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Abstract

Distributed systems provide the opportunity for fault tolerance through replication. 

This dissertation describes the design and performance of a novel consistency scheme 

which balances the cost and benefits of file replication. The scheme features some 

characteristics that have an effect upon steady-state and continuous availability, and the 

correctness in the face o f network partitions with a small number of copies; especially 

two. The work has proceeded along five fronts; characterization of the consistency prob­

lem with a small number o f replicas; a hybrid design proposition; a series of comparative 

statistical analyses of availability in partition-free networks with extension to a simple 

partitioning case; a study of reliability and its resilience to configuration changes in parti­

tioned networks through simulation, and a discussion of the practicality and performance 

issues including some proposals for reducing communication cost of the control opera­

tions. Apart from the algorithm presented in Chapter Three, the original contribution of 

the work is threefold; a statistical analysis of availability with an extension of partition­

ing case for which neither statistical nor real-time analysis has been found in the litera­

ture. This analysis has shown the importance of the two-copies case. An analysis of reli­

ability including the effect o f network partitions and resilience to configuration changes 

in Chapter Five is also original and opened further areas in the field through this new 

resilience property. Chapter Six contains a new algorithm for reducing the communica­

tion cost of history operations. The introductory chapter presents an approach for com ­

paring consistency schemes through their effectiveness while, after a general summary, 

the concluding chapter details further work and the future o f file replication in general 

purpose computing environments.





5

Acknowledgements

I wish to thank Mr. Benjamin Bacarisse, for his encouragement, continuous support 

and supervision during the course of my research. W ithout his guidance I would not 

have been able to carry out this study.

I am indebted to Prof. Steve W ilbur who has given valuable advice at the initial 

stages of the research and spent a great amount of time reading and commenting during 

the writing phase of this dissertation.

I am also grateful to Prof. M. Sahinoglu and Karen Paliwoda who helped with the 

statistical analysis and to Dr. Ken Moody for his constructive comments on the thesis.

I would like to make a special note of thanks to my husband for the support he has 

given me during the period of my research.

Throughout my research I have been sponsored by the Government of Turkey to 

which I am also grateful.





Table of Contents

Abstract .............................................................................................................................................  3

A cknow ledgem ents.........................................................................................................................  5

Table of C on ten ts ............................................................................................................................  7

List o f Figures .............................................................................................................................  11

List o f Tables ..............................................................................................................................  13

1. C h ap te r One: In tro d u c t io n  ..............................................................................................  15

1.1 Objectives of the th e s is ................................................................................................  17

1.2 Outline .............................................................................................................................  18

1.3 Distributed System Models ........................................................................................  19
1.4 Replicated File S y s te m ................................................................................................  20

1.4.1 Concurrency Control P ro b lem ....................................................................... 24

1.4.2 Consistency Control P ro b lem ........................................................................  26

1.4.3 Communication S y s te m ..................................................................................  27

1.4.4 File vs Block Level Replication ...................................................................  28

1.4.5 Building Replication into the File System .................................................  29

1.5 Types of Failure and R eco v ery ..................................................................................  31

1.6 Measures of File Accessibility ..................................................................................  34

1.6.1 Availability ......................................................................................................... 35

1.6.2 Reliability ...........................................................................................................  37

1.7 Sum m ary .......................................................................................................................... 37

2. C h ap te r Two: C o n s is ten c y  C o n tro l S chem es ...................................................... 39

2.1 Unanimous Agreement Update .................................................................................  40

2.2 Single-Primary U p d a te ................................................................................................. 41

2.3 Moving-Primary Update ............................................................................................. 41

2.4 Voting Algorithms .......................................................................................................  43

2.5 Efficient Variations of V o tin g ...................................................................................  44

2.5.1 Reducing Storage Cost with W itnesses....................................................... 45

2.5.2 Enchancing Availability with Ghosts .........................................................  45

2.6 Optimum Vote Assignment or Coteries ..................................................................  46

2.7 Available Copies ...........................................................................................................  47

2.7.1 Handling P artitions..................................................................................................  48



8

2.8 Regeneration ..................................................................................................................  49

2.9 Discussion ....................................................................................................................... 51

2.10 Summary ....................................................................................................................... 52

3. Chapter Three: A Hybrid Replication  A lg o r i th m ............................................  55

3.1 Replication Control S e rv ic e ...................................................................................... 57

3.2 Availability Control Protocol ..................................................................................  60

3.3 History Table Control P ro to co l................................................................................  65

3.3.1 Communication Layer ....................................................................................  66

3.4 System Configuration ..................................................................................................  67

3.4.1 Example Scenarios for the Configure Operation .....................................  69

3.5 User R equirem ents......................................................................................................  71

3.6 D iscu ssio n .....................................................................................................................  72

3.7 S u m m ary ........................................................................................................................ 73

4. Chapter Four: Steady-State A vailability  .............................................................. 75

4.1 Combinatorial Analysis o f Availability .................................................................  77

4.2 Stochastic Analysis of Availability .........................................................................  80

4.2.1 Modelling Three N o d e s .................................................................................  82

4.2.2 Modelling Five Nodes .................................................................................... 85

4.2.3 C onclusion .........................................................................................................  86

4.3 M anaging Replicas in a Partitioned S y s te m ..........................................................  88

4.3.1 Combinatorial Approach to a Simple Partitioning .................................. 88

4.3.2 Resilience to Copy P lacem en t......................................................................  91

4.4 S um m ary .........................................................................................................................  94

5. Chapter Five: Reliability in Partitioned System s ............................................  95
5.1 System Model for Reliability .................................................................................... 96

5.2 Reliability in Partition-free N e tw o rk s ..................................................................... 99

5.3 Effect of Partitions on the Reliability ..................................................................... 101

5.3.1 Reliability in Topology-1 ..............................................................................  104

5.3.2 Reliability in T o p o lo g y -2 ..............................................................................  105

5.4 Resilience to Configurational Changes ..................................................................  106

5.5 An Analytical Approach ............................................................................................  107

5.5.1 Improving Reliability with Regeneration ................................................  109

5.6 Summary ........................................................................................................................  109



9

6. C h ap te r Six: P erfo rm ance and P racticality  ...........................................................  111

6.1 The Range Algorithm ................................................................................................  112

6.1.1 Staggering the Replies ................................................................................... 115

6.1.2 Communication Delay ................................................................................... 116

6.1.3 Conclusion .......................................................................................................  116

6.2 Efficient Implementation of the Scheme ............................................................... 117

6.3 Network Traffic A n alysis .......................................................................................... 118

6.4 Summary ........................................................................................................................ 122

7. C h ap te r Seven: C o n c lu s io n  a n d  F u r th e r  W o rk  ..............................................  123

7.1 General Summary .......................................................................................................  123

7.2 Summary o f Findings ................................................................................................. 130

7.3 Further Work ................................................................................................................ 131

References .................................................................................................................................  133

Glossary ......................................................................................................................................  139

Appendix A: Notation ...........................................................................................................  141

Appendix B: Analytic Model for Availability ................................................................ 143

Appendix C: Analytic Model for Finite S p a re s ............................................................... 149

Appendix D: Simulation W o rk ............................................................................................  155

Appendix E: Published Work ..............................................................................................  161





List of Figures

Figure 1.1. A workstation environment (Topology-1) .................................................  21

Figure 1.2(a). Building replication on top of the file sy s te m ...........................................  29

Figure 1.2(b). Building replication as a block-structured device ...................................  30

Figure 1.3. Backup/recorder process during incremental d u m p in g ........................... 33

Figure 2.1. A unanimous update performed on 3 distinct copies ..............................  40

Figure 2.2 An update operation maintained by M oving-Primary ap p ro ac h   43

Figure 2.3(a). Regeneration: recovery of a repaired node (case-1) ...............................  50

Figure 2.3(b). Regeneration: recovery of a repaired node (ca se -2 )...............................  51

Figure 3.1. Interacting components of the replication control system .....................  59

Figure 3.2. Layer interaction during create o p e ra tio n ..................................................  60

Figure 3.3. Layer interaction during delete operation ..................................................  61
Figure 3.4. Layer interaction during read  o pera tion ...................................................... 62

Figure 3.5. Layer interaction during write o pera tion ....................................................  65

Figure 4.1. States associated w ith RH algorithm when m — 3 .....................................  83
Figure 4.2. Analytic results when m  =3 ............................................................................ 85

Figure 4.3. Analytic results when m  =5 ............................................................................ 86

Figure 4.4. Comparison of availability obtained by different techniques ...............  87

Figure 4.5. A simple network topology ............................................................................ 89

Figure 4.6. Node availability vs File availability ..........................................................  91

Figure 4.7(a). Node distribution (5-7) ................................................................................... 92

Figure 4.7(b). Node distribution (2-10) ................................................................................  92

Figure 4.8 Availability when (1 - p r ) = 0.05 —  (sim+analy) ....................................  93

Figure 4.9. Distribution of availability at p  =0.9 ...........................................................  94

Figure 5.1. Simulation for various time periods ............................................................. 98

Figure 5.2. Reliability offered by RH for various m ...................................................... 99

Figure 5.3. Elapsed time vs Reliability (RH) .................................................................  100

Figure 5.4(a). Elapsed time vs Reliability (p=0.025) ........................................................  101

Figure 5.4(b). Elapsed time vs Reliability (p = 0 .2 ) ............................................................. 101

Figure 5.5. Failure ratio vs decay constant ...................................................................... 102

Figure 5.6. A distributed environment (Topology-2) ...................................................  102

Figure 5.7. Graph representation .......................................................................................  103

Figure 5.8(a). Elapsed time vs Reliability (R H ) .................................................................  105



12

Figure 5.8(b). Elapsed time vs Reliability (RH, MV in Topology-1) ........................... 105

Figure 5.9 Elapsed time vs Reliability (RH, M V  in Topology-2) ............................  105

Figure 5.10 Distribution of reliability at 1000 time u n i ts .............................................  106

Figure 5.11 Distribution of decay co n s tan t.......................................................................  108

Figure 6.1(a). M ulticast environment ....................................................................................  120

Figure 6.1(b). Unicast env ironm en t.......................................................................................  121

Figure B .l. STR diagram for the availability with AC (n c o p ie s ) ..............................  145

Figure B.2. STR diagram for the availability with MV (n c o p ie s ) ............................. 145

Figure B.3. STR diagram for the availability w ith RH (m=5 ) .....................................  146

Figure C .l. STR diagram for the reliability w ith RH (m=3) .......................................  153

Figure C.2. STR diagram for the reliability w ith RH (m=5) .......................................  154



List of Tables

Table 1.1. Percentage of accesses that represent whole-file tran sfe rs .......................  29

Table 1.2. Techniques used for recovery and availability ...........................................  34

Table 4.1. Availability offered by various replication schemes .................................  79

Table 4.2. Availability offered by RH for various m .....................................................  87

Table 5.1. Percentage o f time nodes were up ..................................................................  98

Table 6.1. Network interactions required by the RH algorithm .................................  122





Chapter One

Introduction

Distributed systems provide the opportunity to improve the fault tolerance of data 

through replication. It is often desirable to have multiple copies mainly for applications 

where interruptions of service due to node crashes or com munication link failures cannot 

be tolerated and the complexity o f the replication system can be justified by the unac­

ceptable cost o f failure. However, the designers o f general purpose distributed systems 

have concentrated mainly on the advantages o f data sharing  and efficient remote access 

rather than on high availability through replication [1].

Several projects are underway to create a general-purpose computing and informa­

tion processing environment that will include hundreds o f self-contained workstations. 

Replicated file systems which offer the desired availability can only become common­

place in these environments if the benefits of fault tolerance can be balanced against the 

costs and complexities introduced by replication. For this technology to be adopted in a 

wider range o f applications, the following three main design criteria should be con­

sidered: the storage cost of replicating files must be kept low, the communication cost 

inherent in the replicated system must be kept within acceptable bounds and the mechan­

isms provided for managing physical copies must be practicable and flexible in the sense
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that they allow control over the level of reliability required for different sets of files. In 

addition, replication is required to be transparent; that is its only observable affect is to 

make the data more available.

The basic aspect of replication management is to guarantee that there is no logical 

conflict in the user’s view. In other words, when the data is replicated accesses to it must 

be managed so as to maintain consistency. The exact nature of consistency changes from 

application to application. This will be discussed in more detail below. If  updates may 

be concurrent the locking protocols [2,3] used to ensure serialization to prevent physical 

conflicts may also provide the required consistency control. However, these two are 

separate concerns; consistency problems are inevitable consequences of replication 

whereas the concurrency problem may arise in any concurrent or pseudo-concurrent 

environment.

All schemes developed so far that provide users with a consistent view of replicated 

data are based on one of two basic principles: The simplest principle is

read anyiwrite all. Unfortunately, this principle improves the availability o f the file only 

for read operations by reducing the availability for write operations. In 1984, Bernstein 

and Goodman refined the principle giving a scheme that reads from  any available copy 

and writes to all available copies [4]. This available copies scheme configures out failed 

nodes from the system and configures them back in when they recover; so that, in effect, 

the algorithm is read any /write all. This method gives optimal availability provided the 

underlying network never becomes partitioned into more than one independently func­

tioning set o f nodes. If the network does become partitioned, this algorithm fails to 

preserve consistency.

The second basic principle is read some /write some. The algorithms which follow 

this principle use a quorum-consensus approach, each node votes for participation in a 

read or write operation. In order to read a file a read quom m  must be collected. Simi­

larly, in order to write a file a write quorum must be collected. This principle was first
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used by Thomas in 1978. He suggested a simple majority voting scheme [5]. In 1979, 

Gifford proposed assigning different weights to different copies and having different read 

and write quorums [6], Recently, many different variations to these basic schemes have 

been suggested [7 ,8 ,9 ,1 0 ]. These schemes are discussed in Chapter Two.

The principal disadvantage of voting schemes is that at least three copies of the data 

are required to give higher availability than a single copy. Five copies are needed to 

improve availability further. This is a significant storage cost compared to the available 

copies method that gives considerably improved availability with only two, but which 

cannot continue to work if the network becomes partitioned. These claims are justified in 

Chapter Four.

1.1 Objectives of the Thesis

There are many possible approaches to the problem  of consistency control in repli­

cation. This dissertation investigates a design in which the storage cost of replicated 

files as well as the gain in availability is considered. Such a low-cost implementation 

would be suitable for a wide range of applications in general-purpose computing environ­

ments. The design focuses on providing high availability with a small number of copies 

(especially two) and on the correctness of the algorithm in the face o f partitions. Some 

implementation techniques are also described to enhance the performance beyond that of 

the basic design. The first objective of the work is thus to show that going from a single 

copy to two copies results in a greater improvement in availability than going from two 

to three copies or beyond.

The second objective is to compare the network and system architecture assumed by 

the various algorithms to determine their practicability. This comparison also includes 

an examination of the facilities provided for reconfiguration (changing the location of 

copies and altering the degree of replication).

The third objective is to characterize the effect o f network partitions on the accessi­
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bility of replicated files. Common measures of accessibility include availability , which 

is the steady-state probability that the file is accessible at any given moment, and reliabil­

ity , which is the probability that a replicated file will remain continuously accessible over 

a given period of time. This objective has proved to be more difficult to satisfy mainly 

because of the problem of adequately generalizing the characteristics of partitioning. A 

detailed theoretical analysis o f accessibility has been done for partition free systems and 

this analysis has been extended to include a simple case of partitioning. This partitioning 

analysis has been carried out through simulation, and the behavior o f the proposed algo­

rithm and the related algorithms have been analyzed in some typical topologies. Some 

interesting results have been obtained concerning the sensitivity of different algorithms 

to changes to the network topology and copy placement. The proposed design was 

presented at the IEEE COM PCON'89 conference in San Fransisco [11] and the original 

work on the effect of partitions on reliability of replicated files will be presented in 

November 1990 at the IEEE W orkshop on M anagement o f Replicated Data  in Hous- 

ton[12]).

1.2 Outline

The remainder of this chapter presents a model o f a distributed environment, the 

underlying communication medium  and the abstract definition o f the file system includ­

ing the level at which replication is introduced, before outlining the consistency problem 

of replicated files. Later some alternative ways o f building replication control algo­

rithms into the file system are discussed together with the effectiveness o f replication in 

terms o f storage cost and abstract performance measures such as availability and reliabil­

ity.

Chapter Two contains a general survey o f consistency control schemes examining 

their behavior, requirements and effectiveness when the degree o f replication is low —  

typically two or three.
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Chapter Three introduces a new low-cost hybrid algorithm called reliable histories 

for maintaining consistency of replicated files in applications where the storage cost must 

be kept down.

Chapter Four is the first o f the two analysis chapters. First the steady-state availa­

bility of a replicated file is analyzed using two different techniques: &-out-of-Ai reliability 

theory and M arkov processes. The analysis focuses on the minimum number of copies 

and processing nodes required before the reliable histories algorithm provides better 

availability than other algorithms. Secondly, the management of replicated copies in a 

network that may become partitioned is examined; and the resiliency of various con­

sistency schemes to random copy placement and network topology is investigated.

Chapter Five contains an original analysis of the reliability of a replicated file both 

in partition-free and partitioned networks. The reliability offered by various consistency 

schemes is compared using different failure models and the com parison is extended to 

include the effect of partitions in various topologies. Since the technique known as 

regeneration affects reliability (not availability), its integration with the reliable histories 

algorithm is also analyzed in this chapter.

Chapter Six concerns the performance and the practicality o f the reliable histories 

algorithm. It focuses on the number o f network operations inherited by the algorithm 

and proposes an algorithm called range, for reducing the cost of history operations.

Chapter Seven includes a summary of the basic results obtained from the analytical 

models and simulation. This is followed by some suggestions for future work including 

the investigation o f the interfaces required by users and system administrators. The 

benefits o f added dynamicity through calculation o f overall reliability are also discussed.

1.3 Distributed System Models

This section summarizes the models for building a distributed system and discusses 

the model on which the thesis has been developed.
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Many different models have been suggested. Tanenbaum states that these models 

can be grouped into three general categories [13]: The first model consists o f a number 

o f minicomputers each with multiple users. Each user logs onto one machine with 

remote access to other machines. This system is similar to a central time-sharing 

machine.

In the second category each user has a single workstation usually equipped with 

processor, memory and a disk. This system becomes distributed when it supports a sin­

gle global file system so that the data can be accessed regardless their location.

The third category is an evolutionary step. All processors are kept in a pool and 

allocated upon request by the clients. W hen the job is completed, allocated processors 

return to the available pool. This model might become widespread when the C PU ’s 

become much cheaper. However, there have been some attempts to combine the second 

and third models providing each user with a workstation in addition to the processor 

pool for general use. An example of this type is the Ameoba Operating System [14].

Systems consisting of workstations (called processing nodes throughout the disser­

tation) connected by fast local area networks are becoming widespread. These systems 

offer a general purpose distributed computing environment for a large number o f applica­

tions. The possibility o f connecting a large number of processing nodes makes them suit­

able for replicating objects such as files, replication histories, etc. The replication control 

protocol which the dissertation presents and analyzes is designed for an environment in 

which a large number of processing nodes are spread across a series of local area net­

works connected by bridges. An example topology is illustrated in Figure 1.1.

1.4 Replicated File System

We divide the criteria used to compare replicated file systems into two groups. The 

first group determine the efficiency of the system. This is the cost o f its operation which 

can be measured in terms of communication delay and the cost o f extra storage required.
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Figure 1.1. A workstation environment (Topology-1)

The efficiency is mainly determined by the environment and the features related to the 

environment such as the resources provided by the distributed system model, the underly­

ing communication medium and the failure to repair ratio o f the individual components 

o f the network. The second group determine the effectiveness of the replication system. 

This is predominantly a property of the consistency control algorithm. Effectiveness 

measures the accessibility of a file (its availability and reliability) together with other 

abstract properties o f the algorithm, such as any assumptions made for its operability and 

correctness. This includes the failure modes o f the network that can be tolerated and 

whether individual components share the same view o f the status of the other com ­

ponents or not.

The effectiveness o f a replication system is determined by the control protocol used 

to manage the replication. Sometimes effectiveness may trade off efficiency and thereby 

the performance of the whole system. The reverse is also true to a lesser extent.

The aim o f this section is to create a general view about the distributed file system 

model in which the proposed design can perform efficiently.

W hen connecting two or more distinct systems together, the first issue that must be 

faced is how to merge the file systems. In distributed file systems three approaches have
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been tried [13]. In the first approach file systems are not merged. Access to a remote file 

can only be done by running special file transfer protocols that copy the remote files to 

the local machine. This approach has been used in early designs and cannot provide 

replication transparently.

The next step towards a DFS is to have adjoining file systems. In this approach, 

programs on one machine can open files on another machine by providing a path name 

which determines where the file is located. This is either done by creating a virtual 

superdirectory above the root directories of all the connected machines (as in the N ew ­

castle  Connection [15] and Netix [16]) or by providing a remote mount operation (as in 

Sun’s NFS [17]). Replication can only be employed statically since the operating system 

cannot move files around among nodes by itself.

The third approach is the distributed operating systems approach: having a single 

global file system visible from all processing nodes. This approach allows the operating 

system to move files around among nodes. The system can maintain replicated copies of 

files [18 ,19 ,20 ,21 ,22 ,23 ,24 ].

Sturgis has grouped the basic issues that DFS designers are faced into five 

categories [25]: communication primitives required, naming and protection, resource 

management, choosing the services to be provided and fault tolerance. It is the last prob­

lem for which replication is a solution.

