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Summary 

While complex inflammatory-like alterations are observed around the amyloid plaques of 
Alzheimer disease (AD), little is known about the molecular changes and cellular interactions 
that characterize this response. We investigate here in an AD mouse model the transcriptional 
changes occurring in tissue domains of 100 µm diameter around the amyloid plaques using 
spatial transcriptomics. We demonstrate early alterations in a gene co-expression network 
enriched for myelin and oligodendrocyte genes (OLIG), while a multicellular gene co-
expression network of Plaque-Induced Genes (PIGs) involving the complement system, 
oxidative stress, lysosomes and inflammation is prominent in the later phase of the disease. We 
confirm the majority of the observed alterations at the cellular level using in situ sequencing 
on mouse and human brain sections. Genome-wide spatial transcriptomic analysis provides an 
unprecedented approach to untangle the dysregulated cellular network in the vicinity of 
pathogenic hallmarks of AD and other brain diseases.  
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Introduction 

Tremendous progress has been made to define cell states in physiological and pathological 
conditions using next-generation sequencing approaches. For example, in the Alzheimer’s 
disease (AD) field, we know now that microglia display a stereotypical activated response to 
amyloid-β (Aβ) plaques (Keren-Shaul et al., 2017; Krasemann et al., 2017; Sala Frigerio et al., 
2019; Sierksma et al., 2020). Neurons, astrocytes and oligodendrocytes are more difficult to 
isolate than microglia, but single-nuclei provide a suitable alternative (Del-Aguila et al., 2019; 
Grubman et al., 2019; Mathys et al., 2019; Zhou et al., 2020). Cytoplasmic mRNA is less well 
presented in these samples (Lake et al., 2017; Thrupp et al., 2020) and the isolation methods 
are inducing artificial changes in expression profiles (Van Den Brink et al., 2017). A 
fundamental problem is, however, the loss of most spatial information including the 
relationship of cells to amyloid plaques. The use of spatially barcoded arrays allows unbiased 
transcriptome profiling in tissue maintaining the spatial localization of the sequenced 
molecules (Ståhl et al., 2016; Rodriques et al., 2019; Vickovic et al., 2019). 
A central question in AD research is the relationship of amyloid plaques to the 
neurodegenerative process (Sevigny et al., 2016; Long and Holtzman, 2019; Schneider, 2020). 
Amyloid plaques might act as trigger or driver of AD (Karran, Mercken and De Strooper, 2011). 
Genetic analysis shows that risk of sporadic AD is associated with genes expressed in microglia 
that are responsive to amyloid deposition (Matarin et al., 2015; Keren-Shaul et al., 2017; 
Krasemann et al., 2017; Sala Frigerio et al., 2019; Salih et al., 2018; Jansen et al., 2019; 
Sierksma et al., 2020), but also astrocytes, neurons and oligodendrocytes display altered 
molecular responses to amyloid plaques (De Strooper and Karran, 2016). The study of this 
“cellular phase of AD” should lead to a comprehensive understanding of the complex 
interactions over time between those cells, which determine the pathogenic outcome triggered 
by Aβ deposition. Little is known, however, about the molecular changes occurring in the cells 
in the vicinity of amyloid plaques. 
We use here “Spatial Transcriptomics” (ST) (Ståhl et al., 2016) to measure in situ, in hundreds 
of small tissue domains (TD), genome-wide transcriptomic changes induced by amyloid 
plaques. We complement this approach with an orthogonal “in situ sequencing” method (Qian 
et al., 2020), which visualizes hundreds of selected transcripts with cellular resolution. We 
integrated all the information into a fully accessible database www.alzmap.org (alzmap.org). 
In the current manuscript, we characterize two gene co-expression networks that appeared 
highly responsive to Aβ deposition. The 57 Plaque-Induced Genes (PIGs) are a response over 
multiple cell types. PIGs become gradually co-expressed with increasing Aβ load in AppNL-G-F 
mice and encompass complements, endosomes and lysosomes, oxidation-reduction, and 
inflammation. A second network, OLIG, is enriched for genes involved in myelination and 
mainly expressed by oligodendrocytes. OLIG is activated under mild amyloid stress but 
becomes depleted in microenvironments with high amyloid accumulation. Many PIGs and 
OLIG genes show similar alterations in human brain samples, partially strengthening our 
observations.  
 
Results 

http://www.alzmap.org/
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We obtained three adjacent coronal sections (Figure 1A) by cryosectioning of mouse brains 
from AppNL-G-F and C57Bl/6 mice at 3, 6, 12, and 18 months of age (Table S1 and Figure S1A). 
The two outer sections were immunostained while the middle one was processed for ST. Every 
coronal section contains > 500 transcriptomic profiles of individual “tissue domains (TD)” 
adding up to 10,327 transcriptomic profiles over 20 coronal sections. Each TD is annotated 
with spatial, pathological, and cellular information. We detected 31,283  7,441 unique 
molecular identifiers and 6,578  987 unique genes per TD (Figure S1B and S1C). We aligned 
each coronal section with 14 anatomical brain regions (Figure 1B) defined by the Allen Mouse 
Brain Atlas (Lein et al., 2007) and each TD was assigned to one of them (see the STAR 
Methods). The number of TD varies between 112 (entorhinal cortex) and 2114 (thalamus) 
(Figure 1B). We finally aligned the three sections to annotate each TD with Aβ load (6E10 
staining), reactive astrocytes (GFAP), presence of neurons (NeuN), and nuclei (DAPI). All 
information is available on www.alzmap.org (alzmap.org). 
 
Spatial transcriptomics in adult mouse brains 
The 10,327 transcriptomic profiles clustered according to brain regions using t-distributed 
Stochastic Neighbor Embedding (t-SNE, Figure 1C). The transcriptomic profiles (Figure 1F 
and 1G) and landmark genes (Figure 1H and 1I) covering the somatic layers of the hippocampus 
segregated clearly into CA1, CA3, and DG-subregions demonstrating that ST is sufficiently 
powerful to identify precise anatomic regions in the brain. A good separation according to age 
and genotype was also observed (Figure 1D, see principal components analysis on alzmap.org). 
The spots of WT mice of 12 and 18 months of age overlap (purple and red in Figure 1D), while 
the AppNL-G-F transcriptomic profile still changes between these two time points (yellow and 
green), in concordance with the progression of pathology over this period. 
 
Linking gene expression alterations to Aβ accumulation 
Amyloid deposition in AppNL-G-F mice starts around 3 months (Figure 2A). At 18 months, 1,565 
± 167 plaques with surfaces 78.5 - 4950 µm2 (i.e. diameter 10 - 80 µm) were detected per section. 
The diameter of a TD is 100 µm and the thickness of a section is 10 µm (Figure 1A). Therefore, 
it is reasonable to assume that cells in the central section are exposed to amyloid plaque detected 
in the adjacent sections. We used the standard deviation of Aβ fluorescence intensity of pixels 
in a TD as the Aβ index (see the STAR Methods). This differentiates mild Aβ- from intense 
Aβ-accumulation (e.g. Spot ID 474 from ID 466 in Figure 2B). In Figure 2C, we averaged the 
Aβ index of the TD per brain region, which shows consistency with the Aβ immunostaining 
(Figure 2A), illustrating the progression of Aβ from the dorsal towards ventral cortex, thalamus, 
and hippocampus. GFAP mRNA and protein indicating activated astroglia (Figure S2) is stable 
in physiological aging, with only a visible increase in the stratum lacunosum moleculare 
(CA_slm) of the hippocampus. In the aging AppNL-G-F model, GFAP staining spreads all over 
the brain, especially towards the cortical regions.   
To understand changes in gene expression, we performed two differential expression analyses. 
The first compares AppNL-G-F to C57Bl/6 (genotype model), the second investigates the effect 
of Aβ accumulation on gene expression (Aβ model). We validated the Aβ model using a 
classical RNAscope experiment (Figure 2D and 2E) of six transcripts that accordingly to the 

http://www.alzmap.org/
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model were significantly dysregulated in AppNL-G-F at 18 months of age (Cst7 (Log Fold-Change 
(LFC): 1.91), Cd68 (LFC: 1.70), C1qa (LFC: 1.04), Slc1a3 (LFC: 0.57), Clu (LFC: 0.41), and 
Mbp (LFC: -0.37)). We grouped the cells in 5 concentric rings around the amyloid plaques (see 
the STAR Methods). We measured the mean intensity of the hybridization per cell in the 
amyloid plaque cellular niches (ring 1, cells within 10 µm of the Aβ-positive areas) compared 
to that in tissue far from plaques (ring 5, the most distant ring is 195 pixels or 54.6 µm away 
from ring 1). As shown in Figure 2D, the ST data highly correlate with the RNAscope data 
(Pearson correlation = 0.92, p-value = 0.009), providing confidence in the approach.  
We compared both models by plotting LFC by genotype (the genotype-axis) against LFC by 
Aβ accumulation (the Aβ-axis) per time point. This provides information on gene expression 
alterations according to genotype, Aβ exposure, and age. We employed GOrilla (Eden et al., 
2009) on the genes ranked according to the LFC along the genotype-axis and along the Aβ-axis, 
and identified 13 functional super categories (Figure S3A, Table S2). Antigen processing, 
chemotaxis, lysosomal degradation and inflammation are up-regulated along both the Aβ- and 
the genotype-axis at 18 months. Interestingly, we find a clear switch of direction of the myelin 
category, which is up at 3 and down at 18 months along the Aβ-, but not the genotype-axis. 
Genes with similar expression patterns (co-expression) are likely to have similar functions, and 
can be grouped into modules by “Weighted Gene Co-expression Network Analysis (WGCNA)” 
(Zhang and Horvath, 2005). We investigated the 50% most variable genes across the full library 
of 10,327 ST transcriptome profiles and identified 12 modules (Table S3 and Figure S3B) for 
which we extracted the hypothetical biological functions by GOrilla (Table S4), the expression 
alteration to Aβ exposure and to genotype at 3 and 18 months (Figure S3B), the cellular 
signature (Figure S3C, S3D and S3E), and the affected brain regions (alzmap.org: regional plot; 
see the STAR Methods). We focus here on the “purple” and the “red” WGCNA modules that 
were most responsive to Aβ (Figure S3B). Agreeing with the ontology analysis above, the red 
module represents largely the functional myelin category, which goes up in early and down in 
late stage along the Aβ-axis, while the purple module represents the chemotaxis, lysosomal 
degradation, inflammation and especially antigen processing categories, which do not react in 
early stage but become significantly up-regulated in both the disease- and Aβ-axis in late stage. 
 
Identification of the Plaque-Induced Genes (PIGs) module 
The “purple” WGCNA module, which we will call “the Plaque-Induced Genes (PIGs), is the 
most reactive one along the Aβ- as well as the genotype-axis at 18 months of age (Figure S3B). 
This module, which contains 57 genes, is initially slightly up-regulated (Figure 3A) but 
increases sharply between 6 and 12 months to stabilize as a homogeneous response over the 
whole brain (Figure 3B). We identify a moderate but significant correlation between Aβ 
accumulation and PIGs expression among all TDs in AppNL-G-F mice at 18 months (Pearson 
correlation = 0.39, p-value ⋍ 0) (Figure 3C), indicating that PIGs expression gradually 
increases with accumulating Aβ over all brain regions.  
Based on the ontology analysis (Table S4), we conclude that the module is involved in the 
activation of the classical complement cascade (GO:0006956, i.e. C1qa, C1qb, C1qc, C4a, 
C4b), but also in effector mechanisms triggered by the complement cascade (Schmidt and 
Gessner, 2005; Thielens et al., 2017) such as endocytosis (GO:0045807, i.e. Fcer1g, Fcgr3, 
B2m, Cd63, Cyba, Apoe, Clu, Axl), lysosomal degradation (GO:0005764, i.e. Hexa, Hexb, Ctsa, 
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Ctsb, Ctsd, Ctsh, Ctsl, Ctss, Ctsz, Laptm5, Man2b1, Cd63, Gusb, Lgmn, Npc2, Grn, Gns, Prdx6, 
Cst3), antigen processing and presentation (GO:0002474, i.e. Fcer1g, Fcgr3, B2m, H2-D1, H2-
K1), immune response (GO:0002376, i.e. Csf1r, Cx3cr1, Ly86, Trem2, Tyrobp, Vsir), and 
oxidation-reduction processes (GO:0055114, i.e. Cyba, Prdx6, Gpx4).  
We investigated the cellular signatures of the PIGs module, and identified strong associations 
with activated microglia (DAM/ARM, odds ratio: 3.71) (Keren-Shaul et al., 2017; Sala Frigerio 
et al., 2019) and inflammatory astrocytes (A1, odds ratio: 3.84) (Zamanian et al., 2012) (Figure 
S3D). We highlight 5 PIGs that overlap with A1 astrocyte markers and 18 PIGs that are 
DAM/ARM microglia genes (Figure 3D). Thirty-six PIGs were previously not defined as 
disease-associated glia genes. Both activated microglia and astrocytes contribute to the top 10 
most connected hub genes (red in Figure 3D: Ctsd, C4b, Cst3, Apoe, C4a, Gfap, Tyrobp, Lyz2, 
Trem2, and B2m). We evaluated whether the PIGs could be identified in a human dataset 
(Mathys et al., 2019). Among the 41 cellular subpopulations (Mathys et al., 2019), the highest 
association of PIGs is with an AD-associated microglial signature (Mic1, odds ratio: 4.28; 
Figure S3E). We highlight the gene expression alterations of the mouse orthologs of the human 
Mic1 marker genes (Figure 3E and 3F, orange and green) in function of Aβ exposure or 
genotype. The analysis in mice shows that the Mic1 response in human brain is part of a larger 
multicellular coordinated response towards amyloid plaques and that this response evolves over 
time. 
  
