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Abstract

Although real options generally occur within portfolios, most valuation approaches

based on either option pricing or decision analysis alone focus on single well-defined

options. In this paper we present a new approach for modelling and approximating

the value of portfolios of interdependent real options using both influence diagrams and

simulation-and-regression. The key feature of this approach is that it translates the

interdependencies between real options into a set of constraints and then directly mod-

els the dynamics of all underlying uncertainties using (Markovian) stochastic processes.

These are then integrated in a portfolio optimisation problem which is formulated as a

multi-stage stochastic integer program. Applying a simulation and regression approach

to approximate the value of this optimisation problem, we present a transparent valu-

ation algorithm that explicitly takes into account vector-valued exercise decisions and

the state variable’s multidimensional resource component. The approach is therefore

applicable to a wide range of complex investment projects with both inherent interde-

pendent flexibilities and many underlying uncertainties. The approach is illustrated by

evaluating a complex natural resource investment that features both a large portfolio of

interdependent real options and four stochastic factors. We analyse the way in which the

approximated value of the portfolio and its individual options are affected by the initial

copper price as well as by the degrees of production cost and copper price uncertainty.
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1. Introduction

Making sound investment decisions in the context of uncertainty and irreversibility

is a challenging problem for decision makers in both the public and private sectors. The

value of an investment project and its exposure to risks are generally affected directly by

both a sequence of decisions, which may be strategic, operational or tactical (Chevalier-

Roignant et al., 2011), and their interactions (e.g. between financing and investment

decisions (Myers, 1974)). In addition, decisions makers often have to make such sequen-

tial decisions simultaneously with respect to several interacting projects, thus have to

manage portfolios of investment projects, rather than individual ones.

While there exist a range of capital budgeting techniques, valuation methods based

on simple temporal discounting are still widely used in practice (Ryan and Ryan, 2002;

Bennouna et al., 2010). Given their prevalence, discounting cash flow (DCF) methods

such as net present value (NPV) have been extended considerably in order to allow for

more accurate investment analyses. Popular extensions include the Weighted Average

Cost of Capital, or WACC; the Capital Asset Pricing Model, or CAPM; Monte Carlo

simulation; and sensitivity analysis. Despite all these extensions, however, the inher-

ent limitation of DCF methods remains: since they assume that investment decisions

are “now or never” propositions they do not correctly take into account the value of

managerial flexibility, thereby undervalue uncertain investment projects.

To address this limitation, real options analysis (ROA), or real options valuation,

has received increasing attention and a wide range of different ROA approaches and

techniques have been developed (De Reyck et al., 2008). In particular, ROA has extended

to accommodate portfolios of interdependent real options (Trigeorgis, 1995), potentially

significantly enhancing the applicability of ROA to many practical situations. However,

recent surveys indicate that the practical application of ROA is still limited, and largely

confined to companies and industries with more sophisticated analytical cultures (Block,

2007) or those exposed to high levels of financial uncertainty (Verbeeten, 2006). Lander

and Pinches (1998) highlighted a number of institutional factors impeding the practical

application of ROA techniques and Zapata and Reklaitis (2010) noted a number of

theoretical limitations in ROA when used in a portfolio context. A key limitation is

that when ROA is extended to the context of portfolios of options, traditional option

valuation techniques (e.g. binomial/lattice and finite difference) become impractical
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(Longstaff and Schwartz, 2001; Gamba, 2003; Trigeorgis, 2005).

In this paper we present a new approach to model and approximate the value of

portfolios of interdependent real options using influence diagrams and simulation-and-

regression. Although it is rarely used by real options analysts, the influence diagram

(ID) is a promising alternative to the traditionally-applied decision tree and has many

advantages as a framework for identifying, defining, and modelling interdependent flexi-

bilities in investment projects. For example, IDs are intuitive and can be readily applied

by decision makers to identify flexibilities (Lander and Shenoy, 1999), thereby focusing

on the decisions the manager can make, rather than the risk modelling (Sick and Gamba,

2010). From a modelling perspective, IDs allow a more compact representation than lat-

tice/tree techniques (Charnes and Shenoy, 2004), particularly in situations where there

are multiple uncertainties and a sequence of decisions, or path dependency (Demirer

et al., 2003). This is because IDs do not scale with the number of uncertainties and

grow linearly rather than combinatorially in the number of decision variables considered

(Lander and Pinches, 1998). Finally, ID representations are simple, intuitive, trans-

parent and flexible. In our approach, we use IDs to graphically model the flexibilities

contained in a portfolio of interdependent real options. The interdependencies between

options are then translated into a set of constraints and integrated into the portfolio

optimisation problem, which is formulated as a multi-stage stochastic integer program.

In order to approximate the value of portfolios of interdependent real options we ap-

ply simulation combined with parametric regression. It is widely acknowledged that sim-

ulation techniques, despite their computational complexity, have significant advantages

over traditional option pricing techniques such as analytical and lattice-based meth-

ods (Pringles et al., 2015). Several authors have proposed numerical methods for the

valuation of single American options using simulation and regression (Denault and Si-

monato, 2017); Stentoft (2014) recently compared the approaches of Carriere (1996);

Tsitsiklis and Van Roy (2001); Longstaff and Schwartz (2001) and recommends the

least squares Monte Carlo (LSM) approach of Longstaff and Schwartz (2001) for com-

putational reasons. While the portfolio optimisation problem is formulated here as a

multi-stage stochastic program (rather than an optimal stopping problem for American

option pricing), we also apply “continuation function approximation”1 by using both

a parametric model and a least-squares method2 like Tsitsiklis and Van Roy (2001);

1It is important to note that functional approximations have been used at least since Bellman and
Dreyfus (1959) to increase the computational efficiency of dynamic programming.

2By contrast, Tsitsiklis and Van Roy (1999) use a stochastic approximation algorithm to fit the model.
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Longstaff and Schwartz (2001). In this way, we are able to approximate the complex

(hard or impossible to determine) continuation functions that describe the expected fu-

ture contributions associated with transitions in the ID. These approximations are then

used in the simulation-and-regression-based valuation algorithm to determine pathwise

optimal decisions – by solving integer programs – for all available transitions at each pos-

sible resource state, subject to the constraints that describe interdependencies. We refer

to this method as the influence diagram simulation-and-regression (IDSR) approach.

The main contributions of this work are: (i) introduction of an approach for the

valuation of portfolios of interdependent real options using IDs and simulation-and-

regression, where IDs are used to graphically model the interdependencies between real

options, which are then translated into a set of constraints; (ii) modelling of the portfolio

optimisation problem as a sequential (stochastic) decision problem with vector-valued

exercise decisions and formulation as a multi-stage stochastic integer program; (iii) de-

velopment of a simulation-and-regression-based valuation algorithm that consists of a

forward and backward induction procedure and that contains several important features

specific to option portfolios such as the explicit consideration of the state variable’s multi-

dimensional resource component; and (iv) a demonstration of the ability of the proposed

approach to evaluate a complex natural resource investment that features both a large

options portfolio and four underlying uncertainties, including an investigation of the way

in which the value of the portfolio and its individual real options are effected by both

the underlying copper price level and the degrees of different uncertainties as well as an

analysis of the effect of different parametric models on the value of the portfolio. These

four areas of innovation are important as they highlight the potential of our approach to

enhance the applicability of ROA to a wide range of complex yet practical and important

investment problems and to lay the basis for further theoretical developments.

The remainder of this paper is organized as follows: Section 2 reviews the relevant

literature on portfolios of real options. Section 3 describes both the approach that a

decision maker can apply to model inherent flexibilities and formulates the corresponding

portfolio optimisation problem. A valuation algorithm is presented in Section 4 that

approximates the optimal value of portfolios of interdependent real options (Subsection

3.2). The approach is then applied to the example of evaluating a complex natural

resource investment in Section 5. Section 6 presents and discusses the results. Finally,

Section 7 provides some concluding remarks.
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2. Literature review

Early studies on portfolios of real options explored the concept rather qualitatively

and in the context of corporate strategy and planning (Myers, 1984; Trigeorgis and Kasa-

nen, 1991; Bowman and Hurry, 1993; Luehrman, 1998; Smit and Trigeorgis, 2006; Anand

et al., 2007). Trigeorgis (1993) investigated the nature of interactions between a firm’s

real options and found that options’ individual values are generally non-additive. More

recently, Trigeorgis (2005) argued that decision problems represented by a portfolio of

interdependent real options can be decomposed into a few basic-building blocks (i.e. in-

dividual options) and then combined by one of four commonly encountered basic decision

operators, which are “or” (max), “and”, “average” and “multi-stage” (compound).

