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Abstract
The need to evaluate natural resource investments under uncertainty has given rise to the
development of real options valuation; however, the analysis of such investments has been
restricted by the capabilities of existing valuation approaches. We re-visit the well-known
example of a copper mine project under a one-factor and two multi-factor models using the
influence diagram simulation-and-regression (IDSR) approach. The one-factor setting was
originally proposed by Brennan and Schwartz (J Bus 58(2):135–157, 1985), who used partial
differential equations (PDEs) and finite differences to approximately solve the valuation
problem; extensions to two and three factors were later analysed by Tsekrekos et al. (Eur
Financ Manag 18(4):543–575, 2012) using the least-squares Monte Carlo method. We apply
the IDSR approach to perform a detailed portfolio analysis of the one-factor benchmark
investment and find issues in both the definitions and values of the fixed-output-rate mine
and closure option at the portfolio decomposition stage in Brennan and Schwartz (1985). We
then apply the IDSR approach to re-evaluate two multi-factor extensions of Tsekrekos et al.
(2012) and detect issues in their sensitivity analyses that impact on the reliability of some of
their findings. To confirm this and validate the values we obtained, we integrate PDE-based
analytical expressions that describe the volatilities implied by themulti-factormodels into our
IDSR-based analysis. Using the investment-uncertainty relationship, we are able to correctly
analyse the impact of the complex multi-factor model parameters on investment value. We
conclude that the limitations of PDE-based finite difference approaches may invalidate their
use in portfolio situations, but analytical expressions obtained from PDE-based modelling
may be profitably integrated into a simulation-based, numerical analysis to validate results
and gain new insights.
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1 Introduction

The evaluation of natural resource investments under uncertainty has historically been one
of the most popular areas of application of real options analysis (ROA). Considering their
very capital intensive and largely irreversible nature as well as the high degrees of uncer-
tainty involved, ROA is well-suited to evaluate natural resource investments. Given the wide
applicability of ROA1 in terms of scope and scale, applications in this area are numerous
and encompass a wealth of renewable and non-renewable natural resources. Following the
more general works of Tourinho (1979); Pindyck (1980), early studies on natural resource
investments focused on minerals (Trigeorgis 1990) and metals including copper (Brennan
and Schwartz 1985) and gold (Kelly 1998); agricultural commodities such as rubber/palm-oil
(Bailey 1991) and lumber/timber (Clarke and Reed 1989; Morck et al. 1989); land (Quigg
1993); as well as conventional fossil energy such as oil and gas (Paddock et al. 1988; Ekern
1988; Bjerksund and Ekern 1990). In particular the study of Brennan and Schwartz (1985),
which is widely regarded as a “pioneering article” (Dixit and Pindyck 1994) and “seminal
paper” (Lambrecht 2017), has received considerably attention from academics.

Natural resource investments typically contain many interacting flexibilities and their per-
formance is generally affected by multiple uncertainties. For example, the original copper
mine example of Brennan and Schwartz (1985) considered a portfolio of options: to tem-
porarilymothball and irreversibly abandon themine.Relevant portfolio extensions include the
option to delay/defer themine’s development (Gamba 2003); the option to expand production
capacity (Cortazar and Casassus 1998); and a combined approach with operational, devel-
opment and exploration options (Cortazar et al. 2001). The work of Brennan and Schwartz
(1985) was not only one of the first to consider multiple options, but it also accounted for
copper price uncertainty directly, rather than through a (single) risk-adjusted discount rate.
Building upon their simple one-factor, constant-convenience model, where the price dynam-
ics are described by a geometric Brownian motion, subsequent works aimed at accounting
for the mean-reverting tendency of many commodities’ spot prices. In the joint stochastic
process of the two-factormodel ofGibson and Schwartz (1990) the convenience yield evolves
stochastically by following an Ornstein-Uhlenbeck process, and the three-factor model of
Schwartz (1997) extends this two-factor model by assuming that the risk-free interest rate
also follows such a simple mean-reverting process (see, e.g., Cortazar and Schwartz (2003);
Casassus and Collin-Dufresne (2005) for related models).

To value the flexibility provided by real options inherent in natural resource invest-
ments whilst accounting for uncertainty, there are, broadly speaking, three types of valuation
approaches based on partial differential equations (PDEs), lattice models, or simulation (i.e.
Monte Carlo sampling). Considering a hypothetical copper mine, Brennan and Schwartz
(1985) first demonstrated how the value of such a natural resource investment can be math-
ematically modelled by PDEs2 and then numerically approximated using a finite-difference
method. Subsequently, Cortazar and Schwartz (1997) applied such an approach in the context
of an undeveloped oil field. Following the development of the binomial options pricingmodel
by Cox et al. (1979), early applications of binomial lattice techniques evaluated petroleum
projects (Ekern 1988) and a gold mine (Kelly 1998). See McCarthy and Monkhouse (2002)
for a mine-related application of a trinominal lattice technique (Boyle 1988). Due to their ori-

1 For a recent review of real options from a finance and operational research perspective see Lambrecht (2017)
and Trigeorgis and Tsekrekos (2018), respectively.
2 Representing a stochastic optimal control problem, solving the related PDE, which is commonly known as
the Hamilton-Jacobi-Bellman equation, gives rise to free-boundary problems.
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gin in option-pricing theory, the application of the above two types of valuation approaches to
real assets is sometimes referred to as contingent claims analysis (Bjerksund andEkern 1990).

UnlikePDE-basedfinite differences andbinomial techniques, simulation-based approaches
are readily applicable in multi-factor situations. Initially developed for the pricing of Euro-
pean call options by Boyle (1977), subsequent works presented simulation-based approaches
to value American-style options. These include the bundling algorithm of Tilley (1993); the
partitioning algorithm of Barraquand and Martineau (1995), which was applied to on an oil
field example by Cortazar and Schwartz (1998); and an extension of the latter algorithm by
Raymar and Zwecher (1997), which Castillo-Ramirez (2000) tested using the mine example
of Brennan and Schwartz (1985). By contrast, the popular works of Carriere (1996); Tsitsik-
lis and Van Roy (2001); Longstaff and Schwartz (2001) combine simulation with regression
to approximately solve the optimal stopping problem embedded in the pricing of American
options. Extending the least-squares Monte Carlo (LSM) method of Longstaff and Schwartz
(2001) to optimal switching problems, Gamba (2003), Abdel Sabour and Poulin (2006), Cor-
tazar et al. (2008) re-assessed the copper mine example of Brennan and Schwartz (1985).
However, as noted by Abdel Sabour and Poulin (2006), the switching decisions obtained by
Gamba (2003), Cortazar et al. (2008) are not in line with Brennan and Schwartz (1985) and
are also inconsistent because the switching policy of Gamba (2003) is cyclic in the copper
price rather than being linear, and the policy implied by Cortazar et al. (2008) indicates that
it is optimal to open the mine at US$ 0.70/lbs. Multi-factor model extensions of the mine
example were studied by Cortazar et al. (2008), who applied the three-factor model of Cor-
tazar and Schwartz (2003), and Tsekrekos et al. (2012) considered both the two-factor model
of Gibson and Schwartz (1990) and the three-factor models of Schwartz (1997); Casassus
and Collin-Dufresne (2005).

The capabilities of existing valuation approaches restrict the analysis of natural resource
investments and the insights that can be gained by such analysis in differentways.Continuous-
time approaches such as those based on PDEs are arguably the most popular choice amongst
academics conducting theoretical research. This is because although PDE-based modelling
is intuitively unappealing and (mathematically) complex, the obtained solutions and exer-
cise policies are sometimes available in closed-form and often more tractable than those
obtained by mathematically simpler discrete-time approaches such as those based on bino-
mial techniques and simulation (Glasserman 2003; Brandão et al. 2005a, b; Lambrecht 2017).
However, PDE-based finite differences as well as binomial techniques quickly lose their
tractability in multi-factor situations and when there is path-dependency3 (Lambrecht 2017).
In contrast, simulation-based approaches are readily applicable in such situations. To over-
come the limitations of the LSM approach when it comes to valuing option portfolios (Smith
2005; Brandão et al. 2005a), several recent works introduced simulation-based alternatives.
For example, Maier et al. (2020) proposed the influence diagram simulation-and-regression
(IDSR) approach to value portfolios of interdependent real options and applied it to a complex
natural resource investment that features four stochastic factors. Despite these successes, the
key limitations of “black box” simulation-based valuation approaches are a lack of trans-
parency and the difficulty to validate results (Brandão et al. 2005a; Lambrecht 2017).

