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Introduction
Cannabidiol (CBD) is one of the main constituents of cannabis 
and is gaining interest for its broad therapeutic potential (Campos 
et al., 2016; Devinsky et al., 2014; Freeman et al., 2019; Zuardi, 
2008). In addition to antipsychotic (Leweke et al., 2012; McGuire 
et al., 2018; Zuardi et al., 2012) and anxiolytic properties 
(Bergamaschi et al., 2011; Blessing et al., 2015; Crippa et al., 

2011; Soares and Campos, 2017), there is some evidence to sug-
gest that CBD may improve memory impairment across multiple 
domains, including working and episodic memory, as demon-
strated in several preclinical models (Avraham et al., 2011; 
Barichello et al., 2012; Campos et al., 2015; Cassol et al., 2010; 
Cheng et al., 2014a, 2014b; Fagherazzi et al., 2012; Magen et al., 
2009, 2010; Martin-Moreno et al., 2011; Pazos et al., 2012; 
Schiavon et al., 2014; Wright et al., 2013), cannabis users (Morgan 
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et al., 2010, 2012), and in cognitive impairment caused by the 
other main constituent of cannabis, ∆9-tetrahydrocannabinol 
(THC) (Englund et al., 2013; Hindocha et al., 2015), although this 
has not been found in all studies (Boggs et al., 2018; Hindocha 
et al., 2018a; Morgan et al., 2018). Additionally, CBD modulates 
emotional memory processing (Bitencourt and Takahashi, 2018; 
Das et al., 2013; de Carvalho and Takahashi, 2017; Hindocha 
et al., 2015; Hudson et al., 2018; Lee et al., 2017; Stern et al., 
2017; Uhernik et al., 2018), which may help to explain its putative 
therapeutic effects in post-traumatic stress disorder (PTSD; 
Hindocha et al., 2019; Shannon and Opila-Lehman, 2016) and 
anxiety disorders. However, the precise mechanisms underlying 
the effects of CBD on memory are unclear.

There is evidence that CBD alters cerebral blood flow (CBF) 
(Crippa et al., 2004, 2011) and this offers one possible mecha-
nism through which it may influence memory function. CBD has 
been widely described as an arterial vasodilator (Sultan et al., 
2017), and increases CBF in mouse models of stroke (England 
et al., 2015). In human single-photon emission computed tomog-
raphy (SPECT) studies of resting state, 400 mg of oral CBD 
modulated resting CBF in key limbic and paralimbic regions 
involved in memory processing, including decreased CBF in the 
left amygdala-hippocampal complex and increased CBF in the 
left parahippocampal gyrus in healthy volunteers (Crippa et al., 
2004). A similar study from the same laboratory later found that 
CBD decreased resting CBF in the left hippocampus and para-
hippocampal gyrus in patients with anxiety disorder (Crippa 
et al., 2011). Several functional neuroimaging studies using 
blood oxygen level dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) have also demonstrated haemodynamic 
effects of CBD (Bhattacharyya et al., 2012a), including reduc-
tions in medial temporal lobe structures whilst viewing fearful 
faces (Fusar-Poli et al., 2009) and during attentional salience pro-
cessing (Bhattacharyya et al., 2012b).

However, the proposed effects of CBD on regional CBF in 
humans have been disputed (Sultan et al., 2017). Previous studies 
(Crippa et al., 2004, 2011) have directly measured CBD-related 
changes in regional CBF using SPECT, an imaging modality 
with relatively low resolution to investigate regional effects. 
Additionally, no study has investigated the association between 
regional CBF and memory task performance under acute CBD. 
Our primary aim was therefore to investigate the acute effects of 
CBD on CBF in regions involved in memory processing in 