In situ sequencing provides cellular resolution to the PIGs module 
ST suggested a multicellular response around the amyloid plaques, but we sought to confirm 
this using an orthogonal, independent approach which provides single-cell resolution. We 
applied in situ sequencing (ISS), which identifies “in situ” barcodes of many target-specific 
probes in one go (Qian et al., 2020). We used customized probes to map the expression of PIGs 
together with cell type markers (Itgam, Cx3cr1 and Csf1r for microglia, Slc1a3, Gfap and Clu 
for astrocytes, Syp for neurons, and Plp1 for oligodendrocytes, Figure 4A-C). We generated 
two ISS libraries of AppNL-G-F and two of WT mice at 18-months of age. We quantified gene 
expression as number of fluorescent puncta per gene, and grouped the puncta in 5 concentric 
rings around the amyloid plaques (Figure 4D). Among the 54 detected PIGs, 51 PIGs are 
significantly enriched in ring 1 (log2 odds ratio (LOR) > 0, padj < 0.05), while C1qb is 
significantly depleted in ring 1 (LOR <0, padj <0.05, Figure 4E). The results from ISS (LOR 
of gene expression in ring 1 compared to puncta in ring 1 through 5) correlate well with the 
results from ST (LFC of gene expression in Aβ model, Figure 4E, cor = 0.68, p-value = 3.04e-
09). 
To investigate the cellular signature of the PIGs network, we developed an approach that 
assigns each punctum to a cell type by calculating the enrichment of cell type marker puncta 
within its 5 m radius, not including the punctum under investigation (see the STAR Methods). 
We tested the method by predicting the cell identity of each marker gene (Figure 4G). It is clear 
that the PIGs response to Aβ is largely contributed by micro- and to a lesser extent astroglia 
(Figure 4H). Some PIGs are however significantly enriched in multiple cell types. For example, 
Cyba is expressed in microglia but also in oligodendrocytes, and Cd9 is expressed in astrocytes, 
microglia and oligodendrocytes. Some inflammatory molecules (H2-K1, Ly86 and Mpeg1) and 
lysosomal enzymes (Lgmn, Ctsa) are expressed by microglia but also by neurons. In addition, 
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we find enrichment of regulators of lysosomal degradation (Gns, Grn), an inhibitor of Aβ 
aggregation (Itm2b) and a regulator of insulin-like growth factor (Igfbp5) expressed in neurons. 
In the AppNL-G-F mice, most PIGs enriched in the same cell types as in WT mice, while some 
genes become expressed in microglia (e.g., C1qa, Gusb, Hexa, Lgals3bp and Plek) or in 
astrocytes (e.g., Gns, Gpx4 and Itgb5). In addition, Serpina3 switches major site of expression 
from neurons to astrocytes, while C4a/C4b is expressed in astrocytes and becomes also 
expressed in oligodendrocytes in the AppNL-G-F mice. Although we have less statistical power 
to investigate PIGs in the plaque cellular niches (ring1), we can confirm for many their cellular 
expression (Figure 4H). Interestingly, Ctsl and Apoe become expressed in microglia only in the 
amyloid plaques niche.  
Finally, we validated the expression of complement components (C1qa, C4 and Clu) using 
RNAscope in situ hybridization in AppNL-G-F mice at 18 months of age. We confirm that C1qa 
was expressed by Itgam-positive cells (microglia); Clu by Slc1a3-positive cells (astrocytes); 
and C4 by Mbp-positive cells (oligodendrocytes) all close to amyloid plaques (Figure S4I and 
S4B). The cellular signature of those 3 complement components as examined by RNAscope is 
consistent with the ISS analysis.  
 
Co-expression of micro- and astroglia genes in the PIGs module 
We wondered to what extent the correlation in expression between the PIGs in different cells 
was driven by accumulating Aβ pathology. We performed WGCNA on only the PIGs, 
separating all ST TDs into WT and four quantiles of AD according to Aβ index (Figure 5). 
WGCNA yields a connectivity matrix indicating how strongly changes in the expression of 
each gene correlate with changes in the expression of all other genes. The results are visualized 
by the Circos plots in Figure 5 which demonstrates how the network gradually builds up with 
increasing Aβ exposure.  
In WT mice, the overall connectivity of the PIGs is relatively low and the PIGs split into 3 
clusters (Figure 5: green, blue, and orange). The ISS (Figure 4H) demonstrates an enrichment 
of astroglia expressed genes (7/12) in the green cluster, while the blue (14/23) and the orange 
(14/18) clusters are enriched with PIGs expressed in microglia. In the WT situation, the orange 
PIGs are not or hardly interconnected. They become recruited in the PIGs when exposed to 
increasing amounts of Aβ in the AppNL-G-F mice. The connectivity between the PIGs strengthens 
within and over the three clusters in function of increasing Aβ index. In Q4 (lowest amyloid 
load), the co-expression remains overall weak. In Q3, several pairs of genes in the blue and 
orange clusters become strongly co-expressed, for instance cell-cell adhesion/mobility 
molecules Lgals3bp and Cx3cr1, glycosidases Lyz2 and Gusb, and a calcium/zinc binding 
protein, S100a6. In Q2 and even more in Q1, a strong connection is established between the 
three clusters. The strongest connections are between Ctsd (green) and C1qa, C1qb, Ctsb, Ctss 
and Hexb (blue) or between Apoe (green) and C1qb (blue). The strongest connections between 
the orange and the other 2 clusters go from Trem2 and Tyrobp (orange) to Ctsd, B2m and Apoe 
(green) and to C1qa, C1qb, Hexb and Ctss (blue). While the increased connection of Apoe (in 
control situation exclusively expressed in astroglia) with microglia genes in the context of 
amyloid plaques is explained at least partially by the induction of expression of Apoe in the 
microglia close to the plaques (Figure 4H), most of the other PIGs remain expressed in their 
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respective cell types and the increasing interaction indicates co-expression of genes across 
different cell types. 
 
An oligodendrocyte (OLIG) module displays diverse regional responses  
The second most altered module “red” in the WGCNA (Figure S3B) is composed of 165 genes 
(Table S3) that are mainly expressed by oligodendrocytes, hence the name “OLIG module”. 
The most enriched functional classes of this module are GO: 0007272 ensheathment of neuron; 
GO: 0043209 myelin sheath; GO: 0008366 axon ensheathment; and GO: 0042552 myelination 
(Table S4). The top 10 hub genes of the OLIG module are myelin-related transcripts: Plp1, 
Mbp, Mobp, Cldn11, Mal, Apod, Cnp, Trf, Fth1 and Plekhb1. Comparing OLIG with published 
mouse single-cell databases, confirms a strong association with oligodendrocytes (odds ratio: 
4.76; Figure S3C) and a mild association with activated microglia (DAM/ARM, odds ratio: 
1.40; Figure S3D). OLIG associates strongly (odds ratio: 4.06) with the human AD-associated 
oligodendrocytes Oli0 (Mathys et al., 2019) (Figure S3E). We highlight 20 mouse orthologs of 
human Oli0 markers (Figure 6A and 6B, orange and green). Several Oli0 orthologs are up- or 
down-regulated together with the OLIG module. 
Similar to the “myelin” category (Figure S3A), the OLIG module is globally up-regulated along 
the genotype-axis in AppNL-G-F compared to WT at both 3 and 18 months (genotype LFCs in 
Figure 6A and 6B) and across brain (Figure S5A). This genotype effect might reflect an overall 
response of mouse brain to the humanized and mutated App gene. When we isolate, however, 
the effect of Aβ exposure (Aβ-axis) from genotype, an interesting alteration of the expression 
of the OLIG module is observed: a global positive correlation at 3 months and a negative one 
at 18 months (Figure 6A and 6B). There is also clear variation in this response over different 
brain areas (Figure 6C). Comparing the amyloid profiles in Figure 2C with the OLIG expression 
profiles in Figure S5C, it becomes clear that the main driver of the OLIG expression is not the 
Aβ index but the brain region itself (Figure 6C). At 3 months of age, we identified a 
significantly positive OLIG-Aβ correlation in fiber tract (FB), thalamus (TH) and hypothalamus 
(HY), while a significantly negative OLIG-Aβ correlation is seen in entorhinal cortex (ENTI) 
and several layers of the hippocampus. At 18 months, we identified a significantly negative 
OLIG-Aβ correlation in auditory areas (AUD), while significantly positive OLIG-Aβ 
correlations are seen in entorhinal cortex and hippocampus (padj < 0.0001). 
We thus analyzed in more detail the relationship between Aβ index and OLIG expression in 
function of these regional differences. As shown in Figure 2, Aβ deposition varies from region 
to region over disease progression. Thus, even at 3 months there are TDs exposed to high Aβ 
(i.e., 179 TDs in Q1, Figure 5). OLIG expression at 3 months increases with mild Aβ 
accumulation in TDs distributed over Q4-Q2 (Figure 6D). However, the expression of OLIG 
exhibits a trend toward decreasing in the TDs with the highest Aβ exposure at 3 months (Q1, 
which has 21 times more Aβ than Q4). In addition, the sum of connectivity strength of gene 
pairs of the OLIG module is strongest in TDs with low Aβ exposure (Q4, Figure S5B). To 
further confirm the findings, we performed a limited series of RNAscope experiments using 
probes against 4 OLIGs (Plp1, Mbp, Olig2 and Cnp) in AppNL-G-F at 3 months of age over whole 
coronal brain sections (Figure 6E, 6F, S5D and S5E). The results show that the 4 OLIGs are 
significantly depleted around the dense amyloid plaques even at 3 months. We suggest that the 
OLIG module is highly expressed and connected under mild Aβ exposure, but is decreased in 
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microenvironments with dense Aβ accumulation. Thus, part of the regional variation in the 
OLIG module is linked to differential Aβ exposure.  
 