In this work we re-evaluate a natural resource investment under three different models of
the stochastic dynamics of commodity prices using the IDSR approach. The copper mine
example under a simple one-factor model was initially evaluated in the seminal work of
Brennan and Schwartz (1985), who mathematically modelled and numerically approximated

3 With regard to their model, Brennan and Schwartz (1985) noted “in general there exists no analytic solution
to the valuation model, though it is straightforward to solve it numerically”.
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the valuation problem using PDEs and finite-differences, respectively. This example serves
as our benchmark natural resource investment in which only the copper spot price evolves
stochastically (see Sect. 2). While we obtained results for both the mine values and the
switching decisions that are in line with the ones of Brennan and Schwartz (1985), we
detected, quite unexpectedly, technical issues in both the definitions and values of their fixed-
output-rate mine and closure option (see Sect. 3). We performed a comprehensive portfolio
analysis enabled by the IDSR approach and show that their fixed-output-rate mine includes
the option to abandon the mine, whereas a fixed-output-rate mine does not, in fact, include
any options. We demonstrate that the definition of their closure option is flawed due to an
inconsistency in the way it is calculated, and also that its value is incorrect as it corresponds
to the value of mothballing within the options portfolio. To account for mean reversion in the
copper spot price, we replace the one-factor model with the highly-cited two- and three-factor
models of Gibson and Schwartz (1990) and Schwartz (1997), respectively.

These importantmulti-factor extensions of our benchmark investment—first to a stochastic
convenience yield and then to stochastic interest rates—were previously investigated by
Tsekrekos et al. (2012) applying the LSM approach. However, when re-examining the effects
of the two- and three-factor model on the mine value using the parameters of Tsekrekos et al.
(2012) and comparing values, we find values that are noticeably different from those of
Tsekrekos et al. (2012), and note also that our mine values exhibit the opposite behaviour
with respect to changes of the correlation between the copper price and convenience yield
process (see Sects. 4 and 5). To validate our results, we use a key insight from options theory
about the investment-uncertainty relationship: higher volatility in the underlying generally
leads to a higher investment value. As a proxy measure of the investment’s overall volatility
we use analytical expressions that describe the volatilities implied by the multi-factor models
and that are derived from solutions to futures prices’ PDEs. This enabled us to confirm our
IDSR-based results by demonstrating that an increase in this correlation coefficient actually
reduces overall (or total) volatility and, as such, mine value; by contrast, Tsekrekos et al.
(2012) found values to be increasing in that coefficient. In addition, applying this proxy
measure enabled us to disprove other related findings of their analyses such as the impact of
the short rate’s volatility, thus providing further evidence of the benefit of implied volatilities
in the analysis of natural resource investments in multi-factor situations.

Finally, in Sect. 6, we discuss existing option pricing and decision analysis approaches
in the light of the findings obtained under the different stochastic models. We argue that
while the limitations of PDE-based finite difference approaches may invalidate their use as
practical and reliable methods for the valuation and analysis of portfolios of real options,
analytical expressions obtained from PDE-based modelling may be profitably integrated into
a simulation-based numerical analysis both to validate results and to provide new insights.
These insights include demonstrating that the volatilities of futures returns implied by the
considered multi-factor models may well be used as an adequate proxy measure for the
copper mine project’s actual overall (or total) volatility. The implied volatilities can then be
used to analyse the effects of the complex models’ parameters on investment values through
their impact on overall volatility within the well-known investment-uncertainty relationship.
Given the generally non-linear, non-monotonic dependency of overall volatility (and hence
investment value) on models’ individual parameters, our analysis demonstrates that even
though an individual stochastic factor becomes more volatile, the investment value may
decrease as a result of a decline in overall volatility. This highlights the importance of applying
such a transparent and intuitive approach for investment analysis in multi-factor situations.

The rest of our article is organised as follows: Sect. 2 presents the re-evaluation of a natural
resource investment in a one-factor setting. Results of this re-evaluation are presented and

123



Annals of Operations Research

discussed in Sect. 3. Section 4 extends this benchmark investment by considering two multi-
factor models. Results of this extension are then presented and discussed in Sect. 5. In Sect. 6
we discuss existing option pricing and decision analysis approaches in the light of the findings
obtained, and provide some concluding remarks.

2 Natural resource investments: the one-factor benchmark

In this section we re-evaluate the classical example of valuing a copper mine originally
proposed4 by Brennan and Schwartz (1985) applying the IDSR approach.

2.1 Problem setting

In this copper mine example, the decision maker has several possibilities to affect the mine’s
operation. While it only contains one stochastic factor (copper spot price), the operational
flexibility available in this copper mine example represents a portfolio of interdependent real
options, which we refer to as the option to switch. This and the portfolio’s constituent real
options are:

(a) Option to switch: In addition to extracting the copper immediately until the mine
inventory, Q0, is exhausted, the decision maker may decide to temporarily close the
(operating) mine, to maintain or reopen the mine when it is closed, and/or to irreversibly
abandon the copper mine before its inventory is fully exhausted, i.e. before Q0/q years
of operation at an annual output rate of q .

(a-i) Option to temporarily mothball the mine: If the copper spot price at time t , Xt , is
too low in relation to the mine’s production costs, At , the decision maker can close
down the opened (i.e. operating) mine at a cost of Kc

t , maintain the closed mine
at an annual maintenance cost of Mt , and, if the copper price becomes favourable
again, reopen the closed mine at a cost of Ko

t at time t .
(a-ii) Option to irreversibly abandon the mine: Whether opened or closed, the decision

maker retains the right to permanently abandon the coppermine at any time t without
incurring any cost.

The value of this portfolio of real options is affected by the uncertainty surrounding future
commodity prices, in other words by copper price uncertainty. The copper spot price at time
t , Xt , is assumed to evolve according to a discretised version of the geometric Brownian
motion used by Brennan and Schwartz (1985).

2.2 Modelling

The flexibilities inherent in the copper mine are illustrated by the ID in Fig. 1. It contains
two decision nodes (Opened (1) andClosed (4)) and two terminal nodes (Abandoned (2) and
Exhausted (3)), as well as seven transitions that link these nodes, resulting inN = {1, 2, 3, 4}
and H = {1, 2, . . . , 7}. The duration (in years) of transition h ∈ H is Δh . When the mine

4 It should be noted that even though the numerical illustration of Brennan and Schwartz (1985) considered
“a mine example based on the stylized facts for copper”, the valuation model is general and not limited to
copper, so can, in theory, be applied to any other natural resource.
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Fig. 1 Influence diagram
for the copper mine
project – configuration (a)

1Opened 4 Closed

2
Abandoned

3Exhausted

Operate (1) Idle (6)

Close (3)

Open (5)

Abandon (4) Abandon (7)

Closure (2)

is Opened, the decision maker has to decide whether to Operate (1) for Δ1 year(s) whilst
extracting qΔ1 of copper, temporarily Close (3), or irreversiblyAbandon (4) themine project.
On the other hand, if the mine is Closed, the available transitions are to keep the mine Idle
(6), Open (5) it, or irreversibly Abandon (7) the project. However, the mine closures (2)
if the inventory is fully depleted and, as such, becomes Exhausted. Also, for the sake of
definiteness, the mine has to be Abandoned when reaching its maximum lifetime of Tmax

years, thereby preventing the mine from having an infinite lifetime.
Let the node and the inventory of the mine at time t be denoted by Nt and Qt , respectively,

as well as let the copper spot price at time t be denoted by Xt . Then, the resource and
information component of the state variable St are given by Rt = (t, Nt , Qt ) and It = Xt ,
respectively. The state variable is then written as St = (t, Nt , Qt , Xt ). Since the mine’s
commodity inventory can be depleted at an annual output rate q , which is assumed constant,
it takes at least Q0/q years to empty the finite inventory. While the assumption of a finite
horizon (Tmax ) may result in an approximated numerical solution, adverse effects can be
minimised, even avoided fully, by choosing Tmax � Q0/q .

