,\rho . In view of Lemma 2.2, the proof of the estimate will be
completed if we show that

(3.25) lim
\rho \rightarrow +\infty 

\| F\ast ,\rho \| Lp1 (0,T ;L2(M)) = 0,

where F\ast ,\rho (t, x) :=  - 
\int t
0
F1,\rho (s, x) ds. Recall that

(3.26)

F\ast ,\rho (t, x) =

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ 
L\scrA 1,\rho ,q1c1,\rho (\tau , x) + i\rho (\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi c1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau 

=

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ 
(L\scrA 1,\rho ,q1  - q1)c1,\rho (\tau , x) + i\rho (\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi c1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau \underbrace{}  \underbrace{}  

I

+

\int t

0

ei\rho \Phi (\tau ,x)q1c1,\rho (\tau , x) d\tau \underbrace{}  \underbrace{}  
II

.

To analyze the terms I and II we will integrate by parts in the \tau variable and note
that by (3.12) we have

(3.27) \partial \tau \Phi (\tau , x) =  - 1\surd 
2
\not = 0.

For the term I, using the fact that \scrA \in W 1,1(0, T ;L2(M)) and (3.18), we can integrate
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by parts, with respect to \tau \in (0, t), and write
(3.28)\surd 

2

2
I = i\rho  - 1ei\rho \Phi (t,x)

\bigl[ 
(L\scrA 1,q1  - q1)c1,\rho (t, x) + i\rho 

\bigl( 
(\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi 

\bigr) 
c1,\rho (t, x)

\bigr] 
 - i\rho  - 1

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ 
\partial t\scrA 1\nabla \=gc1,\rho (\tau , x) + (L\scrA 1,q1  - q1)\partial tc1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau 

+

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ \bigl( 
(\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi 

\bigr) 
\partial tc1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau 

+

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ \bigl( 
(\partial t\scrA 1  - \partial t\scrA 1,\rho )\nabla \=g\Phi 

\bigr) 
c1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau 

= S1 + S2 + S3 + S4.

For the term S1, we can apply (3.23) and (2.24) to write

\| S1\| Lp1 (0,T ;L2(M)) \leqslant C\rho  - 1 \| c1,\rho \| W 2,\infty (\scrM ) +
\Bigl( 
\| \scrA 1  - \scrA 1,\rho \| Lp1 (0,T ;L2(M))

\Bigr) 
\| c1,\rho \| L\infty (\scrM )

\leqslant C(\rho  - 
1
2 + \| \scrA 1  - \scrA 1,\rho \| Lp1 (0,T ;L2(M))) = o

\rho \rightarrow +\infty 
(1).

For the term S2, we similarly write
(3.29)\bigm\| \bigm\| \bigm\| \bigm\| \rho  - 1

\int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ 
\partial t\scrA 1\nabla \=gc1,\rho (\tau , x) + (L\scrA 1,q1  - q1)\partial tc1,\rho (\tau , x)

\bigr] \Bigr] 
d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp1 (0,T ;L2(M))

\leqslant C\rho  - 1(\| \scrA 1\| W 1,1(0,T ;L2(M))) \| c1,\rho \| W 2,\infty (\scrM ) \leqslant C\rho  - 
1
2 ,

with C independent of \rho . For the terms S3 and S4, let us first assume that \scrA 1 \in 
\scrC 2([0, T ];L2(M)). Then, integrating by parts with respect to \tau \in (0, t) and applying
(3.23), (2.24), we have\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ \bigl( 
(\scrA 1  - \scrA 1,\rho )\nabla \=g\Phi 

\bigr) 
\partial tc1,\rho (\tau , \cdot )

\bigr] \Bigr] 
d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp1 (0,T ;L2(M))

\leqslant C\rho  - 
1
2 ,

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\Bigl[ 
ei\rho \Phi (\tau ,x)

\bigl[ \bigl( 
(\partial t\scrA 1  - \partial t\scrA 1,\rho )\nabla \=g\Phi 

\bigr) 
c1,\rho (\tau , \cdot )

\bigr] \Bigr] 
d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp1 (0,T ;L2(M))

\leqslant C\rho  - 
1
2 ,

with C independent of \rho . Then, applying the density of \scrC 2([0, T ];L2(M)) in
W 1,1(0, T ;L2(M), we deduce that

lim
\rho \rightarrow \infty 

\| S3\| Lp1 (0,T ;L2(M)) = lim
\rho \rightarrow \infty 

\| S4\| Lp1 (0,T ;L2(M)) = 0.