Visualization of the PIGs and OLIG modules in human brains 
Post-mortem human brain samples were obtained from three AD patients and three non-
demented controls. The selected AD brains are advanced in disease with amyloid stage C (Thal 
et al., 2002) and neurofibrillary tangle stage V-VI (Braak and Braak, 1991) (Table S5, Figure 
S6A). The RNA quality of the 6 samples was good (RIN: 8.4  0.8, Table S5). We profiled 
tissue from the superior frontal gyrus (Brodmann area 10), which is of relevance to AD (Valdés 
Hernández et al., 2018). We report a total of 222 gene expression profiles, including 45 human 
orthologs of PIGs, 42 human orthologs of plaque-reactive genes in the OLIG module, and a 
series of cell type markers (Table S6). As shown in Figure 7A and S6B, the cellular markers 
provide a good overview of the cellular distribution in this brain area. The PIGs module (Figure 
7B, purple) and the OLIG module (Figure 7C, red) genes are enriched respectively in the grey 
and in the white matter as expected. Cell type markers show reliable prediction of cell identity 
(GRIP1, PPFIA2, KCNIP4, PTK2B and DLGAP1 for neurons; BLNK, C1QA, FCGR2A, 
CX3CR1, LAPTM5, TMEM119, HLA-DRA and C1QC for microglia; MAL, ERMN, MOBP and 
PLP1 for mature oligodendrocytes; ALDH1L1, ADGRV1, CLU, SLC1A2, AQP4 and GFAP for 
astrocytes; Figure S6C, Table S6).  
We investigated the distribution of the human orthologs of the PIGs in control and AD brain 
using the same methodology as used above to analyze ISS data in mouse. Most PIGs are 
expressed in the same cell types in AD and controls. Also in human, the 3 submodules of the 
PIGs module are expressed by astrocytes (green cluster) and microglia (blue and orange clusters) 
in controls (Figure 7D). However, we also identify 9 PIGs enriched in neurons (LGMN, HEXB, 
HEXA, CTSB, CTSA, GNS, GPX4, CTSD and ITM2B), while 2 PIGs are enriched in 
oligodendrocytes (LGALS3BP and CD9). PLEK, CYBA and LAPTM5 are significantly enriched 
in oligodendrocytes in mouse, but in human significantly enriched in microglia. We eventually 
could confirm only 18 of the 45 detectable PIGs as significantly enriched in amyloid plaque 
cellular niches, including 9 microglial PIGs (i.e., C1QA, C1QB, C1QC, TYROBP, LY86, CYBA, 
FCGR2, OLFML3, and LAPTM5), 5 astroglial PIGs (i.e., GFAP, CLU, CTSH, CST3 and 
IGFBP5) and 5 PIGs expressed in multiple cell types (CTSH, GRN, LYZ, HEXB, AXL, LOR >0, 
padj <0.05). Interestingly, we found significant expression of APOE and ARPC1B in microglia, 
and significant expression of NPC2, S100A6, ITGB5, PRDX6 and VSIR in astrocytes in AD 
patients but not in controls, indicating disease-related glial activation in AD patients.  
We analyzed in a similar way the cellular signature of 42 human orthologs selected from the 
top rank of differentially expressed genes of the OLIG module (Figure 7E). Twenty-two genes 
are significantly depleted in the amyloid plaque cellular niches (CRYAB, ANLN, SLC44A1, 
PLP1, ARRDC3, EFHD1, ITGB4, FNBP1, FA2H, APOD, TTYH2, PDE8A, PLLP, TMEM63A, 
PHLDB1, MOG, ASPA, TF, TPPP3, ERMN, PPP1R14A and MOBP, LOR <0, padj <0.05). 
Five genes are significantly higher expressed in the amyloid plaque cellular niches (WSCD1, 
MBP, PLEKHB1, KIAA0930 and BCAS1, LOR >0, padj <0.05). Most of the human orthologs 
in the OLIG module are significantly enriched in oligodendrocytes in both controls and AD 
patients, except for the enrichment of KIAA0930 and a redox sensor (NMRAL1) in neurons, and 
the enrichment of regulators of protein aggregation (CRYAB and GSN), cell mobility/adhesion 
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molecules (TPPP3 and ITGB4) and a catalyzer of creatine (GATM) in astrocytes. Interestingly, 
APOD, a lipoprotein-encoding gene mostly expressed in brain and up-regulated in AD (Bhatia 
et al., 2018), which is normally expressed by oligodendrocytes becomes also significantly 
enriched in microglia in AD patients but not in controls.  
When comparing these data with the results from the mouse experiments, one should take into 
account the species differences but also the fact that in mouse only amyloid plaque-induced 
pathology is studied, while in the late stage of AD the pathology becomes complicated with 
additional contributions of Tau, necroptosis, etc., which are not present in the mouse model. 
Indeed, the pathology in mouse models is considered to reflect earlier phases of disease (Ashe 
and Zahs, 2010). Between the appearance of amyloid plaques and neuronal tangles in the human 
brain, to the ultimate dementia in patients, up to twenty years may elapse (Bateman et al., 2012; 
Villemagne et al., 2013; Jansen et al., 2015). Thus, many additional changes will have occurred 
since the initiation of the amyloid pathology in human. Nevertheless, many of the genes 
identified in the PIGS and OLIG modules in mouse display significant changes in late stage 
AD. 
 
Discussion  
We used two technologies, Spatial Transcriptomics (Ståhl et al., 2016) and in situ sequencing 
(Qian et al., 2020), to study the cellular phase of AD (De Strooper and Karran, 2016). We 
generated a large data set (alzmap.org) of transcriptional changes in mouse and human brain in 
function of increasing amyloid pathology. We focused here on the transcriptomic changes in 
the immediate neighborhood of amyloid plaques, i.e. in a circle with 100 µm diameter. We 
leave open the discussion of what form of Aβ might trigger the pathological changes, as some 
groups have suggested that a toxic halo of oligomeric Aβ surrounding amyloid plaques is the 
bioactive agent (Koffie et al., 2009; Mucke and Selkoe, 2012).  
We show in a well-studied App knock-in mouse model (Saito et al., 2014) the gradual 
establishment of a multicellular co-expressed gene response encompassing 57 Plaque-Induced 
Genes or PIGs in the microenvironments of amyloid plaques (Figure 5). The PIGs represent 
intercellular crosstalk between astrocytes and microglia and involves other cells. This interplay 
results in concomitant alterations in the classical complement system and endosomal/lysosomal 
pathways. The data bring together several pathways that have been separately implicated in 
AD. We also describe a dynamic OLIG response, largely representing myelin-related genes of 
oligodendrocytes, modulated by gradual amyloid accumulation (Figure 6). In contrast to the 
rather homogenous PIGs response (Figure 3B), the OLIG response varies between different 
brain regions (Figure 6C). In situ sequencing of more than 200 human genes including PIGs 
and OLIGs in the frontal cortical lobe partially strengthen our observations (Figure 7). 
We refer to the accompanying website (alzmap.org) where all data and bioinformatics pipelines 
are provided. We show there all the modules defined by WGCNA, including three neuronal 
modules (magenta, brown and pink), an astroglial-vascular module (black), and a protein 
translation module (yellow), which is, interestingly, also modulated along the Aβ-axis (Figure 
S3B). Further information on the dysregulation of lipid metabolism, the MAPK cascade, 
synapses, ion channels, and the mitochondrial respiratory chain, supporting the GO category 
analysis in Figure S3A is there also available. 
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Spatial transcriptomics and in situ sequencing to probe the multicellular environment of the 
amyloid plaques 
The main data supporting our conclusions are derived from the spatial transcriptomics (ST) 
(Ståhl et al., 2016) analysis of 10 control and 10 diseased coronal slices of mice at different 
ages, encompassing >10.000 small brain volumes (8x10-5 mm3). It is clear that the available 
ST technology does not reach “single-cell” level. To increase cellular resolution, we combined 
this unbiased approach with additional in situ hybridization using RNAscope and multi-
molecules in situ sequencing (ISS) (Qian et al., 2020). We performed ISS on 4 coronal sections 
of mice and on 6 sections of superior frontal gyrus of human. These in situ experiments confirm, 
in general, the predictions made from the unbiased ST approach in mouse (Figure 2D and 4E). 
While the technologies used here do not require harsh dissociation procedures like single-cell 
or single-nuclei approaches and maintain spatial information, the lack of single-cell resolution 
with ST and the low sensitivity of ISS requires further technological improvements (Eng et al., 
2019; Rodriques et al., 2019; Vickovic et al., 2019; Stickels et al., 2020). Our data show 
nevertheless that the combination of spatial transcriptomic and ISS is useful in the study of 
neurological disease. This first study opens a new way of investigating the pathology of AD at 
a genome-wide scale, complementing the in situ hybridization or immunohistochemistry 
approaches that have directed the field for more than a century. 
 
Complement as an important part of the intercellular crosstalk in the amyloid plaques   
Inappropriate control of the classical complement cascade causes unresolvable inflammation 
and disease (Hong et al., 2016; Hansen, Hanson and Sheng, 2018; Morgan, 2018). The classical 
complement cascade is triggered by C1q-complex, and C1q is strongly expressed by microglia 
and enriched in the plaque cellular niche, as shown in Figure 4I and S4B (Eikelenboom et al., 
1988; McGeer et al., 1989). The release of C1q from microglia is necessary to induce 
neurotoxic, inflammatory astrocytes (A1) (Liddelow et al., 2017), which also strongly 
upregulate genes involved in classical complement activation such as C4 (Figure 4I and S4B) 
(Zamanian et al., 2012). Interestingly, the activation of C1Q can be attenuated by another 
molecule of the PIG network, APOE (Yin et al., 2019). An exciting finding is illustrated in 
Figure 5, demonstrating how the overall connectivity between the PIGs is low in the wild type 
brains and increases with Aβ load in the AppNL-G-F brains. The genes with strongest connections 
between the 3 PIGs-clusters are Apoe, B2m and Ctsd from the green cluster, C1qa, C1qb, C1qc 
and Ctss from the blue cluster, and Trem2 and Tyrobp from the orange cluster. We propose that 
the network of 57 PIGs constitutes a coordinated cellular response to plaques especially 
between astrocytes and microglia via microglial signaling of secreted proteins like C1Q, APOE, 
and receptors like TREM2 and associated TYROBP, which overall result in astroglial 
activation (e.g., Gfap, C4, Clu, Prdx6, Cst3 and Serpina3) in the vicinity of amyloid plaques. 
This response results, among others, in the inappropriate control of the classical complement 
cascade. We confirm the enrichment of several complement components (C1QA, C1QB, C1QC 
and CLU) and an adapter of TREM2, TYROBP, around amyloid plaques in AD patients (Figure 
7D). More investigations on the interplay of APOE-TREM2 (Krasemann et al., 2017; Parhizkar 
et al., 2019) with the complement pathway (Yin et al., 2019) are required to understand how 
the inflammation driven by the complement cascade in AD can be exploited therapeutically.  
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Oligodendrocytes are part of the cellular phase in the amyloid plaques 
The response of oligodendrocytes to amyloid plaques is of high interest (Braak and Braak, 
1996; De Strooper and Karran, 2016). Oligodendrocytes are the largest group of non-neuronal 
cells in the brain and are vulnerable, decreasing ~25% in the aging brain (Pelvig et al., 2008). 
Age-associated myelin breakdown is seen in MRI scans of patients from age 50 on, which is 
accentuated in APOE4 patients (Scheltens et al., 1992; Bartzokis, 2011). However, single cell 
transcriptomic experiments have recently shown a positive correlation of AD pathology with 
increased expression of genes responsible for myelination in oligodendrocytes in AD patients 
(Grubman et al., 2019; Mathys et al., 2019). APP-overexpressing transgenic mice exhibit an 
increased thickness of myelin (Xu et al., 2014) and contain more oligodendrocytes (Zhou et 
al., 2020). In our study, the OLIG module, strongly enriched for genes involved in myelin 
processing, is, in general, initially up-regulated in AppNL-G-F versus WT mice, but becomes 
down-regulated in the microenvironments with the highest Aβ accumulation. We speculate that 
the up-regulation of OLIG might have a protective role, which ultimately fails with increasing 
amyloid plaques load.  
Several studies have recently reported the involvement of oligodendrocyte lineages in 
inflammation of demyelinating diseases such as multiple sclerosis (Falcão et al., 2018; Kirby 
et al., 2019) and AD (Zhang et al., 2019; Zhou et al., 2020). Zhang et al. suggested that 
oligodendrocyte precursor cells (OPCs) surrounding amyloid plaques undergo senescence and 
stop differentiating into myelin-repairing oligodendrocytes. Instead, they release inflammatory 
molecules into the plaque environment (Zhang et al., 2019). Zhou et al. reported a 
oligodendrocyte Aβ-reactive state, which increases the expression of C4, Serpina3n and H2-
D1 (Zhou et al., 2020). In our study, those three Aβ-reactive oligodendroglial markers are part 
of the PIGs, and the expression of C4 is increased in oligodendrocytes close to amyloid plaques 
(Figure 4H and S4B). Together with activated astrocytes and microglia, oligodendrocytes are 
thus clearly part of the multicellular inflammatory environment of the amyloid plaques. Further 
work is needed now to explore the potential of therapies targeted at oligodendrocyte lineages 
for AD.   
 
