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Abstract

A pore network modeling (PNM) framework5 for the simulation of transport

of charged species, such as ions, in porous media is presented. It includes the

Nernst-Planck (NP) equations for each charged species in the electrolytic so-

lution in addition to a charge conservation equation which relates the species

concentration to each other. Moreover, momentum and mass conservation

equations are adopted and there solution allows for the calculation of the

advective contribution to the transport in the NP equations.

The proposed framework is developed by first deriving the numerical
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model equations (NMEs) corresponding to the partial differential equations

(PDEs) based on several different time and space discretization schemes,

which are compared to assess solutions accuracy. The derivation also consid-

ers various charge conservation scenarios, which also have pros and cons in

terms of speed and accuracy. Ion transport problems in arbitrary pore net-

works were considered and solved using both PNM and finite element method

(FEM) solvers. Comparisons showed an average deviation, in terms of ions

concentration, between PNM and FEM below 5% with the PNM simulations

being over 104 times faster than the FEM ones for a medium including about

104 pores. The improved accuracy is achieved by utilizing more accurate dis-

cretization schemes for both the advective and migrative terms, adopted from

the CFD literature. The NMEs were implemented within the open-source

package OpenPNM based on the iterative Gummel algorithm with relaxation.

This work presents a comprehensive approach to modeling charged species

transport suitable for a wide range of applications from electrochemical de-

vices to nanoparticle movement in the subsurface.

Keywords: Porous Media, Simulations, Nernst-Planck Equations, Pore

Network Modeling, OpenPNM

1. Introduction

The Nernst-Planck equations are widely used in the literature to describe

the transport of ionic species in electrochemical systems [26, 27]. With re-

spect to porous media, the equations describe ion transport in a wide variety

of applications such as electrochemical cells [42] and certain redox flow batter-5

ies [36]. They are also used to analyze ion conduction in biological structures
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of pores [6], but probably the most common applications are for the study of

ion transport mechanisms in clay soils and concrete. Smith et al. [39] applied

the NP equations to the analysis of transport through platy-clay soils and

Pivonka et al. [33] analyzed chloride diffusion in concrete for the estimation10

of structural degradation due to corrosion. Moreover, it has been shown that

simulations based on the NP equations accurately predict ionic diffusion coef-

ficients experimentally estimated on concrete [29]. In a more recent work [4],

the transport processes in a system including a concrete plug surrounded by

clay stone were modeled using the NP equations. The developed numerical15

interface [4] accurately predicted the results on several complex geochemical

transport problems studied by different authors [23, 28, 41, 44, 45].

Another important field where the NP equations are used is modeling

transport in capacitive charging and deionization [5, 11]. Comparisons be-

tween simulation results and experimental data [38] highlighted the capabil-20

ities of the NP based simulations to help in the design of capacitive deion-

ization devices. While the transport of ionic species in the bulk of a solu-

tion flowing through a porous medium is generally described using the NP

equations, a charge conservation equation is required to close the system.

One option, perhaps the most accurate, uses the well-known Poisson equa-25

tion for the electrostatic potential [30]. The Poisson equation relates the

electric charge density to the Laplacian of the potential and describes the

movement of the charged species in solution. This yields the famous Poisson

Nernst-Planck system of equations. Charge conservation can also be enforced

through a Laplace equation for the potential which allows for further math-30

ematical simplifications under certain assumptions [30]. In the presence of
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fluid flow, the solution of the flow problem based on the mass and momentum

conservation equations (Stokes or Navier-Stokes) enables the calculation of

the advective term in the NP equations.

Solving electrochemical problems in porous media at the pore-scale based35

on the NP equations is generally carried-out using computational mesh that

conforms to the real geometry of the system being analyzed. Different meth-

ods have been used to numerically solve the transport equations such as the

finite difference [6, 26, 38] and finite element [4, 20, 27, 29, 37]. However,

it is well-known that direct numerical simulations (DNS) require significant40

computational resources. The same logic applies to many other transport

problems such as pure diffusion or dispersion in porous media. PNM, as an

alternative pore-scale modeling approach, requires substantially lower com-

puting resources (compared to pore-scale DNS) and have been successfully

applied to study physics such as diffusion reaction [14] and dispersion [35]45

in porous media. However, the use of PNM to study transport of charged

species is in its infancy. For instance, in a study of electrokinetic transport

through charged porous media [31], a steady-state PNM approach was used.

This work [31] is one of the first modeling electrochemical systems based

on PNM. The used pore-scale microscopic transport coefficients were simple50

analytical relations obtained by solving the NP equations in a cylinder. Re-

cently [19], a pore network model based on the NP equations was used to

study porous electrodes in electrochemical devices. However, their approach

[19] was based on the upwind scheme, which was recently shown to have high

errors when Péclet number is above unity [35].55

In this work, a more accurate method was developed and validated to
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solve the charge conservation NP system in pore networks. This new method

will ultimately allow for accurate pore-scale simulation of transport in elec-

trochemical systems with substantially lower computational cost compared

to DNS approaches such as FEM. One aim of the present work is to iden-60

tify the best approach among various options and to establish a numerically

accurate and robust algorithm. Future work can then build on this solid

foundation.

Although the simplifications related to PNM may induce additional errors

into the numerical solution, it has been shown through comparisons between65

results of advection diffusion simulations, that the PNM approach provides

reasonably accurate solutions [46] compared to those obtained from DNS

using lattice Boltzmann and finite volume methods. This work presents a

novel PNM framework for the simulation of charged species transport. The

framework is based on highly accurate discretization schemes in addition to70

several charge conservation options. It also supports transient simulations

and handles non-linear source terms.

