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Abstract 

 The distances between pairs of tactile stimuli oriented across the width of the hand 1 

dorsum are perceived as about 40% larger than equivalent distances oriented along the 2 

hand length. Clear anisotropies of varying magnitudes have been found on different 3 

sites on the limbs and less consistently on other parts of the body, with anisotropies on 4 

the centre of the forehead, but not on the belly. Reported anisotropies on the centre of 5 

forehead, however, might reflect an artefact of categorical perception from the face 6 

midline, which might be comparable to the expansion of tactile distance perception 7 

observed for stimuli presented across joint boundaries. To test whether tactile 8 

anisotropy is indeed a general characteristic of the tactile representation of the face, we 9 

assessed the perceived distance between pairs of touches on the cheeks and three 10 

locations on the forehead: left, right and centre. Consistent with previous results, a clear 11 

anisotropy was apparent on the centre of the forehead. Importantly, similar anisotropies 12 

were also evident on the left and right sides of the forehead and both cheeks. These 13 

results provide evidence that anisotropy of perceived tactile distance is not a specific 14 

feature of tactile organization at the limbs but it also exists at the face, and further 15 

suggest that the spatial distortions found for tactile distances that extend across multiple 16 

body parts are not present for stimuli that extend across the body midline.  17 

 18 

Keywords: distance perception, anisotropy, categorical perception, face, tactile 19 

perception.  20 

 21 

  22 
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Introduction 23 

 In one of the first systematic investigations of the sense of touch in the 19th 24 

century, Weber (1834) found that as he moved the two points of a compass across his 25 

skin it felt to him as if the distance between them increased as he moved them from a 26 

region of relatively low sensitivity (e.g., the forearm) to a region of relatively higher 27 

sensitivity (e.g., the hand). This pattern has been replicated in numerous subsequent 28 

studies (Anema, Wolswijk, Ruis, & Dijkerman, 2008; Cholewiak, 1999; Goudge, 29 

1918; Miller, Longo, & Saygin, 2016; Taylor-Clarke, Jacobsen, & Haggard, 2004), 30 

which collectively demonstrate a systematic relation between tactile sensitivity and 31 

perceived tactile distance on the skin. Analogous illusions can also be shown for 32 

stimuli in different orientations on a single skin surface (e.g., Fiori & Longo, 2018; 33 

Green, 1982; Longo & Haggard, 2011). For example, Longo and Haggard (2011) 34 

found that tactile distances oriented across the width of the hand dorsum are perceived 35 

as about 40% larger than equivalent distances oriented along hand length. 36 

 Such anisotropies in perceived tactile distance have been reported on several 37 

skin surfaces. In addition to the hand dorsum (Canzoneri et al., 2013; Longo & 38 

Golubova, 2017; Longo & Haggard, 2011; Longo & Sadibolova, 2013; Miller, Longo, 39 

& Saygin, 2014), other studies have reported anisotropies on the forearm (Green, 40 

1982; Le Cornu Knight, Longo, & Bremner, 2014), the thigh (Green, 1982), and the 41 

shin (Stone, Keizer, & Dijkerman, 2018). Intriguingly, in each of these cases, the 42 

direction of the anisotropy is similar, with distances perceived as larger when oriented 43 

across the width of the limbs than when oriented along their length. Longo and 44 

Haggard (2011) suggested that both the classic form of Weber’s illusion and such 45 

anisotropies could result from the geometry of tactile receptive fields in 46 

somatosensory cortex, which in addition to being smaller on sensitive skin surfaces 47 
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(Mountcastle, 2005; Sur, Merzenich, & Kaas, 1980), are generally oval-shaped on the 48 

limbs with the long axis of the receptive field aligned with the long axis of the limb 49 

(Alloway, Rosenthal, & Burton, 1989; Brooks, Rudomin, & Slayman, 1961). 50 

Interestingly, anisotropies on the glabrous skin of the palm are substantially smaller or 51 

even absent (Fiori & Longo, 2018; Le Cornu Knight et al., 2014; Longo, Ghosh, & 52 

Yahya, 2015), which is consistent with the idea that tactile receptive fields on the 53 

palm are circular, and when oval-shaped without a consistent orientation (DiCarlo & 54 

Johnson, 2002; DiCarlo, Johnson, & Hsiao, 1998). Moreover, anisotropies of tactile 55 

distance differ in magnitude across body parts, which have been found for example to 56 

be larger on the forearm than on the hand dorsum (Le Cornu Knight et al., 2014). 57 

Thus, assessing the anisotropy of tactile distance across body parts is a powerful tool 58 

to assess the structure of tactile spatial perception across the body. 59 

 Interestingly, there does not appear to be an anisotropy of tactile distance on 60 

the belly (Green, 1982; Longo, Lulciuc, & Sotakova, 2019; Marks et al., 1982), 61 

consistent with the interpretation that tactile distance anisotropy is a specific 62 

characteristic of the limbs, with their highly elongated shape. Two recent studies, 63 

however, have reported anisotropies of tactile distance perception on the face (Fiori & 64 