Reproducibility of PIGs and OLIGs across mouse models and human diseases 
Several transcriptomic studies have suggested diverse gene-regulatory networks related to 
amyloid or tau pathology (Sierksma et al., 2020), late-onset AD (LOAD) (Zhang et al., 2013), 
cognitive decline (Mostafavi et al., 2018), amyotrophic lateral sclerosis (ALS) (Maniatis et al., 
2019), frontotemporal dementia (FTD) (Swarup et al., 2019), or other brain disorders. We 
compared our WGCNA-identified networks to previously published transcriptomic studies 
(Table S7). 
(Mostafavi et al., 2018) and (Zhang et al., 2013) provide bulk sequencing data on large cohorts 
of human brains. Mostafavi et al. compared five phenotypes related to AD, including Aβ 
burden. The most correlated module with Aβ burden “m109” is strongly enriched with neuronal 
genes and strongly associated with cognitive decline. M109 has no significant overlaps with 
our PIGs and OLIG, which is, being a neuronal network, not unexpected. M109 however 
significantly overlaps with our Blue module (logged odds ratio (LOR) = 1.11, padj = 1.37e-15). 
In contrast, the PIGs module significantly overlaps with their microglial “m116” module (LOR 
= 3.69, padj = 2.61e-17), and the OLIG module with their oligodendroglial “m110” module 
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(LOR = 3.73, padj = 1.15e-55). Although m116 does not show significant correlation with any 
of the AD phenotypes in the Mostafavi’s study, m116 is associated with AD diagnosis in 
another human cohort (Zhang et al., 2013). Zhang et al. constructed gene-regulatory networks 
from 1647 postmortem brain tissues from LOAD patients and controls, and correlated networks 
with 26 neuropathological traits such as Braak stage and brain atrophy. In the top 20 modules 
ranked for relevance to LOAD pathology, the immune-related “Yellow” module has a strong 
overlap with the PIGs module (LOR = 2.59, padj = 2.26e-11), and the myelination-associated 
“Light green” module with the OLIG module (LOR = 3.82, padj = 2.62e-58). In addition, the 
PIGs-associated “Yellow” module is identified as the strongest gain-of-connectivity module, 
while the OLIG-associated “Light green” module is identified as one of the loss-of-
connectivity modules in the Zhang’s study. This result is in line with our observation of 
increased network connectivity in the PIGs (Figure 5) and decreased connectivity in the OLIGs 
(Figure S5B), and further indicates their relevance to LOAD. 
We further made a comparison with a study that used two mouse models, one for amyloid and 
one for tau pathology (Sierksma et al., 2020). The module most strongly overlapping with our 
PIGs module is the “APPtg blue” module (LOR = 3.57, padj = 2.07e-27), which is enriched with 
AD risk genes and is a microglial response to amyloid rather than tau pathology. Our OLIG 
module has a strong overlap with the “APPtg-greenyellow” module (LOR = 4.11, padj = 7.63e-

28), which is an oligodendroglial response in the amyloid- but not the tau-model. This 
observation is in line with our hypothesis that OLIG is an oligodendroglial-related response to 
mild Aβ exposure, while PIGs is an Aβ-plaque-induced co-expression network, and further 
suggests a minimal correlation of the amyloid-responsive networks to tau pathology. 
We finally compared data from an ALS (Maniatis et al., 2019) and from a FTD study (Swarup 
et al., 2019). Maniatis et al. provided a comprehensive characterization of transcriptional 
changes in spinal cords of an ALS mouse model and patients. The co-expression networks are 
cell-type-annotated at the level of submodule levels. The PIGs module significantly overlaps 
with the microglial submodule 8.17 (LOR = 4.95, padj = 5.93e-39) in this ALS study, containing 
Tyrobp, Trem2, C1q and other reactive microglial genes. One of the submodules in the PIGs, 
the astroglial green cluster, has a mild overlap with their astroglial submodule 8.9 (LOR = 4.07, 
padj = 0.016), containing Gfap, Apoe and Prdx6. The OLIG module overlaps with their mature 
oligodendrocyte submodule 8.18 (LOR = 3.52, padj = 3.84e-05). The overlap of PIGs and OLIG 
with their module 8 glia indicates the overlap in the glial responses between AD and ALS. 
Interestingly, these authors showed also that the dysregulation of module 8 can be rescued by 
ablation of autophagy in neurons in Atg7 cKO mice (Maniatis et al., 2019). The PIGs network 
also highlights auto-lysosomal pathways in neurons and inflammatory gliosis. 
Swarup et al. identified two major neurodegeneration-associated modules in FTD mouse 
models. They identified a neurodegeneration-associated inflammatory module (NAI) and a 
synaptic (NAS) module that are also dysregulated in human FTD, AD, or ALS samples, but 
not in human major depressive disorder, schizophrenia, or bipolar disorder samples. The NAS 
module significantly overlapped with our neuronal Brown (LOR = 1.03, padj = 5.68e-11) and 
Magenta module (LOR = 1.51, padj = 2.80e-05) (Figure S3). The Magenta module is down-
regulated in response to amyloid plaques, while the Brown module is not changing (Figure 
S3B). This shows that our data separate the co-expression network in response to amyloid 
plaque from the more general neurodegeneration effect captured in the NAS module. The glial 
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enriched NAI module shows a significant overlap with our PIGs module (LOR = 2.41, padj = 
1.21e-15) and OLIG module (LOR = 2.61, padj = 1.07e-54). This conclusion nicely aligns with 
the observations described in (Maniatis et al., 2019), which also points out the overlap in glial 
responses between neurodegenerative diseases. In addition, the NAI module also shows a 
significant enrichment with our Blue module (LOR = 0.74, padj = 1.14e-46). There are in total 
31 genes overlapping between our Blue module, the m109 module and the NAI module, 
including genes encoding for regulators of the ubiquitin-mediated proteolysis (Ubr5), the NF-
kappa-B signalling pathway (Ikbkb) and the Wnt signalling pathway (Dv12). We suggest that 
the Blue module indicates a more generic response in neurodegeneration that operates in 
addition to plaque-reactive networks such as the PIGs. 
 
Conclusion 
 
We demonstrate here a brain disease oriented application of the recently developed Spatial 
Transcriptomics (Ståhl et al., 2016) and in situ sequencing (Qian et al., 2020) technologies. 
The data demonstrate that amyloid plaques are not innocent bystanders of the disease as has 
been sometimes suggested (Robakis, 2010; Kametani and Hasegawa, 2018), but are in fact 
inducing a strong and coordinated response of all cell types in the amyloid plaque cellular niche 
(De Strooper and Karran, 2016). Further work is needed to understand whether, and when, 
removal of amyloid plaques - for instance by immunisation (Gallardo and Holtzman, 2017) - 
is sufficient to reverse these ongoing cellular processes. It is tempting to speculate that antibody 
binding to amyloid plaques would modulate these glial responses, which would complicate the 
interpretation of the outcome of clinical trials as these cellular effects might be different 
between different antibodies (Gallardo and Holtzman, 2017; Schneider, 2020).  
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Figure and Table Legends 

Figure 1. Spatially resolved transcriptomic profiles in adult mouse brain. (A) Sequential 10 µm 
coronal sections of AppNL-G-F and WT brain were collected at 3-, 6-, 12-, and 18-months of age. The 
middle section was used for spatial transcriptomics and the two adjacent sections for immunostaining. 
(B) Total number of TDs per brain region. (C and D) t-SNE plots of the 10,327 transcriptomic profiles. 
TDs were coloured according to brain region (C) or to genotype and age (D). Abbreviations: thalamus 
(TH), hypothalamus (HY), fiber tract (FB), dendritic layers of hippocampus (HPd), somatic layers of 
hippocampus (HPs), cerebral nuclei (CNU), cortical subplate (CTXsp), olfactory areas (OLF), 
entorhinal area (ENTI), temporal association area, ectorhinal area, and perirhinal area (TEP), auditory 
areas (AUD), primary somatosensory area (SSp), posterior parietal association areas (PLT), and 
retrosplenial area (RSP). See also Figure S1. 
Figure 2. Linking gene expression alterations to Aβ load. (A) Immunostaining of Aβ (6E10, white), 
astrocytes (GFAP, green), neurons (NeuN, red), and nuclei (DAPI, blue) at the indicated ages (months). 
Scale bar: 500 m. Bottom: zoom-ins of TDs (yellow circle: 100 m in diameter) in the primary 
somatosensory area of the cortex. Scale bar: 25 m. (B) Quantification of Aβ load. Yellow circles 
indicate the associated TDs. Standard deviation of pixel intensities has the best correlation with 
independent expert analysis and is used as the Aβ index of a TD. (C) The mean of the log transformed 
Aβ index per brain region is plotted at the indicated ages. (D) Scatter plot shows the LFC in function of 
Aβ exposure of each target as detected via ST (y-axis) or RNAscope (x-axis), which is shown in panel 
E (targets: red or green, arrowheads) with 5 concentric rings of plaques. Scale bar: 50 m. See also 
Figure S2. 
Figure 3. Identification of amyloid-β Plaque-Induced Genes (PIGs). The PIGs module is the 
WGCNA module with the largest change in function of Aβ exposure at 18 months (see text and Figure 
S3B). (A) LFCs of 57 PIGs in the genotype model at the indicated age. Each dot represents a PIG. (B) 
Average of the mean z-score of PIGs per region in AppNL-G-F mice. (C) The mean z-score of 57 PIGs in 
each TD (y-axis) is positively correlated with the mean of the log-transformed Aβ index (x-axis). 
Pearson correlation = 0.39, p-value ⋍ 0 (D) Venn diagram highlights the overlap of PIGs with 
ARM/DAM microglia and A1-astrocytes. See Figure S3D. The top 10 connected hub genes are 
highlighted in red. (E and F) Scatter plots at 3- (E) and 18- (F) months of age. The y-axis represents the 
LFC of gene expression in the TDs in function of log transformed Aβ index. The x-axis represents the 
LFC of gene expression in AppNL-G-F versus WT. Individual genes of the PIGs module (purple), mouse 
orthologs of human AD-associated microglia markers (Mic1, orange) (Mathys et al., 2019) and overlaps 
between the two data sets (green) are indicated. See Figure S3E. 
Figure 4. Cellular signature of PIGs identified by in situ sequencing. (A and B) Distribution of 84 
genes (PIGs and cell type marker genes) in the coronal section (A) and zoom into the hippocampus (B) 
of AppNL-G-F mice at 18-month of age demonstrated by in situ sequencing (ISS). (C) Color of 84 genes 
displayed in panel A and B, including red neuronal (i.e., Syp, Neurod6, Grin3a); yellow microglial (i.e., 
Itgam, Cx3cr1, Csf1r); green astroglial (i.e., Slc1a3, Gfap, Serpina3n) and blue oligodendroglial 
transcripts (i.e., Plp1, Laptm5). (D) Areas circumscribing amyloid plaques from R1 (ring 1, the closest 
area) to R5 (ring 5, the most distant area). Amyloid plaques (6E10) are white, while nuclei (DAPI) are 
blue. Scale bars: 800 m (A), 400 m (B), and 50 m (D). (E) Scatter plot comparing gene expression 
alterations in function of Aβ exposure between ST and ISS in AppNL-G-F mice at 18-months of age. The 
y-axis shows the LFC of each target according to the log transformed Aβ index as detected via ST. The 
x-axis shows the enrichment (logged odds ratio, LOR) of each target in ring 1 (the plaques) as detected 
via ISS. Black spots are significant, while grey are not significant. (F) Example of distance scores 
between a single punctum of interest (white) to cell type markers within 5 m radius. See also Figure 
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S7. (G and H) Cellular signatures of the selected markers (G) and PIGs (H). “Total counts”: total number 
of puncta of each gene detected across 4 coronal sections from 2 genotypes. “Relative counts”: the 
proportion of puncta detected in WT, in AppNL-G-F, and in plaques in AppNL-G-F, respectively. 
“Enrichment in amyloid plaques”: LOR of gene puncta in plaques using a binominal test, with negative 
value indicating depletion. “Cell assignment”: enrichment of each gene in a particular cell type (FDR 
corrected p-value <0.05). The size of balls is proportional to LOR. (I) Cellular signatures of C1qa, Clu 
and C4 validated by RNAscope in AppNL-G-F at 18-months (microglia: Itgam; astroglia: Slc1a3; 
oligodendroglia: Mbp). C1qa is colocalized with Itgam; Clu is colocalized with Slc1a3; C4 is 
colocalized with Slc1a3 or Mbp. Amyloid plaques white, nuclei (DAPI) blue, scale bar: 50 m. See 
also Figure S4. 
Figure 5. Gradual co-expression of PIGs according to Aβ accumulation. Table shows the number 
of TD of the AppNL-G-F mice per age per quantile, and level of Aβ accumulation. The green lines in the 
Circos plots indicate strength of connectivity score between gene pairs. The segregation into 3 clusters 
(blue, green, and orange) is based on the WGCNA analysis in WT. Notice dose-sensitive increase in 
connection of genes with increasing Aβ accumulation from Q4 to Q1, hence the name PIGs: Plaque-
Induced Genes.  
Figure 6. Spatial and temporal response of the OLIG module to Aβ accumulation. (A and B) 
Scatter plots at 3- (A) and 18- (B) months of age. The y-axis represents LFC of gene expression in TD 
in function of log transformed Aβ index. The x-axis represents LFC of gene expression in AppNL-G-F 
versus WT. Individual genes of the OLIG module (red spots), mouse orthologs of human AD-associated 
oligodendrocyte markers (Oli0, orange spots) (Mathys et al., 2019) and overlaps between the two data 
sets (green spots) are indicated. See also Figure S3B. (C) Average of LFCs of 165 OLIG genes in 
function of log transformed Aβ index per region per age in AppNL-G-F mice at 3- and 18-months (mesh: 
non-significant LFC, p > 0.0001). (D) OLIG expression in subsets of TD according to Aβ exposure. 
The y-axis represents expression of OLIG (average of z-score normalized to the mean of the lowest Aβ 
quantile set Q4 at the full brain level). * p <0.05, ** p <0.005, *** p <0.0005, Mann Whitney U test 
compared to Q4. (E and F) Combined RNAscope and immunofluorescence analysis of Mbp, Olig2, 
Plp1 and Cnp in the vicinity of amyloid plaque (6E10, white) in the AppNL-G-F mice at 3 months of age. 
Nuclei are blue (DAPI). Scale bar: 50 m. (E) The y-axis shows the logged odds ratio of each transcript 
in plaques (ring1) from full coronal sections. * p < 0.05 See also Figure S5. 
Figure 7. PIGs and OLIG modules visualized by in situ sequencing in human brains (A) 
Distribution of cell type markers in the superior frontal gyrus of an AD patient. Scale bar: 1000 m, 
zoom-in: 500 m. Cell type assignment was done once for all puncta, based on all cell type marker 
genes combined. Markers: red neuronal (e.g. DLGAP1); blue oligodendroglial (e.g. MAL), yellow 
microglial (e.g. CX3XR1); and green astroglial (e.g. ADGRV1). See Figure S6 and S7 and Table S6. (B 
and C) Expression of human orthologs of 45 detected PIGs (purple, B) and 42 OLIGs (red, C). Scale 
bar: 1000 m. (D and E) Quantification of PIGs (D) and OLIG (E): “Total counts”: total number of 
puncta of each gene detected across 6 individuals. “Relative counts”: proportion of puncta in non-
demented controls (NDC), AD patients and plaques of AD, respectively. “Enrichment in amyloid 
plaques”: logged odds ratio (LOR) of gene puncta enriched in plaques. “Cell assignment”: enrichment 
of each gene in a particular cell type (FDR corrected p-value <0.05). The size of balls is proportional to 
LOR. 
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Supplementary Figure and Table Legends 