The replicated file system model runs on a cooperating set o f processing nodes 

which together create the illusion o f a single logical file store. The file system data is dis­

tributed across many servers in order to get the benefit o f a multi-m achine environm ent 

without losing transparency. A  file is modeled as a finite sequence o f bytes which can be 

referred to by a unique file ID. The create operation introduces a new file ID  that refers 

to an empty file. The data referred to is accessed and modified only by read and write 

operations. Read is used to return an arbitrary, contiguous sub-sequence o f the file’s 

bytes, while write is used to replace such a sub-sequence with any other byte sequence.
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Once the data in a file is no longer needed, the application can delete the file ID, so that 

the file system may reclaim the space occupied by the file.

In this light we may now define a replicated file as a set of file copies, each one 

implemented on a different node in the distributed system.

A replicated file system presents applications with the abstraction of a logical file 

consisting of a sequence of bytes and identified by a unique identifier. In the thesis, data 

and file  are used synonymously with the term logical file. Logical files are implemented 

by a set of physical files each holding a complete copy of the file and each residing at a 

single distinct processing node. Both the terms copy and replica will stand for a full 

copy of the file. The degree o f replication is defined as the number o f the file copies. 

The files are created, accessed for read or write and deleted by means of logical opera­

tions defined on them. A replicated file can have different active versions at one time as 

a result of failures and repairs o f the processing nodes holding them. A read on the file 

will return the current version and a write is assumed to be an update on the current ver­

sion.

The multiple copies o f a replicated file are managed by a replication method. This 

is an algorithm for managing the distributed copies of the files so that its functional 

behavior is equivalent to that of a file having only a single copy. This property is known 

as one-copy serializability [26]. Consistency problems can arise from two different 

sources in a distributed environment.

1) Consistency in the face of failures: the data needs to be correct. Incorrect behavior 

should not occur as a result o f system failures such as node crashes, network parti­

tions or timing anomalies.

2) Consistency in the face o f concurrent updates: when two or more accesses to the 

data run simultaneously, it is necessary to ensure that incorrect behavior can not 

occur as a result of concurrent access by multiple users.
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A replication method may address these problems independently. Consistency con­

straints are defined to ensure that the data meets the above conditions; at one level a stan­

dard concurrency-control protocol synchronizes access to the individual components and 

at a higher level, a replica-management protocol reconstructs the file’s consistent state 

from its distributed copies without concern for concurrency. This distinction is made in 

order to discuss the problems separately. These problems have a lot in common and it 

may be difficult to distinguish them in practice. The definition of consistency given in 

Section 1.4.2 will justify why the concurrency control protocol is considered to be the 

lower o f the two.

1.4.1 C oncurrency Control Problem

This section summarizes the protocol required in the lower layer if the updates may 

be concurrent. This problem has been actively investigated within the environment of 

centralized and distributed databases in recent years. Concurrency control algorithms 

within centralized and distributed environments are surveyed by Bernstein et al [26] and 

Kohler [27].

In a concurrency control protocol, logical operations are composed of a series of 

accesses, called transactions, that change the state of the system from one consistent 

state to another. There are two possible anomalies that are to be considered when the 

transactions are running: updates might be lost or the retrieval might be inconsistent 

because o f interleaved access to the data. The correctness of a concurrency control algo­

rithm is defined relative to users’ expectations. Bernstein defined two correctness criteria 

regarding the above anomalies [26]:

a) Users expect that each transaction submitted to the system will eventually be exe­

cuted.

b) Users expect the computation perform ed by each operation to be the same whether 

it executes alone in the system or in parallel with others.
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In order to satisfy these requirements all concurrent operations are required to be 

atomic which means a ll-o r -n o th in g  [28]. An atomic operation would only modify the 

file if it is completed successfully, otherwise has no effect on the file. Atomic com mit­

ment protocols are discussed by Gray et al [29] and Hammer et al [30].

A concurrency control protocol must ensure that concurrent execution of a set of 

transactions, where requests belonging to different transactions are interleaved, produces 

the same result as if those transactions were executed serially. These transactions are 

said to be serializable. The seminal paper on serializability theory was written by Papa- 

dimitriou [31].

There are two synchronization problems that the protocol should consider 

separately: read-read and read-write synchronization. Many different mechanisms have 

been proposed. The three primary mechanisms are two-phase locking [32,2], timestamp 

ordering[33] and so called optimistic methods [34],

The two-phase locking method synchronizes reads and writes by explicitly detect­

ing and preventing conflicts between concurrent operations. Before reading a file a tran­

saction must own a read-lock on it, likewise a write-lock must be obtained before writ­

ing. The ownership of locks is governed by two rules:

1) Different transactions cannot simultaneously own conflicting locks.

2) Additional locks may never be obtained once a transaction surrenders ownership of

a lock.

The definition of a conflicting lock depends on the type of synchronization being 

performed. For read-write synchronization two locks conflict if both are on the same data 

and one is a read-lock while the other is a write-lock. For write-write synchronization, 

two locks conflict if they lock on the same data and both are write-locks.

Timestamp ordering is a technique whereby a serialization order is selected a priori 

and transaction execution is forced to obey this order. Each transaction is assigned a
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unique timestamp and conflicting operations must be processed in this timestamp order. 

The definition of conflicting operations is the same as for two-phase locking.

The concurrency control protocols based on commit protocols are intended for 

applications where reads predominate. They are poorly suited for applications such as 

ticket reservation systems where write operations occur frequently. Herlihy proposed 

optimistic concurrency protocols [35] for the applications where write operations 

predominate. A concurrency protocol is optimistic if it allows transactions to execute 

without synchronization, relying on commit-time validation to ensure serializability.

Since this dissertation investigates a consistency control scheme without being con­

cerned with the details of concurrency control protocols, the synchronization techniques 

will not be discussed further. Besides the above references, interested parties can refer to 

Bennett [36] and Gelenbe [37].

1.4.2 Consistency Control Problem

The work presented in this dissertation relies on the following definition:

Definition 1.1. Let a , b be two distinct consecutive operations on a replicated file, / ,  

satisfying a —>b where »”  is the happened before relation which defines an arbitrary 

total ordering of the events in a distributed multiprocess system as an extension to their 

partial ordering [38]. Let f/, = Rj u  C, is the set of up-to-date copies of f  after the 

operation / is completed, where /?, is the set of up-to-date copies which has directly 

accepted the operation / and C, is the set of up-to-date copies which has become up-to- 

date by copying from Consistency is preserved if and only if p  = p ! =s> p i  is true 

where p  i and p  2 are the following propositions.

p  1: a has succeeded on a set of physical copies, Ua, and b is applied to Rf, 

p2: Rb Q Ua

The result of distinct operations, a and b , that run concurrently is undefined. The term 

concurrent refer to Lam port’s definition [38]: two distinct operations a and b are said to
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be concurrent if a —»b and b —>a.

It is the responsibility of a consistency control protocol to satisfy the integrity con­

straints explained as the first form o f consistency in Section 1.4. These constraints assure 

the correctness of the consistency protocol which guarantees that incorrect behavior 

should not occur as a result o f network failures such as node crashes, network partitions 

or timing anomalies. It is the job o f the consistency scheme to coordinate the accesses 

and updates to the file copies so that clients of the replicated file system see a consistent 

view of the file. That is, any client that reads a file after a write operation has succeeded 

will see the data as it was left by the write operation.

1.4.3 C om m unication System

This section describes the assumptions on which the underlying communication sys­

tem is based. There is server software in each node which implements a set of operations 

that can be invoked over the network. Individual processing nodes in the system are 

assumed to provide this abstraction of a file through locally connected hardware. The 

local connection is important since it allows to assume that the success or failure of a file 

operation can be determined by the local file system. In contrast, it is assumed that nodes 

connected by the data network can only determine the outcome of an operation per­

formed remotely by another node by the arrival of a message from the remote node. 

Messages may be lost in transit but we assume that corrupted messages are detected and 

removed by the communications software. In particular, we assume that the network 

may become partitioned. Failed components such as nodes, bridges, etc. can recover 

spontaneously or because of system maintenance.

The DFS sending a message to another processing node is not concerned with the 

low level protocols used for transmission. Its only concern is the message has been acted 

upon and the ensuing results from its operation. It is assumed that in the communication 

layer a transport level protocol will provide reliable error free communication between 

the nodes. In order to provide a uniform and easily understood abstraction, an RPC
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mechanism that offers at-most-once semantics [39 ,40 ,41 ,42] is likely to be the best 

communication protocol for the system.

The characteristics of the communication medium have a major effect on the perfor­

mance. Many of the low -level operations required to support replication would benefit 

from a multicast request-response mechanism. [43] If the underlying communication sys­

tem uses a broadcast link level protocol, the cost o f such a mechanism is a function of the 

number of replies required from a request, not the num ber of servers to which the 

request was sent, nor the size of the request parameters.

1.4.4 File vs Block Level Replication

Some system designers choose to introduce the replication at block level while oth­

ers prefer to do so at file level [44]. Many studies [45,46,47] of distributed file systems 

(including my own results of the actual performance of NFS —  Sun M icrosystem’s Net­

work File System) have shown that most file accesses are whole-file transfers. An 

analysis of file access patterns in the UNIX 1 Operating System has been done by 

Ousterhout [45]. This reveals that more than 90% percent of all files processed sequen­

tially and more than two thirds of all file accesses are whole-file transfers. These figures 

also show that while operations on small files predominate, large files account for almost 

20% of all file accesses. Table 1.1 presents the results from this study together with the 

results of my own study o f network file accesses in the last column. The values 

presented show percentage o f the accesses. For example, first row is the percentage of 

whole file read transfers o f all read-only accesses etc.

This suggests that in some application environments, whole-file replication might be 

more advantageous and more practical than block-level replication. Therefore the thesis 

is based on the replication of whole files.

1 UNIX is a trademark of Bell Laboratories.
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System-1 System-2 System-3 System-4
A ll read accesses 69% 63% 70% 75%
A ll write accesses 82% 81% 85% 90%
Sequential read-only accesses 92% 91% 93% 90%
Sequential write-only accesses 97% 96% 98% 98%
Sequential read-write accesses 19% 21% 35%

Table 1.1 — Percentage o f accesses that represent whole-file transfers.

1.4.5 Building Replication into the File System

Even if it is conceptually simple, building replication into the file system while try­

ing to preserve file system semantics is very complicated. In most cases the file system is 

part o f the operating system kernel. In these systems replication can be implemented on 

top of the operating system as a set o f library procedures as in Figure 1.2(a) or can be 

moved into the operating system kernel. In the first case the implementor must provide 

an interface that preserves the semantics of the original file system using only available 

system services. An entire replicated file system must be built on top of the original file 

system. The second case is more complicated because it requires the modification of the 

operating system kernel.

In order that replicated file systems can become commonplace in general purpose 

computing environments, they should provide fault tolerance efficiently as an extension 

to simple file systems.

KERNEL SPACE

file system

system
calls tependent

replication libraryuser process

USER SPACE

remote

node

node

Figure 1.2(a). Building replication on top o f the file system
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One suggestion for implementing replication at the block level is a reliable device [44] 

which appears to the file system as an ordinary block-structured device but implemented 

as a set o f server processes on several nodes. Because it presents the same simple inter­

face as an ordinary device, it provides replication while leaving the operating system ker­

nel and the file system unchanged. This approach has the advantage that existing pro­

grams can operate on replicated files without modification.

In the case of a conventional operating system where the file system is part of the 

operating system kernel, it has been suggested by Carroll [44] that a device driver stub 

could receive requests for access from the file system and forward those requests to a 

server which would perform the data access and consistency control algorithms. Such a 

scheme is illustrated in Figure 1.2(b).

In this system, a user-state process makes a file system request to the operating sys­

tem kernel. The file system consults internal data structures to ascertain if it has the 

requested file in the buffer cache. If the block is not present then the file system requests 

the device driver to fetch the file. The device driver stub then communicates this request 

to the user-state server which executes the consistency control and data access algo­

rithms.

remote

node

node
block server

device driver 
stub

user process

file system

KERNEL SPACE

USER SPACE

proc.
call

dependent

Figure 1.2(b). Building replication as a block-structured device
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1.5 Types of Failure and Recovery

In this section a discussion on typical failures that can occur in a general distributed 

environment is followed by the failure specifications and the assumptions on which our 

failure model is based. The section concludes with a discussion of some methods used 

for recovering data after the failures.

A failure in the system can be defined as an event at which the system does not per­

form according to its specifications. We divide distributed system failures into four 

categories:

1) Node Crashes

2) Bridge Failures

3) Communication Link Failures

4) Byzantine Failures

The first three of these can be thought of as failures causing the network to become 

partitioned. W hen the network is partitioned the system is divided into two or more dis­

joint sets within which communication is possible. There is no communication between 

any two of these sets in the sense that all messages between them will be lost. A  failure 

is detected when a node fails to receive a response to its message after a certain duration 

of time. A fault can only be suspected; the absence of a reply might be merely an indica­

tion that the recipient is slow to respond but we do not consider timing anomalies. Since 

communication link failures occur very rarely in today’s network technology, they are 

not discussed further, although their properties could be simulated by a highly intercon­

nected network of unreliable bridges. Arbitrary partitioning of the system caused by 

bridge failures is important for replication and is studied at length in Chapter Four and 

Chapter Five.

The last category consists o f software failures that cause the system to operate 

incorrectly in the absence of hardware failures by exhibiting so called Byzantine faults
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[48]. We assume that the software is correct so we need not consider this sort of failure 

further.

As far as communication is concerned node crashes can be viewed as a special case 

o f partitioning: all incoming and outgoing messages are lost. From the point o f view of 

the integrity o f the files we must make the following assumptions:

1) M achines are fail-stop. That is, at any moment, each machine is either up or down.

2) Local hardware failures are detectable. It is assumed that a device controller

satisfies this assumption.

3) Absence of storage media failures, faults that cause crashes of a file server are 

classified into two groups: server failures and disk controller failures. Since the 

replicated file system creates copies o f the file on distinct processing nodes rather 

than by local disk replication, this requirement is satisfied.

Although the effects of a crash cannot be completely hidden, they can be limited to 

a single well-defined event. The details and requirements of low-level protocols to 

achieve this aim is described by Schlichting [49] and by Bernstein et a I [50].

There are many techniques used to restore data in a system to a usable state when

the system recovers from a failure. In order to cope with failures, additional components 

or algorithms must be added to the system. These components ensure that incorrect 

behavior cannot occur as a result o f node crashes. Replication is only one of the 

methods. Its advantages over the other techniques is that it can be used to improve the 

availability o f data as well. This m echanism  and the problems associated with its 

management forms the bulk of the thesis. Some other recovery techniques are summar­

ized below. Some o f these techniques increase the availability partially but none of them 

improves the availability of the up-to-date copy transparently. The techniques explained 

below are discussed by Verhofstad [51] and Kohler [27] in detail. Some variations of 

them are also proposed by Lindsay [52] and Bhargava [53].
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Increm ental Dumping: Copying o f updated files onto archival storage after a job 

has finished or at regular intervals. This creates checkpoints to updated files. Backup 

files can be restored after a crash. Powell et al [54] have described a redundant system 

that puts very little additional load on the process being backed up. In their system all 

messages sent on the network are recorded by a special "recorder" process. From time to 

time each process checkpoints itself onto a remote disk (Figure 1.3).

network

| | request request |——j

primary file sender backup file

sender
□ □ 

file recorder process
(saves all network traffic)

Figure 1.3. Backup!recorder process during incremental dumping

D ifferential Files: A file can consist o f two parts; the main file which is unchanged, 

and the differential file which records all the alterations requested for the main file. The 

main files are regularly merged with the differential files. Records in the differential files 

can be stored with the process identifier, a time stamp and other identification inform a­

tion to aid recovery.

Backup!Current Version: The files containing the present values of existing files 

are the current versions. Files containing previous values are backups. Backups can be 

used to restore files to previous values.

Careful Replacement: The principle o f this method is to avoid updating any part of 

the object in place. Altered parts are put in a copy o f the original; the original is deleted 

only after the alteration is complete and has been certified.
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Table 1.2 lists the methods dealing with recovery and availability.

Recovery Availability
Incremental Dumping X -
Differential Files X -

Backup Version X X
Careful Replacem ent X -
Replication X X

Table 1.2 —  Techniques used for recovery and/or availability

1.6 Measures of File Accessibility

When files are not replicated, they obviously become unavailable during the crash 

and recovery of the node holding the file. No updates may be made and the data is sim­

ply not available for either read or write until the node recovers. No special operations 

are required upon recovery to be sure of consistency of the copy as there is only one 

copy. If the file is required while the node is down, it can manually be reloaded into 

another operating node from a back-up resource. Then, one must make sure that no 

inconsistencies exist after the crashed node is returned to service. Manual loading some­

times may be useful but it is not transparent.

The higher availability requirements of some applications in distributed systems 

have increased the interest in keeping copies of the same information at different nodes 

of the network. Replication o f data allows infonnation to be located close to its point of 

use, either by statically locating copies in high use areas or by dynamically creating tem ­

porary copies as dictated by demand. Replication of data increases availability by allow­

ing many nodes to service requests for the same information in parallel and by masking 

partial system failures. For example, in a system where the independent availability of a 

node is 0.833 (this corresponds to a failure to repair ratio, p=0.2, nodes that are repaired 

five times faster than they fail), it is possible to increase the overall availability of data to

0.98 with only two replicas (the availability is analyzed in Chapter Four). Maintaining 

copies can be costly but the reliability o f the system is the benefit. Because of its high
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cost and complexity the reliability offered by replication is only used in certain applica­

tions where the cost is justifiable. The rest of this section concerns the measures of file 

accessibility and methods to compare them.

In a replicated file system design it is essential to know the effectiveness and trade­

offs of different options in improving performance and dependability. Since the main 

goal of replication is to increase the accessibility of data by tolerating system failures and 

making the file more available than a single copy, the simplest measure of accessibility is 

availability. In fact, it is possible to distinguish the factors effecting availability into 

two: environmental effects such as failure frequency, network topology etc. and the limi­

tations of the replication method used to manage the file copies. In order to simplify the 

availability analysis and ease the comparison between methods, topological factors have 

usually been disregarded and partitioning has been ignored, although it is a common 

problem. The following sub-sections explain different forms of availability; steady-state 

and continuous availability. Continuous availability w ill be referred as reliability 

throughout.

1.6.1 Availability

The success of a file operation on a replicated file depends on a number of indivi­

dual nodes being operational at the time of the request. If a sufficient number of nodes is 

not available which is required for a consistent read or write then the data is not avail­

able. Availability is a probabilistic measure calculated in terms of the probability of 

required number of independent components being up at the time of the request. There 

are two possible availability measures in general:

1) Instantaneous availability is a function of time and defined as the probability that 

the system is performing properly at a given time t. This is equal to the reliability 

for non-repairable systems i.e. once the system has failed they cannot be repaired 

and put into function. This is not true in replication systems since the independent 

nodes are assumed to recover after a repair period [55].
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2) Steady -sta te  availability is the availability when the system is in steady state. This 

is the equilibrium state when time goes to infinity. Steady-state availability can be 

defined as the probability that the file will be accessible at any random point of 

time. Since it is assumed that the replication system is repairable i.e. failed nodes 

are always recovered after a certain period of time, only the steady-state availability 

of files is considered in the thesis. The following is the definition of the steady-state 

availability of a replicated file.

Definition 1.2. The availability P(A{n,m )) o f a replicated file with n replicas in a system 

o f m  processing nodes where (m - n ) nodes do not contain a replica of the file is defined 

as the probability that the system will operate correctly at any given point of time as time 

goes to infinity given that initially m nodes were operating correctly.

Availability has two facets according to the type of the access: availability for a 

read access (read-availability) and availability for an update (write-availability). It is a 

feature of the consistency scheme to determine whether these availabilities are equal or 

one trades-off the other.

Availability behavior of a consistency scheme can be modeled analytically. This 

analytical model is an abstraction of the various assumptions about the system s’ behavior 

as a function of the failure/repair probabilities of individual nodes. Under the assumption 

o f exponential failure/repair rates, it is possible to derive a Markov model for the cases 

where the number of possible states that the system can be in is within reason. Unfor­

tunately, reality tends to deviate from exponential models because exponential repair rate 

is not realistic for computer systems [56].

If the systems are too complicated to analyze with Markov processes, k-o\ix-oi-n 

reliability theory [57] can be used. The disadvantage o f this method is that it makes too 

many simplifying assumptions about the failure model. In the work presented here, both 

analytic methods have been used in combination to support each other where applicable. 

Simulation is used to reach a solution and verify the results o f analytic models.
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1.6.2 Reliability

Reliability can formally be defined as the conditional probability at a given 

confidence level that the file system will perform its intended function (read/write access) 

properly without failure and satisfy the specified requirements of continuous availability 

during a given time interval {0, t }. In other words, reliability is the continuous availabil­

ity of a file over a given period o f time.

Definition 1.3. The reliability R (n ,m ,t)  of a file with n copies in a system of m process­

ing nodes —  including the nodes holding a copy, is defined as the probability that the 

system will operate correctly over a time interval of duration t given that initially m 

nodes were operating correctly at time t - 0.

Availability has received much more attention, because its analysis is more tractable 

than that of the reliability [58]. In fact, there are some applications in which the reliabil­

ity of a system is a more im portant measure of its performance than its availability. 

These applications include process control, data gathering, and tasks requiring interaction 

with real-time processes, where the data will be lost when it is not available. The com­

puter systems used for stock trading are an example of this situation. If these machines 

were to fail, the resulting chaos w ould halt trading.

Reliability analysis through analytic models is too complicated. It is possible to 

derive closed-form solutions for differential-difference equations if the number of possi­

ble states is small and the system does not partition. Analytic models become too com­

plicated to solve in the analysis o f network partitions. In the reliability analysis a 

Monte-Carlo simulation is done and the results are validated by an analytic model for a 

simple partitioning case.