Longo, 2018; Longo et al., 2015). Longo, et al., (2015) used a two-alternative forced-65 

choice paradigm and found that tactile distances oriented across the width of the 66 

forehead (i.e., the ear-to-ear axis) were perceived as about 20% larger than 67 

comparable distances oriented with the height of the forehead (i.e., the chin-to-68 

forehead axis). Fiori and Longo (2018) asked participants to make verbal size 69 

estimates of single tactile distances, and also found an anisotropy with distance across 70 

the forehead perceived as larger. However, one notable aspect of both these studies is 71 

that they presented stimuli at the centre of the forehead. This means that stimuli 72 
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presented across the width of the forehead, but not along its height, included one 73 

touch on each side of the body midline. It is therefore possible that tactile distance 74 

anisotropies on the forehead might indeed reflect an artifact of the across stimuli 75 

straddling the face midline, rather than a general characteristic of the tactile 76 

representation of the face. Several studies have found perceptual expansion of tactile 77 

distances which cross joint boundaries (de Vignemont, Majid, Jola, & Haggard, 2008; 78 

Le Cornu Knight, Cowie, & Bremner, 2017; Le Cornu Knight et al., 2014). These 79 

studies have found that pairs of tactile stimuli straddling the wrist are overestimated in 80 

distance beyond what would be expected given judgments on the adjacent regions of 81 

the forearm and hand, indicating a form of categorical perception based on 82 

segmentation of the body into discrete parts. In this regard, the body midline could – 83 

like joints – produce categorical perception effects for stimuli falling on opposite 84 

sides, given the bilateral symmetry of the human body and the fact the tactile signals 85 

from each side of the body are sent primarily to the contralateral cerebral hemisphere 86 

(Mountcastle, 1957; Penfield & Boldrey, 1937).  87 

 To our knowledge no previous studies have investigated a potential effect of 88 

the body midline on tactile distance perception. Note that the lack of anisotropy at the 89 

center of the belly in previous studies (Green, 1982; Longo et al., 2019; Marks et al., 90 

1982) is not indicative per se of the lack of midline categorical effects, as these 91 

studies did not test anisotropy at the side of the belly for comparison. Hence, the 92 

reported lack of anisotropy at the center of the belly could be the net combination of 93 

positive categorical perception plus a reverse anisotropy effect, where the across 94 

stimuli is actually perceived shorter than the along.      95 

 In this study, we investigated whether there are anisotropies of perceived 96 

tactile distance on the face independent of potential categorical perception induced by 97 
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the body midline, to first, clarify whether body midline can affect perception in the 98 

same way as joint boundaries can, and second, to provide a detailed description of 99 

distortions of tactile space in five regions of the face. In Experiment 1, we compared 100 

perceived tactile distances across vs. along the left and right sides of the forehead (i.e., 101 

entirely on one side of the midline) and the left and right cheeks. In Experiment 2, we 102 

directly compared stimuli presented centred on the forehead to stimuli presented 103 

entirely on the left or right sides.  104 

 105 

Experiment 1 106 

 In the first experiment, we measured anisotropies on the left and right sides of 107 

the forehead and cheek. Because all stimuli were presented entirely on one side of the 108 

body midline, any potential effect of categorical perception based on the midline 109 

should not affect results.  110 

 111 

Methods 112 

Participants. Twenty-two people (11 women, mean age: 24.0 years, range: 19-113 

35) participated for payment after giving written informed consent. Procedures were 114 

approved by the local ethics committee. Testing started on an additional participant but 115 

ended after 10 trials due to a technical problem and this participant was excluded. All 116 

the participants took part in a second experiment (not involving touch), either on the 117 

same day (following the anisotropy task) or a week apart. The data of this experiment 118 

is not considered here. Data from three participants were excluded due to poor fitting 119 

of the data in one or more conditions (see below). 120 

 121 
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The two previous studies which investigated tactile distance anisotropies on 122 

the face found effect sizes of Cohen’s d = 1.11 (Longo et al., 2015) and 1.35 (Fiori & 123 

Longo, 2018), respectively. Averaging these numbers weighted by their sample sizes 124 

(35 and 25) gives an average effect size of Cohen’s d = 1.21. A power analysis using 125 

G*Power 3.1 software (Faul, Erdfelder, Land, & Buchner, 2007) found that 8 126 

participants were required for power of 0.80 and an alpha of 0.05. Our sample size is 127 

therefore well powered to identify comparable effects. 128 

 129 

Procedures. The stimuli were pairs of wooden sticks which tapered to a point 130 

(~1mm) that were embedded in foamboard at distances of 2, 2.5, 3, or 4 cm apart, 131 

similar to those we have used in other studies (e.g., Calzolari, Azañón, Danvers, 132 

Vallar, & Longo, 2017; Fiori & Longo, 2018; Hidaka, Tucciarelli, Azañón, & Longo, 133 