Figure S1. Experimental setup and data quality, Related to Figure 1 (A) Summary of sample size, 
number of mice, number of ST experiments and total number of TDs passing quality control per age 
and genotype group. (B and C) The distribution of the number of genes or reads per TDs. (D) Each dot 
represents a gene, and in total 46454 genes were detected in the full database. The scatter plot shows 
the distribution of total number of reads per gene (x-axis) and the percentage of TDs expressing each 
gene (y-axis). Among 46454 genes, 1970 genes have only one copy; 25665 genes were lowly expressed 
(LogRead <5); and 40 genes were highly expressed (LogRead > 13) such as Plp1, Mbp, Sez6, and Apoe. 
(E) Each dot represents a transcriptomic profile of a tissue domain (TD), in total 10327 TDs are 
available. The scatter plot shows the distribution of total number of reads per TD (x-axis) and the 
percentage of expressing genes per TD (y-axis). (F) Total number of TDs per region in hippocampus. 
(G) t-distributed Stochastic Neighbour Embedding (t-SNE) plot visualizing 355 transcriptomic profiles 
in WT hippocampus at 3-months of age. TDs cluster according to somatic layers CA1, CA3, and DG. 
(H and I) The same t-SNE plot as panel G, but TDs are colored according to gene expression of 
landmark genes in somatic layers (H) or metabolic genes in dendritic layers (I). As shown in panel H, 
Dsp and Prox1 were localized in the granule cell layer of Dentate Gyrus (DG_sp), while Fibcd1 and 
Wfs1 were localized in the pyramidal layer of CA1 (CA1_sp). In addition, we also found enrichment of 
mt-Co1 (cytochrome c oxidase), Aldoc (aldolase c), Hba-a1 (hemoglobin subunit A1), and Gfap (glial 
fibrillary acidic protein) in the dendritic layer of hippocampus in panel I. This observation is in line 
with previous reports that the dendritic layer serves as the metabolic center of the hippocampus, 
containing the most microvessels, astroglial and highest activity of metabolic enzymes, including mt-
Co1 or Aldoc encoding proteins (Borowsky and Collins, 1989).  
Figure S2. Amyloid deposition and astrogliosis, Related to Figure 2 (A and B) Immunofluorescent 
staining of amyloid plaques (mAb 6E10, white), astrocytes (Gfap, green), neurons (NeuN, red), and 
nuclei (DAPI, blue) in coronal sections of C57Bl/6 (A) and APPNL-G-F (B) brain at the indicated age. 
Selective zoom-ins of neocortex, hippocampus, and thalamus are displayed. Scale bar: 500 μm in full 
coronal section, 100 μm or 20 μm in the zoom-ins. CX_SSp: primary somatosensory area of cortex, 
HP_CA1_sr: field CA1, stratum radiatum of hippocampus; TH_GENv: Geniculate group, ventral 
thalamus. (C) Regional plots showing the expression levels of GFAP protein and Gfap mRNA at the 
indicated region, age and genotype. Expression levels are indicated by the mean z-score of GFAP 
protein or Gfap mRNA in the TDs from each group. 
Figure S3. Gene ontology analysis and co-expression networks defined by WGCNA, Related to 
Figure 3 and 6 (A and B) Summary of the differentially expressed genes in function of Aβ exposure 
or genotype analyzed by GORilla (A) and WGCNA (B). Panel A shows the significantly changed 13 
super GO-categories, while panel B shows the alteration of 12 WGCNA-identified modules in both the 
Aβ- and genotype-axis at 3-months (blue) and 18-months (orange) of age. These Aβ-disease interaction 
plots take the average of LFC of genes in each GO-category (A) and in each module (B) of the indicated 
axis. (C, D and E) Cellular signatures of each WGCNA module deduced from different published 
single-cell transcriptomic data sets as indicated below in mouse (C and D) or in human (E). The plots 
show significant overlaps between the identified WGCNA modules and a selection of publicly available 
gene sets as indicated below. The overlap is tested by Fisher’s exact tests, p < 0.05 FDR-BH corrected. 
The tan (34 genes) and green-yellow (39 genes) modules do not overlap with any gene sets, while the 
blue (3202 genes) and turquoise (4592 genes) modules act as dump modules and overlap with most of 
gene sets, thus not shown in the plots. We indicate the number of markers per gene set between brackets. 
Each block shows the number of genes shared (top), the number of genes expected to be shared by 
chance (middle) and the corrected p-value (bottom). (C) The association of each module with mouse 
cellular populations from wild-type (CD-1) mice (Zeisel et al., 2015). (D) The association of each 
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module with disease-associated glial populations identified in mouse models: disease-associated 
microglia (DAM) (Keren-Shaul et al., 2017) and inflammatory astrocytes (A1) (Liddelow et al., 2017). 
(E) The association of each module with AD-associated cellular subpopulations identified from 48 
human individuals (Mathys et al., 2019): AD-associated oligodendrocyte (Oli0), microglia (Mic1), 
interneuron (In0), excitatory neuron (Ex4), oligodendrocyte precursor cell (Opc1), and astrocyte (Ast1). 
These results show a strong enrichment of the PIG module with human AD-associated microglia 
orthologs (Mic1). We do not find association of the PIGs with marker genes of populations with no 
AD-pathology traits. 
Figure S4. Microglia, astrocytes and oligodendrocytes are involved in the activation of the 
complement cascade around amyloid plaques, Related to Figure 3 and 4 (A) Cellular signatures of 
the complement components as measured by ISS. “Total counts” shows the total number of puncta of 
each gene detected across 4 coronal sections from 2 genotypes. “Relative counts” shows the proportion 
of puncta detected in WT, in AppNL-G-F and around plaques, respectively. “Enrichment in amyloid 
plaques” displays the logged odds ratio of gene puncta enriched in plaques using binominal test, with 
negative value indicating depletion. “Cell assignment” in WT, AppNL-G-F or plaques display the 
enrichment (logged odds ratio) of each gene in a particular cell type using Fisher’s exact test (FDR 
corrected p-value <0.05). The size of balls is proportional to logged odds ratio. (B) Combined 
RNAscope and immunofluorescence analysis of complement components (C1qa, C4 or Clu in green) 
expression by microglia (Itgam, red), oligodendrocytes (Mbp, red), astrocytes (Slc1a3, red), and 
neurons (Syp, red) in the vicinity of amyloid plaques (6E10, white) in the hippocampus of AppNL-G-F 
mice at 18-month of age. Nuclei are blue (DAPI). Scale bar: 25 m. (C) Quantification of C1qa, C4 
and Clu staining intensity per cell, classified based on cell type and distance from each plaque. 
Measurements were made from >2900 single cells for each condition from 3 AppNL-G-F mice. Expression 
of C1qa in microglia, of C4 in oligodendrocytes, and Clu in astrocytes were increased in the plaque 
cellular niches. * p < 0.05, ** p < 0.005, *** p < 0.0005, Mann Whitney U test compared to the 5th 
ring. 
Figure S5. Spatial and temporal distribution of the OLIG module, Related to Figure 6 (A) Average 
of LFCs of 165 genes in the OLIG module per region in AppNL-G-F versus WT at 3 and 18 months of age 
(region with mesh: non-significant LFCs, p >0.0001). (B) Sum of the connectivity score of gene pairs 
in the OLIG module in all TDs in WT, in TDs with low Aβ exposure (Q4), and in TDs with high Aβ 
exposure (Q1) in AppNL-G-F. The strength of co-expression of the OLIG module is highest in TDs with 
low Aβ exposure (Q4). * p < 0.0001, Mann Whitney U test. (C) The OLIG expression (mean z-score 
of the 165 genes) per region in the AppNL-G-F mice at 3 and 18 months of age (region with mesh: p 
>0.0001). (D and E) Combined RNAscope and immunofluorescence analysis of amyloid plaques (anti-
Aβ1-16 antibody, clone 6E10, white) and Mbp, Olig2, Plp1 and Cnp transcripts (red and green, arrowhead) 
in hippocampal CA3 area (HP_CA3), entorhinal cortex (ENTI), or thalamus (TH) of AppNL-G-F mice at 
3-months of age. Nuclei are blue (DAPI). Scale bar: 100 m. (E) The y-axis shows the logged odds 
ratio of each transcript in plaques (ring1) in the indicated brain regions. * p < 0.05, FDR-BH p-value 
correction. 
Figure S6. Amyloid plaques deposition and cellular distribution in human brains, Related to 
Figure 7 (A) Distribution of amyloid plaques (6E10, white) and nuclei (DAPI, blue) in the superior 
frontal gyrus of each AD individual. (B) Distribution of amyloid plaques (6E10, white) and cell type 
markers including green astroglial (ADGRV1, AQP4, GFAP, ALDH1L1, SLC1A2 and CLU), yellow 
microglial (CX3XR1, C1QA, BLNK, LAPTM5, HLA-DRA, FCGR2A, C1QC and TMEM119), red 
neuronal (DLGAP1, PPFIA2, KCNIP4, PTK2B and GRIP1), and cyan oligodendroglial transcripts 
(MAL, MOBP, PLP1 and ERMN). Scale bar: 1000 m. (C) Cellular signatures of the selected markers. 
The column “Total counts” shows the total number of puncta of each gene detected across 6 individuals. 
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The “Relative counts” shows the proportion of puncta detected in non-demented controls (NDC), AD 
patients and plaques of AD, respectively. “Cell assignment” in NDC, AD, and plaques of AD columns 
display the enrichment (logged odds ratio) of each gene in a particular cell type using Fisher’s exact 
test (FDR corrected p-value <0.05). The size of balls is proportional to logged odds ratio. 
Figure S7. A segmentation-independent method to assign cell type to an individual punctum, 
Related to Figure 4 and 7 (A) A logistic curve is used to determine distance measure (Vp) from the 
distance between a punctum and a marker gene punctum (dp), here with r = 15 pixels as the sigmoid 
midpoint (blue line), and s=0.9 as the steepness of the curve. We test how different parameters affect 
cell type assignment in mouse and human below: r for mouse or human (B) and s for both mouse and 
human (C). The first column shows the total number of puncta (in thousands) assigned to a cell type: 
oligodendrocyte (orange), astrocyte (green), neuron (purple) and microglia (blue). The second column 
shows the value of the parameter under investigation. The remaining columns each represents one cell 
type marker gene, showing the odds ratio of enrichment in a cell type. A positive odds ratio represents 
enrichment, whereas a negative odds ratio depletion. The column header indicates both the gene name, 
and the cell type for which this gene is considered a marker. (B) The effect of radius is investigated in 
both mouse (top) and human (bottom) plot. Overall, we see a strong enrichment of all cell type markers 
in the corresponding cell types, and depletion in other cell types. Increasing the radius in general 
increases the total number of puncta assigned to a cell type, however it does deteriorate the odds ratios. 
In the end, we have chosen r = 15 pixels (5 um) for mouse and r = 30 pixels (10 um) for human, which 
are reasonable approximations of the average cell size in each species. (C) We test how the steepness 
(s) of the curve affects cell type assignment. The result shows that the steepness has little impact on the 
cell type enrichment analysis, we settled on 0.9 for the downstream analysis for both mouse and human. 
(D) To test the effects of different cutoffs in cell type enrichment, we perform the same analysis as B 
and C while fixing the radium and steepness. We see the power of correctly assigned cell type marker 
back to its corresponding cell type has decreased at 0.5 cutoff, while little difference is seen at 0.75 and 
0.85. We chose 0.75 cutoff for both mouse and human. The consistent result using different parameters 
shows the robustness of the method.   
 