healthy individuals at rest using arterial spin labelling (ASL), a 
non-invasive, direct measure of CBF. Our secondary aim was to 
investigate the relationship between CBF and memory perfor-
mance in episodic and working memory tasks. We defined 
regions of interest (ROIs) in the medial temporal lobe (MTL) 
and prefrontal cortex (PFC) a priori, which are differentially 
involved in both memory domains, including the hippocampus 
(Leszczynski, 2011; Squire and Zolamorgan, 1991), parahip-
pocampal gyrus (Luck et al., 2010; Zolamorgan et al., 1989), 
amygdala (Hamann et al., 1999; Peinadomanzano, 1990; Phelps, 
2004), dorsolateral PFC (Mars and Grol, 2007; Nyberg et al., 
1996), orbitofrontal cortex (OFC) (Barbey et al., 2011; Brand and 
Markowitsch, 2006) and ventromedial PFC (Bechara et al., 1998; 
Bonnici et al., 2012). Based on previous studies, we hypothesised 
that CBD would decrease resting CBF in the hippocampus. We 
also sought to explore the differences in CBF in each of the other 
ROIs described above. Finally, we explored the relationship 
between regional CBF and memory performance.

Materials and methods
This study was conducted in accordance with Good Clinical 
Practice and the Helsinki Declaration (UCL Research Ethics 
Committee 3325/002). Participants provided written informed con-
sent and received an honorarium for participation (£10 per hour).

Study participants

Participants were recruited through online adverts, posters and 
word-of-mouth. All participants included were right-handed and 
aged 18–70 (see Table 1 for demographic and clinical characteris-
tics). Exclusion criteria were: (a) current use of psychotropic 
agents; (b) current or past use of cannabis or CBD; (c) previous use 
of any psychoactive (recreational) drug on >5 occasions; (d) cur-
rent or previous mood disorder, psychosis, anxiety disorder, or 
substance abuse disorder according to Diagnostic and Statistical 
Manual of Mental Disorders IV (DSM-IV) criteria; (e) current 
nicotine dependence (defined by Fagerström Test for Nicotine 
Dependence (Heatherton et al., 1991)); (f) score >7 on the Alcohol 
Use Disorders Identification Test (Saunders et al., 1993); (g) preg-
nancy; (h) impaired mental capacity; (i) allergy to CBD or placebo 
excipients; (j) claustrophobia or other contraindications to MRI.

Study design

We used a within-subjects, randomised, double-blind, placebo-
controlled design. Participants received single doses of either 
600 mg of CBD (pure synthetic (-)-CBD) or placebo in identical 
capsules at two sessions, separated by at least one week. Synthetic 
CBD (99.9% purity) was obtained from STI Pharmaceuticals 
(Brentwood, UK) and manufactured by Nova Laboratories 
(Leicester, UK). Size 2 gelatin capsules contained microcrystal-
line cellulose filler and CBD. Matched placebo capsules con-
tained lactose filler. Whilst earlier SPECT studies used a lower 
dose of 400 mg (Crippa et al., 2004, 2011), more recent fMRI 
studies demonstrate that 600 mg is safe and exhibits measurable 
perfusion changes (Bhattacharyya et al., 2012a); a larger dose was 
opted on the assumption that it would be associated with larger, 
more measurable effects. The order of drug was randomised and 
stratified for sex. Following drug administration, brain scanning 
occurred at +180 min post capsule ingestion, which coincides 

Table 1. Demographic and baseline clinical characteristics of study 
participants (n = 15).

Characteristic n

Sex nine female, six male

 Mean (±SD)
Age (years) 24.1 (±5.0)
BMI (kg/m2) 22.6 (±4.1)
AUDIT score (0–40) 1.5 (±1.7)
FDNT score (0–10) 0.0 (±0.0)
BAI score (0–63) 2.5 (±3.9)
BDI score (0–63) 1.4 (±2.0)
ASI score (0–29) 2.1 (±3.1)

ASI: addiction severity index (averaged across four readings over the two ses-
sions); AUDIT: alcohol use disorders identification test; BAI: beck anxiety inven-
tory; BDI: beck depression inventory; BMI: body mass index; FDNT: Fagerström 
test for nicotine dependence.
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with previously described peak plasma concentrations (Haney 
et al., 2016), and memory tasks were performed in succession 
roughly from between +275 and +340 min (see Supplemental 
material). Participants underwent three memory tasks: a prose 
recall task, N-back task and digit span task, and completed other 
tasks to be reported elsewhere. Matched versions of the tasks were 
used in the two study sessions. In order to control for variation in 
the absorption of CBD, participants were instructed to fast from 
midnight (excluding water, and caffeine if part of their morning 
routine) until after the brain scanning session. All participants 
underwent neuroimaging at least 12 h since their last meal; time of 
last meal was confirmed as part of pre-test screening conducted on 
the morning of testing. Drug administration and neuroimaging 
occurred at the same time each session. Drug administration was 
at 09:00 and neuroimaging at 12:00.