2020; Longo & Haggard, 2011). On each trial, two pairs of stimuli were applied to the 134 

participant’s face, one with the two touches oriented across the width of the face (i.e., 135 

the ear-to-ear axis) and one oriented along the length of the face (i.e., the chin-to-136 

forehead axis). Each stimulus was applied manually by an experimenter for 137 

approximately one second with an inter-stimulus interval of approximately one 138 

second. The participant’s task was to judge whether the distance between the two 139 

points felt farther apart in the along or the across orientation, by making an unspeeded 140 

verbal judgment. Across trials, there were seven pairs of distances used, varying in the 141 

ratio of distances in the two orientations (across/along): 2/4 cm, 2/3 cm, 2.5/3 cm, 3/3 142 

cm, 3/2.5 cm, 3/2 cm, 4/2 cm. 143 

 In different blocks, stimuli were applied to four different locations on the face: 144 

the left and right sides of the forehead and the left and right cheeks. On the forehead, 145 

we identified the location on each side of the forehead midway between the facial 146 
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midline (i.e., an upwards continuation of the midline of the nose) and the temple, 147 

which formed the centre point for stimuli. For the cheeks, stimuli were applied 148 

roughly midway between the lateral edge of the nose and the ear tragus. 149 

 There were four experimental blocks, one for each location on the face, which 150 

were presented in random order for each participant. Each block consisted of 56 trials, 151 

8 trials for each of the 7 ratios between the across and along distances, half with the 152 

across stimulus presented first and half with the along stimulus presented first. The 56 153 

trials in each block were presented in random order. If a given stimulus was perceived 154 

as a single touch or as a pair of non-simultaneous touches, that trial was cancelled and 155 

repeated at the end of the condition. This procedure was added in case participants 156 

presented with a two-point discrimination threshold larger than the smaller of our 157 

stimuli (i.e., 2 cm) in a given orientation or location on the face. However, 158 

participants overall reported the perception of one (or non-simultaneous stimulation) 159 

in less than 1% of the trials (M = 0.79%), which were removed from analyses and re-160 

tested at the end. Regardless of this, the mean two point-point discrimination 161 

threshold reported in several studies at the cheeks and forehead is well below 2 cm 162 

(Mancini et al., 2014; Sato, Okada, Miyamoto, & Fujiyama, 1999; Vriens & van der 163 

Glas, 2009; Won, Kim, Kim, & Kim, 2017). Nevertheless, it does remain possible that 164 

on some trials participants may have felt only one touch for one of the stimuli, which 165 

could affect the nature of the judgment they made. Participants were allowed to take a 166 

short break between blocks. They were blindfolded during the experiment. 167 

Analysis. We analysed the proportion of trials in which the tactile distance 168 

across the width of the face was judged as larger as a function of the ratio of the 169 

across and along stimuli, plotted logarithmically to produce a symmetric distribution 170 

around a ratio of 1 (i.e., the ratio at which the two distances were the same size). Data 171 
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from each skin region in each participant was fit with a cumulative Gaussian function 172 

using maximum-likelihood estimation with the Palamedes toolbox (Prins & Kingdom, 173 

2009) for MATLAB (Mathworks, Natick, MA). 174 

 The criteria for exclusion of participants was if the R2 for the psychometric 175 

functions was less than 0.5 in any of the four skin regions, as in other recent studies 176 

from our lab (Longo, 2017; Longo et al., 2015; Longo & Morcom, 2016). Three 177 

participants were excluded on this basis. 178 

 The cumulative Gaussian curve fit to the data has two parameters, the mean 179 

and the standard deviation. The mean of the function indicates the point of subjective-180 

equality (PSE), that is the ratio between the across and along stimuli for which 181 

participants were equally likely to say that each was bigger. If there is no anisotropy, 182 

then the PSE should on average be equal to 1 (i.e., the stimuli should feel the same 183 

when they really are the same). If there is a perceptual bias for stimuli to be perceived 184 

as bigger when oriented with face height than with face width then PSEs should on 185 

average be larger than 1 (i.e., the stimuli would be perceived as the same size when 186 

the across stimulus was bigger); in contrast, if there is a bias for stimuli to be 187 

perceived as bigger when oriented with face width than height then PSEs should be 188 

less than 1 (i.e., the stimuli would be perceived as the same size when the along 189 

stimulus was bigger). The second parameter of the psychometric function, the 190 

standard deviation is inversely related to the slope of the psychometric function, and 191 

therefore to the precision of responses. 192 

 To assess anisotropy, we conducted one-sample t-tests comparing mean PSE 193 

to a ratio of 1. Note that all statistical tests were performed on the logarithms of PSEs, 194 

which were converted back to ratios for reporting mean values. To compare the 195 

different skin surfaces, we conducted a 2x2 factorial analysis of variance (ANOVA) 196 
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including region (forehead, cheek) and laterality (left, right) as within-subject factors 197 

and both PSEs and standard deviations as dependent variables.  198 

 As measures of effect size, we calculated Cohen’s d for one-sample t-tests, dz 199 

for paired t-tests, and ηp2 for F-statistics. 200 

 201 

Results and Discussion 202 

 The results from Experiment 1 are shown in Figure 1. R2 values indicated 203 

good fit to the data, with psychometric functions accounting for 86.2% of the variance 204 

on the forehead and 92.3% on the cheek. To investigate the presence of anisotropy on 205 

the forehead and cheek, we first compared mean PSEs to 1 collapsing across the left 206 

and right sides. There was a clear anisotropy on the forehead (M: 0.884), t(18) = -207 