Table S1. Quality of mouse samples, Related to Figure 1 For each ST library, we report the age, 
hemisphere, RIN value, PCR cycle, the bregma, and the ID according to the Allen Brain atlas for each 
coronal section of each mouse used in the current manuscript.  
Table S2. List of enriched GO term in function of Aβ index and genotype at 3- and 18-months of 
age, Related to Figure 3, 6 and S3A Detailed information of GO terms within each of the 13 super 
categories. The significance (P-Bonferroni), the enrichment score, and the leading gene of each GO 
term per age (M03 or M18), and each direction of the differentially expression by the Aβ model or the 
genotype model are included. GD: down-regulation in the genotype model; GU: up-regulation in the 
genotype model; PD: down-regulation in the Aβ (plaque) model; PU: up-regulation in the Aβ (plaque) 
model.  
Table S3. List of genes of each co-expression network defined by WGCNA, Related to Figure 3, 
6 and S3B  
Table S4. The significantly enriched GO term in each co-expression network, Related to Figure 
3, 6 and S3B GO number, description, enrichment score, and significance (p-value and adjusted FDR) 
per GO term for each WGCNA module is included.  
Table S5. Quality of human samples, Related to Figure 7 and S6 For each ISS sample, we report 
the age, RIN value, postmortem delay (pmd), pH, gender, Braak stage and Thal amyloid phase of each 
individual. 
Table S6. Cell type markers applied for ISS analysis of human samples, Related to Figure 7 and 
S6 The references support the cellular specificity of our selected cell type markers. 
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Table S7. Reproducibility of our WGCNA modules across mouse models and human diseases, 
Related to Figure 3, 6, and S3B Genes from co-expression networks of each studies are collected and 
tested against all our 15 modules (including the 3 submodules derived from PIGs) for significant 
overlaps using Fisher’s exact text, and significance is defined by Bonferroni-adjusted p<0.05. 
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STAR ✯ Methods 

RESOURCE AVAILABILITY 
 
Lead contact 
Further information and requests for reagents may be directed to, and will be fulfilled by the 
corresponding author Bart De Strooper (bart.destrooper@kuleuven.vib.be) 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 
Raw and normalized count matrix of the Spatial Transcriptomics are available at 
GSE152506. Data and images of in situ sequencing are available at “Synapse.org”: 
https://doi.org/10.7303/syn22153884 All data and analysis are available at “alzmap.org”: 
https://alzmap.org/ 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 
Mice 
All animal experiments were conducted according to protocols approved by the local Ethical 
Committee of Laboratory Animals of the KU Leuven (governmental license LA1210591, ECD 
project number P056-2016) following governmental and EU guidelines. AppNL-G-F knock-in 
(Saito et al., 2014) mice express Swedish (KM670/671NL), Beyreuther/Iberian (I716F), and 
Arctic (E693G) mutations in the App gene under the endogenous promoter on the C57Bl/6J 
background. AppNL-G-F mice were in addition backcrossed for at least 2 generations with 
C57Bl/6J mice in the De Strooper lab. It should be noticed that the APP locus in AppNL-G-F has 
been the result of a recombination event of a FVB generated transgene which means that an 
unknown number of FVB genes are in linkage disequilibrium with the AppNL-G-F transgene.  
 
Male mice (AppNL-G-F KI and C57Bl/6J controls) were sacrificed at 3.5 months (106 days), 6 
months (average 183.5 days), 12 months (average, 367 days), or 18 months (average 551 days) 
of age, giving rise to 8 experimental groups (n=2 per group for 3.5- and 18-months of age; n=1 
per group for 6- and 12-months of age; n=12 for total): WT_03, WT_06, WT_12, WT_18, 
AD_03, AD_06, AD_12, AD_18. Following cervical dislocation, left and right hemispheres 
were embedded in cold OCT separately and snap-frozen in isopentane chilled with liquid 
nitrogen. Samples were stored at -80˚C. 
 
Human 
The human brain tissues were obtained from the Netherlands Brain Bank (NBB), Netherlands 
Institute for Neuroscience, Amsterdam. Written informed consent was given by the donors for 
brain autopsy and for the use of material and clinical data for research purposes, in compliance 
with national ethical guidelines. Clinicopathological information of the donor including 
postmortem time, age and sex of the donor, pH as measure for agonal state, clinical information 
and recent drug history is recorded (Table S5). Neuropathological diagnosis of the Aβ 
deposition (stage A, B and C) and neurofibrillary tangles (stage I-VI) is provided (Table S5). 
We selected 3 individuals with clinically diagnosed as AD with pathology at the end stage 
(amyloid stage C and Braak stage V-VI) and 3 non-demented controls (NDC) with no or very 
little pathology. All individuals are female and matched for age (AD: average 76, NDC: 
average 75). Frozen brain blocks of superior frontal gyrus from 6 individuals were delivered 

mailto:bart.destrooper@kuleuven.vib.be
https://doi.org/10.7303/syn22153884
https://alzmap.org/
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on dry ice to the lab and stored at -80˚C. Samples were cryosectioned to a thickness of 10 μm 
using a CryoStar NX70 cryostat (ThermoFisher). Sectioned samples on glass slides were 
processed for in situ sequencing, and followed by immunostaining of Aβ.  
 
  
METHOD DETAILS 
 
Tissue collection for Spatial Transcriptomics  
OCT-embedded hemispheres were cryosectioned coronally to a thickness of 10 μm (bregma: -
2.0 to -2.2) using a CryoStar NX70 cryostat (ThermoFisher). We layered tissue sections onto 
a spatially barcoded array to collect in situ 2D-RNAseq of Spatial Transcriptomics (Lot#10001, 
Spatial Transcriptomics, Stockholm, Sweden) or to a regular glass slide for 
immunohistochemistry. Each spatially barcoded array has 1007 TDs, with a diameter of 100 
μm and a center-to-center distance of 200 μm, over an area of 6.2 mm by 6.6 mm. One coronal 
section normally covers the area of 500 to 600 spots on the array, each spot defining one TD. 
Each spot contains approximately 200 million barcoded reverse-transcription oligo(dT) 
primers allowing to get a global transcriptomic profile of a TD with a volume of 0.00008 
mm3 (𝜋𝑟2ℎ with r=50 µm and h=10 µm). After cryosection, all sections were stored at -80˚C 
before proceeding with experiments.  
 
We collected one right and one left hemisphere for each experimental group at 3.5- and 18-
months of age, and one right hemisphere for each experimental group at 6- and 12-months of 
age. We performed experiments on AppNL-G-F KI mice and C57Bl/6J of the same age at the 
same time. RNA quality was checked by RNeasy Micro Kit (Qiagen, Hilden, Germany) and 
Agilent 2100 Bioanalyzer with RNA nano chips (Agilent Technologies, Inc., Santa Clara, CA, 
USA). RIN values of the tissues were between 8.6 to 9.45. Details of sample quality is 
described in Table S1. 
 
In situ 2D-RNAseq via Spatial Transcriptomics  
Spatial Transcriptomics experiments were performed following the Library Preparation 
Manual (Spatial Transcriptomics, Stockholm, Sweden) (Ståhl et al., 2016). Briefly, 
cryosectioned tissues were fixed on a spatially barcoded array by 3.7% formaldehyde solution 
at room temperature for 10 min, and stained by hematoxylin for 7 min, bluing buffer (Dako, 
CS702) for 2 min, and eosin for 20 sec at room temperature. We acquired HE images by Zeiss 
Axio Scan.Z1 slidescanner (Carl Zeiss AG, Oberkochen, Germany). After imaging, tissues 
were immediately permeabilized by collagenase in HBSS-BSA buffer for 20 min and 0.1% 
pepsin in 0.1M HCl for 6 min at 37˚C, and followed by in situ reverse transcription by adding 
cDNA synthesis master mix at 42˚C for 18-20 hours to get the stable cDNA attached on the 
array. Tissue on the array was then removed by incubation with 2.5 mg/ml proteinase K in 
PDK buffer at 56˚C for 1h with interval shaking (300 rpm, 15s shake, 15s rest), which left 
cDNA coupled to the arrayed oligonucleotides on the slide. We collected the cDNA probes by 
probe cleavage using 100U/ml USER enzyme in 1X second strand buffer with dNTP and BSA. 
Library preparation of the released cDNA probes was performed in the laboratory of our 
collaborator led by Prof. Joakim Lundeberg at KTH Royal Institute of Technology, Sweden, 
including second strand synthesis, in vitro transcription, adapter ligation, second cDNA 
synthesis, qPCR quantification, and PCR amplification. The number of cycles used to amplify 
the final libraries is between 8-11 cycles. Library quality was checked on an Agilent 
BioAnalyser DNA High Sensitivity chip. We selected two out of six libraries per mouse with 
lower amplification cycles, better tissue morphology, higher RIN value, and similar length of 
cDNA to perform paired end sequencing on an Illumina NextSeq500 sequencer at the VIB 
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Nucleomics Core (Leuven, Belgium). To determine the exact localization and quality of each 
of the 1007 TDs on the array, a fluorescent Cyanine-3 probe was hybridized to the remaining 
DNA capture probes and the arrays were scanned at 548 nm by Zeiss Axio Scan.Z1 slide 
scanner (Carl Zeiss AG, Oberkochen, Germany). The image was used together with the HE-
image to annotate the spatial localization of each TD using the Allan Brain atlas as reference.     
 
Immunohistochemistry of Spatial Transcriptomics 
Immunohistochemistry was performed on two extra sections adjacent to the section used for 
sequencing. After fixation in 4% ice-cold paraformaldehyde (PFA) for 20 min and a wash with 
PBS, we performed antigen retrieval by microwave boiling the tissue 3 times in 10 mM sodium 
citrate at pH 6.0 to expose antigenic sites. After cooling down to room temperature for 20 min, 
brain tissues were washed and blocked in TBS-buffer solution containing 0.5% Triton X-100 
and 5% normal goat serum for 2h. The serum-blocked tissues were then stained with mouse 
Alexa Fluor 488 anti-Aβ1-16 antibody, 6E10 (803013, BioLegend) at 4˚C overnight, and guinea 
pig anti-NeuN antibody (266004, Millipore) and rabbit anti-Gfap antibody (Z0334, DAKO) in 
blocking buffer at 4˚C overnight. The immuno-stained tissues were then incubated with goat 
Alexa 568 anti-guinea pig IgG (H+L) antibody (A11075, Invitrogen) and goat Alexa 647 anti-
rabbit IgG (H+L) antibody (A21245, Invitrogen) for 1.5 h at RT. After incubation with DAPI 
and mounting with mowiol, imaging was carried out on Zeiss Axio Scan.Z1 slidescanner (Carl 
Zeiss AG, Oberkochen, Germany) using a 20X objective. Volume images were acquired with 
16-bit depth to allow a broad range of intensity values and rendered using Fiji (Schindelin et 
al., 2012).  
 
In situ sequencing and immunostaining of mouse samples  
OCT-embedded hemispheres of mice at 18-month of age were cryosectioned coronally into 14 
μm (bregma -2.0 to -2.2) and layered onto SuperFrost Plus glass slides (ThermoFisher) and 
further stored at -80˚C before experiments. Samples were shipped on dry ice to CARTANA 
(Solna, Sweden) for tissue fixation, reverse transcription, probe ligation, rolling cycle 
amplification with reagents and according to the procedures supplied in the Neurokit (1010-01, 
CARTANA, Sweden), followed by fluorescence labeling, and sequencing by sequential 
images at 20X objective (Ke et al., 2013). Five probes were designed for each gene, except 
Itgam, which has 10 customized probes to increase the detection sensitivity. We included 
probes for 7 additional genes that do not belong to the PIG module but significantly react to 
the presence of amyloid plaques at 18-months of age in the ST analysis: Cst7, Cd68, Ccl6, 
Prox1, Hcrt, Pmch, and C1ql2 (LFC: 1.91, 1.70, 1.69, -1.42, -1.72, -1.83, and -2.01, 
respectively). Probes with design issues (H2-D1, Cd63-ps and RP23-269H21.1) are removed 
and probes cross-reacted with their related genes are renamed (C4a, C4b as C4, Serpina3n as 
Serpina3, Lyz2 as Lyz). To reduce lipofuscin autofluorescence, 1X TrueBlack (Biotium, 
Fremont, CA) was applied for 30 sec before fluorescence labeling. The result table of the spatial 
coordinates of each molecule of 84 targets together with the reference DAPI image per sample 
were provided by CARTANA.  
 
After in situ sequencing, samples were shipped back to the lead laboratory in Leuven for further 
immunostaining of amyloid plaques on the same tissue. Briefly, after removing coverslips, the 
brain tissues were washed and blocked in TBS-buffer solution containing 0.5% Triton X-100 
and 5% normal goat serum for 2h. The serum-blocked tissues were then stained with mouse 
Alexa Fluor 488 anti-Aβ1-16 antibody, 6E10 (803013, BioLegend) at 4˚C overnight. After 
immunostaining, sections were then incubated in 1X TrueBlack (Biotium, Fremont, CA) 
solution for 30 sec to reduce lipofuscin autofluorescence. After staining with DAPI (Sigma-
Aldrich) and mounting with FluorSave Reagent (Merck Millipore, Burlington, MA). Imaging 
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was carried out on MÄRZHÄUSER SlideExpress 2 with 20X objective and Hamamatsu 
ORCA Flash4.0 camera. Volume images were acquired with 16-bit depth to allow for a broad 
range of intensity values and rendered using Fiji.  
 