2. Background

This work considers single-phase, isothermal, incompressible flow of a

dilute electrolytic solution, treated as a Newtonian fluid, in a non-deformable75

porous medium. Assuming flow in the viscous-dominated regime [1, 2], the

movement of the electrolytic solution can be described using the following

steady-state momentum and mass conservation (Stokes) equations

µ∇2u−∇p = 0, (1)
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and

∇ · u = 0, (2)

where u is the velocity of the solution, p its pressure, and µ its dynamic80

viscosity and is considered to be constant. Using the NP equation, the flux

of ionic species n in the solution is given by [5, 30, 38]

Nn = −Dn∇cn + ucn − DnznF

RT
cn∇φ, (3)

where cn is the ion concentration, φ is the electrostatic potential, Dn is the

diffusion coefficient of species n and zn its valence, and F is the Faraday

constant. Eq. 3 as written follows several authors [30, 38] defining the85

mobility based on the Nernst-Einstein equation, unmob = Dn/(RT ), where R

is the universal gas constant and T a constant absolute temperature. The flux

as defined by Eq. 3 consists of three terms, representing different transport

mechanisms namely, molecular diffusion, bulk advection, and electrostatic

migration. Moreover, a mass conservation equation is considered for each of90

the ionic species n as follows

∂cn

∂t
= −∇ ·Nn. (4)

Substituting the flux from the Nernst-Planck equation (Eq. 3) into the

conservation equation (Eq. 4), yields an equation for each of the ionic species

as follows

∂cn

∂t
= −Dn∇2cn + u · ∇cn − DnznF

RT
∇ · (cn∇φ). (5)

The governing equations for fluid flow and concentration of species (Eqs.95

1, 2, 5) are now defined. However, an additional equation is required to
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close the system of equations since the electrostatic potential is unknown.

In this work, three different approaches were considered. Using the Gauss

electrostatic theorem [30], one could relate the distribution of ions in the

electrolytic solution to the variation of the electric field through a Poisson100

equation as follows [37, 39]

∇ · (εεr∇φ) = −F
∑
n

(zncn), (6)

such that ε is the vacuum permittivity and εr is the relative permittivity

of the electrolytic solution. The quantity on the right-hand side (rhs) of

equation 6 is the electric charge density per unit volume. The solution of the

Poisson equation is numerically challenging due to numerical instabilities105

[17, 27] and stabilization techniques are often required [26]. More stable and

simpler alternatives to Eq. 6 can be used to close the system and enforce

charge conservation. However, these alternative equations, discussed in what

follows are derived based on specific assumptions and hence, their validity

should be limited to specific cases [21, 22]. In fact, charge conservation can110

be imposed as follows

∇ · i = 0, (7)

where i is the current density and is given by

i = F
∑
n

(znNn). (8)

Replacing the flux Nn in Eq. 8 by its value from Eq. 3 yields

i = −F
∑
n

(znDn∇cn) + Fu
∑
n

(zncn)− F 2

RT
∇φ

∑
n

(
zn2Dncn

)
. (9)
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Then, by virtue of electroneutrality,
∑

n z
ncn = 0, the second term on the

rhs of Eq. 9 is zero. Insertion of Eq. 9 into Eq. 7 gives115

∇ · (K∇φ) = −F
∑
n

[zn∇ · (Dn∇cn)], (10)

where K is the conductivity of the electrolytic solution and is given by

K =
F 2

RT

∑
n

(
zn 2Dncn

)
, (11)

Finally, for negligible concentration gradients and assuming a uniform con-

ductivity K, Eq. 10 reduces to a Laplace equation for the potential as follows

∇2φ = 0. (12)

3. Pore Network Modeling Formulation120

The pore network is a simplified representation of a real porous medium

geometry, consisting of pore bodies interconnected by throats. Figure 1 shows

a pore-throat-pore conduit of a pore network. For the sake of simplicity

regarding the conservation equations to be considered, idealized shapes are

assigned to pores and throats. In this sense, and for a three-dimensional (3D)125

medium, pores and throats are generally represented by spheres and circular

cylinders, respectively. For a two-dimensional (2D) geometry, pores and

throats are described by circles and rectangles, respectively. The conductance

of the pore-throat-pore assembly or conduit for a given transport mechanism

tr (see Fig. 1) is given, from the linear resistor theory for resistors in series130

[14], by

Gtr
ij =

(
1

gtri
+

1

gtrij
+

1

gtrj

)−1

. (13)
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Figure 1: Pore-throat-pore assembly as a single conduit in PNM. Conduit made of throat

ij and halves of the neighbor pores i and j of diameters dij , di, and dj and lengths lij , li,

and lj and opposing resistances to a transport mechanism tr (from i to j and vice versa)

of 1/gtrij , 1/gtri , and 1/gtrj , respectively. Conductance of the assembly is given by Eq. 13.
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Efficient algorithms for the extraction of pore networks from 2D and 3D

images are available in the literature [9, 13, 34], even for dual networks [18],

within the open-source image analysis package PoreSpy [15].