4.71, p < 0.0005, d = 1.081, with tactile distances oriented across the width of the 208 

forehead perceived as larger than those oriented along forehead height. There was 209 

also a clear anisotropy in the same direction on the cheek (M: 0.889), t(18) = -3.99, p 210 

< 0.001, d = 0.915.  211 

 An ANOVA on PSEs revealed a modest effect of laterality, F(1, 18) = 4.63, p 212 

= 0.045, ηp2 = 0.205, with larger anisotropy on the left (M: 0.860) than on the right 213 

side of the face (M; 0.913). There was no main effect of skin region, F(1, 18) = 0.02, 214 

p > 0.50, ηp2 = 0.001, nor an interaction of region and laterality, F(1, 18) = 0.33, p > 215 

0.50, ηp2 = 0.018. 216 

 An ANOVA on the standard deviations of the psychometric functions revealed 217 

a significant main effect of body part, F(1, 18) = 16.94, p < 0.001, ηp2 = 0.485, with 218 

smaller standard deviations (i.e., higher sensitivity) on the cheek than the forehead. 219 

There was also a significant main effect of laterality, F(1, 18) = 8.35, p = 0.010, ηp2 220 

=0.317, with smaller standard deviations on the right side of the face than on the left 221 
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side. There was no significant interaction between body part and laterality, F(1, 18) = 222 

1.88, p = 0.187, ηp2 = 0.095. 223 

 This experiment replicates the anisotropies on the forehead reported in 224 

previous studies (Fiori & Longo, 2018; Longo et al., 2015). Critically, because in 225 

contrast to those previous studies, stimuli were presented entirely on one side of the 226 

face midline, these results demonstrate further that this effect does not require that the 227 

across stimuli straddle the face midline. 228 

 229 

Figure 1. Results from Experiment 1. a) Proportion of “across” stimuli judged larger as a function of 230 

the presented ratio (Across/Along). Curves are cumulative Gaussian function fits of the data. All four 231 

locations showed anisotropy, with tactile distances oriented across the width of the face perceived as 232 

larger than those oriented along height of the face (all points of subjective equality < 1; all p < 0.025). 233 

b) Ratio between the across and along stimuli for which participants were equally likely to say that 234 

each was bigger at each condition (i.e., point of subjective equality, PSE). Error bars represent the 235 

standard error of the mean.  236 

 237 

Experiment 2 238 

 The results from Experiment 1 demonstrate that tactile distance anisotropy on 239 

the forehead exists independent of any potential effect of categorical perception from 240 

the face midline. However, the magnitude of anisotropy found on the sides of the 241 
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forehead in Experiment 1 (M: 0.887) is somewhat smaller in magnitude than that 242 

found previously on the centre of the forehead (M: 0.818; Longo et al., 2015). This is 243 

consistent with the possibility that there may be a categorical perception effect from 244 

the face midline that modulates the magnitude of anisotropy. To investigate this 245 

possibility, Experiment 2 compared anisotropy at the centre of the forehead and on the 246 

right and left sides of the forehead in the same participants. 247 

 248 

Participants 249 

 Thirty people (18 women, mean age: 27.6 years, range: 20-45) participated 250 

after giving written informed consent. To our knowledge there are five previous 251 

experiments which have measured categorical perception effects on tactile distance 252 

(all at the wrist): Experiments 1 and 2 of de Vignemont and colleagues (2008), 253 

Experiments 1 and 2 of Le Cornu Knight and colleagues (2014), and the single 254 

experiment reported by Le Cornu Knight and colleagues (2017). For each of these 255 

experiments, we calculated the effect size (Cohen’s dz) for the key comparison of 256 

stimuli crossing the wrist to stimuli on the hand. We calculated an average of these 257 

effect sizes weighted by the sample size of each experiment, which yielded a mean 258 

effect size of Cohen’s dz = 0.590. A power analysis using G*Power 3.1 for a two-259 

tailed t-test with this effect size, power of 0.80, alpha of 0.05, indicated that 25 260 

participants were required. Our sample is therefore appropriately powered to identify 261 

a comparable effect of the body midline. 262 

 263 

Methods 264 

 Stimuli were similar to those used in Experiment 1. Across trials, stimuli were 265 

presented at three locations on the forehead. The left and right forehead locations 266 



Anisotropy on the face 

 

14 

14 

were defined as in Experiment 1, while the centre location was in the middle of the 267 

forehead, straddling the facial midline, consistent with the location of stimuli in the 268 

two other studies that investigated tactile distance on the face (Fiori & Longo, 2018; 269 

Longo et al., 2015). There were five pairs of distances used (across/along): 2/4 cm, 270 