The binary decision variables (ath)h∈bD(Nt )
associated with transitions h (ath = 1 if h is

made at time t , and 0 otherwise) available at node Nt at time t , bD(Nt ), which are given by:

bD(Nt ) =

⎧
⎪⎨

⎪⎩

{1, 2, 3, 4}, if Nt = 1,

{5, 6, 7}, if Nt = 4,

{}, otherwise,

(1)

have to satisfy the feasible region ASt , which is defined by the following set of constraints:

at1 + at2 + at3 + at4 = 1 if Nt = 1, (2)

at5 + at6 + at7 = 1 if Nt = 4, (3)

athqΔh ≤ Qt ∀h ∈ {1, 5}, (4)

− Qt < at2 ≤ 1 − Qt

Q0
, (5)
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t − Tmax < at2 + at4, (6)

t − Tmax < at7, (7)

where ath ∈ {0, 1},∀h ∈ H. These constraints accomplish the following: (2) and (3) ensure
that exactly one transition is made at decision node 1 and 4, respectively; (4) make sure the
inventory does not become negative5; (5) requires the mine to closure if and only if Qt = 0;
(6) ensures that if t = Tmax and QTmax > 0 then aTmax4 = 1; and, lastly, (7) makes sure the
mine is abandoned if closed at t = Tmax .

After having made a decision subject to these constraints, the resource state Rt evolves
deterministically to Rt+Δh according to SR(·), whereas the information state It evolves
stochastically to It+Δh under the risk-neutral measure represented by SI (·). With regard to
SR(·), the evolution of t is straightforward as it simply evolves from t to t+Δh , the evolution
of Nt is implied by the adjacency matrix of the digraph (N ,H):

⎡

⎢
⎢
⎣

1 2 3 4

1 1 4 2 3
2 − − − −
3 − − − −
4 5 7 − 6

⎤

⎥
⎥
⎦

and the evolution of Qt is specified by the following transition equation for all h ∈ H:

Qt+Δh = Qt − qΔ1(at1 + at5) (8)

On the other hand, the copper spot price at time t , Xt , evolves stochastically to Xt+Δh

according to the following discrete diffusion process:

Xt+Δh = Xt exp

{(

r − δ − σ 2
x

2

)

Δh + σx
√

Δhε
x
t+Δh

}

, (9)

where r is the price trend, δ is the instantaneous convenience yield,σx is the standard deviation
of price changes, and εxt+Δh

is the driving zero-mean process—a standard normal random
variable whose increments are iid.

The payoff obtained at t when making decision at given state St is:

Πt
(
St , at

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qΔ1(Xt − At ) − f (Xt )Δ1, if at1 = 1,

−MtΔ3 − Kc
t , if at3 = 1,

qΔ5(Xt − At ) − f (Xt )Δ5 − Ko
t , if at5 = 1,

−MtΔ6, if at6 = 1,

0, otherwise,

(10)

where At = A0eπ t is the average (per unit) production cost at time t with inflation rate π ;
f (Xt ) = τ1qXt +max{τ2q(Xt (1− τ1)− At ), 0} is the sum of royalties and income tax paid
at time t with τ1 the royalty rate and τ2 the income tax rate; Mt = M0eπ t is the maintenance
cost at time t ; and Kc

t = Kc
0e

π t and Ko
t = Ko

0 e
π t are the costs to switch to the Closed and

Opened node at time t , respectively.

5 For simplicity, we assume Q0 mod (qΔ1) = 0.
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2.3 Portfolio optimisation problem

The problem of determining the optimal value of the copper mine can be formulated as a
multi-stage stochastic optimisation problem and then be solved algorithmically, in theory,
via stochastic dynamic programming (SDP) recursions, as described by Maier et al. (2020).
Let the optimal value of the copper mine at time t given state St be denoted by Gt (St ). The
value of the copper mine, G0(S0), is then given by the optimal solution of:

G0(S0) = max
(at )t∈T

E

[∑

t∈T e−ktΠt (St , at )
∣
∣S0

]
, (11)

where S0 is the state at time 0, at = (ath)h∈bD(Nt )
, at ∈ ASt , ath ∈ {0, 1}, k is the discount

rate, and St+Δh = SM (St , at ,Wt+Δh ) with Wt+Δh = εxt+Δh
.

To determine an optimal policy, i.e. a decision vector a∗
t = (

a∗
t (St )

)

St∈St
for all t ∈ T that

maximises the mine value given the state S0 at time 0,G0(S0), we apply Bellman’s “principle
of optimality” and hence solve the stochastic optimisation problem (11) recursively using
the following value function when in state St at t :

Gt (St ) = max
at

(

Πt (St , at ) + E

[
e−kΔh Gt+Δh (St+Δh )

∣
∣St , at

])

(12)

s.t. at ∈ ASt , (13)

ath ∈ {0, 1} ∀h ∈ bD(Nt ), (14)

St+Δh = SM (St , at ,Wt+Δh ) ∀h ∈ bD(Nt ), (15)

with the terminal condition Gt (St ) = 0, for all St ∈ {
S′
t ∈ St : bD(N ′

t ) = ∅}, t ∈ T .
Ultimately, since the SDP recursion (12)-(15) is, in general, computationally intractable,

the value of the mine, G0(S0), is approximated through a simulation-and-regression-based
solution procedure that consists of a forward and backward induction—both are described
in “Appendix A”, giving the approximation Ḡ0(S0).6

2.4 Valuation

With regard to the valuation of this natural resource investment, we used the same parameter
values as Brennan and Schwartz (1985), which are shown in Table 1. Furthermore, we
considered five decisions to be made per year (i.e. Δ1 = Δ3 = Δ5 = Δ6 = 1/5, whereas
Δ2 = Δ4 = Δ7 = 07) and the first six (i.e. L = 5) generalized Chebyshev polynomials
as basis functions. Also, as in Tsekrekos et al. (2012), we considered 100,000 (= |Ω|)
sample paths (half of which antithetic for variance reduction), where Ω is the set of sample
realisations. While the inventory of the mine can be depleted as early as 15 years (=Q0/q)
after starting operation, a finite time horizon of Tmax = 60 years was chosen for the time by
which the right to extract copper from the mine expires. Since there is no payoff associated
with transitions 4 and 7 nor a terminal value with the Abandoned node, we can use a constant
discount rate of 12% (k = r + λ1) in our computations.

6 It is important to note that Ḡ0(S0) is, in general, a lower bound on the optimal value of the copper mine,
G0(S0). For a recent application of a duality-based upper bound technique to a selection of standard mining
problems see Hinz et al. (2020).
7 By considering that abandonment and closure takes place instantaneously and does not result in a salvage
value and closing costs, respectively, we ensure comparability with Brennan and Schwartz (1985); however,
it would be straightforward to account for more realistic assumptions here, e.g., by simply using Δh > 0, h ∈
{2, 4, 7}, and appropriately adapting (10).
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Table 1 Data for hypothetical
copper mine of Brennan and
Schwartz (1985)

Description Parameter Value Unit

Mine

Output rate q 10 × 106 lbs/year

Initial inventory Q0 150 × 106 lbs

Initial average production cost A0 0.50 US$/lbs

Initial cost of opening Ko
0 200 × 103 US$

Initial cost of closing Kc
0 200 × 103 US$

Initial maintenance cost M0 500 × 103 US$/year

Cost inflation rate π 8% year−1

Copper

Convenience yield δ 1% year−1

Price variance σ 2
x 8% year−1

Nominal interest rate r 10% year−1

Taxes

Royalty τ1 0% –

Income τ2 50% –

Property, Opened/Closed λ1 2% year−1

Property, Abandoned λ3 0% year−1

Using the initialisation from the forward pass and applying the backward induction proce-
dure of “Appendix A”, results are presented and discussed in the following section. Figure 5
provides an illustration of sample paths.

3 Results and discussion: the one-factor benchmark

This section begins with an analysis of the way in which the value of the (initially) opened
and closed mine, Ḡ0(S0), characterised by S0 = (0, 1, Q0, X0) and S0 = (0, 4, Q0, X0),
respectively, are affected by the initial price of copper, X0. The results are shown in Table 2
and compared with those of Brennan and Schwartz (1985), who applied PDE-based finite
differences. In terms of the mine values (the switching decisions), our IDSR-based numerical
results converge very closely (are identical) to the ones obtained by Brennan and Schwartz
(1985) and are in line with the conclusions reached by Abdel Sabour and Poulin (2006);
Tsekrekos et al. (2012), thus confirming the adequacy of the IDSR approach to correctly
value such a natural resource investment. “Appendix C” contains an analysis of the effects
of the copper price and its uncertainty on the value of this benchmark natural resource
investment.