This work is based on the PNM mixed-cell method [7] where perfect135

mixing of the solute within the pore space is assumed, unlike more sophisti-

cated approaches to be discussed below. In addition, conservation of physical

quantities are enforced in the pores only. Therefore, for a time dependent

transport problem, the total void volume of the porous medium is assigned

to the pores whereas the throats are considered to have a zero volume. The140

volume of the throats is distributed among their neighboring pores based

on their respective volumes. This approach offers simplicity and computa-

tional efficiency which allows for pore-scale simulations at relatively lower

computational costs compared to DNS.

The assumption of perfect mixing is robust for transport problems involv-145

ing pure diffusion. When additional transport mechanisms such as advection

come into play, this assumption remains valid at low Péclet numbers (Péclet

numbers smaller than unity) where the Péclet is the ratio of advective to

diffusive contributions. The validity of the perfect mixing assumption was

extended to pore-scale Péclet numbers up to 257 by Mehmani and Balhoff150

[24] and by Yang et al. [46] in disordered sphere packs and up to 10 by

Sadeghi et al. [35] in cubic networks of random pore sizes. Thus, the mixed-

cell method can be used for modeling transport phenomena in disordered

porous structures where moderate deviations from pure diffusion exist. The

structural disorder refers in the present work to the randomness in the pores155

and throats sizes and in the coordination number of pores. Deviations from
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pure diffusion considered in this study (see section 4) result from advective

and migrative fluxes. For ordered porous structures, the mixed-cell method

should be reserved only for diffusion dominated problems. Furthermore, the

mixed-cell method ignores the impact of non-uniform velocity profiles in pores160

and throats on the transport of chemical species. In the same manner as for

the perfect mixing assumption, uniform velocity profiles were found to have

a negligible effect on transport in disordered media [24, 46]. Consequently,

the PNM method is appropriate to perform pore-scale simulations of advec-

tion diffusion problems (and advection diffusion migration problems as will165

be shown below) in disordered porous media at low computational costs. An

alternative to the mixed-cell method when high concentration gradients are

expected within the pore space, although computationally more expensive,

is the streamline splitting approach [25].

3.1. Stokes Flow170

Given steady-state Stokes flow (Eqs. 1 and 2) of a Newtonian fluid,

corresponding to the electrolytic solution, the mass conservation equation

for an arbitrary pore i, is

Ni∑
j=1

Gh
ij(pi − pj) = 0, i = 1, 2, . . . , Np, (14)

where the subscripts i and j correspond to the considered pore and the

neighboring ones, respectively, and pi and pj are the pressure values in pores

i and j, respectively. In Eq. 14, Ni is the number of pores neighboring of pore

i, Np is the total number of pores in the network, and Gh
ij is the hydraulic

conductance of the pore-throat-pore assembly and is given by Eq. 13 where175
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tr = h, Gh
ij =

(
1/ghi + 1/ghij + 1/ghj

)−1
. The hydraulic conductance of pore

i, ghi , can be calculated using the Hagen-Poiseuille model [40] as follows

ghi =
π

128µ

(
d4i
li

)
, (15)

with di being the diameter of pore i and li its length. It should be noted here

that the length of a pore refers to its radius. The hydraulic conductance of

throat ij and pore j are computed in the same manner as for pore i. Equation180

15 is valid for a 3D configuration where the conduit has a cylindrical shape.

For a 2D network, where throats are represented by rectangles, the hydraulic

conductance is given, from the analytical solution of a plane Poiseuille flow,

by

ghi =
1

12µ

(
d3i
li

)
, (16)

3.2. Nernst-Planck Equations185

Special attention was paid to the derivation of the NMEs required to

model transport of charged chemical species. In fact, Eq. 5 is discretized

in both time and space using various schemes with the resulting accuracy

assessed in section 4. For the sake of brevity in what follows, only semi-

discrete forms are presented. First, with a discretized accumulation term190

(time discretization) and then, with space discretization. One can easily

obtain the NME corresponding to Eq. 5 by combining the two semi-discrete

forms.

The semi-discrete form of equations 4 or 5, after time discretization, re-

sults in the following species n conservation equation195 [
ϕb
cn

∆t
− ϕa(−∇ ·Nn)

]t1
=

[
ϕb(1− ϕa)(−∇ ·Nn) + ϕb

cn

∆t

]t0
, (17)
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where ∆t is the time step, t0 the previous time value, t1 the new time value,

and ϕa and ϕb are constants used to set the time scheme. Values ϕa = 1

and ϕb = 1 result in an implicit, first order accurate, time scheme. Whereas

setting ϕa = 0.5 and ϕb = 1 corresponds to the second order accurate Crank-

Nicolson scheme. Finally, ϕa = 1 and ϕb = 0 yields the steady-state form of200

the conservation equation.

Focusing on the space discretization of equation 5, the semi-discrete form

can be given by,

Ni∑
j=1

[
Gn,d

ij + max
(
qij −mn

ij, 0
)]
cni−

Ni∑
j=1

[
Gn,d

ij + max
(
−qij +mn

ij, 0
)]
cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np, (18)

such that cni and cnj are the concentrations of species n at pore i and neighbor

pores j, respectively, Gn,d
ij the diffusive conductance (of species n) of the pore-

throat-pore assembly, qij is the throat flow rate, mn
ij is the migration rate, and

vi the volume of pore i. Note that the upwind discretization of the advective205

and migrative terms should be carried-out considering both terms at the

same time as done on Eq. 18. It was found in this work that considering

these terms separately leads to higher errors.