2/3 cm, 3/3 cm, 3/2 cm, 4/2 cm, as in previous studies from our lab (e.g., Calzolari et 271 

al., 2017; Longo et al., 2015; Longo & Haggard, 2011). The participant’s task was to 272 

judge whether the distance between the two touches felt bigger for the first or for the 273 

second stimulus, rather than indicating whether the along or the across stimulus was 274 

larger (as in Experiment 1). This change reduces the likelihood that any biases 275 

observed in Experiment 1 might have been due to response bias, to preferentially 276 

respond ‘across’, rather than perceptual bias.  277 

 There were 7 blocks of 30 trials each. Each block included 2 repetitions of 278 

each pair of distances (14 in total), one with the across stimulus first another with the 279 

along stimulus first, at each of the three forehead locations. The order of trials was 280 

randomised in each block. Again, a trial was repeated (at the end of the block), if the 281 

participant reported feeling one touch rather than two or two asynchronous touches 282 

(0.38%).  283 

 284 

Analysis 285 

 The analysis was similar to that of Experiment 1. We applied the same 286 

exclusion criteria (i.e., R2 < 0.5 in any condition), but no participant was excluded. 287 

One-sample t-tests were used to compare mean PSE in each condition to a ratio of 1. 288 

A one-way repeated-measures analysis of variance (ANOVA) was used to compare 289 

the three conditions. Mauchley’s test revealed no violation of the sphericity 290 

assumption. 291 
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 292 

Results and Discussion 293 

The results from Experiment 2 are shown in Figure 2. Overall, the 294 

psychometric functions showed good fit to the data, with mean R2 indicating that they 295 

accounted for 95.4%, 94.7%, and 96.5% of the variance in the centre, left, and right 296 

locations, respectively.  297 

A significant anisotropy was apparent at the centre of the forehead (M: 0.919), 298 

t(29) = -2.38, p < 0.05, d = 0.435. Critically, similar anisotropies were also found on 299 

the left side of the forehead (M: 0.857), t(29) = -4.41, p < 0.0001, d = 0.806, and the 300 

right side (M: 0.912), t(29) = -2.39, p < 0.05, d = 0.437. An ANOVA revealed no 301 

significant differences between the three locations, F(2, 58) = 2.50, p = 0.09, ηp2 = 302 

0.079. It is worth noting that of the three testing locations, the numerical magnitude of 303 

anisotropy was actually smallest on the centre of the forehead, a trend if anything 304 

opposite to what would be expected if there were an effect of categorical perception. 305 

Given the laterality effect observed in Experiment 1, we also compared the 306 

magnitude of anisotropy on the left and right forehead. This difference was not 307 

statistically significant, t(29) = -1.64, p = 0.111, dz = 0.300, but the trend was in the 308 

same direction as observed in Experiment 1. 309 

An ANOVA on the standard deviation of the psychometric function revealed a 310 

significant effect of stimulus location, F(2, 58) = 5.89, p < 0.01, ηp2 = 0.169. Standard 311 

deviations were significantly smaller at the centre of the forehead than on the left, 312 

t(29) = -2.37, p < 0.05, dz = 0.432, or the right, t(29) = -3.07, p < 0.005, dz = 0.560, 313 

side. Thus, while there was no evidence that perceptual distances are expanded for 314 

stimuli straddling the face midline, sensitivity does appear to be higher near the 315 

midline. Given the laterality effect on standard deviations found in Experiment 1, we 316 
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also compared the left and right sides directly, which did not differ significantly, t(29) 317 

= 1.20, p > 0.20, dz = 0.218, with the trend going in the opposite direction to that seen 318 

in Experiment 1. 319 

 The results of this experiment provide further evidence for the existence of 320 

tactile distance anisotropies on the forehead. There was no evidence, however, for a 321 

categorical perception effect on tactile distance for stimuli crossing the facial midline. 322 

This is in interesting contrast to studies which have reported such effects for stimuli 323 

crossing joint boundaries (de Vignemont et al., 2008; Le Cornu Knight et al., 2017, 324 

2014).  325 

 326 

 327 

 328 

Figure 2. Results from Experiment 2. a) Proportion of “across” stimuli judged larger as a function of 329 

the presented ratio (Across/Along). Curves are cumulative Gaussian function fits of the data. All three 330 

locations on the forehead showed anisotropy (all points of subjective equality < 1; all p < 0.05). b) 331 

Ratio between the across and along stimuli for which participants were equally likely to say that each 332 

was bigger at each condition (i.e., point of subjective equality, PSE). Error bars represent the standard 333 

error of the mean. 334 

 335 
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Meta-Analysis of Studies Investigating Anisotropy on the Forehead 336 