To evaluate the individual real options available in this natural resource investment, this
section now analyses the extent to which the mine value with different configurations of
option portfolios depends on the initial copper price, X0. Table 3 shows the sensitivity of
the value of different portfolio configurations when X0 is in the range from US$ 0.30 to
1.00 per pound. Column (–) gives the expected value of the fixed-output-rate mine, which
assumes it is operated at the rate of 10 million pounds/year until the 15-year inventory is fully
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Table 2 Value (inUS$millions) ofmine for different copper prices according to alternative numericalmethods

Price
(US$/lbs)

Brennan-Schwartz
Finite Differences

Simulation-and-
regression-based

Relative error
(in %)

X0 Opened Closed Opened Closed Opened Closed

0.30 1.25a 1.45 1.250a 1.450 −0.020 −0.020

0.40 4.15a 4.35 4.174a 4.374 0.568 0.542

0.50 7.95 8.11 7.975 8.164 0.314 0.667

0.60 12.52 12.49 12.548 12.524 0.224 0.270

0.70 17.56 17.38 17.585 17.399 0.143 0.109

0.80 22.88 22.68b 22.914 22.714b 0.150 0.151

0.90 28.38 28.18b 28.439 28.239b 0.208 0.210

1.00 34.01 33.81b 34.101 33.901b 0.268 0.269

aOptimal to close mine
bOptimal to open mine

exhausted. As can be seen, this value is negative for copper prices of US$ 0.50 per pound and
below, making operation unprofitable.8 As described in Sect. 2.1, columns (a-i) and (a-ii)
display the value of the mine if it can be temporarily mothballed and irreversibly abandoned,
respectively. Having the flexibility provided by the former (latter) option enables the copper
mine to become economically viable for prices of US$ 0.50 (0.40) per pound and above, thus
allowing the mine with such options to become viable in situations where the fixed-output-
rate mine is not. By contrast, with the option to switch, whose value is shown in column (a)
and which can be interpreted as the portfolio of options to mothball and abandon, the mine
is economically viable for all copper prices under consideration. The IDs9 illustrating the
managerial flexibility available in the setting of columns (–), (a-i), (a-ii) and (a) are shown
by Figs. 2a, 2c, 2b and 1, respectively.

In addition, Table 3 also displays the value added by the portfolio’s individual options—
both in isolation and within the portfolio of options. Columns (a-i)-(–), (a-ii)-(–) and (a)-(–)
report the value of the options to mothball the mine, to abandon the mine and to switch,
respectively. These values were determined by the difference between the mine values with
these individual options—shown in columns (a-i), (a-ii) and (a)—and column (–), which
gives the value of the fixed-output-rate mine. As can be seen, the real options considered add
substantial value to this natural resource investment. For all copper prices under consideration,
abandoning the mine was found to be more valuable than mothballing, and switching more
valuable than abandoning. Importantly, the option to switch, which in itself is a portfolio
of options containing the other two options, will always be at least as valuable than its
constituent options. As expected, the values of these options decrease as the operatingmargin
increases since operational flexibility becomes less attractive. Nevertheless, the added value
of switching is still almost 13% for the highest copper price considered, which is twice the
cost of production.

Columns (a)-(a-ii) and (a)-(a-i) of the table give the value of the option to mothball and
to abandon the mine, respectively, within the portfolio of options. In other words, these

8 It should be noted that these are not the critical copper prices, i.e. the point at which it becomes optimal to
invest, which largely depend on the chosen input data as mentioned by Brennan and Schwartz (1985); however,
our approach can easily be used to accurately estimate these critical prices.
9 Although not shown here for simplicity, the ID in Fig. 2c also contains two transitions to the Abandoned
node for the case t = Tmax .
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1Opened

3Exhausted

Operate (1)

Closure (2)

(a) Without any flexibility – configuration (–).

1Opened

2
Abandoned

3Exhausted

Operate (1)

Abandon (4)

Closure (2)

(b) With the option to abandon the mine –
configuration (a-ii).

1Opened 4 Closed

3Exhausted

Operate (1) Idle (6)

Close (3)

Open (5)

Closure (2)

(c)With the option to mothball the mine –
configuration (a-i).

Fig. 2 Influence diagrams for different copper mine settings

columns report how much an individual real option adds to the portfolio assuming that the
other individual option is already contained in the portfolio. To determine the value of one
option, the value of the mine with the options portfolio was measured against the value of
the mine with the other option. For example, the difference between column (a) and (a-ii)
results in the values shown in column (a)-(a-ii). Comparing the values shown in column
(a)-(a-ii) with the ones of column (a)-(a-i) shows that, while the value of either option in the
portfolio generally decreases as X0 increases10, abandoning adds substantially more value to
the portfolio than mothballing, especially for high copper prices. This result is very intuitive
given the above presented valuation of the options to mothball and abandon in isolation.
It is interesting to note, however, that the relative portfolio value of mothballing generally
decreases as the initial price of copper increases, whereas the relative value of adding the
abandonment option to the option tomothball themine always increases in X0. This indicates

10 The initial increase displayed in column (a)-(a-ii) is due to the non-negative value of the mine with the
option to abandon—see column (a-ii)—, which is bounded below by zero.
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Table 4 Value (in US$ millions)
of copper mine for different
copper price levels according to
Brennan and Schwartz (1985)

Copper
Price

Mine Value Value of
Fixed-Output-

Value of
Closure

(US$/lbs) Open Closed Rate Mine Option
X0 (2) (3) (4) (5)

0.30 1.25a 1.45 0.38 1.07

0.40 4.15a 4.35 3.12 1.23

0.50 7.95 8.11 7.22 0.89

0.60 12.52 12.49 12.01 0.51

0.70 17.56 17.38 17.19 0.37

0.80 22.88 22.68b 22.61 0.27

0.90 28.38 28.18b 28.18 0.20

1.00 34.01 33.81b 33.85 0.16

aOptimal to close mine
bOptimal to open mine

that adding strategic flexibility (to limit downside risk by abandoning the mine early) to the
mine that already has operational flexibility (to exploit upside risk by deviating from the
immediate extraction of copper) is more valuable in this portfolio context than the other way
around.

Although Brennan and Schwartz (1985) were able to provide several insights into the
valuation of this small options portfolio, there are some technical issues in their analysis
that impacted on the reliability of some of their results. Table 4 reports the results of their
numerical analysis. According to Brennan and Schwartz (1985), the relevant columns of their
table are defined as follows:

Column 4 gives the value of the mine assuming that it cannot be closed down but must
be operated at the rate of 10 million pounds per year until the inventory is exhausted
in 15 years. The difference between column 4 and the greater of the values shown in
columns 2 and 3 represents the value of the option to close down or abandon the mine
if the price of copper falls far enough. The value of this closure option is shown in
column 5. (Brennan and Schwartz 1985)

However, while the values reported in columns (2) and (3) have been widely confirmed in the
literature including this work (see Table 2), both the definitions of the values and the actual
values shown in columns (4) and (5) are flawed.

Firstly, the values of the fixed-output-rate mine shown in column (4) are given as pos-
itive (and convex in X0) for all copper prices under consideration. By contrast, and as we
would expect, we have found that the expected value of the mine—assuming copper must be
extracted immediately until the 15-year inventory is fully exhausted—is highly negative if
operating margins are low, and that this value is an increasing yet concave function of X0. As
seen in column (–) of Table 3, the value of the fixed-output-rate mine is negative for copper
prices of US$ 0.50 per pound and below. Our results are in line with Cortazar et al. (2008),
who performed a comparative static analysis and showed that, considering the three-factor
commodity model of Cortazar and Schwartz (2003), the expected NPV of the mine without
any flexibility is negative for low spot prices of copper—see also Castillo-Ramirez (2000);
Lin and Wang (2012). In addition to noting that the value of the mine with the option to
switch is convex in X0, the figure shown by Cortazar et al. (2008) also appears to illustrate
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that the value of the fixed-output-rate mine is concave in X0, whilst converging to the value
of the opened mine for high commodity prices.