The diffusive conductance Gn,d
ij of Eq. 18 can be given, based on Eq.

13, setting the transport type to tr = n, d to refer to transport of species210

n via diffusion by Gn,d
ij =

(
1/gn,di + 1/gn,dij + 1/gn,dj

)−1

. The pore i diffusive

conductance being, for a 3D configuration,

gn,di =
AiD

n

li
, (19)
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such that Ai is the cross-section area of pore i, and the diffusion coefficient

of species n, Dn, is considered constant. In the same way as for pore i (Eq.

19), the diffusive conductances of pore j and throat ij can be defined. For215

a 2D configuration, the cross-section area Ai in Eq. 19 should be replaced

by the diameter di. Furthermore, the volumetric flow rate of the electrolytic

solution qij, appearing in Eq. 18, can be calculated as follows,

qij = Gh
ij(pi − pj), (20)

and finally, the migration rate of Eq. 18 can be given under the following

form,220

mn
ij = Gn,m

ij (φi − φj), (21)

where Gn,m
ij =

(
1/gn,mi + 1/gn,mij + 1/gn,mj

)−1
is the migrative conductance

and is also defined based on Eq. 13 where tr = n,m to refer to transport of

species n by migration. In these circumstances, the migrative conductance

of pore i is

gn,mi =
znF

RT
gn,di , (22)

In equation 18, while the diffusive flux is discretized based on the central

differencing scheme, which is second order accurate in terms of Taylor series

expansion, a first order upwind scheme is adopted for both the advective and

migration fluxes. However, in a recent work [35], a more accurate discretiza-

tion of the advective and diffusive fluxes was proposed based on the finite

difference power-law discretization scheme. Using the power-law discretiza-

tion for advection and diffusion and the upwind scheme for the migration,

the following species conservation equation, that is more accurate than Eq.
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18, can be written

Ni∑
j=1

Gn,d
ij max

(1−
∣∣adPenij∣∣

10

)5

, 0

+ max (qij, 0) + max
(
−mn

ij, 0
)cni−

Ni∑
j=1

Gn,d
ij max

(1−
∣∣adPenij∣∣

10

)5

, 0

+ max (−qij, 0) + max
(
mn

ij, 0
)cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np,

(23)

where adPen is the advective Péclet number corresponding to species n and225

is given by the ratio of advective to diffusive contributions as follows

adPenij =
qij

Gn,d
ij

. (24)

While the discretization given by Eq. 23 is more accurate than Eq. 18,

the migration term, discretized based on an upwind scheme, is only first order

accurate and may be a source of non-negligible errors. Indeed, it was shown

by Sadeghi et al. [35], for advection diffusion problems in pore networks, that230

the first order upwind discretization of the advective term results in network

average relative deviations, in terms of species concentration, of up to 10%

compared to FEM simulations. For this reason, an alternative form of the

NME was derived where the migration flux was also treated as a power-

law. In this form, the advection and migration fluxes in Eq. 3 are grouped235

together to give rise to a single term that encompasses both advection and

migration effects. This leads to an augmented Péclet number ad,migPen which

corresponds to the ratio between advective migrative effects and the diffusive

ones as follows,

ad,migPenij =
qij −mn

ij

Gn,d
ij

. (25)
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Accordingly, the species conservation equation takes the following form,240

Ni∑
j=1

Gn,d
ij max

(1−
∣∣ad,migPenij

∣∣
10

)5

, 0

+ max
(
qij −mn

ij, 0
)cni−

Ni∑
j=1

Gn,d
ij max

(1−
∣∣ad,migPenij

∣∣
10

)5

, 0

+ max
(
−qij +mn

ij, 0
)cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np.

(26)

For a 2D problem, the volume vi, appearing in Eqs. 18, 23, and 26 has to be

replaced by the surface area si to ensure units consistency.

Finally, following the same logic, one can define a migrative Péclet number

which corresponds to the ratio of migrative to diffusive effects,

migPeij =
−mn

ij

Gn,d
ij

. (27)

It can be noticed that migPe, unlike adPen and ad,migPen, does not depend245

on the chemical species n. The migPe will prove useful in section 4.

3.3. Charge Conservation Laws

As stated above, three different approaches for enforcing charge conser-

vation were considered in this work. The PNM form of each approach is

described below. These laws describe the relationship between the electro-250

static potential of the solution and the spatial distribution of electric charges

in the solution.
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3.3.1. Poisson Equation

The discretization of the Poisson equation for the electrostatic potential

(Eq. 6) is performed based on the second order accurate central differencing

scheme. The relative permittivity of the electrolytic solution, εr, is considered

constant and does not depend on the local concentrations. The obtained

pore-scale NME, valid for a 3D problem, is given by

Ni∑
j=1

KPoisson
ij φi −

Ni∑
j=1

KPoisson
ij φj = −viF

∑
n

zncni , i = 1, 2, . . . , Np, (28)

whereas for a 2D situation, the volume vi appearing on Eq. 28 must be

replaced by the pore’s surface area si. In Eq. 28, KPoisson
ij is the ionic255

conductance of the electrolytic solution for the conduit ij. It is given, as on

Eq. 13, by KPoisson
ij =

(
1/kPoisson

i + 1/kPoisson
ij + 1/kPoisson

j

)−1
such that the

pore i ionic conductance, for a 3D problem, is

kPoisson
i =

Aiεεr
li

, (29)

and, for a 2D configuration, it becomes kPoisson
i = diεεr/li. The ionic con-

ductances of pores j neighboring i and the throat ij is computed in the same260

way as with Eq. 29.