 Four experiments, to our knowledge, have now investigated tactile distance 337 

anisotropy on the forehead, the two experiments reported here and two previous 338 

studies (Fiori & Longo, 2018; Longo et al., 2015). To aggregate information across 339 

these studies, we therefore conducted a random-effects meta-analysis using the 340 

metafor package (Viechtbauer, 2010) for R 3.4.3 software. The study of Longo and 341 

colleagues (2015) used a two-alternative forced-choice method, with anisotropy 342 

quantified as the PSE of the psychometric function, as in the two studies reported 343 

here. In contrast, in the study of Fiori and Longo (2018) participants made verbal 344 

estimates of the size of stimuli in different orientations, with anisotropy quantified as 345 

the ratio of judged size in the across and along orientations. Because of this difference 346 

in methods, we conducted the meta-analysis on standardised means. Because Cohen’s 347 

d produces a slight upwards estimation bias, corrected effect sizes (Hedges’s g) were 348 

used (Borenstein, Hedges, Higgins, & Rothstein, 2009). In each case, positive values 349 

of Hedges’s g indicate a bias to judge stimuli as larger in the across orientation, and 350 

negative values a bias to judge stimuli as larger in the along orientation. The different 351 

stimulus locations in the two experiments reported here were collapsed for this 352 

analysis. 353 

Figure 3 shows a forest-plot of the results from the meta-analysis. Overall, 354 

there was clear evidence for anisotropy on the forehead, with an overall meta-analytic 355 

estimate of a large effect size (M: 0.987), z = 6.58, p < 0.0001, 95% CI = [0.693 – 356 

1.281]. There was no evidence for heterogeneity, Q(3) = 4.58, p > 0.20, I2 = 37.0%, 357 

indicating that the variability between experiments was not larger than would be 358 

expected by chance. 359 

 360 
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 361 

Figure 3: Forest plot showing results from a random-effects meta-analysis of 362 

experiments investigating tactile distance anisotropy on the forehead. Positive values 363 

of Hedges’s g indicate a bias to judge tactile distances as larger when oriented across 364 

the width of the forehead. Collectively, these results provide strong evidence for 365 

anisotropy on the forehead. 366 

 367 

General Discussion 368 

 The present results provide clear evidence for anisotropies of tactile distance 369 

perception on the face, both on the forehead and the cheek. These results converge 370 

with other recent studies (Fiori & Longo, 2018; Longo et al., 2015) in showing that 371 

tactile distances oriented across the width of the face (i.e., the ear-to-ear axis) are 372 

perceived as larger than distances oriented along the length of the face (i.e., the chin-373 

to-forehead axis). The present results further demonstrate that such effects on the face 374 

are not an artefact of the across stimuli straddling the face midline, as clear 375 

anisotropies were found for stimuli on both the forehead and cheeks that were entirely 376 

on one side of the midline. 377 
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 These results add to a growing literature showing tactile distance anisotropies 378 

across a wide range of skin regions. In addition to the forehead and cheek, biases to 379 

judge tactile distance as larger when aligned with body width than with body length 380 

have also been found on the hand dorsum (Longo & Golubova, 2017; Longo & 381 

Haggard, 2011), the forearm (Green, 1982; Le Cornu Knight et al., 2014), the thigh 382 

(Green, 1982), and the shin (Stone et al., 2018). Similar effects have also been found 383 

on the palm in a few studies (Fiori & Longo, 2018; Le Cornu Knight et al., 2014; 384 

Longo et al., 2015) whereas other studies have found no anisotropy (Green, 1982; 385 

Longo & Golubova, 2017; Longo & Haggard, 2011). Even when an anisotropy has 386 

been found on the palm, however, it has always been substantially smaller than on the 387 

dorsum. The one body part on which no anisotropy has been consistently found in 388 

healthy participants is the belly (Green, 1982; Longo et al., 2019; Marks et al., 1982), 389 

although recent studies suggest that anisotropy on the belly may occur in conditions 390 

such as anorexia nervosa (Engel & Keizer, 2017; Keizer et al., 2011; Keizer, Smeets, 391 

Dijkerman, van Elburg, & Postma, 2012; Spitoni et al., 2015) and obesity (Mölbert et 392 

al., 2016; Scarpina, Castelnuovo, & Molinari, 2014). The presence of anisotropy on 393 

the face is therefore notable in that it is the one non-limb body part on which 394 

anisotropy has been consistently found. This demonstrates that anisotropy is not a 395 

specific characteristic of the limbs, with their highly elongated shape. 396 

 Several recent studies have found categorical perception effects of joint 397 

boundaries on tactile distance, with tactile distances straddling the wrist boundary 398 

overestimated compared to stimuli on the adjacent regions of the forearm and hand 399 

(de Vignemont et al., 2008; Le Cornu Knight et al., 2017, 2014).  In the current study, 400 

not only was the anisotropy in tactile distance perception on the forehead found not to 401 

be an artefact of categorical perception from the face midline, we found no evidence 402 
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for such categorical perception effects at all. This suggests that whereas joint 403 

boundaries may induce discontinuities into tactile perceptual experience, the body 404 

midline may not.  405 

 It is important to note that in the case of joints, continuous motion provides 406 

repeated sensory feedback about the categorical distinction between body parts, which 407 

could explain the altered and biased perception across joints, while this is not the case 408 

for the two adjacent skin regions separated through the midline. On the other hand, 409 

the lack of categorical perception across the midline may be related to inter-410 

hemispheric communication between somatosensory regions and to the distribution of 411 

ipsilateral projections of tactile afferent signals. Neurophysiological studies have 412 

found that both ipsilateral responses (Conti, Fabri, & Manzoni, 1986; Dreyer, Loe, 413 