In situ sequencing and immunostaining of human samples  
Human brain blocks were cryosectioned into 10 μm and layered onto SuperFrost Plus glass 
slides (ThermoFisher) and further stored at -80˚C before experiments. Samples were shipped 
on dry ice to CARTANA (Solna, Sweden) for in situ sequencing as mentioned above. In 
general, probe design is carried out by CARTANA (Solna, Sweden) using similar methods as 
in Qian et al. (Qian et al., 2020) with modifications to enable higher specificity and constant 
performance. Five probes were designed for each gene, covering as many known isoforms of 
a gene as possible with minimal off-target detection. One exception is CST3, which has only 
two probes, due to high similarity between CST1-5 sequences. The human genes included in 
the list are selected as mouse orthologs using either “one-to-one” or “one-to-many” homology 
type of the Ensemble 81 BioMart table. To reduce lipofuscin autofluorescence, 1X TrueBlack 
(Biotium, Fremont, CA) was applied for 30 sec before fluorescence labeling. The result table 
of the spatial coordinates of each molecule together with the reference DAPI image per sample 
were provided by CARTANA.  
 
After in situ sequencing, samples were shipped back to the lead laboratory in Leuven for further 
immunostaining of amyloid plaques on the same tissue. We found that the immunostaining 
protocol mentioned above for mouse amyloid plaques is not sufficient to detect amyloid 
plaques in human brain, so we included an antigen retrieval step to clearly detect and visualize 
Aβ deposits in AD patients. Briefly, after removing coverslips, protease K (1 μg/ml) was added 
onto brain tissues and incubated at 37˚C for 30 mins. After washing twice with PBS, tissues 
were heated in 10 mM EDTA (pH 6.0 in H2O) using microwave at 650 W to boil intermittently 
for 3 times and let it cool down at room temperature for 20 mins. After washing twice with 
PBS, we incubated the tissue with 100% formic acid for 3 mins at room temperature before 
processing for serum blocking. The serum-blocked tissues were stained with mouse purified 
anti-Aβ17-24 antibody, 4G8 (SIG-39220, BioLegend) at 4˚C overnight, and followed by donkey 
anti mouse Alexa-647 (A31571, ThermoFisher) at room temperature for 1.5 hours. After 
immunostaining, sections were then incubated in 1X TrueBlack (Biotium, Fremont, CA) 
solution for 30 sec to reduce lipofuscin autofluorescence. After staining with DAPI (Sigma-
Aldrich) and mounting with FluorSave Reagent (Merck Millipore, Burlington, MA). Imaging 
was carried out on MÄRZHÄUSER SlideExpress 2 with 20X objective and Hamamatsu 
ORCA Flash4.0 camera. Volume images were acquired with 16-bit depth to allow for a broad 
range of intensity values and rendered using Fiji. 
 
 
Multiplexing RNAscope and immunohistochemistry 
OCT-embedded hemispheres of 3 AppNL-G-F mice at 18-month of age were cryosectioned 
coronally into 14 μm (bregma -2.0 to -2.2) and layered onto SuperFrost Plus glass slides 
(ThermoFisher) and further stored at -80˚C before experiments. RNAscope experiments were 
performed using the Manual Fluorescent Multiplex kit v1 (Advanced Cell Diagnostics, Newark, 
CA) following manufacturer’s recommendations with minor adjustments. Briefly, after 
fixation and protease digestion, probe hybridization was carried out at 40°C for 2 h with the 
indicated probe sets. Probes were all from Advanced Cell Diagnostics: Mm-Cst7 (498711), 
Mm-Cd68-C3 (316611-C3), Mm-C4 (445161), Mm-C1qa (44221), Mm-Clu (427891), Mm-
Syp-C3 (426521-C3), Mm-Mbp-C3 (451491-C3), Mm-Slc1a3-C3 (430781-C3), and Mm-
Itgam-C2 (311491-C2). After amplification steps to obtain the RNAscope signals, we 
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immediately performed immunohistochemistry to acquire the immunofluorescence picture of 
amyloid-beta plaques in the tissues. Briefly, the sections were blocked for 1 hour at RT in PBS 
containing 0.3% Triton X-100 and 5% normal goat serum and immunostained with the anti-
Aβ1-16 primary antibody (6E10, BioLegend, San Diego, CA) at 4°C overnight and then with an 
Atto-488-conjugated goat anti-mouse secondary antibody (Sigma- Aldrich, Saint Louis, MO) 
at RT for 1h. After immunostaining, sections were incubated in 1X TrueBlack (Biotium, 
Fremont, CA) solution for 30 sec to reduce lipofuscin autofluorescence. After staining with 
DAPI (Sigma-Aldrich) and mounting with FluorSave Reagent (Merck Millipore, Burlington, 
MA), 6 different areas within hippocampus per coronal section were imaged via a Leica TCS 
SP8 X confocal microscope (Leica Microsystems, Wetzlar, Germany) using a 40X objective 
with 10 z-stacks spacing of 1um per image.  
 
To visualize the expression of 4 genes in the myelin module and Aβ deposition across the full 
coronal section, we scaled up the imaging system. We performed the same processing to 
multiplex RNAscope and immunostaining as mentioned above by using 4 different probes: 
Mm-Mbp-C2 (451491-C2), Mm-Olig2-C3 (447091-C3), Mm-Cnp-C3 (472241-C3) and Mm-
Plp1-C2 (428181-C2). After immunostaining, sections were imaged by MÄRZHÄUSER 
SlideExpress 2 with 20X objective and Hamamatsu ORCA Flash4.0 camera. Volume images 
were acquired with 16-bit depth to allow for a broad range of intensity values and rendered 
using Fiji. 
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
 
Image analysis 
 
Metadata of Spatial Transcriptomics 
HE and Cy3-spot images were acquired from the middle ST sections. Fluorescent amyloid-
beta, astrocyte, neuron, and nuclei images were acquired from the two adjacent sections stained 
by 6E10, anti-Gfap antibody, anti-NeuN antibody, and DAPI. Manually aligned HE and Cy3-
spot images were used to bridge the transcriptomics picture with the immunostaining pictures. 
To de-barcode the spatial localization of each transcriptomic profile, we converted the pixel 
coordinates of the 1007 TDs on the Cy3-spot image into the theoretical coordinates described 
in the ID-file of the spatially barcoded array. To acquire the spatially corresponding amyloid 
and cellular information per TD, we manually aligned and transformed fluorescence images 
into the corresponding HE images. To annotate the anatomic brain regions, we manually 
aligned and transformed the reference atlas from Allen Brain Institute into the corresponding 
HE images. More details of the reference atlas for each sample are described in Table S1. Image 
alignment was processed using the Fiji plugin “Landmark correspondences” (Legland, 
Arganda-Carreras and Andrey, 2016) and the precision of all aligned images were checked 
before analysis. 
 
We developed a Fiji groovy script package to automate the image processing and analysis. 
Quality of the image has been checked before computation. We annotated the unreliable areas 
(eg. damaged tissue, out of focus, or dirt on the image) by manual assignment of region of 
interest (ROI) by Fiji. For each TD, the package computed the percentage of damaged area, 
coverage area of tissue, coverage area of Cy3-detectable spot, and the coverage area of 
individual brain region according to the Allan Brain atlas images. Spots with coverage area of 
tissue > 90%, damaged area of tissue <30%, and coverage area of Cy3-detectable spot >90% 
are filtered. This results in 500-600 useful TDs for each sample.  



 

 26 

 
To measure the immunostainings, we computed 5 parameters for the Aβ, the Gfap, the NeuN 
and the DAPI staining within each TD: (1) mean pixel intensity, (2) median pixel intensity, (3) 
sum of pixel intensity, (4) standard deviation of pixel intensity, and (5) percentage of area of 
the computed positive signals per TD.  
  
Quantification of immunostainings 
To assign a single measure to a TD for each of the immunostainings, we computed 5 statistics 
for each TD and staining (Aβ, Gfap, NeuN and DAPI): (1) mean pixel intensity, (2) median 
pixel intensity, (3) sum of pixel intensity, (4) standard deviation of pixel intensity, and (5) 
percentage of area of the computed positive signals per TD. To select the most representative 
statistics, a group of 8 experts were employed in a random ranking approach. In this exercise, 
two images of random TDs (showing the same staining) were shown side by side, and we asked 
the experts to identify the TD image which, according to their best estimate, contains the 
highest amount of stained material. For each staining we scored a large number of pairs (Aβ: 
1672, DAPI: 1685, NeuN: 1464, Gfap: 2271). Subsequently, we calculated for every scored 
pair and for each calculated parameter, the difference between the two TDs. We then used the 
Mann Whitney U test (MWU, p-value) to identify which parameter has the best power to 
distinguish between the two TDs, and, which parameter is most often in concordance with the 
expert. Based on this approach, we picked the percentage of area of the computed positive 
signals for Gfap (80.14% correct, MWU p=10-297), DAPI (79.35% correct, MWU p=10-167) and 
NeuN (72.13% correct, MWU p=10-121). Remarkably, the standard deviation of pixel intensity 
worked best for the Aβ (66.51%, correct, MWU p=10-92). We experimented with normalization 
per slide, but this did not improve the predictive power, so we proceeded without normalization. 
The final score taken per staining/TD is the mean of the corresponding spot in the two adjacent 
slides. 
 
Metadata of in situ sequencing 
We manually aligned the amyloid immunostaining with the DAPI reference. As in situ 
sequencing and immunostaining were carried out on the same tissue, the precision of alignment 
is very high and has been checked before analysis. We converted the Aβ-positive signals into 
binary masks by using a histogram-derived threshold method, Triangle, in Image-J. The ROI 
of the plaque cellular niche (ring 1) is based on the area mask with boundary expansion by 10 
m. We compute 5 co-centroid circles (donuts) from the ROI of ring1 in the plaque cellular 
niche to the ROI of ring5 far from plaque with 18.2 m (same parameter as RNAscope 
quantification below) extension per ring without overlap between plaques. The assignment of 
the spatial distance to plaque per fluorescence punctum is based on the spatial coordinates per 
punctum provided by CARTANA. The metadata generated by this image analysis was further 
applied in the data analysis of the in situ sequencing experiment. We used QuPath to overlay 
the spatial images of multiple targets, immunostainings, DAPI staining, and ROIs of cells and 
plaques, and to generate the representative images shown in the figures (Bankhead et al., 2017). 
This procedure is the same for both mouse and human samples. 
 
RNAscope quantification 
Three male AppNL-G-F mice per experimental condition were used for quantification. For each 
mouse, images of the hippocampus acquired by Leica TCS SP8 X confocal microscope were 
analyzed. We took the maximum intensity projection of 10 z-stacks and used the NIS-elements 
software 5.20.01 (Nikon Instruments Europe BV.) to detect nuclei, microglia, astrocytes, 
neurons, oligodendrocytes, and plaques using a custom-made GA3 protocol. To get the single 
cell resolution, the ROI of a segmented single nucleus (based on DAPI staining) was expanded 
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by 10 m. With each ROI per cell, we computed the number of RNAscope puncta per gene. 
Microglia, astrocytes, neurons, and oligodendrocytes were identified by RNAscope puncta 
from the Itgam, Slc1a3, Syp, and Mbp probes, respectively. All parameters were kept constant 
between images to allow unbiased detection. Around each plaque, five concentric circles were 
drawn. The ROI of the plaques (ring 1) is based on the area mask of 6E10 staining with 
boundary expansion by 10 m. We compute 5 co-centroid circles (donuts) from the ROI of 
ring 1 in the plaques to the ROI of ring 5 far from plaque with 18.2 m (65 pixel) extension 
per ring without overlap between plaques. For each ring we counted microglia, astrocytes, 
neurons, and oligodendrocytes, and for each cell we measured the intensity of the signal (eg. 
Cst7, Cd68, C1qa, C4). To quantify the degree of change around amyloid plaques, we first log 
transformed the target intensity per cell, and classified their expression level per cell to the 
distance to amyloid plaques (ring). To get the expression profiles of Mbp, Plp1, Cnp and Olig2 
over all coronal sections, the images of full coronal section of each mouse acquired by the 
microscope “Nikon NiE-MÄRZHÄUSER SlideExpress 2” were analyzed. We developed a 
custom-made GA3 protocol based on the NIS-elements software 5.20.01 to compute the 
number of fluorescence puncta of each gene per ring and the total area of each ring in a full 
coronal section.   
 