3.3.2. Charge Conservation Equation with Electroneutrality

Charge conservation can also be enforced using Eq. 10 assuming elec-

troneutrality. The corresponding NME is given as follows

Ni∑
j=1

Kelec
ij φi −

Ni∑
j=1

Kelec
ij φj =

− F
∑
n

zn

(
Ni∑
j=1

Gn,d
ij c

n
i −

Ni∑
j=1

Gn,d
ij c

n
j

)
,

i = 1, 2, . . . , Np, (30)

17



where Kelec
ij is the ionic conductance of the electrolytic solution in which

electroneutrality is assumed. It is given based on the linear resistor theory

for resistors in series (see Eq. 13) by Kelec
ij =

(
1/keleci + 1/kelecij + 1/kelecj

)−1
265

with the ionic conductance for the pore i, in a 3D configuration, being,

keleci =
F 2

RT

Ai

li

∑
n

(
zn 2Dncni

)
, (31)

and for a 2D problem, keleci = [F 2di/(RTli)]
∑

n (zn 2Dncni ). Conductances

of pores j and throats ij are defined in the same manner as in Eq. 31. For

the ionic conductance of throat ij, kelecij , the concentration of species n at

the considered throat, cnij, is required. However, since cnij is not solved for,270

it can be defined based on a volume (or surface for a 2D problem) weighted

average using the concentrations at the two neighbor pores. It is given, for

a 3D configuration, by

cnij =
vic

n
i + vjc

n
j

vi + vj
, (32)

and, becomes cnij =
(
sic

n
i + sjc

n
j

)
/(si + sj), in a 2D problem.

3.3.3. Laplace Equation275

Finally, another way to enforce charge conservation, is using the Laplace

equation for the potential (Eq. 12) in situations where the electrolytic so-

lution is electroneutral and the space variations of the concentration are

neglected. The corresponding pore-scale NME is given by,

Ni∑
j=1

KLaplace
ij φi −

Ni∑
j=1

KLaplace
ij φj = 0, i = 1, 2, . . . , Np. (33)

where KLaplace
ij is the ionic conductance of the electrolytic solution and is

given by KLaplace
ij =

(
1/kLaplacei + 1/kLaplaceij + 1/kLaplacej

)−1

, in the same
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manner as for other conductances. The ionic conductance for the pore i

is

kLaplacei =
Ai

li
, (34)

for a 3D problem, and becomes kLaplacei = di/li, for a 2D configuration.280

3.4. Solution Algorithm

The procedure developed in this work to numerically solve the flow prob-

lem (Eqs. 1 and 2) coupled with the transport of charged species (NP, Eq. 5,

and charge conservation, Eq. 6 or 10 or 12 depending on the situation) is de-

scribed in this section. The solver was implemented within the open-source285

PNM package OpenPNM [12]. Although source terms are not considered in

sections 2 and 3, the approach followed to handle them is described here.

Pore-scale NMEs obtained from the time and space discretization of the

PDEs (Eqs. 1 and 2, Eq. 5, and Eq. 6 or 10 or 12) are presented in section

3. These NMEs yield linear systems of equations solved iteratively based on290

the algorithm described on Fig. 2.

First, the initial and boundary value problem (IBVP), the physical prop-

erties of the electrolytic solution, and the solver settings need to be de-

fined. Solver settings include inputs such as the time and space discretization

schemes, the different tolerances and maximum number of iterations, type of295

linear solvers, initial and final time values, the time step, etc. Then, the flow

problem (Eqs. 1 and 2 corresponding to NME 14) is solved and a converged

steady-state pressure field is obtained (see Fig. 2). Pressure values are used

to compute the advective flux in the NP equations.

Subsequently, time marching starts and for each time value, the charge300

conservation (Eq. 6 or 10 or 12 corresponding to NMEs 28 or 30 or 33,
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Figure 2: Solution algorithm implemented on OpenPNM [12] to solve time dependent

problems of transport of charged chemical species coupled with fluid flow. Fluid flow is

described by Eqs. 1 and 2 and the corresponding NME is Eq. 14. A Nernst-Plank equation,

Eq. 5 corresponding to NMEs 17 and 18 or 23 or 26, is adopted for every charged species

present in the electrolytic solution. Charge conservation is enforced through Eq. 6 or 10

or 12 and the corresponding NMEs are Eqs. 28 or 30 or 33, respectively.
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respectively) and NP (Eq. 5 corresponding to NMEs 17 and 18 or 23 or

26) system is solved based on the Gummel method [17]. Linear systems are

decoupled and solved iteratively and may all be subject to Picard iterations

[32] in the presence of non-linear source or sink terms. Picard convergence is305

reached once the value of the solved quantity satisfies the linearized system

of equations within a certain tolerance or the maximum number of iterations

is reached. The linearization is performed around the value at the previ-

ous Picard iteration or the initial value. Gummel iterations are repeated

until convergence is obtained or when the maximum number of iterations310

is reached. A Gummel iteration consists of solving the charge conservation

equation, updating the potential values, and solving a NP equation for every

species present in the electrolytic solution and finally updating the concentra-

tion values. Gummel convergence is achieved when the difference between the

values, for both the concentrations and potential, of two successive iterations315

falls bellow a predefined tolerance. For numerical stability, under-relaxation

can be applied to both quantities solved for and/or source or sink terms.