Power calculation

Two previous human studies have found acute effects of CBD v. 
placebo on resting CBF using a sample size of n = 10 in a crosso-
ver design (Crippa et al., 2004, 2011). This study has a sample 
size of n = 15, providing a 50% increase in sample size from 
these previous studies to adjust for Winner’s Curse (Button et al., 
2013; Hindocha et al., 2018b). A sensitivity power analysis con-
ducted using G*Power 3 (Faul et al., 2007) indicated that our 
sample size would provide 80% power to detect a large effect 
size (Cohen’s d = 0.8) at an alpha of 0.05.

Memory assessments

Prose recall task. The prose recall subtest of the Rivermead 
Behavioural Memory test (Wilson et al., 1991) taps episodic 
memory. Participants heard 30 s of prose (a news bulletin) and 
recalled it immediately and following a 25 min delay filled with 
other assessments, which included other tasks to compete as a dis-
tractor. The number of idea units recalled out of 21 was recorded.

N-back task. The N-back task (Freeman et al., 2012; Hindocha 
et al., 2017; van der Wee et al., 2003[TS: please link van der Wee 
to reference]), a spatial working memory (WM) task, required 
participants to observe sets of visual stimuli in one of six loca-
tions in a sequential order, and then record when the current 
stimulus corresponds with the stimulus seen in a pre-defined 
region (0-back), one step earlier (1-back), and two steps earlier 
(2-back). This order was fixed, and participants had a practice 
session before each N-back stage. Reaction time (RT) and accu-
racy were recorded automatically.

Digit span task. In the digit span task (Wechsler, 1997), which 
taps WM, participants read a series of digit strings to participants, 
who were then required to recall the digits in the same order in 
which they appeared, both forwards and backwards. Forwards 
recall taps maintenance of digits, where backwards recall taps 
both maintenance and manipulation of digits (Aben et al., 2012). 
The number of items increased every two strings starting from 
three for forwards and two for backwards. If a participant failed 
both strings at each level (i.e. strings of four numbers), the task 
was terminated, and moved on to backward or ended. The num-
ber of digits correctly recalled was recorded. There were a maxi-
mum of 12 forwards and 12 backwards series.

Image acquisition

We conducted image acquisition and data analysis blind to drug 
condition. We used a Siemens Magnetom Prisma 3T scanner to 
perform 3D axial pulsed ASL using the FAIR-QUIPSS II (Flow-
sensitive Alternating Inversion Recovery–QUantitative Imaging 
of Perfusion Using a Single Subtraction) acquisition method 
(Wong et al., 1998). Scanner parameters were as follows: back-
ground suppression (grey-white) was on, bolus length (BL) 
700 ms, inversion time (TI) 1990 ms, TR 4600 ms, TE 13.36 ms, 
slice thickness 4 mm, flip angle 180°, voxel size (mm) 
1.9 × 1.9 × 4.0, bandwidth 3256 Hz/pixel, presumed tissue blood 
partition coefficient of water (λ) 0.9 mL/g, presumed relaxation 
time of blood (T1b) 1650 ms, inversion fraction (α) 0.98. 
Movement-corrected perfusion maps were calculated from the 
control and label images, and separately acquired Mo maps, using 
a MATLAB (Mathworks, Inc.) script written in-house (see 
Supplemental material).

Structural images were acquired using a T1 MPRAGE with 
1 mm3 isotropic voxels, TR = 2300 ms, TE = 2.91, TI = 900, flip 
angle = 9°, parallel imaging factor = 2, bandwidth = 140 Hz/
pixel. Using fMRIB Linear Image Registration Tool (FLIRT) 
within fMRIB Software Library (FSL) perfusion maps were reg-
istered to structural images and converted into standard Montreal 
Neurological Institute (MNI) space. Masks were generated using 
the Harvard–Oxford probabilistic atlas and applied to the speci-
fied regions of interest (ROI). Mean values of CBF (mL/100 mL/
min) were then extracted using FSL.