The detailed portfolio analysis presented here gives insights into why the fixed-output-
rate mine might have been overvalued in the analysis of Brennan and Schwartz (1985).
Comparing these values in column (4) of Table 4 with our results in Table 3 shows that there
is a similarity between their values and the values we have obtained for the mine with the
option to abandon—see column (a-ii). This similarity suggests that their fixed-output-rate
mine actually includes the option to abandon. Even though our results tend to be slightly
low-biased in relation to theirs, particularly for low copper prices, the overall patterns are
very similar. Surprisingly, our hypothesis that the fixed-output-rate mine of Brennan and
Schwartz (1985) includes the abandonment option even seems to be confirmed by the authors
themselves, who stated in their paper, two paragraphs below the one we cited above, that:

Ownership of a mine […] involves three distinct types of decision possibilities or
options: first, the decision to begin operations; second, the decision to close the mine
when it is currently operating (and possibly to reopen it later), which we have referred
to as the closure option; and third, the decision to abandon the mine early, before the
inventory is exhausted. (Brennan and Schwartz 1985)

This statement seems inconsistent with the authors’ earlier definition presented above. In the
earlier statement, Brennan and Schwartz (1985) define close down or abandon the mine as
representing the closure option. However, the case of their fixed-output-rate mine represents
actually a mine with the early abandonment option, and their closure option does not corre-
spond with “the option to close down or abandon the mine” (Brennan and Schwartz 1985),
which we have referred to as the option to switch. Instead, their closure option corresponds
to an option that looks like our option to temporarily mothball the mine. Using IDs to graph-
ically illustrate this inconsistency, for the fixed-output-rate mine, it appears that Brennan and
Schwartz (1985) have considered the case that corresponds with the ID of Fig. 2b instead of
the correct one shown by Fig. 2a, and the flexibility of their closure option (which is prob-
lematic in itself, as discussed in the following paragraph) corresponds to the ID of Fig. 2c
rather than to the ID shown in Fig. 1.

Secondly, the definition of the closure option in Brennan and Schwartz (1985) is incon-
sistent, and this leads to an incorrect valuation. Given by the “difference between column 4
and the greater of the values shown in columns 2 and 3” (Brennan and Schwartz 1985), the
value of their closure option is determined by subtracting a benchmark mine value—i.e. the
value of the “fixed-output-rate mine”—from the maximum value of two different mines—
an opened and a closed one. However, the minuend of this subtraction is inconsistent with
its subtrahend given that the latter assumes the mine is opened at time t = 0 (N0 = 1),
whereas the former represents a mine that is either opened (N0 = 1) or closed (N0 = 4) at
the beginning, so performing this subtraction does not generate meaningful data. The data
thus obtained is therefore irrelevant regardless of the benchmark applied, that is whether the
(real) value of the fixed-output-rate mine (Fig. 2a) or the value of the mine with the option
to abandon (Fig. 2b) is being used since both have the same initial state. Moreover, since
their benchmark values in column (4) seemingly correspond with the values of the mine with
the option to abandon, the values shown in column (5) do not represent, as implied by the
authors’ definition, the value of the closure option in isolation but instead within the portfolio
that already contains the early abandonment option. Our analysis—the relevant values are
given by column (a)-(a-ii) of Table 3—seems to confirm this when taking into account the
above mentioned bias and inconsistency.
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4 Natural resource investments: two- and three-factor model
extensions

In this section we extend the mine example by integrating the two- and three-factor model
of Gibson and Schwartz (1990) and Schwartz (1997), respectively.

4.1 Problem setting

While the original copper mine example of Brennan and Schwartz (1985) contained a port-
folio of interdependent real options, it only treated the commodity spot price, i.e. the price
of copper, to be stochastic. Here we extend their example by additionally considering both
the instantaneous convenience yield and the instantaneous interest rate to be stochastic. As
such, in terms of options portfolio considered this setting is the same as the one described
in Sect. 2. In terms of uncertainties considered, however, we replace the one-factor setting
of Brennan and Schwartz (1985) by the three-factor model of Schwartz (1997), which nests
the two-factor model of Gibson and Schwartz (1990). Let the copper spot price, the instan-
taneous convenience yield, and the instantaneous interest rate at time t be denoted by Xt , δt ,
and rt , respectively. As in Tsekrekos et al. (2012), the evolution of these three stochastic fac-
tors is described by discretised versions of the continuous stochastic processes of Schwartz
(1997). Note that the two-factor model (copper price and convenience yield are stochastic) of
Gibson and Schwartz (1990) is obtained by making the interest rate constant, i.e. by setting
rt = r0 ∀t ∈ T .

4.2 Modelling

The modelling of this investment problem is to a large extent identical to the modelling
presented in Sect. 2.2; however, adaptations are necessary in the following two areas: the
information state and its transition function. The information state component is given by
It = (Xt , δt , rt ). Hence, St = (t, Nt , Qt , Xt , δt , rt ). The information state It evolves to
It+Δh according to:

Xt+Δh = Xt exp

{(

rt − δt − σ 2
x

2

)

Δh + σx
√

Δhε
x
t+Δh

}

, (16)

δt+Δh =
(
1 − e−κδΔh

)
θδ + e−κδΔh δt + σδ

√

1 − e−2κδΔh

2κδ

εδ
t+Δh

, (17)

rt+Δh =
(
1 − e−κrΔh

)
θr + e−κrΔh rt + σr

√

1 − e−2κrΔh

2κr
εrt+Δh

, (18)

where σx , σδ and σr are the standard deviations of changes in Xt , δt and rt , respectively; κδ

and κr are positive mean reversion (speed of adjustment) coefficients; θδ and θr are the long
run mean of convenience yield and interest rate, respectively; and εxt+Δh

, εδ
t+Δh

and εrt+Δh
are correlated standard normal random variables (mean 0, variance 1) with correlation matrix
(= covariance matrix Σ here, see Glasserman (2003)):

123



Annals of Operations Research

⎛

⎝
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⎠

4.3 Overall volatility andmodel equivalence

One of the key insights from (real) options theory is that there is a non-negative relationship
between option value and underlying volatility, so higher volatility in the underlying asset
generally results in a higher option value as flexibility becomes more valuable (Dixit and
Pindyck 1994). In recent years, this relationship between option value and underlying uncer-
tainty has received increasing interest by academics, e.g. see Caballero (1991); Sarkar (2000);
Cappuccio and Moretto (2001); Lund (2005); Gryglewicz et al. (2008). Existing works have
studied the investment-uncertainty relationship from a range of perspectives, that is consid-
ering different interpretations of this relationship such as the impact of uncertainty on the
optimal investment trigger, or the probability that investment will take place in a certain time
interval. In this work, we interpret the investment-uncertainty relationship as the effect of
overall (or total) volatility on the value of the investment with the portfolio of real options.

As a proxy measure of the investment’s actual overall volatility, we use the volatility
of commodity futures returns. With regard to commodity futures, Schwartz (1997) derived
analytical expressions that describe the volatilities implied by the two- and three-factormodel,
which, in the limiting case11, converge to:

σ 2
M2

= σ 2
x + σ 2

δ

κ2
δ

− 2ρx,δσxσδ

κδ

, (19)

and

σ 2
M3

= σ 2
x + σ 2

δ

κ2
δ

+ σ 2
r

κ2
r

− 2ρx,δσxσδ

κδ

+ 2ρx,rσxσr

κr
− 2ρr ,δσδσr

κδκr
. (20)

Even though (19) and (20) describe the volatility of futures returns in the two- and three-factor
model, respectively, so consider commodity futures contracts rather than a natural resource
investment with flexibility, it may be reasonable to assume that the overall volatility of the
coppermine investmentwith the options portfolio could be represented by a similar functional
relationship in terms of the two models’ parameters involved. In fact, since these expressions
were obtained by Schwartz (1997) from the solution to the PDEs that must be satisfied by
futures prices in the respective model, the concept of contingent claims analysis (Cortazar
and Schwartz 1994) suggests that if the contingent claim is an investment project—in our
case the copper mine—instead of a futures contract with linear payoff, then term structure
of the volatility may be obtained, in theory, by expanding the valuation model’s PDE(s)
accordingly. In this sense, it can be expected that, in the two-factor setting, (19) reflects
the investment’s actual overall volatility more accurately than (20) does in the three-factor
setting, because in the former δt affects the valuation only indirectly through Xt , whereas
when using the more complex three-factor model rt has both indirect (via Xt ) and direct (as
a discount factor) effects on the valuation.