Combining the above estimates, we conclude that

lim
\rho \rightarrow +\infty 

\| I\| Lp1 (0,T ;L2(M)) = 0.

Moreover, in a similar way to the terms S3 and S4, using a density argument combined
with (3.23), we have

lim
\rho \rightarrow +\infty 

\| II\| Lp1 (0,T ;L2(M)) = 0.

This completes the proof of estimate (3.24).
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4. Reduction to the light ray transform and the proof of uniqueness.

4.1. Reduction to the light ray transform of \bfscrA \bfone  - \bfscrA \bftwo and proof of
Theorem 1.1. Suppose \scrA j , qj for j = 1, 2 satisfy regularity conditions (1.2) and

consider their extensions to \^\scrM and smooth approximations \scrA j,\rho satisfying (2.24).
We assume that \Lambda \scrA 1,q1 = \Lambda \scrA 2,q2 and proceed to show that for every \beta \subset \BbbR \times M the
following identity holds:

(4.1) \scrL \beta \scrA = 0,

where \scrA := \scrA 1  - \scrA 2. We start by considering a maximal null geodesic \beta \subset \scrD and
extend it to \^\scrM . Define uj in energy space (1.4) to be solutions of (3.1) taking the
form (3.2)--(3.3) with the properties described in the previous section. Let

f1 := u1| (0,T )\times \partial M \in H1
0 ((0, T ]\times \partial M) and f2 := u2| (0,T )\times \partial M \in H1

0 ([0, T )\times \partial M).

Applying Lemma 2.3, we deduce that
(4.2)

0 = \langle (\Lambda \scrA 1,q1 - \Lambda \scrA 2,q2)f1, f2\rangle =
\int 
\scrM 

\biggl[ 
u2\scrA \nabla \=gu1  - u1\scrA \nabla \=gu2

2
+

\biggl( 
q  - 1

2
div \=g\scrA 

\biggr) 
u1u2

\biggr] 
dV\=g,

where q := q1  - q2. Using the Sobolev embedding (2.1) and the bounds (3.23)--(3.7),
we write
(4.3)\bigm| \bigm| \bigm| \bigm| \rho  - 1

\int 
\scrM 

Rj,\rho \scrA \nabla \=gRk,\rho dV\=g

\bigm| \bigm| \bigm| \bigm| \lesssim \rho  - 1\| \scrA \| L\infty (\scrM )\| Rk,\rho \| L2(\scrM )\| Rj,\rho \| H1(\scrM ) = o
\rho \rightarrow +\infty 

(1),\bigm| \bigm| \bigm| \bigm| \rho  - 1

\int 
\scrM 

e\pm i\rho \Phi QRk,\rho cj,\rho dV\=g

\bigm| \bigm| \bigm| \bigm| \lesssim \rho  - 1\| Q\| Lp1 (0,T ;Lp2 (M))\| Rk,\rho \| \scrC (0,T ;L2(M)) = o
\rho \rightarrow +\infty 

(\rho  - 1),\bigm| \bigm| \bigm| \bigm| \rho  - 1

\int 
\scrM 

QRj,\rho Rk,\rho dV\=g

\bigm| \bigm| \bigm| \bigm| \lesssim \rho  - 1\| Q\| Lp1 (0,T ;Lp2 (M))\| Rj,\rho \| \scrC (0,T ;L2(M))\| Rk,\rho \| \scrC (0,T ;H1(M))

= o
\rho \rightarrow +\infty 

(1)

for j, k = 1, 2 and Q = q - 1
2div \=g\scrA . Dividing (4.2) by \rho , using (3.2)--(3.3) and applying

the latter bounds, we observe that

lim
\rho \rightarrow \infty 

\int 
\scrM 

\scrA \nabla \=g\Phi c1,\rho c2,\rho dV\=g = 0.

Recall from (3.16)--(3.17) that ck,\rho are compactly supported on \scrV \beta . Recalling that
\scrA = 0 outside of (0, T )\times M (both \scrA 1, \scrA 2 vanish there), and additionally using (2.3),
we write

lim
\rho \rightarrow \infty 

\int 
\scrV \beta 

\scrA \rho \nabla \=g\Phi c1,\rho c2,\rho dV\=g = 0.

