
A PRACTICABLE CONSISTENCY SCHEME
FOR

FILE REPLICATION

Sebnem Baydere

Department o f Computer Science
University College London

A thesis submitted for the degree o f D octor o f Philosophy
October 1990

ProQuest Number: 10610947

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10610947

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

Distributed systems provide the opportunity for fault tolerance through replication.

This dissertation describes the design and performance of a novel consistency scheme

which balances the cost and benefits of file replication. The scheme features some

characteristics that have an effect upon steady-state and continuous availability, and the

correctness in the face o f network partitions with a small number of copies; especially

two. The work has proceeded along five fronts; characterization of the consistency prob­

lem with a small number o f replicas; a hybrid design proposition; a series of comparative

statistical analyses of availability in partition-free networks with extension to a simple

partitioning case; a study of reliability and its resilience to configuration changes in parti­

tioned networks through simulation, and a discussion of the practicality and performance

issues including some proposals for reducing communication cost of the control opera­

tions. Apart from the algorithm presented in Chapter Three, the original contribution of

the work is threefold; a statistical analysis of availability with an extension of partition­

ing case for which neither statistical nor real-time analysis has been found in the litera­

ture. This analysis has shown the importance of the two-copies case. An analysis of reli­

ability including the effect o f network partitions and resilience to configuration changes

in Chapter Five is also original and opened further areas in the field through this new

resilience property. Chapter Six contains a new algorithm for reducing the communica­

tion cost of history operations. The introductory chapter presents an approach for com ­

paring consistency schemes through their effectiveness while, after a general summary,

the concluding chapter details further work and the future o f file replication in general

purpose computing environments.

5

Acknowledgements

I wish to thank Mr. Benjamin Bacarisse, for his encouragement, continuous support

and supervision during the course of my research. W ithout his guidance I would not

have been able to carry out this study.

I am indebted to Prof. Steve W ilbur who has given valuable advice at the initial

stages of the research and spent a great amount of time reading and commenting during

the writing phase of this dissertation.

I am also grateful to Prof. M. Sahinoglu and Karen Paliwoda who helped with the

statistical analysis and to Dr. Ken Moody for his constructive comments on the thesis.

I would like to make a special note of thanks to my husband for the support he has

given me during the period of my research.

Throughout my research I have been sponsored by the Government of Turkey to

which I am also grateful.

Table of Contents

Abstract ... 3

A cknow ledgem ents... 5

Table of C on ten ts .. 7

List o f Figures ... 11

List o f Tables .. 13

1. C h ap te r One: In tro d u c t io n .. 15

1.1 Objectives of the th e s is .. 17

1.2 Outline ... 18

1.3 Distributed System Models .. 19
1.4 Replicated File S y s te m .. 20

1.4.1 Concurrency Control P ro b lem ... 24

1.4.2 Consistency Control P ro b lem .. 26

1.4.3 Communication S y s te m .. 27

1.4.4 File vs Block Level Replication ... 28

1.4.5 Building Replication into the File System ... 29

1.5 Types of Failure and R eco v ery .. 31

1.6 Measures of File Accessibility .. 34

1.6.1 Availability ... 35

1.6.2 Reliability ... 37

1.7 Sum m ary .. 37

2. C h ap te r Two: C o n s is ten c y C o n tro l S chem es .. 39

2.1 Unanimous Agreement Update ... 40

2.2 Single-Primary U p d a te ... 41

2.3 Moving-Primary Update ... 41

2.4 Voting Algorithms ... 43

2.5 Efficient Variations of V o tin g ... 44

2.5.1 Reducing Storage Cost with W itnesses... 45

2.5.2 Enchancing Availability with Ghosts ... 45

2.6 Optimum Vote Assignment or Coteries .. 46

2.7 Available Copies ... 47

2.7.1 Handling P artitions.. 48

8

2.8 Regeneration .. 49

2.9 Discussion ... 51

2.10 Summary ... 52

3. Chapter Three: A Hybrid Replication A lg o r i th m .. 55

3.1 Replication Control S e rv ic e .. 57

3.2 Availability Control Protocol .. 60

3.3 History Table Control P ro to co l.. 65

3.3.1 Communication Layer .. 66

3.4 System Configuration .. 67

3.4.1 Example Scenarios for the Configure Operation 69

3.5 User R equirem ents.. 71

3.6 D iscu ssio n ... 72

3.7 S u m m ary .. 73

4. Chapter Four: Steady-State A vailability .. 75

4.1 Combinatorial Analysis o f Availability ... 77

4.2 Stochastic Analysis of Availability ... 80

4.2.1 Modelling Three N o d e s ... 82

4.2.2 Modelling Five Nodes .. 85

4.2.3 C onclusion ... 86

4.3 M anaging Replicas in a Partitioned S y s te m .. 88

4.3.1 Combinatorial Approach to a Simple Partitioning 88

4.3.2 Resilience to Copy P lacem en t.. 91

4.4 S um m ary ... 94

5. Chapter Five: Reliability in Partitioned System s .. 95
5.1 System Model for Reliability .. 96

5.2 Reliability in Partition-free N e tw o rk s ... 99

5.3 Effect of Partitions on the Reliability ... 101

5.3.1 Reliability in Topology-1 .. 104

5.3.2 Reliability in T o p o lo g y -2 .. 105

5.4 Resilience to Configurational Changes .. 106

5.5 An Analytical Approach .. 107

5.5.1 Improving Reliability with Regeneration .. 109

5.6 Summary .. 109

9

6. C h ap te r Six: P erfo rm ance and P racticality ... 111

6.1 The Range Algorithm .. 112

6.1.1 Staggering the Replies ... 115

6.1.2 Communication Delay ... 116

6.1.3 Conclusion ... 116

6.2 Efficient Implementation of the Scheme ... 117

6.3 Network Traffic A n alysis .. 118

6.4 Summary .. 122

7. C h ap te r Seven: C o n c lu s io n a n d F u r th e r W o rk .. 123

7.1 General Summary ... 123

7.2 Summary o f Findings ... 130

7.3 Further Work .. 131

References ... 133

Glossary .. 139

Appendix A: Notation ... 141

Appendix B: Analytic Model for Availability .. 143

Appendix C: Analytic Model for Finite S p a re s ... 149

Appendix D: Simulation W o rk .. 155

Appendix E: Published Work .. 161

List of Figures

Figure 1.1. A workstation environment (Topology-1) ... 21

Figure 1.2(a). Building replication on top of the file sy s te m ... 29

Figure 1.2(b). Building replication as a block-structured device 30

Figure 1.3. Backup/recorder process during incremental d u m p in g 33

Figure 2.1. A unanimous update performed on 3 distinct copies 40

Figure 2.2 An update operation maintained by M oving-Primary ap p ro ac h 43

Figure 2.3(a). Regeneration: recovery of a repaired node (case-1) 50

Figure 2.3(b). Regeneration: recovery of a repaired node (ca se -2)............................... 51

Figure 3.1. Interacting components of the replication control system 59

Figure 3.2. Layer interaction during create o p e ra tio n .. 60

Figure 3.3. Layer interaction during delete operation .. 61
Figure 3.4. Layer interaction during read o pera tion .. 62

Figure 3.5. Layer interaction during write o pera tion .. 65

Figure 4.1. States associated w ith RH algorithm when m — 3 83
Figure 4.2. Analytic results when m =3 .. 85

Figure 4.3. Analytic results when m =5 .. 86

Figure 4.4. Comparison of availability obtained by different techniques 87

Figure 4.5. A simple network topology .. 89

Figure 4.6. Node availability vs File availability .. 91

Figure 4.7(a). Node distribution (5-7) ... 92

Figure 4.7(b). Node distribution (2-10) .. 92

Figure 4.8 Availability when (1 - p r) = 0.05 — (sim+analy) 93

Figure 4.9. Distribution of availability at p =0.9 ... 94

Figure 5.1. Simulation for various time periods ... 98

Figure 5.2. Reliability offered by RH for various m .. 99

Figure 5.3. Elapsed time vs Reliability (RH) ... 100

Figure 5.4(a). Elapsed time vs Reliability (p=0.025) .. 101

Figure 5.4(b). Elapsed time vs Reliability (p = 0 .2) ... 101

Figure 5.5. Failure ratio vs decay constant .. 102

Figure 5.6. A distributed environment (Topology-2) ... 102

Figure 5.7. Graph representation ... 103

Figure 5.8(a). Elapsed time vs Reliability (R H) ... 105

12

Figure 5.8(b). Elapsed time vs Reliability (RH, MV in Topology-1) 105

Figure 5.9 Elapsed time vs Reliability (RH, M V in Topology-2) 105

Figure 5.10 Distribution of reliability at 1000 time u n i ts ... 106

Figure 5.11 Distribution of decay co n s tan t... 108

Figure 6.1(a). M ulticast environment .. 120

Figure 6.1(b). Unicast env ironm en t... 121

Figure B .l. STR diagram for the availability with AC (n c o p ie s) 145

Figure B.2. STR diagram for the availability with MV (n c o p ie s) 145

Figure B.3. STR diagram for the availability w ith RH (m=5) 146

Figure C .l. STR diagram for the reliability w ith RH (m=3) 153

Figure C.2. STR diagram for the reliability w ith RH (m=5) 154

List of Tables

Table 1.1. Percentage of accesses that represent whole-file tran sfe rs 29

Table 1.2. Techniques used for recovery and availability ... 34

Table 4.1. Availability offered by various replication schemes 79

Table 4.2. Availability offered by RH for various m ... 87

Table 5.1. Percentage o f time nodes were up .. 98

Table 6.1. Network interactions required by the RH algorithm 122

Chapter One

Introduction

Distributed systems provide the opportunity to improve the fault tolerance of data

through replication. It is often desirable to have multiple copies mainly for applications

where interruptions of service due to node crashes or com munication link failures cannot

be tolerated and the complexity o f the replication system can be justified by the unac­

ceptable cost o f failure. However, the designers o f general purpose distributed systems

have concentrated mainly on the advantages o f data sharing and efficient remote access

rather than on high availability through replication [1].

Several projects are underway to create a general-purpose computing and informa­

tion processing environment that will include hundreds o f self-contained workstations.

Replicated file systems which offer the desired availability can only become common­

place in these environments if the benefits of fault tolerance can be balanced against the

costs and complexities introduced by replication. For this technology to be adopted in a

wider range o f applications, the following three main design criteria should be con­

sidered: the storage cost of replicating files must be kept low, the communication cost

inherent in the replicated system must be kept within acceptable bounds and the mechan­

isms provided for managing physical copies must be practicable and flexible in the sense

16 Introduction

that they allow control over the level of reliability required for different sets of files. In

addition, replication is required to be transparent; that is its only observable affect is to

make the data more available.

The basic aspect of replication management is to guarantee that there is no logical

conflict in the user’s view. In other words, when the data is replicated accesses to it must

be managed so as to maintain consistency. The exact nature of consistency changes from

application to application. This will be discussed in more detail below. If updates may

be concurrent the locking protocols [2,3] used to ensure serialization to prevent physical

conflicts may also provide the required consistency control. However, these two are

separate concerns; consistency problems are inevitable consequences of replication

whereas the concurrency problem may arise in any concurrent or pseudo-concurrent

environment.

All schemes developed so far that provide users with a consistent view of replicated

data are based on one of two basic principles: The simplest principle is

read anyiwrite all. Unfortunately, this principle improves the availability o f the file only

for read operations by reducing the availability for write operations. In 1984, Bernstein

and Goodman refined the principle giving a scheme that reads from any available copy

and writes to all available copies [4]. This available copies scheme configures out failed

nodes from the system and configures them back in when they recover; so that, in effect,

the algorithm is read any /write all. This method gives optimal availability provided the

underlying network never becomes partitioned into more than one independently func­

tioning set o f nodes. If the network does become partitioned, this algorithm fails to

preserve consistency.

The second basic principle is read some /write some. The algorithms which follow

this principle use a quorum-consensus approach, each node votes for participation in a

read or write operation. In order to read a file a read quom m must be collected. Simi­

larly, in order to write a file a write quorum must be collected. This principle was first

Introduction 17

used by Thomas in 1978. He suggested a simple majority voting scheme [5]. In 1979,

Gifford proposed assigning different weights to different copies and having different read

and write quorums [6], Recently, many different variations to these basic schemes have

been suggested [7 ,8 ,9 ,1 0]. These schemes are discussed in Chapter Two.

The principal disadvantage of voting schemes is that at least three copies of the data

are required to give higher availability than a single copy. Five copies are needed to

improve availability further. This is a significant storage cost compared to the available

copies method that gives considerably improved availability with only two, but which

cannot continue to work if the network becomes partitioned. These claims are justified in

Chapter Four.

1.1 Objectives of the Thesis

There are many possible approaches to the problem of consistency control in repli­

cation. This dissertation investigates a design in which the storage cost of replicated

files as well as the gain in availability is considered. Such a low-cost implementation

would be suitable for a wide range of applications in general-purpose computing environ­

ments. The design focuses on providing high availability with a small number of copies

(especially two) and on the correctness of the algorithm in the face o f partitions. Some

implementation techniques are also described to enhance the performance beyond that of

the basic design. The first objective of the work is thus to show that going from a single

copy to two copies results in a greater improvement in availability than going from two

to three copies or beyond.

The second objective is to compare the network and system architecture assumed by

the various algorithms to determine their practicability. This comparison also includes

an examination of the facilities provided for reconfiguration (changing the location of

copies and altering the degree of replication).

The third objective is to characterize the effect o f network partitions on the accessi­

18 Introduction

bility of replicated files. Common measures of accessibility include availability , which

is the steady-state probability that the file is accessible at any given moment, and reliabil­

ity , which is the probability that a replicated file will remain continuously accessible over

a given period of time. This objective has proved to be more difficult to satisfy mainly

because of the problem of adequately generalizing the characteristics of partitioning. A

detailed theoretical analysis o f accessibility has been done for partition free systems and

this analysis has been extended to include a simple case of partitioning. This partitioning

analysis has been carried out through simulation, and the behavior o f the proposed algo­

rithm and the related algorithms have been analyzed in some typical topologies. Some

interesting results have been obtained concerning the sensitivity of different algorithms

to changes to the network topology and copy placement. The proposed design was

presented at the IEEE COM PCON'89 conference in San Fransisco [11] and the original

work on the effect of partitions on reliability of replicated files will be presented in

November 1990 at the IEEE W orkshop on M anagement o f Replicated Data in Hous-

ton[12]).

1.2 Outline

The remainder of this chapter presents a model o f a distributed environment, the

underlying communication medium and the abstract definition o f the file system includ­

ing the level at which replication is introduced, before outlining the consistency problem

of replicated files. Later some alternative ways o f building replication control algo­

rithms into the file system are discussed together with the effectiveness o f replication in

terms o f storage cost and abstract performance measures such as availability and reliabil­

ity.

Chapter Two contains a general survey o f consistency control schemes examining

their behavior, requirements and effectiveness when the degree o f replication is low —

typically two or three.

Outline 19

Chapter Three introduces a new low-cost hybrid algorithm called reliable histories

for maintaining consistency of replicated files in applications where the storage cost must

be kept down.

Chapter Four is the first o f the two analysis chapters. First the steady-state availa­

bility of a replicated file is analyzed using two different techniques: &-out-of-Ai reliability

theory and M arkov processes. The analysis focuses on the minimum number of copies

and processing nodes required before the reliable histories algorithm provides better

availability than other algorithms. Secondly, the management of replicated copies in a

network that may become partitioned is examined; and the resiliency of various con­

sistency schemes to random copy placement and network topology is investigated.

Chapter Five contains an original analysis of the reliability of a replicated file both

in partition-free and partitioned networks. The reliability offered by various consistency

schemes is compared using different failure models and the com parison is extended to

include the effect of partitions in various topologies. Since the technique known as

regeneration affects reliability (not availability), its integration with the reliable histories

algorithm is also analyzed in this chapter.

Chapter Six concerns the performance and the practicality o f the reliable histories

algorithm. It focuses on the number o f network operations inherited by the algorithm

and proposes an algorithm called range, for reducing the cost of history operations.

Chapter Seven includes a summary of the basic results obtained from the analytical

models and simulation. This is followed by some suggestions for future work including

the investigation o f the interfaces required by users and system administrators. The

benefits o f added dynamicity through calculation o f overall reliability are also discussed.

1.3 Distributed System Models

This section summarizes the models for building a distributed system and discusses

the model on which the thesis has been developed.

20 Introduction

Many different models have been suggested. Tanenbaum states that these models

can be grouped into three general categories [13]: The first model consists o f a number

o f minicomputers each with multiple users. Each user logs onto one machine with

remote access to other machines. This system is similar to a central time-sharing

machine.

In the second category each user has a single workstation usually equipped with

processor, memory and a disk. This system becomes distributed when it supports a sin­

gle global file system so that the data can be accessed regardless their location.

The third category is an evolutionary step. All processors are kept in a pool and

allocated upon request by the clients. W hen the job is completed, allocated processors

return to the available pool. This model might become widespread when the C PU ’s

become much cheaper. However, there have been some attempts to combine the second

and third models providing each user with a workstation in addition to the processor

pool for general use. An example of this type is the Ameoba Operating System [14].

Systems consisting of workstations (called processing nodes throughout the disser­

tation) connected by fast local area networks are becoming widespread. These systems

offer a general purpose distributed computing environment for a large number o f applica­

tions. The possibility o f connecting a large number of processing nodes makes them suit­

able for replicating objects such as files, replication histories, etc. The replication control

protocol which the dissertation presents and analyzes is designed for an environment in

which a large number of processing nodes are spread across a series of local area net­

works connected by bridges. An example topology is illustrated in Figure 1.1.

1.4 Replicated File System

We divide the criteria used to compare replicated file systems into two groups. The

first group determine the efficiency of the system. This is the cost o f its operation which

can be measured in terms of communication delay and the cost o f extra storage required.

Replicated File System 21

o

H B R I D G E I— — (BRIDGE 1— -o
o- o- -o —o
o- o- ^ 0 -o
o- O H b r id g e I - -o -o
o O -o

Figure 1.1. A workstation environment (Topology-1)

The efficiency is mainly determined by the environment and the features related to the

environment such as the resources provided by the distributed system model, the underly­

ing communication medium and the failure to repair ratio o f the individual components

o f the network. The second group determine the effectiveness of the replication system.

This is predominantly a property of the consistency control algorithm. Effectiveness

measures the accessibility of a file (its availability and reliability) together with other

abstract properties o f the algorithm, such as any assumptions made for its operability and

correctness. This includes the failure modes o f the network that can be tolerated and

whether individual components share the same view o f the status of the other com ­

ponents or not.

The effectiveness o f a replication system is determined by the control protocol used

to manage the replication. Sometimes effectiveness may trade off efficiency and thereby

the performance of the whole system. The reverse is also true to a lesser extent.

The aim o f this section is to create a general view about the distributed file system

model in which the proposed design can perform efficiently.

W hen connecting two or more distinct systems together, the first issue that must be

faced is how to merge the file systems. In distributed file systems three approaches have

22 Introduction

been tried [13]. In the first approach file systems are not merged. Access to a remote file

can only be done by running special file transfer protocols that copy the remote files to

the local machine. This approach has been used in early designs and cannot provide

replication transparently.

The next step towards a DFS is to have adjoining file systems. In this approach,

programs on one machine can open files on another machine by providing a path name

which determines where the file is located. This is either done by creating a virtual

superdirectory above the root directories of all the connected machines (as in the N ew ­

castle Connection [15] and Netix [16]) or by providing a remote mount operation (as in

Sun’s NFS [17]). Replication can only be employed statically since the operating system

cannot move files around among nodes by itself.

The third approach is the distributed operating systems approach: having a single

global file system visible from all processing nodes. This approach allows the operating

system to move files around among nodes. The system can maintain replicated copies of

files [18 ,19 ,20 ,21 ,22 ,23 ,24].

Sturgis has grouped the basic issues that DFS designers are faced into five

categories [25]: communication primitives required, naming and protection, resource

management, choosing the services to be provided and fault tolerance. It is the last prob­

lem for which replication is a solution.

The replicated file system model runs on a cooperating set o f processing nodes

which together create the illusion o f a single logical file store. The file system data is dis­

tributed across many servers in order to get the benefit o f a multi-m achine environm ent

without losing transparency. A file is modeled as a finite sequence o f bytes which can be

referred to by a unique file ID. The create operation introduces a new file ID that refers

to an empty file. The data referred to is accessed and modified only by read and write

operations. Read is used to return an arbitrary, contiguous sub-sequence o f the file’s

bytes, while write is used to replace such a sub-sequence with any other byte sequence.

Replicated File System 23

Once the data in a file is no longer needed, the application can delete the file ID, so that

the file system may reclaim the space occupied by the file.

In this light we may now define a replicated file as a set of file copies, each one

implemented on a different node in the distributed system.

A replicated file system presents applications with the abstraction of a logical file

consisting of a sequence of bytes and identified by a unique identifier. In the thesis, data

and file are used synonymously with the term logical file. Logical files are implemented

by a set of physical files each holding a complete copy of the file and each residing at a

single distinct processing node. Both the terms copy and replica will stand for a full

copy of the file. The degree o f replication is defined as the number o f the file copies.

The files are created, accessed for read or write and deleted by means of logical opera­

tions defined on them. A replicated file can have different active versions at one time as

a result of failures and repairs o f the processing nodes holding them. A read on the file

will return the current version and a write is assumed to be an update on the current ver­

sion.

The multiple copies o f a replicated file are managed by a replication method. This

is an algorithm for managing the distributed copies of the files so that its functional

behavior is equivalent to that of a file having only a single copy. This property is known

as one-copy serializability [26]. Consistency problems can arise from two different

sources in a distributed environment.

1) Consistency in the face of failures: the data needs to be correct. Incorrect behavior

should not occur as a result o f system failures such as node crashes, network parti­

tions or timing anomalies.

2) Consistency in the face o f concurrent updates: when two or more accesses to the

data run simultaneously, it is necessary to ensure that incorrect behavior can not

occur as a result of concurrent access by multiple users.

24 Introduction

A replication method may address these problems independently. Consistency con­

straints are defined to ensure that the data meets the above conditions; at one level a stan­

dard concurrency-control protocol synchronizes access to the individual components and

at a higher level, a replica-management protocol reconstructs the file’s consistent state

from its distributed copies without concern for concurrency. This distinction is made in

order to discuss the problems separately. These problems have a lot in common and it

may be difficult to distinguish them in practice. The definition of consistency given in

Section 1.4.2 will justify why the concurrency control protocol is considered to be the

lower o f the two.

1.4.1 C oncurrency Control Problem

This section summarizes the protocol required in the lower layer if the updates may

be concurrent. This problem has been actively investigated within the environment of

centralized and distributed databases in recent years. Concurrency control algorithms

within centralized and distributed environments are surveyed by Bernstein et al [26] and

Kohler [27].

In a concurrency control protocol, logical operations are composed of a series of

accesses, called transactions, that change the state of the system from one consistent

state to another. There are two possible anomalies that are to be considered when the

transactions are running: updates might be lost or the retrieval might be inconsistent

because o f interleaved access to the data. The correctness of a concurrency control algo­

rithm is defined relative to users’ expectations. Bernstein defined two correctness criteria

regarding the above anomalies [26]:

a) Users expect that each transaction submitted to the system will eventually be exe­

cuted.

b) Users expect the computation perform ed by each operation to be the same whether

it executes alone in the system or in parallel with others.

Replicated File System 25

In order to satisfy these requirements all concurrent operations are required to be

atomic which means a ll-o r -n o th in g [28]. An atomic operation would only modify the

file if it is completed successfully, otherwise has no effect on the file. Atomic com mit­

ment protocols are discussed by Gray et al [29] and Hammer et al [30].

A concurrency control protocol must ensure that concurrent execution of a set of

transactions, where requests belonging to different transactions are interleaved, produces

the same result as if those transactions were executed serially. These transactions are

said to be serializable. The seminal paper on serializability theory was written by Papa-

dimitriou [31].

There are two synchronization problems that the protocol should consider

separately: read-read and read-write synchronization. Many different mechanisms have

been proposed. The three primary mechanisms are two-phase locking [32,2], timestamp

ordering[33] and so called optimistic methods [34],

The two-phase locking method synchronizes reads and writes by explicitly detect­

ing and preventing conflicts between concurrent operations. Before reading a file a tran­

saction must own a read-lock on it, likewise a write-lock must be obtained before writ­

ing. The ownership of locks is governed by two rules:

1) Different transactions cannot simultaneously own conflicting locks.

2) Additional locks may never be obtained once a transaction surrenders ownership of

a lock.

The definition of a conflicting lock depends on the type of synchronization being

performed. For read-write synchronization two locks conflict if both are on the same data

and one is a read-lock while the other is a write-lock. For write-write synchronization,

two locks conflict if they lock on the same data and both are write-locks.

Timestamp ordering is a technique whereby a serialization order is selected a priori

and transaction execution is forced to obey this order. Each transaction is assigned a

26 Introduction

unique timestamp and conflicting operations must be processed in this timestamp order.

The definition of conflicting operations is the same as for two-phase locking.

The concurrency control protocols based on commit protocols are intended for

applications where reads predominate. They are poorly suited for applications such as

ticket reservation systems where write operations occur frequently. Herlihy proposed

optimistic concurrency protocols [35] for the applications where write operations

predominate. A concurrency protocol is optimistic if it allows transactions to execute

without synchronization, relying on commit-time validation to ensure serializability.

Since this dissertation investigates a consistency control scheme without being con­

cerned with the details of concurrency control protocols, the synchronization techniques

will not be discussed further. Besides the above references, interested parties can refer to

Bennett [36] and Gelenbe [37].

1.4.2 Consistency Control Problem

The work presented in this dissertation relies on the following definition:

Definition 1.1. Let a , b be two distinct consecutive operations on a replicated file, / ,

satisfying a —>b where »” is the happened before relation which defines an arbitrary

total ordering of the events in a distributed multiprocess system as an extension to their

partial ordering [38]. Let f/, = Rj u C, is the set of up-to-date copies of f after the

operation / is completed, where /?, is the set of up-to-date copies which has directly

accepted the operation / and C, is the set of up-to-date copies which has become up-to-

date by copying from Consistency is preserved if and only if p = p ! =s> p i is true

where p i and p 2 are the following propositions.

p 1: a has succeeded on a set of physical copies, Ua, and b is applied to Rf,

p2: Rb Q Ua

The result of distinct operations, a and b , that run concurrently is undefined. The term

concurrent refer to Lam port’s definition [38]: two distinct operations a and b are said to

Replicated File System 27

be concurrent if a —»b and b —>a.

It is the responsibility of a consistency control protocol to satisfy the integrity con­

straints explained as the first form o f consistency in Section 1.4. These constraints assure

the correctness of the consistency protocol which guarantees that incorrect behavior

should not occur as a result o f network failures such as node crashes, network partitions

or timing anomalies. It is the job o f the consistency scheme to coordinate the accesses

and updates to the file copies so that clients of the replicated file system see a consistent

view of the file. That is, any client that reads a file after a write operation has succeeded

will see the data as it was left by the write operation.

1.4.3 C om m unication System

This section describes the assumptions on which the underlying communication sys­

tem is based. There is server software in each node which implements a set of operations

that can be invoked over the network. Individual processing nodes in the system are

assumed to provide this abstraction of a file through locally connected hardware. The

local connection is important since it allows to assume that the success or failure of a file

operation can be determined by the local file system. In contrast, it is assumed that nodes

connected by the data network can only determine the outcome of an operation per­

formed remotely by another node by the arrival of a message from the remote node.

Messages may be lost in transit but we assume that corrupted messages are detected and

removed by the communications software. In particular, we assume that the network

may become partitioned. Failed components such as nodes, bridges, etc. can recover

spontaneously or because of system maintenance.

The DFS sending a message to another processing node is not concerned with the

low level protocols used for transmission. Its only concern is the message has been acted

upon and the ensuing results from its operation. It is assumed that in the communication

layer a transport level protocol will provide reliable error free communication between

the nodes. In order to provide a uniform and easily understood abstraction, an RPC

28 Introduction

mechanism that offers at-most-once semantics [39 ,40 ,41 ,42] is likely to be the best

communication protocol for the system.

The characteristics of the communication medium have a major effect on the perfor­

mance. Many of the low -level operations required to support replication would benefit

from a multicast request-response mechanism. [43] If the underlying communication sys­

tem uses a broadcast link level protocol, the cost o f such a mechanism is a function of the

number of replies required from a request, not the num ber of servers to which the

request was sent, nor the size of the request parameters.

1.4.4 File vs Block Level Replication

Some system designers choose to introduce the replication at block level while oth­

ers prefer to do so at file level [44]. Many studies [45,46,47] of distributed file systems

(including my own results of the actual performance of NFS — Sun M icrosystem’s Net­

work File System) have shown that most file accesses are whole-file transfers. An

analysis of file access patterns in the UNIX 1 Operating System has been done by

Ousterhout [45]. This reveals that more than 90% percent of all files processed sequen­

tially and more than two thirds of all file accesses are whole-file transfers. These figures

also show that while operations on small files predominate, large files account for almost

20% of all file accesses. Table 1.1 presents the results from this study together with the

results of my own study o f network file accesses in the last column. The values

presented show percentage o f the accesses. For example, first row is the percentage of

whole file read transfers o f all read-only accesses etc.

This suggests that in some application environments, whole-file replication might be

more advantageous and more practical than block-level replication. Therefore the thesis

is based on the replication of whole files.

1 UNIX is a trademark of Bell Laboratories.

File vs Block Replication 29

System-1 System-2 System-3 System-4
A ll read accesses 69% 63% 70% 75%
A ll write accesses 82% 81% 85% 90%
Sequential read-only accesses 92% 91% 93% 90%
Sequential write-only accesses 97% 96% 98% 98%
Sequential read-write accesses 19% 21% 35%

Table 1.1 — Percentage o f accesses that represent whole-file transfers.

1.4.5 Building Replication into the File System

Even if it is conceptually simple, building replication into the file system while try­

ing to preserve file system semantics is very complicated. In most cases the file system is

part o f the operating system kernel. In these systems replication can be implemented on

top of the operating system as a set o f library procedures as in Figure 1.2(a) or can be

moved into the operating system kernel. In the first case the implementor must provide

an interface that preserves the semantics of the original file system using only available

system services. An entire replicated file system must be built on top of the original file

system. The second case is more complicated because it requires the modification of the

operating system kernel.