1.7 Summary

After formulating the problem  o f replication management when the number of repli­

cas are bound to be very small, m ainly two (at most three), this introductory chapter out-
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lines the replicated file system model on top of which the consistency control schemes

are going to be built in the following chapters.

The most important points made in this chapter are as follows:

i. Storage cost is a very important issue to be considered in order that replication can 

become com mon place in general purpose computing environments.

ii. Going from single to two copies has much higher advantages than going from two 

to three, four copies.

iii. Concurrency and consistency are two separate concerns; the consistency problem is 

an inevitable consequence of replication whereas concurrency problem can occur in 

any concurrent or pseudo-concurrent environment.

iv. Two common principles are used in various algorithms for managing the consistent 

view of replicated files: read any/write all and read some /write some. Among the 

algorithms, correctness trades off performance.

v. All consistency schemes in the literature up to June 1989, become inefficient when 

the num ber o f copies is small (especially two) either because of administrative com ­

plexity and requirements from the hardware or providing a desired level of availa­

bility especially with small number o f copies.

vi. There are two major characteristics o f an effective replication control algorithm. 

Correctness: it should work correctly during network partitions as well as node 

crashes and  accessibility: the probability of file being available at any given 

mom ent (availability) or a given period o f time (reliability) must meet the require­

ments.
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Consistency Control Schemes

This chapter examines the requirements (assumptions made for its operability and 

correctness) and the behavior of consistency control schemes.

The algorithms are studied in two groups: Voting algorithms [5 ,6 ,59 ,60] and 

Available Copies algorithms [4,9]. Voting algorithms use a quorum-consensus approach 

whereas the Available Copies algorithms provide high availability as a modification of 

two older methods: Unanimous Agreement [61] and Single-Primary Update strategy 

[62,61].

Many variations, especially of voting algorithms [63,56] have been proposed 

recently. Dynamic voting techniques [64 ,65 ,66 ,67] are excluded from this discussion 

because these algorithms work only if the node failures are distinguishable from network 

failures and this requirement is at odds with the failure model of the outlined distributed 

environment. First, the main algorithms and their variations are analyzed using the 

measures of effectiveness discussed in Section 1.4. Secondly, the advantages of the 

regeneration technique and how it can be applied to a consistency scheme with an addi­

tional operation cost is explained.
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2.1 Unanimous Agreement Update

This approach requires that all copies should be identical before and after each 

operation. In other words, it uses read any /write all principle. Updates are propagated 

to all replicas immediately. Since all physical copies o f a logical file are kept in the same 

state, a single copy image of the data is achieved. As the algorithm assumes that every 

node in the system has a replica o f the data, all read requests can be performed locally. 

This assumption reduces the traffic on the communication network for read requests.

Unanimous agreement enhances read availability, but as the number of replicas are 

increased, the file will be less available for updates. A replicated file with any number 

of copies will provide lesser availability for update than a single copy file. Additionally, 

the system is required to support control message traffic in order to send the update to all 

replicas and confirm or cancel it, based on whether or not unanimous agreement was 

obtained. A lthough the idea is simple, its implementation requires a two-phase commit 

protocol for confirmation as it cannot afford an inconsistency among the copies.

This approach does not tolerate node crashes for updates. As it is not realistic to 

consider a failure-free distributed system, it offers very low reliability compared to all 

the other approaches. Its advantages are high read availability and consistency even if 

the network is partitioned by preventing updates in any partition that does not have 

access to all replicas. If  a replicated file has a very high ratio o f read requests to update 

requests, unanimous agreement (Figure 2.1) might be cost-effective for small degree file 

replication.

update

copy-3copy-2copy-1

Figure 2.1. A unanimous update performed on 3 distinct copies
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2.2 Single-Primary Update

This algorithm designates one replica as primary and all the others as secondaries. 

Update requests are sent to the primary replica which serves to serialize updates and 

thereby preserve data consistency. The primary acquires a lock, performs the update, 

broadcasts the change to all the secondaries and releases the lock. There are three dif­

ferent schemes for this broadcast:

1. Update request is sent to the secondaries immediately,

2. Updates are packaged and sent at the end of the transaction,

3. Updates are broadcast only at specific intervals —  once an hour, overnight, etc.

In all the primary-secondary schemes, the delay caused by update propagation from 

primary to secondary can increase the response time to a local read issued after an update 

to the data, if the update is at a remote primary, and the read is at the local replica.

This scheme does not tolerate the failure of the primary copy but it maintains con­

sistency in the face of network partitions. In the case of a partition failure, only the parti­

tion containing the primary copy can access the data. Updates are forwarded to secon­

daries at recovery to regain consistency. The availability of the data is simply the proba­

bility that the primary is up and communicating. Therefore it provides the same write 

availability as single copy. Replication enchances only read availability. As it is simple 

and practicable, it has been used in many designs [68,69].

2.3 Moving-Primary Update

This algorithm is proposed by Alsberg [62] and it is an extension to the single­

primary strategy. The principle is that an update can be made to the primary copy or any 

secondary copy. The initiator is not aware of which node is functioning as the primary 

for any particular update.

If the receiving node is the primary one, it performs the update and then sends a 

cooperation request to one of the secondaries informing it of the update. The secondary
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performs the update, acknowledges to the primary and also the local node before passing 

the request on to the next secondary (Figure 2.2). Once the primary has received the ack­

nowledgement from the secondary, it is certain that two-host resiliency has been 

achieved. The update is lost only if both primary and the cooperating secondary fail.

If the node receiving the request is a secondary, it forwards the request to the pri­

mary and algorithm proceeds as above.

If the primary fails, the secondaries will discover it when they forward their next 

request. Then, they elect a new primary among themselves. In a two-host resilient 

scheme, all n —1 secondaries, where n is the number of copies, must participate in this 

election. One way of electing a new primary is to assign numbers to nodes and to choose 

the secondary with the highest number in the participating set as the next primary. In the 

second step, all other secondaries are informed of the primary change. When the old pri­

mary recovers and attempts to ask cooperation for an update, it is informed by the secon­

dary of the change and the request is forwarded to the new primary. The old primary 

then becomes a secondary.

In general, in an m-host resilient scheme at least /i-m + 1  secondaries must partici­

pate in the election of the primary. The rest o f the algorithm is the same as the two-host 

resilient scheme.

This approach works well if node failures are distinguishable from network failures. 

If this is the case and primary fails, a new primary can be elected (for a discussion of 

election protocols see Garcia-M olina [70]. However, if it is uncertain whether the pri­

mary failed or the network failed, the assumption must be that the network failed and no 

new primary can be elected. M oving-primary variation enhances the write availability if 

there are more than two copies. If there are two copies, both copies are required for 

updates; one as primary the other as cooperating secondary. So, in two-copy case, all 

synchronization-site approaches behave in a similar way as unanimous agreement.
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update

ackrequest

secondarysecondaryprimary copy

Figure 2.2 An update operation maintained by Moving-Primary approach

2.4 Voting Algorithms

Voting algorithms use a quorum-consensus approach. Every node maintains a 

number of votes for read and writes. Each request must gather a quorum of votes before 

being accepted. All voting algorithms are robust as a side affect of normal operation. 

They remain consistent in the case of communication failures which can cause partition­

ing in the system as well as in the face of individual node crashes.

In general, different quorums for read and write operations can be defined and dif­

ferent weights, including zero, can be allocated to every copy. This form is called as 

weighted voting [6]. Read transactions must collect a read quorum of r votes to read a 

file, and a write quorum of w votes to write a file. The values r  and w  must be chosen 

such that r+w  is greater than the total number o f votes assigned to the file. There is then 

always an intersection between the set o f servers participating in read and write transac­

tions, so every read quorum is guaranteed to include an up to date copy. W eighted vot­

ing introduces version numbers as an alternative to timestamps in order to unify the 

updates. Each time an update is performed, the version num ber o f every copy in the par­

ticipating set is increased by one. The highest version number in the read quorum is the 

version number indicating which copies hold the current state.
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In majority voting , which is the earliest and simplest form of voting algorithms, 

every copy has one read and one write vote. For a request to be accepted a majority of 

the copies need to approve it. The algorithm in its original form employs timestamps 

both in the voting procedure and in the application o f updates. The file is available to 

update requests so long as there is a majority of nodes in communication. Since only one 

majority can be formed at a time, the file remains consistent even if the network is parti­

tioned.

In all previous algorithms, read requests were always local. In voting algorithms, if 

w is less than the number o f copies then a read quorum is required to obtain the current 

version number. If majority voting is applied, then all write quorums are preceded by a 

read quorum which is the majority in either case. If w  is equal to the number of copies 

then voting degenerates into unanimous agreement allowing any one copy to be read.

Voting algorithms provide serial consistency which means that it appears as if each 

transaction is running alone. However, they require a minimum of three copies to be of 

any practical use.- Having three copies of the file, in order to increase the availability and 

the reliability, the best solution is to assign equal votes to all copies. The file will then be 

accessible as long as two out of three copies are available. The increased level o f availa­

bility and reliability incurs a storage cost. If  the size o f the file is very large, then the 

storage cost of an extra copy may not justify the increase in availability.

2.5 Efficient Variations of Voting

In their original forms, consistency schemes relying on voting become more effec­

tive in providing availability as the number o f copies are increased (five or more). In 

these algorithms read availability trades off write availability. In the following sections

2 Consider a replicated file having two physical copies; if equal weights are assigned to each copy 
both copies must be available, to acquire a majority in order to update the file. As a result, the 
availability of the file for either read or write is less than that of a single copy. Should a higher vote be 
assigned to one of the copies, this copy is the only one required to be available in order to access the 
file. The second copy has then absolutely no effect on the availability or reliability of the file.
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two recent extensions to weighted voting are discussed. The first tends to reduce the 

storage cost and the second increases write availability.

2.5.1 Reducing Storage Cost with Witnesses

Paris proposed to replace some o f the copies with small records that keep only the 

status of the file but not the data. These records are called witnesses [63]. The witnesses 

have weights just like the normal copies and can participate in a quorum. Read and write 

quorums are collected as if the witnesses were conventional copies. The only restriction 

is that every quorum must include at least one current copy. Two copies and one witness 

provide similar availability to that o f a file having three full copies. But still, voting 

algorithms with three copies provide lesser availability than that of Available Copies 

method with only two copies. The Available Copies method is discussed in Section 2.6. 

The availability analysis done with k-out-of-/2 reliability theory (Section 4.1) has shown 

that availability with voting becomes reasonably comparable with available copies algo­

rithms when five or more copies are used. For smaller number o f copies, available copies 

algorithms provide higher availability than any variations of voting. The result o f the 

analysis is discussed in Chapter Four.

2.5.2 Enhancing Availability with Ghosts

Voting with Ghosts is proposed by Van Renesse [56]. This algorithm increases 

write availability in the cases where one or more node crashes mean that a write quorum 

can no longer be acquired so the data will not be available for writing. It replaces 

crashed nodes with processes called ghosts. Ghosts have the same number o f votes as the 

crashed nodes but do not have the physical copy. Ghosts can be thought o f as dynami­

cally created witnesses. The algorithm assumes that the network can only be partitioned 

at gateways or bridges connecting so called segments. These segments cannot be parti­

tioned. If a segment is down i.e. the communication link has failed, the nodes within that 

segment cannot communicate with each other or with nodes on other segments. Crashes
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are detected on each segment with a boot service which keeps the status of each node by 

polling them in regular intervals. This service is replicated as well. Van Renesse argues 

that, since the segments cannot be partitioned, the boot service can be controlled by 

either Weighted Voting or Available Copies algorithm.

Voting With Ghosts enhances write availability compared to Voting With 

Witnesses, but it has strong administrative requirements such as; a separate replicated 

boot service for every segment and a recovery process to restore the recovered nodes. If 

the boot service becomes unavailable the algorithm degrades to W eighted Voting. 

Besides, since ghosts do not have storage, they cannot participate in a read quorum, so 

read availability remains the same. If the file has only two copies, ghosts have no use in 

the case of partitioning. Therefore, it has restrictions which makes it unsuitable for small 

degree replication.-* Additionally, although it may be a minor overhead, having replicated 

boot services on every segment generates extra network traffic continually during pol­

ling, and updating the service when a node is repaired.

2.6 Optimum Vote Assignment or Coteries

One difficulty with voting algorithms is how to assign the votes optimally. If the 

failure characteristics o f the nodes and the network system is varying, then the optimum

vote assignments vary also. It has been proved by Garcia-Molina et a l [71] that there are
2

up to 2"~ different vote assignments, where n is the number o f copies. This shows that 

the choice of assignments are increased rapidly.

There is an alternative to vote assignment. The above mentioned authors introduced 

the term coteries to define the sets that can perform the read/write operations on the file. 

Coteries are the sets o f set of nodes. Empty set is not a member o f a coterie and each

3 Consider there are two copies, this system can have only one ghost and allows access when either 
copy is available. But, since the ghost is created only when a node is crashed, if both copies are up on 
different segments, in the case of partitioning file will be unavailable in both partitions. Therefore, in 
the case of partitioning voting with ghosts will have no use. Although it preserves consistency, 
availability is highly reduced in partitioned system when the Voting With Ghosts algorithm is used.
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pair of members of a coterie have at least one node in common, but none of them is a 

subset o f another. Coteries can formally be defined as follows:

Definition 2.1. Let U be the set of nodes that compose the system. A set of sets of nodes 

5 is a coterie under U iff each member of S obey the following three conditions:

Say G, H are subsets of U

i) G  € S  implies that G 0  and G <zU.

ii) If G, H  e  S, then G and H  must have at least one com mon node.

iii) There are no G, H  e  S such that G c  H.

Each pair of coteries should have a node in common to guarantee serializability. Up

to five nodes, coteries and vote assignments are equivalent. It is easier to think o f in 

terms of coteries but, votes are more efficient in implementation. Garcia-Molina argue 

that votes take less space to represent and are easier to implement. Adding votes and 

checking for a majority is also faster than checking if a group o f nodes is in a coterie.

Also, with five or fewer nodes, the number o f choices for vote assignment or 

coteries are small enough for designers to inspect all choices and select the one that 

yields the best reliability for the given hardware.

They prove that for systems with more than five nodes, coteries are more powerful. 

There are coteries that cannot be represented by votes, not vice versa. However, in this 

case the number of coteries is huge. Therefore, some heuristics are needed to trim down 

the number of choices.

As stated above, for the systems with more than five copies, either assigning 

optimum votes or choosing optimum coterie is a tautology and difficult task for system 

designers.

2.7 Available Copies

In this algorithm failed nodes are automatically detected and configured out from 

the system. Recovered nodes bring themselves up-to-date by copying from other
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available nodes before accepting any user transactions. Reads are initiated to any avail­

able copy but writes must be done to all available copies. This form of unanimous agree­

ment provides better availability than all other methods, but the file’s consistency cannot 

be maintained in the presence of partitions. Each copy maintains a directory list of avail­

able copies for use. The algorithm runs status transactions to keep these lists up to date 

as nodes fail and recover. Since the algorithm can detect only node crashes, if the net­

work is partitioned, different partitions can update different copies and leave the system 

in an inconsistent state. The original algorithm requires a method to handle the total 

failure situation specifically. This situation occurs when all the copies are failed. In this 

case, the last failed node is determined and updates are not accepted until this node is 

recovered. In order to use this algorithm, a transport protocol must provide reliable, 

error-free communication between nodes.

This algorithm can only perform well in a partition-free network if nodes fail infre­

quently. W hen a node fails, the algorithm updates the directory information on all the 

other copies o f all data items stored in that node. W hen a node recovers, it informs the 

directories again. M aintaining these status lists is a costly work.

2.7.1 H andling Partitions

El-Abbadi extended the original Available Copies scheme to Accessible Copies 

scheme in order to handle partitions [9]. The extended scheme which is critically sur­

veyed by Davidson et al [72] is based on the following intuitive read one /write all pro­

tocol:

(1) A  data item can be read and written within a partition only if a majority of its copies 

reside on member nodes of the partition. In this case, the item is said to be accessi­

ble.

(2) A read operation on an accessible data item is implemented by reading the nearest 

copy o f the item residing on a m ember of the partition.
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(3) A write operation on an accessible data item is implemented by writing all copies

residing on members of the partition.

The first rule ensures that only one partition can access the file. The second and 

third rules guarantee that the file remains consistent within a partition.

This protocol ensures one-copy serializability in an ideal network, where partition 

failures are clean and nodes can detect partition failures almost instantaneously. If either 

property of the ideal network is violated, incorrect execution can occur. The principal 

idea in the Accessible Copies algorithm is the implementation of an abstract com munica­

tion layer on top of the real communication network, where the behavior of the new layer 

approximates that of the ideal network. The consistency scheme is implemented on top 

of the abstract layer. The abstract layer creates and manipulates virtual partitions , which 

are rough analogs of the actual partitions that occur in the real network.

This variation offers similar availability to voting for updates. Virtual partitions 

require status transactions and directory lists at each node in order to keep track o f the 

failures and recoveries. Although the principle is simple its requirements are costly in 

implementation.

2.8 Regeneration

The reliability of a replicated file depends on maintaining the set of up-to-date repli­

cas. Usually space limitations make it impossible to have enough copies to guarantee the 

level of fault tolerance required. If new replicas of a file can be created faster than a 

failure can be repaired, then better reliability can be obtained by creating new replicas on 

available nodes in response to node failures. This technique is known as regeneration. 

The idea of regenerating replicas to replace failed nodes was first proposed by Pu et a l 

[73]. This algorithm is an extension to the Available Copies method and carries the same 

weaknesses. It allows reads to continue as long as one up-to-date copy is available. If 

fewer than the initial copies are accessible during a write operation, then new copies are
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regenerated on other available nodes. If  there is no spare node, then the write fails. 

Regenerating to the maximum number o f copies whenever an update occurs (as long as 

adequate number o f nodes exist) increases the availability of an up-to-date copy for 

further writes.

Recently, it has been shown that regeneration is a generally applicable technique 

that can be combined with many replica control protocols in order to increase reliability 

[58].

However, regeneration requires some work to be done when a node recovers and 

joins the net. For all the replicated data in the recovered node, the replication system 

must check whether the maximum number of copies is already available or not. If  so, the 

recovered copy is deleted. If  not, the system must check whether there has been an 

update or not during the failure of this node. If there has been no update during the 

failure then the copy is used; otherwise it should be deleted because its replacement 

exists but vanished temporarily due to another node crash. Figure 2.3(a) illustrates a 

situation when the copy on node 3 is recovered, it can be used as there has not been an 

update during its failure. Figure 2.3(b) shows a situation where there has been an update 

during the failure and as a replacement copy exists on node 4, the recovered copy should 

be deleted.

Additionally, there is a communication cost associated with regeneration. When a 

node fails or recovers, network message traffic is increased.

recovered
node

(the copy can be used)

copy-1 copy-3 - -copy-2

spare spare

4 5

Figure 2.3(a). Regeneration: recovery o f a repaired node (case-1)
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copy on node-3 should be deleted as 
its replacement exists on node-4

1 2 3
recovered

node

node-4
is temporarily down

copycopy-2copy-1

sparecopy'3

. Figure 2.3(b). Regeneration: recovery o f a repaired node (case-2)

If the size o f the replicated file is very large, data transmission during each regeneration 

might be very costly if nodes are failing ffequendy. For this reason, regeneration may be 

best suited for small size data rather than large files. There are some other ways o f 

reducing cost. One way is to regenerate when the number o f replicas falls below a cer­

tain threshold. Another way is to delay regeneration for a certain time period following 

the failure. This may prevent wasting resources by reacting to transient failures.

Regeneration-based replica protocols offer higher reliability but the analysis is not 

tractable. It is only possible to derive closed-form solutions for the reliability of the pro­

tocols for small number of nodes. Long [58] obtained the solutions for regenerative algo­

rithms. These solutions which can be applied to different algorithms employing regen­

eration are discussed in Chapter Five.

2.9 Discussion

All consistency schemes discussed above become less efficient in a distributed sys­

tem where nodes fail and recover frequently, and are less effective when the degree o f 

replication is small; especially two. As the effectiveness and dynamicity o f the algo­

rithms are increased to provide better availability, they become less practicable. 

Although the actual performances of the algorithms are implementation specific and 

depend on the underlying hardware, there are some abstract performance measures (such
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as number of control messages required etc.) that can be used to estimate the likely com ­

munication overhead associated with the algorithms. Still, with efficient implementa­

tions, communication cost can be kept within acceptable bounds even for the algorithms 

which require interactions between large number of nodes. Implementation aspects 

related to communication cost will be discussed in Chapter Six. However, the require­

ments of a consistency scheme which are listed below must be met within the bounds of 

required degree of availability and reliability. These requirements would allow replica­

tion to be used in general purpose computing applications.

a) Fault tolerant: as far as communication is concerned, the scheme should tolerate all 

forms of partitioning in the system including node crashes and bridge failures.

b) Low storage cost: it should improve the availability and reliability even with two 

copies.

c) Flexible: it should provide a dynamic reconfiguration facility in order to reach the 

desired level of accessibility with an easy administration.

d) Practicable: it should be implementable as an extension to the existing file system 

when the underlying communication medium satisfies the requirements.

e) Sim ple: It should have a simple failure model. For example: it should not require all 

nodes in the system have the same understanding of which nodes are available and 

which are not. It should not expect the com munication system to detect partitioning 

failures instantaneously and distinguish network failures from node failures.

All the algorithms discussed in this chapter fail to achieve one or more of the 

requirements.

2.10 Summary

The consistency algorithms are discussed for their effectiveness in a distributed 

environment where partition failures can occur and the degree of replication is small. 