Sequencing Data Analysis 
  
Generation of raw counts, cpm counts 
Sequencing data were pre-processed with the ST pipeline (Navarro et al., 2017), which filtered 
low quality bases, mapped against the mouse genome (Ensembl 88), and generated a count 
matrix. The count matrix was further filtered by removing spots with tissue coverage less than 
30% in the HE image. The EdgeR “cpm” function was used for library size normalization and 
the output log-cpm matrix was used for the rest of the analyses.  
 
Differential expression analysis 
DE analysis was conducted by fitting two separate generalized linear models (GLM) using Aβ 
intensity and genotype information respectively. Each GLM model was tested for differential 
expression by using EdgeR quasi-likelihood F-test which accounts for the uncertainty in 
dispersion estimation at the age of 3 months and 18 months, separately. The Aβ model 
represents transcriptional changes under Aβ exposure, which models the log transformed Aβ 
index as a continuous variable, and its LFC indicates the changes in gene expression per unit 
change in Aβ index. For a more straightforward interpretation, we multiply all LFC by a 
constant 4.59 (the difference between the maximum observed Aβ and the minimum observed 
Aβ index across the database). The corrected LFC represents the amount of changes in gene 
expression from the minimum to the maximum observed Aβ load, and is used throughout the 
paper. The genotype model assesses transcriptional changes between WT and TG mice.  
 
WGCNA 
WGCNA package in R (Zhang and Horvath, 2005) was used to build signed co-expression 
networks. The set of genes with the highest 50% standard deviation was selected using the 
“varFilter” package from the Bioconductor (Huber et al., 2015). Soft power 14 was chosen by 
WGCNA’s “pickSoftThreshold” function to calculate the adjacency matrix, and the module 
identification was performed by the “cutreeDynamic” function by selecting deepSplit =4. The 
adjacency matrix is calculated using the “adjacency.fromsimilary” function using the signed 
network and soft thresholding power 14. The mean of the connectivity score of a given module 
is calculated by first taking the row sum of the adjacency matrix as the intra modular 
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connectivity score per gene, and then the average of the intra modular connective score of all 
genes in the given module was calculated. 
 
Selection of ARM/DAM genes 
The 61 ARM/DAM markers are selected from the overlaps of top 120 ARM (Sala Frigerio et 
al., 2019) and top 120 DAM (Keren-Shaul et al., 2017) genes sorted by FDR. 
 
Functional Enrichment 
Functional annotation of the DE analysis was performed by GOrilla using the “Single ranked 
list of genes” model. For each DE analysis, two ranks are generated using LFCs, one from the 
most negative to most positive, and vice versa. The software will search for GO terms that are 
enriched in the top of the list compared to the rest of the list using the mHG statistics. Total of 
8 GOrilla analyses were performed for each age group (3 months and 8 months) and Genotype 
and Plaque, respectively. Bonferroni correction was performed on all Gorilla analyses based 
on the total number of comparisons (21825 GO terms * 8 ranks = 174600). 
 
Functional annotation of each module was performed by GOrilla using the “Two unranked lists 
of genes” model. Each module is used as the target list and the total of 36715 genes expressed 
in our dataset were used as the background set. The software searches for GO terms that are 
enriched in the target set compared to the background set using the standard Hypergeometric 
statistics. 
 
To merge similar GO terms into cluster, we first generated a similarity matrix between all 
significantly enriched GO terms based on the number of the genes overlapping between two 
GO terms. Next, we performed hierarchical clustering using the complete linkage method, with 
tree height 3.3 which grouped all significant GO terms into 12 functionally overlapping clusters.  
 
Binomial test of gene enrichment in the cellular niche (ring 1) of the amyloid plaque  
To test if a gene of interest is significantly enriched in ring1, we used two-sided binomial test 
to compare the fraction of puncta of the corresponding gene in ring1 relative to the total number 
of puncta of the same gene in all rings (q) against the expected proportion (a), which is the 
proportion of the area of ring1 to the area of all rings. The logged odds ratio is then calculated 
as formula 1. All p-values are multiple corrected using Bonferroni method.  
 

Log2(odds ratio) = log2 q(1−q)

a(1−a)
  (formula 1) 

Cellular signature of the in situ sequencing data 

Conventional cell segmentation relies on determining artificial borders around DAPI nuclei 
staining, and is prone to errors due to varying cell shape. On top of that the sparsity (low 
sensitivity) of the ISS data yielded segmented cells with very low puncta counts per cell (mean 
= 10.7 among the cells with at least one punctum). These biases make it difficult to reliably 
identify the cell identity. Therefore, we developed a segmentation-independent method to 
assign a candidate cell type to individual punctum by its proximal markers (Table S6). 
Calculation performed directly on all puncta from a full section instead of puncta counts per 
cell, increases statistical power, and proved to be much more robust (Figure S7). 
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The first step is to transform the distances between the investigated punctum (𝑑𝑝) and each cell 
type marker punctum p into distance scores (𝑉𝑝) using the following logistic function (Figure 
S7A): 

  
 

𝑉𝑝 =
1

1+𝑒𝑠(𝑑𝑝−𝑟) (formula 2) 
 

Parameters are: 𝑑𝑝 - the distance to a cell type marker punctum (in pixels); r - the distance at 
which 𝑉𝑝 = 0.5 – an indication of the investigation radius of the punctum (mouse: r = 15 pixels 
= 4.875 µm, human: r = 30 pixels = 9.75 µm) (Figure S7B); and s - a measure of the steepness 
of the logistic curve (s=0.9) (Figure S7C). Note, considering r as a proxy for cell size, the 
maximum 𝑑𝑝  (307 pixels  100 µm) is well above reasonable values for r. With 𝑑𝑝 > 𝑟, 
𝑉𝑝 quickly approaches zero, and hence, puncta with a 𝑑𝑝 > 𝑟 do not count towards cell type 
assignment. 
 
The next step is to calculate a cell type score (𝑆𝑐𝑡) for each punctum by combining the distance 
scores (𝑉𝑝), per cell type, into a cell type score (𝑆𝑐𝑡) of the investigated punctum: 
 

𝑆𝑐𝑡 =
𝑝∈𝑐𝑡 𝑉𝑝

max (𝑘=2,𝑝 𝑉𝑝)
 (formula 3) 

Where  𝑝∈𝑐𝑡 𝑉𝑝 is the sum of all distance scores (𝑉𝑝) belonging to a particular cell type (ct). 
𝑝 𝑉𝑝is the sum of 𝑉𝑝for all cell type markers. To prevent the assignment of a punctum based 
on a single marker gene in very sparse regions we take max (𝑘,

𝑝 
𝑉𝑝) with 𝑘 = 2. 

 
Note that: 

𝑆𝑛𝑒𝑢𝑟𝑜𝑛 + 𝑆𝑜𝑙𝑖𝑔𝑜𝑑𝑒𝑛𝑑𝑟𝑜𝑐𝑦𝑡𝑒 + 𝑆𝑚𝑖𝑐𝑟𝑜𝑔𝑙𝑖𝑎 + 𝑆𝑎𝑠𝑡𝑟𝑜𝑐𝑦𝑡𝑒 < 1  (formula 4)  
 
 
 
The last step is to assign a cell type to a punctum based on a cutoff (0.75) (Figure S7D). By 
choosing a cutoff > 0.5, we ensure only one cell type can be assigned to a punctum. By taking 
k = 2 (in formula 3), we enforce that at least two marker genes need to be close to the punctum 
in question for a cell type to be assigned.  
 
We tested how different parameters affect cell type assignment in mouse and in human prior 
deciding on the combination of parameters used and reported above (Figure S7). The results 
are consistent when using different values for parameters, indicating the robustness of the 
method.  
 
Finally, for both the mouse and human ISS analysis the cell type assignment incorporates all 
reported marker genes into the cell type call for each punctum. Each punctum is assigned to 
only one (or no) cell type based on the presence of multiple markers for that cell type, as well 
as the absence of markers for other cell types. 
 
 
To investigate the enrichment of gene puncta in a particular cell type, we performed two-sided 
Fisher’s exact tests in three groups (WT/NDC; AppNL-G-F/AD; and AppNL-G-F/AD in ring1) 
separately by comparing puncta of each gene in each cell type, against all puncta of that gene 
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and all puncta of that cell type. P-values are multiple corrected using FDR_BH across all genes 
of interest. 

ADDITIONAL RESOURCES 
We developed an online software to access all data and analysis at “alzmap.org”: 
https://alzmap.org/ 
 
KEY RESOURCES TABLE 
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 
Alexa Fluor 488 anti-β-amyloid 1-16 6E10, mouse BioLegend 803013 
anti-β-amyloid 1-16 6E10, mouse BioLegend 803003 
anti-NeuN, polyclonal guinea pig Synaptic Systems 266004 
anti-GFAP, rabbit Dako Z0334 
Alexa-568-conjugated goat anti quinea pig IgG 
(H+L) Invitrogen A-11075 
Dylight-650-conjugated goat anti rabbit IgG (H+L) Invitrogen A21245 
Atto-488-conjugated goat anti-mouse Sigma-Aldrich 62197-1ML-F 
Chemicals, Peptides, and Recombinant Proteins 
PFA for RNAscope affymetrix 19943 
ethanol Fisher Scientific 10428671 
D-PBS Life Technologies 14287072 
TrueBlack Biotium 23007 
Formaldehyde 37% for ST Sigma Aldrich  F8775-25ml 
Eosin Y (Aqueous)  Sigma Aldrich  HT110232 
SSC (20x) Sigma Aldrich  S6639 
SDS (10x) Sigma Aldrich  71736 
Pepsin, Article Sigma Aldrich  P7000-25G  
Actinomycin D Sigma Aldrich  A1410-2MG 
USERTM Enzyme Bioké M5505L 
BSA Bioké B9000S 
M-MuLV Reverse Transcriptase Article Bioké M0253L 
Cyanine 3-dCTP PerkinElmer NEL576001EA 
dNTP (10 mM each) Article Life Technologies R0191 
SuperScript® III Reverse Transcriptase Life Technologies 18080085 
RNaseOUTTM Recombinat Ribonuclease Inhibitor  Life Technologies 10777019 
Collagenase (50 U/μl)  Life Technologies 17018029 
HBSS buffer  Life Technologies 14025050 
dATP (100 mM)  Life Technologies R0141 
dGTP (100 mM) Life Technologies R0161 
dTTP (100 mM) Life Technologies R0171 
dCTP (100 mM) Life Technologies R0151 
Second Strand Buffer (5X) Life Technologies 10812014 
PBS - Phosphate-Buffered Saline (10X) pH 7.4 Life Technologies AM9624 
protease K Qiagen 19131 
bluing buffer Dako CS702 
hematoxylin Dako S3309 
Buffer PDK Qiagen 1034963 
Critical Commercial Assays 
RNA Scope Fluorescent Multiplex Reagents kit v1 
including AMP1-4, DAPI  ACDBio 320850 
Mm-Cst7 RNAscope probe ACDBio 498711 

Key Resource Table



 

Mm-Cd68-C3 RNAscope probe ACDBio 316611-C3 
Mm-C4b RNAscope probe ACDBio 445161 
Mm-C1qa RNAscope probe ACDBio 441221 
Mm-Clu RNAscope probe ACDBio 427891 
Mm-Syp-C3 RNAscope probe ACDBio 426521-C3 
Mm-Mbp-C3 RNAscope probe ACDBio 451491-C3 
Mm-Slc1a3-C3 RNAscope probe ACDBio 430781-C3 
Mm-Itgam-C2 RNAscope probe ACDBio 311491-C2 
Negative Control Probe ACDBio 320871 
RNeasy Micro kit Qiagen 74004 
ST Library preparation slides Spatial Transcriptomics Lot#10001 
Deposited Data 
Raw and normalized count matrix of the Spatial 
Transcriptomics 

This paper GEO: GSE152506 

Data and images of in situ sequencing This paper https://doi.org/10.73
03/syn22153884 

Resource website including sequence data, images, 
analyses, and resources related to the Spatial 
Transcriptomics and in situ sequencing of mouse 
and human samples. 

This paper https://alzmap.org/ 
 

Experimental Models: Organisms/Strains  

AppNL-G-F Saito et al., 2014 
Available from the 
Saido lab. 

C57Bl/6 (control for for AppNL-G-F) Janvier C57BL/6JRj 
Software and Algorithms 

ImageJ NIH 
https://imagej.nih.go
v/ij/ 

WGCNA Horvath and Zhang.2005 

https://cran.r-
project.org/web/pack
ages/WGCNA/index.
html 

EdgeR Robinson et al., 2010 

https://bioconductor.
org/packages/releas
e/bioc/html/edgeR.ht
ml 

GOrilla Eden et.al, 2009 

http://cbl-
gorilla.cs.technion.ac
.il/ 

ST pipeline Navarro et.al, 2017 

https://github.com/S
patialTranscriptomic
sResearch/st_pipelin
e 
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