In order that replicated file systems can become commonplace in general purpose

computing environments, they should provide fault tolerance efficiently as an extension

to simple file systems.

KERNEL SPACE

file system

system
calls tependent

replication libraryuser process

USER SPACE

remote

node

node

Figure 1.2(a). Building replication on top o f the file system

30 Introduction

One suggestion for implementing replication at the block level is a reliable device [44]

which appears to the file system as an ordinary block-structured device but implemented

as a set o f server processes on several nodes. Because it presents the same simple inter­

face as an ordinary device, it provides replication while leaving the operating system ker­

nel and the file system unchanged. This approach has the advantage that existing pro­

grams can operate on replicated files without modification.

In the case of a conventional operating system where the file system is part of the

operating system kernel, it has been suggested by Carroll [44] that a device driver stub

could receive requests for access from the file system and forward those requests to a

server which would perform the data access and consistency control algorithms. Such a

scheme is illustrated in Figure 1.2(b).

In this system, a user-state process makes a file system request to the operating sys­

tem kernel. The file system consults internal data structures to ascertain if it has the

requested file in the buffer cache. If the block is not present then the file system requests

the device driver to fetch the file. The device driver stub then communicates this request

to the user-state server which executes the consistency control and data access algo­

rithms.

remote

node

node
block server

device driver
stub

user process

file system

KERNEL SPACE

USER SPACE

proc.
call

dependent

Figure 1.2(b). Building replication as a block-structured device

Building Replication 31

1.5 Types of Failure and Recovery

In this section a discussion on typical failures that can occur in a general distributed

environment is followed by the failure specifications and the assumptions on which our

failure model is based. The section concludes with a discussion of some methods used

for recovering data after the failures.

A failure in the system can be defined as an event at which the system does not per­

form according to its specifications. We divide distributed system failures into four

categories:

1) Node Crashes

2) Bridge Failures

3) Communication Link Failures

4) Byzantine Failures

The first three of these can be thought of as failures causing the network to become

partitioned. W hen the network is partitioned the system is divided into two or more dis­

joint sets within which communication is possible. There is no communication between

any two of these sets in the sense that all messages between them will be lost. A failure

is detected when a node fails to receive a response to its message after a certain duration

of time. A fault can only be suspected; the absence of a reply might be merely an indica­

tion that the recipient is slow to respond but we do not consider timing anomalies. Since

communication link failures occur very rarely in today’s network technology, they are

not discussed further, although their properties could be simulated by a highly intercon­

nected network of unreliable bridges. Arbitrary partitioning of the system caused by

bridge failures is important for replication and is studied at length in Chapter Four and

Chapter Five.

The last category consists o f software failures that cause the system to operate

incorrectly in the absence of hardware failures by exhibiting so called Byzantine faults

32 Introduction

[48]. We assume that the software is correct so we need not consider this sort of failure

further.

As far as communication is concerned node crashes can be viewed as a special case

o f partitioning: all incoming and outgoing messages are lost. From the point o f view of

the integrity o f the files we must make the following assumptions:

1) M achines are fail-stop. That is, at any moment, each machine is either up or down.

2) Local hardware failures are detectable. It is assumed that a device controller

satisfies this assumption.

3) Absence of storage media failures, faults that cause crashes of a file server are

classified into two groups: server failures and disk controller failures. Since the

replicated file system creates copies o f the file on distinct processing nodes rather

than by local disk replication, this requirement is satisfied.

Although the effects of a crash cannot be completely hidden, they can be limited to

a single well-defined event. The details and requirements of low-level protocols to

achieve this aim is described by Schlichting [49] and by Bernstein et a I [50].

There are many techniques used to restore data in a system to a usable state when

the system recovers from a failure. In order to cope with failures, additional components

or algorithms must be added to the system. These components ensure that incorrect

behavior cannot occur as a result o f node crashes. Replication is only one of the

methods. Its advantages over the other techniques is that it can be used to improve the

availability o f data as well. This m echanism and the problems associated with its

management forms the bulk of the thesis. Some other recovery techniques are summar­

ized below. Some o f these techniques increase the availability partially but none of them

improves the availability of the up-to-date copy transparently. The techniques explained

below are discussed by Verhofstad [51] and Kohler [27] in detail. Some variations of

them are also proposed by Lindsay [52] and Bhargava [53].

Types o f Failure and Recovery 33

Increm ental Dumping: Copying o f updated files onto archival storage after a job

has finished or at regular intervals. This creates checkpoints to updated files. Backup

files can be restored after a crash. Powell et al [54] have described a redundant system

that puts very little additional load on the process being backed up. In their system all

messages sent on the network are recorded by a special "recorder" process. From time to

time each process checkpoints itself onto a remote disk (Figure 1.3).

network

| | request request |——j

primary file sender backup file

sender
□ □

file recorder process
(saves all network traffic)

Figure 1.3. Backup!recorder process during incremental dumping

D ifferential Files: A file can consist o f two parts; the main file which is unchanged,

and the differential file which records all the alterations requested for the main file. The

main files are regularly merged with the differential files. Records in the differential files

can be stored with the process identifier, a time stamp and other identification inform a­

tion to aid recovery.

Backup!Current Version: The files containing the present values of existing files

are the current versions. Files containing previous values are backups. Backups can be

used to restore files to previous values.

Careful Replacement: The principle o f this method is to avoid updating any part of

the object in place. Altered parts are put in a copy o f the original; the original is deleted

only after the alteration is complete and has been certified.

34 Introduction

Table 1.2 lists the methods dealing with recovery and availability.

Recovery Availability
Incremental Dumping X -
Differential Files X -

Backup Version X X
Careful Replacem ent X -
Replication X X

Table 1.2 — Techniques used for recovery and/or availability

1.6 Measures of File Accessibility

When files are not replicated, they obviously become unavailable during the crash

and recovery of the node holding the file. No updates may be made and the data is sim­

ply not available for either read or write until the node recovers. No special operations

are required upon recovery to be sure of consistency of the copy as there is only one

copy. If the file is required while the node is down, it can manually be reloaded into

another operating node from a back-up resource. Then, one must make sure that no

inconsistencies exist after the crashed node is returned to service. Manual loading some­

times may be useful but it is not transparent.

The higher availability requirements of some applications in distributed systems

have increased the interest in keeping copies of the same information at different nodes

of the network. Replication o f data allows infonnation to be located close to its point of

use, either by statically locating copies in high use areas or by dynamically creating tem ­

porary copies as dictated by demand. Replication of data increases availability by allow­

ing many nodes to service requests for the same information in parallel and by masking

partial system failures. For example, in a system where the independent availability of a

node is 0.833 (this corresponds to a failure to repair ratio, p=0.2, nodes that are repaired

five times faster than they fail), it is possible to increase the overall availability of data to

0.98 with only two replicas (the availability is analyzed in Chapter Four). Maintaining

copies can be costly but the reliability o f the system is the benefit. Because of its high

Measures o f File Accessibility 35

cost and complexity the reliability offered by replication is only used in certain applica­

tions where the cost is justifiable. The rest of this section concerns the measures of file

accessibility and methods to compare them.

In a replicated file system design it is essential to know the effectiveness and trade­

offs of different options in improving performance and dependability. Since the main

goal of replication is to increase the accessibility of data by tolerating system failures and

making the file more available than a single copy, the simplest measure of accessibility is

availability. In fact, it is possible to distinguish the factors effecting availability into

two: environmental effects such as failure frequency, network topology etc. and the limi­

tations of the replication method used to manage the file copies. In order to simplify the

availability analysis and ease the comparison between methods, topological factors have

usually been disregarded and partitioning has been ignored, although it is a common

problem. The following sub-sections explain different forms of availability; steady-state

and continuous availability. Continuous availability w ill be referred as reliability

throughout.

1.6.1 Availability

The success of a file operation on a replicated file depends on a number of indivi­

dual nodes being operational at the time of the request. If a sufficient number of nodes is

not available which is required for a consistent read or write then the data is not avail­

able. Availability is a probabilistic measure calculated in terms of the probability of

required number of independent components being up at the time of the request. There

are two possible availability measures in general:

1) Instantaneous availability is a function of time and defined as the probability that

the system is performing properly at a given time t. This is equal to the reliability

for non-repairable systems i.e. once the system has failed they cannot be repaired

and put into function. This is not true in replication systems since the independent

nodes are assumed to recover after a repair period [55].

36 Introduction

2) Steady -sta te availability is the availability when the system is in steady state. This

is the equilibrium state when time goes to infinity. Steady-state availability can be

defined as the probability that the file will be accessible at any random point of

time. Since it is assumed that the replication system is repairable i.e. failed nodes

are always recovered after a certain period of time, only the steady-state availability

of files is considered in the thesis. The following is the definition of the steady-state

availability of a replicated file.

Definition 1.2. The availability P(A{n,m)) o f a replicated file with n replicas in a system

o f m processing nodes where (m - n) nodes do not contain a replica of the file is defined

as the probability that the system will operate correctly at any given point of time as time

goes to infinity given that initially m nodes were operating correctly.

Availability has two facets according to the type of the access: availability for a

read access (read-availability) and availability for an update (write-availability). It is a

feature of the consistency scheme to determine whether these availabilities are equal or

one trades-off the other.

Availability behavior of a consistency scheme can be modeled analytically. This

analytical model is an abstraction of the various assumptions about the system s’ behavior

as a function of the failure/repair probabilities of individual nodes. Under the assumption

o f exponential failure/repair rates, it is possible to derive a Markov model for the cases

where the number of possible states that the system can be in is within reason. Unfor­

tunately, reality tends to deviate from exponential models because exponential repair rate

is not realistic for computer systems [56].

If the systems are too complicated to analyze with Markov processes, k-o\ix-oi-n

reliability theory [57] can be used. The disadvantage o f this method is that it makes too

many simplifying assumptions about the failure model. In the work presented here, both

analytic methods have been used in combination to support each other where applicable.

Simulation is used to reach a solution and verify the results o f analytic models.

M easures o f File Accessibility 37

1.6.2 Reliability

Reliability can formally be defined as the conditional probability at a given

confidence level that the file system will perform its intended function (read/write access)

properly without failure and satisfy the specified requirements of continuous availability

during a given time interval {0, t }. In other words, reliability is the continuous availabil­

ity of a file over a given period o f time.

Definition 1.3. The reliability R (n ,m ,t) of a file with n copies in a system of m process­

ing nodes — including the nodes holding a copy, is defined as the probability that the

system will operate correctly over a time interval of duration t given that initially m

nodes were operating correctly at time t - 0.

Availability has received much more attention, because its analysis is more tractable

than that of the reliability [58]. In fact, there are some applications in which the reliabil­

ity of a system is a more im portant measure of its performance than its availability.

These applications include process control, data gathering, and tasks requiring interaction

with real-time processes, where the data will be lost when it is not available. The com­

puter systems used for stock trading are an example of this situation. If these machines

were to fail, the resulting chaos w ould halt trading.

Reliability analysis through analytic models is too complicated. It is possible to

derive closed-form solutions for differential-difference equations if the number of possi­

ble states is small and the system does not partition. Analytic models become too com­

plicated to solve in the analysis o f network partitions. In the reliability analysis a

Monte-Carlo simulation is done and the results are validated by an analytic model for a

simple partitioning case.

1.7 Summary

After formulating the problem o f replication management when the number of repli­

cas are bound to be very small, m ainly two (at most three), this introductory chapter out-

38 Introduction

lines the replicated file system model on top of which the consistency control schemes

are going to be built in the following chapters.

The most important points made in this chapter are as follows:

i. Storage cost is a very important issue to be considered in order that replication can

become com mon place in general purpose computing environments.

ii. Going from single to two copies has much higher advantages than going from two

to three, four copies.

iii. Concurrency and consistency are two separate concerns; the consistency problem is

an inevitable consequence of replication whereas concurrency problem can occur in

any concurrent or pseudo-concurrent environment.

iv. Two common principles are used in various algorithms for managing the consistent

view of replicated files: read any/write all and read some /write some. Among the

algorithms, correctness trades off performance.

v. All consistency schemes in the literature up to June 1989, become inefficient when

the num ber o f copies is small (especially two) either because of administrative com ­

plexity and requirements from the hardware or providing a desired level of availa­

bility especially with small number o f copies.

vi. There are two major characteristics o f an effective replication control algorithm.

Correctness: it should work correctly during network partitions as well as node

crashes and accessibility: the probability of file being available at any given

mom ent (availability) or a given period o f time (reliability) must meet the require­

ments.

Chapter Two

Consistency Control Schemes

This chapter examines the requirements (assumptions made for its operability and

correctness) and the behavior of consistency control schemes.

The algorithms are studied in two groups: Voting algorithms [5 ,6 ,59 ,60] and

Available Copies algorithms [4,9]. Voting algorithms use a quorum-consensus approach

whereas the Available Copies algorithms provide high availability as a modification of

two older methods: Unanimous Agreement [61] and Single-Primary Update strategy

[62,61].

Many variations, especially of voting algorithms [63,56] have been proposed

recently. Dynamic voting techniques [64 ,65 ,66 ,67] are excluded from this discussion

because these algorithms work only if the node failures are distinguishable from network

failures and this requirement is at odds with the failure model of the outlined distributed

environment. First, the main algorithms and their variations are analyzed using the

measures of effectiveness discussed in Section 1.4. Secondly, the advantages of the

regeneration technique and how it can be applied to a consistency scheme with an addi­

tional operation cost is explained.

40 Consistency Control Schemes

2.1 Unanimous Agreement Update

This approach requires that all copies should be identical before and after each

operation. In other words, it uses read any /write all principle. Updates are propagated

to all replicas immediately. Since all physical copies o f a logical file are kept in the same

state, a single copy image of the data is achieved. As the algorithm assumes that every

node in the system has a replica o f the data, all read requests can be performed locally.

This assumption reduces the traffic on the communication network for read requests.

Unanimous agreement enhances read availability, but as the number of replicas are

increased, the file will be less available for updates. A replicated file with any number

of copies will provide lesser availability for update than a single copy file. Additionally,

the system is required to support control message traffic in order to send the update to all

replicas and confirm or cancel it, based on whether or not unanimous agreement was

obtained. A lthough the idea is simple, its implementation requires a two-phase commit

protocol for confirmation as it cannot afford an inconsistency among the copies.

This approach does not tolerate node crashes for updates. As it is not realistic to

consider a failure-free distributed system, it offers very low reliability compared to all

the other approaches. Its advantages are high read availability and consistency even if

the network is partitioned by preventing updates in any partition that does not have

access to all replicas. If a replicated file has a very high ratio o f read requests to update

requests, unanimous agreement (Figure 2.1) might be cost-effective for small degree file

replication.

update

copy-3copy-2copy-1

Figure 2.1. A unanimous update performed on 3 distinct copies

Unanimous Agreem ent 41

2.2 Single-Primary Update

This algorithm designates one replica as primary and all the others as secondaries.

Update requests are sent to the primary replica which serves to serialize updates and

thereby preserve data consistency. The primary acquires a lock, performs the update,

broadcasts the change to all the secondaries and releases the lock. There are three dif­

ferent schemes for this broadcast:

1. Update request is sent to the secondaries immediately,

2. Updates are packaged and sent at the end of the transaction,

3. Updates are broadcast only at specific intervals — once an hour, overnight, etc.

In all the primary-secondary schemes, the delay caused by update propagation from

primary to secondary can increase the response time to a local read issued after an update

to the data, if the update is at a remote primary, and the read is at the local replica.

This scheme does not tolerate the failure of the primary copy but it maintains con­

sistency in the face of network partitions. In the case of a partition failure, only the parti­

tion containing the primary copy can access the data. Updates are forwarded to secon­

daries at recovery to regain consistency. The availability of the data is simply the proba­

bility that the primary is up and communicating. Therefore it provides the same write

availability as single copy. Replication enchances only read availability. As it is simple

and practicable, it has been used in many designs [68,69].

2.3 Moving-Primary Update

This algorithm is proposed by Alsberg [62] and it is an extension to the single­

primary strategy. The principle is that an update can be made to the primary copy or any

secondary copy. The initiator is not aware of which node is functioning as the primary

for any particular update.

If the receiving node is the primary one, it performs the update and then sends a

cooperation request to one of the secondaries informing it of the update. The secondary

42 Consistency Control Schemes

performs the update, acknowledges to the primary and also the local node before passing

the request on to the next secondary (Figure 2.2). Once the primary has received the ack­

nowledgement from the secondary, it is certain that two-host resiliency has been

achieved. The update is lost only if both primary and the cooperating secondary fail.

If the node receiving the request is a secondary, it forwards the request to the pri­

mary and algorithm proceeds as above.

If the primary fails, the secondaries will discover it when they forward their next

request. Then, they elect a new primary among themselves. In a two-host resilient

scheme, all n —1 secondaries, where n is the number of copies, must participate in this

election. One way of electing a new primary is to assign numbers to nodes and to choose

the secondary with the highest number in the participating set as the next primary. In the

second step, all other secondaries are informed of the primary change. When the old pri­

mary recovers and attempts to ask cooperation for an update, it is informed by the secon­

dary of the change and the request is forwarded to the new primary. The old primary

then becomes a secondary.

In general, in an m-host resilient scheme at least /i-m + 1 secondaries must partici­

pate in the election of the primary. The rest o f the algorithm is the same as the two-host

resilient scheme.

This approach works well if node failures are distinguishable from network failures.

If this is the case and primary fails, a new primary can be elected (for a discussion of

election protocols see Garcia-M olina [70]. However, if it is uncertain whether the pri­

mary failed or the network failed, the assumption must be that the network failed and no

new primary can be elected. M oving-primary variation enhances the write availability if

there are more than two copies. If there are two copies, both copies are required for

updates; one as primary the other as cooperating secondary. So, in two-copy case, all

synchronization-site approaches behave in a similar way as unanimous agreement.

Moving-Primary Update 43

update

ackrequest

secondarysecondaryprimary copy

Figure 2.2 An update operation maintained by Moving-Primary approach

2.4 Voting Algorithms

Voting algorithms use a quorum-consensus approach. Every node maintains a

number of votes for read and writes. Each request must gather a quorum of votes before

being accepted. All voting algorithms are robust as a side affect of normal operation.

They remain consistent in the case of communication failures which can cause partition­

ing in the system as well as in the face of individual node crashes.

In general, different quorums for read and write operations can be defined and dif­

ferent weights, including zero, can be allocated to every copy. This form is called as

weighted voting [6]. Read transactions must collect a read quorum of r votes to read a

file, and a write quorum of w votes to write a file. The values r and w must be chosen

such that r+w is greater than the total number o f votes assigned to the file. There is then

always an intersection between the set o f servers participating in read and write transac­

tions, so every read quorum is guaranteed to include an up to date copy. W eighted vot­

ing introduces version numbers as an alternative to timestamps in order to unify the

updates. Each time an update is performed, the version num ber o f every copy in the par­

ticipating set is increased by one. The highest version number in the read quorum is the

version number indicating which copies hold the current state.

44 Consistency Control Schemes

In majority voting , which is the earliest and simplest form of voting algorithms,

every copy has one read and one write vote. For a request to be accepted a majority of

the copies need to approve it. The algorithm in its original form employs timestamps

both in the voting procedure and in the application o f updates. The file is available to

update requests so long as there is a majority of nodes in communication. Since only one

majority can be formed at a time, the file remains consistent even if the network is parti­

tioned.

In all previous algorithms, read requests were always local. In voting algorithms, if

w is less than the number o f copies then a read quorum is required to obtain the current

version number. If majority voting is applied, then all write quorums are preceded by a

read quorum which is the majority in either case. If w is equal to the number of copies

then voting degenerates into unanimous agreement allowing any one copy to be read.

Voting algorithms provide serial consistency which means that it appears as if each

transaction is running alone. However, they require a minimum of three copies to be of

any practical use.- Having three copies of the file, in order to increase the availability and

the reliability, the best solution is to assign equal votes to all copies. The file will then be

accessible as long as two out of three copies are available. The increased level o f availa­

bility and reliability incurs a storage cost. If the size o f the file is very large, then the

storage cost of an extra copy may not justify the increase in availability.

2.5 Efficient Variations of Voting

In their original forms, consistency schemes relying on voting become more effec­

tive in providing availability as the number o f copies are increased (five or more). In

these algorithms read availability trades off write availability. In the following sections

2 Consider a replicated file having two physical copies; if equal weights are assigned to each copy
both copies must be available, to acquire a majority in order to update the file. As a result, the
availability of the file for either read or write is less than that of a single copy. Should a higher vote be
assigned to one of the copies, this copy is the only one required to be available in order to access the
file. The second copy has then absolutely no effect on the availability or reliability of the file.

Voting Algorithms 45

two recent extensions to weighted voting are discussed. The first tends to reduce the

storage cost and the second increases write availability.

2.5.1 Reducing Storage Cost with Witnesses

Paris proposed to replace some o f the copies with small records that keep only the

status of the file but not the data. These records are called witnesses [63]. The witnesses

have weights just like the normal copies and can participate in a quorum. Read and write

quorums are collected as if the witnesses were conventional copies. The only restriction

is that every quorum must include at least one current copy. Two copies and one witness

provide similar availability to that o f a file having three full copies. But still, voting

algorithms with three copies provide lesser availability than that of Available Copies

method with only two copies. The Available Copies method is discussed in Section 2.6.

The availability analysis done with k-out-of-/2 reliability theory (Section 4.1) has shown

that availability with voting becomes reasonably comparable with available copies algo­

rithms when five or more copies are used. For smaller number o f copies, available copies

algorithms provide higher availability than any variations of voting. The result o f the

analysis is discussed in Chapter Four.

2.5.2 Enhancing Availability with Ghosts

Voting with Ghosts is proposed by Van Renesse [56]. This algorithm increases

write availability in the cases where one or more node crashes mean that a write quorum

can no longer be acquired so the data will not be available for writing. It replaces

crashed nodes with processes called ghosts. Ghosts have the same number o f votes as the

crashed nodes but do not have the physical copy. Ghosts can be thought o f as dynami­

cally created witnesses. The algorithm assumes that the network can only be partitioned

at gateways or bridges connecting so called segments. These segments cannot be parti­

tioned. If a segment is down i.e. the communication link has failed, the nodes within that

segment cannot communicate with each other or with nodes on other segments. Crashes

46 Consistency Control Schemes

are detected on each segment with a boot service which keeps the status of each node by

polling them in regular intervals. This service is replicated as well. Van Renesse argues

that, since the segments cannot be partitioned, the boot service can be controlled by

either Weighted Voting or Available Copies algorithm.

Voting With Ghosts enhances write availability compared to Voting With

Witnesses, but it has strong administrative requirements such as; a separate replicated

boot service for every segment and a recovery process to restore the recovered nodes. If

the boot service becomes unavailable the algorithm degrades to W eighted Voting.

Besides, since ghosts do not have storage, they cannot participate in a read quorum, so

read availability remains the same. If the file has only two copies, ghosts have no use in

the case of partitioning. Therefore, it has restrictions which makes it unsuitable for small

degree replication.-* Additionally, although it may be a minor overhead, having replicated

boot services on every segment generates extra network traffic continually during pol­

ling, and updating the service when a node is repaired.

2.6 Optimum Vote Assignment or Coteries

One difficulty with voting algorithms is how to assign the votes optimally. If the

failure characteristics o f the nodes and the network system is varying, then the optimum

vote assignments vary also. It has been proved by Garcia-Molina et a l [71] that there are
2

up to 2"~ different vote assignments, where n is the number o f copies. This shows that

the choice of assignments are increased rapidly.

There is an alternative to vote assignment. The above mentioned authors introduced

the term coteries to define the sets that can perform the read/write operations on the file.

Coteries are the sets o f set of nodes. Empty set is not a member o f a coterie and each

3 Consider there are two copies, this system can have only one ghost and allows access when either
copy is available. But, since the ghost is created only when a node is crashed, if both copies are up on
different segments, in the case of partitioning file will be unavailable in both partitions. Therefore, in
the case of partitioning voting with ghosts will have no use. Although it preserves consistency,
availability is highly reduced in partitioned system when the Voting With Ghosts algorithm is used.

Coteries 47

pair of members of a coterie have at least one node in common, but none of them is a

subset o f another. Coteries can formally be defined as follows:

Definition 2.1. Let U be the set of nodes that compose the system. A set of sets of nodes

5 is a coterie under U iff each member of S obey the following three conditions:

Say G, H are subsets of U

i) G € S implies that G 0 and G <zU.

ii) If G, H e S, then G and H must have at least one com mon node.

iii) There are no G, H e S such that G c H.

Each pair of coteries should have a node in common to guarantee serializability. Up

to five nodes, coteries and vote assignments are equivalent. It is easier to think o f in

terms of coteries but, votes are more efficient in implementation. Garcia-Molina argue

that votes take less space to represent and are easier to implement. Adding votes and

checking for a majority is also faster than checking if a group o f nodes is in a coterie.

Also, with five or fewer nodes, the number o f choices for vote assignment or

coteries are small enough for designers to inspect all choices and select the one that

yields the best reliability for the given hardware.

They prove that for systems with more than five nodes, coteries are more powerful.

There are coteries that cannot be represented by votes, not vice versa. However, in this

case the number of coteries is huge. Therefore, some heuristics are needed to trim down

the number of choices.

As stated above, for the systems with more than five copies, either assigning

optimum votes or choosing optimum coterie is a tautology and difficult task for system

designers.

2.7 Available Copies

In this algorithm failed nodes are automatically detected and configured out from

the system. Recovered nodes bring themselves up-to-date by copying from other

48 Consistency Control Schemes

available nodes before accepting any user transactions. Reads are initiated to any avail­

able copy but writes must be done to all available copies. This form of unanimous agree­

ment provides better availability than all other methods, but the file’s consistency cannot

be maintained in the presence of partitions. Each copy maintains a directory list of avail­

able copies for use. The algorithm runs status transactions to keep these lists up to date

as nodes fail and recover. Since the algorithm can detect only node crashes, if the net­

work is partitioned, different partitions can update different copies and leave the system

in an inconsistent state. The original algorithm requires a method to handle the total

failure situation specifically. This situation occurs when all the copies are failed. In this

case, the last failed node is determined and updates are not accepted until this node is

recovered. In order to use this algorithm, a transport protocol must provide reliable,

error-free communication between nodes.

This algorithm can only perform well in a partition-free network if nodes fail infre­

quently. W hen a node fails, the algorithm updates the directory information on all the

other copies o f all data items stored in that node. W hen a node recovers, it informs the

directories again. M aintaining these status lists is a costly work.

2.7.1 H andling Partitions

El-Abbadi extended the original Available Copies scheme to Accessible Copies

scheme in order to handle partitions [9]. The extended scheme which is critically sur­

veyed by Davidson et al [72] is based on the following intuitive read one /write all pro­

tocol:

(1) A data item can be read and written within a partition only if a majority of its copies

reside on member nodes of the partition. In this case, the item is said to be accessi­

ble.

(2) A read operation on an accessible data item is implemented by reading the nearest

copy o f the item residing on a m ember of the partition.

Available Copies 49

(3) A write operation on an accessible data item is implemented by writing all copies

residing on members of the partition.

The first rule ensures that only one partition can access the file. The second and

third rules guarantee that the file remains consistent within a partition.

This protocol ensures one-copy serializability in an ideal network, where partition

failures are clean and nodes can detect partition failures almost instantaneously. If either

property of the ideal network is violated, incorrect execution can occur. The principal

idea in the Accessible Copies algorithm is the implementation of an abstract com munica­

tion layer on top of the real communication network, where the behavior of the new layer

approximates that of the ideal network. The consistency scheme is implemented on top

of the abstract layer. The abstract layer creates and manipulates virtual partitions , which

are rough analogs of the actual partitions that occur in the real network.

This variation offers similar availability to voting for updates. Virtual partitions

require status transactions and directory lists at each node in order to keep track o f the

failures and recoveries. Although the principle is simple its requirements are costly in

implementation.

2.8 Regeneration

The reliability of a replicated file depends on maintaining the set of up-to-date repli­

cas. Usually space limitations make it impossible to have enough copies to guarantee the

level of fault tolerance required. If new replicas of a file can be created faster than a

failure can be repaired, then better reliability can be obtained by creating new replicas on

available nodes in response to node failures. This technique is known as regeneration.

The idea of regenerating replicas to replace failed nodes was first proposed by Pu et a l

[73]. This algorithm is an extension to the Available Copies method and carries the same

weaknesses. It allows reads to continue as long as one up-to-date copy is available. If

fewer than the initial copies are accessible during a write operation, then new copies are

50 Consistency Control Schemes

regenerated on other available nodes. If there is no spare node, then the write fails.

Regenerating to the maximum number o f copies whenever an update occurs (as long as

adequate number o f nodes exist) increases the availability of an up-to-date copy for

further writes.

Recently, it has been shown that regeneration is a generally applicable technique

that can be combined with many replica control protocols in order to increase reliability

[58].

However, regeneration requires some work to be done when a node recovers and

joins the net. For all the replicated data in the recovered node, the replication system

must check whether the maximum number of copies is already available or not. If so, the

recovered copy is deleted. If not, the system must check whether there has been an

update or not during the failure of this node. If there has been no update during the

failure then the copy is used; otherwise it should be deleted because its replacement

exists but vanished temporarily due to another node crash. Figure 2.3(a) illustrates a

situation when the copy on node 3 is recovered, it can be used as there has not been an

update during its failure. Figure 2.3(b) shows a situation where there has been an update

during the failure and as a replacement copy exists on node 4, the recovered copy should

be deleted.

Additionally, there is a communication cost associated with regeneration. When a

node fails or recovers, network message traffic is increased.

recovered
node

(the copy can be used)

copy-1 copy-3 - -copy-2

spare spare

4 5

Figure 2.3(a). Regeneration: recovery o f a repaired node (case-1)

Regeneration 51

copy on node-3 should be deleted as
its replacement exists on node-4

1 2 3
recovered

node

node-4
is temporarily down

copycopy-2copy-1

sparecopy'3

. Figure 2.3(b). Regeneration: recovery o f a repaired node (case-2)

If the size o f the replicated file is very large, data transmission during each regeneration

might be very costly if nodes are failing ffequendy. For this reason, regeneration may be

best suited for small size data rather than large files. There are some other ways o f

reducing cost. One way is to regenerate when the number o f replicas falls below a cer­

tain threshold. Another way is to delay regeneration for a certain time period following

the failure. This may prevent wasting resources by reacting to transient failures.