The concentrations and potential fields obtained from the solution of

the charge conservation NP system correspond to current time value. The

time marching is ended when the predefined final time is reached or if a320

stationary solution is obtained. Otherwise, a new time iteration will begin

after updating all the concentrations and potential values. Stationarity, or

transient convergence as shown on Fig. 2, is obtained once the variation

between both concentrations and potential, at two successive time values

falls bellow a given tolerance.325
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4. Comparisons with Reference Solutions

Ion transport problems over arbitrary disordered porous media were con-

sidered here. It is worth recalling that the structural disorder refers to the

randomness in pores and throats sizes and in the coordination number of

pores. The considered problems were solved numerically based on the PNM330

approach and, for the sake of comparison, based on the FEM. To assess the

accuracy of different NMEs presented in section 3, PNM simulations were

performed using three different NMEs. The NMEs consist of Eqs. 18, 23,

and 26 and are referred to as upwind upwind, power-law upwind, and power-

law, respectively. Comparisons focused on the concentration fields only and335

without losing generality, only one charge conservation scenario was consid-

ered for brevity.

4.1. Initial Boundary Value Problem

The problem under consideration is that of the transport of saline water

over an arbitrary porous medium Ω. The real geometry of the 2D porous340

medium was modeled using a network of pores as shown on Fig. 3. Despite

the fact that the topology of the medium is simplified, analyses based on

pore networks were shown to play an important role in diverse applications

for the study of flow and transport phenomena in porous media [43].

First, a network was generated with 23× 15 pores, connected by throats,345

consisting of a square lattice with a spacing of 1µm. Pores and throats were

assigned random sizes based on a uniform distribution. The pores at the

corners and the throats connecting the boundary pores one to each other

were removed for better agreement with the FEM simulations. Finally, the

22



  

top

bottom

le
ft

ri
gh
t

internal

Figure 3: A 2D porous realization Ω made of 341 pores in a uniform square lattice and

connected by throats. Pores and throats have random sizes and spacing between neighbor

pores centers is 1µm. Four boundary regions are defined; left, right, bottom, and top, and

one internal region; internal = Ω \ (left ∪ right ∪ bottom ∪ top), with the corresponding

initial and boundary conditions.
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Table 1: Physical properties of the mixture (saline water) and its components Na and Cl

at temperature T = 298.15 K and pressure p = 101325 Pa.

mixture Na Cl

Dynamic viscosity (µ) [Pa. s] 0.89557× 10−3 – –

Relative permittivity (εr) 78.303 – –

Diffusivity (Dn) [m2/s] – 1.33× 10−9 2.03× 10−9

Valence (zn) – +1 −1

average coordination number of the network was reduced to an average 3350

by deleting random throats not belonging to the minimum spanning tree

found using the Kruskal algorithm with random weights assigned to each

throat. This increases the structural randomness to more closely mimic real

media while remaining geometrically perfectly known. Four boundary regions

were defined, namely, left, right, bottom, and top, and an internal region355

internal = Ω \ (left ∪ right ∪ bottom ∪ top). The electrolytic solution (i.e.,

saline water) is composed of water (solvent) and salt (electrolyte) dissolved

and separated into cations, Na, and anions, Cl. The physical properties of

the solution and its components are reported in Tab. 1.

The flow of the mixture is described by Eqs. 1 and 2 whereas the move-360

ment of ions is modeled using Eq. 5 and the charge conservation is en-

forced through Eq. 12. The initial and boundary conditions associated with

this system of equations are included in Fig. 3. Boundary concentrations

are cleft = 10mol/m3, cright = 20mol/m3, cNa
bottom = cCl

top = 5mol/m3, and

cNa
top = cCl

bottom = 30mol/m3. Although the considered transport problem is365

arbitrary and is only used for comparisons between different methods, the
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configuration is comparable to what occurs in a spacer of a desalination unit

by capacitive deionization [16]. The analysis is performed in terms of the

network’s arithmetic mean of the absolute values of the dimensionless num-

bers adPeNa and migPe referred to as 〈adPeNa〉 and 〈migPe〉, respectively.370

These numbers were varied by considering different values for the pairs pleft

pright and φbottom φtop, respectively. The considered simulation conditions are

such that both 〈adPeNa〉 and 〈migPe〉 were varied within a range from 0.1 to

5 considering all possible combinations. The network-scale advective forces

were always kept acting from right to left by enforcing pright > pleft. On375

the other hand, migration influences the transport of ions in a perpendicu-

lar direction depending on the ions valence. For Na, migration occurs from

bottom to top since φbottom > φtop.

4.2. Numerical Considerations

The transport problems were solved numerically based on the PNM ap-380

proach described on section 3 using OpenPNM [12]. The FEM simulations were

performed using COMSOL [8].

For FEM simulations, the boundary pores defined on Fig. 3 were trimmed

at the plan passing through their centers as shown on Fig. 4. The boundary

conditions are then imposed on the resulting boundary edges. This approach385

is adopted in order to impose comparable simulation conditions on both the

PNM and FEM simulations since boundary conditions are imposed at the

pore centers in the PNM simulations. For FEM simulations, the computa-

tional domain was meshed, after a mesh sensitivity analysis, using a grid

comprised of 97598 elements for a medium including 341 pores. Triangular390

and quadrilateral elements were used (see Fig. 4).
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Figure 4: Computational domain modeling the geometry of Fig. 3 with the corresponding

grid used for FEM simulations.