Various scholars have presented approaches to value portfolios of real options in the

context of specific practical applications. One of the first publications to do so was Rose

(1998), who valued two interacting options embedded in a toll-road project and found

that ignoring the options’ interactions results in significantly underestimated project

values. Other relevant articles presented approaches in the context of R&D projects

(Vassolo et al., 2004; McGrath and Nerkar, 2004; van Bekkum et al., 2009; Zapata

and Reklaitis, 2010), maritime investments (Bendall and Stent, 2007), IT investments

(Pendharkar, 2010), and transmission network expansion (Loureiro et al., 2015). While

these approaches have applied ROA in a portfolio context, they have developed rather

inflexible and restricted quantitative approaches tailored to specific applications and

limited to problems instances with specific features in terms of both options portfolio

and uncertainties; by contrast, this paper takes a fundamentally different approach by

proposing a valuation approach for portfolios of interdependent options applicable to a

wide range of complex and risky investment problems in many practical situations.

A number of publications aimed at presenting more general quantitative frameworks

for the problem of valuing portfolios of real options3. In an important early theoreti-

cal contribution, Childs et al. (1998) provided closed-form (analytic) solutions for the

value of two investment project that can be developed either in parallel or in sequence.

Smith and Thompson (2008) provided analytic solutions whilst considering the prob-

lem of valuing a portfolio of sequencing options that represent projects. Considering one

underlying source of uncertainty, Meier et al. (2001) proposed two models: the first com-

bines contingent claims analysis (replicating portfolios) with the well-known Knapsack

problem to select projects, whereas the second is essentially an “Asset Liability Model”

3Another related article is Zhang and Babovic (2011), which integrates evolutionary algorithms into
a real options framework to value and select portfolios of real options.
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solved by stochastic programming whilst combining simulation with a binomial tree for

scenario generation. Despite presenting more general portfolio-based real options ap-

proaches, neither addresses the problem in such a general way as we do because their

focus is rather on portfolios of interrelated projects than on interdependent real options.

Furthermore, these approaches are simply impractical in most real-life situations.

Several recent studies have explored more holistic approaches including Gamba (2003);

Wang and de Neufville (2004); Brosch (2008). Most recently, the work of Brosch (2008)

addressed portfolios of real options by proposing a forward-backward looking algorithm

based on stochastic mixed-integer programming and lattice/tree modelling, where the

forward looking element captures the budget constraint by making sure only feasible

paths can be chosen from. The framework presented by Wang and de Neufville (2004)

consists of an options identification stage which contains a screening and simulation

model, plus an options analysis stage which applies a stochastic mixed-integer program-

ming model and a binomial technique for scenario generation. Interestingly, both au-

thors discussed computational issues with respect to the optimality of solutions, but

only Brosch (2008) also discussed simulation, yet dismissed it as an alternative tech-

nique in his model. While these studies constitute important contributions, for example

the global, dynamic budget constraints in Brosch (2008) as well as the identification

and definition of real options in physical systems by Wang and de Neufville (2004), the

combined complexity of applying both binomial techniques for scenario generation and

stochastic mixed-integer programming for optimal options timing as well as the resulting

adverse computational issues make both of them impractical in most real-life situations.

In contrast, the framework presented by Gamba (2003) overcomes the computational

limitations of the binomial techniques used in Wang and de Neufville (2004) and Brosch

(2008) by applying simulation and linear regression. In fact, Gamba considered a port-

folio of interdependent real options that can be decomposed into a set of simple real

options, which can be independent, mutually exclusive, compound, or of the switching

type, and presented decision rules for each of the four cases. These rules were then

used within a valuation procedure that applies the LSM algorithm to analyse the four

sub-problems individually. Although Gamba has proposed an interesting extension of

the LSM algorithm, his paper neither addresses the modelling of portfolios of interde-

pendent real options, nor presents a single framework (it considers four sub-problems

individually). Our work differs in a number of ways when compared with (Gamba, 2003;

Wang and de Neufville, 2004; Brosch, 2008). For example, we use IDs to model portfo-

lios of interdependent real options and translate the interdependencies into constraints.

Furthermore, we integrate both the constraints and the directly modelled dynamics of all
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underlying uncertainties into a multi-stage stochastic integer program in which the con-

tinuation function is approximated by parametric regression. In order to illustrate the

IDSR approach, we apply it to the evaluation of a complex natural resource investment.

3. Problem formulation

In this section, we present our approach to both the modelling of portfolios of inter-

dependent real options and the formulation of the related portfolio optimisation problem

as a multi-stage stochastic integer program.

3.1. Modelling flexibilities with influence diagrams

We consider the valuation of an investment project that is represented by a portfolio

of interdependent real options. The flexibilities contained in this portfolio of interde-

pendent real options are then modelled through an ID, which is composed of both a

graphical and a numerical part. The former consists of two elements: a set of (decision

and terminal) nodes N = {1, 2, . . . , N}, which may represent stages of development or

operating modes, as well as a set of directed edges H = {1, 2, . . . ,H}, which represents

the transitions linking the nodes in the ID, or in other words the flexibilities available

to the decision maker. Unlike most modelling approaches for IDs in the context of real

options (e.g. see Lander and Pinches (1998); Lander and Shenoy (1999); Charnes and

Shenoy (2004), we allow for cycles in the ID, which is then represented through a directed

cyclic graph (N ,H) instead of an acyclic one. Although we only consider decision nodes,

so apply the deterministic use case of IDs as noted by Howard and Matheson (2005), our

specification can be easily extended to the probabilistic case by including chance nodes

in the ID, as shown by Charnes and Shenoy (2004). Appendix A contains an example

of an American option to illustrate the graphical part of the modelling approach.

The numerical part of the ID is specified by information associated with both nodes

and transitions. Let the state of the system at time t, St, be composed of a resource and

an information component denoted by Rt ∈ Rt and It ∈ It, respectively, thus having

St = (Rt, It), where Rt and It are the corresponding resource and information state

spaces. In general, Rt is an endogenous component (evolves deterministically), whereas

It is an exogenous component (evolves stochastically). The former is modelled to contain

at least information about the current decision node Nt ∈ N , but, generally, will contain

further problem-dependent resource state variables. On the other hand, It contains one

or several stochastic factors (or random variables) describing the value of the problem’s

uncertain parameters at t. Most existing real options valuation approaches consider It
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to represent the “state” and do not explicitly model Rt. The few exceptions usually

only consider either a discrete (Nadarajah et al., 2017) or continuous (Denault et al.,

2013) scalar for Rt. Here, in order to deal with complexities of portfolios of real options,

including path-dependencies and interdependencies between options, we explicitly con-

sider Rt to be a vector made up of multiple resource state variables characterising the

valuation problem4.

In order to simplify the valuation algorithm presented in the next section, we assume

that N contains exactly one beginning node (no incoming transition(s)), but may have

several terminal nodes, which are characterised through not having outgoing transitions.

The value of a terminal node at t is given by its terminal value GTt (St), for all St ∈
{
S′t ∈

St : bD(N ′t) = ∅
}

, where bD(Nt) represents the set of outgoing transitions of node Nt.

The set of decision times, which is often referred to as decision epochs in the Markov

Decision Process (MDP) literature, is denoted by T .

With regard to the information associated with transitions, there are three elements

to any transition h ∈ H:

1. The feasible region ASt , which is composed of one or more constraints that describe

the interdependencies between flexibilities, defines the transition(s) one can make

given state St. Let the decision to make any transition h ∈ bD(Nt) at node Nt

be represented by a binary decision variable ath ∈ {0, 1}, where ath = 1 means

transition h is made at time t and vice versa, as well as let the duration of transition

h be ∆h. Then, the vector at = (ath)h∈bD(Nt) has to satisfy all constraints defined

in ASt , in other words at ∈ ASt .

2. The transition function, which is generically written as SM (St, at,Wt+∆h
), de-

scribes the evolution of the state St from time t to t+ ∆h when making transition

h and given new exogenous information Wt+∆h
that is learned between t and t+∆h.

In terms of the state’s two components, SM (·) can be interpreted as a composition

of both a resource transition function SR(·) and an information transition function

SI(·) which describe individually the evolution of Rt and It to Rt+∆h
and It+∆h

,

respectively, when making transition h at time t.