Regeneration-based replica protocols offer higher reliability but the analysis is not

tractable. It is only possible to derive closed-form solutions for the reliability of the pro­

tocols for small number of nodes. Long [58] obtained the solutions for regenerative algo­

rithms. These solutions which can be applied to different algorithms employing regen­

eration are discussed in Chapter Five.

2.9 Discussion

All consistency schemes discussed above become less efficient in a distributed sys­

tem where nodes fail and recover frequently, and are less effective when the degree o f

replication is small; especially two. As the effectiveness and dynamicity o f the algo­

rithms are increased to provide better availability, they become less practicable.

Although the actual performances of the algorithms are implementation specific and

depend on the underlying hardware, there are some abstract performance measures (such

52 Consistency Control Schemes

as number of control messages required etc.) that can be used to estimate the likely com ­

munication overhead associated with the algorithms. Still, with efficient implementa­

tions, communication cost can be kept within acceptable bounds even for the algorithms

which require interactions between large number of nodes. Implementation aspects

related to communication cost will be discussed in Chapter Six. However, the require­

ments of a consistency scheme which are listed below must be met within the bounds of

required degree of availability and reliability. These requirements would allow replica­

tion to be used in general purpose computing applications.

a) Fault tolerant: as far as communication is concerned, the scheme should tolerate all

forms of partitioning in the system including node crashes and bridge failures.

b) Low storage cost: it should improve the availability and reliability even with two

copies.

c) Flexible: it should provide a dynamic reconfiguration facility in order to reach the

desired level of accessibility with an easy administration.

d) Practicable: it should be implementable as an extension to the existing file system

when the underlying communication medium satisfies the requirements.

e) Sim ple: It should have a simple failure model. For example: it should not require all

nodes in the system have the same understanding of which nodes are available and

which are not. It should not expect the com munication system to detect partitioning

failures instantaneously and distinguish network failures from node failures.

All the algorithms discussed in this chapter fail to achieve one or more of the

requirements.

2.10 Summary

The consistency algorithms are discussed for their effectiveness in a distributed

environment where partition failures can occur and the degree of replication is small.

The family o f available copies algorithms allow access to the file as long as one up-to-

Summary 53

date copy is available whereas voting algorithms require a number of copies of its

quorum size. Although some techniques are developed to improve the effectiveness of

voting strategies (ghost processes, witness copies), these algorithms become effective

when the number of votes is five or more and require at least three copies for any practi­

cal use. Besides, optimum vote assignment is a complicated problem in practice for the

systems with undeterministic failure characteristic. Dynamic strategies are proposed to

improve the availability by changing the votes assigned to the copies dynamically to

reach a quorum but these algorithms have stringent requirements from the underlying

communication system such as recognition of failures instantaneously and by their types

(node crash or network partition etc.).

Chapter Three

A Hybrid Replication Algorithm

In Chapter Tw o, various consistency schemes are exam ined for a low degree of

replication in a large-scale distributed system. The critical considerations about the com­

munication system were:

a) W hether the algorithms work if all nodes do not have the same understanding of

which nodes are up and which are down

b) W hether the processing nodes are required to distinguish the failures and recognize

them instantaneously.

Under the above requirements, dynamic vote assignment strategies [64, 67] have no

use as they require partitioning failures to be distinguishable from node crashes and the

failures to be detected instantaneously.

As far as effectiveness is concerned, Available Copies (AC) schemes provide the

optimal availability for two copies but cannot tolerate partitions unless the nodes have

the same view about the state of the network and the same failure detection requirements

as dynamic strategies are required. On the other hand, static voting algorithms do not

have the failure recognition requirements but have the disadvantage of needing at least

56 A H ybrid Replication Algorithm

three copies to give higher availability than a single copy. The availability with voting

can be im proved with the use o f witnesses; records o f the current state o f the file that

replace the full copies. Voting W ith W itnesses (VW W) do yield almost as much availa­

bility as the m ajority voting (MV) with three copies, but still voting algorithms cannot

reach the optim al availability provided by AC with only two copies.

One im portant property which is not investigated as a part of the consistency

scheme in the literature is ease o f reconfiguration; the file might require different degrees

of availability for different periods o f times during its lifetime. This availability can be

achieved either changing the locations o f the copies — moving the copies to the nodes

that are going to be up for the required amount o f time — or creating extra (temporary)

copies to reach the desired level. A n effective file replication scheme should provide a

flexible and easy reconfiguration facility to the user as a property of the consistency algo­

rithm without any additional system administration requirements. The degree of dynami-

city in reconfiguration is also important.

The algorithm proposed here overcomes the basic disadvantages of static voting

algorithms (m inim um three copies requirement) and available copies algorithms (fail

under partition) in a distributed system where each node has its own view of the state of

the network (this state indicates which nodes are up and which nodes are down). It is an

alternative control scheme for low degree replication, especially two copies, and has a

dynamic reconfiguration facility. It provides high availability allowing access to the

replicated file as long as one up-to-date copy is available and keeps the consistency o f the

data in the face of node crashes and network failures that can cause partitioning in the

network.

The algorithm replicates a small amount o f data concerning the location and status

of a file’s small number o f copies (its history) a large number of times using a variation

of the voting strategy, and uses this highly reliable vital information to determine the

update strategy. The consistency o f the file is preserved when the system is partitioned

A H ybrid Algorithm 57

due to bridge failures since the history can be accessed only in one partition in which a

m ajority can be collected. Although independent schemes are used for two entities (files

and histories) to achieve consistency, the interaction between these entities provides a

consistent view of the file’s small number o f copies during partitioning failures. This

hybrid protocol will be called reliable histories (RH) throughout. The interaction

between the protocols will be described shortly.

The algorithms for the logical operations are presented here in a pseudo-code based

on set notation and predicate calculus mainly because they rely heavily on set m anipula­

tion and require very little in the way of conventional control structures. The following

sets are used throughout this chapter:

T = {true , fa l s e }

N the natural numbers

M the set of processing nodes

F the set o f file identifiers

V = 2m x n (sets of server and version number pairs)

X* the set o f byte strings

The notation 2s denotes the power set o f 5, i.e. the set o f all subsets of S. The con­

ventional set notation used in the algorithms is given in Appendix A.

3.1 Replication Control Service

A replicated file is defined as a set o f file copies, each one implemented on a distinct

node in the distributed system. It is the job o f the consistency control algorithm to coor­

dinate the accesses and updates to the file copies so that clients of the replicated file sys­

tem see a consistent view o f the file. That is, any client that reads a file after a write

operation has succeeded will see the data as it was left by the write operation. It is

assumed that processors act synchronously and have access to a local clock. No assump­

tions are made about the synchronization of these clocks at this point (some assumptions

will be made in Chapter Six for performance optimization).

58 A H ybrid Replication Algorithm

The file system presents applications with the abstraction of a logical file consisting

of a sequence of bytes and identified by a unique identifier / € F. It is considered to be

a sequence o f bytes, any subsequence o f which may be read or replaced by any other byte

sequence. The file system provides five operations, four of which are the operations on

these logical files that are assumed to exist for local ones: crea te , re a d , write and

d e le te . The create operation introduces a new file ID that refers to an empty file. The

data referred to is accessed and modified only by read and write operations. Read is used

to return an arbitrary, contiguous sub-sequence o f the file’s bytes, while write is used to

replace such a sub-sequence w ith any other byte sequence. Once the data in a file is no

longer needed, the file ID is deleted, so that the file system may reclaim the space occu­

pied by the file. The fifth operation, configure, maintains the file’s history for a new

configuration set. This operation enables the client to change the location o f the copies

or the degree of replication during the life time of the file. The configure operation will

be described separately in Section 3.4.

Logical files are im plem ented by a (possibly empty) set of physical files each hold­

ing a complete copy o f the data in the logical file and each residing at a single, distinct

processing node. Two protocol layers within the Replication Control Service coordinate

access to the physical copies so as to ensure that read requests return the most up-to-date

version of the file. The availability control protocol determines the appropriate update

strategy for a file operation based on the file’s history table. The history table records the

location and version num ber o f each copy along with a boolean flag that marks the file as

having been deleted. The Replication Control Service deletes the file ID so that the

storage can be occupied by the file system. There is no assumption about how and when

the storage is reallocated. This is left to the file system. M arking the deleted files instead

of returning them to the storage pool immediately allows easy recovery o f the current

version if the file is wanted to be recreated shortly after the deletion. The history is main­

tained by the history table control protocol.

Replication Control Service 59

The number and location o f the copies o f each file are controllable by its owner, and

both may change during the file’s lifetime. This is im plem ented as an interface into the

lower control layers o f the replication control system.

Any client w ishing to read a file consults the history inform ation to determine which

file copies are up to date. Write operations perform update on all the up-to-date copies

and copy the current version to obsolete-copies. Clients m ulticast a write request, includ­

ing the highest version num ber in the file’s history, to^^ll servers that hold a copy o f the

file. This write request is not applied immediately to the file but is held pending until the

next read or update request. Subsequent requests to read or update the new version cause

the pending update to be applied (if there is one). If a request is made for the old version,

any pending update is discarded. This mechanism ensures that the file copies are kept in

step with the history table, even when a network partition during an update prevents the

new history from being saved after the file copies have been updated. Such a failure will

be reported to the client, and any subsequent operations w ill cause the unsuccessful

update to be discarded. The algorithms do not configure out the obsolete copies.

Obsolete copies are also active entities in the system but do not participate in write

operations. The replicated file system can provide an alternative read operation which

returns the available m ost up-to-date copy (not necessarily the current version). The

obsolete copies therefore increase the read availability for the files in this category (it

may be better to read an old version of a host address table than none at all). Figure 3.1

illustrates the com ponents o f the system.

APPLICATION

configure create, delete
read, write

History-Table ReadHistory Availability
Control WriteHistory Control

1 1*

\ '
C O M M U N I C A T I O N

he he he he
fc fc

p r o c e s s i n g n o d e s

Figure 3.1. Interacting components of the replication control system

60 A H ybrid Replication Algorithm

3.2 Availability Control Protocol

Each logical file f e. F has a history table h (f) e V x T that records the version

numbers and locations of every physical copy o f the file along with a boolean flag used to

mark the file as having been deleted. Tw o operations,

R eadH istory : F -» V 'x T

WriteHistory: F x (V x 7 > —» [success, e r ro r }

are provided to manipulate this table. A read o f the table for a 'particular file returns this

flag together with the locations and corresponding version numbers o f its physical copies.

A write to the table records new m achine and version number pairs and can be used to set

the delete flag. This history inform ation is itself replicated using a separate algorithm

described in the next section.

At file creation time, all copies are assigned version numbers zero:

create (f , S): F x 2M —> {success, e r ro r}

let h <— | (m , 0) | m e 5)

return WriteHistory (f , (h , fa lse))

No physical file copies are created until the file is first written to. For exam ple: when the

file is logically created on a set of nodes, S = { m 1,m 2 l, the files’ history,

h = {(m i , 0), (m 2 , 0)} will be w ritten to a set o f nodes, H. T he sets H and S may be

disjoint or not. Figure 3.2 illustrates the order o f operations during file creation.

WriteHistory(/, (h,d))
h = {(m*, 0),(my, 0)},d=fabe

UpdateH((ml tm2, • •, mt }, (h,d))
C O M M U N I C A T I O N

m*m.

History-Table
Control

Availability
Control

APPLICATION

Figure 3.2. Layer interaction during create operation

Availability Control 61

The delete simply attempts to write a new history that records the file as having

been deleted using the flag already mentioned (Figure 3.3).

delete i f): F —» {success, e r ro r}

re tu rn WriteHistory (/ ,({ } , true))

APPLICATION

dclei c(/)

History-Table WriteHistory(/. (/i={ },d=true)) Availability
Control

i
Control

® iAUpdateH({m,. m2. • • •, mk J. (h,d))

C O M M U N I C A T I O N

'A
m,

Figure 3.3. Layer interaction during delete operation

A file may be in any one o f four availability states, determined by inspecting its

reliable history table.

1) All copies are available and up-to-date.

2) All available copies are up-to-date but some copies are unavailable.

3) Some of the available copies are not up-to-date.

4) No up-to-date copy is available.

The availability control protocol determines the appropriate access and update policy for

each state. In order to read a file it must be in state 1, 2 or 3, i.e. at least one available

copy must be up-to-date.

If the file has been deleted (d = true) or the file’s history is not available (h = 0) then

the operation fails. The up-to-date copies have the m axim um version number in the his­

tory table. The copies w ith zero version numbers are the new copies which are created

62 A H ybrid Replication Algorithm

by configure operation but not physically written yet. These copies are brought up-to-

date by copying from the existent copies when a write operation is performed. The set of

servers holding copies w ith the highest version number is found and a read request is

multicast to them. Figure 3.4 illustrates the order of the physical and logical operations

for a read request.

re a d (f ,p o s n , Size): F x i V x i V -) I * u { erro r} (algorithm -1)

let (h , d) <r- R ea d H is to ry if)

if {d = true v h = 0)

re tu rn error1

let latest max({/ | 3 i m , i) e h))

let U <— [m | 3 {m, latest) e h }

re tu rn readF(U, f , p o sn , S ize , latest)

The following multicast operation is invoked on physical copies:

readF(U, / , p o sn , Size ,v) : 2M x F x N x N x i V -) Z * u {erro r}

returns data (specified by size and position) obtained from any server in the set U,

or an error indication if no server responds.

Each server compares its copy’s version number with v. If they are equal, any

pending update is applied to the copy before returning it. I f they are not equal then

the server discards the pending update, and decrements the copy’s version number.2

1 The first condition occurs if the file is deleted in a subsequent operation. It is possible to recreate
these files if the space has not been allocated to another process. This requires only setting the delete
flag to false again in the history. The recreation property can be added to the configure operation if it is
required. The second condition occurs if the history table is not accessible as a desired number of
nodes are not operational in the system.

2 If v is not one less than the copy’s version number or there is no pending update, the system has
become seriously inconsistent (the algorithms ensure that this case never occurs).

Availability Control 63

APPLICATION ©
read (f,posn,size)

History-Table
Control

ReadHistory(/)
Availability

Controlh = {(mT, vers no),(my. vers no)}

©CD' rcadH(/-) , rcadF(/,

| C OMM- UNI C A T I O N

©

A .

Figure 3.4. Layer interaction during read operation

An alternative read operation can be provided for files in availability state 4 that

will read the most up-to-date version that is available. This operation can be used when

all up-to-date copies have been lost forever (by disc failure, for example) or the file has

very weak consistency requirements. For example it m ay be better to read an old version

of a host address table than none at all.

The algorithm is similar to that for the read operation above, except that it iterates if

the readF request fails, picking all servers that hold versions one less than latest until the

lowest (positive) version number has been tried. .

A write operation will succeed if at least one file copy can be updated and the file’s

new history can be recorded. The update is multicast to all up-to-date copies, and servers

holding out-of-date versions are asked to copy the new file. The set o f servers which

accepted either the update, R, or a new copy, C, will hold up-to-date versions and this is

recorded in the new history with an incremented version number for these nodes.

Untouched servers have their history table entries copied into the new table from the old

one. The formal description o f the write operation is as follows:

64 A H ybrid Replication Algorithm

write {f, d a ta , p o sn): F x X* x N —> {success, erro r} (algorithm-2)

let (h, d) <— ReadHistory (f)

if {h - error v d = /rw?)

re tu rn e r ro r— see footnote 1

let latest 4— max({/ | 3 (m , i) e / i }

let U <r- [m | 3 (m, la test) e h }

let R <— updateF(U, f , d a ta , p o sn , latest)

if(R = 0)

re tu rn error

let S <— {m | 3 (m, 1) e h }

let C 4— co pyF (R ,/, (S -R) , latest)

let K 4— {(wi, /are^r+l) | m e C u R } u {(w, 0 e h \ m e C v R)

return WriteHistory (/ , (h 't fa lse))

The following support operations are invoked on physical file copies:

updateF(U, / , d a ta , p o sn ,v): 2M x F x Z* x N x A —» 2M

M ulticasts a request to write data to the file / to all the servers in the set U. It

returns the set o f servers that accepted the request.

copyF(R, / , X , v): 2M x F x 1M x N 1M

Copies the file / from any server in the set R to all the servers in the set X. Again,

the result is the set of servers that accepted the operation.

Those servers that accept the updateF or copyF operations first decide whether to apply

or discard any pending write (if there is one) by em ploying the same rules as readF.

Secondly, they attach a version num ber one higher than v {latest) to the copy and do not

commit the current update until the next request. Therefore up-to-date copies are always

between tw o versions (v and v+1). The order of operations for a write request is shown

in Figure 3.5.

Availability Control 65

APPLICATION

rriic{/)

History

Table

Control

Availability

Control
h - {(mx, vers_no),(my, vers_no)),d=false

— WriteHistory (/, (h.d))

y UpdateHdrri!, m2, ' j _ * (h.d)) UpdateF(/\ {mj'.nty} .latest)

C O M M U N I C A T I O N

Figure 3.5. Layer interaction during write operation

3.3 History-Table Control Protocol

The reliable histories algorithm presented above, requires a highly reliable, con­

sistent history table to be m aintained for each file. The History Table Control Protocol

provides this requirement using the operations:

ReadH istory : F —>V x T

W riteH istory : F x (V x T) —> {success, e rro r}

The history records whether the file has been deleted (the truth value is interpreted as a

"deleted" flag) and a set o f machine and version num ber pairs (V = 2M x N).

The history table control layer supports these operations by replicating the table

using a variation o f the basic majority voting algorithm so that the file histories are con­

sistent in the face o f network partitions. The history tables are made highly available by

replicating them on k sites, where the num ber of file copies.

In its simplest form, k = |m /2 |+ l , where m is the total num ber of processing nodes,

each node is assigned one read and one write vote, regardless o f whether or not it holds a

copy o f the file’s history. The algorithm will allow a read to succeed even if only one

copy o f the history table is available, so long as the m ajority o f nodes are up. W rites to

66 A H ybrid Replication Algorithm

the table require a majority o f nodes to accept the new table version. In the case o f ran­

dom node crashes the m ethod will offer a high degree of read availability. Random net­

work partitions will reduce availability more seriously but the table will still be con­

sistent. Analysis o f partitioning is done in the following chapters.

3.3.1 C om m unication Layer

Each replica of the history table o f / e F keeps a timestamp ts (h) o f the last update

on itself such that if ts(/*,) = ts{hj) then hi and h} are the same, if there is a timestamp

such that ts(/tj) < ts (hj) then hi is an out-of-date table.

The control operations multicast the following requests in order to read/write a

replica of the table.

r eadH(M, f)' . 2M x F ^ 2M xWxfVxD

Invokes a lookup and m apping request to all processing nodes and returns the table

versions together w ith the last update time o f the returned version and the set of

nodes returning that version. If the node is not holding a copy o f the table then it

returns a negative indicator.

updateH (M , f , h): 2M x F x V —> 2M u [success,error}

Invokes an update request on table to all nodes and returns the set o f nodes which

accepted the new history. At least |_m/2|+l acceptances are required for successful

completion, where m is the number of processing nodes in the system.

The physical history read operation given above is invoked when the ReadHistory

function is called. If less than a majority of the nodes reply then the file is unavailable.

Otherwise, the table which has the highest update time is returned. The form al descrip­

tion of the algorithms for the table functions are given below.

ReadHistory (f): F —> V x T (algorithm-3)

let w <— readH (M , /)

if | w | <|_m/2 |+ l

History-Table Control 67

re tu rn error — table is not available

Iet5 <r- {s | 3 (s,t, (h,d)) e w)

let maxtime stamp max([t | 3 (s , t , (h , d)) e w })

let L {5 | 3 (s, maxtime stamp, (h ,d)) e w }

return (\{h,d) \ 3 s e L A(s, t , {h,d)) e w})

The corresponding update on the table is initiated when the WriteHistory function is

called.

W riteHistory (/, (h,d)): F x {V x T) —» [success, error j

return (updateH (M , f , h))

3.4 System Configuration

The configure operation changes the placement of the copies at any time during the

file’s lifetime by using the history table control protocol. Since the new locations for the

copies are added to the history with a zero version num ber the configure operation must

ensure that the new set contains at least one up-to-date copy (highest version number

greater than zero).

If the intersection between the old and the new sets contains an up-to-date copy then

no copying of the file is required during the configuration. New locations are added to

the history table with zero version numbers. Any write operation following the configure

operation will attempt to overwrite the copies w ith zero version numbers by copying

from the updated version.

If the intersection does not contain an up-to-date copy then it is necessary to ensure

that the current version is copied to at least one o f the nodes in the new configuration. If

none o f the above conditions is satisfied, the configuration o f the file is left as it is. The

following algorithm combines the two possible cases explained above in one operation.

This operation ensures that file / is configured on the servers in the set P.

configure (f , P) : F x 2M —» {success, erro r} (algorithm-4)

68 A Hybrid Replication Algorithm

let { h , d) <— ReadHistory (/)

if (h = error v d = true)

re tu rn error1

let 5 {m | 3 (m , i) e h }

let fafesr <— m ax({i \ 3 {m, i) e h)

let U [m | 3 (m , latest) e h)

let h <r- A d d H { h , P - S)

i f (C /c (5 -P)) 4

then let C <— co p y F (U ,/, P)

if (C = em pty)

re tu rn error5

let h <r- D eleteH (h, (S -P))

let h' <— [{m, latest) \ m e C } u {{m, i) e h | m & C }

else let Ai' D eleteH {h, { S - P))

re tu rn W riteHistory (/, {h', fa lse))

The following support functions are used. These functions are perform ed locally and

the changes multicast to history copies if the new configuration is succesfiil.

A ddH (/i,S): V x 2 M - > V

Returns the history h, augmented by the history information {m, 0) for each machine

m in set 5.

DeleteH(/i, D): V x 2 M - > V

Returns the history h, less any pair {m, x) with m in set D.

3 This condition can be extended to include the recreation of previously deleted copies as discussed
in Section 4.1. See also footnote 1.

4 New configuration includes no up-to-date copies.
5 This condition occurs when none of the up-to-date copies exist in the new configuration and all

up-to-date copies are unavailable therefore cannot be copied into the new configuration. In this case,
the file configuration is left as it is.

Configuration 69

3.4.1 Exam ple Scenarios for the Configure Operation

The following scenarios show the changes in the history of a file during consecutive

calls of the configure operation.

The following terms are used:

hi = [(loc,version),(loc,version) ...}:

The resulting history table after the configure or write operation is completed in

scenario i. They denote the location and version number of copies in pairs.

At = { • • •) :

The set of nodes that are up during scenario

The set names are the same as are used in the configure algorithm. U: the set o f up-to-

date copies, P : the new configuration set, C: the set of nodes on which the copying of

current version has succeeded. Each scenario applies an independent configuration

request but takes up the system parameters (e.g. history table) from the previous scenario.

There are total 10 nodes in the system (numbered 1 ..10) three of which keep a copy of

the file. Initially, /?o = {(1,1), (2,1), (3,1)}.

In order to show the progress of configuration clearly, it is assumed that no update

occurs between the first three scenarios, therefore the history is changed only by the

configure operation in these cases. The last scenario applies a combination o f updates

and configuration together.

Scenario One:

A 1 = { 1,5, 6 , 7 , 8 , 9, 10 },

configure{f yP = { 1, 3, 4 })

Here, the file is to be configured on P = { 1 , 3, 4 }. Since the S = U = { 1, 2, 3 } is not a

subset of S —P = { 2 }, the fact that the nodes 3 and 4 are down does not affect the accep­

tance o f the new configuration.

70 A Hybrid Replication Algorithm

Copy 4 is added to the history with zero version number indicating an attempt to create it

must be made at the next update and the history information for copy 2 is removed. The

entries for nodes 1 and 3 are left as they were.

History becomes h i = {(1,1), (3,1), (4,0)}

Scenario Two:

A 2 = { 1,4, 5, 7, 8 , 9 , 10 },

configure(f ,P = { 4, 5, 6 })

In this case, U = { 1, 3 } is equivalent to S - P = { 1, 3 }. This means that the

configuration, P, does not contain an up-to-date copy. Therefore at least one copy opera­

tion from node 1 or 3 to the nodes in the new configuration (4, 5, 6) has to be successful

before accepting the configuration.

copyF(f/ = { 1, 3 } , P = { 4, 5, 6 }) returns C = { 4, 5 }, the copying on { 4, 5 } is suc­

cessful (node 6 is down).

History is changed to: h 2 = { (4,1) , (5,1) , (6,0) }. Node 6 will be brought up-to-date

during the first successful write after it recovers.

Scenario T hree :

A 3 = { 1,2, 3, 6 , 7, 8 , 9, 1 0 } ,

configure (J, P = { 6 , 7, 8 })

In this case, U = { 4, 5 } is equivalent to S - P = { 4, 5 }. This means that, there is not an

up-to-date copy in the resulting set as in the previous scenario. Therefore, at least one

copy operation from node 4 or 5 to the nodes in the new configuration (6 , 7, 8) has to be

successful.

copyF(t/ = { 4, 5 } , P = { 6 , 7, 8 }) returns C = 0 . Copying is unsuccessful as both

nodes 4 and 5 are down.

New configuration is not accepted and the history remains unchanged: h 3 = { (4,1) ,

Configuration 71

(5 ,1), (6,0) }.

Scenario Four:

A 4 = { 1,2, 3 , 4 , 5, 6 , 7, 8 , 9 ,1 0 } ,

write {/),

configure (f yP = { 6 , 7, 8 }),

write (/)

1) All copies are brought up-to-date by the write operation, so: /t4.i = { (4,2) , (5,2) ,

(6 ,2) }.

2) A request is made to configure the file on P - { 6 , 7, 8 }. U = { 4, 5, 6 } is not a

subset of S - P = { 4, 5 }, therefore a copying operation is not required.

The new configuration is: h 4 2 = { (6 ,2), (7 ,0), (8,0) }.

3) The write after the reconfiguration brings all the copies up-to-date.

The history becomes: h 4 2> = { (6 ,3), (7 ,3), (8,3) }.

3.5 User Requirements

The reliable histories method is aimed at the applications in general purpose com­

puting environments where storage costs must be kept low, and where the units o f data

that are to be kept consistent are typically several kilobytes or more, such as, document

preparation, program development etc.

The answers given to a questionnaire in our department has shown that, more than

50% of the academic staff and research students are keeping multiple copies of about

15% of their vital files for robustness and increased availability but the files they repli­

cate have variable degrees o f availability requirements during different time periods. In

a replicated file system, one o f the basic requirements of the user is to have control over

defining the high availability periods. The desired level then can be reached by moving

the copies or increasing the degree of replication. The flexibility o f configuration there­

fore is an important property for reducing the administrative requirements of replicated

72 A H ybrid Replication Algorithm

files. A nother advantage of the replication history is that it allows the algorithm to work

properly w hen the replication degree is only one (single copy). The storage cost can be

reduced by keeping only one copy for the periods in which the file does have low availa­

bility requirements. How to define measurement metrics to reach a certain degree of

continuous availability when the periods are defined by the user is a new direction for

future work in this area.

3.6 Discussion

History tables provide a mechanism which gives consistent updates in the presence

of network partitions. This is not possible w ith the original available copy approach.

A lthough the history table must be replicated using a voting strategy and requires a high

level o f replication in order to give the degree of fault tolerance required, it is relatively

small com pared to the size of the file itself.

In order to reduce the communication cost, the number of history table copies can

be reduced by assigning higher weights to some table copies. This reduces the number of

responses required to complete an operation. In the following chapters, the availability

analysis is based on the assumption that all nodes are assigned one vote for read and one

vote for write. This case has shown the worst case behavior. Fortunately, the history

table inform ation is quite small — eight bytes per copy per file is quite sufficient, so high

levels o f replication are not costly in terms o f storage.

A simple locking scheme is required to ensure that the file state and the history table

are kept in step — the table being locked when it is read and unlocked when it is written

back. A more subtle scheme is possible, but from the studies of active file stores con­

current update o f replicated files is likely to be very rare in practice [45].

M any areas require further study. In particular, there are several systems adm inis­

tration questions that arise only with replicated files: W ho may alter the file’s replica­

tion? How does the user or system adm inistrator specify the replication — explicitly or

Conclusion 73

by asking for a given level of fault tolerance? Should the positioning of files be decided

automatically, by users, or by administrators?

3.7 Summary

A new dynamic technique for maintaining consistency o f replicated files has been

proposed and the algorithms for logical operations are described in a pseudo-code based

on set notation separating the control system into two interacting layers. The algorithm

offers:

a) high availability,

b) low storage cost for file replication (practical for two copies),

c) dynamic reconfiguration (all other dynamic strategies change the votes dynamically

whereas this algorithm offers flexibility for changing the location and the number of

copies dynamically),

d) practicable in the sense that it can be implemented simply as an extension to the

existing file system,

e) allows easy extension for user control in replication management.

In the following chapters, the reliable histories algorithm is analyzed and compared

with the others for availability, reliability and the likely communication overhead

involved. The results o f the analysis are very encouraging and these issues are potential

areas for further investigation.

Chapter Four

Steady-State Availability

In this chapter the steady-state availability o f a replicated file, which is the probabil­

ity of its being available for access (usually read or write) at any particular moment, is

analyzed. The analysis is focused on two problems:

1) the availability provided by the reliable histories algorithm concentrating on the

minimum requirements for gaining advantage over the other methods,

2) the effect o f partitioning on the availability provided by the replication methods.

The second is a very critical issue because m ost o f the work in the literature concen­

trates on tolerating partitions but none of them considers the effect o f partitions on the

degree of availability provided [7 4 ,6 4 ,7 5 ,7 6 ,6 3 ,7 7 ,5 8].

By making various simplifying assumptions about the failure and repair rates of file

servers and about the possible failure modes o f the network, first, a combinatorial model

based on k-out-of-n reliability theory [57 ,78 ,79] is developed and thereby the steady-

state availability of randomly placed files in a partition-free environment is estimated.

The results are compared where applicable w ith various voting algorithms and the avail­

able copies method.

76 Steady-State Availability

A similar method is later used for the analysis of partitioning in a simple topology

where failure of a bridge divides the network into two self-com municating groups of

nodes. The results are validated by simulation.