This reduces to

lim
\rho \rightarrow \infty 

\int 
(a0,b0)\times B(0,\delta )

(\scrA \rho )0(z
0, z\prime )\chi 

\biggl( 
| z\prime | 
\delta 

\biggr) 2

exp

\Biggl( 
1

2

\int z0

a0

(\scrA \rho )0(s, z
\prime ) ds

\Biggr) 
dz0 dz\prime = 0,

where (\scrA \rho )0 = \scrA \nabla \=g\Phi . Observing that

(\scrA \rho )0(z
0, z\prime ) exp

\Biggl( 
1

2

\int z0

a0

(\scrA \rho )0(s, z
\prime ) ds

\Biggr) 
=

d

dz0
exp

\Biggl( 
1

2

\int z0

a0

(\scrA \rho )0(s, z
\prime ) ds

\Biggr) 
,
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together with (2.25) and vanishing of \scrA in the exterior of \scrM , we simplify the former
equation to obtain\int 

B(0,\delta )

\chi 

\biggl( 
| z\prime | 
\delta 

\biggr) 2

exp

\Biggl( 
1

2

\int b0

a0

(\scrA )0(s, z
\prime ) ds

\Biggr) 
dz\prime = 0.

Finally, by taking \delta \rightarrow 0, and observing that (\scrA )0(s, 0) = \scrA \.\beta , we observe that

\scrL \beta \scrA \in 4\pi i\BbbZ .

Note that the above claim holds for any null geodesic \beta \subset \scrD . Recall from the
hypothesis of Theorem 1.1 that \scrA is supported on the set \scrE . Thus, we can conclude
that the latter equality holds for any null geodesic in \BbbR \times M . Let \beta = (s0+ t, \gamma (t)) for
some s0 and consider a one-parameter family of null geodesics \beta s = (s0 + s+ t, \gamma (t)).
Since \scrA is continuous and since \scrL \beta s = 0 for s large, we conclude that equality (4.1)
holds. Applying statement (ii) in Proposition 1.3 completes the proof of Theorem 1.1.

4.2. Reduction to the light ray transform of \bfitq \bfone  - \bfitq \bftwo and proof of The-
orem 1.2. We will assume throughout this section that the additional regularity
assumptions (1.9) hold. Applying Theorem 1.1 implies that there exists \psi \in \scrC 1

0(\scrM )
such that \scrA 1 = \scrA 2 + \=d\psi . Clearly,

\Delta \=g\psi = div \=g(\scrA 1  - \scrA 2) \in Lp1(0, T ;L\infty (M)).

Let us now define \~\scrA 2 = \scrA 2 + \=d\psi and \~q2 = q2 +
1
2\Delta \=g\psi  - 1

2\scrA 2\nabla \=g\psi  - 1
4 \langle \nabla 

\=g\psi ,\nabla \=g\psi \rangle \=g.
Lemma 2.4 applies to show that

(4.4) \Lambda \scrA 1,q1 = \Lambda \~\scrA 2,\~q2
= \Lambda \scrA 1,\~q2 .

Analogously to the previous section, we start by considering a null geodesic \beta \subset \scrD and
extend it to \^\scrM . Define uj in energy space (1.4) to be solutions of (3.1) corresponding
to differential operators L\scrA 1,q1 and L\ast 

\scrA 1,\~q2
, taking the form (3.2)--(3.3) and with the

properties described in section 3. Let

f1 := u1| (0,T )\times \partial M \in H1
0 ((0, T ]\times \partial M) and f2 := u2| (0,T )\times \partial M \in H1

0 ([0, T )\times \partial M).

Applying Lemma 2.3 again, we deduce that

(4.5) 0 = \langle (\Lambda \scrA 1,q1  - \Lambda \scrA 1,\~q2)f1, f2\rangle =
\int 
\scrM 
qc1,\rho c2,\rho dV\=g,

where q := q1  - \~q2 \in Lp1(0, T ;L\infty (M)). Recall that c1,\rho , c2,\rho are supported in the
tubular set \scrV \beta near the null geodesic \beta . Estimate (3.24) implies that\bigm| \bigm| \bigm| \bigm| \int 

\scrM 
qck,\rho Rj,\rho dV\=g

\bigm| \bigm| \bigm| \bigm| \leqslant \| q\| Lp1 (0,T ;L2(M))\| ck,\rho \| L\infty (\scrM )\| Rj,\rho \| \scrC (0,T ;L2(M)) = o
\rho \rightarrow +\infty 

(1),\bigm| \bigm| \bigm| \bigm| \int 
\scrM 
qR1,\rho R2,\rho dVg

\bigm| \bigm| \bigm| \bigm| \leqslant \| q\| Lp1 (0,T ;L\infty (M))\| R1\| \scrC (0,T ;L2(M))\| R2\| \scrC (0,T ;L2(M)) = o
\rho \rightarrow +\infty 

(1).