Plasma CBD concentrations

We performed venepuncture immediately after scanning to meas-
ure CBD concentrations. Blood samples were collected in EDTA 
vacutainers and were immediately centrifuged to plasma for stor-
age at –80°C. Samples were analysed using Gas Chromatography 
coupled with Mass Spectrometry with a lower limit of quantifica-
tion of 0.5 ng/mL.

Statistical analysis

Two-tailed paired t-tests (significance threshold p <0.05, Holm–
Bonferroni corrected for family-wise errors across six bilateral 
regions-of-interest) were performed to compare CBF between CBD 
and placebo sessions (i.e. both drug conditions) for each region. 
Repeated measures ANOVAs with a factor of drug (CBD v. pla-
cebo) were used to compare performance on memory tasks. For the 
N-back, an additional factor of load (0-back, 1-back, 2-back) was 
included for the outcomes of accuracy and RT. For the digit span, 
the additional factor was direction (forward, backward). For the 
prose recall task, the additional factor was delay (immediate, 
delayed). All post-hoc pairwise comparisons were Bonferroni-
corrected. To investigate the relationship between differences in 
regional CBF and memory task performance, correlations were per-
formed using the Pearson correlation coefficient at a two-tailed sig-
nificance threshold of p <0.005 adjusted for 10 simultaneous 
comparisons using Bonferroni correction. This was performed for 
regions which demonstrated statistically significant differences in 
CBF (p <0.05). The 10 simultaneous comparisons were correla-
tions between differences in hippocampal or orbitofrontal perfusion 
and differences in N-back accuracy and reaction time at 0-back, 
1-back and 2-back, differences in forward and backward digit span 
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scores, and differences in delayed and immediate prose recall 
scores. To assess differences in plasma CBD concentrations 
between the CBD and placebo groups, the non-parametric Wilcoxon 
signed ranks test was used. Levels of plasma CBD were correlated 
against hippocampal and orbitofrontal CBF during the CBD session 
using the Pearson correlation coefficient. Each analysis was 
repeated with a between subject factor of order of drug which did 
not significantly change the results; therefore, results are displayed 
without this factor.

Results

Demographic and clinical characteristics

Participant demographics and baseline clinical characteristics are 
in Table 1. From an original cohort of 17 healthy participants, we 
excluded two due to excessive rotation or motion artefact (voxel 
shift >9 mm and rotation >2°) resulting in 15 participants (nine 
female, six male).

Regional cerebral blood flow

See Table 2 and Figure 1 for differences in regional CBF between 
CBD and placebo. CBD caused a significant increase in CBF to 
the hippocampus (mean difference 15.00 mL/100 g/min (95% 
confidence intervals (CI) 5.78–24.21, t14 = 3.489, p = 0.004, 
Cohen’s d = 0.75, Figure 2) which survived Holm–Bonferroni 
correction. CBD did not cause significant differences in CBF in 
other regions of the MTL. In the PFC, CBD caused a significant 
increase in CBF in the OFC by a mean difference of 
10.04 mL/100 g/min (95% CI 1.90–18.19, t14 = 2.644, p = 0.019, 
Cohen’s d = 0.55), however, this did not survive Holm-
Bonferroni correction. There were no significant differences in 
other PFC areas. There were no significant effects of controlling 
for drug order on CBF in all regions.

Table 2. Differences in regional cerebral blood flow between CBD and placebo.