3. The immediate payoff Πt

(
St, at

)
is obtained at time t when making decision at =

4For example, in the transmission network expansion planning problem considered by Loureiro et al.
(2015) Rt would contain the current network configuration, whereas in the pharmaceutical R&D portfolio
valuation problem studied by Zapata and Reklaitis (2010) Rt would include the number of resources
allocated to drugs within different portfolio configurations and their stages of development at time t.
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(ath)h∈bD(Nt) given state St. Note that Πt(·) depends only on variables whose value

is known at time t, so is deterministic, and is being received at the beginning of

the period t to t+ ∆h.

3.2. Portfolio optimisation problem

The problem of determining the optimal value of the portfolio of interdependent real

options is formulated as a multi-stage stochastic integer program. Unlike the approach

of Gamba (2003), who decomposed a portfolio of interacting real options into a set of

independent, compound, mutually exclusive and switching options and then valued these

sub-problems individually by enumeration, this paper proposes a single framework to

value a portfolio of interdependent real options whilst using both a set of constraints and

a vector of binary variables to model strategic interdependencies and exercise decisions,

respectively. Let the optimal value of the portfolio of real options at time t given state St

be denoted by Gt(St). The value of the portfolio of interdependent real options, G0(S0),

is given by the optimal solution of the stochastic optimisation problem:

G0(S0) = max
(at)t∈T

E
[∑

t∈T
e−ktΠt(St, at)

∣∣S0

]
, (1)

where S0 is the state at time 0, at = (ath)h∈bD(Nt), at ∈ ASt , ath ∈ {0, 1}, k is the

risk-free rate, and St+∆h
= SM (St, at,Wt+∆h

).

Applying Bellman’s “principle of optimality”, the above optimisation problem with

objective (1) can be solved recursively by using the following value function for each

state St ∈
{
S′t ∈ St : bD(N ′t) 6= ∅

}
at time t:

Gt(St) = max
at

Πt(St, at) + E
[
e−k∆hGt+∆h

(St+∆h
)
∣∣St, at] (2)

s.t. at ∈ ASt , (3)

ath ∈ {0, 1}, ∀h ∈ bD(Nt), (4)

St+∆h
= SM (St, at,W t+∆h

), ∀h ∈ bD(Nt), (5)

with the terminal condition Gt(St) = GTt (St), for all St ∈
{
S′t ∈ St : bD(N ′t) = ∅

}
, t ∈ T .

Ultimately, the aim of solving the stochastic dynamic programming (SDP) recursion

(2)-(5) is to determine a decision vector a∗t =
(
a∗t (St)

)
St∈St for all t ∈ T , i.e. an optimal

policy, that maximises the value of the portfolio of interdependent real options given

the state S0 at time 0, G0(S0). It is important to note that, unlike traditional solution

approaches for MDPs, the terminal condition used in (2)-(5) is not directly dependent

on time t, but on whether the current node Nt in the ID is a terminal node, which may
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or may not has to be reached at a certain t ∈ T . In the context of real option portfolios,

for instance, one may decide to irreversibly abandon a project at any point in time t ∈ T ,

thereby reaching the corresponding terminal node perhaps well before max T .

At this point, it is important to note that while many approaches for real options

valuation resort to an algorithmic strategy based on a dynamic programming represen-

tation, their original optimisation problems are often distinctly different. For example,

valuing an American-style option entails solving an optimal stopping problem, which

requires finding the stopping time that maximises the option’s value. The corresponding

SDP recursion5 then characterises an optimal exercise policy, that is the stopping rule

which solves the optimal stopping problem (Glasserman, 2003). While switching options

can be valued by simply extending this SDP formulation (see, e.g., Gamba (2003); Cor-

tazar et al. (2008); Tsekrekos et al. (2012)), solving the embedded optimal switching

problem means determining the optimal switching policy rather than just the stopping

policy. The valuation of options with early and multiple exercise features such as swing

and storage options can be formulated as a discrete MDP and then be solved, in theory,

using SDP to obtain an optimal exercise policy, as described by Nadarajah et al. (2017).

In contrast to these stochastic optimisation problems, we formulate the options port-

folio problem as a multi-stage stochastic integer program to account for the complexities

involved in valuing portfolios of interdependent real options. These complexities include

path-dependencies, interdependencies between options, as well as higher dimensional

decision vectors and resource state variables. Unlike the standard MDP formulation

mentioned above, which assumes the decision and resource state variable are scalars, in

our formulation the decision variable at and the resource state variable Rt are vector-

valued and multidimensional, respectively. Also, our feasible region ASt is defined by a

set of constraints, rather than just a discrete action space as in the optimisation prob-

lems described above, where ASt represents either a binary choice or a fairly small set

of discrete choices. Importantly, it can be shown that the multi-stage stochastic integer

program (1) and solving the SDP recursion (2)-(5) are equivalent, e.g. see Powell (2011).

3.3. Curses of dimensionality

In general, solving the backward recursion in (2)-(5) can be computationally ex-

pensive, even intractable due to at least three curses of dimensionality: (i) the high

dimensionality of the resource state space Rt and information state space It; (ii) the

5Interestingly, unlike Tsitsiklis and Van Roy (2001), Longstaff and Schwartz (2001) neither presented
the optimal stopping problem nor formulated the SDP recursion despite obviously addressing these.
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inability to (exactly) compute the conditional expectation in (2); and (iii) the high-

dimensionality of the decision vector at and the feasible region ASt . Of these, the curses

related to both It and (ii) are being addressed through the simulation and parametric

regression approach6 described in Section 4. Also, in simple real option problems the

action and resource state spaces are, in general, relatively small so the dimensionality

of Rt and (iii) can be neglected. For example, in the case of swing and storage options

considered by Nadarajah et al. (2017), where both at and Rt are scalar discrete, the

number of actions and Rt are relatively small. They can therefore assume that the in-

tractability of their MDP (more precisely, of their SDP formulations) is solely due to the

curses related to both It and (ii), and implicitly ignore the ones related to Rt and (iii).

In the context of real option portfolios, however, the action space or the resource

state space or both will generally be larger, potentially making the related curse(s) dif-

ficult to ignore. In some practical option portfolio problems at will still be a rather

low-dimensional vector of binary variables and ASt will be small in size, so (iii) can be

neglected. Also, although Rt is generally a vector of discrete variables, as demonstrated

by the problem considered in Section 5, in which Rt has 4 dimensions, in general by

appropriately modelling the problem at hand and carefully choosing relevant param-

eters a large resource state space Rt is prevented and a computationally manageable

valuation process is ensured. However, there are a range of practical problems that in-

volve higher dimensional decision vectors and resource state variables as well as a larger

number of constraints7. Nevertheless, it should be relatively straightforward to extend

our approach to account for higher dimensional problems by simply adapting the (al-

ready vector-valued) decision variable8 at and the (already multidimensional) resource

state variable Rt appropriately. Given the capabilities of modern integer programming

packages, standard commercial solvers can then be used, again, to solve the embedded

integer program within (2)-(5), and the dimensionality of Rt can be addressed by suitable

approximate dynamic programming approaches, e.g. see Denault et al. (2013).

6While such an approach is, in theory, not entirely free of the curse of dimensionality related to It
because the number of basis functions needed (e.g. multivariate polynomials) and the computational cost
of estimating the parametric model’s coefficients are not linear in the dimension of It (Tsekrekos et al.,
2012), the parametric model’s size often remains very manageable in practice, e.g. see Judd (1998).

7For example, resource allocation problems – e.g. in facility location and power transmission planning
– are naturally multidimensional and feature (very) large action and resource state spaces (Powell, 2011).

8It should be noted that our formulation lends itself to integer variables as binary variables can be
used to represent general integers through binary expansion, and the feasible region can be adapted using
standard modelling techniques associated with integer programming (Wolsey, 1998; Williams, 2013).
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4. The valuation algorithm

This section contains the approach to approximate the value of portfolios of interde-

pendent real options as well as the corresponding simulation-based valuation algorithm.