In the second step, a more realistic M arkov model is derived for analyzing the avai­

lability offered by the reliable histories algorithm. Because of the num ber of states

involved, the algorithm becomes too complicated to model when a large cluster of nodes

are involved. Therefore, only two copies in a distributed system o f maxim um five nodes

is considered for this part o f the analysis. This has given a lower bound on the availabil­

ity.

In the analysis, a distributed system is viewed as a finite, large number o f processing

nodes linked by a data network. Each copy o f a replicated file resides on a different

node. The total number of processing nodes, m, is larger than the number o f copies, n, of

a replicated file (m >n). The nodes or the network may fail independently and the system

might become partitioned as a result o f bridge failures. W hen a node fails, a repair pro­

cess is initiated immediately. This repair process always succeeds. The copy on a

recovered node is left as it is. An attempt is made to bring obsolete copies up-to-date

during the following write request hence a special recovery procedure following a repair

is not required. If the assumptions are different for some methods in the comparison,

they are stated where necessary. Each node has its own view about the state of the net­

work (this view indicates w hich nodes are up and which nodes are down). Among the

nodes, these views may be inconsistent. In other words, it is possible that a node (or

nodes) is incorrect about the status of another node. The replication algorithm running

on a processing node can determine the status o f any other node only by receiving a reply

to its messages. In the reliable histories approach, the file access succeeds as long as the

majority o f the nodes are available and at least one of these nodes holds an up-to-date file

copy. The number of available history copies is not im portant since the majority of

nodes holds at least one up-to-date history.

Combinatorial Analysis 77

4.1 Combinatorial Analysis of Availability

In this section availability expressions are derived for P(A) — the probability that a

replicated file is accessible. In the analysis a file replicated n times is assumed to have

physical copies located on n distinct file servers, chosen from M, the set o f server

machines. The total number o f server machines in the system is m. The RH method

assumes that each file’s history table is replicated (and up-to-date) on a majority o f these

m servers. All the servers fail independently with the same probability in such a way that

the probability that a server is up, at any instant, is p. The update and read requests ori­

ginate at random from any machines in M, which are up. Relaxing these assumptions

severely complicates a combinatorial analysis, later M arkov modeling (Section 4.2)

abandons them in favor o f more realistic ones.

In its simplest form, the available copy algorithm makes a file w ith n replicas avail­

able with probability (without considering the histories),

P{Af) = \ - { \ - p) n (4.1)

As m , the number o f file server nodes increases, the update availability of

reliable histories approaches this. To show this, the following demonstrations are

required:

a) A t , the availability o f the history table and A f, the availability o f the file, are asymp­

totically independent events:

With k table and n file copies chosen from m nodes, the probability that a node

k n
holds a copy o f both the table and the file is — x — w hich tends to zero as

m m

b) The probability that a file is available for update, P(A) , is asymptotically equal to

the probability that the file is available:

For an update to succeed, both the file history and at least one copy o f the file must

be available. The table, replicated using majority voting, will be available with pro­

bability

78 Steady-State Availability

P(A,) = £ p * (l-p) '" -*
k>m/2

(4.2)

which tends to 1 as for p > 1/2. Since A (and A f are (asymptotically)

independent, for large m,

P(A) = P(Af)P(At) = 1 - (1 - p) n (4.3)

By considering conditional probabilities a more realistic formula can be derived for

the reliable histories algorithm. Let P (A f) be the probability that an up-to-date file copy

is not available, and let P{A,C) be the probability that the file’s history is not available.

We then have

P(A) = 1 - P { A f c v A tc)

= 1 - P { A f c) - P { A tc) + P{Af c | A /) P (V) (4.4)

In the first step, we will show that P(Atc) = (1 — p) k when the table is held on k distinct

servers. In the following expression P {Ni) ^ is the probability that i nodes are down (not

necessarily holding a table copy) and P{Ti) 10 is the probability that all tables are on

those / nodes.

i=k

= £ — (j a M — _ p) i

put j - i - k and i =j +k and we get

m—k
= (i - p i £ (m *)!—p m-k-j (i - Py

and since the second part is a binomial expansion 11 we can write,

Combinatorial Analysis 79

P (A ,c) = (l - p f (4.4.1)

Now it is simple to show that P { A f) = (1 - p) n. By w orking from the observation that

P (A f | Alc) = l dP(S i) P (R i) (4.4.2)
i =0

where P(Si) is the probability that n - i copies are on the servers that hold tables, and

P(Ri) is the probability that none of the remaining servers hold available copies, from

(4.4.1) and (4.4.2) we g e t14

P(A) = 1 - a - p) n - (1 - p) * + £ „ k[... (1 - p) i+k (4.5)
i% (k -n + i) \ m l

Table 4.1 compares file availabilities when p =0.7 and p - 0.9 for five common replication

strategies: unanimous update, single primary, moving prim ary, majority voting and

available copies; with the results of reliable histories from (4.5) with m - 10. Figures for

n = 2,3,4 and 5 are shown. As the results in the table have shown, even with high failure

rates (0.3), for small /?, the history table reduces availability only 0.1 percent (three point

accuracy) when compared to the original available copies algorithm. This availability is

still considerably better than the other methods.

p= 0 .7 P =0.9
M ethod n=2 n=3 n - 4 n=5 n=2 n=3 n=4 n=5

U.Update 0.490 0.343 0.240 0.168 0.810 0.729 0.656 0.590
S.Primary 0.700 0.700 0.700 0.700 0.900 0.900 0.900 0.900
M .Primary 0.490 0.784 0.916 0.969 0.810 0.972 0.996 0.999
M.Voting 0.490 0.784 0.651 0.837 0.810 0.972 0.948 0.991
A.Copies 0.910 0.973 0.992 0.997 0.990 0.999 0.999 0.999
R.Hi stories 0.909 0.972 0.991 0.996 0.989 0.998 0.999 0.999

Table 4.1 — Availability offered by various replication schemes.

14 Hint: P (A f | A,c) = . k 1
is0 m m - 1

k-n + i +1
m -n+ i+ l ■(1-P)'

80 Steady-State Availability

4.2 Stochastic Analysis of Availability%/
In this section, the simplistic failure model of the combinatorial analysis is aban­

doned by using Markov modeling. In the above analysis the independent nodes were

considered being up with probability p. Here, the availability behavior of the voting

methods and the reliable histories algorithm are analyzed considering node failures and

repairs as independent events. Since the voting method requires a minimum of three

copies for acceptable improvement in the availability, the most reasonable solution is to

assign equal weights to all copies and to have both read and write quorums equal to two.

The file then remains available as long as two out of three copies, in other words majority

o f the nodes, are accessible. This method will be called majority voting (MV). The

other method in comparison is voting with witnesses(VW W) in which one of the three

copies is replaced by a witness copy. Since these methods provide the same availability

for read and write, in the following analysis the availability derived stands for both read

and write.

The state-transition-rate diagram is a network of states representing different com bi­

nations of machine and file copy availability. Events such as machine failures and

repairs, as well as file updates, may cause a transition from one state to another. In the

following analysis, it is assumed that individual node failures and individual repairs are

independent events distributed according to a Poisson law. In other words, the probabil­

ity that a given node will experience no failure during a time interval of duration t is e~^‘

where X is the failure rate. Similarly, the probability that a given node will be repaired in

less than t time units is 1 - e~^1 where ji is the repair rate. File updates occur at rate u,

again obeying a Poisson law. It is assumed that repairs are initiated as soon as a failure

occurs (and at no other time) and that a failure is only possible once a node has

recovered.

The availability o f the system A is the limiting value o f the probability p{ t) that the

replication system will be operating correctly (can access to the file while preserving

Stochastic Analysis 81

consistency) at time t.

A = lim p (t)
t—><»

If transitions from state 5, to state Sj occur at a rate r, then the expected number of

transitions into state Sj is just P s f , the probability o f the system being in state S, multi­

plied by the rate. For the system to reach equilibrium, the expected number of transitions

into and out of each state must be equal, giving rise to a set o f simultaneous equations in

the probabilities Ps that the system is in state s. A file will only be available when the

system is in any one of known number of states. The file availability is determined by

summing the probabilities of the system being in any o f these states in which the file is

available. The availability model which is defined as states and transitions between these

states is solved using a software package developed by Sahinoglu [80,81,82], This

package generates the matrix, Q = (qi j), infinitesimal generator o f the Markov process

Pi(t) which satisfies the forward equation

(dldt)Pj(t) = Pi(t)qi j

This Markov process yields a solution following the method given in Appendix B.

As the number of states increases rapidly as more file servers are modeled, here, only an

analysis of three and five server systems are given. The behavior o f the reliable histories

method with two copies is compared with the availability provided by majority voting

with three copies and voting with witnesses (two copies and one witness). The analysis

is restricted to the case where all nodes regardless of containing a copy or not have equal

failure rates X and equal repair rates (I. This is not a restriction o f the method but allow­

ing different rates for each node would complicate the equations further. Below two

models are derived. In the first model, the system has only three processing nodes and

two or three of them hold file copies (depending on the algorithm). In the second model,

the number of processing nodes is five and two (or three) o f them hold a copy.

82 Steady-State Availability

The aim o f this analysis is to determine the limiting conditions o f the system operat­

ing under reliable histories algorithm in order to gain advantage (in terms of increased

file accessibility and reduced storage c o s t) over other methods.

4.2.1 M odeling Three Nodes

The state space of the model defines a finite-state Markov chain because there is a

finite number of states representing the system where each state is shown by a letter and

two numbers. The letter represents the possible states o f the two copies.

‘S ’ denotes states in which both copies have the same version number.

‘D ’ the copies have different version numbers but the up-to-date copy is available.

’W ’ the copies have different version numbers and only the out-of-date copy is avail­

able.

The first subscript denotes the number o f available copies (0 to 2) and second

identifies the num ber of nodes that are up in that state (0 to 3). Clearly, only a limited set

of combinations is possible. For instance, the letter W only appears when one copy is up

and the other is down.

The following rules are obeyed:

1. One or more failure transitions can only occur from states having at least one up

node (not necessarily holding a copy). The rates at which the transitions occur are

proportional to the number of up nodes and copies which are therefore susceptible

to failure. For instance: state S23 corresponds to the case where all nodes are up

therefore both copies are up and up-to-date. S23 has two failure transitions; one is

to state S 12 with rate IX which corresponds to the failure o f either copy. Two nodes

remain available and only one o f them is holding a file copy. The other transition is

to state S22 w ith rate X which corresponds to the failure o f the node not holding a

copy. Tw o nodes remain available and both o f them hold a copy.

Modeling Three Nodes 83

2. One or more repair transitions originate from every state having at least one node

down (not necessarily holding a copy). The rates o f the transitions are proportional

to the num ber of down nodes and copies. Repairs do not include any recovery

operation. For example: state has a single repair transition with rate |i to state

D23 when the down copy is repaired. The copies still represent different versions.

3. The only possible transition from an ’S* state to a ’D* state and vice versa occurs

w hen the file is updated. The rate at which this transition occurs is thus given by the

rate u , the update rate for the replicated file.

The STR diagram associated with a file replicated twice in a three node system

using the reliable histories method is shown in Figure 4.1.

2X

X

'00

Figure 4.1. States associated with RH algorithm when m =3

W ith only three nodes, two of which carry copies o f the file, there will be a total of

14 states. All transitions from/to states obey the rules given above. The file will be

available (for read or write)) in only 6 out o f the 14 possible states: 5 23 , 5 22* S 12, ^ 23*

D 22, T) i2 - For this system the equilibrium state probabilities w ill obey the following

84 Steady-State Availability

equilibrium conditions:

PS233^ = (PS22 + P 512)M'",' P£>23M

Ps22(2^ + |J.) = Ps23^ + P511M' + ? d 22w

P s12(2A. + |i + w) = 2P523A. + (PSu + 2P501) \l

^Dn(2X + \i) = P512m+(P£)n +P£>01)fX + P/)23A,

P w l2 (2A. -h jx) = (P w H + P£>01)p, + P p 23>.

p5n (>. + 2|i.) = (2P5z, + P5l2)A. + 2P 500(X

P/),,(X + 2|x) = (P£>12 + PD22)X + PdooM*

Ptvn (^ + 2 |i.) = (Pw 12 + P d 22)^ + PdooP

P5oi(^ + 2 M') = P s n ^ + P^ool1

P d01(^ + 2 |i) = (P d 12 + P\v12)^ +PdqoI1

P-Soo3 !1 = (p5n + PS o i^

Pz>oo3P = (P^M + P/)„ + ?D0l)h
Pd22(2 .̂ + M- + u) = (Pd u + P ^ n)|i + Po23A.

P d 23(3 ^ + w) = (PD]1 + PD22 + Pw 12)li

The transition matrix which is derived from the above equilibrium state conditions

is not given here because o f its size and complexity. The STR diagrams for the MV and

AC algorithms can be found in Appendix B.

Three methods are compared. M V has been employed assuming that all nodes keep

a copy (as it requires a minimum o f three copies). In VW W , one o f the copies is

assumed to be a witness. This method assumes that when a copy repairs from a failure it

copies to itself the up-to-date version. RH also requires any two out o f three nodes in

order to access the history. As any two o f the nodes will contain at least one file copy,

the file will be accessible. Therefore, RH behaves in a similar way to VW W when there

are only three nodes in the system. The only difference is, RH does not apply a recovery

operation. It assumes that the copy will be brought up-to-date in the next successful

write after the node is repaired. As the results show, both voting algorithms perform

better than RH. Therefore, three nodes are not enough to gain any advantage over either

M odeling Three Nodes 85

voting approaches. Figure 4.2 illustrates the availabilities provided by RH with 2 copies,

MV with three copies and VW W in a system o f three processing nodes.

o VWW .

x MV

■ RH.9 5 -

Availability -9 —

.8 5 -

2.150 0.05 .1
Failure to repair ratio (p)

Figure 4.2. Analytic results when m = 3

The next step is to compare the results when there are five processing nodes in the

model. In the next section, the availabilities in a five processing node system are

presented and the improvement in the reliable histories method as the number o f nodes

is increased is shown. Later, the results o f the combinatorial analysis are compared with

the results of the M arkov analysis.

4.2.2 M odeling Five N odes

The availability model for five nodes is derived in the same way as done for the

three nodes in the previous section. 15 W ith five nodes, two o f w hich carry a file copy,

there will be a total o f 28 states. The file will be available (for read and write) in 9 out of

the 28 possible states: S 25, S 24 , S 23 , D 24 , D 23 , D 13, D ^ t S 14, 5 13. The file access

succeeds as long as any three o f the processing nodes are up and one o f them holds an

15 An example transition in the five-node model: S2s has two failure transitions; one is to state S14

with rate 2k by failure of either copy and to state S2 4 corresponding to the failure of one of the three
nodes not holding a copy. These transitions therefore occur with the rate of 3k.

86 Steady-State Availability

up-to-date copy o f the file. The requirements of the other algorithms are the same as in

the previous model. The equilibrium state conditions o f the system when m=5 and the

details o f the model are given in Appendix B.

Figure 4.3 illustrates the availability when m - 5. As the results show, RH performs

slightly better than M V with three copies and requires only two replicas.

x MV

■ RH

.9 5 -

. 9 -

. 8 5 -

.20.05 .150 1
Failure to repair ratio (p)

Figure 43. Analytic results when m - 5

4.2.3 Conclusion

The reliable histories algorithm with two file copies provides availability between

two bounds determined by the number o f nodes in the system. The lower bound is

offered when m= 5 (five is the minimum num ber of nodes required to gain availability

advantage over the voting methods) and the upper bound is reached when the history

table is assumed to be always available.

W hen m - 5, the algorithm provides availability very close to M V (slightly better),

but it requires only two copies whereas M V uses three copies. Therefore two advantages

are acquired (low storage cost and higher availability) at the lower bound. The stochastic

analysis has given the lower bound w hich specified the minimum requirements o f the

algorithm. The maximum availability is reached when the file’s history is always avail-

Modeling Five Nodes 87

able which is equal to the availability provided by AC. This is the optimal availability

for two copies. As the combinatorial analysis assumes a large m, it has given the upper

bound o f the availability that can be reached (the results were presented in Section 4.1).

Figure 4.4 shows that as the number of nodes is increased results obtained from Markov

models converge to the results from combinatorial analysis and Table 4.2 presents

numerical changes in availability as the num ber of nodes is increased.

m -3 m=5 m =10 m -5 0

p A S A S A S A S
0.05
0 .1
0 .2

0.996
0.984
0.957

0.988
0.970

0.997
0.989
0.969

0.994
0.983

0.997
0.989
0.972

0.996
0.983

0.997
0.990
0.972

0.996
0.988

Table 4.2 — Availability offered by RH for various m values

W hen m - 3, the availability digresses more from the combinatorial results than the

availability obtained when m — 5. This is because o f the difference between the failure

assumptions in both analyzes; combinatorial derivation is based on the assumptions that

I o n and k> m /2. As m increases both results converge.

1

.95

Availability .9

.85

.8

0 0.05 .1 .15 .2
p = (X/p)

x Simulation (m=10)

o Simulation (m =5)

Combinatorial

Maikov (m=5)

Maikov (m=3)

Figure 4.4. Comparison of availability obtained by different techniques

88 Steady-State Availability

4.3 Managing Replicas in a Partitioned System

A partitioning o f a distributed file system occurs when the nodes in the network

split into groups of communicating nodes due to bridge failures. The nodes in each

group can communicate with each other, but no node in one group is able to com m uni­

cate with nodes in other groups. Each such group is referred to as a partition.

As discussed in Chapter Two, the available copies algorithm fails to continue func­

tioning correctly in a partitioned system. Generally, algorithms which function correctly

in the face of partitions perm it a file to be accessed only in one partition. They share the

philosophy that mutual consistency is of greater importance than availability. Some

powerful dynamic voting schemes [67,72] have recently been suggested which overcome

the drawback that failures can occur in such a way that no updates can be performed any­

where in the system until these failures are repaired. The challenge is to improve availa­

bility as well as preserving mutual consistency. But these methods require that partition­

ing failures are distinguishable from node failures and these failures are recognized

instantaneously.

Although there were attempts to improve availability during partitioning I have not

seen any analysis of the degree to which the availability is reduced in a partitioned sys­

tem. In the following sections, availability offered by replication schemes in partitioned

networks is analyzed. The term ’partition-free’ is used where it is assumed that the sys­

tem never becomes partitioned.

4.3.1 Com binatorial A pproach to Simple Partitioning

The file availability in the presence of network partitions is harder to study

mathematically. In this section a simple partitioning case is analyzed as an extension to

the combinatorial analysis given in Section 4.1. Later, the results are generalized by

simulating partitioning failures in various topologies.

The system is a series o f nodes on two subnets connected by a bridge. These

Partitioned Systems 89

subnets are called net-1 and net-2. An example topology is illustrated in Figure 4.5.

It is assumed that com munication links never fail. Each node has the same indepen­

dent probability p o f being up and the bridge has the probability p r o f being up. There­

fore, (1 - p r) is the probability that the system is partitioned into two self communicating

groups. The availability of the file in this simple system is the sum of the availabilities

when the bridge is down, P (A d), multiplied by the probability o f the bridge being down,

(1 - p r), and the availability when the bridge is up, P (A u)y multiplied by the probability of

the bridge being up, p r . (Availability when there is no partitioning was derived in Sec­

tion 4.1). The updates are initiated from randomly chosen nodes. In RH, If the bridge is

down, the file can only be available to the users sitting on the side o f the majority o f the

nodes. If the number of nodes is even and node distribution is symmetric, the file

becomes unavailable during partitioning and equation (4.6.1) given below cannot be

applied.

C D3

Figure 4.5. A simple network topology

P {A) = { l - p r)P{Ad) + p rP {Au) (4.6)

where (for the reliable histories)

m 2
(4.6.1)

In formula (4.6.1), m i and m 2 are the number o f nodes on the subnets net-1 and net-2

90 Steady-State Availability

respectively, under the assumption that m i > m \ . This formula gives the probability of

the history table and the copy being available on net-2 and at the same time update being

originated from this subnet. P (A U) is the availability when there is no partitioning in the

system. From (4.1) and (4.6.1) we get,

_ 1 m 2 mi r
P (A) = 2 -p (2 + 2 p r+pn +------) + p r(2+pn) + J p ' (l - p)

m i>ml2

m i

i (4.7)

This shows that, even with simplified failure assumptions, the analysis o f partition­

ing is very complicated. All through the following analysis, M V ’s behavior is investi­

gated assuming that the file has three copies 14 whereas in RH it has only two copies. In

Figure 4.6 the file availability provided by RH and MV are compared as a function of p

for different values of p r. 15 The following assumptions are made:

a) There are a total of 12 nodes in the system where m i=5 and m i= 7,

b) RH has two copies: one is on net-1, the other is on net-2,

c) MV has three split copies: one is on net-1 and the other two are on net-2.

The partitioning has shown very little effect on the algorithm s’ availability perfor­

mance when p r=0.95 for this specific case. In the next section the algorithms will be

analyzed in the same topology within a broader context.

14 MV has no practical use with two copies.
15 RH is plotted for three values; pr=1 means that the system is partition-free, pr = 0.95, the

probability of partitioning is 0.05 and pr = 0.7, the probability of partitioning is 0.3. MV is plotted for
the first of two of these pr values.

Partitioned Systems 91

Availability

. 8 -

. 4 -

.2 -

1 .2 .3 .4 .5 .6 .7 .8 .9 1

x RH-/?r =1
* RH-pr =0.95
■ RH-pr =0.7

.+ MV-pr =1
oM V-pr =0.95

Figure 4.6. Node availability vs File availability

4.3.2 Resilience to Copy Placement in Partitioning

In this section, the variance in availability for different configurations is studied as a

function o f partitioning probability (1 - p r). The effect o f allocating different num ber o f

nodes between the two subnets are measured. Three distributions were assumed where

the total number o f nodes is 12 as in the previous section. Each distribution has been

analyzed for two configurations having two different placem ents of copies: one in which

all copies are on the same subnet and the other in which they are split. In the analysis o f

RH, the file has two copies and in the analysis o f M V it has three copies as in the previ­

ous analysis. The distribution o f nodes were chosen to represent all possible cases: a

symmetric distribution, a slightly asymmetric distribution and a highly asymmetric distri­

bution. In the symmetric distribution, there are 6 nodes on both subnets (6-6). In the

slightly asymmetric distribution, there are 5 nodes on net-1 and 7 nodes on net-2 (5-7).

In the highly asymmetric distribution there are 2 nodes on net-1 and 10 nodes on net-2

(2- 10).

92 Steady-State Availability

In the first configuration, (config-1), RH assumes that one copy is on net-1 and the

other copy is on net-2 whereas M V assumes two copies are on net-2 and one copy is on

net-1. In the second placement, (config-2), both copies are on net-2 for RH and two

copies on net-1 and one copy is on net-2 for MV.

For this system, availability changes in the foim o f a straight line as a function of

partitioning probability. W hile p r determines the slope o f the availability line, p affects

the starting position (availability when (1 —p r = 0). In the symmetric distribution, MV

performs better than RH, but both algorithm s’ performance stays the same for all

configurations o f copy placement; w hen the bridge is failed none o f the subnets hold the

majority of the nodes. As the file becom es unavailable in any configuration for RH, copy

placement does not affect the overall availability. In this distribution, M V performs

better than RH because it allows access on the subnet holding a majority o f the copies

(which is two in this case) during partitioning. Therefore in symmetric distribution, the

variance o f availability as a function o f copy placement is zero for both algorithms. This

changes interestingly for asymmetric distributions. Figure 4.7 compares the availabilities

for different copy placements, config-1 and config-2, in (5-7) and (2-10) node distribu­

tions respectively. As the results illustrate M V and RH are very close in (5-7), the differ­

ence is clearer in the (2-10) case.

Availability Availability
■ RH
x MV

. 8 -

.6 -

. 4 -

.2 -

.8.2 .6.4 1

.8 -

.6 -

. 4 - ■ RH
x MV

.2 -

.2 .4 6 8 1
partitioning probability (1 -pr) partitioning probability (I -pr)

Figure 4.7(a) Node distribution (5-7) Figure 4.7(b) Node distribution (2-10)

Partitioned system s 93

If the nodes are equally or slightly asymmetrically distributed over two subnets

majority voting performs better. I f one of the networks holds majority of the nodes as in

(2-10), RH performs better than MV. Although it performs better in some configurations

copy replacement causes a dramatic change in the availability o f M V whereas RH is

more resilient to different configurations in all cases. A fter the analysis o f reliability this

result will be reviewed in the next chapter. The availability provided by the reliable his­

tories method (with two copies) has been verified by simulation. The simulation results

are illustrated in Figure 4.8 for p > 0.9.

20 Simulation

.9 8 -

.9 6 -

.9 4 -

.9 2 -

.98.94 .96.92 1
Pn

Figure 4.8 Availability when (1 - p r) — 0.05 — (simulation + analytic)

As this mathematical approach cannot go beyond a simple topology, only the simu­

lation results for the availability in a partitioned network consisting a large cluster of

nodes are given. The simulated topology was given in Figure 1.1. In this topology

bridge failures split the system into several self-functioning groups. The copy placement

and the local node are randomly chosen at each request during the simulation period.

Interestingly, random copy placement has shown very little effect on the availability in

this case too. In order to generalize these results, the distribution o f the availability was

obtained. Figure 4.9 illustrates the variation in availability at p = 0.9 for two p r values;

94 Steady-State Availability

0.9 (bridge reliability is the same as the node reliability) and 0.95 (bridges are 5% more

reliable than nodes).

60

40
% frequency

20

.972 .973 .974 .975
Availability

Figure 4.9. Distribution o f availability at p =0.9

4.4 Summary

The availability at steady-state was analyzed using two different analytic

approaches and by simulation. Two issues were investigated: the degree o f availability

provided by RH and the minimum requirements for gaining advantage over the other

methods. It has shown that m >5 is the boundary requirement for a file with two copies

to provide better availability than any variation o f voting with three copies. W hen m =5

both methods provide similar availability but voting requires three copies where RH

requires only two.

The second issue is the effect of partitioning on the availability. First, a simple

topology was studied extending the combinatorial analysis and later results on the effect

o f random file configurations were verified by simulating a large scale system. It was

shown that, in some topologies, partitioning reduces the availability provided by voting

m ethods dramatically whereas RH is more resilient to configurational changes on aver­

age.

* p = 0.95

Chapter Five

Reliability in Partitioned Systems

Reliability of a replicated file is defined as the probability that the file will be con­

tinuously available for a given length of time [55]. It is therefore a function of time, R ,

w ithR(O) being the steady-state availability analyzed in the previous chapter and R (A t)

being the probability that the file will be continuously available for time At. Availability

has received much more attention, in part because its analysis is more tractable than that

of reliability. Although Long et a l [58] analyzed the reliability o f regeneration-based

consistency schemes under the assumption that the network never partitions, the affect

of partitioning on the reliability of replicated data is a problem which has not yet been

clearly understood. Reliability offered by the consistency schemes is far harder to

analyze theoretically for partitioned systems, it is almost impossible for large number of

nodes. Therefore a file system simulation has been built in order to measure the reliabil­

ity provided by various algorithms with that proposed. The results have shown that

although the availability afforded by all replication control protocols is quite similar for

low fail probabilities o f individual nodes, the reliabilities vary greatly. Here, reliability

afforded by the reliable histories and voting algorithms are studied in some topologies

where bridge failures divide the system into many self-com municating partition sets.

96 Reliability in Partitioned Systems

This study includes a sensitivity analysis of reliability (provided by different algorithms)

to the changes in network topology and to the placement of copies. The results show the

degree o f change in the algorithm ’s behavior as the failure mode of the network is

changed. As networks grow and evolve, subnets can become bridged together and

m achines moved from subnet to subnet; more often than not as required by geographical

constraints. If the network is an interconnection of sub-networks by bridges, relays or

gateways, the failure of a single node can cause a partition, making a replicated file com ­

pletely unavailable or unavailable to a large part of the network. W hen the copy replace­

ment is random, the replication algorithm should not be adversely affected by

configurational changes. MV and RH algorithm s’ behavior towards the changes are

presented in various graphs. The results are generalized in two graphs illustrating the

variation in reliability at 1000 time units, R(1000), and the distribution o f reliability

decay constants. The chapter has concluded with an analytical model for reliability.

This m odel is also extended to include regeneration of file copies under the assumptions

that the copies are regenerated on a spare node when the server node fails, and there are

infinite number of spare nodes. A generalized analytical model for regeneration with a

lim ited number of spare nodes is given in Appendix C. The state-transition-rate

diagram s of the reliable histories method when m =3 and m =5 are also enclosed. This

analysis has been done in line with Long’s study on regeneration with finite num ber of

spares. As it is not an original work but an adaptation o f it, it has been quoted as an

appendix.

5.1 System Model for Reliability

The replication control algorithms which were analyzed for availability are studied

here for reliability. A software simulation was built for this study. The results have

15 Each reliability graph declines with a constant decay value as a function of time period. The
variance of decay constant in different configurations shows the degree of change in the reliability
behavior.

Reliability 97

shown that the parameters of the failure model, intercrash period, (m tbf), and failure to

repair ratio, (p), have different degrees of affect upon the algorithms. Therefore in some

graphs in the chapter reliability, R {At), is plotted for period At (elapsed time) in m ulti­

ples of the mean intercrash period in order to clarify this effect. This scaling has enabled

us to compare the reliability of the data offered by the consistency schemes as a multiple

of the system ’s reliability.16

The data points shown on the reliability graphs were obtained by simulating the

failures and repairs of a system of m nodes, n o f which hold a physical copy o f the file

and noting the time at which the scheme would first deny access to the logical file. The

process was repeated for a simulation period o f 50,000 time units. In the experiments,

various m tbf and m ttr pairs (corresponding to a large group of failure to repair ratios in

the system) are used which cover failure models of p between 0 and 0.2.

The failures of individual nodes and bridges are characterized by a Poisson process:

exponentially distributed with the mean values in the range (100, 300) time units. The

period for node repairs (mttr) were assumed to be more deterministic: normally distri­

buted with the mean values between 2.5(st=0.5) and 20(st=4).17

The environments were chosen to represent systems in which failure o f a bridge

cause a part of the network to become unavailable to the other parts of the system. A

series of bridge failures may divide the system into several self-functioning sets o f nodes.

In the simulated environment the number o f processing nodes varied between 10 to 50.