The family o f available copies algorithms allow access to the file as long as one up-to-
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date copy is available whereas voting algorithms require a number of copies of its 

quorum size. Although some techniques are developed to improve the effectiveness of 

voting strategies (ghost processes, witness copies), these algorithms become effective 

when the number of votes is five or more and require at least three copies for any practi­

cal use. Besides, optimum vote assignment is a complicated problem in practice for the 

systems with undeterministic failure characteristic. Dynamic strategies are proposed to 

improve the availability by changing the votes assigned to the copies dynamically to 

reach a quorum but these algorithms have stringent requirements from the underlying 

communication system such as recognition of failures instantaneously and by their types 

(node crash or network partition etc.).





Chapter Three

A Hybrid Replication Algorithm

In Chapter Tw o, various consistency schemes are exam ined for a low degree of 

replication in a large-scale distributed system. The critical considerations about the com­

munication system were:

a) W hether the algorithms work if all nodes do not have the same understanding of 

which nodes are up and which are down

b) W hether the processing nodes are required to distinguish the failures and recognize 

them instantaneously.

Under the above requirements, dynamic vote assignment strategies [64, 67] have no 

use as they require partitioning failures to be distinguishable from node crashes and the 

failures to be detected instantaneously.

As far as effectiveness is concerned, Available Copies (AC) schemes provide the 

optimal availability for two copies but cannot tolerate partitions unless the nodes have 

the same view about the state of the network and the same failure detection requirements 

as dynamic strategies are required. On the other hand, static voting algorithms do not 

have the failure recognition requirements but have the disadvantage of needing at least
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three copies to give higher availability than a single copy. The availability with voting 

can be im proved with the use o f witnesses; records o f the current state o f the file that 

replace the full copies. Voting W ith W itnesses (VW W ) do yield almost as much availa­

bility as the m ajority voting (MV) with three copies, but still voting algorithms cannot 

reach the optim al availability provided by AC with only two copies.

One im portant property which is not investigated as a part of the consistency 

scheme in the literature is ease o f reconfiguration; the file might require different degrees 

of availability for different periods o f times during its lifetime. This availability can be 

achieved either changing the locations o f the copies —  moving the copies to the nodes 

that are going to be up for the required amount o f time —  or creating extra (temporary) 

copies to reach the desired level. A n effective file replication scheme should provide a 

flexible and easy reconfiguration facility to the user as a property of the consistency algo­

rithm without any additional system administration requirements. The degree of dynami- 

city in reconfiguration is also important.

The algorithm proposed here overcomes the basic disadvantages of static voting 

algorithms (m inim um  three copies requirement) and available copies algorithms (fail 

under partition) in a distributed system where each node has its own view of the state of 

the network (this state indicates which nodes are up and which nodes are down). It is an 

alternative control scheme for low degree replication, especially two copies, and has a 

dynamic reconfiguration facility. It provides high availability allowing access to the 

replicated file as long as one up-to-date copy is available and keeps the consistency o f the 

data in the face of node crashes and network failures that can cause partitioning in the 

network.

The algorithm replicates a small amount o f data concerning the location and status 

of a file’s small number o f copies (its history) a large number of times using a variation 

of the voting strategy, and uses this highly reliable vital information to determine the 

update strategy. The consistency o f the file is preserved when the system is partitioned
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due to bridge failures since the history can be accessed only in one partition in which a 

m ajority can be collected. Although independent schemes are used for two entities (files 

and histories) to achieve consistency, the interaction between these entities provides a 

consistent view of the file’s small number o f copies during partitioning failures. This 

hybrid protocol will be called reliable histories (RH) throughout. The interaction 

between the protocols will be described shortly.

The algorithms for the logical operations are presented here in a pseudo-code based 

on set notation and predicate calculus mainly because they rely heavily on set m anipula­

tion and require very little in the way of conventional control structures. The following 

sets are used throughout this chapter:

T  = {true , fa l s e }

N  the natural numbers 

M  the set of processing nodes 

F  the set o f file identifiers

V  = 2m  x n  (sets of server and version number pairs)

X* the set o f byte strings

The notation 2s denotes the power set o f 5, i.e. the set o f all subsets of S. The con­

ventional set notation used in the algorithms is given in Appendix A.

3.1 Replication Control Service

A replicated file is defined as a set o f file copies, each one implemented on a distinct 

node in the distributed system. It is the job o f the consistency control algorithm to coor­

dinate the accesses and updates to the file copies so that clients of the replicated file sys­

tem see a consistent view o f the file. That is, any client that reads a file after a write 

operation has succeeded will see the data as it was left by the write operation. It is 

assumed that processors act synchronously and have access to a local clock. No assump­

tions are made about the synchronization of these clocks at this point (some assumptions 

will be made in Chapter Six for performance optimization).



58 A H ybrid Replication Algorithm

The file system presents applications with the abstraction of a logical file consisting 

of a sequence of bytes and identified by a unique identifier /  € F. It is considered to be 

a sequence o f bytes, any subsequence o f which may be read or replaced by any other byte 

sequence. The file system provides five operations, four of which are the operations on 

these logical files that are assumed to exist for local ones: crea te , re a d , write and 

d e le te . The create operation introduces a new file ID that refers to an empty file. The 

data referred to is accessed and modified only by read and write operations. Read is used 

to return an arbitrary, contiguous sub-sequence o f the file’s bytes, while write is used to 

replace such a sub-sequence w ith any other byte sequence. Once the data in a file is no 

longer needed, the file ID is deleted, so that the file system may reclaim the space occu­

pied by the file. The fifth operation, configure, maintains the file’s history for a new 

configuration set. This operation enables the client to change the location o f the copies 

or the degree of replication during the life time of the file. The configure operation will 

be described separately in Section 3.4.

Logical files are im plem ented by a (possibly empty) set of physical files each hold­

ing a complete copy o f the data in the logical file and each residing at a single, distinct 

processing node. Two protocol layers within the Replication Control Service coordinate 

access to the physical copies so as to ensure that read requests return the most up-to-date 

version of the file. The availability control protocol determines the appropriate update 

strategy for a file operation based on the file’s history table. The history table records the 

location and version num ber o f each copy along with a boolean flag that marks the file as 

having been deleted. The Replication Control Service deletes the file ID so that the 

storage can be occupied by the file system. There is no assumption about how and when 

the storage is reallocated. This is left to the file system. M arking the deleted files instead 

of returning them to the storage pool immediately allows easy recovery o f the current 

version if the file is wanted to  be recreated shortly after the deletion. The history is main­

tained by the history table control protocol.
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The number and location o f the copies o f each file are controllable by its owner, and 

both may change during the file’s lifetime. This is im plem ented as an interface into the 

lower control layers o f the replication control system.

Any client w ishing to read a file consults the history inform ation to determine which 

file copies are up to date. Write operations perform  update on all the up-to-date copies 

and copy the current version to obsolete-copies. Clients m ulticast a write request, includ­

ing the highest version num ber in the file’s history, to^^ll servers that hold a copy o f the 

file. This write request is not applied immediately to the file but is held pending until the 

next read or update request. Subsequent requests to read or update the new version cause 

the pending update to be applied (if there is one). If  a request is made for the old version, 

any pending update is discarded. This mechanism ensures that the file copies are kept in 

step with the history table, even when a network partition during an update prevents the 

new history from being saved after the file copies have been updated. Such a failure will 

be reported to the client, and any subsequent operations w ill cause the unsuccessful 

update to be discarded. The algorithms do not configure out the obsolete copies. 

Obsolete copies are also active entities in the system but do not participate in write 

operations. The replicated file system can provide an alternative read operation which 

returns the available m ost up-to-date copy (not necessarily the current version). The 

obsolete copies therefore increase the read availability for the files in this category (it 

may be better to read an old version of a host address table than none at all). Figure 3.1 

illustrates the com ponents o f the system.

APPLICATION

configure create, delete
read, write

History-Table ReadHistory Availability
Control WriteHistory Control

1 1*

\ '
C O M M U N I C A T I O N

he he he he
fc fc

p r o c e s s i n g  n o d e s  

Figure 3.1. Interacting components of the replication control system
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3.2 Availability Control Protocol

Each logical file f  e. F  has a history table h ( f ) e  V  x T  that records the version 

numbers and locations of every physical copy o f the file along with a boolean flag used to 

mark the file as having been deleted. Tw o operations,

R eadH istory : F  -»  V 'x  T  

WriteHistory: F  x  (V  x 7 > —» [success, e r ro r }

are provided to manipulate this table. A read o f the table for a 'particular file returns this 

flag together with the locations and corresponding version numbers o f its physical copies. 

A write to the table records new m achine and version number pairs and can be used to set 

the delete flag. This history inform ation is itself replicated using a separate algorithm 

described in the next section.

At file creation time, all copies are assigned version numbers zero:

create (f , S ): F  x  2M —> {success, e r ro r} 

let h <— | (m , 0) | m  e  5 )  

return WriteHistory ( f ,  ( h , fa lse ))

No physical file copies are created until the file is first written to. For exam ple: when the 

file is logically created on a set of nodes, S = { m 1,m 2 l, the files’ history, 

h = {(m  i , 0), (m 2 , 0)} will be w ritten to a set o f nodes, H. T he sets H  and S  may be 

disjoint or not. Figure 3.2 illustrates the order o f operations during file creation.

WriteHistory(/, (h,d))
h = {(m*, 0),(my, 0)},d=fabe

UpdateH((ml tm2, • •, mt }, (h,d))
C O M M U N I C A T I O N

m*m.

History-Table
Control

Availability
Control

APPLICATION

Figure 3.2. Layer interaction during create operation
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The delete simply attempts to write a new history that records the file as having 

been deleted using the flag already mentioned (Figure 3.3).

delete i f ): F  —» {success, e r ro r}

re tu rn  WriteHistory  ( / ,({ } , true))

APPLICATION

dclei c(/)

History-Table WriteHistory(/. (/i={ },d=true)) Availability
Control

i
Control

® iAUpdateH({m,. m2. • • •, mk J. (h,d))

C O M M U N I C A T I O N

'A
m,

Figure 3.3. Layer interaction during delete operation

A file may be in any one o f four availability states, determined by inspecting its 

reliable history table.

1) All copies are available and up-to-date.

2) All available copies are up-to-date but some copies are unavailable.

3) Some of the available copies are not up-to-date.

4) No up-to-date copy is available.

The availability control protocol determines the appropriate access and update policy for 

each state. In order to read a file it must be in state 1, 2 or 3, i.e. at least one available 

copy must be up-to-date.

If  the file has been deleted (d  = true) or the file’s history is not available (h = 0  ) then 

the operation fails. The up-to-date copies have the m axim um  version number in the his­

tory table. The copies w ith zero version numbers are the new copies which are created
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by configure operation but not physically written yet. These copies are brought up-to- 

date by copying from the existent copies when a write operation is performed. The set of 

servers holding copies w ith the highest version number is found and a read request is 

multicast to them. Figure 3.4 illustrates the order of the physical and logical operations 

for a read request.

re a d ( f ,p o s n , Size): F x i V x i V - ) I * u { erro r} (algorithm -1)

let (h , d ) <r- R ea d H is to ry if)  

if {d = true v  h = 0  ) 

re tu rn  error1

let latest max({/ | 3  i m , i ) e  h ) )  

let U <— [m | 3 {m, latest) e  h } 

re tu rn  readF(U, f ,  p o sn , S ize , latest)

The following multicast operation is invoked on physical copies:

readF(U, / ,  p o sn , Size ,v) :  2M x F x N x N x i V - ) Z *  u  {erro r}

returns data (specified by size and position) obtained from  any server in the set U, 

or an error indication if  no server responds.

Each server compares its copy’s version number with v. If  they are equal, any 

pending update is applied to the copy before returning it. I f  they are not equal then 

the server discards the pending update, and decrements the copy’s version number.2

1 The first condition occurs if the file is deleted in a subsequent operation. It is possible to recreate 
these files if the space has not been allocated to another process. This requires only setting the delete 
flag to false again in the history. The recreation property can be added to the configure operation if it is 
required. The second condition occurs if the history table is not accessible as a desired number of 
nodes are not operational in the system.

2 If v is not one less than the copy’s version number or there is no pending update, the system has 
become seriously inconsistent (the algorithms ensure that this case never occurs).
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Figure 3.4. Layer interaction during read operation

An alternative read operation can be provided for files in availability state 4 that 

will read the most up-to-date version that is available. This operation can be used when 

all up-to-date copies have been lost forever (by disc failure, for example) or the file has 

very weak consistency requirements. For example it m ay be better to read an old version 

of a host address table than none at all.

The algorithm is similar to that for the read operation above, except that it iterates if 

the readF request fails, picking all servers that hold versions one less than latest until the 

lowest (positive) version number has been tried. .

A write operation will succeed if at least one file copy can be updated and the file’s 

new history can be recorded. The update is multicast to all up-to-date copies, and servers 

holding out-of-date versions are asked to copy the new  file. The set o f servers which 

accepted either the update, R, or a new copy, C, will hold up-to-date versions and this is 

recorded in the new history with an incremented version number for these nodes. 

Untouched servers have their history table entries copied into the new table from the old 

one. The formal description o f the write operation is as follows:
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write {f, d a ta , p o sn ): F  x  X* x  N  —> {success, erro r} (algorithm-2)

let (h, d )  <— ReadHistory ( f )

if {h -  error v  d  = /rw?)

re tu rn  e r ro r—  see footnote 1

let latest 4— max({/ | 3  (m , i)  e  / i }

let U <r- [m  | 3 (m, la test) e  h }

let R <— updateF(U, f ,  d a ta , p o sn , latest)

if(R = 0 )

re tu rn  error

let S <— {m | 3  (m, 1) e  h } 

let C 4— co pyF (R ,/, (S -R ) , latest)

let K  4— {(wi, /are^r+l) | m e  C  u  R } u  {(w, 0  e  h \ m e  C v  R )  

return WriteHistory ( / ,  (h 't fa lse ))

The following support operations are invoked on physical file copies:

updateF(U, / ,  d a ta , p o sn ,v ):  2M x  F  x  Z* x N  x  A  —» 2M

M ulticasts a request to write data  to the file /  to all the servers in the set U. It 

returns the set o f servers that accepted the request.

copyF(R, / ,  X ,  v): 2M x  F  x  1M x  N  1M

Copies the file /  from any server in the set R  to all the servers in the set X. Again, 

the result is the set of servers that accepted the operation.

Those servers that accept the updateF or copyF operations first decide whether to apply 

or discard any pending write (if there is one) by em ploying the same rules as readF. 

Secondly, they attach a version num ber one higher than v {latest) to the copy and do not 

commit the current update until the next request. Therefore up-to-date copies are always 

between tw o versions (v and v+1). The order of operations for a write request is shown 

in Figure 3.5.



Availability Control 65

APPLICATION

rriic{/)

History

Table

Control

Availability

Control
h -  {(mx, vers_no),(my, vers_no)),d=false

— WriteHistory (/, (h.d))

y UpdateHdrri!, m2, ' j _ * (h.d)) UpdateF(/\ {mj'.nty} .latest)

C O M M U N I C  A T I O N

Figure 3.5. Layer interaction during write operation

3.3 History-Table Control Protocol

The reliable histories algorithm presented above, requires a highly reliable, con­

sistent history table to be m aintained for each file. The History Table Control Protocol 

provides this requirement using the operations:

ReadH istory : F  —>V x T  

W riteH istory : F  x  (V  x  T) —> {success, e rro r}

The history records whether the file has been deleted (the truth value is interpreted as a 

"deleted" flag) and a set o f machine and version num ber pairs (V = 2M x N ).

The history table control layer supports these operations by replicating the table 

using a variation o f the basic majority voting algorithm so that the file histories are con­

sistent in the face o f network partitions. The history tables are made highly available by 

replicating them  on k  sites, where the num ber of file copies.

In its simplest form, k  = |m /2 |+ l , where m  is the total num ber of processing nodes, 

each node is assigned one read and one write vote, regardless o f whether or not it holds a 

copy o f the file’s history. The algorithm will allow a read to succeed even if only one 

copy o f the history table is available, so long as the m ajority o f nodes are up. W rites to
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the table require a majority o f nodes to accept the new table version. In the case o f ran­

dom node crashes the m ethod will offer a high degree of read availability. Random  net­

work partitions will reduce availability more seriously but the table will still be con­

sistent. Analysis o f partitioning is done in the following chapters.

3.3.1 C om m unication  Layer

Each replica of the history table o f / e  F  keeps a timestamp ts (h) o f the last update 

on itself such that if ts(/*,) = ts{hj) then hi and h} are the same, if there is a timestamp 

such that ts(/tj) < ts (hj) then hi is an out-of-date table.

The control operations multicast the following requests in order to read/write a 

replica of the table.

r eadH( M, f)' .  2M x F ^ 2M xWxfVxD

Invokes a lookup and m apping request to all processing nodes and returns the table 

versions together w ith the last update time o f the returned version and the set of 

nodes returning that version. If  the node is not holding a copy o f the table then it 

returns a negative indicator.

updateH  (M  , f , h ): 2M x F  x  V  —> 2M u  [success,error}

Invokes an update request on table to all nodes and returns the set o f nodes which 

accepted the new history. At least |_m/2|+l acceptances are required for successful 

completion, where m is the number of processing nodes in the system.

The physical history read operation given above is invoked when the ReadHistory 

function is called. If  less than a majority of the nodes reply then the file is unavailable. 

Otherwise, the table which has the highest update time is returned. The form al descrip­

tion of the algorithms for the table functions are given below.

ReadHistory ( f ): F  —> V  x  T  (algorithm-3) 

let w <— readH (M , / )  

if | w  | <|_m/2 |+ l
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re tu rn  error —  table is not available

Iet5  <r- {s | 3 (s,t, (h,d)) e  w)

let maxtime stamp max([ t  | 3 ( s , t , ( h , d ) ) e  w })

let L  {5 | 3 (s, maxtime stamp, (h ,d )) e  w }

return (\{h,d) \ 3 s e  L A(s, t , {h,d))  e  w})

The corresponding update on the table is initiated when the WriteHistory function is 

called.

W riteHistory ( /, (h,d)): F  x  {V x  T) —» [success, error j 

return (updateH  (M , f , h ))

3.4 System Configuration

The configure operation changes the placement of the copies at any time during the 

file’s lifetime by using the history table control protocol. Since the new locations for the 

copies are added to the history with a zero version num ber the configure operation must 

ensure that the new set contains at least one up-to-date copy (highest version number 

greater than zero).

If  the intersection between the old and the new sets contains an up-to-date copy then 

no copying of the file is required during the configuration. New locations are added to 

the history table with zero version numbers. Any write operation following the configure 

operation will attempt to overwrite the copies w ith zero version numbers by copying 

from the updated version.

If the intersection does not contain an up-to-date copy then it is necessary to ensure 

that the current version is copied to at least one o f the nodes in the new configuration. If 

none o f the above conditions is satisfied, the configuration o f the file is left as it is. The 

following algorithm combines the two possible cases explained above in one operation. 

This operation ensures that file /  is configured on the servers in the set P.

configure ( f , P) :  F  x 2M —» {success, erro r} (algorithm-4)
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let { h , d )  <— ReadHistory ( / )  

if (h = error v  d  = true) 

re tu rn  error1

let 5 {m | 3 (m , i ) e  h }

let fafesr <— m ax( {i \ 3 {m, i) e  h )

let U [m | 3 (m , latest) e  h)

let h <r- A d d H { h , P - S )

i f (C /c (5 -P ) ) 4

then let C <— co p y F (U ,/, P)  

if (C = em pty) 

re tu rn  error5

let h <r- D eleteH  (h, ( S -P) )

let h'  <— [{m, latest) \ m e  C } u  {{m, i) e  h | m & C } 

else let Ai' D eleteH {h, { S - P) )  

re tu rn  W riteHistory ( /,  {h', fa lse))

The following support functions are used. These functions are perform ed locally and

the changes multicast to history copies if the new configuration is succesfiil.

A ddH (/i,S ): V x 2 M - > V

Returns the history h, augmented by the history information {m,  0) for each machine 

m in set 5.

DeleteH(/i, D ): V x 2 M - > V

Returns the history h, less any pair {m, x)  with m in set D.

3 This condition can be extended to include the recreation of previously deleted copies as discussed 
in Section 4.1. See also footnote 1.

4 New configuration includes no up-to-date copies.
5 This condition occurs when none of the up-to-date copies exist in the new configuration and all 

up-to-date copies are unavailable therefore cannot be copied into the new configuration. In this case, 
the file configuration is left as it is.
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3.4.1 Exam ple Scenarios for the Configure Operation

The following scenarios show the changes in the history of a file during consecutive 

calls of the configure operation.

The following terms are used:

hi = [ (loc,version),(loc,version ) ...}:

The resulting history table after the configure or write operation is completed in 

scenario i. They denote the location and version number of copies in pairs.

At = { • • • ) :

The set of nodes that are up during scenario

The set names are the same as are used in the configure algorithm. U: the set o f up-to- 

date copies, P : the new configuration set, C: the set of nodes on which the copying of 

current version has succeeded. Each scenario applies an independent configuration 

request but takes up the system parameters (e.g. history table) from the previous scenario. 

There are total 10 nodes in the system (numbered 1 ..10) three of which keep a copy of 

the file. Initially, /?o = {(1,1), (2,1), (3,1)}.

In order to show the progress of configuration clearly, it is assumed that no update 

occurs between the first three scenarios, therefore the history is changed only by the 

configure operation in these cases. The last scenario applies a combination o f updates 

and configuration together.

Scenario One:

A 1 = { 1,5,  6 , 7 ,  8 , 9, 10 }, 

configure{f yP = { 1, 3, 4 })

Here, the file is to be configured on P = { 1 , 3, 4 }. Since the S  = U = { 1, 2, 3 } is not a 

subset of S —P = { 2 }, the fact that the nodes 3 and 4 are down does not affect the accep­

tance o f the new configuration.
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Copy 4 is added to the history with zero version number indicating an attempt to create it 

must be made at the next update and the history information for copy 2 is removed. The 

entries for nodes 1 and 3 are left as they were.