4.1. Approximating the continuation function by parametric regression

The strategy chosen in this paper is to approximate the value of the conditional ex-

pectation in (2), which represents the continuation value, using a parametric regression

model. Using such an approximation of the continuation value is a commonly used strat-

egy in the Approximate Dynamic Programming literature (Tsitsiklis and Van Roy, 2001;

Longstaff and Schwartz, 2001; Glasserman, 2003; Powell, 2011) and directly tackles the

curse of dimensionality related to It and the outcome space. In particular, conditional

upon being in state St = (Rt, It) at time t and making decision at ∈ ASt , we approximate

E
[
· |St, at

]
of (2) by the following finite-dimensional, continuous function:

Φ̂L
t (St, at) =

L∑
l=0

α̂l(S
R(Rt, at))φl(It), (6)

where L is the model’s dimension, the functions {φl}Ll=0 are called basis functions (or

features), and the optimal values of the coefficients (or weights), (αl(S
R(Rt, at)))

L
l=0, are

estimated using least-squares regression as described in the following subsection.

4.2. The simulation-and-regression-based valuation algorithm

To approximate the value of the multi-stage stochastic integer program, we apply a

simulation-based algorithm that consists of both a forward and a backward induction

procedure. The forward induction procedure initialises (and discretises) the state space

St for all t ∈ T . More specifically, using the numerical part of the ID and starting at

t = 0, the state space of the resource state variable, Rt, is being initialised for all t ∈ T
through simple “exploration” to find all feasible resource states subject to ASt , and by

using the resource transition function SR(·) to step forward in time. On the other hand,

the state space of the information state variable, It, is generated by simulation (Monte

Carlo sampling) while applying the information transition function SI(·), resulting in a

set of |Ω| independent sample realisations {It(ω) : ω ∈ Ω} for all t ∈ T . While the latter

part of the above procedure is standard in the literature (e.g. see Glasserman (2003)),

the former is a direct necessity of our portfolio approach yet uncommon in the real

options literature, in which resource states are either not modelled explicitly or scalar.
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Using the initialisations ofRt and It for all t ∈ T from the forward pass, the backward

induction (or pass) determines an approximate value of the problem (2)-(5). Starting

at max T and moving backwards to min{T \ 0}, for each resource state Rt ∈
{
R′t ∈

Rt : bD(N ′t) 6= ∅
}

the following three steps are performed: (i) applying least-squares

regression, determine the optimal values of the coefficients
(
αl(S

R(Rt, at))
)L
l=0

for all

at ∈ ASt9:

(
α̂l(Rt+∆h

)
)L
l=0

= arg min
(αl(·))Ll=0

{∑
ω∈Ω

[
e−k∆hḠt+∆h

(St+∆h
(ω))−

L∑
l=0

αl(Rt+∆h
)φl(It(ω))

]2
}
,

(7)

where Rt+∆h
= SR(Rt, at) and St+∆h

(ω) = (Rt+∆h
, It+∆h

(ω)); (ii) using the result of

(i) with Φ̂L
t (St, at) as in (6), compute the pathwise optimisers ât(ω) of the pathwise

approximation of the problem (2)-(5) for all ω ∈ Ω:

ât(ω) = arg max
at(ω)

{
Πt

(
St(ω), at(ω)

)
+ max

{
Φ̌t

(
Rt, at(ω)

)
, Φ̂L

t

(
St(ω), at(ω)

)}}
(8)

s.t. at(ω) ∈ ASt(ω), (9)

ath(ω) ∈ {0, 1}, ∀h ∈ bD(Nt), (10)

where Φ̌t

(
Rt, at(ω)

)
is a lower bound on the continuation value, given Rt and at(ω); (iii)

using the result of (ii), approximate the optimal portfolio value Gt(St) given St at time

t along each path ω ∈ Ω by:

Ḡt(St(ω)) = Πt

(
St(ω), ât(ω)

)
+ e−k∆hḠt+∆h

(
SR(Rt, ât(ω)), It+∆h

(ω)
)

(11)

At time 0, however, these three steps cannot by applied as S0 = S0(ω), for all ω ∈ Ω, but

now the conditional expectation in (2) can be computed directly by taking the average

over all |Ω| pathwise continuation values Ḡ∆h

(
SR(R0, a0), I∆h

(ω)
)
, so the approximate

value of the portfolio of interdependent real options is then:

Ḡ0(S0) = max
a0∈AS0

(
Π0(S0, a0) +

1

|Ω|
∑
ω∈Ω

e−k∆hḠ∆h

(
SR(R0, a0), I∆h

(ω)
))
, (12)

where a0,h ∈ {0, 1}, for all h ∈ bD(N0).

In the first and third step above as well as in (12), the pathwise (approximated)

9To simplify the presentation of the algorithm, the special case of transitions leading to terminal
nodes with deterministic values (no approximation needed) is not treated separately here.
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continuation values Ḡt+∆h
(·) and Ḡ∆h

(·) are already known at times t and 0, respec-

tively, since these are defined recursively. Importantly, unlike Tsitsiklis and Van Roy

(2001), we use Φ̂L
t (·) only for the sake of computing the pathwise optimal decisions in

step (ii), but the actually realised, pathwise continuation values, Ḡt+∆h
(·), to approxi-

mate Gt(·) by Ḡt(·) in step (iii), which is in accordance with the approach of Longstaff

and Schwartz (2001) and results in a comparatively smaller absolute bias as well as

less and much slower accumulating approximation errors, as recently demonstrated by

Stentoft (2014). In addition, assuming a deterministic lower bound exists, we correct

obviously erroneous approximations of the continuation value by replacing Φ̂L
t (·) in (8)

with max{Φ̌t(·), Φ̂L
t (·)}; e.g., Φ̌t = 0 for an American option, as in Glasserman (2003).

A summary of the backward induction procedure is shown by Algorithm 1.

Algorithm 1: Approximation of optimal value of problem (2)-(5)

Data: From forward induction procedure and problem specific inputs
Result: Ḡ0(S0)

1 for t = max{T \ 0} do
2 forall Rt ∈

{
R′t ∈ Rt : bD(N ′t) 6= ∅

}
do

3 forall at ∈ ASt do

4 Use both Φ̌t

(
Rt, at

)
and (6)-(7) to determine:

Ft(St(ω), at)← max
{

Φ̌t

(
Rt, at

)
, Φ̂L

t (St(ω), at)
}
,∀ω ∈ Ω

5 end
6 forall ω ∈ Ω do
7 Compute pathwise optimisers:

ât(ω)← arg max
at(ω)∈ASt(ω)

{
Πt(St(ω), at(ω)) + Ft(St(ω), at(ω))

}
8 Approximate optimal portfolio value along each path ω:

Ḡt(St(ω))← Πt(St(ω), ât(ω)) + e−k∆hḠt+∆h

(
SR
(
St(ω), ât(ω)

)
, It+∆h

(ω)
)

9 end

10 end
11 T ← T \ t
12 end
13 At t = 0, determine:

Ḡ0(S0)← max
a0∈AS0

(
Π0(S0, a0) + 1

|Ω|
∑
ω∈Ω

e−k∆hḠ∆h

(
SR
(
S0, a0

)
, I∆h

(ω)
))

Although backward induction procedures are widely applied, the one described above

contains several important features that allow us to approximate the value of a portfolio

of interdependent real options. Firstly, the backward induction has to be applied for each
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resource state Rt ∈ Rt that does not correspond with a terminal node (no decision needed

there), which is a direct consequence of our portfolio approach. By contrast, this is

generally not needed for the regression-based pricing of single options with early-exercise

features, where Rt is commonly not modelled explicitly. Indeed, the pricing algorithms

of Tsitsiklis and Van Roy (2001); Longstaff and Schwartz (2001) for American-style

options, for example, solely loop over all exercise times t ∈ T – i.e. there is no inner loop

over Rt –, whilst assuming that the option has not been exercised prior to t. Secondly,

two of the procedure’s three nested loops perform particular portfolio-related tasks.

In step (i), the optimal coefficients
(
α̂l(S

R(Rt, at))
)L
l=0

are determined for every fea-

sible decision at, given Rt, which consequently satisfy the set of constraints describing

the interdependencies between real options in the portfolio. But this is generally not

necessary for the pricing of single, well-defined options, which often feature trivial de-

cision spaces; for instance, consider the simple “hold vs. exercise” decision underlying

an American-type option shown in Figure A.3. Also, unlike the approach of Longstaff

and Schwartz (2001), we include in the regression (7) all |Ω| paths thereby improving

approximation accuracy (Areal et al., 2008; Stentoft, 2014). It is important to note that

doing so is in fact necessary here as the exercise decision is required for all paths (and

not just for in-the-money-paths as in Longstaff and Schwartz (2001)) given that the

pathwise values of Πt(·) generally differ for compound real options within the portfolio.