Metz, & Whitsel, 1975; Iwamura, 2000; Jones & Powell, 1969a) and callosal 414 

projections (Jones & Powell, 1969b; Killackey, Gould, Cusick, Pons, & Kaas, 1983; 415 

Shanks, Pearson, & Powell, 1985) are stronger for regions close to the midline on 416 

both the torso and the face. Analogous results have been reported in humans using 417 

both fMRI (Fabri, Polonara, Salvolini, & Manzoni, 2005) and psychophysical (Tamè 418 

& Longo, 2015) methods. This pattern has been traditionally interpreted as a 419 

mechanism for binding the representations of the two hemi-bodies (Jones & Powell, 420 

1969b; Pandya & Vignolo, 1969), a process of “midline fusion” (Manzoni, Barbaresi, 421 

Conti, & Fabri, 1989) analogous to that seen in the visual system to merge the two 422 

visual hemi-fields (Hubel & Wiesel, 1967). The absence of categorical perception 423 

effects related to the midline may therefore be a result of a specific aspect of 424 

somatosensory organisation designed to avoid perceptual discontinuities at the 425 

midline.  426 
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 In contrast to the lack of effects of stimulus location on the forehead on 427 

anisotropy, there was an effect on the standard deviation of the psychometric 428 

functions. Sensitivity of discriminating tactile distances was higher for stimuli 429 

presented at the centre of the forehead than on either the left or right side. Thus, the 430 

facial midline may be associated with higher tactile precision, without inducing any 431 

spatial distortions. This may be related to the finding that tactile acuity and the 432 

precision of tactile localisation are higher in the vicinity of joints than in the centre of 433 

limbs (e.g., Boring, 1942; Cody, Garside, Lloyd, & Poliakoff, 2008; Weber, 1834). It 434 

is also possible that this enhanced sensitivity near the midline might result directly 435 

from the mechanisms described in the previous paragraph. Stimuli near the midline 436 

may be processed by mechanisms in both the left and right somatosensory cortices, 437 

whereas more lateral stimuli may be processed more exclusively contralaterally.  438 

 The finding of anisotropy on both the cheek and forehead, innervated 439 

respectively by the maxillary and opthalamic branches of the trigeminal nerve, is 440 

notable in light of evidence that the representation of the upper and lower regions of 441 

the face may be represented differently. Woolsey and colleagues (Ullrich & Woolsey, 442 

1954; Woolsey, Marshall, & Bard, 1942) reported that trigeminal inputs in monkeys 443 

are represented in two distinct regions of the somatosensory cortex, a main trigeminal 444 

region and an “upper head area”. Detailed somatotopic maps of the face have found 445 

clear segregation of neurons responsive to each of the three divisions of the trigeminal 446 

nerve (Dreyer et al., 1975). Similar separation has also been found in the map of the 447 

face in New World monkeys (Jain, Qi, Catania, & Kaas, 2001), with separate areas 448 

representing the upper and lower face. In humans, studies using fMRI have found 449 

inconsistent patterns of activations with regard to the representations of the face in the 450 

primary somatosensory cortex (SI). For instance, Iannetti and colleagues (2003), 451 
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found a large overlap, within both SI and the secondary somatosensory cortex (SII), 452 

of the foci activated by mechanical stimulation of the forehead (ophthalmic trigeminal 453 

division) and lower lip (mandibular trigeminal division). Moulton and colleagues 454 

(2009), on the other hand, found that facial areas stimulated with a brush within an 455 

onion‐skin layer (i.e., segmenting the face through concentric oval shapes from rostral 456 

to caudal), even though at separate stimulation sites and innervated by different 457 

branches of the trigeminal nerve, e.g., a section of the forehead and cheek, were 458 

closely represented in the cortex (see also Dasilva et al., 2002). On the motor side, 459 

there are clear double dissociations for apraxia for the lower and upper face 460 

(Bizzozero et al., 2000). Perceptual studies of self-face representation based on the 461 

relative localisation of different face parts have identified independent representations 462 

of the upper and lower face (Fuentes, Runa, Blanco, Orvalho, & Haggard, 2013) 463 

which show different patterns of distortion (Mora, Cowie, Banissy, & Cocchini, 464 

2018). In the present study, however, we found no difference in the nature or 465 

magnitude of tactile distance anisotropy on the lower and upper face.  466 

 Of course, the anisotropies observed on the cheek and forehead are also 467 

similar to those reported on the hand in a number of studies. The qualitatively similar 468 

anisotropies found on the face and the hand are intriguing in light of the potential 469 

similarities across the shape of receptive fields, as well as functional connections 470 

between the representations of these body parts. With regard to the shape of facial 471 

receptive fields, there has been several studies focusing on the somatosensory 472 

representation of head and face of both monkeys, using invasive electrophysiology 473 