History becomes h i  = {(1,1), (3,1), (4,0)}

Scenario  Two:

A 2 = { 1,4,  5, 7, 8 , 9 ,  10  }, 

configure(f ,P  = { 4, 5, 6  })

In this case, U = { 1, 3 } is equivalent to S - P  = { 1, 3 }. This means that the 

configuration, P, does not contain an up-to-date copy. Therefore at least one copy opera­

tion from node 1 or 3 to the nodes in the new configuration (4, 5, 6 ) has to be successful 

before accepting the configuration.

copyF(f/ = { 1, 3 } , P = { 4, 5, 6  } ) returns C = { 4, 5 }, the copying on { 4, 5 } is suc­

cessful (node 6  is down).

History is changed to: h 2 = { (4,1) , (5,1) , (6,0) }. Node 6  will be brought up-to-date 

during the first successful write after it recovers.

Scenario  T hree :

A 3 = { 1,2,  3, 6 , 7, 8 , 9, 1 0 } ,  

configure (J, P = { 6 , 7, 8 })

In this case, U = { 4, 5 } is equivalent to S - P  = { 4, 5 }. This means that, there is not an 

up-to-date copy in the resulting set as in the previous scenario. Therefore, at least one 

copy operation from node 4 or 5 to the nodes in the new configuration (6 , 7, 8 ) has to be 

successful.

copyF(t/ = { 4, 5 } , P = { 6 , 7, 8 } ) returns C = 0  . Copying is unsuccessful as both 

nodes 4 and 5 are down.

New configuration is not accepted and the history remains unchanged: h 3 = { (4,1) ,
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(5 ,1 ), (6,0) }.

Scenario Four:

A 4 = { 1,2,  3 , 4 ,  5, 6 , 7, 8 , 9 ,1 0  } , 

write {/),

configure ( f  yP = { 6 , 7, 8 }), 

write ( /)

1) All copies are brought up-to-date by the write operation, so: /t4.i = { (4,2) , (5,2) , 

(6 ,2) }.

2) A request is made to configure the file on P -  { 6 , 7, 8 }. U = { 4, 5, 6  } is not a 

subset of S - P  = { 4, 5 }, therefore a copying operation is not required.

The new configuration is: h 4 2 = { (6 ,2 ), (7 ,0 ), (8,0) }.

3) The write after the reconfiguration brings all the copies up-to-date.

The history becomes: h 4 2> = { (6 ,3 ), (7 ,3 ), (8,3) }.

3.5 User Requirements

The reliable histories method is aimed at the applications in general purpose com­

puting environments where storage costs must be kept low, and where the units o f data 

that are to be kept consistent are typically several kilobytes or more, such as, document 

preparation, program development etc.

The answers given to a questionnaire in our department has shown that, more than 

50% of the academic staff and research students are keeping multiple copies of about 

15% of their vital files for robustness and increased availability but the files they repli­

cate have variable degrees o f availability requirements during different time periods. In 

a replicated file system, one o f the basic requirements of the user is to have control over 

defining the high availability periods. The desired level then can be reached by moving 

the copies or increasing the degree of replication. The flexibility o f configuration there­

fore is an important property for reducing the administrative requirements of replicated
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files. A nother advantage of the replication history is that it allows the algorithm to work 

properly w hen the replication degree is only one (single copy). The storage cost can be 

reduced by keeping only one copy for the periods in which the file does have low availa­

bility requirements. How to define measurement metrics to reach a certain degree of 

continuous availability when the periods are defined by the user is a new direction for 

future work in this area.

3.6 Discussion

History tables provide a mechanism which gives consistent updates in the presence 

of network partitions. This is not possible w ith the original available copy approach. 

A lthough the history table must be replicated using a voting strategy and requires a high 

level o f replication in order to give the degree of fault tolerance required, it is relatively 

small com pared to the size of the file itself.

In order to reduce the communication cost, the number of history table copies can 

be reduced by assigning higher weights to some table copies. This reduces the number of 

responses required to complete an operation. In the following chapters, the availability 

analysis is based on the assumption that all nodes are assigned one vote for read and one 

vote for write. This case has shown the worst case behavior. Fortunately, the history 

table inform ation is quite small —  eight bytes per copy per file is quite sufficient, so high 

levels o f replication are not costly in terms o f storage.

A simple locking scheme is required to ensure that the file state and the history table 

are kept in step —  the table being locked when it is read and unlocked when it is written 

back. A  more subtle scheme is possible, but from the studies of active file stores con­

current update o f replicated files is likely to be very rare in practice [45].

M any areas require further study. In particular, there are several systems adm inis­

tration questions that arise only with replicated files: W ho may alter the file’s replica­

tion? How does the user or system adm inistrator specify the replication —  explicitly or



Conclusion 73

by asking for a given level of fault tolerance? Should the positioning of files be decided 

automatically, by users, or by administrators?

3.7 Summary

A new dynamic technique for maintaining consistency o f replicated files has been 

proposed and the algorithms for logical operations are described in a pseudo-code based 

on set notation separating the control system into two interacting layers. The algorithm 

offers:

a) high availability,

b) low storage cost for file replication (practical for two copies),

c) dynamic reconfiguration ( all other dynamic strategies change the votes dynamically 

whereas this algorithm offers flexibility for changing the location and the number of 

copies dynamically),

d) practicable in the sense that it can be implemented simply as an extension to the 

existing file system,

e) allows easy extension for user control in replication management.

In the following chapters, the reliable histories algorithm is analyzed and compared 

with the others for availability, reliability and the likely communication overhead 

involved. The results o f the analysis are very encouraging and these issues are potential 

areas for further investigation.





Chapter Four

Steady-State Availability

In this chapter the steady-state availability o f a replicated file, which is the probabil­

ity of its being available for access (usually read or write) at any particular moment, is 

analyzed. The analysis is focused on two problems:

1) the availability provided by the reliable histories algorithm concentrating on the 

minimum requirements for gaining advantage over the other methods,

2 ) the effect o f partitioning on the availability provided by the replication methods.

The second is a very critical issue because m ost o f the work in the literature concen­

trates on tolerating partitions but none of them  considers the effect o f partitions on the 

degree of availability provided [7 4 ,6 4 ,7 5 ,7 6 ,6 3 ,7 7 ,5 8 ].

By making various simplifying assumptions about the failure and repair rates of file 

servers and about the possible failure modes o f the network, first, a combinatorial model 

based on k-out-of-n reliability theory [57 ,78 ,79] is developed and thereby the steady- 

state availability of randomly placed files in a partition-free environment is estimated. 

The results are compared where applicable w ith various voting algorithms and the avail­

able copies method.
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A similar method is later used for the analysis of partitioning in a simple topology 

where failure of a bridge divides the network into two self-com municating groups of 

nodes. The results are validated by simulation.

In the second step, a more realistic M arkov model is derived for analyzing the avai­

lability offered by the reliable histories algorithm. Because of the num ber of states 

involved, the algorithm becomes too complicated to model when a large cluster of nodes 

are involved. Therefore, only two copies in a distributed system o f maxim um  five nodes 

is considered for this part o f the analysis. This has given a lower bound on the availabil­

ity.

In the analysis, a distributed system is viewed as a finite, large number o f processing 

nodes linked by a data network. Each copy o f a replicated file resides on a different 

node. The total number of processing nodes, m, is larger than the number o f copies, n, of 

a replicated file (m >n). The nodes or the network may fail independently and the system 

might become partitioned as a result o f bridge failures. W hen a node fails, a repair pro­

cess is initiated immediately. This repair process always succeeds. The copy on a 

recovered node is left as it is. An attempt is made to bring obsolete copies up-to-date 

during the following write request hence a special recovery procedure following a repair 

is not required. If the assumptions are different for some methods in the comparison, 

they are stated where necessary. Each node has its own view about the state of the net­

work (this view indicates w hich nodes are up and which nodes are down). Among the 

nodes, these views may be inconsistent. In other words, it is possible that a node (or 

nodes) is incorrect about the status of another node. The replication algorithm running 

on a processing node can determine the status o f any other node only by receiving a reply 

to its messages. In the reliable histories approach, the file access succeeds as long as the 

majority o f the nodes are available and at least one of these nodes holds an up-to-date file 

copy. The number of available history copies is not im portant since the majority of 

nodes holds at least one up-to-date history.
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4.1 Combinatorial Analysis of Availability

In this section availability expressions are derived for P( A)  —  the probability that a 

replicated file is accessible. In the analysis a file replicated n times is assumed to have 

physical copies located on n distinct file servers, chosen from M, the set o f server 

machines. The total number o f server machines in the system is m.  The RH method 

assumes that each file’s history table is replicated (and up-to-date) on a majority o f these 

m servers. All the servers fail independently with the same probability in such a way that 

the probability that a server is up, at any instant, is p.  The update and read requests ori­

ginate at random from any machines in M, which are up. Relaxing these assumptions 

severely complicates a combinatorial analysis, later M arkov modeling (Section 4.2) 

abandons them in favor o f more realistic ones.

In its simplest form, the available copy algorithm makes a file w ith n replicas avail­

able with probability (without considering the histories),

P{Af ) = \ - { \ - p ) n (4.1)

As m , the number o f file server nodes increases, the update availability of 

reliable histories approaches this. To show this, the following demonstrations are 

required:

a) A t , the availability o f the history table and A f, the availability o f the file, are asymp­

totically independent events:

With k  table and n file copies chosen from m  nodes, the probability that a node

k n
holds a copy o f both the table and the file is — x —  w hich tends to zero as

m m

b) The probability that a file is available for update, P(A) ,  is asymptotically equal to 

the probability that the file is available:

For an update to succeed, both the file history and at least one copy o f the file must 

be available. The table, replicated using majority voting, will be available with pro­

bability
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P(A,)  = £  p * ( l-p ) '" -*
k>m/2

(4.2)

which tends to 1 as for p  > 1/2. Since A ( and A f  are (asymptotically)

independent, for large m,

P(A)  = P(Af )P(At ) = 1 - ( 1  - p ) n (4.3)

By considering conditional probabilities a more realistic formula can be derived for 

the reliable histories algorithm. Let P (A f ) be the probability that an up-to-date file copy 

is not available, and let P{A,C) be the probability that the file’s history is not available. 

We then have

P(A)  = 1 - P { A f c v A tc)

= 1 - P { A f c) - P { A tc) + P{Af c | A / ) P ( V )  (4.4)

In the first step, we will show that P( Atc) = (1 — p ) k when the table is held on k distinct 

servers. In the following expression P {Ni) ^ is the probability that i nodes are down (not 

necessarily holding a table copy) and P{Ti)  10 is the probability that all tables are on 

those / nodes.

i=k

= £ — ( j a M — _ p ) i

put  j  - i  - k  and i =j  +k and we get

m—k
= ( i - p i  £  (m *)!—p m-k-j (i - Py

and since the second part is a binomial expansion 11 we can write,
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P (A ,c) = ( l - p f  (4.4.1)

Now it is simple to show that P { A f )  = (1 - p ) n. By w orking from the observation that

P ( A f  | Alc) = l dP(S i) P ( R i ) (4.4.2)
i =0

where P(Si)  is the probability that n - i  copies are on the servers that hold tables, and 

P(Ri)  is the probability that none of the remaining servers hold available copies, from

(4.4.1) and (4.4.2) we g e t14

P(A)  = 1 - a - p ) n - ( 1 - p ) *  +  £  „ k[ ... (1 - p ) i+k (4.5)
i% (k -n + i) \  m l

Table 4.1 compares file availabilities when p  =0.7 and p - 0.9 for five common replication 

strategies: unanimous update, single primary, moving prim ary, majority voting and 

available copies; with the results of reliable histories from (4.5) with m - 10. Figures for 

n = 2,3,4 and 5 are shown. As the results in the table have shown, even with high failure 

rates (0.3), for small /?, the history table reduces availability only 0.1 percent (three point 

accuracy) when compared to the original available copies algorithm. This availability is 

still considerably better than the other methods.

p= 0 .7 P =0.9
M ethod n=2 n=3 n - 4 n=5 n=2 n=3 n=4 n=5

U.Update 0.490 0.343 0.240 0.168 0.810 0.729 0.656 0.590
S.Primary 0.700 0.700 0.700 0.700 0.900 0.900 0.900 0.900
M .Primary 0.490 0.784 0.916 0.969 0.810 0.972 0.996 0.999
M.Voting 0.490 0.784 0.651 0.837 0.810 0.972 0.948 0.991
A.Copies 0.910 0.973 0.992 0.997 0.990 0.999 0.999 0.999
R.Hi stories 0.909 0.972 0.991 0.996 0.989 0.998 0.999 0.999

Table 4.1 — Availability offered by various replication schemes.

14 Hint: P ( A f  | A,c) = . k 1
is0 m m - 1

k-n + i +1 
m -n+ i+ l ■(1-P)'
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4.2 Stochastic Analysis of Availability%/
In this section, the simplistic failure model of the combinatorial analysis is aban­

doned by using Markov modeling. In the above analysis the independent nodes were 

considered being up with probability p. Here, the availability behavior of the voting 

methods and the reliable histories algorithm are analyzed considering node failures and 

repairs as independent events. Since the voting method requires a minimum of three 

copies for acceptable improvement in the availability, the most reasonable solution is to 

assign equal weights to all copies and to have both read and write quorums equal to two. 

The file then remains available as long as two out of three copies, in other words majority 

o f the nodes, are accessible. This method will be called majority voting (MV). The 

other method in comparison is voting with witnesses(VW W ) in which one of the three 

copies is replaced by a witness copy. Since these methods provide the same availability 

for read and write, in the following analysis the availability derived stands for both read 

and write.

The state-transition-rate diagram is a network of states representing different com bi­

nations of machine and file copy availability. Events such as machine failures and 

repairs, as well as file updates, may cause a transition from one state to another. In the 

following analysis, it is assumed that individual node failures and individual repairs are 

independent events distributed according to a Poisson law. In other words, the probabil­

ity that a given node will experience no failure during a time interval of duration t is e~^‘ 

where X is the failure rate. Similarly, the probability that a given node will be repaired in 

less than t time units is 1 -  e~^1 where ji is the repair rate. File updates occur at rate u, 

again obeying a Poisson law. It is assumed that repairs are initiated as soon as a failure 

occurs (and at no other time) and that a failure is only possible once a node has 

recovered.

The availability o f the system A  is the limiting value o f the probability p{ t )  that the 

replication system will be operating correctly (can access to the file while preserving
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consistency ) at time t.

A = lim p  (t )
t—><»

If transitions from state 5, to state Sj  occur at a rate r, then the expected number of 

transitions into state Sj  is just P s f ,  the probability o f the system being in state S, multi­

plied by the rate. For the system to reach equilibrium, the expected number of transitions 

into and out of each state must be equal, giving rise to a set o f simultaneous equations in 

the probabilities Ps that the system is in state s. A file will only be available when the 

system is in any one of known number of states. The file availability is determined by 

summing the probabilities of the system being in any o f these states in which the file is 

available. The availability model which is defined as states and transitions between these 

states is solved using a software package developed by Sahinoglu [80,81,82], This 

package generates the matrix, Q = (qi j ), infinitesimal generator o f the Markov process 

Pi(t) which satisfies the forward equation

(dldt )Pj( t )  = Pi(t )qi j

This Markov process yields a solution following the method given in Appendix B. 

As the number of states increases rapidly as more file servers are modeled, here, only an 

analysis of three and five server systems are given. The behavior o f the reliable histories 

method with two copies is compared with the availability provided by majority voting 

with three copies and voting with witnesses (two copies and one witness). The analysis 

is restricted to the case where all nodes regardless of containing a copy or not have equal 

failure rates X and equal repair rates (I. This is not a restriction o f the method but allow­

ing different rates for each node would complicate the equations further. Below two 

models are derived. In the first model, the system has only three processing nodes and 

two or three of them hold file copies (depending on the algorithm). In the second model, 

the number of processing nodes is five and two (or three) o f them hold a copy.
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The aim o f this analysis is to determine the limiting conditions o f the system operat­

ing under reliable histories algorithm in order to gain advantage (in terms of increased 

file accessibility and reduced storage c o s t ) over other methods.

4.2.1 M odeling Three Nodes

The state space of the model defines a finite-state Markov chain because there is a 

finite number of states representing the system where each state is shown by a letter and 

two numbers. The letter represents the possible states o f the two copies.

‘S ’ denotes states in which both copies have the same version number.

‘D ’ the copies have different version numbers but the up-to-date copy is available.

’W ’ the copies have different version numbers and only the out-of-date copy is avail­

able.

The first subscript denotes the number o f available copies (0 to 2) and second 

identifies the num ber of nodes that are up in that state (0 to 3). Clearly, only a limited set 

of combinations is possible. For instance, the letter W  only appears when one copy is up 

and the other is down.

The following rules are obeyed:

1. One or more failure transitions can only occur from states having at least one up 

node (not necessarily holding a copy). The rates at which the transitions occur are 

proportional to the number of up nodes and copies which are therefore susceptible 

to failure. For instance: state S23 corresponds to the case where all nodes are up 

therefore both copies are up and up-to-date. S23 has two failure transitions; one is 

to state S 12 with rate IX  which corresponds to the failure o f either copy. Two nodes 

remain available and only one o f them is holding a file copy. The other transition is 

to state S22 w ith rate X which corresponds to the failure o f the node not holding a 

copy. Tw o nodes remain available and both o f them hold a copy.
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2. One or more repair transitions originate from every state having at least one node 

down (not necessarily holding a copy). The rates o f the transitions are proportional 

to the num ber of down nodes and copies. Repairs do not include any recovery 

operation. For example: state has a single repair transition with rate |i  to state 

D23 when the down copy is repaired. The copies still represent different versions.

3. The only possible transition from an ’S* state to a ’D* state and vice versa occurs 

w hen the file is updated. The rate at which this transition occurs is thus given by the 

rate u , the update rate for the replicated file.

The STR diagram associated with a file replicated twice in a three node system 

using the reliable histories method is shown in Figure 4.1.

2X

X

'00

Figure 4.1. States associated with RH algorithm when m =3

W ith only three nodes, two of which carry copies o f the file, there will be a total of 

14 states. All transitions from/to states obey the rules given above. The file will be 

available (for read or write)) in only 6  out o f the 14 possible states: 5  23 , 5 22* S 12, ^ 23* 

D 22, T) i2 - For this system the equilibrium state probabilities w ill obey the following
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equilibrium conditions:

PS233^  = (PS22 + P 512)M'",' P£>23M

Ps22(2^ + |J.) = Ps23^ + P511M' + ? d 22w 

P s12(2A. + |i +  w) = 2P523A. + (PSu + 2P501 ) \l  

^Dn(2X + \i) = P512m+(P£)n +P£>01 )fX + P/)23A,

P w l2 (2A. -h jx) =  (P w H +  P£>01 )p, +  P p 23>. 

p5n (>. +  2|i.) = (2P5z, + P5l2)A. + 2P 500(X 

P/),,(X + 2|x) = (P£>12 + PD22)X + PdooM*

Ptvn (^  +  2 |i.) = (Pw 12 + P d 22)^ + PdooP 

P5oi(^ + 2 M') = P s n ^  + P^ool1

P d01(^  + 2 |i) = (P d 12 + P\v12)^ +PdqoI1

P-Soo3 !1 = (p5n +  PS o i^

Pz>oo3P = (P^M + P/)„ + ?D0l)h
Pd22(2 .̂ + M- + u )  = (Pd u  + P ^ n )|i + Po23A.

P d 23( 3 ^ + w )  = (PD]1 +  PD22 +  Pw 12)li

The transition matrix which is derived from the above equilibrium state conditions 

is not given here because o f its size and complexity. The STR diagrams for the MV and 

AC algorithms can be found in Appendix B.

Three methods are compared. M V has been employed assuming that all nodes keep 

a copy (as it requires a minimum o f three copies). In VW W , one o f the copies is 

assumed to be a witness. This method assumes that when a copy repairs from a failure it 

copies to itself the up-to-date version. RH also requires any two out o f three nodes in

order to access the history. As any two o f the nodes will contain at least one file copy,

the file will be accessible. Therefore, RH behaves in a similar way to VW W  when there 

are only three nodes in the system. The only difference is, RH does not apply a recovery 

operation. It assumes that the copy will be brought up-to-date in the next successful 

write after the node is repaired. As the results show, both voting algorithms perform 

better than RH. Therefore, three nodes are not enough to gain any advantage over either
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voting approaches. Figure 4.2 illustrates the availabilities provided by RH with 2 copies, 

MV with three copies and VW W  in a system o f three processing nodes.

o VWW .

x MV

■ RH.9 5 -

Availability -9 —

.8 5 -

2.150 0.05 .1
Failure to repair ratio (p)

Figure 4.2. Analytic results when m = 3

The next step is to compare the results when there are five processing nodes in the 

model. In the next section, the availabilities in a five processing node system are 

presented and the improvement in the reliable histories method as the number o f nodes 

is increased is shown. Later, the results o f the combinatorial analysis are compared with 

the results of the M arkov analysis.