The topologies used in the analysis will be described later. The schemes that are com­

pared (where possible) are the majority voting (M V), the voting with witnesses (VWW),

15 p = 1=P
P

16 For example with single copy, the data’s reliability is the same as the node’s reliability holding
the data. Therefore in this case failure to repair ratio has no affect. As the number of copies are
increased, reliability becomes a factor of ratio rather than mean intercrash time.

17 These values are randomly picked but they correspond to a large group of ratios. For example: a
system where mtbf=100 and mttr=10(2) has p = 0.1 and a system where mtbf=200 and mttr=5(l) has
p = 0.025.

98 Reliability in Partitioned Systems

the available copies (AC) and the reliable histories (RH) algorithms.

The plotted simulation results are the mean values o f 20 runs. Each run simulates

file accesses 20 over the simulation period. The requests are assumed to be initiated from

randomly chosen nodes. The graph in Figure 5.1 shows a good agreement over 50,000 as

simulation period.

Another verification of the simulation was tabulated in Table 5.1. This table shows

a good agreement between measured and calculated k-out-of-n surviving nodes for dif­

ferent values o f m ean time between failures and m ean repair periods. These values

correspond to p values 0.9, 0.934, 0.983 respectively where p is the probability o f a node

being up.

m tbf-1 0 0 , m ttr- 1 0 m tbf—100, m ttr- 7 m tb f =300, m ttr=5
up Measured Calculated M easured Calculated M easured Calculated
10 39.06 38.51 50.05 50.83 86.02 84.24

9 38.32 38.55 37.76 35.58 13.00 14.56
8 16.48 13.88 10.34 11.21 0.93 0.74
7 4.32 4.63 2.04 2.09 0.03 0.05
6 0.82 0.81 0.14 0.26

Table 5.1 — % o f time nodes were up

m =10

. 5 -

Reliability .3 —

. 1 -

5K 20K 50K 100K
Simulation Time

Figure 5.1. Simulation fo r various time periods

rel(500)

rel(1000)

20 As all the algorithms studied provide the same availability for both, the accesses are not specified
as read and writes.

Reliability 99

5.2 Reliability in Partition-Free Networks

The advantage o f replication over a single copy is more observable in terms o f relia­

bility than in terms of availability. In the previous chapter, it was shown that going from

single copy to two copies improves the availability to a great extent and that increase is

greater than that obtained by going to further copies (three or more). In the rest of this

chapter a similar result will be shown for reliability.

In this section, the reliability will be estimated without considering the affect of par­

titioning. This analysis has been done by assuming that the bridges are always up during

the simulation period. The only failure that can occur in the system is clean node

crashes. This allowed us to compare the reliability provided by the available copies

method as well as voting methods. The system is assumed to have 10 processing nodes

some o f which hold a complete copy of the file. This choice o f m is backed up by the

upper bound availability analysis in Section 4.2. W ith reference to Figure 5.2, simulation

results in various sized systems have supported this claim.

+ m — 5
x m=lC
o m=50

. 8 -

.6 -

. 4 -

.2 -

2000 250015001000500
Elapsed time

p = 0.05

Figure 5.2. Reliability offered by RH fo r various m

100 Reliability in Partitioned Systems

Two experiments have been carried out. In the first experiment the reliability

offered by RH is found for various failure ratios. Figure 5.3 illustrates the resu lts.21

+ p=0.05
o p=0.1
■ p=0.15
* p=0.2

. 8 -

.6 -

. 4 -

.2 -

20168 124
Elapsed time in multiples of the mtbf

mtbf=100

Figure 5.3. Elapsed time vs Reliability (RH)

In the second experiment, RH and other algorithms are compared with the reliability

of a single copy as a reference. The file is assumed to have two full physical copies in

AC and RH algorithms. AC assumes that the file has two randomly placed copies. The

nodes holding these copies maintain status lists. The nodes are aware o f the status of

each other. Updates are propagated to all available copies. W hen a node holding a copy

recovers from a failure, it is configured in by copying the up to date version from the

other copy before accepting any request. RH algorithm maintains two randomly placed

copies as AC but it also requires a majority of the nodes in the system to be up. It allows

access to the file as long as one o f the copies is up and a majority o f the nodes are operat­

ing. The results show that AC and RH behave very closely. As in the availability

21 The mean intercrash period (mtbf) is taken 100 time units and repair time (mttr) changes from
5(st=l) to 20(st=4). The range corresponds to p between 0.05 (repairs are 20 times faster than failures)
and 0.2 (repairs are 5 times faster than failures).

Reliability 101

analysis, M V algorithm has three randomly placed copies.22 It only considers the failure

o f participating nodes: as long as two o f the copies are operating the file is available.

Reliability offered by the algorithms were illustrated in Figure 5.4(a) and Figure 5.4(b),

for two different failure models. Following these experiments, the results are generalized

in Figure 5.5 by showing the decay constants o f reliability graphs for various failure

ratios. As a summary, these experiments have shown that RH behaves very close to AC

and with only two copies it provides better reliability than MV with three copies.

Reliability Reliability

o AC
x RH
+ MV
■ SC

.8 -

. 6 -

. 4 -

.2 -

16 201284

o AC
x RH
+ MV
■ SC

. 8 -

.6 -

. 4 -

.2 -

4 8 12 16 20
Elapsed time in multiples of the mtbf

p=0.05 (mtbf=100)

Figure 5.4(a). Elapsed time vs Reliability

Elapsed time in multiples of the mtbf
p=0.1 (mtb£=100)

Figure 5.4(b). Elapsed time vs Reliability

5.3 Effect of Partitions on The Reliability

The effect o f network partitions on reliability is investigated by running the

schemes in two network topologies (Figure 1.1 and Figure 5.6). In these topologies the

system becomes partitioned when one or more bridges fail. I f a bridge connected to a

subnet is up then all the operating nodes on that subnet are available to the other parts of

22 MV algorithm requires three copies for any practical use. The aim is to show that RH provides
better availability even with two copies than MV with three copies.

102 Reliability in Partitioned Systems

1/decay

1
x MV
o RH

. 8 -

.6 -

. 4 -

.2 -

.2.15.10.05

Figure 5.5. Failure ratio vs decay constant

the system. Since the available copies algorithm is not applicable in this environment,

only the voting algorithm was compared with RH. The algorithm s’ behavior towards

random copy placem ent is summarized later in Section 5.4. Here, a number of file

configurations are analyzed to study the effect these have on reliability. The effect of

network configuration and copy placement needs much more further work. Although the

simulation can generate random copy placement for a given topology, the notion of “ ran­

dom ” topology should also be clarified in future. More generalized approaches would

then be possible.

| BRIDGE | | B R ID G E | 1 BRIDGE | |B R ID G E ! I BRIDGE!

o
o-
o

o-
o

o-
o -

o

o

o

C K

o

o-
o -

o-

o-
o-
o-
o-
o

o-
o-
O —

o -

o-

Figure 5.6. A distributed environment (Topology-2)

Effect o f Partitions 103

The analysis has been carried out in a system where nodes repair 40 times faster than

they fail (p=0.025).21

In partition-free networks, simulating a failure model and checking the accessibility

of a file’s history table was simple as the algorithms do not have different behavior

according to the user’s position in the network. The partitioning analysis is rather com­

plicated. The accessibility o f the nodes changes according the user’s position. This

analysis has been done by representing the topologies as graphs. Every component of the

system, bridges, communication links and nodes are represented as the nodes of the

topology graph. An edge between two nodes shows a two-way connection between

them. Each node o f the graph has independent probability of being available. The

number of available nodes to a node depends on the position o f that node in the graph.

Figure 5.7 illustrates the graphs of the two simulated topologies.

o
9 12

Figure 5.7. Graph representation

The number o f available nodes is determined by walking through the graph starting

from a random node. If a node in the graph is unavailable, all the connected edges

21 This ratio is simulated with an exponential mtbf=300 time unit where mttr for a normally
distributed repair periods is 7(2) time unit. This comparative experiment has aimed to investigate the
change in the reliability as file configuration is changed, rather than the reliability behavior as a
function of failure ratio. Therefore a typical model is chosen for the analysis.

104 Reliability in Partitioned Systems

become unavailable and no further nodes can be visited on that path. The number of

nodes that can be visited in the whole graph gives the number o f available nodes relative

to the starting position. As all available nodes on a subnet have the same view of the

accessibility, the starting position is taken to be a randomly chosen subnet. The update

could have been initiated from any node on that subnet. A pseudo code representation of

the Graph W alk algorithm is given in Appendix D.

5.3.1 Reliability in Topology-1

The configurations are represented by the distribution of the nodes on the subnets

and the subnet numbers where the copies reside. For example: (10, 15, 5, 12; 2, 4)

represents a configuration where there are 10 nodes on net-1, 15 nodes on net-2, etc. and

one of the copies is on net-2 and the other copy is on net-4. The distribution of nodes is

important because it might effect the degree of fault tolerance. For example: the above

configuration can only tolerate one bridge failure whereas (15, 15, 5, 7; 2, 4) can tolerate

two bridge failures if the update is initiated from net-1 or net-2. The data points in the

graphs are the mean values of 20 simulation runs. Figure 5.8(a) illustrates the com ­

parison between two file configurations in Topology-1 with reference to the reliability in

partition-free networks. In the first configuration, the copies are on different subnets and

in the second all copies are on the same subnet. The results show that the reliability is

reduced considerably in partitioned networks.

Voting algorithms, MV (three copies) and VW W (two copies and one witness) are

simulated in the same topology. As expected, MV behaved in a similar way to VWW.

The result obtained from this experiment is rather interesting. RH did not change its

behavior as the configuration changed but MV did to a great extent (Figure 5.8(b)).

tLjject oj ra rim o n s i co

Reliability

* Topology-1
■ Partition-free

. 8 -

.6 -

. 4 -

.2 -

500 1000 1500 2000 2500
Elapsed Time

Figure 5.8(a). Elapsed time vs Reliability (RH)

Reliability

x RH
o MV

. 8 -

.6 -

. 4 -

.2 -

500 1000 1500 2000 2500
Elapsed Time
Topology-1

Figure 5.8(b). Elapsed time vs Reliability

5.3.2 Reliability in Topology-2

Reliability in Topology-2 was analyzed in the same way as the first topology. In

this topology, the network becomes more fragmented as the number of bridge failures are

increased. The reliability offered by the RH and M V algorithms in the configurations:

(5, 7, 7, 10, 10; 3 ,4 , 5) and (5, 7, 7, 10, 10; 5 ,5 , 5) are presented in Figure 5.9. Again, in

the first configuration copies are on different subnets and in the second all copies are on

the same net. The sensitivity o f the algorithms is shown to be similar in the two topolo­

gies.

x RH
V MV

.8 -

.6 -

. 4 -

.2 -

2000 250015001000500
Elapsed Time

Figure 5.9. Elapsed time vs Reliability

106 Reliability in Partitioned Systems

5.4 Resilience to Configurational Changes

The above results highlighted the degree of resiliency o f the reliable histories and

the voting method to the random placement of copies in different topologies. In this sec­

tion, these results are generalized by two different methods.

The first study is carried out in Topology-2. It attempts to find the likely distribu­

tion o f the reliabilities at a certain time period. The data points were obtained by sim u­

lating the repairs and failures o f the system for the reliability at 1000 time units since

there is considerable variation for this value. The process was repeated 40 times and the

results were sorted to obtain a distribution o f the reliabilities provided by both methods.

The location of copies was randomly chosen. As before, M V with three copies is com ­

pared with RH with two copies, both in a system o f 10 processing nodes. The results,

shown in Figure 5.10, are rather interesting. MV gave exponentially distributed reliabil­

ity with mean less than 0.1 where RH gave more normally distributed reliabilities with a

sample mean o f about 0.23 and standard deviation o f 0.028. The relative 95 percent

confidence interval o f half width is 6% of the sample mean.

% frequency

40—i

RH

3 0 -

2 0 -

10 -

0 .1 .2 .3 .4 .5 .6 .7 .8
Reliability

% frequency

5 0 -,

40

3 0 -

20 -

10 -

MV

0 .1 .2 .3 .4 .5 .6 .7 .8
Reliability

Figure 5.10. Distribution o f reliability at 1000 time units

Effect o f Partitions 107

The second study is carried out in Topology-1. This time instead o f finding the dis­

tribution of reliability at a certain time unit, distribution o f decay constants for the relia­

bility graphs are found. W ith reference to Figure 5.11, the data points representing varia­

tion in decay constant form a normal distribution for RH in this case too.

% frequency

6 0 —|
♦ RH
• MV

4 0 -

2 0 -

.4 .6 ,8.2
decay

Figure 5.11. Distibution o f decay constant

5.5 An Analytical Approach to Reliability

Long [58] presented some numerical techniques to predict the fewest num ber o f

replicas required to provide the desired level of reliability for partition free systems with

estimates of the failure and repair rates under the assum ption that when a copy is failed it

is regenerated on a spare node. This technique is discussed in Appendix C. Unfor­

tunately, an analytical approach to reliability is far harder when partitioned systems are

considered. The following approach models the behavior o f the reliable histories algo­

rithm under the assumption that the network does not partition and the number o f nodes

is unlimited. In a network with a large cluster o f workstations, the number o f nodes is

often greater than the desired number of copies. Therefore the number o f nodes can be

viewed as being effectively unlimited and the history table is always available. The same

assumption was used in the combinatorial analysis o f availability (see Section 4.1). This

108 Reliability in Partitioned Systems

assumption is required as the closed-form solutions can only be obtained for the most

elementary cases which yield a solution when the history availability is ignored. This

section presents the equations arising from n copies m anaged by the reliable histories

algorithm (same reliability offered by AC).

The time to notice a node failure and com plete a repair is assumed to be exponen­

tially distributed with mean 1/(1. Node failures are assumed to be exponentially distri­

buted with mean rate X. The differential difference equations describing the behavior of

a system maintained only by the availability control layer are derived using the STR

diagram associated with the AC algorithm for n copies. This diagram is given in A ppen­

dix B. There is one additional state 0. The states are labeled to reflect the number of

copies that are available. An n copies system is in state 0 if the replicated file has been

inaccessible at some point in the past, while for 1 </</?, the system is in state i if the

object has been continuously accessible and i copies are currently accessible. No transi­

tions are permitted from state 0, since only the reliability of the system prior to the first

failure is o f interest.

The set o f differential-difference equations arising from n copies is therefore given

by

dpn
dt

dpj_

dt
dp i
dt

= \ipn- i (t) - n X p n(t),

= (; + 1)Ap j+i(t) + {n + 1 - j) \ ip j - i (t) - (jX + (n - j)\i)p j{t), l< j< n

= 2Xp2(t) - (X + {n - l) |x)p i(r)

and

dt
w ith initial conditions

|0 0<i<n
P '(,) = j l i=n

In this system p o (t) represents the probability that at time t the system has failed.

An Analytical Approach 109

Therefore, the reliability of the system is 1 - po(t) .

5.5.1 Im proving Reliability with Regeneration

If new copies of a file can be created faster than a system failure can be repaired,

better availability can be achieved by regenerating new replicas on other nodes in

response to changes in the system configuration. W hen regeneration is used, reliability

trade-offs storage cost. Assessing the costs in terms of network message traffic resulting

from regeneration and to estimate the additional storage cost that it incurs are two

research areas which require further work.

Copy regeneration can be added to the elementary equations (presented in the previ­

ous section) by an exponential distribution with mean y. In the presence of a total failure,

the system is unable to regenerate a copy, and the replicated file will be inaccessible until

an up to date copy is repaired. This does not affect the reliability since it is only the

behavior of the system prior to a total failure that is o f interest.

The equations for a system within which regeneration proceeds in parallel with the

repair of a failed copy is quite similar with each p. replaced by p + y.

5.6 Summary

In this chapter first, the simulation and the param eters used to measure the reliabil­

ity are justified and the reliable histories and voting algorithms are analyzed in

partition-free networks and in some topologies where a series of bridge failures divide

the system into several self-functioning sets o f nodes. In the first case, it was shown that,

AC and RH algorithms behave very closely, and the reliability they offer is better than

M V and VWW algorithms. In the second case, algorithms were investigated for their

behavior in different configurations. The results are generalized using two different

approaches (distribution o f decay constants and distribution of variation in reliability at a

certain time period are presented). The RH algorithm was found to be less sensitive to

the network topology and to the location o f the copies than voting algorithms.

110 Reliability in Partitioned Systems

Secondly, an analytical model for reliability was presented for an elementary case

where there are an unlimited num ber o f nodes in the system and the network is partition-

free. This model was later extended to include the regeneration technique.

Chapter Six

Performance and Practicality

In this chapter, the cost o f network traffic incurred by the replication algorithm will

be analyzed in terms of the number of transmissions required. As network congestion is

influenced mainly by the num ber of messages rather than the size o f the messages [83],

the analysis will focus on the number o f high-level transmissions inherited by the

reliable histories algorithm such as requests for version histories, copy transfers, and the

like. The details of the network implementation will determine the actual number of

messages generated by a high-level request. While the low -level transmissions may

vary with different networks, their number should be proportional to the number of

h igh-level requests. Consequently, this analysis will focus on the number o f high level

transmissions. This study does not attempt to model systems which guard against con­

current access to files; the consistency scheme would then require further message traffic

to implement appropriate com mit protocols. Prior to the above analysis, an approach for

reducing the communication cost of the history operations is suggested and discussed.

112 Performance and Practicality

6.1 The Range Algorithm

In many distributed systems, the number o f messages, not their size is an overriding

cost factor. If the underlying com munication uses a broadcast link or network level pro­

tocol, the network com m unication cost is a factor o f number o f replies required for a

message, not the number o f servers the message is sent to or the size of the param eters

[83]. In the reliable histories algorithm, the readH operation of the ReadHistory function

(see Section 3.3.1) is sent to a large num ber of destinations and all available nodes are

required to reply.

W hen a write request on the file is performed successfully, the new history is w rit­

ten on the available servers. Since the replication control system does not have a

recovery procedure, some o f the available nodes may hold an out-of-date history. In the

original algorithm, all nodes keeping the same version o f the history return identical

replies to the read. The following algorithm reduces the number o f identical replies in a

partition-free environment. It cannot preserve consistency if the network partitions.

Therefore the range algorithm can only be an implementation alternative for the

reliable histories algorithm in partition-free systems.

Each history server keeps, w ith every file’s history, two sets o f nodes called range

sets. The servers return these range sets in their replies. These sets are changed by the

local node after history updates and server failures.

a) Rin: This set on a particular node is the set o f servers that accepted the last history

update that this node accepted.

b) Rom’. This is either em pty or contains only the local node number. W hen a node n

recovers from a failure, it sets R out to {n } to indicate that it is no longer sure that its

histories are up-to-date. A n update o f a particular history sets R out back to {} indi­

cating that the history is known to be up-to-date.

The Range Algorithm 113

Choosing the Read.Set fo r the History Table:

Clients o f the history servers collect the replies (histories, range sets and times­

tamps) from the multicast readHR operation and construct a R ea d S e t o f nodes that are

confident they hold up-to-date histories as follows: If there are n replies with the highest

timestamp then the R eadSe t is:

n n

R e a d .S e t- \ jR jn . — y^jRouti
1=1 / = 1

Any history contained in a reply whose /?,„ is a subset of this Read.Set may be

returned as the result of the ReadHistory operation. The following algorithms are more

formal descriptions o f the ReadHistory and WriteHistory functions when the range algo­

rithm is used. The ReadHistory function chooses the R ea d S e t and returns the history

table. The WriteHistory function updates the histories and records the new range sets.

Some examples showing the operation o f the range algorithm are given in Appendix D.

ReadHistory i f): F —» V x T (algorithm-5)

let w readH R (M ,/)

if w = 0

return error

let maxtimestamp max ({t | 3 (Rin, R out, t, (h ,d))e w })

let Sin <— I'* I {r e Rin a (Rin, R out> m axtim estam p, Ch ,d)) e w }

let Sout <r- {r | (r e R ou(a {Rin ,R out> m axtimestamp, (h ,d)) e w }

let R eadSe t <— S,„ - Sout

return ((h ,d) < - { (M) I (Rin, R out> t, (h ,d)) e w r \R inQ R eadSet))

WriteHistory i f ,h): F x V —> {success, error)

let R ^ <— updateH (M ,/,/z)

let R out <r— 0

return SetRange(M, / , R in,R out)

114 Performance and Practicality

The following multicast operation is invoked following a history update to the

nodes which have accepted the new history. It records the new range sets on these

nodes.

SetRange (S , f , Rin,R oul): 2M x F x 2M x 2M -» T

Records the Rjn and R out on the nodes which have accepted the current changes on

the history, i.e. became a member of the new Rin set.

The physical table read operation is called readHR in order to distinguish it from readH.

readHR (S , f) -. 2M x F -» x2t< xN)x{VxT)

Invokes a lookup and mapping request on all processing nodes and returns the range

sets and the last update time as well as the table entries.

Server Rules

Each node follows the following server rules when replying to the read requests on

the history.

1. If R out for the file requested is empty, the server listens to the communication link

for some randomly chosen time before replying to the request. If, while listening, a

node in the file’s Rjn set replies to the same request, the server cancels its own reply.

Otherwise, after listening, the server will reply.

2. If R ou(for the particular file requested is not em pty then the server must reply to all

read requests for that file’s history.

Since the nodes holding the same history return a single reply, more than one reply

is received only if there are different range sets in the system. In other words, some

nodes have failed and recovered between history updates. These nodes might, or m ight

not, hold an obsolete copy o f the history table; their status is unknown.

The Range Algorithm 115

Extra Condition:

If all processing nodes fail and recover between two requests, the resulting

Read.Sets will be empty since all nodes will be in some R out set. This is an unlikely

situation for today’s technology in normal circumstances. However, it is possible to add

another condition to the ReadHistory algorithm to handle this odd case if it occurs.

If the Read.Set constm cted by a client is empty, i.e. all responding servers replied

with a non-empty Rout, then replace the R out s in the replies with empty sets and

apply the algorithm again.

6.1.1 Staggering the Replies

Since all the identical nodes consume almost the same amount of server time ts and

all the destinations of a multicast operation receive the request at the same time tr [43], it

is most likely that all nodes will tend to reply to readHR request at the time tr+ts+£

where 6 is very small. Although in the range algorithm all nodes will listen to the link

before they reply, as all will tend to reply w ithin a sm all time interval, it is possible that

some nodes would miss the replies from other nodes in the same range and reply to the

same request unnecessarily. Consequently, the local node will receive multiple replies

from the same range. The following is a solution to this problem [84].

Each node employs an independent and random listening time taken from an

exponential distribution when it receives a request and then listens to the link for that

amount o f time before attempting to reply. If a node from the same range replies during

its listening period then it drops the request. Since the listening time is chosen from an

exponential distribution, it is highly likely that each tim e some node will listen for a short

time and therefore reply almost immediately. Choosing the mean o f this distribution so

as to minimize both the number of replies and the response time is a difficult practical

problem.

116 Performance and Practicality

6.1.2 C om m unication Delay

This section discusses the communication cost o f the history operations.

The ReadHistory function requires a majority of the nodes to be available. If

algorithm-3 (Section 3.3.1) is applied for history access, the m axim um delay occurs

when all the servers are available and tend to reply to a readH com mand sent from a local

node, given that the local node is available. If the multicast delay for every additional

reply is d then the com m unication delay for the history read operation becom es (m - l) d

in this particular case. The minimum delay occurs when exactly the majority of the

nodes are available including the local node (if fewer nodes are available the operation

fails). Therefore,

(y) d < delayreadH < (m - l) d

In the range algorithm , the num ber of replies returned to the readHR operation

depends on the number o f recovered sites which had failed during and/or after the previ­

ous history update operation. If the number o f failed and recovered sites is a , then there

will be a replies from these nodes. Additionally, if the history is updated on the nodes

which were always available after the previous update then one reply comes from them

as well. Since the update rate is assumed to be much larger than the failure rate, this usu­

ally will be the case. The m inim um delay for this operation is d and it occurs when none

of the nodes have failed and recovered after the previous update. The m axim um delay is

the same as the previous algorithm and occurs only if all servers fail and recover between

two requests. This is an unlikely case especially for large scale systems.

6.1.3 Conclusion

The range algorithm allows reads of the history as long as one up-to-date history

copy is available, but updates on the history succeed only when a majority o f the servers

accept it. Therefore, the consistency is preserved. Providing a cheaper history read than

Conclusion 117

history write may improve the performance o f the system during the file reads. If the

read to write ratio in the system is very high then it may increase the throughput as well.

Otherwise it only increases the efficiency of reads.

The range algorithm cannot tolerate network partitions. It is possible to increase

the tolerance level by adding an extra condition: If the resulting R out is not empty then

the algorithm m ust ensure that the majority of the nodes are available. This condition

preserves consistency if the system is partitioned into two self-communicating groups.

When the system is partitioned into three or more groups, the algorithm still might fail.

In the previous sections a different approach has been proposed for reading the his­

tory. The first algorithm provides a more expensive read but can tolerate all possible par­

titionings in the system. The range algorithm provides a cheaper read operation but can

tolerate only the failures that the available copies algorithm can tolerate. This algorithm

might be an alternative way for implementing the original available copies algorithm on

a less reliable network where configuring unavailable nodes out is more difficult than

implementing histories.

6.2 Efficient Implementation of the Scheme

In this section some ideas for efficient im plem entation o f the protocol are discussed.

The model requires a read in the table for every file operation and the history is updated

after every file write. Many studies have shown that read operations predominate in most

general purpose file systems [85, 45, 46]. Therefore reading the history prior to reading

the file will increase the communication cost o f the algorithm to a great extent as network

traffic analysis presented in the next section has shown. If the problem of concurrent

write operations is ignored (as it very often is in non-replicated file systems), then it is

possible to increase the performance of this algorithm by adding a file open operation

that caches the file’s history locally, writing it back only when a corresponding close

operation is performed.

118 Performance and Practicality

The history is read for two purposes: to perform a write on the file, or to read the

file. W hen the history is read for file-read a lock on it is not necessary. If it is read for

file-write then a read lock is required in order to preserve consistency. The read-lock is

released when the history is written back, i.e. the file is closed.

The characteristics of the communication medium have also a m ajor effect on the

performance. M any o f the low -level operations required to support this algorithm would

benefit from a m ulticast request-response mechanism. I f the underlying communication

system uses a broadcast link level protocol, the cost o f such a mechanism is a factor o f

the number o f replies required from a request, not the number o f servers to which the

request was sent, nor the size of the request parameters. The actual cost o f the algorithm

in terms o f response time can only be seen in real implementation. As the originality of

the work presented in this dissertation has shown with analytical models and the results

are verified w ith a simulation model (chapters three to five), a pilot implementation is

planned as future w ork rather than presented as a part of the dissertation. This is because

o f the time constraints o f the research period.

6.3 Network Traffic Analysis*

In this section, the number o f transmissions required by the scheme will be analyzed

for a multicast environm ent in which a single transm ission may be received by several

sites and unicast networks which require transmissions to be addressed to each individual

node.

If the history is not cached locally, voting and available copies algorithms incur

negligible traffic compared to the reliable histories method. In voting and available

copies only the nodes holding a file’s copy participate in the operations whereas in the

reliable histories algorithm additionally history operations require access to the majority

o f the nodes in the system. If the file’s history is cached during the first request, subse­

quent accesses incur the same amount o f traffic that the available copies algorithm does.

The network traffic analysis o f the available copies and the voting m ethod for block level

Network Traffic 119

replication has been done by Carroll et a l [44].

The following analysis assumes file-level replication. The number o f messages gen­

erated by a given operation often depends on the average number of nodes participating

in the operation. In voting, this depends on the number of operational nodes and in the

available copies algorithm involves the average number o f available nodes holding a

copy. In the reliable histories algorithm, the first read/write and the last write involves

access to the history table. The number of participants depends on the history handling

protocol used. In the following analysis it is assumed that algorithm-3 (see Section 3.3.1)

is used. Therefore the number o f participants is the average number o f available nodes

not necessarily holding the history or the file copy. The range algorithm would provoke

less messages for the read, but would require extra traffic for writing the range sets after

the update. Since the history is cached when the file is open, reads require only one node

to participate whereas in writes the number of participants depends on the available

nodes holding a copy o f the file. The average number o f nodes responding to a history

request from some local node (given that local node is available) can be derived using the

state probabilities.

m
'L'Pi

R = m

Z P i
i= 1

where pi denotes the probability of the system being in the state S, representing the avai­

lability of i processing nodes.

The value pi is dependent on the equilibrium state conditions. Carroll [44] has

shown that, in an jc-node network, for voting and available copies the number o f partici­

pants is given by

^ = x (l - p) + 0 (p 2)

with 0 (p) negligible for values o f p typical for com puter systems. Therefore, when

considering RH, for the history operations x - m and for the file operations x=n.

120 Performance and Practicality

In a multicast environment the algorithm broadcasts one message when a read or

write is performed. The local node receives a single response to reads and multiple

responses to writes from the nodes which accepted the new version. In this case, the

number of responses is at most n which is also negligible (typically two) com pared to the

traffic generated by the history access. The scheme provokes larger traffic for the history

operations. The history read/write operations broadcast one message to all processing

nodes in the system and receive responses from all available nodes. Therefore it results

in

l + m (l - p) + 0 (p 2)

messages. The algorithm incurs no traffic upon recovery without degrading user access

or availability. The number of network operations required (for various m values where

n=2) in a multicast environment are given in Figure 6.1(a). A typical value o f p = 0.05 is

used. The dependent axis reflects the number of high level transm issions generated by

reads and writes.

Network Operations
2 5 p = 0 .0 5

20

1 5 -

10 -

5 - er
Or

10
~ v
15

history-read

history-write
_ -a

file-read
file-wri te

20 25
m

Figure 6.1(a). Multicast environment

Network Traffic 121

In the absence of a multicast network, separate messages must be individually

addressed to each destination node. In this case the RH algorithm accounts for larger

amount o f traffic for the history operations. These operations result in

2 m (l - p) + 2 0 (p 2)

messages this time. The scheme employing different number o f nodes in a unicast

environment is given in Figure 6.1(b). These graphs show the number of requests and

average number o f expected replies.