To numerically analyse the effects of the multi-factor models’ parameters on the mine
value, we perform an equivalence analysis of the three stochastic models. In doing so, we
investigate the influence of parameters of the convenience yield (σδ , κδ , ρx,δ and ρr ,δ) and

11 For simplicity, we consider the case when time to maturity (of the futures contract) is infinity.
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Table 5 Parameters of
convenience yield process for
different specifications of
Tsekrekos et al. (2012)

Spec.# θδ = δ0 σδ κδ

1 0.01 0.05 0.30

11 0.01 0.10 0.50

21 0.01 0.15 0.80

interest rate process (σr , κr , and ρx,r )—described by (17) and (18), respectively—on the
implied volatilities of (19)-(20). In fact, we can eliminate the contribution of the convenience
yield process to σ 2

M2
of (19) as well as the contributions of both the convenience yield and

interest rate process to σ 2
M3

of (20) by determining, e.g., the values of ρx,δ at which both σ 2
M2

and σ 2
M3

equal σ 2
x . In other words, we can determine the respective ρx,δ-values such that the

sum of the 2nd and 3rd term of the right side of (19) becomes zero, and such that the sum
of the 2nd to 6th term of the right side of (20) becomes zero, thereby having σ 2

M2
= σ 2

x and

σ 2
M3

= σ 2
x . Analytical expressions for these values of the correlation coefficient ρx,δ , which

we refer to as equivalence correlations, are given by:

ρ∗
x,δ = σδ

2κδσx
, (21)

and

ρ∗
x,δ = σδ

2κδσx
+ σr

κr

[
σrκδ

2κrσδσx
+ ρx,rκδ

σδ

− ρr ,δ

σx

]

. (22)

Hence, when ρx,δ equals the respective ρ∗
x,δ then the volatilities in the multi-factor models

equal the copper price variance, σ 2
x , of the one-factor model of Brennan and Schwartz (1985),

inwhich only the copper spot price is stochastic. Themine values fromBrennan and Schwartz
(1985) are therefore used as benchmark in our equivalence analysis.

4.4 Valuation

For the valuation of this extended mine example, we used the parameter values presented in
Sect. 2.4 for the copper mine and, to ensure comparability, of Tsekrekos et al. (2012) for the
twomulti-factormodels. For the sake of our numerical analysis, yet without loss of generality,
we focus on the three combinations of parameters of the convenience yield process shown
in Table 5. These three specifications correspond with the 1st, 11th, and 21st specification
of Tables 3, 4, 5 and 6 of Tsekrekos et al. (2012) and are the most relevant specifications
used by the authors. This choice is sufficient for our analysis, more specifically, for studying
the effects of different parameters of the two models on the investment value. Additional
parameters used for the three-factor model are: κr = 0.50, θr = r0 = 0.10, σr = 0.015,
ρr ,δ = 0.10 and ρx,r = 0.15. Also, as Tsekrekos et al. (2012), we considered X0 = 0.70,
100,000 paths (half of which antithetic) and the complete set of polynomials in the parametric
model, but, unlike the authors, we used generalised Chebyshev polynomials (with L = 5,
which implies 56 basis functions).

To evaluate this extension, we adapted the backward procedure of “Appendix A” (now
kt = rt + λ1) and changed the second step of the forward pass to: use (18), (17) and (16)
to sample |Ω| paths of rt , δt and Xt , respectively, giving

(
Xt (ω), δt (ω), rt (ω)

)

ω∈Ω
,∀t ∈ T .

Figure 6 gives an illustration of sample paths.
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Table 6 Value of opened mine, Ḡ0(S0) (in US$ millions), under the two- and three-factor model for the three
specifications of Table 5 according to different numerical methods

Spec.# Our results – IDSR-based Tsekrekos et al. (2012) – LSM-baseda

ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80 ρx,δ = 0.40 ρx,δ = 0.60 ρx,δ = 0.80

Two-factor model

1 16.210 13.960 11.958 22.625 23.221 25.060

11 16.703 13.518 10.768 23.497 25.095 27.271

21 16.328 13.239 10.500 23.532 24.079 25.789

Three-factor model

1 16.301 14.043 12.042 24.072 24.865 25.225

11 16.759 13.587 10.844 23.747 25.245 28.174

21 16.403 13.300 10.580 24.545 24.576 26.177

aTheir results under the two- and three-factor model were obtained from Table 3 on page 552 and Table 5 on
page 557, respectively

5 Results and discussion: two- and three-factor model extensions

This section begins with an analysis of the way in which the value of the mine is affected by
the different dynamics of the two multi-factor models. Table 6 summarises the results under
both the two-factor model of Gibson and Schwartz (1990)—described by (16)-(17) with
rt = r0 ∀t ∈ T —and the three-factor model of Schwartz (1997) given by (16)-(18), whilst
considering the three specifications of Table 5 and three different values of the correlation
between the copper price and convenience yield process, ρx,δ . In addition, Table 6 reports the
corresponding results of Tsekrekos et al. (2012), who used the LSM approach. Comparing
their results with ours shows that results are noticeably different. Not only (i) are our mine
values consistently lower than theirs, they also (ii) exhibit the opposite behaviour with respect
to changes in ρx,δ . Indeed, our mine values decrease in ρx,δ , whereas Tsekrekos et al. (2012)
found values to be increasing in ρx,δ:

For the given set of parameters for the short-rate process, project values are found to be
increasing […] in the correlation between spot price and convenience yield changes,
[…] much like in Section 3 where interest rates were assumed constant. (Tsekrekos
et al. 2012)

With regard to (ii), it should be noted that the value of a real options portfolio can be
affected positively or negatively by correlation between the underlying stochastic factors
(Brosch 2008). From (19) and (20) we can observe that the correlation coefficient ρx,δ

negatively affects the volatility in both the two- (σ 2
M2

) and three-factor model (σ 2
M3

). As such,
an increase in ρx,δ generally results in a decrease of the value of the mine as overall volatility
in the underlying decreases. This is, however, in contrast towhat has been found by Tsekrekos
et al. (2012). Intuitively, we would expect such a negative relationship considering the way
in which δt of (17) is nested in the dynamics of Xt in (16). For non-negative ρx,δ (Schwartz
1997), Fig. 3 plots the value of an opened mine (Ḡ0(S0)) and the volatilities implied by both
the two- and three-factor model as a function of ρx,δ . It can be seen from these figures that
the implied volatilities σ 2

M2
and σ 2

M3
and, hence, Ḡ0(S0) decrease as ρx,δ increases, for the

three specifications under consideration. While the implied volatilities decrease linearly in
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Table 7 Results of equivalence analysis for both the two- and three-factor model with the three specifications
of Table 5

Spec.# One-factor modela Two-factor model Three-factor modelb

σ 2
x Ĝ0(S0) ρ∗

x,δ σ 2
M∗
2

Ḡ0(S0) ρ∗
x,δ σ 2

M∗
3

Ḡ0(S0)

1 0.08 17.56 0.295 0.08 17.589 0.321 0.08 17.335

11 0.08 17.56 0.354 0.08 17.560 0.373 0.08 17.269

21 0.08 17.56 0.331 0.08 17.526 0.353 0.08 17.217

aObtained from Table 2, row X0 = 0.70, of Brennan and Schwartz (1985)
bWith κr = 0.50, θr = r0 = 0.10, σr = 0.015, ρr ,δ = 0.10 and ρx,r = 0.15

ρx,δ , as evident from (19)-(20), Ḡ0(S0) is a nonlinear function of ρx,δ and it is apparent that

the decline in mine value, ∂Ḡ0(S0)
∂ρx,δ

, is larger—i.e. more negative—for lower (higher) values

of ρx,δ (σ 2
M2

and σ 2
M3

). This is consistent with the results reported in Fig. 7a and the nonlinear

relationship12 is in line with Schwartz (1997):

When the option element of the investment is considered, the values obtained under
the different models will be nonlinear functions of the spot price (and also of the other
factors in the particular model). (Schwartz 1997)

To address (i) and verify the vertical position of the Ḡ0(S0)-curves in Fig. 3, we preformed
an equivalence analysis. The results are shown byTable 7 and are also included in Fig. 3. It can
be observed in Table 7 that the values of the openedmine, Ḡ0(S0), under the two-factormodel
converge very closely to the benchmarkmine value, Ĝ0(S0), for all three specifications under
consideration. Even though mine values under the three-factor model are marginally below
the one-factor benchmark values, these results are in line with the previously mentioned (and
to be expected) differences in quality of the implied volatilities as proxymeasures of themine
project’s actual overall volatility. This is due to the higher complexity of the three- over the
two-factor model as well as other influencing factors related to both the numerical procedure
applied here and non-linearities in parameters such as X0, δ0 and r0 (e.g., see Fig. 7a).