4.2.2 M odeling Five N odes

The availability model for five nodes is derived in the same way as done for the 

three nodes in the previous section. 15 W ith five nodes, two o f w hich carry a file copy, 

there will be a total o f 28 states. The file will be available (for read and write) in 9 out of 

the 28 possible states: S 25, S  24 , S 23 , D  24 , D  23 , D 13, D ^ t S 14, 5 13. The file access 

succeeds as long as any three o f the processing nodes are up and one o f them holds an

15 An example transition in the five-node model: S2s has two failure transitions; one is to state S14  

with rate 2k by failure of either copy and to state S2 4  corresponding to the failure of one of the three 
nodes not holding a copy. These transitions therefore occur with the rate of 3k.
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up-to-date copy o f the file. The requirements of the other algorithms are the same as in 

the previous model. The equilibrium state conditions o f the system when m=5 and the 

details o f the model are given in Appendix B.

Figure 4.3 illustrates the availability when m - 5. As the results show, RH performs 

slightly better than M V with three copies and requires only two replicas.

x MV

■ RH

.9 5 -

. 9 -

. 8 5 -

.20.05 .150 1
Failure to repair ratio (p)

Figure 43. Analytic results when m -  5

4.2.3 Conclusion

The reliable histories algorithm with two file copies provides availability between 

two bounds determined by the number o f nodes in the system. The lower bound is 

offered when m= 5 (five is the minimum num ber of nodes required to gain availability 

advantage over the voting methods) and the upper bound is reached when the history 

table is assumed to be always available.

W hen m - 5, the algorithm provides availability very close to M V (slightly better), 

but it requires only two copies whereas M V  uses three copies. Therefore two advantages 

are acquired (low storage cost and higher availability) at the lower bound. The stochastic 

analysis has given the lower bound w hich specified the minimum requirements o f the 

algorithm. The maximum availability is reached when the file’s history is always avail-
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able which is equal to the availability provided by AC. This is the optimal availability 

for two copies. As the combinatorial analysis assumes a large m, it has given the upper 

bound o f the availability that can be reached (the results were presented in Section 4.1). 

Figure 4.4 shows that as the number of nodes is increased results obtained from Markov 

models converge to the results from combinatorial analysis and Table 4.2 presents 

numerical changes in availability as the num ber of nodes is increased.

m -3 m=5 m =10 m -5 0

p A S A S A  S A S
0.05
0 .1
0 .2

0.996
0.984
0.957

0.988
0.970

0.997
0.989
0.969

0.994
0.983

0.997
0.989
0.972

0.996
0.983

0.997
0.990
0.972

0.996
0.988

Table 4.2 — Availability offered by RH for various m values

W hen m - 3, the availability digresses more from the combinatorial results than the 

availability obtained when m — 5. This is because o f the difference between the failure 

assumptions in both analyzes; combinatorial derivation is based on the assumptions that 

I o n  and k> m /2. As m  increases both results converge.

1

.95

Availability .9 

.85 

.8

0 0.05 .1 .15 .2
p = (X/p)

x Simulation (m=10) 

o Simulation (m =5)

Combinatorial

Maikov (m=5)

Maikov (m=3)

Figure 4.4. Comparison of availability obtained by different techniques
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4.3 Managing Replicas in a Partitioned System

A partitioning o f a distributed file system occurs when the nodes in the network 

split into groups of communicating nodes due to bridge failures. The nodes in each 

group can communicate with each other, but no node in one group is able to com m uni­

cate with nodes in other groups. Each such group is referred to as a partition.

As discussed in Chapter Two, the available copies algorithm fails to continue func­

tioning correctly in a partitioned system. Generally, algorithms which function correctly 

in the face of partitions perm it a file to be accessed only in one partition. They share the 

philosophy that mutual consistency is of greater importance than availability. Some 

powerful dynamic voting schemes [67,72] have recently been suggested which overcome 

the drawback that failures can occur in such a way that no updates can be performed any­

where in the system until these failures are repaired. The challenge is to improve availa­

bility as well as preserving mutual consistency. But these methods require that partition­

ing failures are distinguishable from node failures and these failures are recognized 

instantaneously.

Although there were attempts to improve availability during partitioning I have not 

seen any analysis of the degree to which the availability is reduced in a partitioned sys­

tem. In the following sections, availability offered by replication schemes in partitioned 

networks is analyzed. The term ’partition-free’ is used where it is assumed that the sys­

tem never becomes partitioned.

4.3.1 Com binatorial A pproach to Simple Partitioning

The file availability in the presence of network partitions is harder to study 

mathematically. In this section a simple partitioning case is analyzed as an extension to 

the combinatorial analysis given in Section 4.1. Later, the results are generalized by 

simulating partitioning failures in various topologies.

The system is a series o f nodes on two subnets connected by a bridge. These
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subnets are called net-1 and net-2. An example topology is illustrated in Figure 4.5.

It is assumed that com munication links never fail. Each node has the same indepen­

dent probability p  o f being up and the bridge has the probability p r o f being up. There­

fore, (1 -  p r) is the probability that the system is partitioned into two self communicating 

groups. The availability of the file in this simple system is the sum of the availabilities 

when the bridge is down, P (A d), multiplied by the probability o f the bridge being down, 

(1 - p r), and the availability when the bridge is up, P (A u)y multiplied by the probability of 

the bridge being up, p r . (Availability when there is no partitioning was derived in Sec­

tion 4.1). The updates are initiated from randomly chosen nodes. In RH, If the bridge is 

down, the file can only be available to the users sitting on the side o f the majority o f the 

nodes. If  the number of nodes is even and node distribution is symmetric, the file 

becomes unavailable during partitioning and equation (4.6.1) given below cannot be 

applied.

C D3

Figure 4.5. A simple network topology

P {A ) = { l - p r)P{Ad) + p rP {Au) (4.6)

where (for the reliable histories)

m  2
(4.6.1)

In formula (4.6.1), m i  and m 2 are the number o f nodes on the subnets net-1 and net-2
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respectively, under the assumption that m i > m \ .  This formula gives the probability of 

the history table and the copy being available on net-2 and at the same time update being 

originated from this subnet. P (A U) is the availability when there is no partitioning in the 

system. From (4.1) and (4.6.1) we get,

_ 1  m 2 mi  r
P (A ) = 2 -p (2 + 2 p r+pn +------) + p r(2+pn) + J  p ' ( l - p )

m i>ml2

m i

i (4.7)

This shows that, even with simplified failure assumptions, the analysis o f partition­

ing is very complicated. All through the following analysis, M V ’s behavior is investi­

gated assuming that the file has three copies 14 whereas in RH it has only two copies. In 

Figure 4.6 the file availability provided by RH and MV are compared as a function of p  

for different values of p r. 15 The following assumptions are made:

a) There are a total of 12 nodes in the system where m  i=5 and m i= 7,

b) RH has two copies: one is on net-1, the other is on net-2,

c) MV has three split copies: one is on net-1 and the other two are on net-2.

The partitioning has shown very little effect on the algorithm s’ availability perfor­

mance when p r=0.95 for this specific case. In the next section the algorithms will be 

analyzed in the same topology within a broader context.

14 MV has no practical use with two copies.
15 RH is plotted for three values; pr=1 means that the system is partition-free, pr = 0.95, the 

probability of partitioning is 0.05 and pr = 0.7, the probability of partitioning is 0.3. MV is plotted for 
the first of two of these pr values.
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Availability
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oM V-pr =0.95

Figure 4.6. Node availability vs File availability

4.3.2 Resilience to Copy Placement in Partitioning

In this section, the variance in availability for different configurations is studied as a 

function o f partitioning probability (1 -  p r). The effect o f allocating different num ber o f  

nodes between the two subnets are measured. Three distributions were assumed where 

the total number o f nodes is 12 as in the previous section. Each distribution has been 

analyzed for two configurations having two different placem ents of copies: one in which 

all copies are on the same subnet and the other in which they are split. In the analysis o f 

RH, the file has two copies and in the analysis o f M V it has three copies as in the previ­

ous analysis. The distribution o f nodes were chosen to represent all possible cases: a 

symmetric distribution, a slightly asymmetric distribution and a highly asymmetric distri­

bution. In the symmetric distribution, there are 6 nodes on both subnets (6-6). In the 

slightly asymmetric distribution, there are 5 nodes on net-1 and 7 nodes on net-2 (5-7). 

In the highly asymmetric distribution there are 2 nodes on net-1 and 10 nodes on net-2 

(2- 10).
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In the first configuration, (config-1), RH assumes that one copy is on net-1 and the 

other copy is on net-2 whereas M V assumes two copies are on net-2 and one copy is on 

net-1. In the second placement, (config-2), both copies are on net-2 for RH and two 

copies on net-1 and one copy is on net-2 for MV.

For this system, availability changes in the foim o f a straight line as a function of 

partitioning probability. W hile p r determines the slope o f the availability line, p  affects 

the starting position (availability when (1 —p r = 0). In the symmetric distribution, MV 

performs better than RH, but both algorithm s’ performance stays the same for all 

configurations o f copy placement; w hen the bridge is failed none o f the subnets hold the 

majority of the nodes. As the file becom es unavailable in any configuration for RH, copy 

placement does not affect the overall availability. In this distribution, M V performs 

better than RH because it allows access on the subnet holding a majority o f the copies 

(which is two in this case) during partitioning. Therefore in symmetric distribution, the 

variance o f availability as a function o f copy placement is zero for both algorithms. This 

changes interestingly for asymmetric distributions. Figure 4.7 compares the availabilities 

for different copy placements, config-1 and config-2, in (5-7) and (2-10) node distribu­

tions respectively. As the results illustrate M V and RH are very close in (5-7), the differ­

ence is clearer in the (2-10) case.

Availability Availability
■ RH 
x MV

. 8 -

.6 -

. 4 -

.2 -

.8.2 .6.4 1

.8 -

.6 -

. 4 - ■ RH 
x MV

.2 -

.2 .4 6 8 1
partitioning probability (1 -pr) partitioning probability ( I -pr)

Figure 4.7(a) Node distribution (5-7) Figure 4.7(b) Node distribution (2-10)



Partitioned system s 93

If the nodes are equally or slightly asymmetrically distributed over two subnets 

majority voting performs better. I f  one of the networks holds majority of the nodes as in 

(2-10), RH performs better than MV. Although it performs better in some configurations 

copy replacement causes a dramatic change in the availability o f M V whereas RH is 

more resilient to different configurations in all cases. A fter the analysis o f reliability this 

result will be reviewed in the next chapter. The availability provided by the reliable his­

tories method (with two copies) has been verified by simulation. The simulation results 

are illustrated in Figure 4.8 for p  > 0.9.

20 Simulation

.9 8 -

.9 6 -

.9 4 -

.9 2 -

.98.94 .96.92 1
Pn

Figure 4.8 Availability when (1 - p r) — 0.05 — (simulation + analytic)

As this mathematical approach cannot go beyond a simple topology, only the simu­

lation results for the availability in a partitioned network consisting a large cluster of 

nodes are given. The simulated topology was given in Figure 1.1. In this topology 

bridge failures split the system into several self-functioning groups. The copy placement 

and the local node are randomly chosen at each request during the simulation period. 

Interestingly, random copy placement has shown very little effect on the availability in 

this case too. In order to generalize these results, the distribution o f the availability was 

obtained. Figure 4.9 illustrates the variation in availability at p = 0.9 for two p r values;
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0.9 (bridge reliability is the same as the node reliability) and 0.95 (bridges are 5% more 

reliable than nodes).

60 

40
% frequency

20

.972 .973 .974 .975
Availability

Figure 4.9. Distribution o f availability at p  =0.9

4.4 Summary

The availability at steady-state was analyzed using two different analytic 

approaches and by simulation. Two issues were investigated: the degree o f availability 

provided by RH and the minimum requirements for gaining advantage over the other 

methods. It has shown that m >5 is the boundary requirement for a file with two copies 

to provide better availability than any variation o f voting with three copies. W hen m =5 

both methods provide similar availability but voting requires three copies where RH 

requires only two.

The second issue is the effect of partitioning on the availability. First, a simple 

topology was studied extending the combinatorial analysis and later results on the effect 

o f random file configurations were verified by simulating a large scale system. It was 

shown that, in some topologies, partitioning reduces the availability provided by voting 

m ethods dramatically whereas RH is more resilient to configurational changes on aver­

age.

* p = 0.95



Chapter Five

Reliability in Partitioned Systems

Reliability of a replicated file is defined as the probability that the file will be con­

tinuously available for a given length of time [55]. It is therefore a function of time, R , 

w ithR(O ) being the steady-state availability analyzed in the previous chapter and R (A t)  

being the probability that the file will be continuously available for time At. Availability 

has received much more attention, in part because its analysis is more tractable than that 

of reliability. Although Long et a l [58] analyzed the reliability o f regeneration-based 

consistency schemes under the assumption that the network never partitions, the affect 

of partitioning on the reliability of replicated data is a problem which has not yet been 

clearly understood. Reliability offered by the consistency schemes is far harder to 

analyze theoretically for partitioned systems, it is almost impossible for large number of 

nodes. Therefore a file system simulation has been built in order to measure the reliabil­

ity provided by various algorithms with that proposed. The results have shown that 

although the availability afforded by all replication control protocols is quite similar for 

low fail probabilities o f individual nodes, the reliabilities vary greatly. Here, reliability 

afforded by the reliable histories and voting algorithms are studied in some topologies 

where bridge failures divide the system into many self-com municating partition sets.



96 Reliability in Partitioned Systems

This study includes a sensitivity analysis of reliability (provided by different algorithms) 

to the changes in network topology and to the placement of copies. The results show the 

degree o f change in the algorithm ’s behavior as the failure mode of the network is 

changed. As networks grow and evolve, subnets can become bridged together and 

m achines moved from subnet to subnet; more often than not as required by geographical 

constraints. If the network is an interconnection of sub-networks by bridges, relays or 

gateways, the failure of a single node can cause a partition, making a replicated file com ­

pletely unavailable or unavailable to a large part of the network. W hen the copy replace­

ment is random, the replication algorithm should not be adversely affected by 

configurational changes. MV and RH algorithm s’ behavior towards the changes are 

presented in various graphs. The results are generalized in two graphs illustrating the 

variation in reliability at 1000 time units, R(1000), and the distribution o f reliability 

decay constants. The chapter has concluded with an analytical model for reliability. 

This m odel is also extended to include regeneration of file copies under the assumptions 

that the copies are regenerated on a spare node when the server node fails, and there are 

infinite number of spare nodes. A generalized analytical model for regeneration with a 

lim ited number of spare nodes is given in Appendix C. The state-transition-rate 

diagram s of the reliable histories method when m =3 and m =5 are also enclosed. This 

analysis has been done in line with Long’s study on regeneration with finite num ber of 

spares. As it is not an original work but an adaptation o f it, it has been quoted as an 

appendix.

5.1 System Model for Reliability

The replication control algorithms which were analyzed for availability are studied 

here for reliability. A software simulation was built for this study. The results have

15 Each reliability graph declines with a constant decay value as a function of time period. The 
variance of decay constant in different configurations shows the degree of change in the reliability 
behavior.
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shown that the parameters of the failure model, intercrash period, (m tbf), and failure to 

repair ratio, (p), have different degrees of affect upon the algorithms. Therefore in some 

graphs in the chapter reliability, R {At), is plotted for period At (elapsed time) in m ulti­

ples of the mean intercrash period in order to clarify this effect. This scaling has enabled 

us to compare the reliability of the data offered by the consistency schemes as a multiple 

of the system ’s reliability.16

The data points shown on the reliability graphs were obtained by simulating the 

failures and repairs of a system of m nodes, n o f which hold a physical copy o f the file 

and noting the time at which the scheme would first deny access to the logical file. The 

process was repeated for a simulation period o f 50,000 time units. In the experiments, 

various m tbf and m ttr pairs (corresponding to a large group of failure to repair ratios in 

the system) are used which cover failure models of p between 0 and 0.2.

The failures of individual nodes and bridges are characterized by a Poisson process: 

exponentially distributed with the mean values in the range (100, 300) time units. The 

period for node repairs (mttr) were assumed to be more deterministic: normally distri­

buted with the mean values between 2.5(st=0.5) and 20(st=4).17

The environments were chosen to represent systems in which failure o f a bridge 

cause a part of the network to become unavailable to the other parts of the system. A 

series of bridge failures may divide the system into several self-functioning sets o f nodes. 

In the simulated environment the number o f processing nodes varied between 10 to 50. 

The topologies used in the analysis will be described later. The schemes that are com­

pared (where possible) are the majority voting (M V), the voting with witnesses (VWW),

15 p  = 1=P
P

16 For example with single copy, the data’s reliability is the same as the node’s reliability holding 
the data. Therefore in this case failure to repair ratio has no affect. As the number of copies are 
increased, reliability becomes a factor of ratio rather than mean intercrash time.

17 These values are randomly picked but they correspond to a large group of ratios. For example: a
system where mtbf=100 and mttr=10(2) has p = 0.1 and a system where mtbf=200 and mttr=5(l) has
p = 0.025.
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the available copies (AC) and the reliable histories (RH) algorithms.

The plotted simulation results are the mean values o f 20 runs. Each run simulates 

file accesses 20 over the simulation period. The requests are assumed to be initiated from 

randomly chosen nodes. The graph in Figure 5.1 shows a good agreement over 50,000 as 

simulation period.

Another verification of the simulation was tabulated in Table 5.1. This table shows 

a good agreement between measured and calculated k-out-of-n  surviving nodes for dif­

ferent values o f m ean time between failures and m ean repair periods. These values 

correspond to p  values 0.9, 0.934, 0.983 respectively where p  is the probability o f a node 

being up.

m tbf-1 0 0 , m ttr- 1 0 m tbf—100, m ttr- 7 m tb f =300, m ttr=5
up Measured Calculated M easured Calculated M easured Calculated
10 39.06 38.51 50.05 50.83 86.02 84.24

9 38.32 38.55 37.76 35.58 13.00 14.56
8 16.48 13.88 10.34 11.21 0.93 0.74
7 4.32 4.63 2.04 2.09 0.03 0.05
6 0.82 0.81 0.14 0.26

Table 5.1 — % o f time nodes were up

m =10

. 5 -

Reliability .3 —

. 1 -

5K 20K 50K 100K
Simulation Time

Figure 5.1. Simulation fo r  various time periods

rel(500)

rel(1000)

20 As all the algorithms studied provide the same availability for both, the accesses are not specified 
as read and writes.
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5.2 Reliability in Partition-Free Networks

The advantage o f replication over a single copy is more observable in terms o f relia­

bility than in terms of availability. In the previous chapter, it was shown that going from 

single copy to two copies improves the availability to a great extent and that increase is 

greater than that obtained by going to further copies (three or more). In the rest of this 

chapter a similar result will be shown for reliability.

In this section, the reliability will be estimated without considering the affect of par­

titioning. This analysis has been done by assuming that the bridges are always up during 

the simulation period. The only failure that can occur in the system is clean node 

crashes. This allowed us to compare the reliability provided by the available copies 

method as well as voting methods. The system is assumed to have 10 processing nodes 

some o f which hold a complete copy of the file. This choice o f m is backed up by the 

upper bound availability analysis in Section 4.2. W ith reference to Figure 5.2, simulation 

results in various sized systems have supported this claim.

+ m — 5 
x m=lC 
o m=50

. 8 -

.6 -

. 4 -

.2 -

2000 250015001000500
Elapsed time 

p = 0.05

Figure 5.2. Reliability offered by RH fo r  various m
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Two experiments have been carried out. In the first experiment the reliability 

offered by RH is found for various failure ratios. Figure 5.3 illustrates the resu lts.21

+ p=0.05 
o p=0.1 
■ p=0.15
* p=0.2

. 8 -

.6 -

. 4 -

.2 -

20168 124
Elapsed time in multiples of the mtbf 

mtbf=100

Figure 5.3. Elapsed time vs Reliability (RH)

In the second experiment, RH and other algorithms are compared with the reliability 

of a single copy as a reference. The file is assumed to have two full physical copies in 

AC and RH algorithms. AC assumes that the file has two randomly placed copies. The 

nodes holding these copies maintain status lists. The nodes are aware o f the status of 

each other. Updates are propagated to all available copies. W hen a node holding a copy 

recovers from a failure, it is configured in by copying the up to date version from the 

other copy before accepting any request. RH algorithm maintains two randomly placed 

copies as AC but it also requires a majority of the nodes in the system to be up. It allows 

access to the file as long as one o f the copies is up and a majority o f the nodes are operat­

ing. The results show that AC and RH behave very closely. As in the availability

21 The mean intercrash period (mtbf) is taken 100 time units and repair time (mttr) changes from 
5(st=l) to 20(st=4). The range corresponds to p between 0.05 (repairs are 20 times faster than failures) 
and 0.2 (repairs are 5 times faster than failures).
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analysis, M V algorithm has three randomly placed copies.22 It only considers the failure 

o f participating nodes: as long as two o f the copies are operating the file is available. 

Reliability offered by the algorithms were illustrated in Figure 5.4(a) and Figure 5.4(b), 

for two different failure models. Following these experiments, the results are generalized 

in Figure 5.5 by showing the decay constants o f reliability graphs for various failure 

ratios. As a summary, these experiments have shown that RH behaves very close to AC 

and with only two copies it provides better reliability than MV with three copies.