Region of interest Δ Perfusion 
(mL/100 g/min (CI))

Δ Perfusion (% (CI)) t14 statistic Cohen’s d p p#

Hippocampus 15.00 (5.78–24.21) 12.69 (5.75–19.63) 3.489 0.75 0.004** 0.024*
Parahippocampal gyrus 2.52 (−14.33–19.38) −0.32 (−13.87–13.23) 0.792 0.09 0.441 1.000
Amygdala −3.26 (−13.80–7.29) −4.31 (−16.48–7.86) −0.663 0.15 0.518 1.000
Orbitofrontal cortex 10.04 (1.90–18.19) 7.02 (1.06–12.97) 2.644 0.55 0.019* 0.095
Ventromedial prefrontal cortex 5.95 (−1.69–13.60) 4.55 (−2.76–11.85) 1.671 0.20 0.117 0.468
Dorsolateral prefrontal cortex 0.60 (−6.51–7.70) −0.73 (−7.55–6.08) 0.180 0.02 0.860 0.860

CI: confidence interval.
*Significant at the p <0.05 level.
**Significant at the p <0.01 level.
p# = Holm–Bonferroni corrected (using alpha 0.05).

Figure 1. Differences in regional CBF between CBD and placebo. 
ΔCBF is the mean difference in cerebral blood flow (mL/100 g/min ± 
standard error of the mean) after CBD v. placebo in regions within the 
medial temporal lobe and prefrontal cortex.
The asterisk indicates regions with statistically significant change in CBF after 
correcting for multiple comparisons.

Figure 2. Differences in hippocampal CBF after CBD or placebo.
This coronal slice highlights differences in grey matter perfusion in the hippo-
campus (in green). Scale bar units = mL/100 g/min. MNI coordinate displayed.
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Memory task performance

For the prose recall task, there was no main effect of drug  
(F1,14 = 3.701, η2 = 0.184, p = 0.075, mean difference −0.517, 
95% CI −1.126–0.092, Figure 3a), or task (immediate or delayed; 
F1,14 = 3.311 η2 = 0.014, p = 0.090), and there was no signifi-
cant drug*task interaction (F1,14 = 0.037, η2 = 0.000, p = 0.850).

For the digit span task, there was no main effect of drug (F1,14 = 
0.312, η2 = 0.007, p = 0.585), there was a significant effect of task 
(forwards vs backwards; F1,14 = 9.333, η2 = 0.182. p = 0.009) 
reflecting the standard decreased score in backwards digit span score 
compared with forwards (see Figure 3b), but there was no significant 
drug–task interaction (F1,14 = 0.497, η2 = 0.007, p= 0.492).

Two participants did not complete all parts of the N-back task 
and were therefore removed from analysis. For accuracy scores in 
the N-back task, there was no main effect of drug (F1,12 = 0.026,  
η2 = 0.000, p = 0.875), there was a significant effect of task 
(0-back vs. 1-back v. 2-back; F2,24 = 10.180, η2 = 0.305, p = 
0.001) shown by decreasing accuracy across increasing WM load 
(Figure 3c), but there was no drug*task interaction (F2,24=0.693,  
η2 =0.016, p=0.510). For RTs in the N-back task, there was no main 
effect of drug (F1,12=0.168, η2=0.000, p=0.689), there was a main 
effect of task (0-back vs. 1-back vs. 2-back; F1,12=25.642, η2=0.619, 

p<0.001) as shown by increasing RTs across increasing WM load 
(Figure 3d) but there was no drug–task interaction (F2,24 = 1.420, 
η2 = 0.006, p = 0.261). All analyses for memory task performance 
were repeated with a between subjects’ factor of order of drug 
administration and the results did not change.

Correlational analysis showed that CBD-induced differences 
in OFC CBF were correlated with 2-back task performance after 
correcting for multiple comparisons, such that increased CBF in 
the OFC following CBD was associated with decreased RT and 
thus better working memory performance (r11 = −0.73, p = 
0.005; Supplemental Figure 1). There were no other statistically 
significant relationships between OFC CBF and 0-back and 
1-back conditions, digit span, or prose recall tasks. There were no 
statistically significant correlations between changes in hip-
pocampal CBF and memory performance after correcting for 
multiple comparisons. There was no significant effect of correct-
ing for order of drug administration.