The FEM simulations were performed using the Creeping Flow, Transport

of Diluted Species, and Laplace Equation modules. The system of non-

linear equations was solved using Newton’s method and at each of its it-

erations, the linearized system was solved using the multifrontal massively395

parallel sparse direct solver MUMPS [3]. For consistency, the same linear

solver was used with the PNM simulations.

4.3. Simulation Results

Figure 5 shows the Na concentration color map obtained from the solu-

tion of the problem defined above (section 4.1) for some of the considered400

configurations. These results were obtained based on the PNM approach us-

ing the power-law NME (Eq. 26). This figure shows that, for the considered

problems, when advection and migration forces act with comparable intensi-
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Figure 5: Concentration of Na color map at steady state obtained from PNM simulations

based on the power-law NME (Eq. 26). Values at the throats are obtained from the

interpolation of the neighbor pores concentrations. Simulation conditions: (a) 〈adPeNa〉 =

0.1, 〈migPe〉 = 0.1, (b) 〈adPeNa〉 = 0.1, 〈migPe〉 = 5, (c) 〈adPeNa〉 = 5, 〈migPe〉 = 0.1,

and (d) 〈adPeNa〉 = 5, 〈migPe〉 = 5.
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ties at the network scale, more heterogeneous Na concentration distributions

are obtained (Figs. 5 (a) and (d)). This is due to the fact that boundaries405

over which these two forces are imposed are at different uniform concentra-

tions. When one of the these two transport mechanisms dominates, a more

uniform concentration field is observed (Figs. 5 (b) and (c)) since uniform

concentration values are imposed at the boundaries.

The solutions obtained from the FEM simulations are not shown on Fig.

5 as they are comparable to the PNM ones with a negligible deviation dis-

cussed below. The deviation between PNM and FEM simulations, in terms

of concentration of species n at the center of pore i at steady state, is given

by

En
i =

∣∣cni,PNM − cni,FEM

∣∣
cni,FEM

, n = Na, Cl, i = 1, 2, . . . , Np, (35)

where the FEM solution is considered as the reference one. In Eq. 35,410

cni,PNM and cni,FEM are concentrations of species n at the center of pore i

obtained from PNM and FEM simulations, respectively. The analysis of the

deviation was carried-out based on the arithmetic mean of
∣∣ENa

i

∣∣ over the

entire network and is referred to as σ.

Values of σ obtained using the upwind upwind, power-law upwind, and415

power-law NMEs are shown on Fig. 6. Although the deviation σ is always

below an acceptable value of 9%, local deviations of up to 50% were observed

with the two former NMEs for certain configurations. This is consistent with

a recent work [35] where large deviations between PNM and FEM were ob-

served on dispersion problems in pore networks when the upwind scheme420

was used in PNM simulations. It was also reported that, for certain advec-

tion diffusion problems, the deviation between PNM and FEM simulations
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Figure 6: Color map of σ versus advective 〈adPeNa〉 and migrative 〈migPe〉 Péclet num-

bers at steady state. σ is the arithmetic mean of the absolute deviation between Na

concentrations obtained from PNM and FEM simulations (see Eq. 35). PNM simulations

based on the upwind upwind (Eq. 18), power-law upwind (Eq. 23), and power-law (Eq.

26) NMEs. Initial and boundary value problem defined in section 4.1.29



increases with the advective Péclet number [35]. This is also seen in the re-

sults reported on Fig. 6. The difference in the dependence of σ on advective

and migrative Péclet numbers at low values can be attributed to the trans-425

port configuration adopted here where the advective, diffusive and migrative

driving forces act in different directions in the network.

Analysis of Fig. 6 also shows that similar behaviors are obtained with

the upwind upwind and power-law upwind NMEs although the latter globally

presents slightly lower deviations. On the other hand, a significant decrease430

in σ is obtained with the power-law NME. In fact the average deviation is

consistently below 5% and marginally exceeds this value when 〈adPeNa〉 = 5

and 〈migPe〉 ≥ 3.5. For migration diffusion dominated transport (〈adPeNa〉 ≤

0.1), which is of practical relevance for applications such as battery simula-

tions, a negligible (below 0.4%) deviation is observed. The same applies435

when transport is advection diffusion dominated (〈migPe〉 ≤ 0.1), which is

of importance for dispersion problems, where σ ≤ 1. It can be concluded

from this analysis that the power-law NME should be used when performing

PNM simulations to ensure a maximum accuracy.

The source of the deviations between the PNM and FEM simulations re-440

sulting from the use of the upwind scheme were discussed in detail in a recent

work [35]. They were attributed to the fact that in the presence of moder-

ate to important advective effects (i.e., Péclet numbers equal or larger than

unity), significant local concentration gradients appear, and the assumption

of linear concentration profiles between pores loses accuracy. This behavior445

also appears in Fig. 7. The considered transport configuration gives rise to

a high concentration front on the diagonal of the porous medium from the
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Figure 7: (a) Concentration of Na color map at steady state obtained from FEM simula-

tions. Color map of the deviation between PNM and FEM simulations σ (see Eq. 35) such

that PNM simulations are based on the (b) upwind upwind (Eq. 18), (c) power-law up-

wind (Eq. 23), and (d) power-law (Eq. 26) NMEs. Simulation conditions: 〈adPeNa〉 = 1,