Network Operations
50 p=0.05

4 0 -

30

2 0 -

10-1 9
or

history-read

_

history-write
^ „ -o

file-write

file-read

10 15 20
n
25

m

Figure 6.1(b). Unicast environment

Table 6.1 tabulates the maximum number o f m ulticast operations inherent in the

reliable histories algorithm as a function of number o f replies expected from the destina­

tions. I f the file’s history is not cached in the local memory then each read operation

would require the total number o f interactions for file-open + read and each write would

require write + file-close. The figures in the table are found under the assumption that

when the file is open, the history is cached and when it is closed the new history is w rit­

ten back. The second column is the number o f read/write accesses to the file copies. It

gives the number o f servers that the message is sent to and the expected num ber of

replies. The third column is the number o f read/write accesses to the history copies. The

122 Performance and Practicality

n is the number o f file copies which is very small compared to the number of history

copies (< |_ m /2j + 1) in the system.

Request r /w {file) r lw {history)
File-Open - 1 —» {m —1)
Read n -> 1 -

Write rc —> n -

File-Close - 1 —> (m - i)

Table 6.1. — Netw'ork interactions required by RH

I f the range algorithm is used then only the number of replies returned to the

fi le -o p e n request would change to (a+ 1) in the table.

6.4 Summary

This chapter has focused on the number of h igh-level transmissions inherited by the

reliable histories algorithm such as requests for version histories, copy transfers, and the

like. The study does not attempt to model systems which guard against concurrent

access to files; each o f the consistency schemes would then require further message

traffic to implement appropriate commit protocols. Prior to this analysis, an approach for

reducing the communication cost of the history operations was described. This approach

allows an efficient implementation of the protocol for read operations.

Chapter Seven

Conclusion and Further Work

In this conclusion, a general summary of the dissertation is given in Section 7.1

pointing out the originalities in the algorithm proposed and original findings in the effec­

tiveness analysis of the consistency schemes, based on voting and available copies algo­

rithms. This analysis considers the availability (steady-state and continuous) of repli­

cated data in partitioned networks as well as in partition-free systems. Section 7.2 sum­

marizes the findings and Section 7.3 discusses the areas for further research.

7.1 General Summary

The potential for increased reliability through replication is often given as one of

the benefits o f distributed systems. This dissertation has analyzed the consistency prob­

lem of small degree replication in large-scale distributed systems. The thesis concen­

trated on the first and second o f the three central problems outlined below which are

required to be solved before the benefits of replication can be realized in a w ider range of

applications.

1. W hen the size of the file to be replicated is large, several kilobytes or more, a repli­

cation control algorithm might be required to provide high reliability with only two

124 Conclusion and Further Work

file replicas because of the storage cost of extra copies. It has been shown that the

reliable histories algorithm provides optimal availability with two copies whereas

voting methods have no practical use.

2. The reliability provided by the consistency scheme should not be adversely affected

by changes to the network topology and therefore to the failure modes of the net­

work. As networks grow and evolve, subnets can become bridged together and

machines moved from subnet to subnet; more often than not as required by geo­

graphical constraints. As a result, it is reasonable to assume that network partition­

ing is a relatively likely event which might affect the reliability performance of the

replicated data and replication is most likely to operate under random copy place­

ment. The partitioning problem is always considered from the correctness point of

view rather than its effect on the performance. As the results have shown, these

failures affect different algorithms to different degrees. A lthough it is a com pli­

cated issue, this area has great potential for future work as discussed in the next sec­

tion.

3. The system should provide a flexible reconfiguration m echanism to alter the relia­

bility of files as users’ requirements change. The file might require different

degrees o f availability for different periods of its lifetime. This availability can be

achieved either by changing the location of the copies or creating temporary copies

to reach the desired availability level. Either solution requires interruption of the

system administration unless the algorithm itself provides reconfiguration facility.

The replication protocol should therefore be flexible enough to add this dynamicity

as an extension to its functions.

These problems are relatively easy to analyze and open to flexible solutions when

the level o f replication is whole files rather than blocks. Various algorithms have been

proposed and implemented as a consistency scheme for replication. These schemes have

been surveyed many times in the literature in terms o f correctness, degree of fault toler­

General Summary 125

ance provided (types of faults that the algorithms can tolerate), requirements from the

protocols running below; interconnection with the concurrency control protocol etc.

Although Long [58] has compared reliability o f three regenerative algorithms: dynamic

voting, majority voting and available copies, and Paris [44] has analyzed the availabili­

ties provided by majority voting and a variation o f available copies for block-level repli­

cation, the algorithms have not been measured according to their approach to the central

problems outlined above. Distinguishing the effectiveness and the features required for

efficiency therefore is an original approach for com parison o f the basic principles consid­

ering that no comparative data for file level replication (either availability or reliability)

is available in the literature.

The introductory chapter identifies general measures applicable to all replication

control schemes. These measures are grouped into two as measures of effectiveness and

measures o f efficiency. Effectiveness measures are the features of the algorithm which

are com m on to all application areas. These measures are basically grouped into two:

steady-state availability and reliability (availability over a given period of time).

Efficiency measures are more complicated to define as some of them are extensions to

the effectiveness measures. The first three of the following are examples of such depen­

dent measures whereas four to six are measures related to the cost of the algorithm (com­

munication and storage):

i. The effect of topological changes on the effectiveness of the algorithms and the

degree o f resilience to random copy placement.

ii. The degree of reduction in the availability and reliability o f the replicated data in

the case o f partitioning.

iii. The flexibility of reconfiguration and the degree o f dynamicity in moving the

objects o f the replication system; files, replication histories etc..

iv. The lower bound for the number o f copies required in order to give a considerable

im provement over single copy in terms o f the effectiveness measures given above.

126 Conclusion and Further Work

v. Number o f network interactions required during each read and write; reading ver­

sion vectors, reading or writing the up-to-date copies and copying the up-to-date

version to obsolete copies.

vi. Requirements of the failure model from the underlying communication medium;

distinguishing network failures from node crashes, recognizing failures instantane­

ously and whether all nodes must have the same view about the state of the network

(the nodes which are up and which are down).

Chapter Two contains a survey of the existing schemes and a critical analysis of the

basic principles, comparing the advantages and disadvantages when the replication

degree is small. This survey has concluded that the algorithms grouped together as

read any/w rite a ll provide optimal availability for two copies, but the requirements of

the failure model from the underlying communication medium in order to survive when

the network has split into more than one functioning group cannot be satisfied in general

purpose com puting environments. The algorithms under the second principle:

read some /write some, can tolerate network partitions but these algorithms require a

minimum of three copies in order to give improved availability over a single copy.

Considering the fact that three copies has relatively little advantage over two copies

in terms o f the degree o f the reliability and the availability provided, a practicable two

copy consistency control algorithm, reliable histories, is described in Chapter Three.

This algorithm offers high availability over a period of time as well as instantaneously

even with two copies and can function properly during network partitions. The benefit o f

this functionality together with high availability is not provided by any of the other algo­

rithms that were studied. The reliable histories algorithm considers the storage cost o f

replication. It replicates a small amount o f data (replication history) concerning the loca­

tion and status o f file’s small number o f copies, a larger number o f times using a regen­

erative read som e/w rite some principle and uses this highly reliable vital information to

determine the update strategy. The originality o f the reliable histories approach is that it

G eneral Summary 127

is a hybrid algorithm which maintains history tables and file copies with independent

schemes under different consistency constraints. This functionality provides optimal

availability for two copies and enables the algorithm to survive under partitions. The

file’s history table is very small (8 byte is often enough) therefore it does not incur as

large storage cost as having three copies of the file.

The layering o f the replication control system as the availability control layer and

the history table control layer increases the flexibility of the algorithm for

reconfiguration and eases the use of regeneration (for file copies) within the algorithm.

The regeneration approach has an additional advantage when used in the

reliable histories algorithm. In fact, in the original form of regeneration as proposed by

Pu [73], each time a node recovers, the algorithm must check to see if the maximum

number of copies exist or if the file was updated during its absence. If so, the recovered

copy is deleted, otherwise, it can be used. This requires a double check during recovery.

This recovery procedure is avoided in the reliable histories method. If the copy is regen­

erated, only the history table is updated. The system automatically brings itself to equili­

brium during the next update, therefore a recovery operation is not required when a node

is repaired. This flexible reconfiguration also enables the number of copies to change

dynamically to reach a desired level o f reliability for a certain period of time without any

additional administration. This area will be discussed as further work in the next section.

There are two objectives of the steady-state availability analysis in Chapter Four.

The first objective is to provide information for the m inimum requirements of the pro­

posed algorithm from the distributed environment (number of nodes in the system) in

order to gain advantage over the other methods. The second, to measure the availability

provided by the methods in partitioned systems. Two analyses were developed

corresponding to the first objective and one o f these analysis was extended to cover the

second. The first statistical combinatorial analysis compares the availability provided by

various algorithms under a simple failure model using independent fail probabilities of

128 Conclusion and Further Work

individual nodes. The second analysis models the behavior of the algorithm in partition-

free systems using M arkov models. This model uses failure/repair model in w hich the

mean time to failures and the mean time to complete repairs are randomly distributed

according to a Poisson law. This analysis has shown that with two copies, the advantage

in availability is acquired by the proposed algorithm in systems with > 5 nodes. This

analysis gives the lower bound of availability and shows that the proposed algorithm pro­

vides better availability with two copies than any form of voting with three copies when

the boundary requirements of the system are satisfied (size is larger than five). The third

analysis extends the combinatorial approach to include a simple partitioning case.

Though simulation always exists (with some restrictions explained later) to quantify the

decrease in availability when the network partitions no other method is currently avail­

able to give the required information through theoretical models. This combinatorial

analysis analyzed the change of behavior of the algorithms under various configurations.

The first outcome which was obtained through this analysis (which later resulted in an

interesting conclusion after reliability analysis) is that the proposed approach behaved

very steadily in the sample system whereas the configurational changes caused dramatic

differences in the availability provided by voting m ethods. The validity of the analysis is

supported by results obtained through a software simulation. The simulation m odel is

later used to generalize the results obtained above by analyzing the behavior of the algo­

rithms in some specific topologies where bridge failures can break the system into

several self communicating partitioned groups. The availability results obtained in

several network topologies supported the outcome o f the analytic results obtained for the

simple partitioning case.

Chapter Five presents the results of an original reliability analysis through sim ula­

tion in partition free and partitioned systems. The results have shown that although the

methods provide relatively close availabilities, reliabilities vary greatly. This analysis

was developed to present the decrease in reliability during network partitions when copy

General Summary 129

placement is random. Although partitioning has been shown to reduce the reliability to

some extent, the new reliable histories algorithm behaved very similarly to available

copies in terms of reliability performance. In most of the configurations, the new algo­

rithm with two copies provided better availability and reliability than voting with three.

An important originality of this research is its approach to looking at the depen­

dency of the algorithm ’s performance on the placem ent of the copies and on the topology

of the data network. The analysis has led to a very interesting conclusion. It has shown

that although it perform s worse in some configurations, the reliable histories approach is

more resilient to changes of the copy placement and perfonns better on average. Resili­

ence to configurational changes is an important issue in the design of a general purpose

replication system where the configuration cannot be planned to maximize file reliability,

say, because it is dictated by physical considerations as explained in Chapter Five. This

chapter concluded with an analytic model incorporating regeneration of file copies in

order to increase the reliability. The regenerative -re liab le histories model has derived

in line with Long’s analysis of regeneration with finite and infinite numbers of spares.

The efficiency o f the proposed approach in tenns of the high-level transmissions it

inherits and the practicality of the algorithm are studied in Chapter Six. The low-level

transmissions may vary with different networks but their number is proportional to the

number of high-level transmissions. This analysis was based on two different proposals

for history management. The first proposal was discussed in Chapter Three as a part of

the main algorithm. Another algorithm {range) was proposed later which reduces the

communication cost of the history operations; based on the idea that in many distributed

systems, the num ber of messages not their size is an overriding cost factor. The range

algorithm reduces the number of replies returned to a history read request but requires

synchronized clocks. An approach for logically synchronizing the clocks in m ulti­

responses has also been proposed. The characteristics o f the communication m edium for

an efficient implem entation of the scheme were discussed. Many o f the low-level opera­

130 Conclusion and Further W ork

tions required to support the algorithm would benefit from a multicast environment. The

final section o f Chapter Six analyzes network traffic for both unicast and multicast net­

works. This analysis has shown that the range algorithm reduces the traffic to a great

extent when implemented in a multicast environment.

7.2 Summary of Findings

Going from single copy to two copies is more advantageous than going from two to

three or from three to four copies etc. in terms of the im provement in the availability

provided and the cost of storage. The performance and behaviour o f consistency

schemes have different patterns for small degree replication than large degree replication;

especially for two copies. Dynamic strategies and voting algorithms have no practical

use with two copies.

The degree of fault tolerance and the degree o f availability provided by consistency

schemes trade off each other. Voting strategies can tolerate network partitions but avail­

able copies algorithms cannot although they provide optimal availability. A hybrid

approach combines the benefits o f these two group o f algorithms by replicating the file’s

history (location and version numbers) with a variation o f voting and applying an update

strategy with a variation o f available copies algorithm. This approach also allows for

dynamic reconfiguration to alter the reliability as the user’s requirement is changed.

Consistency schemes exhibit different behaviour as the network configuration is

changed. Resilience to changes is an important property of the algorithm but voting

algorithms have been found to be less resilient than the hybrid algorithm.

Whereas various schemes offer similar availabilities, their reliabilities differ greatly.

W ith single copy, a file’s reliability is the same as the system 's whereas with only two

copies it is possible to increase the file’s reliability to a great extent. For example: a file

m ay be eight times more reliable than the system when p= 0.05 for a period o f 250 time

units and four times for a period o f 1000 time units. In a system where p=0.1, these

Summary o f Findings 131

figures change to seven times for A t=250 and to three times for A t=1000.

7.3 Further Work

The next major advance in research which could help adoption o f the replication

techniques in general purpose applications would be a characterization of users ’ involve­

ment and the design of user interfaces for replicated file systems. Replication techniques

are used in many areas but its control and use is usually done by system administrators.

On the required degree of user control and its effect on the performance, many areas can

be further studied:

• If the user is given control of copy placement, what are the administrative require­

ments during the configuration of the system and during the file operations?

• W hat is the measurement matrix of reliability for a given time period in order to

calculate dynamically when the places of the copies are given as parameters? W hat

should be the involvement and responsibilities of the user and system administrator

in dynamic reconfiguration?

Regeneration is an active research area. The proposed algorithm employs a regen­

erative technique for history manipulation. As the histories are very small, how to

reclaim the storage o f out-of-date copies is not considered in the thesis as a m ajor prob­

lem. In fact, once a failed node is repaired, the regenerated replicas become superfluous

and the additional storage can be reclaimed. This can become a problem if the file copies

are regenerated as well. The question of which replicas should be reclaimed is an area

for future research. Reliability analysis through regeneration still requires further work

in terms of assessing the additional storage cost it incurs and estimating the network

traffic resulting from regeneration. The performance o f protocols that would only regen­

erate a fraction of the initial number o f copies should be evaluated to determine their

effect on the reliability provided by the protocol. How availability is changed by regen­

erating file copies also requires further analytical approaches. A variety o f theoretical

132 Conclusion and Further Work

options should be considered before implementation begins.

Another extension that should also be the subject of statistical analysis is the parti­

tioning case. An analytical model for the behavior of a replication control algorithm

involving network partitions would certainly help to generalize and verify further the

results presented in the dissertation. Unfortunately, this is a difficult task for the pro­

posed algorithm because of the number of nodes required before a significant im prove­

ment over voting methods can be obtained. Partitioning is usually considered as a prob­

lem concerning the correctness of the scheme. Its analysis including the effect on perfor­

mance is required in many respects as it cannot be ignored with the pace of technological

advancement and application areas of computer networks.

The effects o f network configuration and file placement on reliability require more

further work. One approach would be to generate and simulate “ random "

configurations. While this is relatively simple for copy placement, the next advancement

in this area would be the clarification of the notion of a randomly chosen topology.

Perhaps by studying networks in the field, some criteria for probable topologies and node

distributions can be determined so that suitable configurations can be randomly chosen

and simulated. Such a study would make it possible to derive rules that would allow the

reliability of a file to be calculated when the topology and location of copies are given as

param eters.

A pilot implementation would certainly help to test the practicality of the algorithm ,

verify the estimated communication overhead involved and verify the availability and

reliability analysis. Also, further research is needed to investigate the performance and

requirements of the scheme in applications where concurrent updates are possible and

m ust be serialized.

References 133

The first 81 entries are referred to directly in the text, the remaining works are
representative o f background material that has been studied.

References

1. L. Svobodova, “ File Servers for Network-Based Distributed System s,’’ ACM Com ­
puting Surveys, vol. 16(4), pp. 353-398, December 1984.

2. M Hsu and A Chan, “ Partitioned Tw o Phase Locking,’’ ACM Transactions on
D atabase Systems, vol. 11(4), pp. 431-446, Decem ber 1986.

3. J N Gray, “ Granularity of Locks in a Shared Distributed Database,’’ Proceeding o f
Int. C o n f VLDB, pp. 428-451, September 1975.

4. P A Bernstein and N Goodmann, “ A n Algorithm for Concurrency Control and
Recovery in Replicated Distributed D atabases,’’ AC M Transactions on Database
Systems, vol. 9(4), pp. 596-615, December 1984.

5. R H Thomas, “ A Majority Consensus Approach to Concurrency Control for M ulti­
ple Copy Databases,’’ ACM Transactions on D atabase Systems, vol. 4(2), pp. 180-
209, June 1978.

6. D Gifford, “ W eighted Voting For Replicated D ata,’’ Proceeding o f the 7th ACM
Symp on Operating System Principles, pp. 150-162, December 1979.

7. J J Bloch, D Daniels, and A Spector, “ A W eighted Voting Algorithm for Replicated
D irectories,’’ Journal o f ACM , vol. 34(4), pp. 859-909, October 1987.

8. D Daniels and A Spector, “ An Algorithm for Replicated Directories,’’ ACM
Operating Systems Review, pp. 24-43, 1983.

9. A El-Abbadi, D Skeen, and F Cristian, “ An Efficient, Fault Tolerant Protocol for
Replicated Data M anagem ent,’’ Proceedings o f the 4th AC M SIGACT-SIGMOD
Symposium on Principles o f D atabase Systems, pp. 215-229, New York, M arch
1985.

10. M Herlihy, “ A Quorum-Consensus Replication M ethod for Abstract Data Types,”
AC M Transactions on Computer System s, vol. 4(1), pp. 32-53, February 1986.

11. B S Bacarisse and S Bek-Baydere, “ A Low Cost Replication A lgorithm ,” Proceed­
ings o f the IEEE COMPCON Spring’89 £ a n Fransisco, February 1989.

12. S Bek-Baydere and B S Bacarisse, “ Reliability o f Replicated Files in Partitioned
N etw orks,” Proceedings o f the 1st IEEE W orkshop on M anagement o f Replicated
D ata, November 1990.

13. A S Tanenbaum and R V Renesse, “ Distributed Operating System s,” AC M Com­
puting Surveys, vol. 17(4), pp. 419-470, December 1985.

14. A S Tanenbaum and S J Mullender, “ An Overview o f the AMOEBA Distributed
Operating System ,” ACM Operating System s Review , pp. 51-64, 1981.

15. D R Brownbridge, L F M arshall, and B Randell, “ The NewCastle Connection,”
Software-Practice and Experience, vol. 12, pp. 1147-1162, July 1982.

134 References

16. A Wambecq, “ NETIX: A Network Operating System Based on UNIX Softw are,”
Proceedings o f the NFW O-ENRS Contact Group.

17. Sun M icroSystem Inc, Network File System , February 1986.

18. E J Berglund, “ An Introduction to The V System ,” IEEE M icro , pp. 35-52, August
1986.

19. M R Brown, K N Kolling, and E A Taft, “ The Alpine File System ,” ACM Transac­
tions on Computer Systems, vol. 3(4), pp. 261-293, November 1985.

20. E C Cooper, “ Circus: A Replicated Procedure Call Facility,” Proceeding of the 4th
Symp on Reliability in Distributed Software and Database Systems, October 1984.

21. P Dasgupta, R J LeBlanc Jr, and W F Appelbe, “ The Clouds Distributed Operating
System ,” IEEE Proceeding o f the 8th In t C o n f on Distributed Computing Systems,
pp. 2-8, June 1988.

22. M Fridrich and W Older, “ Helix: The Arcitecture o f the XMS Distributed File
Sytem s,” IEEE Software, vol. 2(3), pp. 21-29, M ay 1985.

23. M Stonebraker, “ Concurrency Control and Consistency o f Multiple Copies o f Data
in Distributed IN GRES,” IEEE Trans, on Software Engineering, vol. SE-5(3), pp.
188-194, May 1979.

24. G Popek, B W alker, J Chow, D Edwards, C Kline, G Rudisin, and G Thiel,
“ LOCUS: A network Transparent High Reliability Distributed System ,” Proceed­
ing o f the 8th ACM Symp on Operating System Principles, pp. 169-177, December
14-16,1981.

25. H Sturgis, J M itchell, and J Israel, “ Issues in the Design o f a Distributed File Sys­
tem ,” ACM Operating Systems Review, vol. 14(3), pp. 55-69, July 1980.

26. P A Bernstein and N Goodman, “ Concurrency Control in Distributed Database Sys­
tem s,” ACM Computing Surveys, vol. 13(2), pp. 185-221, June 1981.

27. W H Kohler, “ A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems,” ACM Computing Surveys, vol. 13(2), pp. 149-
183, June 1981.

28. D P Reed, “ Implementing Atomic Actions on Decentralized D ata,” ACM Transac­
tions on Computer Systems, vol. 1(1), pp. 3-23, February 1983.

29. J N Gray, P M cjones, M W Blasgen, R A Lorie, T G Price, G F Putzulu, and I L
Traiger, “ The Recovery M anager of the System R Database M anager,” AC M Com ­
puting Survey, vol. 13(2), pp. 223-242, June 1981.

30. M Hammer and D Shipman, “ Reliability M echanisms for SDD-1: A System for
istributed D atabases,” AC M Transcations on D atabase Systems, vol. 5(4), pp. 431-
466, December 1980.

31. C H Papadimitriou, “ The Serializability of Concurrent Database Updates,” Journal
o f ACM , vol. 26(4), pp. 631-653.

32. K P Eswaran, J N Gray, R A Lorie, and I L Traiger, “ The Notions o f Consistency
and Predicate Locks in a Database System ,” Communications o f ACM , vol. 19(11),
pp. 624-633, N ovem ber 1976.

References 135

33. P A Bernstein and N Goodman, “ Timestamp Based Algorithms for Concurrency
Control in Distributed Database System s,’’ Proceedings o f the 6th International
Conference on Very Large D atabases, October 1980.

34. H T Kung and J T Robinson, “ On Optimistic Methods for Concurrency Control,”
ACM Transcations on Database System s , vol. 6(2), pp. 213-226, June 1981.

35. M Herlihy, “ Optimistic Concurrency Control for Abstract Data Types,” ACM
Operating Systems Review, pp. 33-44, 1985.

36. K H Bennett, “ Mechanisms For Distributed Control,” in D istributed Comp.,
Academic Press, 1984.

37. E Gelenbe and K Sevcik, “ Analysis o f Update Synchronization for Multiple Copy
D atabases,” Proceedings o f the 3rd Berkeley Workshop D istributed D atabases and
Computer Networks, August 1978.

38. L Lamport, “ Time, Clocks, and the Ordering o f Events in a Distributed System ,”
Communications o f ACM, vol. 21(7), pp. 558-565, July 1978.

39. S W ilbur and B Bacarisse, “ Building Distributed Systems with Remote Procedure
C all,” IEE Software Engineering Journal, vol. 2(5), pp. 148-159, September 1987.

40. A D Birrell and B J Nelson, “ Implementing Remote Procedure C alls,” ACM
Trans.Comp.Sys, vol. 2(1), pp. 39-59, February 1984.

41. A Z Spector, D Daniels, D Duchamp, J L Eppinger, and R Paussch, “ Distributed
Transactions for Reliable System s,” Technical Report CM U, 1985.

42. A Z Spector, “ Communication Support in Operating Systems for Distributed Tran­
sactions,” Technical Report CM U, August 1986.

43. J Crowcroft and K Paliwoda, “ A M ulticast Transport Protocol,” Research Note,
University College London, M arch 1988.

44. J L Carroll, D D E Long, and J F Paris, “ Block-Level Consistency of Replicated
Files,” IEEE 7th Int. Con. on D istributed Computing, pp. 146-153, September
1987.

45. J Ousterhout and H DaCosta, “ A Trace-Driven Analysis o f the Unix 4.2 BSD File
System ,” ACM Operating System s Review, vol. 19(5), pp. 15-24, December 1985.

46. S Bek, “ Actual and Potential Performance o f N FS,” Indra Note 2193, UCL,Dept of
Computer Science, September 1987.

47. J H Howard, M L Kazar, S G M enees, D A Nichols, M Satyanarayanan, R N Side-
botham, and M J West, “ Scale and Performance in a Distributed File System ,”
ACM Transactions on Computer Systems, vol. 6(1), pp. 51-81, February 1988.

48. L Lamport, R Shostak, and M Pease, “ The Byzantine Generals Problem ,” ACM
Transactions on Computer Systems, vol. 4(3), pp. 382-401, July 1982.

49. R D Schlichting and F B Schneider, “ Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing System s,” AC M Transactions on Computing
Systems, vol. 1(3) P 222-238, August 1983.

50. P A Bernstein and N Goodman, “ The Failure and Recovery Problem for Replicated
D atabases,” Proceedings, 2nd Annual Symphosium on Principles o f Distributed
Computing, pp. 114-122, August 1983.

136 References

51. J S M Verhofstad, “ Recovery Techniques for Databases,” ACM Computing Sur­
veys, vol. 10(2), pp. 167-195, June 1978.

52. B G Lindsay, “ Single and Multi-Site Recovery Facilities,” in D istributed
Databases-An Advanced Course, ed. F Poole, Cambridge University Press, 1980.

53. B Bhargava and Z Ruan, “ Site Recovery in Replicated Distributed D atabases,”
IEEE Proceedings ot 6th International Conference on D istributed Computing Sys­
tems, pp. 621-627, 1986.

54. M L Powell and D L Presotto, “ A Reliable Broadcast Communication M echan­
ism ,” Operating System Review(ACM), vol. 17(5), pp. 100-109, 1983.

55. A M Johnson,Jr and M M alek, “ Survey of Software Tools for Evaluating Reliabil­
ity, Availability and Serviceability,” ACM Computing Surveys, vol. 20(1), pp. 227-
269, December 1988.

56. R Van Renesse and A S Tanenbaum , “ Voting with G hosts,” Proceeding o f the 8th
Int. C onfon Distributed Computing Systems, pp. 456-461, June 1989.

57. R E Barlow and K D Heidtmann, “ Computing k-out-of-N Reliability,” IEEE
Trans, on Reliability, vol. R-33 (4), pp. 322-323, October 1984.

58. D D E Long, J L Carroll, and K Stewart, “ The Reliability o f Regeneration-Based
Replica Control Protocols,” University of California, Computer Research Lab,
Technical Report UCSC-CRL-88-18, October 1988.

59. D L Eager and K C Sevcik, “ Achieving Robustness in Distributed Database Sys­
tem s,” ACM Transactions on Database Systems, vol. 8(3), pp. 354-381, September
1983.

60. J F Paris, “ Voting w ith a Variable Number o f Copies,” Proceedings o f the 16th
FDCS, pp. 50-55, 1986.

61. P G Selinger, “ Replicated D ata,” in Distributed Databases-an advanced course,
ed. F Poole, Cambridge University Press, 1980.

62. P A Alsberg, “ A Principle for Resilient Sharing o f Distributed Resources,” Proc.
2nd Int C on f o f Software Engineering, pp. 562-570, O ctober 1976.

63. J F Paris, “ Voting with W itnesses: A Consistency Scheme for Replicated F iles,”
Proceeding o f the 6th Int. Conf. on Distributed Computing Systems, pp. 606-612,
1986.

64. S Jajodia and D M utchler, “ Dynamic V oting,” ACM SIGM OD International
Conference on Data M anagement, pp. 227-238,1987.

65. M Herlihy, “ Dynamic Quorum Adjustment for Partitioned D ata,” AC M Transac­
tions on Database Systems, vol. 12(2), pp. 170-194, June 1987.

66. D Barbara, H Garcia-M olina, and A Spauster, “ Policies for Dynamic Vote Reas­
signm ent,” IEEE Proceedings ot 6th International Conference on Distributed Com ­
puting Systems, pp. 37-44, 1986.

67. D Barbara, H Garcia-M olina, and A Spauster, “ Increasing Availability Under
M utual Exclusion Constraints with Dynamic Vote R eassignm ent,” ACM Transac­
tions on Computer Systems, vol. 7(4), pp. 394-426, November 1989.

References 137

68. T Mann, A Hisgen, and G Swart, “ An A lgorithm for Data Replication,” Technical
Report:46, Digital Systems Research Center, June 1,1989.

69. A Huseyin, G Pavlou, and P T Kirstein, “ A Distributed Database Study,” Techni­
cal Report 143, UCL, Computer Science, M arch 1988.

70. H Garcia-M olina, “ Elections in a Distributed Computing System ,” IEEE Transac­
tions on Computers, vol. 31(1), pp. 48-59, January 1982.

71. H Garcia-M olina and D Barbara, “ How to assign votes in a Distributed System ,”
Journal o f ACM , vol. 32(4), pp. 841-860, October 1985.

72. S B Davidson, H Garcia-Molina, and D Skeen, “ Consistency in Partitioned N et­
w orks,” ACM Computing Surveys, vol. 17(3), pp. 341-370, September 1985.

73. C Pu, J D Noe, and Proudfoot, “ Regeneration of Replicate Objects: a Technique
and Its Eden Im plem entation,” IEEE Proceeding o f the 2nd Int. Con. on Data
Engineering, February 1986.

74. L Donatello and B R Iyer, “ Analysis o f a Composite Performance Reliability M eas­
ure for Fault-Tolerant System s,” Journal o f the ACM , vol. 34(1), pp. 179-199,
January 1987.

75. D D E Long and J F Paris, “ A Realistic Evaluation of Optimistic Dynamic Vot­
ing ,” IEEE Proceedings o f the 6th Symposium on Reliable Distributed Systems, pp.
129-137, October 1988.