In step (ii), the optimal decision ât(ω) along path ω is computed by optimally solving

the integer program (8)-(10) for each path ω ∈ Ω, giving |Ω| pathwise optimisers ât(ω).

These represent the decision vectors that maximise the pathwise approximated portfolio

value given St at time t whilst satisfying the constraints in ASt(ω). In contrast, the

decision-making process underlying most existing regression-based pricing algorithms

boils down to simply comparing Πt(·) with Φ̂L
t (·), e.g. by max{Πt(·), Φ̂L

t (·)}, under total

(or complete) enumeration of all mutually exclusive alternatives; e.g., two in the case

of Bermudan (Glasserman, 2003) and purchase swing options (Nadarajah et al., 2017),

several in the case of switching (Tsekrekos et al., 2012) and storage options (Nadarajah

et al., 2017). Hence, these algorithms are limited to problems where the number of

possible actions is small enough to enumerate because total enumeration tends to become

impractical when the decision is a vector and when there are no appropriate constraints

such as “mutual exclusivity”. Rather than relying on such a brute force strategy, in our

algorithm an integer programming formulation is used to optimise pathwise decisions.
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4.3. Computational efficiency and numerical accuracy

Since the IDSR approach uses a continuation function approximation, it shares a

number of desirable properties with the LSM approach. For example, convergence results

have been provided by Longstaff and Schwartz (2001); Clément et al. (2002); Stentoft

(2004b). The robustness of the approach to different choices of basis functions has been

shown by Moreno and Navas (2003) and more recently by Tsekrekos et al. (2012), as

well as with an emphasis on the tade-off between computational time and precision by

Stentoft (2004a). More recently, Areal et al. (2008) have demonstrated various ways to

improve the accuracy of the valuation approach by investigating the influence of different

regression algorithms, several variance reduction techniques, various polynomial families,

as well as varying numbers of both model dimensions (L) and paths (|Ω|). Furthermore,

Longstaff and Schwartz (2001) recommend appropriate scaling before performing the

least-squares regression in order to avoid numerical errors and computational underflows.

By its nature, the proposed algorithm applies the same strategy regarding mutually

exclusive options as the one of Areal et al. (2008), who has shown that this strategy

provides faster and more accurate results than the algorithm presented by Gamba (2003).

Despite providing a lower bound on the true value of the portfolio of interdependent real

options, the IDSR approach can be extended by applying duality theory (e.g. see (Haugh

and Kogan, 2007)) to allow for the estimation of accurate upper (dual) bounds similar

to Nadarajah et al. (2017). Furthermore, the integer programming problem (8)-(10)

can be solved efficiently by standard solvers applying such algorithms as branch and

bound (Ahmed et al., 2003). Lastly, while more advanced regression methods such as

nonparametric models (e.g. kernel regression, local averaging, smoothing splines, and

neural networks (Carriere, 1996; Judd, 1998; Powell, 2011)) can lead to more accurate

results with lower computational efforts (e.g. see Kohler (2010)), they are generally not

readily applicable in high-dimensional settings and even low-dimensional problems can

be comparatively complex (Pizzi and Pellizzari, 2002; Kohler, 2010; Powell, 2011).

5. Evaluating complex natural resource investments

In this section we demonstrate how the IDSR approach can be used to evaluate a

complex natural resource investment by first presenting the problem setting, then detail-

ing the modelling of the problem, and lastly approximating the value of the investment.

5.1. Problem setting

The problem considered in this Section is a complex yet important and realistic ex-

tension (Savolainen, 2016) of the example of valuing a copper mine, which was proposed

16



by Brennan and Schwartz (1985) and solved by the authors using a finite difference

method, and which has been used by Sabour and Poulin (2006); Cortazar et al. (2008);

Tsekrekos et al. (2012) as a benchmark to assess the LSM approach. The original cop-

per mine example of Brennan and Schwartz has only considered a limited set of options

(option to temporarily close the mine and possibly reopen as well as early abandonment

option) and only treated the price of copper to be uncertain. Here we substantially

extend their example in two respects.

First, in terms of portfolio of real options considered, we integrate the option to defer

(or delay) the development of the copper mine as proposed by Gamba (2003) and valued

by the author using the LSM approach; however, Sabour and Poulin (2006) discussed

the findings of Gamba and showed that there are some inconsistencies related to both

numerical results (mine value cyclic in copper price) and switching decisions obtained. In

addition to the option to defer, our example takes into account the option to irreversibly

expand production capacity of the operating mine, which was proposed by Cortazar and

Casassus (1998) and solved by the authors using partial differential equations; however,

the authors did not consider the option to abandon the project.

The second extension is in terms of uncertainties considered. We replace the one-

factor setting considered in Brennan and Schwartz (stochastic copper price) by applying

the three-factor model (copper price, convenience yield and interest rate) of Schwartz

(1997), which has been analysed in the context of the original copper mine example by

Tsekrekos et al. (2012) using the LSM approach. In addition to these three stochastic fac-

tors, we introduce a forth factor by treating the extraction (production) costs of copper

to be uncertain, as argued for by Slade (2001). It is important to note that traditional

valuation methods (e.g. lattice and finite difference) are impractical for the problem

considered here given its large size in terms of portfolio of options and uncertainties.

5.2. Modelling

The flexibilities inherent in the mine project are represented by the ID in Figure 1. It

contains 5 decision nodes and 3 terminal nodes, as well as 18 transitions that link these

nodes, resulting in N = {1, 2, . . . , 8} and H = {1, 2, . . . , 18}. The duration of transition

h ∈ H is ∆h years. When the mine is Undeveloped, the decision maker may decide

either to Defer (1) development or Develop (2) the mine, both of which can be done for

up to Tmax1 years, after which the right to develop the mine expires. Once developed

and in mode Opened-I, the decision maker has to decide whether to Operate (4) for the

duration of ∆4 while extracting an amount qI∆4 of copper, irreversibly Expand (5) the

mine operation by increasing extraction rate from qI to qII , temporarily Close (6), or
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1
Undeveloped

3Opened–I 5 Closed–I

7Opened–II 8
Closed–II

6
Abandoned

2
Expired
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Defer (1)

Operate (4) Idle (9)

Operate (11) Idle (15)

Develop (2)

Close (6)

Open (8)

Close (12)

Open (14)

Expand (5)

Abandon (7)

Abandon (10)

Expire (3)

Abandon (13)

Abandon (16)

Closure (17)

Closure (18)

Figure 1: Influence diagram for the mine development project.

irreversibly Abandon (7) the project. On the other hand, if the mine is Closed-I (or

Closed-II), the available transitions are to keep the mine Idle (9 or 15), Open (8 or 14) it

again, or irreversibly Abandon (10 or 16) the project. In either operating mode, however,

the mine closures if the commodity inventory with initial inventory Q0 is fully depleted.

Also, the project has to be Abandoned when reaching its lifetime of Tmax2 years.

Let the decision node, the inventory of the mine, and the remaining time to develop

the mine/lifetime of the mine at time t be denoted by Nt, Qt, and Tt, respectively, as well

as let the spot price of copper, the instantaneous convenience yield, the instantaneous

risk-free interest rate, and the (per-unit) production cost at time t be denoted by Xt, δt,

rt, and At, respectively. Thus, the resource and information state component are given

by Rt = (t,Nt, Qt, Tt) and It = (Xt, δt, rt, At), respectively, hence St = (Rt, It).

The binary decision variables related to the transitions available at decision node Nt,
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at = (ath)h∈bD(Nt), have to satisfy the feasible region ASt , which is defined by:

∑
h∈bD(Nt)

ath = 1, ∀Nt ∈ N \ {2, 4, 6}, (13)

at1T
max
1 < Tmax1 + Tt, (14)

at3Tt = 0, (15)

athq
I∆h ≤ Qt, ∀h ∈ {4, 8}, (16)

athq
II∆h ≤ Qt, ∀h ∈ {11, 14}, (17)

ath1 + ath2 + Tt > 0, ∀(h1, h2) ∈ {(7, 17), (13, 18)}, (18)

ath + Tt > 0, ∀h ∈ {10, 16}, (19)

ath +Qt > 0, ∀h ∈ {17, 18}, (20)

athQt = 0, ∀h ∈ {17, 18}, (21)

where ath ∈ {0, 1}, ∀h ∈ H, and the set of outgoing transitions of node Nt is:

bD(Nt) =



{1, 2, 3}, if Nt = 1,

{4, 5, 6, 7, 17}, if Nt = 3,

{8, 9, 10}, if Nt = 5,

{11, 12, 13, 18}, if Nt = 7,

{14, 15, 16}, if Nt = 8,

{}, otherwise.