Reliability Reliability

o AC 
x RH 
+ MV 
■  SC
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. 4 -
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16 201284

o AC 
x RH 
+ MV 
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.6 -
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.2 -

4 8 12 16 20
Elapsed time in multiples of the mtbf 

p=0.05 (mtbf=100)

Figure 5.4(a). Elapsed time vs Reliability

Elapsed time in multiples of the mtbf 
p=0.1 (mtb£=100)

Figure 5.4(b). Elapsed time vs Reliability

5.3 Effect of Partitions on The Reliability

The effect o f network partitions on reliability is investigated by running the 

schemes in two network topologies (Figure 1.1 and Figure 5.6). In these topologies the 

system becomes partitioned when one or more bridges fail. I f  a bridge connected to a 

subnet is up then all the operating nodes on that subnet are available to the other parts of

22 MV algorithm requires three copies for any practical use. The aim is to show that RH provides 
better availability even with two copies than MV with three copies.
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1/decay

1
x MV 
o RH

. 8 -

.6 -

. 4 -

.2 -

.2.15.10.05

Figure 5.5. Failure ratio vs decay constant

the system. Since the available copies algorithm is not applicable in this environment, 

only the voting algorithm was compared with RH. The algorithm s’ behavior towards 

random copy placem ent is summarized later in Section 5.4. Here, a number of file 

configurations are analyzed to study the effect these have on reliability. The effect of 

network configuration and copy placement needs much more further work. Although the 

simulation can generate random  copy placement for a given topology, the notion of “ ran­

dom ”  topology should also be clarified in future. More generalized approaches would 

then be possible.
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Figure 5.6. A distributed environment (Topology-2)
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The analysis has been carried out in a system where nodes repair 40 times faster than 

they fail (p=0.025).21

In partition-free networks, simulating a failure model and checking the accessibility 

of a file’s history table was simple as the algorithms do not have different behavior 

according to the user’s position in the network. The partitioning analysis is rather com­

plicated. The accessibility o f the nodes changes according the user’s position. This 

analysis has been done by representing the topologies as graphs. Every component of the 

system, bridges, communication links and nodes are represented as the nodes of the 

topology graph. An edge between two nodes shows a two-way connection between 

them. Each node o f the graph has independent probability of being available. The 

number of available nodes to a node depends on the position o f that node in the graph. 

Figure 5.7 illustrates the graphs of the two simulated topologies.

o
9 12

Figure 5.7. Graph representation

The number o f available nodes is determined by walking through the graph starting 

from a random node. If a node in the graph is unavailable, all the connected edges

21 This ratio is simulated with an exponential mtbf=300 time unit where mttr for a normally 
distributed repair periods is 7(2) time unit. This comparative experiment has aimed to investigate the 
change in the reliability as file configuration is changed, rather than the reliability behavior as a 
function of failure ratio. Therefore a typical model is chosen for the analysis.
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become unavailable and no further nodes can be visited on that path. The number of 

nodes that can be visited in the whole graph gives the number o f available nodes relative 

to the starting position. As all available nodes on a subnet have the same view of the 

accessibility, the starting position is taken to be a randomly chosen subnet. The update 

could have been initiated from any node on that subnet. A pseudo code representation of 

the Graph W alk algorithm is given in Appendix D.

5.3.1 Reliability in Topology-1

The configurations are represented by the distribution of the nodes on the subnets 

and the subnet numbers where the copies reside. For example: (10, 15, 5, 12; 2, 4) 

represents a configuration where there are 10 nodes on net-1, 15 nodes on net-2, etc. and 

one of the copies is on net-2 and the other copy is on net-4. The distribution of nodes is 

important because it might effect the degree of fault tolerance. For example: the above 

configuration can only tolerate one bridge failure whereas (15, 15, 5, 7; 2, 4) can tolerate 

two bridge failures if the update is initiated from net-1 or net-2. The data points in the 

graphs are the mean values of 20 simulation runs. Figure 5.8(a) illustrates the com ­

parison between two file configurations in Topology-1 with reference to the reliability in 

partition-free networks. In the first configuration, the copies are on different subnets and 

in the second all copies are on the same subnet. The results show that the reliability is 

reduced considerably in partitioned networks.

Voting algorithms, MV (three copies) and VW W  ( two copies and one witness) are 

simulated in the same topology. As expected, MV behaved in a similar way to VWW. 

The result obtained from this experiment is rather interesting. RH did not change its 

behavior as the configuration changed but MV did to a great extent (Figure 5.8(b)).
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Figure 5.8(b). Elapsed time vs Reliability

5.3.2 Reliability in Topology-2

Reliability in Topology-2 was analyzed in the same way as the first topology. In 

this topology, the network becomes more fragmented as the number of bridge failures are 

increased. The reliability offered by the RH and M V algorithms in the configurations: 

(5, 7, 7, 10, 10; 3 ,4 , 5) and (5, 7, 7, 10, 10; 5 ,5 , 5) are presented in Figure 5.9. Again, in 

the first configuration copies are on different subnets and in the second all copies are on 

the same net. The sensitivity o f the algorithms is shown to be similar in the two topolo­

gies.

x RH 
V MV
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Figure 5.9. Elapsed time vs Reliability
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5.4 Resilience to Configurational Changes

The above results highlighted the degree of resiliency o f the reliable histories and 

the voting method to the random placement of copies in different topologies. In this sec­

tion, these results are generalized by two different methods.

The first study is carried out in Topology-2. It attempts to find the likely distribu­

tion o f the reliabilities at a certain time period. The data points were obtained by sim u­

lating the repairs and failures o f the system for the reliability at 1000 time units since 

there is considerable variation for this value. The process was repeated 40 times and the 

results were sorted to obtain a distribution o f the reliabilities provided by both methods. 

The location of copies was randomly chosen. As before, M V with three copies is com ­

pared with RH with two copies, both in a system o f 10 processing nodes. The results, 

shown in Figure 5.10, are rather interesting. MV gave exponentially distributed reliabil­

ity with mean less than 0.1 where RH gave more normally distributed reliabilities with a 

sample mean o f about 0.23 and standard deviation o f 0.028. The relative 95 percent 

confidence interval o f half width is 6% of the sample mean.
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Figure 5.10. Distribution o f reliability at 1000 time units
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The second study is carried out in Topology-1. This time instead o f finding the dis­

tribution of reliability at a certain time unit, distribution o f decay constants for the relia­

bility graphs are found. W ith reference to Figure 5.11, the data points representing varia­

tion in decay constant form a normal distribution for RH in this case too.
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6 0 —|
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• MV
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.4 .6 ,8.2
decay

Figure 5.11. Distibution o f decay constant

5.5 An Analytical Approach to Reliability

Long [58] presented some numerical techniques to predict the fewest num ber o f 

replicas required to provide the desired level of reliability for partition free systems with 

estimates of the failure and repair rates under the assum ption that when a copy is failed it 

is regenerated on a spare node. This technique is discussed in Appendix C. Unfor­

tunately, an analytical approach to reliability is far harder when partitioned systems are 

considered. The following approach models the behavior o f the reliable histories algo­

rithm under the assumption that the network does not partition and the number o f nodes 

is unlimited. In a network with a large cluster o f workstations, the number o f nodes is 

often greater than the desired number of copies. Therefore the number o f nodes can be 

viewed as being effectively unlimited and the history table is always available. The same 

assumption was used in the combinatorial analysis o f availability (see Section 4.1). This
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assumption is required as the closed-form solutions can only be obtained for the most 

elementary cases which yield a solution when the history availability is ignored. This 

section presents the equations arising from n copies m anaged by the reliable histories 

algorithm (same reliability offered by AC).

The time to notice a node failure and com plete a repair is assumed to be exponen­

tially distributed with mean 1/(1. Node failures are assumed to be exponentially distri­

buted with mean rate X. The differential difference equations describing the behavior of 

a system maintained only by the availability control layer are derived using the STR 

diagram  associated with the AC algorithm for n copies. This diagram is given in A ppen­

dix B. There is one additional state 0. The states are labeled to reflect the number of 

copies that are available. An n copies system is in state 0 if the replicated file has been 

inaccessible at some point in the past, while for 1 </</?, the system is in state i if the 

object has been continuously accessible and i copies are currently accessible. No transi­

tions are permitted from state 0, since only the reliability of the system prior to the first 

failure is o f interest.

The set o f differential-difference equations arising from n copies is therefore given

by

dpn
dt

dpj_

dt 
dp i 
dt

= \ipn- i ( t ) - n X p n(t),

= (; +  1)Ap j+i( t)  + {n +  1 -  j ) \ ip j - i ( t )  -  (jX  + (n -  j)\i)p j{t), l< j< n  

= 2Xp2( t ) - ( X  + {n -  l) |x )p i(r)

and

dt
w ith initial conditions

|0  0<i<n 
P '(,)  = j l  i=n

In  this system p o (t)  represents the probability that at time t the system has failed.
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Therefore, the reliability of the system is 1 -  po(t) .

5.5.1 Im proving Reliability with Regeneration

If new copies of a file can be created faster than a system failure can be repaired, 

better availability can be achieved by regenerating new replicas on other nodes in 

response to changes in the system configuration. W hen regeneration is used, reliability 

trade-offs storage cost. Assessing the costs in terms of network message traffic resulting 

from  regeneration and to estimate the additional storage cost that it incurs are two 

research areas which require further work.

Copy regeneration can be added to the elementary equations (presented in the previ­

ous section) by an exponential distribution with mean y. In the presence of a total failure, 

the system is unable to regenerate a copy, and the replicated file will be inaccessible until 

an up to date copy is repaired. This does not affect the reliability since it is only the 

behavior of the system prior to a total failure that is o f interest.

The equations for a system within which regeneration proceeds in parallel with the 

repair of a failed copy is quite similar with each p. replaced by p  + y.

5.6 Summary

In this chapter first, the simulation and the param eters used to measure the reliabil­

ity are justified and the reliable histories and voting algorithms are analyzed in 

partition-free networks and in some topologies where a series of bridge failures divide 

the system into several self-functioning sets o f nodes. In the first case, it was shown that, 

AC and RH algorithms behave very closely, and the reliability they offer is better than 

M V  and VWW algorithms. In the second case, algorithms were investigated for their 

behavior in different configurations. The results are generalized using two different 

approaches (distribution o f decay constants and distribution of variation in reliability at a 

certain time period are presented). The RH algorithm was found to be less sensitive to 

the network topology and to the location o f the copies than voting algorithms.
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Secondly, an analytical model for reliability was presented for an elementary case 

where there are an unlimited num ber o f nodes in the system and the network is partition- 

free. This model was later extended to include the regeneration technique.



Chapter Six

Performance and Practicality

In this chapter, the cost o f network traffic incurred by the replication algorithm will 

be analyzed in terms of the number of transmissions required. As network congestion is 

influenced mainly by the num ber of messages rather than the size o f the messages [83], 

the analysis will focus on the number o f high-level transmissions inherited by the 

reliable histories algorithm such as requests for version histories, copy transfers, and the 

like. The details of the network implementation will determine the actual number of 

messages generated by a high-level request. While the low -level transmissions may 

vary with different networks, their number should be proportional to the number of 

h igh-level requests. Consequently, this analysis will focus on the number o f high level 

transmissions. This study does not attempt to model systems which guard against con­

current access to files; the consistency scheme would then require further message traffic 

to implement appropriate com mit protocols. Prior to the above analysis, an approach for 

reducing the communication cost of the history operations is suggested and discussed.
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6.1 The Range Algorithm

In many distributed systems, the number o f  messages, not their size is an overriding 

cost factor. If  the underlying com munication uses a broadcast link or network level pro­

tocol, the network com m unication cost is a factor o f number o f replies required for a 

message, not the number o f servers the message is sent to or the size of the param eters 

[83]. In the reliable histories algorithm, the readH operation of the ReadHistory function 

(see Section 3.3.1) is sent to a large num ber of destinations and all available nodes are 

required to reply.

W hen a write request on the file is performed successfully, the new history is w rit­

ten on the available servers. Since the replication control system does not have a 

recovery procedure, some o f the available nodes may hold an out-of-date history. In the 

original algorithm, all nodes keeping the same version o f the history return identical 

replies to the read. The following algorithm reduces the number o f identical replies in a 

partition-free environment. It cannot preserve consistency if the network partitions. 

Therefore the range algorithm can only be an implementation alternative for the 

reliable histories algorithm in partition-free systems.

Each history server keeps, w ith every file’s history, two sets o f nodes called range 

sets. The servers return these range sets in their replies. These sets are changed by the 

local node after history updates and server failures.

a) Rin: This set on a particular node is the set o f servers that accepted the last history 

update that this node accepted.

b) Rom’. This is either em pty or contains only the local node number. W hen a node n 

recovers from a failure, it sets R out to {n } to indicate that it is no longer sure that its 

histories are up-to-date. A n update o f a particular history sets R out back to {} indi­

cating that the history is known to be up-to-date.
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Choosing the Read.Set fo r  the History Table:

Clients o f the history servers collect the replies (histories, range sets and times­

tamps) from the multicast readHR operation and construct a R ea d S e t o f nodes that are 

confident they hold up-to-date histories as follows: If  there are n replies with the highest 

timestamp then the R eadSe t is:

n n

R e a d .S e t- \ jR jn . — y^jRouti 
1=1  / = 1

Any history contained in a reply whose /?,„ is a subset of this Read.Set may be 

returned as the result of the ReadHistory operation. The following algorithms are more 

formal descriptions o f the ReadHistory and WriteHistory functions when the range algo­

rithm is used. The ReadHistory function chooses the R ea d S e t and returns the history 

table. The WriteHistory function updates the histories and records the new range sets. 

Some examples showing the operation o f the range algorithm are given in Appendix D.

ReadHistory i f ): F  —» V  x T  (algorithm-5) 

let w  readH R (M ,/) 

if w  = 0  

return error

let maxtimestamp max ({t | 3 (Rin, R out, t, (h ,d ))e  w })

let Sin <— I'* I {r e  Rin a  (Rin, R out> m axtim estam p, Ch ,d )) e  w }

let Sout <r- {r  | ( r e  R ou( a  {Rin ,R out> m axtimestamp, (h ,d )) e  w }

let R eadSe t <— S,„ -  Sout

return ((h ,d) < - { (M )  I (Rin, R out> t, (h ,d )) e  w r \R inQ R eadSet))

WriteHistory i f  ,h): F  x  V —> {success, error) 

let R ^  <— updateH (M ,/,/z) 

let R out <r— 0

return SetRange(M, / ,  R in,R out)
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The following multicast operation is invoked following a history update to the 

nodes which have accepted the new history. It records the new range sets on these 

nodes.

SetRange (S , f , Rin,R oul): 2M x  F  x 2M x 2M -»  T

Records the Rjn and R out on the nodes which have accepted the current changes on 

the history, i.e. became a member of the new Rin set.

The physical table read operation is called readHR in order to distinguish it from readH.

readHR (S , f ) -. 2M x  F  -»  x2t< xN)x{VxT)

Invokes a lookup and mapping request on all processing nodes and returns the range 

sets and the last update time as well as the table entries.

Server Rules

Each node follows the following server rules when replying to the read requests on 

the history.

1. If  R out for the file requested is empty, the server listens to the communication link 

for some randomly chosen time before replying to the request. If, while listening, a 

node in the file’s Rjn set replies to the same request, the server cancels its own reply. 

Otherwise, after listening, the server will reply.

2. If  R ou( for the particular file requested is not em pty then the server must reply to all 

read requests for that file’s history.

Since the nodes holding the same history return a single reply, more than one reply 

is received only if there are different range sets in the system. In other words, some 

nodes have failed and recovered between history updates. These nodes might, or m ight 

not, hold an obsolete copy o f the history table; their status is unknown.
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Extra Condition:

If all processing nodes fail and recover between two requests, the resulting 

Read.Sets will be empty since all nodes will be in some R out set. This is an unlikely 

situation for today’s technology in normal circumstances. However, it is possible to add 

another condition to the ReadHistory algorithm to handle this odd case if it occurs.

If  the Read.Set constm cted by a client is empty, i.e. all responding servers replied 

with a non-empty Rout, then replace the R out s in the replies with empty sets and 

apply the algorithm again.

6.1.1 Staggering the Replies

Since all the identical nodes consume almost the same amount of server time ts and 

all the destinations of a multicast operation receive the request at the same time tr [43], it 

is most likely that all nodes will tend to reply to readHR  request at the time tr+ts+£ 

where 6 is very small. Although in the range algorithm all nodes will listen to the link 

before they reply, as all will tend to reply w ithin a sm all time interval, it is possible that 

some nodes would miss the replies from other nodes in the same range and reply to the 

same request unnecessarily. Consequently, the local node will receive multiple replies 

from the same range. The following is a solution to this problem  [84].

Each node employs an independent and random  listening time taken from an 

exponential distribution when it receives a request and then listens to the link for that 

amount o f time before attempting to reply. If  a node from  the same range replies during 

its listening period then it drops the request. Since the listening time is chosen from an 

exponential distribution, it is highly likely that each tim e some node will listen for a short 

time and therefore reply almost immediately. Choosing the mean o f this distribution so 

as to minimize both the number of replies and the response time is a difficult practical 

problem.
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6.1.2 C om m unication  Delay

This section discusses the communication cost o f the history operations.

The ReadHistory function requires a majority of the nodes to be available. If 

algorithm-3 (Section 3.3.1) is applied for history access, the m axim um  delay occurs 

when all the servers are available and tend to reply to a readH com mand sent from a local 

node, given that the local node is available. If  the multicast delay for every additional 

reply is d  then the com m unication delay for the history read operation becom es ( m - l ) d  

in this particular case. The minimum delay occurs when exactly the majority of the 

nodes are available including the local node (if fewer nodes are available the operation 

fails). Therefore,

( y ) d  < delayreadH < ( m - l ) d

In the range algorithm , the num ber of replies returned to the readHR  operation 

depends on the number o f recovered sites which had failed during and/or after the previ­

ous history update operation. If the number o f failed and recovered sites is a ,  then there 

will be a  replies from these nodes. Additionally, if the history is updated on the nodes 

which were always available after the previous update then one reply comes from them 

as well. Since the update rate is assumed to be much larger than the failure rate, this usu­

ally will be the case. The m inim um  delay for this operation is d  and it occurs when none 

of the nodes have failed and recovered after the previous update. The m axim um  delay is 

the same as the previous algorithm and occurs only if all servers fail and recover between 

two requests. This is an unlikely case especially for large scale systems.

6.1.3 Conclusion

The range algorithm  allows reads of the history as long as one up-to-date history 

copy is available, but updates on the history succeed only when a majority o f the servers 

accept it. Therefore, the consistency is preserved. Providing a cheaper history read than
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history write may improve the performance o f the system during the file reads. If  the 

read to write ratio in the system is very high then it may increase the throughput as well. 

Otherwise it only increases the efficiency of reads.

The range algorithm cannot tolerate network partitions. It is possible to increase 

the tolerance level by adding an extra condition: If  the resulting R out is not empty then 

the algorithm m ust ensure that the majority of the nodes are available. This condition 

preserves consistency if the system is partitioned into two self-communicating groups. 

When the system is partitioned into three or more groups, the algorithm still might fail.

In the previous sections a different approach has been proposed for reading the his­

tory. The first algorithm provides a more expensive read but can tolerate all possible par­

titionings in the system. The range algorithm provides a cheaper read operation but can 

tolerate only the failures that the available copies algorithm  can tolerate. This algorithm 

might be an alternative way for implementing the original available copies algorithm on 

a less reliable network where configuring unavailable nodes out is more difficult than 

implementing histories.

6.2 Efficient Implementation of the Scheme

In this section some ideas for efficient im plem entation o f the protocol are discussed. 

The model requires a read in the table for every file operation and the history is updated 

after every file write. Many studies have shown that read operations predominate in most 

general purpose file systems [85, 45, 46]. Therefore reading the history prior to reading 

the file will increase the communication cost o f the algorithm to a great extent as network 

traffic analysis presented in the next section has shown. If  the problem of concurrent 

write operations is ignored (as it very often is in non-replicated file systems), then it is 

possible to increase the performance of this algorithm by adding a file open operation 

that caches the file’s history locally, writing it back only when a corresponding close 

operation is performed.
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The history is read for two purposes: to perform  a write on the file, or to read the 

file. W hen the history is read for file-read a lock on it is not necessary. If it is read for 

file-write then a read lock is required in order to preserve consistency. The read-lock is 

released when the history is written back, i.e. the file is closed.

The characteristics of the communication medium  have also a m ajor effect on the 

performance. M any o f the low -level operations required to support this algorithm would 

benefit from a m ulticast request-response mechanism. I f  the underlying communication 

system uses a broadcast link level protocol, the cost o f such a mechanism  is a factor o f 

the number o f replies required from a request, not the number o f servers to which the 

request was sent, nor the size of the request parameters. The actual cost o f the algorithm 

in terms o f response time can only be seen in real implementation. As the originality of 

the work presented in this dissertation has shown with analytical models and the results 

are verified w ith a simulation model (chapters three to five), a pilot implementation is 

planned as future w ork rather than presented as a part of the dissertation. This is because 

o f the time constraints o f the research period.

6.3 Network Traffic Analysis*

In this section, the number o f transmissions required by the scheme will be analyzed 

for a multicast environm ent in which a single transm ission may be received by several 

sites and unicast networks which require transmissions to be addressed to each individual 

node.

If  the history is not cached locally, voting and available copies algorithms incur 

negligible traffic compared to the reliable histories method. In voting and available 

copies only the nodes holding a file’s copy participate in the operations whereas in the 

reliable histories algorithm additionally history operations require access to the majority 

o f the nodes in the system. If  the file’s history is cached during the first request, subse­

quent accesses incur the same amount o f  traffic that the available copies algorithm does. 

The network traffic analysis o f the available copies and the voting m ethod for block level
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replication has been done by Carroll et a l [44].

The following analysis assumes file-level replication. The number o f messages gen­

erated by a given operation often depends on the average number of nodes participating 

in the operation. In voting, this depends on the number of operational nodes and in the 

available copies algorithm involves the average number o f available nodes holding a 

copy. In the reliable histories algorithm, the first read/write and the last write involves 

access to the history table. The number of participants depends on the history handling 

protocol used. In the following analysis it is assumed that algorithm-3 (see Section 3.3.1) 

is used. Therefore the number o f participants is the average number o f available nodes 

not necessarily holding the history or the file copy. The range algorithm would provoke 

less messages for the read, but would require extra traffic for writing the range sets after 

the update. Since the history is cached when the file is open, reads require only one node 

to participate whereas in writes the number of participants depends on the available 

nodes holding a copy o f the file. The average number o f nodes responding to a history 

request from some local node (given that local node is available) can be derived using the 

state probabilities.

m
'L'Pi

R  = m

Z P i
i= 1

where pi denotes the probability of the system being in the state S, representing the avai­

lability of i processing nodes.