76. J D Noe and A Andreassian, “ Effectiveness o f Replication in Distributed Computer
N etw orks,” IEEE Proceeding o f the 7th Int. Conf. on Distributed Computing, pp.
508-513, September 1987.

77. R D Schlichting, G R Andrews, and T D M Purdin, “ Mechanisms to Enhance File
Availability in Distributed System s,” Proceeding o f the 6th Int. C onf on Distributed
Computing Systems, pp. 44-49, June 1986.

78. S Ross, in Introduction to Probability M odels, 1970.

79. Y C Tay, “ The Reliability of (k,n)-Resilient Distributed Systems,” IEEE 3rd C onf
on Data Engineering, pp. 119-122, 1984.

80. M Sahinoglu, “ Use of M archkov M odeling in Power System Reliability S tudies,”
M aster o f Science Dissertation, UM IST,M anchester, October 1975.

81. M Sahinoglu, “ Use o f M archkov M odeling and Statistical Data Analysis in Spare
Plant Assesment-Its Economic Evaluation,” Proceedings o f the 7th Annual Relia­
bility Conference on Reliability fo r Electric Power Industry W isconsin,U S A , pp.
269-278, April 1980.

82. M Sahinoglu, ‘ ‘The Evaluation o f Reliability Indices for the Off-Site Electric Power
System at the Akkuyu Nuclear Power Plant for the Asssesment and Planning of
On-Site Plant Reliability,” Final Report,Ankara,Turkey, October 1987.

83. T A Joseph and K P Birman, “ Low Cost M anagem ent of Replicated Data in Fault
Tolerant Distributed System s,” ACM Transactions on Computer Systems, vol. 4(1),
pp. 54-70, February 1986.

84. S Bek-Baydere, “ Synchronising M ulti-Responses for Version V ectors,” Research
Note, UCL, Dept, o f Computer Science, Decem ber 1989.

138 References

85. JG M itchell and J Dijon, “ A Comparison o f Tw o Network File Servers,” Comm.
AC M , vol. 25(4), pp. 233-246, April 1982.

86. W E Boyce, “ Exponential M odels,” in Case Studies in M athematical M odelling,
Pitman Publishing Inc, 1981.

87. J W Cohen, in The Single Server Queue, North-Holland, 1969.

88. I N Herstein, in Topics in Algebra, p. 209, Blaidell Publishing Company, 1964.

89. G H Golub and C F Van Loan, in M atrix Computations, Baltimore:The Johns Hop­
kins University Press, 1983.

90. C B M oler and C F Van Loan, “ Nineteen Dubious W ays to Compute the Exponen­
tial o f a M atrix ,” SIAM Review 20, pp. 801-836, 1978.

91. S Bek-Baydere and B S Bacarisse, “ Reliable Histories for Replicated F iles,”
Proceedings o f the ISCIS-IV, Cesme, Turkey, October 1989.

92. O Babaoglu, “ On the Reliability o f Consensus-Based Fault Tolerant Distributed
Computing System s,” ACM Transactions on Computer Systems, vol. 5(3), pp. 394-
416, Novem ber 1987.

93. J Donnelly, “ Components of a Network Operating System ,” Computer Networks,
vol. 3, pp. 389-399, 1979.

94. A J Frank, L D Wittie, and A J Bernstein, “ M ulticast Communication on Network
Com puters,” IEEE Software, pp. 49-61, May 1985.

95. A J Frank, L D Wittie, and A J Bernstein, “ M aintaining W eakly-Consistent Repli­
cated D ata on Dynamic Groups of Com puters,” Procceeding o f IEEE C onf on
Parallel Processing, pp. 155-161, 1985.

96. H M Gladney, “ Data Replicas in Distributed Information Services,” ACM Transac­
tions on D atabase Systems, vol. 14(1), pp. 75-97, M arch 1989.

97. L Kleinrock, in Queing Systems Volume 1-2, John W iley & Sons, 1975.

98. L H Shampine and C W Gear, “ A U ser’s View o f Solving Stiff Ordinary Differen­
tial Equations,” SIAM Review 21, pp. 1-17,1979.

99. G T J W uu and A J Bernstein, “ Efficient Solutions to the Replicated Log and Dic­
tionary Problem s,” ACM Operating Systems Review, pp. 57-66, 1984.

100. M H M acDougall, in Simulating Computer Systems, M IT Press, 1987.

Glossary

AC:

Atomic operation:

Availability:

Bridge:

Broadcast:

Combinatorial:

Decay Constant:

DFS:

Effectiveness:

Ideal Network:

Logical file:

Multicast:

MV:

Network Partition:

Abbreviation for Available Copies Algorithm

An operation either completes and (possibly) modifies the state
of the system or it does not complete and has no effect on the
system state.

The probability that the file will be accessible at any random
point of time as times goes to infinity.

A device that connects two networks typically at the link level
and makes them appear as a single network.

The mechanism whereby a signal from one node on a network
is received by all other nodes.

A statistical approach combining basic probability theory with
&-out-of-n reliability theory.

A value representing the ratio with w hich the reliability graph
declines as a function of time.

Abbreviation for Distributed File System

Accessibility of a replicated file together with the other
abstract properties o f the consistency scheme such as assump­
tions made for its operability and correctness.

A network in which partition failures are clean and nodes can
detect partition failures almost instantaneously.

An object o f the replicated file system w hich is implemented
by a set o f physical files each holding a complete copy of the
file and residing at a distinct processing node.

The mechanism whereby a signal from one node on a network
is received by a group of nodes.

Abbreviation for M ajority Voting Algorithm

A state in which bridge failures divide the network into multi­
self functioning group of nodes.

Partition-free:

Regeneration:

Reliability:

RH:

RPC:

Serializability:

STR diagram:

Steady-state:

Subnet:

A term used to describe networks in which partitioning never
occurs.

Creating new replicas on available nodes in response to node
failures.

A conditional probability at a given confidence level that the
file system will perform its intended function (read/write
access) properly without failure and satisfy the specified
requirements o f continuous availability during a given time
interval [0,f]. given period of time.

Abbreviation for Reliable Histories A lgorithm

Abbreviation for Remote Procedure Call

A property w hich guarantees that that a replicated objects func­
tional behavior is equivalent to that o f single copy.

State-transition-rate flow diagram representing the availability
or reliability behavior of the algorithm.

Equilibrium state behavior o f the system as time goes to
infinity.

The smallest component o f the network consisting a number of
nodes connected by a communication link that cannot be parti­
tioned further.

VWW: Abbreviation for Voting W ith W itnesses A lgorithm

Notation 141

Appendix A

m Number of processing nodes operating in the system

n Number of file copies

k Number of history copies

p Probability o f an individual node being up

p r Probability of an individual bridge being up

X Failure rate of individual processing nodes

jl Repair rate of individual processing nodes

p Failure to repair ratio of the system

y Copy regeneration rate

P (A): Probability of a file being accessible (availability at steady-state)

P (A f): Probability of at least one file copy being available

P (A t): Probability o f the history table being accessible

P (Aj): Availability of the file during the bridge failure

P (A u): Availability of the file when there is no partitioning in the network

ts{hi): Last history update time on node i

142 Appendix A

R (t): Reliability at time t where R (0) is the steady-state availability

A x B = [(a , b) \ a e A A b e B)

A u B ={ a | a e A v a e B)

A n B ={ a \ a e A a a e B }

a =$ b : if proposition a then proposition b

A <z B : a € A => a e B

A z) B : a e B = $ a e A

Ch , d): History table entries consisting o f location and version number of physical file

copies and a boolean flag set to true when the file is deleted:

v i) , (/ 2 > v 2),...} ,d = [tru e , fa lse)

m tb f : Exponential m ean time between failures

m ttr : Mean o f the normally distributed repairs periods

Availability M odel 143

Appendix B

The following method is followed for the analysis o f the replication control system

whose states are represented (Section 4.2) by three parameters; number of available

copies, number o f available nodes and the status o f the copies(same, different). This sys­

tem represents a M arkov process under the observation that the future (being in a state) is

conditionally independent of the past. This is the M arkovian property specified by the

transition probability o f the states:

= P {Sm+t = j I Sm — i}.

In words, given that the present state is 5r, the past (5/, / <t), the future (Sj , j >t) are con­

ditionally independent, or given the history of the process (5,-, i< t \ the future (S?, i> t)

depends only the present S t . 1

Let’s define the transition probability matrix as

U (t) = (K ij(t))

transition probabilities, n (t) together with an initial distribution (at t=0 the system is

assumed to be fully operating e.g. all nodes are up) determine the state probabilities

(P j(t)), which satisfies the forward equation

1 In general, the future depends on the past — it is only conditionally independent given the present.

144 Appendix B

(d /d t)p j(t) = Y P i{ t)q ij

The matrix Q = (<7,j) is the infinitesimal generator o f the Markov process where

n(r) = I - Q t + o (t)

or in open form,

7C|t;(f) = 1 - q ij t + o (t) as f-* 0

K i j U) = Qi.fi + 0 (0 W i * j)

The interpretation o f the generator matrix is that, the system remains in a state for some

random amount o f time. The time in state i is exponentially distributed with

1 - e x p (- q u t)

W hen the system leaves state it makes a transition to state j w ith probability - q , j / q t j .

The mathematical details can be found in reference (87).

The following example employs the above method to a two state system whose transition

rates are shown below.

0.99 0.9

0.01

0.1

This diagram represents a system with:

n = 0.99 O.Of
0.10 0 .9

The generator m atrix (0 is found and its inverse is divided by the determinant. The

resulting column vector, R , is the state probabilities as

r t T , _ f—0.01 0 .1 0]
11 1 “ [o.oi -o.iql

Availability M odel 145

Following are the inverse of the generator matrix Q and state probability matrix R:

Q~l = 1 - 0.10
-1 - 0.01

R j (° °) =
7=1.2

i -o.id
- 1 - o . o i

-0 .11 - p
Therefore this two-state system yields a solution at steady state:

/>(1) = 0.91 P (2) = 0.09 as r —> oo

The solutions to the system applying various consistency algorithms have been given in

Chapter Four. The results have been presented in Figure 4.1 to Figure 4.4. The follow­

ing diagrams represent the states of the system for available copies and majority voting

algorithms with n copies.

nX n-lX

n-1

nF

Figure B.l. STR diagram for the availability with AC (n copies)

n-1

Figure B.2. STR diagram for the availability with MV (n copies)

146 Appendix B

Equilibrium State C onditions of the system w hen m - 5

The following state-transition-rate diagram represents the reliable histories

algorithm’s availability behavior in a system of five processing nodes:

'00

2X.

2\i 2X

'00

Figure B.3. STR diagram for the availability with RH (m—5)

Modeling Five Nodes 147

There are a total o f 28 states. Equilibrium state conditions representing some of

these states are given below. These conditions are derived from the above diagram and

example states show a group of transactions for different status conditions of file replicas

(5, D , W). Each row o f the transition probability matrix represents the equilibrium condi­

tion of an individual state under the observation that for any state i

i n Uj = i
j=0

P S 2 5 5 ^ = (P S 2 4 + P S 1 4)H ' + P £ > 2 5 W

P S 2 4 (4 A . + | X) = 3 P S 2 5 ^ + (P S 1 3 + (2 P s 2 3) ! X + P d 2 4 M

p s 14(6 A . + |1 + m) = 2 P 5 2 , A + (P 5 13 + 2 P 5 0 3) p

ps 23 (3 A. + 2|i) = 2Ps24X + (2 P522 + Ps12)M' + p d 23w

ps 13(3A. + 2|i) = (3P$14 + 2 P 524)A. + (2Ps12 + 2 P 5o2)|X

p d 25(5 ^ + m) = (PDl4 + p D24 + p w 14)P'

pd24(4A,+ M- + u) = 3P£)25X + (2P£)23+P/)13+ P ^ 13)p

P d h ^ ^ + M-) = p D 25^ + (p D 13 + p D 0 3) lx + ps14w

pw 14(4A, +p,) = Pd 25^ + (p d 03 + p w I3)M’

pw t3(3X + 2jx) = (PD24 + 3P ^ u)A. + (PDo2 + 2 P w 12)|i-

A = X (P S 2 5 » P S 2 4 . p 523 . 14 * P S 13 * P D 25 > P D u ’ P D t3 >P D U > P D 13)

The above conditions generate a 28x28 Q matrix o f w hich some entries are given below.

fl-5A. 3A, 2X 0 0 0
\L 1-(|X+4A,) 0 2 X 2 X 0

Q =

Analytic M odel fo r Finite Spares 149

Appendix C

The following model narrows the unlim ited spare assumption to that in which the

number of nodes in the system is finite. Two state-transition-flow-rate diagrams for the

reliability o f regenerative-reliable histories m ethod with finite spares are given in Figure

C .l and Figure C.2. In the first model, the system has 2 copies of the file and 1 spare

node (in other words, m=3 where 2 of these nodes contain a copy o f the file). In the

second model, the system has 2 copies of the file and 3 spare nodes (m=5).

The differential equation describing the behavior of the system within the given

parameters (num ber of spares, number of copies) m anaged by the method is derived from

the state-transition-rate diagrams. The following model describes a general method for

the system maintaining n copies with an additional m spare nodes. It is a costly model in

terms of complexity. A similar model is derived by Long in reference (58) for the

analysis of regenerative-voting and regenerative-available copies algorithms. The below

model adopts the same technique for the RH algorithm and discusses the complexity of

this analytic method.

The system is in state (j\k) if j copies are immediately accessible and k nodes are

currently available as spares. The state 0 denotes the inaccessible state.

150 Appendix C

Definition C .l. The reliability R (n ym ,t) of an n —copies system with m spares managed

by reliable histories algorithm is defined as the probability that the system will operate

correctly over time interval of duration t given that an initial complement of n copies and

m spares were operating correctly at time t= 0.

As shown in the figures, finite-spares lead to more complex sets of equations. These

systems can be represented with linear, constant coefficient ordinary differential

equations(ODEs) of the form

P'{t) = AP (t)

with initial condition

P (0) = P 0

The solution is given analytically by

P (t) = e ,AP 0

where e denotes the matrix exponential.

For simplicity o f exposition, assume A has full geom etric multiplicity. Its Jordan

canonical form

A = TAr-1

consists o f the diagonal m atrix A with eigenvalues, A.;, o f A on the diagonal and T, whose

columns are the eigenvectors o f A. The ODE can then be diagonalized:

/ ’'(f) = T A T ~ l P 0

Defining

z (f) = r _1/»(f)

the differential equation is

Z i t) = A Z0

with solution

Analytic M odel fo r Finite Spares 151

Z (t) = e ' AZo

where e lA is the diagonal matrix with entries e , i = 1, , n. The general solution iIS

thus

P (t) = T e 'AT~l Po

which can be evaluated at any point t in time.

This procedure is costly. The vector Zq = T ~ l P o need only be computed once,

1 ,
requiring approximately — n flops, where a flop is a floating point add coupled with a

floating point multiply. The n exponentials e 1̂ ' that comprise e tA would be formed for

each value of t of interest. The cost would be reduced by computing the solution at

equally spaced points 7* = k.At using

e l>+' Xi =

The propagation matrix

, A/A _

A/X̂e 0 0 0
0 A/ta e • • 0 0

0 0 • • ^A/X*_, 0
0 0 • 0 e Atkn

need only be formed once, and later time step values can then be formed recursively from

the previous step beginning with P q and using

Pt+l = T . e ^ . P ,

at a cost o f one matrix-vector multiply (n flops) per step. The major cost, though, arises

when the eigensystem o f A is computed.

Obtaining the eigensystem of A is equivalent to finding the roots o f its characteristic

polynomial. It was shown by Evariste Galois in reference (89) that there is no direct

method for computing the roots of a polynomial o f degree higher than 4. This implies

152 Appendix C

that, since the model has more than 5 states it requires an iterative process to obtain the

eigensystem. The m ost effective method is the QR algorithm. Actual convergence o f the

iterative QR algorithm depends on the problem and the conditioning of the eigenvectors,

but this one-time cost is estimated at 15n 3 flops. This is shown in reference (58).

Thus, computing the matrix exponential directly is very costly and alternate

methods of solution are desirable. For small configurations Runge-Kutta method is sug­

gested. For larger configurations, the following inverse Taylor method is an effective

technique.

The Taylor method can exploit the linear, constant coefficient nature o f problem.

The matrix exponential is defined by the convergent power series

= / + M + M)l + M l i + . . .
2! 3!

Truncating this series after 6 terms yields a fifth order numerical approxim ation to the

propagation matrix, e ^ A above, Let

t5 = I + A t A + m t +._.+m) 5
2! 5!

w hich can be formed effectively using nested multiplications in 4 m atrix-matrix multi­

plies costing about n 3 flops each. Using 15 to approximate the solution at forward time

steps,

Pm = t 5Pk= e ^ P k = (eM)k+lP 0 = e 'k*'AP 0

The cost per step is just the n 2 flops for the matrix-vector multiplication.

Unfortunately, the coefficient matrices that tend to arise in the reliability model

have eigenvalues that are all real and non-positive. Summing these series leads to a loss

o f significance in forming 15 since the terms will alternate in sign.

15 = r { / + A/A + — A2 + ••• + — A5)T _1
2! 5!

Analytic Model fo r Finite Spares 153

A slightly more expensive approximation o f the inverse of e ^ A is required. Just as

an approximation o f the scalar e xio i x <0 is accomplished more accurately in the pres­

ence of finite precision arithmetic using

1 1
= -jr 2 3 4 5e . x x x x

T r i r 4T - ! ! '

The matrix equivalent is

- —ata _ ■ , . (A/A)2 (A /A)3 (A/A)4 (A/A)5
« - , j - / - A/A — — + 4 , - 5 ,

Besides the cost o f forming the series using nested multiplication as before, there is also

1 3the one-time cost o f about — n to factor the matrix. The solution values are given by

solving the linear system

hP k+ i = ?k,

costing about n 2 flops per output point. This allows the flexibility to change the number

of terms for the series depending on the solution behavior.

Figure C.l. STR diagram for the reliability with RH (m -3)

Figure C.2. STR diagram for the reliability with RH (m=5)

Simulation Activities 155

Appendix D

Simulation Activities

The dual approach of analysis and simulation is a common technique amongst sys­

tem designers because it offers a degree of confidence through two sets of supporting

results. Though the major performance measures for availability are gained from the two

statistical analysis presented in Chapter Four, an analytical approach for reliability is far

harder to develop in the same degree for the algorithm proposed because of the number

o f states involved in a model which gains advantage over the other algorithms. A suite of

software simulation has been developed to support the analytical work on availability and

to obtain the major performance measures for reliability of the consistency schemes

while supporting a minor analytical work in this area.

The steady-state availability observations are made for two different failure models

using several failure modes. In the first model, availability o f individual processing nodes

are obtained from a uniform number generator. This simulation is used to verify the

results obtained from the combinatorial analysis in Section 4.1. In the second model,

failure times and repair periods of individual nodes are generated from an exponential

distribution with the means m tbf and mttr which produce the failure to repair ratio for the

nodes corresponding to the same values of individual node availabilities used in the com­

156 Appendix D

binatorial analysis simulation. The results of simulation for both analysis have been

given in Figure 4.4 and Figure 4.8 to support the upper and lower bounds of availability

provided by the algorithm proposed and simple partitioning analysis. Note that the two

sets o f results digress more in the upper bound analysis. This is due increase in the

confidence interval as the num ber o f nodes are increased resulting from the behavior of

random failure time generators. The results shown represent the average of around 20

simulations for 50,000 simulation time period.

The C programming language was used to implement simulation. The system is

regarded as a set of processes, comprising a set of network operations initiated from a

local node in order to access the replicated file. The nodes are operating in parallel and

interacting with each other via com munication links. Changes o f state in the nodes can

only take place in accordance with simulation clock pulses. The parallel processes are

implemented sequentially before the clock ticks.

G rap h -W alk Algorithm

The simulation of partitioned systems is rather more complicated. This analysis has

been done by defining the topology as a graph whose nodes represents the vulnerable

components; subnets, bridges, processing nodes. The G raph-W alk algorithm is used to

check the state o f individual nodes o f the graph. This algorithm calculates the availabil­

ity o f replicated data in a network o f vulnerable components w ith independent availabili­

ties. The availability appears different from node to node. The network is described

using a connection matrix where con_matrix[i][j] = 1 if there is a connection between

node i and j, 0 otherwise. Node failures are exponential and the repairs are normally dis­

tributed. Failure[i][l] keeps the next failure time o f node i and Failure[i][2] keeps the

corresponding repair time for this particular failure.

collect (src, have)

/* This is a recursive function to w alk the graph starting in node ’src’. It returns in ’have’

Graph Walk Algorithm 157

the number of available nodes at current_time. */

define c a s e - 1: Failure[src][l] > current_time /* node failed */

define case -2: current_time = Failure[src][l] + Failure[src][2] /* node repaired */

visited[src] = 1; /*m ark the visited nodes*/

if c a s e - I

then have = have + 1; /* if the node is reached acquire the votes*/

if case - 2 /*find next failure time */

then Failure[src][l] = Failure[node][l] + Failure [node] [2] + expntl(mean);

Failure [src] [2] = normal(mean,st_dev);

for (dst= l; dst<=nodes; dst++) /*visit all reachable nodes */

if ((visited[dst] == 0) & (con_matrix[src][dst] == 1))

then have=collect(dst,have);

collect=have;

activato r()

/* this function calls the collect () function to check the availability of the majority of

nodes starting from a randomly chosen node; ’node’. The total number o f nodes is stored

in ’nodes’ and the number of tables required for access in ’tables’ */

node=random(1 ,nodes);

if ((t_avail = collect(node)) < tables)

158 Appendix D

Exam ple Scenarios Em ploying the Range A lgorithm

Steps o f the range algorithm during consecutive calls o f ReadHistory and Wri­

te History operations are given below. Each scenario consists o f an update request on the

file therefore requires an independent read in the history, finds the R ea d S e t , returns the

up-to-date history table and after the file operation is performed, writes back the new his­

tory on the available nodes. The file operations are excluded from scenarios as they are

assumed to be always successful.

The following terms are used in the scenarios:

ReadHistory

The function is initiated from node i w ith the request number j

w = [{Rin, R 0Ut, tx , tablex)i j t {Rin, R out, ty , tabley)kJ • • • }: w herex^y

The members o f the set w are the replies returned to the readHR() (see Chapter Six).

Each reply is subscribed by its sender i.e. nodes i and j return the same reply with

tablex (last table update time is tx) and, nodes k and / return the same reply with

tabley (last table update time is ty).

WriteHistory :

The function is initiated from node i the corresponding table read request number is

j. It writes the new table and the new range sets. The nodes which are accepted the

new table becom e a member o f the new set.

retum((/z,d) = table i):

returns the table from the reply o f node i

A i= { • • • } :

The set o f available nodes during the scenario i

The scenarios are not related but each scenario takes up the system parameters from pre­

vious scenario. Initial parameters are: m - 7 (numbered 1..7), R ln - {1,2,3,4} and

Rout — 11 •

Application o f Range Algorithm 159

A i = { 1, 5, 6 , 7 }, node(5): write (/)

ReadHistory ̂ i>:

w = {({1, 2, 3, 4}, {}, t 0 , table0) j }

R eadSe t = {1 , 2, 3, 4}

return{(h,d) = table y)

File operations are performed here (updateF , [copyF])

WriteHistory ̂ y y { { { 1, 5, 6 , 7}, {}, t y j a b l e l) l 5 6 ? }

A 2 = {1 ,2 ,3,4,7} ,n o d e(l): write i f)

ReadHistory

w = {({1, 2, 3, 4), {2}, t 0 , table0)2 ({1, 2, 3, 4), {3}, t 0 , table0)3

({ 1 ,2 , 3 ,4 } , { 4 } , t 0 , ta b le0 \ ({ l ,5, 6 , 7}, {}, t y , table y)7 }

Read.Set = {1, 5, 6 , 7} since max(r) = ty

return((h,d) = table yv -j) — (both nodes (1,7) contain the up-to-date history. As 1

is the local node and 7 has replied to the history read request and returned the table

as well, either table can be returned here)

File operations are performed here (updateF , [copyF])

WriteHistory(i>2) :{({1, 2, 3, 4, 7}, {}, t 2,table2){<2,3,4.7 ^

A 3 = {5,6,7} , node(5): write i f)

ReadHistory (5 3)-.

w = {({1, 5, 6 , 7}, [5], t y , table y) y {[1, 5, 6 , 7}, {6) , t y , table y)6 ,

({ 1 ,2 , 3, 4 , 7) , {) , t 2 , t abl e2)1)

R eadSe t = {1, 2, 3, 4, 7} since max(r) = t 2

return{(h,d) = table 7)

The write request does not succeed since the WriteHistory returns error — only three

nodes are available.

160 Appendix D

A 4 = {3, 4, 5, 6, 7} , node(5): write i f)

ReadHistory 4) :

w = {({1, 2, 3, 4, 1), [3], 12 , table2)3 , ({ f 2, 3, 4, 7}, {4}, t 2, table2)A,

({ 1 ,5 , 6, 7}, {5}, r !, table i)5), ({1, 5, 6, 7}, {6}, 11, table 0 6 }, ({1, 2, 3, 4, 7}, {), t 2, table

R eadSe t - {1, 2, 3, 4, 7}—{3, 4, 5, 6} = {1, 2, 7} since max(r) = t 2

return({h,d) = table 7)

File operations are performed here (updateF , [copyF])

WriteHistory{5A):{({3, 4, 5, 6, 7}, {}, U d a b le^)3 4 5 6 1 }

A 4 = {1, 2}

ReadHistory d' Sy

w = {({1, 2, 3, 4, 7}, { l } , r 2* ^ ^ 2)1*(U. 2 , 4 > 7)« {2}, t 2 , table2)2 }

R eadSe t = {1, 2, 3, 4, 7}-{ 1, 2} = {3, 4, 7} since max(f) = t 2

Since non o f the nodes from the R ea d S e t returned a reply, ReadHistory returns error —

table is not available.

Published W ork 161

Appendix E

The first paper was presented at the IEEE COMPCON Spring'89 conference in San

Fransisco in February 1989. This paper discusses the RH algorithm and compares the

steady-state availability for small number o f copies. A similar paper was also published

in the proceedings o f the ISCIS-V International Conference held in Cesme, Turkey in

November 1989.

The second is the position paper which will be presented at the

IEEE Workshop on Management o f Replicated Data in Houston in November 1990.

This paper presents an original work on the effect o f network partitions on reliability.

162 Appendix E

A Low Cost File Replication Algorithm

B S B acarisse S Bek Bayderc

Department of Computer Science
University College London

London WCIE 6BT.

ABSTRACT
An algorithm suitable for reading and writing replicated files is
described. It provides high availability with very low replica­
tion factors by combining variations of existing replication
control strategies. The algorithm is presented together with
some statistical analysis, comparing the availability provided
by this and other well known methods.

1. Introduction
Increased reliability is often quoted as one of the principal

advantages of distributed systems. Unfortunately the potential
for fault tolerance that is offered by distributed systems has
only been realised in a few applications, such as real-time con­
trol of life-threatening processes and financial transaction pro­
cessing, where the increased complexity of the system can be
justified by the unacceptable cost of a failure. Commercially
available distributed file systems have tended to concentrate on
the problems providing efficient remote access, rather than
offering increased reliability through replication. Ironically,
system managers may then be tempted to distribute functional­
ity across the network, thereby decreasing the overall reliabil­
ity of applications.

The authors believe that there are three main design cri­
teria that must be met before replicated file systems can
become commonplace in general purpose computing environ­
ments. First, the communications overhead inherent in any
replicated system must be brought within acceptable bounds.
Secondly, the storage cost of replicating files must be kept
down and, thirdly, mechanisms need to be provided to allow
control over the level of reliability (or replication) required for
particular sets of files.

This paper presents an algorithm for controlling access
and updates to replicated files. It combines the advantages of
available copy algorithms (high availability) and voting
algorithms (consistency in the face of network partition) to
provide fault tolerance with low levels of replication (even 2
copies) while keeping the communication overheads incurred
by file operations down. The design is aimed at
loosely-coupled systems; typically a collection of workstations
linked by a local area network. It is not suitable for database
applications which require concurrency control, stringent con­
sistency constraints and support for atomic transactions. Our
main concern was to provide fault tolerance efficiently as an

extension to file systems that, typically, do not provide transac­
tions nor ensure consistency in the face of concurrent updates.

The design contains some support for controling the level
of replication and the placement of copies, although how these
facilities are presented to users and system administrators
needs, we believe, much more work. The rest of this paper
consists of a summary of related work in section 2 and an over­
view of the file system design and a description of the algo­
rithms in section 3. Section 4 presents some analytical results
concerning file availability and communication overheads.
The section concludes with a discussion of some possible
implementation techniques and future work.

2. Relevant Work
Consistency schemes for replication control can be

divided, broadly, into voting algorithms and available copy
algorithms. The latter group are intellectual descendants of
Alsberg’s primary site algorithm.1 Failed sites are dynamically
detected by high priority status transactions and configured out
of the system while newly recovered sites are configured back
in. Recovered sites bring themselves up to date by copying
from other sites before accepting any user transactions. Clients
may read data from any available copy but must write to all
available copies. This form of unanimous update2 provides
better availability than all other methods but does not prevent
inconsistencies in the presence of communication failures such
as network partition. Only clean, detectable, site crashes are
handled correctly by this method.

El-Abbadi et a l extended this method to handle parti­
tions. Two approaches were proposed. In the first, nodes
maintain virtual partitions which are logical groups
corresponding to actual partitions. Unanimous update being
used within each virtual partition. Only a virtual partition con­
taining a majority of the replicas may access the data. The
second offered greater flexibility. In this system, nodes main­
tain views similar to virtual partitions but within each view
weighted voting is used between sites.

The latest variation of the available copy algorithm is
regeneration.4 Here, the availability of the data is restored
immediately after a node crash by regenerating the failed copy
on a new available node. Again, this approach cannot maintain
consistancy in the case of network partitions.

CH2686-4/89/0000/0191$01.00 © 1989 IEEE
191

Published Work 163

In voting algorithms, each site maintains a number of
votes. Client requests must gather a quorum of votes before
being accepted. In its simplest form, majority voting every
copy, or site, has one read and one write vote. For a request to
be accepted a majority need to approve it. The algorithm
employs time-stamps both in the voting procedure and in the
application of updates to data copies.