(22)

These constraints accomplish the following: constraints (13) make sure that exactly one

transition is made at a decision node; constraints (14) and (15) ensure the development

can only be delayed if Tt > 0 and the right to develop can only expire at Tt = 0,

respectively; constraints (16) and (17) make sure the inventory does not become negative;

constraints (18), (20) and (21) require the opened mine to closure if and only if Qt = 0,

and to be abandoned if both Tt = 0 and Qt > 0; and, finally, constraints (19) make sure

the mine is abandoned if closed at Tt = 0. It is important to note that constraints (14)

and (18)-(20) can be easily transformed into (weak) inequality constraints if needed.

Subsequently, the resource state Rt evolves deterministically to Rt+∆h
, with the

transition of t being rather trivial as it simply evolves from t to t + ∆h after having

made transition h. The evolution of Nt is implicitly described by the adjacency matrix

of the digraph (N ,H), which is not shown here for brevity. The evolution of Qt and Tt
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are specified by the following transition equations for all h ∈ H:

Qt+∆h
= Qt − qI∆h(at4 + at8)− qII∆h(at11 + at14), (23)

Tt+∆h
=

Tmax2 − (Tmax1 − Tt)−∆2, if at2 = 1,

max(Tt −∆h, 0), otherwise,
(24)

where T0 = Tmax1 .

On the other hand, the information state It evolves stochastically to It+∆h
under the

risk-neutral measure according to the following discrete diffusion processes. As reported

by Tsekrekos et al. (2012), the discretised version of the joint stochastic process for the

three factors of Schwartz (1997) is given by:

Xt+∆h
= Xt exp

{(
rt − δt −

σ2
x

2

)
∆h + σx

√
∆hε

x
t+∆h

}
, (25)

δt+∆h
=
(

1− e−κδ∆h

)
θδ + e−κδ∆hδt + σδ

√
1− e−2κδ∆h

2κδ
εδt+∆h

, (26)

rt+∆h
=
(

1− e−κr∆h

)
θr + e−κr∆hrt + σr

√
1− e−2κr∆h

2κr
εrt+∆h

, (27)

where σx, σδ and σr are the standard deviations of changes in Xt, δt and rt, respectively;

κδ and κr are positive mean reversion (speed of adjustment) coefficients; θδ and θr

are the long run mean of convenience yield and interest rate, respectively; and εxt+∆h
,

εδt+∆h
and εrt+∆h

are correlated standard normal random variables (mean 0, variance

1) with correlation coefficients ρx,δ, ρx,r and ρδ,r (the correlation matrix equals the

covariance matrix Σ here, see Glasserman (2003)). For the evolution of At, as suggested

by Slade (2001), we consider a mean-reverting process, in particular we use the following

approximation of the geometric mean reversion described by Metcalf and Hassett (1995):

At+∆h
=
(
A0e

πt −At
)
κaAt∆h + eπ∆hAt + σaAt

√
∆hε

a
t+∆h

, (28)

where π is the cost inflation rate, κa is a positive mean reversion coefficient, σa is the

standard deviation of the production cost, and εat+∆h
is a standard normal random

variable (mean 0, variance 1), which is assumed to be uncorrelated with the ones above

and whose increments are independently and identically distributed.
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The deterministic payoff obtained at time t when making transition h given It is:

Πt

(
It, at

)
= − Idt at2 +

[
qI(Xt −At)− f I(Xt, At)

]
∆h(at4 + at8)−Kc,I

t at6 −Ko,I
t at8

−M I
t ∆h(at6 + at9)− Iet at5 +

[
qII(Xt −At)− f II(Xt, At)

]
∆h(at11 + at14)

−Kc,II
t at12 −Ko,II

t at14 −M II
t ∆h(at12 + at15),

(29)

where Idt = Id0e
πt is the development cost at time t, f I(Xt, At) = τ1q

IXt+max{τ2q
I(Xt(1−

τ1) − At), 0} is the sum of royalties and income tax paid at time t with τ1 the roy-

alty rate and τ2 the income tax rate; M I
t = M I

0 e
πt is the maintenance cost at time t;

Kc,I
t = Kc,I

0 eπt and Ko,I
t = Ko,I

0 eπt are the costs to switch to the Closed-I and Opened-

I node at time t, respectively; and Iet = Ie0e
πt is the expansion cost at time t. For

costs/revenues related to the Closed-II and Opened-II nodes simply replace “I” with

“II” in the above definitions. For the sake of simplicity, if Qt < qII then the payoff

associated with transitions 11 and 14 equals the one of transitions 4 and 8, respectively.

5.3. Valuation

For valuation, we used the parameter values of Brennan and Schwartz (1985) for the

copper mine and of Tsekrekos et al. (2012) for the three-factor model. The initial devel-

opment cost and the initial expansion cost are estimated at US$ 8 millions (Id0 ) and US$ 4

millions (Ie0), respectively. In addition, we consider the following: the possibility to defer

development for up to two years (i.e. Tmax1 =2); a lifetime of 45 years (Tmax2 ); no values

associated with terminal nodes
(
i.e. GTt (St) = 0, for all St ∈

{
S′t ∈ St : bD(N ′t) = ∅

})
;

and 5 decisions to be made per year (i.e. ∆h = 1/5, for h ∈ H \ {3, 7, 10, 13, 16, 17, 18},
and 0 otherwise). Also, we considered 100,000 (|Ω|) sample paths (half of which antithetic

for variance reduction) and complete sets of the first five (i.e. L = 4) Legendre/Hermite

polynomials, as well as applied a singular value decomposition (SVD) algorithm with

properly scaled basis functions to avoid numerical problems when solving the least-

squares regression in (7). For an analysis of the effects of different parametric models

see Appendix C. The chosen input data for this example are summarised in Table 1.

The forward induction procedure for this problem consists of the following steps:

1. Determine the set of decision times, Tn, for all decisions nodes n ∈ {1, 3, 5, 7, 8},
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Table 1: Input data for hypothetical copper mine adapted from Brennan and Schwartz (1985); Tsekrekos
et al. (2012) and own estimates.

Description Parameter Value Unit

Mine
Output rate qI (qII) 10 (20) Mlbs/year
Initial inventory Q0 150 Mlbs

Initial cost of opening Ko,I
0 (Ko,II

0 ) 0.20 (0.40) $m

Initial cost of closing Kc,I
0 (Kc,II

0 ) 0.20 (0.40) $m
Initial maintenance cost M I

0 (M II
0 ) 0.50 (1.00) $m/year

Cost inflation rate π 8% year−1

Initial development cost Id0 8 $m
Initial expansion cost Ie0 4 $m
Expiration of development right Tmax1 2 year
Lifetime of copper mine project Tmax2 45 year

Production cost
Initial average production cost A0 0.50 $/lbs
Speed of mean reversion in production cost κa 0.20 –
Standard deviation of production cost σa 15% year−1

Coppera

Price variance σ2
x 8% year−1

Initial convenience yield δ0 1% year−1

Speed of mean reversion in convenience yield κδ 0.30 –
Long-run mean convenience yield level θδ 1% year−1

Standard deviation of convenience yield σδ 5% year−1

Initial short-term interest rate r0 10% year−1

Speed of mean reversion in interest rate κr 0.50 –
Long-run mean interest rate level θr 10% year−1

Standard deviation of interest rate σr 1.5% year−1

Taxes
Royalty τ1 0% –
Income τ2 50% –
Propertyb, Opened/Closed λ1 2% year−1

Property, Abandoned λ3 0% year−1

a The values of the correlation coefficients are: ρx,r = 0.15, ρx,δ = 0.40, and ρδ,r = 0.10.
b The value of the discount rate at time t, kt, is rt + λ1.

forming subsets of T :

Tn =



{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax1

}
, if n = 1,{

i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + ∆1 ≤ i∆1 ≤ Tmax2 , if n = 3,{
i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + 2∆1 ≤ i∆1 ≤ Tmax2 , if n ∈ {5, 7}{
i∆1 : i ∈ Z≥0, τ1 ∈ T1, τ1 + 3∆1 ≤ i∆1 ≤ Tmax2 , if n = 8,

(30)
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2. Use (27), (26) and (25) to sample |Ω| paths of rt, δt and Xt, respectively, giving(
Xt(ω), δt(ω), rt(ω)