According to the above analysis, consistent with option pricing theory, the value of the
copper mine decreases in the correlation coefficient ρx,δ as a consequence of the decrease
in overall volatility. Tsekrekos et al. (2012) also claimed that “values under a stochastic
mean-reverting convenience yield will be higher than those under a constant convenience
yield assumption”. However, it is misleading to suggest that this is always the case. Our
equivalence analysis, as indicated in Fig. 3, demonstrates that for ρx,δ-values below the
equivalence correlation (0 ≤ ρx,δ < ρ∗

x,δ), Ḡ0(S0)-values under both models are indeed

higher than the benchmark mine value under the one-factor model, Ĝ0(S0), which assumes
a constant convenience yield. At ρx,δ = ρ∗

x,δ , we approximately have Ḡ0(S0) = Ĝ0(S0).

However, for ρ∗
x,δ < ρx,δ ≤ 1, mine values Ḡ0(S0) are lower than Ĝ0(S0) and, as ρx,δ

approaches 1, these are even considerably lower than the constant one-factor benchmark
value,whichwas obtained in a constant convenience yield setting and is therefore independent
of ρx,δ .

12 It should be noted that it is not entirely clear why Tsekrekos et al. (2012) obtained different results.
Intuitively, one might expect results to converge at ρx,δ = 0. However, comparing their results in Table 6
with ours of Fig. 3 indicates that our mine values would be substantially larger than their values at ρx,δ = 0,
which, although not reported by the authors, can be estimated through extrapolation.
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With regard to the three-factor model, Tsekrekos et al. (2012) have also analysed how
variations in both the standard deviation of changes in the interest rate (σr ) and the correlation
between the interest rate and convenience yield process (ρr ,δ) affect the value of the opened
mine. The authors stated13:

Moreover, […] Figure 3 demonstrates that the value of the investment is increasing
in the volatility of the short rate and its correlation with convenience yield changes,
since higher variability in expected project cash flows makes the flexibility to alter the
operating mode of the project more valuable. (Tsekrekos et al. 2012)

We also performed this analysis and report results for θδ equalling 0.15 and 0.12 in Figs. 4
and 8, respectively. The figures on the left- and right-hand sides show σ 2

M3
-values and Ḡ0(S0)-

values, respectively. Since the authors’ choice of value for κδ is not given, rather than choosing
only one κδ-value, as in Tsekrekos et al. (2012), we ran our valuation algorithm for all three
possible κδ-values of 0.30, 0.50 and 0.80, with results shown in Figures 4a–c, respectively.
Of these, it appears that our results for κδ = 0.80 are qualitatively most similar to those
of Tsekrekos et al. (2012). It is evident that the mine value surfaces obtained here are in
exceptionally good agreement with the volatility surfaces implied by the three-factor model.
For σr = 0, Ḡ0(S0)-values are constant because σ 2

M3
is, as evident from (20), independent

of ρr ,δ . For σr > 0, as is apparent from Panel (a) of their figure, we also find mine values to
be decreasing in ρr ,δ .

In contrast to Tsekrekos et al. (2012), however, our results demonstrate that the mine
value is not always increasing in the volatility of the interest rate process. As we can see
from Figs. 4a and 4b, which consider κδ=0.30 and κδ=0.50, respectively, Ḡ0(S0)-values
are increasing in σr for low values of ρr ,δ , yet decreasing for relatively high ρr ,δ-values.
Interestingly, we observe from Fig. 4c (κδ=0.80) that while Ḡ0(S0)-values increase in σr for
the four lowest ρr ,δ-values under consideration, there is a twofold effect of the degree of σr on
the investment value for 0.4 ≤ ρr ,δ ≤ 0.8: Ḡ0(S0)-values actually decrease in σr for low σr -
values, but increase in σr for high σr -values; this change from decrease to increase seems to
occur at higher σr -values the higher the value of the correlation coefficient ρr ,δ . The evidence
provided by our analysis, particularly the volatility surface of Fig. 4c, seems to confirm that
the nonlinear dependency of σ 2

M3
on σr is the cause of this non-monotonic effect. It can be

inferred therefore that the implied volatilities can be used as a proxy measure to accurately
describe how the mine value will be affected by changes in the complex multi-factor models’
parameters.

6 Discussion and conclusions

In this work, we have re-evaluated a well-known natural resource investment under three
different commodity price models using the IDSR approach. Despite having many advan-
tages as a framework to represent sequential decision problems, IDs have rarely been used
in the context of ROA. A reason for this might be, as Wallace (2010) suggests, that real
option analysts, like their financial counterparts, are generally interested in determining
the value of single well-defined options (possibly compound but still predefined), rather
than identifying and defining the portfolio of options. This focus on valuing single options
is perhaps derived from financial option theory, which addresses decision making prob-

13 However, it should be noted that their statement is not consistent with their illustration because from their
Figure it can be seen that the investment value is actually decreasing in the correlation coefficient.
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Fig. 4 Volatility in three-factor model (σ 2
M3

) and value of opened mine, Ḡ0(S0) (in US$ millions), as a
function of both the standard deviation of the interest rate (σr ) and the correlation between the interest rate
and convenience yield process (ρr ,δ), with θδ = 0.15
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lems in which the representation of the investment proposition requires less sophistication
than when considering complex physical assets. However, realistic and practical real option
problems are generally more complex, so their analysis benefits from the more sophis-
ticated representation of their underlying decision problems that can be addressed via
IDs. Indeed, unlike the intuitively unappealing modelling based on PDEs (Brandão et al.
2005a), the flexibilities available to decision makers in alternative option portfolio config-
urations can be simply and intuitively represented by an ID, as demonstrated in Figs. 1
and 2.

In order to approximate the value of the portfolio of interdependent real options embed-
ded in the copper mine project, we applied simulation in combination with regression. In
contrast, the mathematically more complex valuation approach of Brennan and Schwartz
(1985) used PDE-based modelling to describe the value of the mine and then applied a
finite difference technique to approximately solve their valuation problem. As shown in
Sect. 3, however, there are technical issues at the portfolio decomposition stage in their
illustrative example, and given that the inaccuracy was in this relatively simple exam-
ple, this suggests that the approach is not a good basis for the analysis of real option
portfolios. By contrast, the IDSR approach, which can be easily implemented14 and effi-
ciently applied (e.g. parallel computing), is capable of correctly evaluating both the mine
with the options portfolio and its individual real options through simply adapting the opti-
misation problem’s feasible region. Our portfolio analysis showed that the value of the
fixed-output-rate mine of Brennan and Schwartz (1985) is incorrect and that this mine
appears to include an abandonment option. As a result, the value of their closure option
represents the value of mothballing within the portfolio rather than the closure option in
isolation.

A controversial issue in the real options community is whether to apply option pricing
or decision analysis approaches. Adequately evaluating natural resource investments under
uncertainty requires the proper modelling of the embedded sequential stochastic decision
problem. Only then is it possible to devise and apply adequate and powerful algorithmic
strategies for the valuation of complex and risky investments. We agree with Wallace (2010)
in that option pricing theory has traditionally tended to focus on valuation, whilst neglect-
ing the modelling of the underlying sequential decision problem, whereas decision analysis
and the related tools generally have the decision context as a starting point. An example of
this can be found in Christiansen and Wallace (1998), who compared a decision analysis
(decision tree solved via dynamic programming) and an option pricing approach (valuation
by arbitrage via a replication argument) using a simple example, and showed that although
both approaches deliver the same result, they are methodologically different, with the lat-
ter focusing on determining the optimal value whilst delivering the optimal decisions as a
consequence, and vice versa.