Plasma CBD levels

Analysis of plasma CBD levels using Wilcoxon Signed-Ranks 
Test showed that the CBD session ranks (median 6.010 ng/mL) 

Figure 3. Differences in memory task performance in the (a) prose recall, (b) digit span, and (c, d) N-back task (mean ± standard error of the 
mean) post-CBD or placebo.
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were significantly higher than the placebo session ranks (median 
0.000 ng/mL; Z = 3.124, p= 0.002; Supplemental Figure 2). 
There was a significant correlation between hippocampal CBF 
and CBD plasma levels during the CBD session (r = 0.623, p = 
0.01), but this relationship was driven by an outlier. Once 
removed, this correlation was non-significant (r = 0.075, p = 
0.798). Removal of this outlier still yielded a significant differ-
ence in hippocampal CBF under CBD v. placebo conditions (tdf 
= 3.5413, p= 0.004). There was no significant correlation 
between orbitofrontal CBF and CBD plasma levels during the 
CBD session (r = 0.445, p = 0.09). We note that one participant 
had an elevated cannabidiol level (4.94 ng/mL) during their pla-
cebo session. Considering that sessions were conducted at least 
one week apart, and the elimination half-life of cannabidiol is 
approximately 18–32 h (Devinsky et al., 2014), it is likely that 
this participant consumed CBD from a third-party source before 
their placebo session which may have included consuming can-
nabis. This participant was excluded, and analysis was re-con-
ducted with no significant changes: there remained a significant 
difference in hippocampal CBF (tdf = 3.21513, p = 0.007), and a 
significant correlation between OFC CBF and 2-back reaction 
times (r = 0.760, p = 0.004).

Discussion
To our knowledge, this is the first study to find that acute CBD 
increases CBF in the hippocampus. This supports the view that 
CBD has region-specific haemodynamic effects in the human 
brain, which has previously been disputed (Sultan et al., 2017).

Relation to previous studies

Our finding of increased hippocampal CBF after CBD contrasts 
with two previous SPECT studies (Crippa et al., 2004, 2011). 
These found a decrease in CBF in healthy (Crippa et al., 2004) 
and anxiety disorder participants (Crippa et al., 2011). There are 
several possible explanations for this difference. Our study had 
higher statistical power than the previous two studies, with 
increased sample size of 50% to account for inflation of effect 
size (Button et al., 2013; Hindocha et al., 2018b). Moreover, our 
study used ASL which has better resolution to detect regional 
effects than SPECT. Our findings are consistent with a meta-
analysis reporting that CBD increased CBF in mouse models of 
stroke (Sultan et al., 2017). Additionally, we administered a 
higher dose (600 mg CBD) than previous studies (400 mg CBD; 
(Crippa et al., 2004, 2011) which may have accounted for differ-
ent findings due to the complex dose-effect profile of CBD 
(Zuardi et al., 2017).

Implications for hippocampal disorders

If replicated, the finding that acute CBD increases CBF in the hip-
pocampus may be relevant for hippocampal disorders, since higher 
resting hippocampal blood flow is associated with better memory 
performance (Heo et al., 2010; Nishimura et al., 1998; Suzuki 
et al., 2016), although this relationship is not entirely clear 
(Finkelmeyer et al., 2016; Rane et al., 2013). With its key role in 
learning and memory (Sweatt, 2004), the hippocampus is an 
important therapeutic target across multiple neuropsychiatric 

disorders including schizophrenia (Green et al., 2000), depression 
(Rock et al., 2014), PTSD (Scott et al., 2015) and Alzheimer’s dis-
ease. Regional CBF is strongly associated with brain volume 
change and has a complex bidirectional relationship (Appelman 
et al., 2008; Zonneveld et al., 2015). Since acute CBD may increase 
hippocampal CBF, further studies are required to investigate 
whether CBD can attenuate the hippocampal structural alterations, 
including atrophy, and hippocampal-dependent memory impair-
ments associated with these disorders (Ott et al., 2019). This notion 
is supported by findings that CBD can rescue hippocampal atrophy 
(Beale et al., 2018) and improve episodic memory performance 
(Englund et al., 2013) in chronic cannabis users. This finding may 
be particularly relevant to Alzheimer’s disease, where there are 
defects in blood flow control (Girouard and Iadecola, 2006).