)
ω∈Ω

, ∀t ∈ T
3. Use (28) to sample |Ω| paths of At, giving

(
At(ω)

)
ω∈Ω

,∀t ∈ T
4. Generate the possible resource state space Rt for each decision node and time10:

Rt =



(
t, 1, Q0, T

max
1 − t

)
, if t ∈ T1,{(

t, 3, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t−∆1,

Q0 −min
(
(t− τ1 −∆1)qI , Q0

)
≤ i∆1q

I ,

i∆1q
I ≤ Q0 − qI min

(
∆1,max(t− Tmax1 −∆1, 0)

)}
, if t ∈ T3,{(

t, 5, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 2∆1, Q0−

min
(
(t− τ1 − 2∆1)qI , Q0 −∆1q

I
)

min(1, t/∆1 − 2)

≤ i∆1q
I ≤ Q0

}
, if t ∈ T5,{(

t, 7, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 2∆1,

Q0 −min
(
(t− τ1 − 2∆1)qII , Q0

)
≤ i∆1q

I ,

i∆1q
I ≤ Q0 − qI min

(
∆1,max(t− Tmax1 − 2∆1, 0)

)}
, if t ∈ T7,{(

t, 8, i∆1q
I , Tmax2 − t

)
: τ1 ∈ T1, i ∈ Z≥0, τ1 ≤ t− 3∆1, Q0−

min
(
(t− τ1 − 3∆1)qII , Q0 −∆1q

I
)

min(1, t/∆1 − 3)

≤ i∆1q
I ≤ Q0

}
, if t ∈ T8,

(31)

The valuation algorithm was implemented in MATLAB.

6. Results and discussion

This section begins with an analysis of the way in which the mine value with different

configurations of option portfolios is affected by the initial copper price, X0. Table 2

summarises the results when X0 is in the range from $ 0.30 to 1.00 per pound. Columns

(†) and (‡) give the expected values of the mine under “now-or-never strategies”, which

assume it must be either (developed and in case (‡) expanded immediately and then)

operated at the rate of 10 and 20 Mlbs/year, respectively, until the inventory is fully

exhausted, or left undeveloped. As can be seen, the value of the mine with fixed-output-

rate qI (qII) is positive for copper prices of $ 0.70 (0.80) per pound and above, making

development of the mine viable, but only for X0 = 1.00 is it optimal to have an expanded

mine with fixed-output-rate qII . While these price levels are not the critical prices (i.e.

10For simplicity, we assume Qt mod (qI∆1) = 0.
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the point at which it becomes optimal to invest, which largely depends on the input data

of Table 1), these can be estimated simply and accurately through numerical simulation.

As can be seen from Table 2, the flexibility provided by individual real options can

add considerable value. Column (a) displays the value added to the mine with fixed-

output-rate qI when development can be deferred for up to 2 years. Determined by the

difference between the value of the fixed-output-rate mine with the option to defer (not

shown here) and column (†), the value of the option to defer is positive for all copper

prices listed. This means it adds value in every situation. Its adds sufficient value

even when X0 ≤ 0.60, enabling the mine to become economically viable by allowing the

mine’s development to be deferred. For X0 ≤ 0.60, the value of this option would be

much higher if we had used the actual NPV (which is highly negative in these situations)

as a benchmark instead of the non-negative value of the fixed-output-rate mine. As

expected, the value of this option decreases as X0 increases because the ability to defer

development is economically less attractive when prices are high.

Considering a developed but not expanded mine, columns (b-i), (b-ii) an (b) report

the value of the option to temporarily mothball the operation, to abandon the project

during operation and to switch, respectively. These values were determined such that the

mine values with these individual options were measured against the value of the mine

with fixed-output-rate qI as the benchmark. Having either of these individual options

is valuable for copper prices of $ 0.60/lbs and above, showing the mine to be viable in

situations where the fixed-output-rate mine does not. At the same time, abandoning the

project was found to be more valuable than mothballing, and switching more valuable

than abandoning. In fact, representing the portfolio of the option to mothball and to

abandon, the option to switch will always be at least as valuable as its constituent

options. Although the values of these three options decline as the price increases, their

levels remain comparatively high and they decline less strongly than the value of the

option to defer. This indicates that operational flexibility is more beneficial than the

flexibility associated with investment timing when price levels are high.

Column (c) reports the value of the option to expand, which enables the mine to

double its fixed-output-rate to 20 Mlbs/year at any point during operation. Its value

is given by the difference between the value of the mine with the option to expand and

the maximum of the values shown in columns (†) and (‡). Considering a developed and

immediately expanded mine, columns (d-i), (d-ii) an (d) give the value of the option

to temporarily mothball the operation, the value of the option to abandon the project

during operation and the value of the option to switch, respectively. These values were

determined in a similar way to those shown in columns (b-i), (b-ii) an (b), but now
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measured against the value of the mine with fixed-output-rate qII . Comparing the

values of columns (d-i), (d-ii) an (d) with the ones of columns (b-i), (b-ii) an (b) shows

that mothballing, abandoning and switching during operation of the developed but not

expanded mine is more valuable. This implies that operational flexibility to deviate from

the extraction of copper is less beneficial if the mine is expanded.

The value of the mine with the portfolio of interdependent real options is shown in

column (a,b,c,d). As seen in Table 2 in most cases its value is considerably larger than the

value of the mine without options or with only an individual real option. This highlights

the substantial added value achieved by considering such a complex portfolio. While

the value of the mine with the portfolio increases in X0, the absolute difference between

this value and the value of the best-performing fixed-output-rate mine decreases as X0

increases. This is because flexibility to deviate from the static now-or-never strategy

becomes less valuable. However, the relative difference is still over 28% for the highest

copper price considered. Comparing the values of the individual options of columns (a)

to (d) shows that the option to expand is the only option whose value increases in the

copper price, all other options diminish in value. These results, which are in line with the

real options literature, demonstrate the ability of the option to expand to exploit upside

potential, and the ability of the other options (i.e. to defer, to mothball, to abandon,

and to switch) to limit downside risk when operating margins are lower.

To illustrate the effects of the degrees of different uncertainties on the value of the

copper mine, Figure 2 shows for X0 = 0.70 the way in which the standard deviations

of the production cost, σa, and the copper price, σx, effect the investment value. As we

would expect, the value of the mine without options, which applies the best-performing

static now-or-never strategy (always with fixed-output-rate qI here) and hence does not

consider any flexibility, decreases as price uncertainty increases and eventually reaches

zero at σx = 0.30 (σx = 0.35 for 0.09 ≤ σa ≤ 0.24, σx = 0.40 for σa ≥ 0.27). On the other

hand, the (expected) value of the mine without options, if positive, slightly increases in

σa because, although production cost uncertainty increases, average production cost

slightly decreases due to the characteristics/parameters of the stochastic process in (28).

Taking into account the portfolio of real options and thus allowing the decision-maker

to exploit flexibilities adds substantial value for all degrees of uncertainties considered,

especially for high degrees of uncertainties11. Increasing σa from 0 to 0.30 generally

11Note that at σx = 0, Xt still evolves stochastically due to its dependence on the stochastic factors δt
and rt in the three-factor model, with the value added by the options portfolio at σa = σx = 0 amounting
to almost 46% of the value of the project without options.

26



0
0.1

0.2
0.3

0.4
0.5

0
0.06

0.12
0.18

0.24
0.3

0

5

10

15

20

 

σx
σa

 

Ḡ
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Figure 2: Value of investment project, Ḡ0(S0) (in $ millions), with portfolio of real options and without
options as well as portfolio’s most valuable individual option (filled circles), as a function of degrees of
production cost (σa) and copper price (σx) uncertainty.

results in appreciably higher values of the mine with the portfolio and this effect tends to

be stronger for lower σx. In contrast, there is an unexpected twofold effect of the degree of

price uncertainty on the value of the mine with options portfolio: values actually decrease

in σx for low σx-values, but, beginning at a σx of 0.15 (0.20 for σa ≥ 0.24), increase in

σx; this decrease (increase) tends to be steeper for higher (lower) σa-values. The reasons

for this somewhat intriguing twofold effect are believed to be the overall volatility in

the three-factor model, which depends non-linearly on σx and features a similar pattern

to the one shown in Figure 2, as well as portfolio effects which, as mentioned earlier

and indicated by the filled circles12 in Figure 2, means that the portfolio’s individual

options are affected differently (beneficially or adversely) by changes of the underlying

conditions resulting in positively or negatively affected portfolio values.