So are option pricing and decision analysis approaches just two sides of the same coin?
This question not only highlights one of the more contentious debates in the field of ROA,
but also implies that the approach taken here of integrating PDE-based analytical expressions
into our simulation-and-regression-based numerical analysis may well be a more promising
approach.While theLSMapproachhas inherent limitationswhen it comes to valuing complex
real option portfolios (Smith 2005; Brandão et al. 2005a; Maier et al. 2020), it has been
successfully extended to such simple switching problems as the one-factor benchmark mine.
We therefore believe the issues found in the two multi-factor extensions of Tsekrekos et al.
(2012) are related to the simulation steps, most likely to the correlation matrix used for

14 Requirements are a standardly available solver (integer programming) and simple least squares.
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sampling correlated paths; the fact that the exact source of the error is undetecable is a
criticism of “black box” simulation-based approaches (Brandão et al. 2005a; Lambrecht
2017).15 To validate the values obtained in our re-evaluation, we use a key insight from
options theory: higher underlying volatility generally means higher investment value. As
a proxy measure of the investment’s actual overall volatility, we use PDE-based analytical
expressions that describe the volatilities implied by the multi-factor models. This enabled us
to validate in a transparent and intuitive way our results, and to provide important insights
into the investment-uncertainty relationship.

To conclude this discussion, we believe our re-evaluation of natural resource investments
under uncertainty directly addresses a number of open and important research questions in the
field of ROA.While there is certainly no “magic bullet” (Smith 2005) for evaluating complex
option problems, this study revisits highly influential works in the field and demonstrates an
alternative way to solve real-life problems that can provide new insights. Traditional option
pricing approaches based on PDE modelling and finite difference approximations—such as
the approach introduced in Brennan and Schwartz (1985), which remains as a cornerstone of
the real options literature—are known to become impractical inmulti-factor situations, but our
study also casts doubt on their practicality and reliability in portfolio situations, i.e.when there
are multiple, possibly interdependent real options. Indeed, based on our numerical analyses
and the above discussions, we believe the limitations of PDE-based approaches owing to
(mathematical) complexity and lack of intuition (Glasserman 2003; Brandão et al. 2005b)
probably invalidate their use in real option portfolio applications. At the same time, however,
analytical expressions obtained by PDE modelling—such as those describing the volatilities
implied by multi-factor models—can contribute to validating simulation-based, numerical
analyses of complex problems. As demonstrated, the integration of such expressions into
our IDSR-based numerical analysis provides important benefits including transparency and
intuition, thereby addressing the key challenge (Brandão et al. 2005a; Lambrecht 2017) of
simulation-based valuation approaches.
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Appendix A: Simulation-and-regression-based valuation algorithm

The IDSR algorithm’s forward pass16 consists of the following steps:

1. Determine the set of decision times, Tn , for all decisions nodes n ∈ {1, 4}:

Tn =
⎧
⎨

⎩

{
iΔ1 : i ∈ Z≥0, 0 ≤ iΔ1 ≤ Tmax

}
, if n = 1,

{
iΔ1 : i ∈ Z≥0,Δ1 ≤ iΔ1 ≤ Tmax

}
, if n = 4,

(23)

2. Use (9) to sample |Ω| paths of Xt , giving a set of copper price realisations {Xt (ω) :
ω ∈ Ω},∀t ∈ T , where T = ⋃

n∈{1,4} Tn
3. Generate the resource state space Rnt for each decision node n and time t :

Rnt=
⎧
⎨

⎩

{
(t, 1, iΔ1q) : i ∈ Z≥0, Q0−min(Q0, tq) ≤ iΔ1q ≤ Q0−q min(Δ1, t)

}
, if n=1, t ∈ T1,

{
(t, 4, iΔ1q) : i ∈ Z≥0, Q0−min(Q0, tq)+Δ1q ≤ iΔ1q ≤ Q0

}
, if n=4, t ∈ T4.

(24)

The backward induction procedure is shown by Algorithm 1, with Φ̌t
(
Rt , at

)
being an

appropriate lower bound (e.g. Φ̌t (·) = 0 if abandoning is possible) and the parametric model
and the least-squares regression are shown by (25) and (26), respectively.

Algorithm 1: Approximation of the mine value given by (12)-(15)
Data: From forward induction procedure and Subsections 2.4 and 4.4
Result: Ḡ0(S0)

1 for t = max{T \ 0} do
2 forall Rt ∈ {

R′
t ∈ Rt : bD(N ′

t ) �= ∅} do
3 forall at ∈ ASt do
4 Use both Φ̌t (Rt , at ) and (25)-(26) to determine:

Ft (St (ω), at ) ← max
{
Φ̌t (Rt , at ), Φ̂L

t (St (ω), at )
}
∀ω ∈ Ω

5 end
6 forall ω ∈ Ω do
7 Compute pathwise optimisers:

ât (ω) ← argmax
at (ω)∈ASt (ω)

{
Πt (St (ω), at (ω)) + Ft (St (ω), at (ω))

}

8 Approximate optimal portfolio value along each path ω:

Ḡt (St (ω)) ← Πt (St (ω), ât (ω)) + e−kΔh Ḡt+Δh

(
SR

(
Rt , ât (ω)

)
, It+Δh (ω)

)

9 end
10 end
11 T ← T \ t
12 end
13 At t = 0, determine:

Ḡ0(S0) ← max
a0∈AS0

(

Π0(S0, a0) + 1
|Ω|

∑

ω∈Ω

e−kΔh ḠΔh

(
SR

(
R0, a0

)
, IΔh (ω)

))

Φ̂L
t (St , at ) =

L∑

l=0

α̂l(S
R(Rt , at ))φl(It ), (25)

16 For simplicity, we show only steps for a mine that is opened at time t = 0, i.e. N0 = 1.
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where L is the model’s dimension, the functions {φl}Ll=0 are called basis functions, and the
optimal values of the coefficients, (αl(SR(Rt , at )))Ll=0, are estimated by:

(
α̂l(Rt+Δh )

)L
l=0 = argmin

(αl (·))Ll=0

{
∑

ω∈Ω

[

e−kΔh Ḡt+Δh (St+Δh (ω)) −
L∑

l=0

αl(Rt+Δh )φl(It (ω))

]2
}

,

(26)

where Rt+Δh = SR(Rt , at ) and St+Δh (ω) = (Rt+Δh , It+Δh (ω)).

Appendix B: Illustration of generated sample paths

Considering X0 = 0.70, Fig. 5 shows the evolution of Xt for five generated paths in the one-
factor model, whereas Figs. 6a, 6b and 6c show the evolution of Xt , δt and rt , respectively,
for five generated paths in the three-factor model.

Fig. 5 Selection of 5 equally
likely paths for the evolution of
the copper price, Xt
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(a) Copper spot price.
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(c) Instantaneous interest rate.

Fig. 6 Selection of 5 equally likely paths for the evolution of the three stochastic factors with specification #
11 and ρx,δ = 0.60

Appendix C: Effect of copper spot price and its uncertainty on mine
value

To illustrate the combined effects of the degrees of the operating margin and copper price
uncertainty on the value of the opened mine, Fig. 7 shows the way in which the initial
copper price, X0, and the standard deviation of the copper price, σx , affect the investment
value. As we would expect, once positive, the value of both the mine with the portfolio of
options (i.e. the option to switch , see Fig. 7a) and the mine without options (see Fig. 7b),
which applies a static “now-or-never strategy”, increases in X0, and the value of the former
also increases as copper price uncertainty increases, whereas the latter decreases in σx .
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Fig. 7 Value of opened mine (in
US$ millions) with portfolio of
options and without options as a
function of initial copper price
(X0) and price uncertainty (σx )
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(b) Without options.

Appendix D: Effect of interest rate uncertainty and correlation on valu-
ation

Figure 8 illustrates the same analysis as in Fig. 4 but using θδ = 0.12, with results for κδ

equalling 0.30, 0.50 and 0.80 shown by Figs. 8a, 8b and 8c, respectively.
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Fig. 8 Volatility in three-factor model (σ 2
M3

) and value of opened mine, Ḡ0(S0) (in US$ millions), as a
function of both the standard deviation of the interest rate (σr ) and the correlation between the interest rate
and convenience yield process (ρr ,δ), with θδ = 0.12
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