The precise mechanisms through which CBD may modulate 
memory processing are unclear. In addition to causing endothe-
lial vasodilatation through modulation of the endocannabinoid 
system (Stanley et al., 2015), CBD has numerous neuronal tar-
gets (Bih et al., 2015; Elsaid and Le Foll, 2020), which may 
underlie its pro-cognitive, anxiolytic, and antipsychotic effects 
(Premoli et al., 2019). Regarding memory, preclinical data sug-
gest that CBD promotes hippocampal neurogenesis and facili-
tates synaptic plasticity (Campos et al., 2017). In addition, human 
spectroscopy studies demonstrate that CBD modulates glutamate 
and GABA levels across several limbic and prefrontal regions 
(Pretzsch et al., 2019). Through its cerebrovascular and neuronal 
activity, CBD may therefore alter the dysfunctional prefrontal-
hippocampal circuitry associated with impaired memory in sev-
eral neuropsychiatric disorders (Jin and Maren, 2015).

Although we found no differences in memory performance 
following CBD, improvements in hippocampal-dependent mem-
ory tasks with CBD have been described elsewhere, including 
improved performance in prose recall during cannabis use 
(Morgan et al., 2010), and delayed verbal memory following THC 
administration (Englund et al., 2013). However, findings have 
also been mixed in this area. CBD has previously not demon-
strated improvements in memory performance following THC-
challenge (Morgan et al., 2018), nicotine abstinence (Hindocha 
et al., 2018b), and in schizophrenia (Boggs et al., 2018). As our 
study was in healthy participants, it is possible that ceiling effects 
account for this lack of CBD-induced differences in memory task 
performance, and the lack of relationship between hippocampal 
CBF and memory task performance. This variability may addi-
tionally be due to drug dose, route of administration, memory test 
timing, and methodological variation across studies. A number of 
the studies on CBD-related improved memory performance were 
conducted on models of cognitive impairment due to systemic 
insult (e.g. sepsis), Alzheimer’s, or current cannabis users which 
may not emerge in studies of healthy volunteers.

We found a moderately sized, negative correlation between 
the effects of CBD on OFC CBF and 2-back RT. Among other 
functions (Rolls, 2004), the OFC is involved in WM, particularly 
emotion and/or face processing working memory (LoPresti et al., 
2008; Ross et al., 2013). The direction of this correlation and its 
specificity to the 2-back task suggests that the effects of CBD on 
CBF in the OFC might be related to an increase in performance 
in manipulation of working memory. However, given that the 
effects of CBD were weak for increasing OFC CBF and did not 
show an improvement in 2-back task overall, further evidence 
would be needed to support this hypothesis.
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Strengths and limitations

Major strengths of our study are the use of robust methodology 
including double-blinding, within-subject design, randomiza-
tion of CBD and placebo order, and the inclusion of plasma 
CBD levels. ASL has good reproducibility within subjects 
(Jiang et al., 2010), and suffers from less inter-subject variabil-
ity than BOLD signal in fMRI (Liu and Brown, 2007). 
Furthermore, ASL is a more direct neuroimaging modality for 
measuring regional CBF than other MRI methods, such as 
fMRI, which may detect reactive hyperaemia driven by astro-
cyte signaling (Attwell et al., 2010). ASL also offers better spa-
tial resolution than other neuroimaging modalities used for 
similar studies such as SPECT.

Although our study had higher statistical power than previ-
ous studies (Crippa et al., 2004, 2011) it was not well powered 
to detect medium or small effect sizes. This study used a single 
dose of CBD in healthy volunteers, which may not translate to 
the effects of repeated CBD dosing and the use of CBD for 
psychiatric disorders or cognitive impairments. Finally, as the 
memory tasks were conducted outside of the scanner, we were 
unable to investigate the effects of CBD on fMRI measures of 
task performance, and correlations between these measures 
and CBF.

Conclusion
We found evidence that acute CBD causes a significant increase 
in regional CBF to the hippocampus. These findings may have 
implications for the potential use of CBD across a range of disor-
ders associated with hippocampal dysfunction including 
Alzheimer’s disease, PTSD and depression.
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