〈migPe〉 = 1. Initial and boundary value problem defined in section 4.1.
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Figure 8: Network scale augmented Péclet number 〈ad,migPeNa〉 versus the advective

〈adPeNa〉 and migrative 〈migPe〉 ones. Péclet numbers obtained from the network’s arith-

metic mean of the absolute value of pore-scale Péclet numbers given by Eqs. 24, 25 and

27. Initial and boundary value problem defined in section 4.1.

upper left to the bottom right vertices (see Fig. 7 (a)). The high deviation

regions coincide with this front for the different NMEs (Figs. 7 (b), (c), and

(d)).450

Finally, the conclusions drawn from the analysis of Fig. 6, based on

〈adPeNa〉 and 〈migPe〉, can be generalized to be valid when one considers

〈ad,migPeNa〉. In fact, from Fig. 8, for the considered problems, 〈ad,migPeNa〉

has a quasi-linear dependence upon 〈adPeNa〉 and 〈migPe〉. Hence, the devi-

ation between PNM and FEM increases with 〈ad,migPeNa〉.455

4.4. Simulation Time

The reduced computational cost of the PNM approach over FEM is stag-

gering. The size of the medium was characterized considering the number

of pores included while following the same approach described in section 4.1

to generate the domains. Simulations were run on two X5650 Intel Xeon460
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Figure 9: Simulation time using the PNM (OpenPNM [12]) and FEM (COMSOL [8]) solvers

and their ratio versus the size of the porous medium (i.e., number of pores). Network

scale advective and migrative Péclet numbers set to 〈adPeNa〉 = 1 and 〈migPe〉 = 1,

respectively. Initial and boundary value problem defined in section 4.1. Simulations run

in parallel using two X5650 Intel Xeon CPUs at 2.67GHz with 12 cores in total.

CPUs at 2.67GHz with 12 cores in total. The meshing time on the FEM

simulations is not included in the comparisons for consistency, although it

also requires important computational resources. In fact, meshing the largest

domain (includes 10410 pores), performed in parallel on 12 cores, took 1219s

for a total of ∼ 3.04 × 106 grid cells. Whereas generating a cubic network,465

even with millions of pores is almost instantaneous.

Figure 9 shows the simulation time versus the number of pores, Np, for

PNM and FEM approaches. For the Np range investigated here, both ap-

proaches show a quasi-linear dependence upon Np. The simulation time

scales as TPNM(s) = 9.08× 10−5Np + 0.89 and TFEM(s) = 2.05Np with the470

PNM and FEM solvers considered in the present work, respectively. This

means that for the considered range of network sizes, the simulation time
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increases more than 22.5 × 103 times faster with the FEM solver compared

to the PNM one. For the largest computational domain analyzed here, com-

prising 10410 pores, solution of the transport problem was performed in475

just 1.83s using OpenPNM. On the other hand, ∼ 3.4h were needed for the

FEM simulation using COMSOL. This result highlights the significant decrease

in simulation time which can be achieved adopting the PNM approach de-

scribed in section 3.4, even for the coupled non-linear multiphysics problem

studied here.480

The ratio between simulation times using the PNM (OpenPNM [12]) and

FEM (COMSOL [8]) solvers TFEM/TPNM versus the size of the porous medium

is also reported on Fig. 9. It can be seen that simulation speedup increases

with the number of pores reaching a speedup factor of over 104 for a medium

including ∼ 104 pores. The speedup is expected to increase for the same485

number of pores when considering 3D porous media. In addition to the

simulation speedup obtained with the PNM approach compared to the FEM

one, the PNM simulations can be run using limited memory resources. In

this study, carrying-out the FEM simulation on the largest domain considered

(comprising 10410 pores) required ∼ 96GB of memory while only 241.4MB490

were used on the PNM simulation.

5. Conclusions

Ion transport problems in pore networks with random pore sizes and

coordination numbers were considered and solved numerically using PNM

and FEM solvers. The transport was modeled based on the NP equations495

for each charged species present in the electrolytic solution in addition to
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a charge conservation equation which relates the concentration of different

species one to each other. In the presence of a fluid flow, the momentum and

mass conservation equations, were adopted to describe the fluid flow.

Several time and space discretization schemes were presented to derive500

the NMEs corresponding to the considered PDEs. The accuracy of each

scheme was compared to a reference solution generated by FEM, and best

agreement was found when a power-law approach was applied to both the

advection diffusion and migration terms. This is consistent with our previous

work on advection diffusion [35]. These model equations were implemented505

within the open-source package OpenPNM [12] based on the Gummel algorithm

with relaxation. Comparisons showed a maximum relative deviation, in terms

of ions concentration, between PNM and FEM below ∼ 5% with the PNM

simulations being over 104 times faster than the FEM ones on a medium

including 104 2D pores. The speedup is expected to increase for the same510

number of pores when considering 3D porous media.

The PNM approach allows for simulations with significantly lower com-

putational costs compared to other DNS methods, while retaining reasonable

accuracy. This will allow for more effective design and analysis or operation

for many electrochemical systems since computation can be performed on515

large samples while retaining pore-scale resolution. Ultimately, this highly-

efficient computational framework could be used for optimization of electrode

architectures and cell designs [10]. Further studies on more realistic electro-

chemical systems can be based on the proposed approach.
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Computer Code Availability520

The developed solver for transport of charged species in porous media is

available on OpenPNM [12] public repository https://github.com/PMEAL/OpenPNM.
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