We now use the z coordinate system and note that by taking the limit as \rho \rightarrow \infty and
using (3.16)--(3.17) with the preceding correction term bounds, we have\int 

(a0,b0)\times B(0,\delta )

q(z0, z\prime )\chi 

\biggl( 
| z\prime | 
\delta 

\biggr) 2

dz0 dz\prime = 0.

The arguments in section 2.4 apply to deduce that

\scrL \beta q = 0.

Together with statement (i) in Proposition 1.3, we conclude that (1.10) holds.
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5. Inversion of the light ray transform. This section is concerned with the
proof of Proposition 1.3. Recalling section 1.1, we will identify maximal null geodesics
\beta \subset \BbbR \times M with triplets (s, x, v) \in \BbbR \times \partial  - SM . Let us first recall the unique inversion
of light ray transform on smooth functions. This is reproduced here as some of the
arguments are necessary for the extension of the proof to L1(0, T ;L2(M)) functions.

5.1. Inversion of light ray transform for smooth functions. For f \in 
C\infty 
c (\BbbR \times M), the transform \scrL f(s, x, v) is compactly supported in s. Inversion of

\scrL is based on the following Fourier slicing in time:

\widehat \scrL f(\tau , x, v) = \int 
\BbbR 
e - i\tau s\scrL f(s, x, v) ds =

\int \tau +(x,v)

0

\int 
\BbbR 
e - i\tau sf(r + s, \gamma (r;x, v)) ds dr

=

\int \tau +(x,v)

0

ei\tau r
\int 
\BbbR 
e - i\tau tf(t, \gamma (r;x, v)) dt dr =

\int \tau +(x,v)

0

ei\tau r \widehat f(\tau , \gamma (r;x, \xi )) dr.
In particular, \widehat \scrL f(0, x, v) = \scrI ( \widehat f(0, \cdot ))(x, v). Straightforward differentiation gives the
following lemma.

Lemma 5.1. For f \in C\infty 
c (\BbbR \times M), k = 0, 1, . . . , and (x, v) \in \partial  - SM it holds that

\partial k\tau 
\widehat \scrL f(\tau , x, v)| \tau =0 = \scrI (\partial k\tau \widehat f(\tau , \cdot )| \tau =0)(x, v) +

k - 1\sum 
j=0

\biggl( 
k

j

\biggr) 
\scrR k - j(\partial 

j
\tau 
\widehat f(\tau , \cdot )| \tau =0)(x, v),(5.1)

where

\scrR jf(x, v) =

\int \tau +(x,v)

0

(ir)jf(\gamma (r, x, v)) dr, f \in C\infty 
c (M).

If \scrI is injective, then \scrL f = 0 implies that \partial k\tau 
\widehat f(\tau , \cdot )| \tau =0 = 0 for all k = 0, 1, . . . .

As f is compactly supported in t, the Fourier transform \widehat f is analytic in \tau . Hence
f = 0 in this case.

5.2. A localization property. We have the following natural localization prop-
erty.

Lemma 5.2. Let U \subset \BbbR and V \subset \partial  - SM be open. Define W to be the set of
points (t, x) \in \BbbR \times M such that t = r+ s and x = \gamma (r; y, v) for some r \in [0, \tau +(y, v)],
s \in U , and (y, v) \in V . Suppose that \chi \in C\infty (\BbbR \times M) satisfies \chi | W = 1. Then

\scrL f | U\times V = \scrL (\chi f)| U\times V , f \in \scrE \prime (\BbbR \times M).

In particular, for any f \in \scrE \prime (\BbbR \times M) there are a, b \in \BbbR such that the support of \scrL f
is contained in [a, b]\times \partial  - SM .

Proof. The claimed localization clearly holds when f \in C\infty 
0 (\BbbR \times M). For a

distribution f \in \scrE \prime (\BbbR \times M) we choose a sequence of functions fj \in C\infty 
0 (\BbbR \times M) such

that fj \rightarrow f in \scrE \prime (\BbbR \times M). Then

\scrL f | U\times V = lim
j\rightarrow \infty 

\scrL fj | U\times V = lim
j\rightarrow \infty 

\scrL (\chi fj)| U\times V = \scrL (\chi f)| U\times V .