In weighted voting6,7,8 sites may be assigned different
numbers of votes. Read transactions collect a read quorum of
r votes to read a file, and a write quorum of w votes to write a
file, such that r + w is greater than the total number of votes
assigned to the file. There is then always an intersection
between read and write quorums so every read quorum is
guaranteed to include an up to date copy. Weighted voting
provides serial consistency which means that it appears to each
transaction that it is running alone.

Quorum consensus and primary copy methods work well
if the number of copies is large. A number of variations have
been proposed for reducing the storage cost of the algorithm by
replacing some of the copies by so called witnesses^ that
record only the current status of the file and for increasing the
write availability by replacing unavailable copies by so called
ghosts10 that vote but hold no actual data.

Most of the work in this area has grown out of database
applications where the cost can be justified by the requirement
for availability and consistency. Some distributed file sys­
tems11,11 have realised the potential of replication for fault
tolerance. Most, like LOCUS,1-* use a simple primary copy
algorithm2 because of its simplicity and relatively high relia­
bility at low levels of replication. Voting algorithms have also
been used. KUDOS14 uses the majority consensus approach
with a locking mechanism15 for concurrency control and vot­
ing with ghosts is currently being implemented for the
AMOEBA16,17 file system.

These voting schemes offer consistency even with serious
communication failures, such as network partititions, but
require at least three copies for practical use. The authors’
approach can provide some of the advantages of both tech­
niques: high availability with low levels of replication, com­
bined with resilience to serious network and server failures.

3. System Model and Algorithms
We view a distributed computing system as a finite set,

M = {1, 2, 3, ...,m }, of processing nodes connected by a data
network. In the absence of failures the underlying network
routes messages between these nodes. Nodes may crash, the
network may fail and its failure may result in the system
becoming partitioned. Failed nodes and links can recover
spontaneously or because of system maintenance. It is
assumed that a processing node can determine the status of
another only by receiving a message from that node. A node is
said to be available from another if both are running and the
network can route packets between them (both ways). It is
assumed that a transport level protocol will provide reliable
error free communication between nodes, in fact a remote pro­
cedure call (RPC) mechanism1̂ ’19 that offers at-most-once
semantics is likely to be the best communication protocol for
most of the algorithms.

The algorithms presented here are designed with this
model of a distributed computing system in mind. The file sys­
tem, as a whole, is configured in the following way.

ServerServer Server

Application

File System

History Table C ontrol

A vailability Control

Com m unication

Replication Control Service

Figure 1 — Logical structure o f the file system.

The file system presents applications with the abstraction
of a logical file consisting of a sequence of bytes and identified
by a unique identifier / e F . They are considered to be
sequences of bytes, any subsequence of which may be read or
replaced by any other byte sequence. The file system provides
four operations on these logical files: create, read, write and
delete.

Logical files are implemented by a (possibly empty) set of
physical files each holding a complete copy of the data in the
logical file and each residing at a single, distinct processing
node shown on the diagram as a file server. Two protocol
layers within the Replication Control Service co-ordinate
access to the physical copies so as to ensure that read requests
return the most up-to-date version of the file. The availability
control layer determines the appropriate update strategy for a
file operation based on the file’s history table. The history
table records the location and version number of each copy
along with a flag that marks the file as having been deleted.
The history is maintained by the history table control layer and
is discussed below.

The number and location of the copies of each file are
controllable by its owner, and both may change during the
file’s lifetime. This is implemented as an interface into the
lower control layers of the replication control system.

Notation
The algorithms in this paper are presented in a pseudo­

code based on set notation and predicate calculus mainly
because the algorithms rely heavily on set manipulation and
require very little in the way of conventional control structures.
The following sets are used throughout.

T = {true, f alse)
Z the integers
M the set of processing nodes
F the set of file identifiers
V = 2m xZ (sets of server and version number pairs)
X* the set of byte strings

The notation 25 denotes the power set of S , ie the set of all
subsets of S .

192

164 Appendix E

4. The Availability Control Layer
Each logical file / e F has a history table h (f) e V x T

that records the version numbers and locations of every physi­
cal copy of the file along with a boolean flag used to mark the
file as having been deleted. Two operations,

ReadHistory: F V x T

WriteHistory: F x (V x T) —» {success , error)

are provided to manipulate this table. A read of the table for a
particular file returns this flag together with the locations and
corresponding version numbers of its physical copies. A write
to the table records new machine and version number pairs and
can be used to set the delete flag. This history information is
itself replicated using a separate algorithm; the details of which
are described in the next section.

At file creation time, all copies are in equilibrium, with
all version numbers zero:

create i f , S) : F x 2s —> {success ,error }
let h <— ((m, 0) | m e S }
return WriteHistory i f ,{h, fa ls e))

No physical copies are accessed until the file is first written to.
The delete simply attempts to write a new history that

records the file as having been deleted using the flag already
mentioned.

delete i f) : F —» [success, error}
return WriteHistory (f , (empty, true))

A file may be in any one of four availability states, deter­
mined by inspecting its reliable history table.
1) All copies are available and up to date.
2) All available copies are up to date but some copies are

unavailable.
3) Some of the available copies are not up to date.
4) No up to date copy is available.
The availability control layer determines the appropriate access
and update policy for each state. In order to read a file it must
be in state 1, 2 or 3, ie at least one available copy must be up to
date:

read i f , posn , size): F x Z x Z —> L * u [error}
let {h , d) <— ReadHistory i f)
if d = true v h = 0
return error
let latest <— max({i | 3 (m , i) e h })
if latest <0
return error — can’t happen!
let U <- [m | 3 (m, latest) e h)
return readF(U, / , posn, size)

If the file has been deleted (d = true) or the file’s history is not
available (h = 0) then the operation fails. Negative version
numbers are used by the configure operation to mark new
copies that must be brought up to date at the next write, and
must therefore be excluded from read operations, although the
algorithm used ensures that there will always be on positive
version number in any history. The set of servers holding

copies with the highest version number is found and a read
request is multicast to them using readF, defined as follows.
readF(t/, / , p o s n 2 M x F x Z x Z —> L * u [error)

returns data (specified by size and position) obtained from
any server in the set U , or an error indication if no server
responds.
An alternative read operation can be provided for files in

availability state 4 that will read the most up to date version
that is available. We expect this operation to be used when all
up to date copies have been lost forever (by disc failure, for
example) or the file has very weak consistency requirements.
For example it may be better to read an old version of a host
address table than none at all.

The algorithm is similar to that for the read operation
above, except that it iterates if the readF request fails, picking
all servers that hold versions one less than latest until the
lowest (positive) version number has been tried. We do not
present the details here for reasons of space.

A write operation will succeed if at least one file copy
can be updated and the file’s new history can be recorded. The
update is multicast to all up to date copies, and servers holding
out of date versions are asked to copy the new file. The set of
servers which accepted either the update, R , or a new copy, C ,
will hold up to date versions and this is recorded in the new
history with an incremented version number for these sites.
Untouched servers have their history table entries copied into
the new table from the old one. If all servers either accepted
the update or took a fresh copy, (availability state 1), then the
file can be put back into equilibrium by recording all the ver­
sion numbers as zero.

write i f , data, posn): F x Z* x Z —» (success, error}
let {h , d) «- ReadHistory i f)
if h = error v d = true
return error
let latest <— max({/ | 3 (m , i) € h)
if latest < 0
return error — can’t happen!
let U <— (m | 3 (m , latest) e h)
let R «- updateF(U, / , data, posn)
if R = 0
return error
let S +- [m | 3 (m , /) e h }
let C copyF(R, / , (5 - R))
i f C v R =S
then let h' «— {(m, 0) | m e 5}
else let h' <— {(m, /aresr+1) | m e C u / ?)

u {(m , i) s h | m e C u R }
return WriteHistory i f , {hi, fa ls e))

The following support operations are invoked on physical file
copies:
updateF(U,/ , data, posn): 2M x F x I * x Z -> 2M

Multicasts a request to write data to the file / to all the
servers in the set U. It returns the set of servers that
accepted the request.

193

Published W ork 165

copyF(R j JX)\ 2M x F x 2M -> 2M
Copies the file / from any server in the set R to all the
servers in the set X . Again, the result is the set of servers
that accepted the operation.
The configure operation allows the set of servers that file

copies of a file to be changed during the file’s lifetime. The
table is reconfigured so as to ensure that the new server set
contains at least one up to date copy. If the intersection
between the old and the new server sets is empty and none of
the servers in the new set are available to take a copy of the
file, the operation will fail. Copies are deleted simply by modi­
fying the history table. New new sites that are unavailable to
take a copy of the file are added with negative version
numbers. The write algorithm will bring them up to date as
soon as possible, and the read algorithm will ignore these
copies. The details are a little messy and, again, have been
omitted to save space.

configure i f , P): F x 2S1 {success, error }
ensure that file / is replicated on each of the servers in
the set P .

5. History Table Control Layer
The modified available copy algorithm presented above,

requires a highly reliable, consistent history table to be main­
tained for each file. This layer provides the operations

ReadHistory : F —> V x T

WriteHistory: F x (V x T) —» {success, error }

The history records whether the file has been deleted (the truth
value is interpreted as a "deleted" flag) and a set of machine
and version number pairs (V = 2S1 xZ).

The history table control layer supports these operations
by replicating the table using a variation of the basic majority
voting algorithm so that the file histories are consistent in the
face of network partitions. The history tables are made highly
available by replicating them on k sites, where k » n , the
number of file copies.

In its simplest form, k = [m/2|, where m is the total
number of processing nodes. Each node is assigned one read
and one write vote, regardless of whether or not it holds a copy
of any file’s history table. The algorithm will allow a read to
succeed even if only one copy of the table is available, so long
as the majority of nodes is available. Writes to the table
require a majority of nodes to accept the new table version. In
the case of random node crashes the method will offer a high
degree of read availability. Random network partitions will
reduce availability more seriously but the table will still be
consistent. More statistical analysis of partitioning is still
required.

In order to reduce the communication cost, weighted vot­
ing can be used to reduce the numbers of responses required to
complete an operation. This will reduce table availablility will
unless the nodes with high weights are highly available them­
selves. Fortunately, the history table information is quite small
— eight bytes per copy per file is quite sufficient, so high lev­
els of replication are not costly in terms of storage.

A simple locking scheme is required to ensure that the file
state and the history table are kept in step — the table being

locked when it is read and unlocked when it is written back. A
more subtle scheme is possible, but from our studies of active
file stores we believe concurrent update of replicated files is
likely to be very rare in practice.

In many distributed systems the number of messages,
rather than their size, is the predominant factor in determining
the cost of network protocols.20 Many of the low-level opera­
tions required to support this algorithm would benefit from a
multicast request response mechanism. If the underlying com­
munication system uses a broadcast link level protocol, the
cost of such a mechanism is a factor of the number of replies
required from a request, not the number of servers to which the
request was sent, nor the size of the request parameters. Many
studies, including our own, have shown that read operations
predominate in most general purpose file systems, and
ReadHistory is the most costly part of our logical file read
request. If the problem of concurrent write operations is
ignored (as it very often is in non-replicated file systems), then
it is possible to increase the performance of this algorithm by
adding a file open operation, that caches the file’s history
locally, writing it back only when a corresponding close
operation is performed.

6. Analysis and Conclusions
In this section we present a simple combinatorial analysis

of this modified available copy method (MACM). We will
derive expressions for P(AU) — the probability that a file is
available for update. In this analysis we assume that machines
fail independently with a probability p and that update and
read requests originate at random from machines not in the set
of file servers M . Relaxing these assumptions severely com­
plicates a combinatorial analysis, but we hope that a stochastic
process model may provide more realistic formula.

In its simplest form, the available copy algorithm has a
read and write availability of P(Ay) = 1 - (1 —p) n for a file
with n replicas. As m , the number of file server nodes,
increases the update availability of our MACM approaches
this. To show this we must demonstrate that:
a) A,, the availability of the history table for a file, and A f ,

the availability of the file, are asymptotically independent
events:
With k table and n file copies chosen from m nodes, the
probability that a node holds a copy of both the table and

k nthe file is — x — which tends to zero as m tends to m m
infinity.

b) The probability that a file is available for update, P(AU), is
asymptotically equal to the probability that the file is
available:

For an update to succeed, both the file history and at least
one copy of the file must be available. The table, repli­
cated using majority voting, is available with probability

PGM = £ p H i - p r - *k >m 12
which tends to 1 as m tends to infinity.21,22 Since A, and
A f are (asymptotically) independent,

P(AU) = P(A/)P(A,) = 1 - (1 - p) n

194

166 Appendix E

for large rn.
Table 3 shows file availabilities when /?=0.7 and p=0.9

for five common replication strategies: unanimous update, sin­
gle primary, moving primary, majority voting and available
copies under the assumptions presented above. Figures for
n = 2, 3, 4 and 5 are shown.

method n-2 n=3 n=4 n-5
U Update 0.49 0.34 0.24 0.16
S Primary 0.70 0.70 0.70 0.70
M Primary 0.49 0.78 0.91 0.96
M Voting 0.49 0.78 0.65 0.83
A Copies 0.91 0.97 0.99 0.99

Table 3a — Availability when p =0.7

method n=2 n=3 n-4 n=5
U Update 0.81 0.73 0.66 0.59
S Primary 0.90 0.90 0.90 0.90
M Primary 0.81 0.97 0.95 0.99
M Voting 0.81 0.97 0.95 0.99
A Copies 0.99 0.99 0.99 0.99

Table 3b — Availability when p =0.9
In order to derive a more realistic formula, it is necessary

to consider conditional probabilities.

P(AU) = 1 - P (- A f v - A,)

= 1 — P(- Ay) — P(— P(- Ayr I ~A ,)P (~ A ,)

In the first step, we will show that P(- A ,) = (1 - p)* where in
the following expression P(N,) is the probabaility that i nodes
are down (not necessarily holding a table copy) and P(T,) is
the probability that all tables are on those i nodes.

P (- ^) =

= f (” » - *) ! n m - ' (\ - n) i
,4 j . (m-i) ! (i - k) ! P P

put j =i -k and i=j+k and we get

= <■ - P + % (mC? 4) !7Tp^ ~ ;(1 ~ p) i

and since the second part is a binomial expansion we can write,

P (- A ,) = (l - p) *

Now it is simple to show that P { - A f) = (I — p) n . By work­
ing from the observation that

P (~ A f | -A,) = £ P (S i) P { R n)

where P(S,) is the probability that n - i copies are on the
servers that hold tables, and P(/?„) is the probability that none
of the remaining servers hold available copies, we can derive

p(-4j = i - (i - p r - (i - p) * +
A k ! (m—n +/)! ,, »,■+*
^(Jfc-n+i) ! P)

This formula gives more realistic availability statistics for
the modified algorithm. Table 4 shows the update availability
computed from this formula for two values of p . A value of
m = 50 was used throughout.

n-2 n=3 n=4 n=5
p-0 .7 0.90 0.97 0.99 0.99
p=0.9 0.99 0.99 0.99 0.99

Table 4 — Update and read availability for MACM.

Conclusions
These figures show an expected availability very close to

those obtained from the unmodified available copy method and
significantly higher than those available from majority voting
unless high replication factors are used. The history table
enables the method to give consistent update in the presence of
network partition which is not possible with an unmodified
available copy approach. Although the history table must be
replicated using a voting strategy and requires a high level of
replication in order to give the degree of fault tolerance
required, it is relatively small compared to the size of the file
itself.

We are pursuing this work by simulating this and other
algorithms in order to estimate the likely communication over­
head involved and to verify the combinatorial analysis above.
The simulations will also allow us to investigate file availabil­
ity in the presence of failures that are harder to study
analytically, such as network partition. An analysis based on
stochastic processes is also being conducted.

Many areas require further study. In particular there are
several interesting systems administration questions that arrise
only with replicated files. Who may alter the file’s replication?
How does the user or system administrator specify the replica­
tion — explicitly or by asking for a given level of fault toler­
ance? Should the positioning of files be decided automatically,
by users, or by administrators? If the results from the simula­
tion are encouraging, we hope to use a pilot implementation of
this work to explore these and other issues.

ACKNOWLEDGEMENTS
We would like to acknowledge the advice and assistance

of our collegues Karen Paliwoda, now at the Programming
Research Group, Oxford, and Steve Wilbur.

REFERENCES
1 PA Alsberg, “ A Principle for Resilient Sharing of Distri­

buted Resources,” Proceedings o f the 2nd International
Conference o f Software Engineering, pp. 562-570, October
1976.

2 PG Selinger, “ Replicated Data,” in Distributed Databases
■ An Advanced Course, ed. F Poole, Cambridge University
Press, 1980.

A El-Abbadi, D Skeen, and F Cristian, “ An Efficient,
Fault Tolerant Protocol for Replicated Data Management,”
Proceedings o f the 4 th ACM SIGACT-SIGMOD Symposium on
Principles o f Database Systems, pp. 215-229, New York, NY,
March 1985.

4 C Pu, JD Noe, and A Proudfoot, “ Regeneration of Repli­
cate Objects: a Technique and Its Eden Implementation,”
IEEE Proceedings o f the 2nd International Conference on
Data Engineering, February 1986.

5 RH Thomas, “ A Majority Consensus Approach to Con­
currency Control for Multiple Copy Databases,” ACM Tran-

195

Published Work 167

sactions on Database Systems, vol. 4, no. 2, pp. 180-209, June
1979.

6 D Gifford, “ Weighted Voting For Replicated Data,”
Proceedings o f the 7th ACM Symposium on Operating System
Principles, pp. 150-162, December 1979.

7 M Herlihy, “ A Quorum-Consen.sus Replication Method
for Abstract Data Types,” ACM Transactions on Computer
Systems, vol. 4, no. 1, pp. 32-53, February 1986.

® JJ Bloch, D Daniels, and A Spector, “ A Weighted Voting
Algorithm for Replicated Directories,” Journal o f the ACM,
vol. 34, no. 4, pp. 859-909, October 1987.

9 JF Paris, “ Voting with Witnesses: A Consistency Scheme
for Replicated Files,” IEEE 6th International Conference on
Distributed Computing Systems, pp. 606-612, 1986.

10 R Renesse and AS Tanenbaum, “ Voting with Ghosts,”
IEEE 8th International Conference on Distributed Computing
Systems, pp. 456-461, June 1988.

11 L Svobodova, “ File Servers for Network-Based Distri­
buted Systems,” ACM Computing Surveys, vol. 16, no. 4, pp.
353-398, December 1984.

12 H Sturgis, J Mitchell, and J Israel, “ Issues in the Design
of a Distributed File System,” ACM Operating Systems
Review, vol. 14, no. 3, pp. 55-69, July 1980.

G Popek, B Walker, J Chow, D Edwards, C Kline, G
Rudisin, and G Thiel, “ LOCUS: A network Transparent High
Reliability Distributed System,” Proceedings of the 8th ACM
Symposium on Operating System Principles, pp. 169-177,
December 1981.

14 KH Bennett, “ Distributed Filestores,” in Distributed
Computing, ed. FB Chambers, Academic Press, 1984. ISBN
0-12-167350-2

15 JN Gray, “ Granularity of Locks in a Shared Distributed
Database,” Proceedings o f International Conference on Very
Large Databases, pp. 428-451, September 1975.

16 AS Tanenbaum and SJ Mullender, “ An Overview of the
Amoeba Distributed Operating System,” ACM Operating Sys­
tems Review, vol. 15, pp. 51-64, July 1981.

17 SJ Mullender and AS Tanenbaum, “ A Distributed File
Service Based on Optimistic Concurrency Control,” ACM
Operating Systems Review, vol. 19, no. 5, pp. 51-62, December
1985.

A Birrell and BJ Nelson, “ Implementing Remote Pro­
cedure Calls,” ACM Transactions on Computer Systems, vol.
2, no. 1, pp. 39-59, February 1984.

19 S Wilbur and B Bacarisse, “ Building Distributed Sys­
tems with Remote Procedure Call,” I EE Software Engineering
Journal, vol. 2, no. 5, pp. 148-159, September 1987.

20 TA Joseph and KP Birman, “ Low Cost Management of
Replicated Data in Fault-Tolerant Distributed Systems,” ACM
Transactions on Computer Systems, vol. 4, no. 1, pp. 54-70,
February 1986.

21 RE Barlow and KD Heidtmann, “ Computing k-out-of-N
Reliability,” IEEE Transactions on Reliability, vol. 4, no. 33,
pp. 322-323, October 84.

22 Y C Tay, “ The Reliability of (k, n)-Resilient Distributed
Systems,” IEEE Proceedings o f the 3rd International Confer­
ence on Data Engineering, pp. 119-122, 1984.

196

168 Appendix E

Reliabi l i ty o f Rep l ica ted Files in Part i t ioned N e tw ork s

S Bek Baydere B S Bacarisse

Department of Computer Science
University College London

London WCLE 6BT.

1. Introduction
The potential for increased reliability is often given as one of the benefits of a distributed system. The

hardware is, by definition, replicated so hardware and software problems are more likely to cause only a partial
failure rather than affect the whole system. As networks grow and evolve, subnets can become bridged
together and machines moved from subnet to subnet; more often than not as required by geographical con­
straints. As a result, it is reasonable to assume that network partitioning is a relatively likely event.

We believe that three central problems must be solved before the benefits of file replication can be real­
ized in general purpose distributed systems:
1. High reliability must be provided with minimum storage cost (say, 2 file copies).
2. The system should provide simple mechanisms to alter the reliability of files as users’ requirements

change.
3. The reliability should not be adversely affected by changes to the network topology and therefore to the

failure modes of the network.
This position paper concentrates on the first and third of these and outlines our work estimating the com­

parative reliability of files replicated using a variety of strategies under the realistic assumption the network
may become partitioned. Of particular interest is the reliable history strategy (presented in an earlier paper)1
which, we believe goes some way towards addressing these three points.

Most of the algorithms used to control updates to replicated data fall into one of two families: voting--4
and available copy methods.5 Available copy algorithms with two copies offer better availability than voting
with three; but require all the nodes in the system to have the same understanding of which nodes are available
and which are not. This requirement is at odds with the failure model of distributed systems that we outlined
above and.

We propose providing a highly available file replication history by recording a version number for each
file copy. The table of version numbers is replicated many times and updates to it are controlled using a
regenerative-majority consensus voting algorithm.6 Any client wishing to read a file consults the file’s history to
determine which file copies are up to date. A read in the file is allowed as long as one up to date copy is avail­
able. Write operations proceed in the same way with the update being performed on all the up-to-date copies.
Copies that are out of date but whose servers are available are brought up to date by copying.

Because the file’s history is small compared to the size of the file itself the high degree of replication
involved does not add greatly to the storage cost. It has a communication cost associated with the history access
operations but, we believe a multicast transport protocol can reduce this cost into acceptable bounds.

The algorithm is a hybrid of voting and available copies techniques but it doesn’t require a mechanism to
distinguish network failures from node crashes. For obvious reasons we call this the reliable histories method.

169

2. A nalysis

It is a relatively simple matter to analyse the availability offered by various
algorithms. We have carried out a combinatorial analysis of the behaviour of major­
ity voting (MV), available copy (AC) and the reliably history (RH) techniques under
the assumption the network partitions do not occur.1 When partitions are possible,
the analysis becomes much more involved and only simple network topologies can
be studies. For example the simple network shown on the right was studied and the
file availability obtained as a function of the availability of the bridge for both MV
(three copies) and RH (two copies). A graph of the results is shown below. The two
graphs show the effect of allocating different numbers of nodes between the two
subnets. In each case, two configurations were assumed. One in which all copies
are on the same subnet and the other in which they are split.

Not surprisingly, MV is much more sensitive to the topology and the placement of copies than RH
believe this is an important property of the algorithm.

-o
o- -o
o- -o
o- — (BRIDGE f— -o
o- -o
o

-O
Topology 1

We

Topology 1: The Effect of Bridge Availability
slightly a s sy m e tr ic n ode distribution (5 -7) highly a ssym etric n ode distribution (2-10)

RH
con fig 1&2

MV
c on fig 1

MV
config 2

RH
co n fig 1

RH
con fig 2

MV
con fig 1

MV
con fig 2

a v a i l a b i l i t y

0.6 0.10.4 100.0

probability o f netw ork partition

availability

o.o 0.4 0.6 0.8

probability o f netw ork partition
10

Availability is only one measure of an algorithm’s behaviour. Reliability (the probability that the file is
continuously available for a given period of time) is probably more important. To study reliability we turned to
simulation. The graphs below shows the reliability offered by the MV, AC and RH algorithms in a partition
free network of 50 nodes with the reliability of a single copy is given as a reference. An exponential distribu­
tion of the mean time between failures was used, whereas the mean time to repair were normally distributed.
RH and AV with two copies perform considerably better than MV with three copies.

Reliability in a Partition Free System
sin gle RH ̂ MV AC
c o p y 2 c o p ie s j c o p ie s 2 c o p ie s

reliability

0.4

e la p se d time (mtt^frnttr - 100/7)

sin g le RH MV AC
co p y 2 c o p ie s 3 co p ie s 2 co p ie s

reliability

e la p se d tim e (mfcif/mUr = 3 0 0 /7)

170 Appendix E

3. Effect o f Partition ing on Reliability

The position becomes more interesting when partitioning is considered. A number of network topologies
and file configurations have been simulated to study the effect these have on reliability. Since the available
copies algorithm is not applicable in this environment, only majority voting is compared with RH. For exam­
ple, given the two networks show here,

I BRIDGE | | BRIDGE | | BRIDGE I | BRIDGE |
— I BRIDGE 1— — | BRIDGE 1—

- o o - o - o -

o - o - - o - o o - o o o -

o - o - o - o o o - o o -

o - o - H BRIDGE |— - o - o o - o - o - o -

o - o - o - < 3 o - o o o

Topology 2

IBRID

o -

o -

o

o -

o -

Topology 3

different configurations can be represented by the distribution of the nodes on the links and the link numbers
where copies reside. For example, in topology 2, the configuration (10, 15, 5, 12; 2, 4) has 10 nodes on subnet
1, 15 on subnet, etc. The file has two copies: one on subnet 2 and the other on subnet 4.

The graphs below compare MV between three copies and RH with two copies in these two network topo­
logies. In each topology, two configurations were used. In the first (given above), all copies were on different
links and in the second, all copies were on the same link: (10, 15, 5, 12; 4 ,4).

For topology 3, the two configurations were (5, 7, 7, 10, 10; 3, 4, 5) and (5, 7, 7, 10, 10; 5, 5, 5). A
failure/repair time ratio of 300/7 was used in all cases.

Topology 2: The Effect of Copy Placement
RH: 2 cop ies; MV: 3 cop ies

RH RH MV MV
co m ig 1 co n fig 2 con fig 1 con fig 2

reliability

0.6

e la p s e d tim e (mttf/mttr = 3 0 0 /7)

Topology 3: The Effect of Copy Placement
RH: 2 copies: MV: 3 cop ies

RH RH MV MV
con fig 1 con fig 2 con fig 1 con fig 2

reliability

e la p se d tim e (mttf/mttr = 3 0 0 /7)

3.1. Resiliency to Network Topologies and Copy Placement

The above results show that there is great variation in the the reliability offered by voting algorithms. In
these particular cases the same is not true for RH though in other studies greater variation was observed. In
order to leam more, we studied the distribution of reliabilities obtained for several, randomly chosen,
configurations. The probability of continuous availability for 1000 time units was used, since there is consider­
able variation for this value.

171

Tlie results, shown below, are rather interesting. Majority voting gave exponentially distributed reliabili­
ties with a mean less than 0.1, where the reliable histories algorithm gave more normally distributed reliabilities
with a mean of about 0.25.

Distribution of Reliability at 1000 time units
(randomly chosen copy placements)

% freq u en cy % freq u en cy

MV
3 copies

0.1 - 0.2 0 2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7

RH
2 copies

0.0 - 0.1 0.1 - 0.2 0.2 - O J 0.3 - 0.4 0.4 - 0 5 0 5 - 0.6 0 6 - 0.7

reliability reliability

4. Conclusions
In terms of availability and reliability, the proposed reliable histories algorithm has performs very simi­

larly to available copy methods whilst maintaining consistency in the face of network partition. In many
configurations, RH with two copies gives reliability than voting algorithms using three copies (or two copies
and one witness). There is also some evidence that the algorithm is less sensitive to the topology of the network
and to the placement of file copies. This is likely to be an important property in systems where the
configuration can not be planned to maximize file reliability, say, because it is dictated by physical considera­
tions.

'The effect of network configuration and file placement needs much further work. One plan of attack is to
generate and simulate “ random” configurations. While this is relatively simple for copy placement, the notion
of a random topology must first be clarified. Perhaps by studying networks in the field some criteria for prob­
able topologies and node distributions can be determined so that suitable configurations can be randomly
chosen and simulated. Such a study may make it possible to derive rules that would allow the reliability of a
file to be calculated when the topology and location of the copies are given as parameters.

An analytical model for reliability in partitioned systems would certainly help to generalize and verify the
results obtained above. Unfortunately this is a difficult task for reliable histories approach because of the
number of nodes required before a significant improvement over voting methods can be obtained. We plan to
produce pilot implementation to test the practicality of this algorithm and to investigate how multicast protocols
could be used to reduce the communication overhead involved in the history table operations.

References

1. B Bacarisse and S Bek Baydere, “ A Low Cost File Replication Algorithm,” Proceedings o f IEEE
COMPCON Spring '89, pp. 191-196, IEEE Computer Society Press, San Francisco, February 1989.

2. D Gifford, “ Weighted Voting For Replicated Data,” Proceedings o f the 7th ACM Symposium on Operat­
ing System Principles, pp. 150-162, December 1979.

3. JF Paris, “ Voting with Witnesses: A Consistency Scheme for Replicated Files,” IEEE 6th International
Conference on Distributed Computing Systems, pp. 606-612, 1986.

4. R Renesse and AS Tanenbaum, “ Voting with Ghosts,” IEEE 8th International Conference on Distri­
buted Computing Systems, pp. 456-461, June 1988.

5. PA Bernstein and N Goodman, “ An Algorithm for Concurrency Control and Recovery in Replicated
Distributed Databases,” ACM Transactions on Database Systems, vol. 9, no. 4, pp. 596-615, December
1984.

6. RH Thomas, “ A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases,”
ACM Transactions on Database Systems, vol. 4, no. 2, pp. 180-209, June 1979.