(Cusick, Wall, & Kaas, 1986; Dreyer et al., 1975; Manger, Woods, & Jones, 1995) 474 

and humans, using microneurography during natural facial behaviors and/or tactile 475 

stimulation (Johansson, Trulsson, Olsson, & Abbs, 1988; Nordin & Thomander, 476 
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1989; M Trulsson & Essick, 2010; Mats Trulsson & Johansson, 2002). However, the 477 

inferred shape of facial receptive fields across the face is sparse and variable, and 478 

little is known with regard to the forehead. With regard to potential functional 479 

connections, several lines of evidence have shown functional linkages between 480 

sensori-motor representations of the face and hands (Gandevia & Phegan, 1999; 481 

Gentilucci, Benuzzi, Gangitano, & Grimaldi, 2001; Muret et al., 2014; 482 

Ramachandran, Rogers-Ramachandran, Stewart, & Pons, 1992; Serino, Padiglioni, 483 

Haggard, & Làdavas, 2009). One recent study of tool-use induced plasticity, however, 484 

found no transfer of effect on tactile distance judgments from the hand to the face 485 

(Miller, Cawley-Bennett, Longo, & Saygin, 2017). Two other studies that measured 486 

plasticity induced by vibration-induced illusions of finger elongation (de Vignemont, 487 

Ehrsson, & Haggard, 2005) and by arm immobilization (Bassolino, Finisguerra, 488 

Canzoneri, Serino, & Pozzo, 2015) used the face as a comparison region for tactile 489 

distances on the hand. Because clear effects were found in both studies comparing the 490 

hand and face, any transfer between hand and face could not have been more than 491 

partial. Indeed, we are not aware of any studies that have reported transfer of effects 492 

on tactile distance judgments between the hand and the face. Moreover, while 493 

qualitatively similar anisotropies were reported on the forehead and hands by Longo 494 

and colleagues (2015), there was no correlation between these. Thus, the exact 495 

relation between anisotropies found on different body parts remains unclear. 496 

 The belly is the only body part that has been tested so far were no anisotropy 497 

has been found (Green, 1982; Longo et al., 2019; Marks et al., 1982). One could 498 

argue that tactile anisotropy is due to the use of a frame of reference within which the 499 

applied distances are estimated and compared, using for instance neighboring 500 

anatomical landmarks, which are absent in the belly. However, even if landmarks 501 
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such as joints or facial features may affect tactile distance perception in general, it 502 

seems implausible that their use could produce the same type of anisotropies in body 503 

parts with very different type of landmarks, such as limbs and faces. Furthermore, 504 

there is empirical evidence that the magnitude of anisotropy is not necessarily 505 

correlated with the presence or absence of landmarks. For example, anisotropy is 506 

substantially smaller (or even absent) on the glabrous skin of the palm compared to 507 

the hairy skin of the hand dorsum (Longo, 2019; Longo et al., 2015; Longo & 508 

Haggard, 2011), despite the number and location of landmarks being similar on both 509 

sides of the hand. Similarly, the magnitude of anisotropy is bigger on the forearm than 510 

on the hand dorsum (Le Cornu Knight et al., 2014), though there are more landmarks 511 

on the hand.  512 

 The distortions of tactile distance perception on the face may be related to 513 

other perceptual distortions. Studies of explicit body size estimation have generally 514 

reported overestimation of face width, using a range of measures including the 515 

moving caliper procedure (Dolan, Birtchnell, & Lacey, 1987; Halmi, Goldberg, & 516 

Cunningham, 1977), the image marking procedure (Meermann, 1983), and the 517 

adjustable light-beam apparatus (Dolce, Thompson, Register, & Spana, 1987; 518 

Thompson & Thompson, 1986). Overestimation of the width of the face has also been 519 

reported using a range of other tasks (Bianchi, Savardi, & Bertamini, 2008; D’Amour 520 

& Harris, 2017; Fuentes et al., 2013; Mora et al., 2018). It is an intriguing possibility 521 

that perceptual distortions such as the ones we have reported here may be linked to 522 

distortions of the conscious body image. Indeed, previous studies have provided 523 

evidence that tactile distance perception may be linked to higher-level body 524 

representations by showing that illusions of body size (de Vignemont et al., 2005; 525 

Tajadura-Jiménez et al., 2012; Taylor-Clarke et al., 2004) and tool-use (Canzoneri et 526 
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al., 2013; Miller et al., 2014; Miller, Longo, & Saygin, 2017) produce corresponding 527 

modulations in tactile distance perception. 528 

 In Experiment 1 there was a significant effect of laterality, with larger 529 

anisotropy on the left side of the face than on the right side. This effect was 530 

unpredicted, only marginally significant, and was not replicated in Experiment 2 531 

(which did, however, find a non-significant trend in the same direction). Thus, we do 532 

not feel that any strong conclusion about laterality can be drawn. To our knowledge, 533 

only one previous study has compared tactile distance perception on the left and right 534 

sides of the body. Longo and colleagues (2015) found highly similar anisotropies on 535 

the left and right hands, with strong correlations between the two hands, and no hint 536 

of a laterality effect. The absence of a laterality effect for tactile distance on the hands 537 

mirrors the more general lack of differences between the two hands in tactile spatial 538 

acuity (Sathian & Zangaladze, 1996; Vega-Bermudez & Johnson, 2001).  539 

 540 
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