12The portfolio’s least valuable options (not shown here) are the option to abandon (b-ii) for very
high degrees of uncertainties of (σa, σx) ∈ {(0.27, 0.50), (0.30, 0.45), (0.30, 0.50)}, and either the option
to mothball (d-i) or to abandon (d-ii) for the remainder of degrees of uncertainties.
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7. Conclusions

This paper presents a new approach for modelling and approximating the value of

portfolios of interdependent real options using both influence diagrams and simulation-

and-regression. Our modelling technique is intuitive and compact; strategic interdepen-

dencies between real options are translated into a set of constraints and the risk-neutral

dynamics of all underlying uncertainties are directly modelled using (Markovian) stochas-

tic processes. These are then easily implemented in the multi-stage stochastic integer

program. To approximate the value of this optimisation problem, we apply simulation

and parametric regression and have presented a transparent valuation algorithm. In

contrast to existing regression-based valuation algorithms, ours explicitly takes into ac-

count vector-valued exercise decisions and the state variable’s multidimensional resource

component that generally occur in real option portfolios. We demonstrate the ability of

this approach to evaluate complex and risky investment projects by evaluating a complex

yet realistic natural resource investment that features both a large portfolio of interde-

pendent real options and four stochastic factors. Using this example, we show how our

approach can be used to investigate the way in which the value of the portfolio and

its individual options are effected by the underlying operating margin and the degrees

of different uncertainties. Future work will investigate ways to integrate other types of

uncertainties into the modelling framework presented here as well as explore possibilities

to improve the efficiency of the simulation-and-regression-based valuation algorithm.
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Appendix A. Modelling example of an American option

The managerial flexibility provided by a standard American-type (Bermudan in

discrete-time) option is represented by the ID in Figure A.3. The ID consists of one

decision node termed Holding (1) and two terminal nodes, Exercised (2) and Expired
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Figure A.3: Influence diagram for American option.

(3), as well as three transitions termed Hold (1), Exercise (2) and Expire (3). Conse-

quently, the sets of nodes and transitions are given by N = {1, 2, 3} and H = {1, 2, 3},
respectively. When Holding at time t, the option holder has to decide whether to exer-

cise the option immediately, or to hold the option until t + ∆1. At the expiration date

Tmax, however, this option automatically expires if not exercised.

Appendix B. Nomenclature

This appendix contains a summary of most of the notation used in this work.

Sets and indices

N Set of nodes, {1, . . . , N}
H Set of transitions, {1, . . . ,H}
t Time index, t ∈ T
T Set of decision times (or epochs)
St State space at time t
Rt Resource state space at time t
It Information state space at time t
ω Sample path, ω ∈ Ω
Ω Set of sample paths
l Index of summation, l = 0, . . . , L, used to specify the l-th dimension

of the parametric model, where l = 0 refers to a constant term

Parameters

∆h Duration of transition h ∈ H
k Risk-free rate (discount factor)
φl(It) A basis function (or feature) that extracts information from It
L Dimension of parametric model
GTt (St) Terminal value in state St, where St ∈

{
S′t ∈ St : bD(N ′t) = ∅

}
Φ̌t(Rt, at) A lower bound on the continuation value at time t given that we are

in resource state Rt and take action at
Variables
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St State at time t ∈ T
Rt Resource state variable
It Information state variable, so that St = (Rt, It)
at Action (or decision) at time t
ath (Binary) decision at time t for transition h, so that at = (ath)h∈bD(Nt)

ASt Feasible region when in St at time t
αl(S

R(Rt, at)) Regression coefficient (or weight) when we are in Rt and take action at
Wt Exogenous information that first becomes known at time t

Functions and mappings

bD(Nt) Set of outgoing transitions of node Nt

SM (St, at,Wt+∆h
) Transition function, giving state St+∆h

given that we are in state St,
take action at (i.e. make transition h), and then learn Wt+∆h

, which
is revealed between t and t+ ∆h

SR(Rt, at) Resource transition function, giving resource state Rt+∆h
given that

we are in resource state Rt and take action at (i.e. make transition h)
Πt

(
St, at

)
Payoff at time t given we are in state St and take action at

Gt(St) Value of portfolio of real options when in state St at time t
Ḡt(St) Approximation of Gt(St)

Φ̂L
t (St, at) Approximation of the continuation function at time t when in state St

and taking action at

Appendix C. Effect of parametric model choices on portfolio value

In this appendix we investigate the effect of different parametric models on the value

of the copper mine investment project. In particular, we study the Power series, La-

guerre, Hermite, Legendre and generalized Chebyshev polynomials of degree L, with

L ∈ {1, 2, 3, 4, 5, 6}. Considering the complete set of polynomials as described by Judd

(1998) and the families of orthogonal polynomials as defined in (Abramowitz and Ste-

gun, 1972), as well as using the parameters of Table C.4, Table C.5 shows the portfolio

value for different univariate orthogonal polynomials and different dimensions, L, of the

parametric model. Independent of the chosen family of polynomials, since we have four

Table C.4: Parameters of convenience yield process for different specifications of Tsekrekos et al. (2012).

Spec. ρx,δ θδ = δ0 σδ κδ

1 0.40 0.01 0.05 0.30
41 0.60 0.10 0.10 0.50
81 0.80 0.15 0.15 0.80
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Table C.5: Value of investment project with portfolio of options (in $ millions) for the specifications of
Table C.4 and different parametric models (Standard error in parentheses).

Panel A: Power series
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.858 (0.107) 10.993 (0.118) 11.091 (0.126) 11.201 (0.131)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel B: Laguerre
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.870 (0.107) 10.988 (0.117) 11.098 (0.124) 11.241 (0.133)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.654 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel C: Hermite
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.858 (0.107) 10.996 (0.117) 11.097 (0.126) 11.174 (0.129)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel D: Legendre
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.858 (0.107) 10.997 (0.118) 11.106 (0.123) 11.181 (0.129)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.649 (0.017) 0.654 (0.017) 0.662 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

Panel E: Gen. Cheyshev
Spec. L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 10.385 (0.083) 10.742 (0.096) 10.870 (0.107) 10.992 (0.116) 11.074 (0.123) 11.158 (0.128)
41 0.546 (0.016) 0.602 (0.016) 0.637 (0.017) 0.650 (0.017) 0.655 (0.017) 0.661 (0.017)
81 0.002 (0.001) 0.020 (0.003) 0.020 (0.003) 0.023 (0.003) 0.024 (0.003) 0.026 (0.003)

stochastic factors, setting L to 1, 2, 3, 4, 5, and 6, results in 5, 15, 35, 70, 126, and 210,

respectively, basis functions (or regressors) in the respective parametric model.

It is evident from the results that in general the approximated value of the mine in-

vestment project (which is a lower bound on its true value) improved as the parametric

model’s dimension, L, increased, regardless of the family of polynomials used. This is in

line with the multidimensional convergence results of Moreno and Navas (2003); Stentoft

(2004b); Areal et al. (2008). As can be seen, the results for specifications 41 and 81 are

essentially the same across polynomial families, suggesting that any polynomial family
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with sufficient degree L can be used in these two cases. In the case of specification 1,

however, our analysis revealed considerable value differences amongst different polyno-

mials for high model dimensions, with differences between the highest and lowest project

values at around $32k and $83k for L = 5 and L = 6, respectively. This suggests that

the approximation can be improved considerably by choosing an appropriate polynomial

family. Note that while standard errors in specification 1 are higher than in the other

two specifications, project values are proportionally even higher.

Compared with values obtained for specifications 41 and 81, which eventually lev-

elled off at high L, the trends corresponding with specification 1 seem to indicate that

values have not converged yet. This suggests that an increase in L would further im-

prove the lower bound. Although the Power series was found to perform surprisingly

well and reduced computational time by about 40-45% (which is similar to the reduction

found by Areal et al. (2008)), the number of basis functions used in the regression grows

exponentially in L. This substantially increased both the complexity of the parametric

model and computational cost; e.g., plus 84 basis functions and 50% more time when L is

increased from 5 to 6. In Section 5, complete sets of Legendre and Hermite polynomials

with L = 4 are used for Table 2 and Figure 2, respectively. Although different paramet-

ric model choices may result in better approximations, our choice, which presents the

best trade-off between accuracy and computational time amongst all models tested, is

sufficient for the purposes of demonstration. Future work might therefore investigate the

convergence properties and the computational efficiency of different parametric models

in situations with both complex and large portfolios of interdependent real options.
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