There is a0 \in \BbbR such that f = 0 in ( - \infty , a0) \times M . If s < a0  - T , then the
nontrapping assumption implies that the light ray \beta (r) = (r + s, \gamma (r; y, v)) does not
intersect supp (f) for any (y, v) \in \partial  - SM . Now setting U = ( - \infty , a), with a =
a0  - T  - 1, and V = \partial  - SM , we can choose \chi so that \chi = 1 in W and \chi = 0 in
supp (f). Then \scrL f vanishes in ( - \infty , a) \times \partial  - SM . Similarly we can get an upper
bound for the support with respect to time.
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5.3. On partial Fourier transform in time. On a product manifold \BbbR \times M
we define the partial Fourier transform in time by

\langle \widehat f(z), \varphi \rangle \scrE \prime \times C\infty (M) = \langle f, e - izt \otimes \varphi \rangle \scrE \prime \times C\infty (\BbbR \times M), f \in \scrE \prime (\BbbR \times M), z \in \BbbC .

It follows from [24, Th. 2.1.3] that z \mapsto \rightarrow \langle \widehat f(z), \varphi \rangle is smooth and for all j = 1, 2, . . . ,

\partial jz\langle \widehat f(z), \varphi \rangle = \langle f, \partial jze - izt \otimes \varphi \rangle , \partial \=z\langle \widehat f(z), \varphi \rangle = 0.

The latter identity says that z \mapsto \rightarrow \langle \widehat f(z), \varphi \rangle is analytic, and the former implies that

the map f \mapsto \rightarrow \partial jz
\widehat f(z)| z=0 is continuous from \scrE \prime (\BbbR \times M) to \scrE \prime (M).

Let a, b \in \BbbR , and consider L2((a, b) \times M) as a subspace of L2(\BbbR ;E) with E =

L2(M). Then the above definition of \widehat f(z) coincides with the usual definition of the
Fourier transform on L2(\BbbR ;E). Let us recall that the Fourier transform on L2(\BbbR ;E)
is a unitary isomorphism as E is a Hilbert space; see, e.g., the discussion on page 16
of [40]. It is also easy to see that the map f \mapsto \rightarrow \partial jz

\widehat f(z)| z=0 is continuous from
L2((a, b)\times M) to L2(M).

5.4. Geodesic ray transform on \bfitL \bftwo functions. Since \partial M is strictly convex,
\scrI extends as a map from L2(M) to L2(\partial  - SM) with a suitably chosen measure on
\partial  - SM (see, for example, [44, Th. 4.2.1]). In what follows, we will therefore assume
that \scrI is a map from L2(M) to L2(\partial  - SM).

5.5. The remainder operator \bfscrR \bfitj on \bfitL \bftwo functions. Let us consider the
operators \scrR j , j = 1, 2, . . . , defined in Lemma 5.1. For f \in C\infty 

c (M) it holds that

| \scrR jf(x, v)| \leq Lj
\int \tau +(x,v)

0

| f(\gamma (r, x, v))| dr = Lj \scrI (| f | )(x, v), (x, v) \in \partial  - SM,

where L = Diam(M). Therefore,

\| \scrR jf\| L2(\partial  - SM) \leq Lj \| \scrI (| f | )\| L2(\partial  - SM) \leq C \| f\| L2(M) ,

and \scrR j has a unique continuous extension as a map from L2(M) to L2(\partial  - SM).

5.6. The inversion. Let f \in L1((0, T );L2(M)), and choose a sequence of func-
tions fj \in C\infty 

c ((0, T ) \times M) such that fj \rightarrow f in L1((0, T );L2(M)). Then \scrL fj \rightarrow \scrL f
in \scrD \prime (\BbbR \times \partial  - SM). As \scrL f and \scrL fj are compactly supported in time by Lemma 5.2,

also \partial kz
\widehat \scrL fj(0) \rightarrow \partial kz

\widehat \scrL f(0) in \scrD \prime (\partial  - SM). Furthermore, \partial kz
\widehat fj(0) \rightarrow \partial kz

\widehat f(0) in L2(M).
Finally, using the L2-continuity of \scrI and \scrR k, we see that the identity (5.1), which
holds for each fj , holds also for f by passing to the limit.

Recalling that \scrI is injective on L2(M) for simple manifolds (M, g) (see, for ex-

ample, [3] or [45]), we see that \scrL f = 0 implies that \partial kz
\widehat f(0) = 0, as a function in

L2(M), for all k = 0, 1, . . . . For any \varphi \in C\infty 
c (M) all the derivatives of the analytic

function \langle \widehat f(z), \varphi \rangle vanish at the origin. Hence \langle \widehat f(z), \varphi \rangle vanishes identically. Therefore\widehat f vanishes as a function in L2(\BbbR ;E) with E = L2(M). We conclude that f = 0.

Acknowledgment. The authors would like to thank Lauri Oksanen for helpful
discussions and his contributions to parts of this paper.
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