The value pi is dependent on the equilibrium state conditions. Carroll [44] has 

shown that, in an jc-node network, for voting and available copies the number o f partici­

pants is given by

^ = x ( l - p ) + 0 ( p 2)

with 0 (p  ) negligible for values o f  p typical for com puter systems. Therefore, when 

considering RH, for the history operations x - m  and for the file operations x=n.
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In a multicast environment the algorithm broadcasts one message when a read or 

write is performed. The local node receives a single response to reads and multiple 

responses to writes from the nodes which accepted the new version. In this case, the 

number of responses is at most n which is also negligible (typically two) com pared to the 

traffic generated by the history access. The scheme provokes larger traffic for the history 

operations. The history read/write operations broadcast one message to all processing 

nodes in the system and receive responses from all available nodes. Therefore it results 

in

l + m ( l - p ) + 0 ( p 2 )

messages. The algorithm incurs no traffic upon recovery without degrading user access 

or availability. The number of network operations required (for various m  values where 

n=2) in a multicast environment are given in Figure 6.1(a). A typical value o f p = 0.05 is 

used. The dependent axis reflects the number of high level transm issions generated by 

reads and writes.
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In the absence of a multicast network, separate messages must be individually 

addressed to each destination node. In this case the RH algorithm accounts for larger 

amount o f traffic for the history operations. These operations result in

2 m ( l - p ) + 2 0 ( p 2)

messages this time. The scheme employing different number o f nodes in a unicast 

environment is given in Figure 6.1(b). These graphs show the number of requests and 

average number o f expected replies.
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Figure 6.1(b). Unicast environment

Table 6.1 tabulates the maximum number o f m ulticast operations inherent in the 

reliable histories algorithm as a function of number o f replies expected from the destina­

tions. I f  the file’s history is not cached in the local memory then each read operation 

would require the total number o f interactions for file-open + read and each write would 

require write + file-close. The figures in the table are found under the assumption that 

when the file is open, the history is cached and when it is closed the new history is w rit­

ten back. The second column is the number o f read/write accesses to the file copies. It 

gives the number o f servers that the message is sent to and the expected num ber of 

replies. The third column is the number o f read/write accesses to the history copies. The
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n is the number o f file copies which is very small compared to the number of history 

copies ( < |_ m /2j + 1) in the system.

Request r /w  {file) r lw  {history)
File-Open - 1 —» {m —1)
Read n ->  1 -

Write rc —> n -

File-Close - 1 —> ( m - i )

Table 6.1. — Netw'ork interactions required by RH

I f  the range algorithm is used then only the number of replies returned to the 

fi le -o p e n  request would change to (a+ 1) in the table.

6.4 Summary

This chapter has focused on the number of h igh-level transmissions inherited by the 

reliable histories algorithm such as requests for version histories, copy transfers, and the 

like. The study does not attempt to model systems which guard against concurrent 

access to files; each o f the consistency schemes would then require further message 

traffic to implement appropriate commit protocols. Prior to this analysis, an approach for 

reducing the communication cost of the history operations was described. This approach 

allows an efficient implementation of the protocol for read operations.



Chapter Seven

Conclusion and Further Work

In this conclusion, a general summary of the dissertation is given in Section 7.1 

pointing out the originalities in the algorithm proposed and original findings in the effec­

tiveness analysis of the consistency schemes, based on voting and available copies algo­

rithms. This analysis considers the availability (steady-state and continuous) of repli­

cated data in partitioned networks as well as in partition-free systems. Section 7.2 sum­

marizes the findings and Section 7.3 discusses the areas for further research.

7.1 General Summary

The potential for increased reliability through replication is often given as one of 

the benefits o f distributed systems. This dissertation has analyzed the consistency prob­

lem of small degree replication in large-scale distributed systems. The thesis concen­

trated on the first and second o f the three central problems outlined below which are 

required to be solved before the benefits of replication can be realized in a w ider range of 

applications.

1. W hen the size of the file to be replicated is large, several kilobytes or more, a repli­

cation control algorithm might be required to provide high reliability with only two
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file replicas because of the storage cost of extra copies. It has been shown that the 

reliable histories algorithm provides optimal availability with two copies whereas 

voting methods have no practical use.

2. The reliability provided by the consistency scheme should not be adversely affected 

by changes to the network topology and therefore to the failure modes of the net­

work. As networks grow and evolve, subnets can become bridged together and 

machines moved from subnet to subnet; more often than not as required by geo­

graphical constraints. As a result, it is reasonable to assume that network partition­

ing is a relatively likely event which might affect the reliability performance of the 

replicated data and replication is most likely to operate under random copy place­

ment. The partitioning problem is always considered from the correctness point of 

view rather than its effect on the performance. As the results have shown, these 

failures affect different algorithms to different degrees. A lthough it is a com pli­

cated issue, this area has great potential for future work as discussed in the next sec­

tion.

3. The system should provide a flexible reconfiguration m echanism  to alter the relia­

bility of files as users’ requirements change. The file might require different 

degrees o f availability for different periods of its lifetime. This availability can be 

achieved either by changing the location of the copies or creating temporary copies 

to reach the desired availability level. Either solution requires interruption of the 

system administration unless the algorithm itself provides reconfiguration facility. 

The replication protocol should therefore be flexible enough to add this dynamicity 

as an extension to its functions.

These problems are relatively easy to analyze and open to flexible solutions when 

the level o f replication is whole files rather than blocks. Various algorithms have been 

proposed and implemented as a consistency scheme for replication. These schemes have 

been surveyed many times in the literature in terms o f correctness, degree of fault toler­
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ance provided (types of faults that the algorithms can tolerate), requirements from the 

protocols running below; interconnection with the concurrency control protocol etc. 

Although Long [58] has compared reliability o f three regenerative algorithms: dynamic 

voting, majority voting and available copies, and Paris [44] has analyzed the availabili­

ties provided by majority voting and a variation o f available copies for block-level repli­

cation, the algorithms have not been measured according to their approach to the central 

problems outlined above. Distinguishing the effectiveness and the features required for 

efficiency therefore is an original approach for com parison o f the basic principles consid­

ering that no comparative data for file level replication (either availability or reliability) 

is available in the literature.

The introductory chapter identifies general measures applicable to all replication 

control schemes. These measures are grouped into two as measures of effectiveness and 

measures o f efficiency. Effectiveness measures are the features of the algorithm which 

are com m on to all application areas. These measures are basically grouped into two: 

steady-state availability and reliability (availability over a given period of time). 

Efficiency measures are more complicated to define as some of them are extensions to 

the effectiveness measures. The first three of the following are examples of such depen­

dent measures whereas four to six are measures related to the cost of the algorithm (com­

munication and storage):

i. The effect of topological changes on the effectiveness of the algorithms and the 

degree o f resilience to random copy placement.

ii. The degree of reduction in the availability and reliability o f the replicated data in 

the case o f partitioning.

iii. The flexibility of reconfiguration and the degree o f dynamicity in moving the 

objects o f the replication system; files, replication histories etc..

iv. The lower bound for the number o f copies required in order to give a considerable 

im provement over single copy in terms o f the effectiveness measures given above.
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v. Number o f network interactions required during each read and write; reading ver­

sion vectors, reading or writing the up-to-date copies and copying the up-to-date 

version to obsolete copies.

vi. Requirements of the failure model from the underlying communication medium; 

distinguishing network failures from node crashes, recognizing failures instantane­

ously and whether all nodes must have the same view about the state of the network 

(the nodes which are up and which are down).

Chapter Two contains a survey of the existing schemes and a critical analysis of the 

basic principles, comparing the advantages and disadvantages when the replication 

degree is small. This survey has concluded that the algorithms grouped together as 

read any/w rite a ll provide optimal availability for two copies, but the requirements of 

the failure model from the underlying communication medium in order to survive when 

the network has split into more than one functioning group cannot be satisfied in general 

purpose com puting environments. The algorithms under the second principle: 

read some /write some, can tolerate network partitions but these algorithms require a 

minimum of three copies in order to give improved availability over a single copy.

Considering the fact that three copies has relatively little advantage over two copies 

in terms o f the degree o f the reliability and the availability provided, a practicable two 

copy consistency control algorithm, reliable histories, is described in Chapter Three. 

This algorithm offers high availability over a period of time as well as instantaneously 

even with two copies and can function properly during network partitions. The benefit o f 

this functionality together with high availability is not provided by any of the other algo­

rithms that were studied. The reliable histories algorithm considers the storage cost o f 

replication. It replicates a small amount o f data (replication history) concerning the loca­

tion and status o f file’s small number o f copies, a larger number o f times using a regen­

erative read som e/w rite some principle and uses this highly reliable vital information to 

determine the update strategy. The originality o f the reliable histories approach is that it
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is a hybrid algorithm which maintains history tables and file copies with independent 

schemes under different consistency constraints. This functionality provides optimal 

availability for two copies and enables the algorithm to survive under partitions. The 

file’s history table is very small (8 byte is often enough) therefore it does not incur as 

large storage cost as having three copies of the file.

The layering o f the replication control system as the availability control layer and 

the history table control layer increases the flexibility of the algorithm for 

reconfiguration and eases the use of regeneration (for file copies) within the algorithm. 

The regeneration approach has an additional advantage when used in the 

reliable histories algorithm. In fact, in the original form of regeneration as proposed by 

Pu [73], each time a node recovers, the algorithm must check to see if the maximum 

number of copies exist or if the file was updated during its absence. If so, the recovered 

copy is deleted, otherwise, it can be used. This requires a double check during recovery. 

This recovery procedure is avoided in the reliable histories method. If  the copy is regen­

erated, only the history table is updated. The system automatically brings itself to equili­

brium during the next update, therefore a recovery operation is not required when a node 

is repaired. This flexible reconfiguration also enables the number of copies to change 

dynamically to reach a desired level o f reliability for a certain period of time without any 

additional administration. This area will be discussed as further work in the next section.

There are two objectives of the steady-state availability analysis in Chapter Four. 

The first objective is to provide information for the m inimum requirements of the pro­

posed algorithm from the distributed environment (number of nodes in the system) in 

order to gain advantage over the other methods. The second, to measure the availability 

provided by the methods in partitioned systems. Two analyses were developed 

corresponding to the first objective and one o f these analysis was extended to cover the 

second. The first statistical combinatorial analysis compares the availability provided by 

various algorithms under a simple failure model using independent fail probabilities of
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individual nodes. The second analysis models the behavior of the algorithm in partition- 

free systems using M arkov models. This model uses failure/repair model in w hich the 

mean time to failures and the mean time to complete repairs are randomly distributed 

according to a Poisson law. This analysis has shown that with two copies, the advantage 

in availability is acquired by the proposed algorithm in systems with > 5 nodes. This 

analysis gives the lower bound of availability and shows that the proposed algorithm pro­

vides better availability with two copies than any form of voting with three copies when 

the boundary requirements of the system are satisfied (size is larger than five). The third 

analysis extends the combinatorial approach to include a simple partitioning case. 

Though simulation always exists (with some restrictions explained later) to quantify the 

decrease in availability when the network partitions no other method is currently avail­

able to give the required information through theoretical models. This combinatorial 

analysis analyzed the change of behavior of the algorithms under various configurations. 

The first outcome which was obtained through this analysis (which later resulted in an 

interesting conclusion after reliability analysis) is that the proposed approach behaved 

very steadily in the sample system whereas the configurational changes caused dramatic 

differences in the availability provided by voting m ethods. The validity of the analysis is 

supported by results obtained through a software simulation. The simulation m odel is 

later used to generalize the results obtained above by analyzing the behavior of the algo­

rithms in some specific topologies where bridge failures can break the system into 

several self communicating partitioned groups. The availability results obtained in 

several network topologies supported the outcome o f the analytic results obtained for the 

simple partitioning case.

Chapter Five presents the results of an original reliability analysis through sim ula­

tion in partition free and partitioned systems. The results have shown that although the 

methods provide relatively close availabilities, reliabilities vary greatly. This analysis 

was developed to present the decrease in reliability during network partitions when copy
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placement is random. Although partitioning has been shown to reduce the reliability to 

some extent, the new reliable histories algorithm behaved very similarly to available 

copies in terms of reliability performance. In most of the configurations, the new algo­

rithm with two copies provided better availability and reliability than voting with three.

An important originality of this research is its approach to looking at the depen­

dency of the algorithm ’s performance on the placem ent of the copies and on the topology 

of the data network. The analysis has led to a very interesting conclusion. It has shown 

that although it perform s worse in some configurations, the reliable histories approach is 

more resilient to changes of the copy placement and perfonns better on average. Resili­

ence to configurational changes is an important issue in the design of a general purpose 

replication system where the configuration cannot be planned to maximize file reliability, 

say, because it is dictated by physical considerations as explained in Chapter Five. This 

chapter concluded with an analytic model incorporating regeneration of file copies in 

order to increase the reliability. The regenerative -re liab le  histories model has derived 

in line with Long’s analysis of regeneration with finite and infinite numbers of spares.

The efficiency o f the proposed approach in tenns of the high-level transmissions it 

inherits and the practicality of the algorithm are studied in Chapter Six. The low-level 

transmissions may vary with different networks but their number is proportional to the 

number of high-level transmissions. This analysis was based on two different proposals 

for history management. The first proposal was discussed in Chapter Three as a part of 

the main algorithm. Another algorithm {range) was proposed later which reduces the 

communication cost of the history operations; based on the idea that in many distributed 

systems, the num ber of messages not their size is an overriding cost factor. The range 

algorithm reduces the number of replies returned to a history read request but requires 

synchronized clocks. An approach for logically synchronizing the clocks in m ulti­

responses has also been proposed. The characteristics o f the communication m edium for 

an efficient implem entation of the scheme were discussed. Many o f the low-level opera­
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tions required to support the algorithm would benefit from a multicast environment. The 

final section o f Chapter Six analyzes network traffic for both unicast and multicast net­

works. This analysis has shown that the range algorithm reduces the traffic to a great 

extent when implemented in a multicast environment.

7.2 Summary of Findings

Going from single copy to two copies is more advantageous than going from two to 

three or from three to four copies etc. in terms of the im provement in the availability 

provided and the cost of storage. The performance and behaviour o f consistency 

schemes have different patterns for small degree replication than large degree replication; 

especially for two copies. Dynamic strategies and voting algorithms have no practical 

use with two copies.

The degree of fault tolerance and the degree o f availability provided by consistency 

schemes trade off each other. Voting strategies can tolerate network partitions but avail­

able copies algorithms cannot although they provide optimal availability. A hybrid 

approach combines the benefits o f these two group o f algorithms by replicating the file’s 

history (location and version numbers) with a variation o f voting and applying an update 

strategy with a variation o f available copies algorithm. This approach also allows for 

dynamic reconfiguration to alter the reliability as the user’s requirement is changed.

Consistency schemes exhibit different behaviour as the network configuration is 

changed. Resilience to changes is an important property of the algorithm but voting 

algorithms have been found to be less resilient than the hybrid algorithm.

Whereas various schemes offer similar availabilities, their reliabilities differ greatly. 

W ith single copy, a file’s reliability is the same as the system 's whereas with only two 

copies it is possible to increase the file’s reliability to a great extent. For example: a file 

m ay be eight times more reliable than the system when p= 0.05 for a period o f 250 time 

units and four times for a period o f 1000 time units. In a system  where p=0.1, these
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figures change to seven times for A t=250 and to three times for A t=1000.

7.3 Further Work

The next major advance in research which could help adoption o f the replication 

techniques in general purpose applications would be a characterization of users ’ involve­

ment and the design of user interfaces for replicated file systems. Replication techniques 

are used in many areas but its control and use is usually done by system administrators. 

On the required degree of user control and its effect on the performance, many areas can 

be further studied:

•  If the user is given control of copy placement, what are the administrative require­

ments during the configuration of the system and during the file operations?

•  W hat is the measurement matrix of reliability for a given time period in order to 

calculate dynamically when the places of the copies are given as parameters? W hat 

should be the involvement and responsibilities of the user and system administrator 

in dynamic reconfiguration?

Regeneration is an active research area. The proposed algorithm employs a regen­

erative technique for history manipulation. As the histories are very small, how to 

reclaim the storage o f out-of-date copies is not considered in the thesis as a m ajor prob­

lem. In fact, once a failed node is repaired, the regenerated replicas become superfluous 

and the additional storage can be reclaimed. This can become a problem  if the file copies 

are regenerated as well. The question of which replicas should be reclaimed is an area 

for future research. Reliability analysis through regeneration still requires further work 

in terms of assessing the additional storage cost it incurs and estimating the network 

traffic resulting from regeneration. The performance o f protocols that would only regen­

erate a fraction of the initial number o f copies should be evaluated to determine their 

effect on the reliability provided by the protocol. How availability is changed by regen­

erating file copies also requires further analytical approaches. A variety o f theoretical
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options should be considered before implementation begins.

Another extension that should also be the subject of statistical analysis is the parti­

tioning case. An analytical model for the behavior of a replication control algorithm 

involving network partitions would certainly help to generalize and verify further the 

results presented in the dissertation. Unfortunately, this is a difficult task for the pro­

posed algorithm because of the number of nodes required before a significant im prove­

ment over voting methods can be obtained. Partitioning is usually considered as a prob­

lem concerning the correctness of the scheme. Its analysis including the effect on perfor­

mance is required in many respects as it cannot be ignored with the pace of technological 

advancement and application areas of computer networks.

The effects o f network configuration and file placement on reliability require more 

further work. One approach would be to generate and simulate “ random " 

configurations. While this is relatively simple for copy placement, the next advancement 

in this area would be the clarification of the notion of a randomly chosen topology. 

Perhaps by studying networks in the field, some criteria for probable topologies and node 

distributions can be determined so that suitable configurations can be randomly chosen 

and simulated. Such a study would make it possible to derive rules that would allow the 

reliability of a file to be calculated when the topology and location of copies are given as 

param eters.

A pilot implementation would certainly help to test the practicality of the algorithm , 

verify the estimated communication overhead involved and verify the availability and 

reliability analysis. Also, further research is needed to investigate the performance and 

requirements of the scheme in applications where concurrent updates are possible and 

m ust be serialized.
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The first 81 entries are referred to directly in the text, the remaining works are 
representative o f background material that has been studied.
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Glossary

AC:

Atomic operation:

Availability:

Bridge:

Broadcast: 

Combinatorial: 

Decay Constant: 

DFS:

Effectiveness:

Ideal Network: 

Logical file:

Multicast:

MV:

Network Partition:

Abbreviation for Available Copies Algorithm

An operation either completes and (possibly) modifies the state 
of the system or it does not complete and has no effect on the 
system state.

The probability that the file will be accessible at any random 
point of time as times goes to infinity.

A device that connects two networks typically at the link level 
and makes them appear as a single network.

The mechanism whereby a signal from one node on a network 
is received by all other nodes.

A statistical approach combining basic probability theory with 
&-out-of-n reliability theory.

A value representing the ratio with w hich the reliability graph 
declines as a function of time.

Abbreviation for Distributed File System

Accessibility of a replicated file together with the other 
abstract properties o f the consistency scheme such as assump­
tions made for its operability and correctness.

A network in which partition failures are clean and nodes can 
detect partition failures almost instantaneously.

An object o f the replicated file system w hich is implemented 
by a set o f physical files each holding a complete copy of the 
file and residing at a distinct processing node.

The mechanism whereby a signal from one node on a network 
is received by a group of nodes.

Abbreviation for M ajority Voting Algorithm

A state in which bridge failures divide the network into multi­
self functioning group of nodes.



Partition-free:

Regeneration:

Reliability:

RH:

RPC:

Serializability: 

STR diagram: 

Steady-state: 

Subnet:

A term used to describe networks in which partitioning never 
occurs.

Creating new replicas on available nodes in response to node 
failures.

A conditional probability at a given confidence level that the 
file system will perform its intended function (read/write 
access) properly without failure and satisfy the specified 
requirements o f continuous availability during a given time 
interval [0,f]. given period of time.

Abbreviation for Reliable Histories A lgorithm

Abbreviation for Remote Procedure Call

A property w hich guarantees that that a replicated objects func­
tional behavior is equivalent to that o f single copy.

State-transition-rate flow diagram representing the availability 
or reliability behavior of the algorithm.

Equilibrium state behavior o f the system as time goes to 
infinity.

The smallest component o f the network consisting a number of 
nodes connected by a communication link that cannot be parti­
tioned further.

VWW: Abbreviation for Voting W ith W itnesses A lgorithm
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Appendix A

m Number of processing nodes operating in the system

n Number of file copies

k  Number of history copies

p  Probability o f an individual node being up

p r Probability of an individual bridge being up

X Failure rate of individual processing nodes

jl Repair rate of individual processing nodes

p Failure to repair ratio of the system 

y Copy regeneration rate

P (A ): Probability of a file being accessible (availability at steady-state)

P (A f): Probability of at least one file copy being available 

P (A t ): Probability o f the history table being accessible 

P (Aj): Availability of the file during the bridge failure 

P (A u): Availability of the file when there is no partitioning in the network 

ts{hi): Last history update time on node i
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R  (t ): Reliability at time t where R  (0) is the steady-state availability

A x B  = [ ( a , b ) \ a e A A b e B )

A  u  B ={ a  | a e A v a e B )

A n B  ={ a  \ a e  A  a  a e  B }

a =$ b : if proposition a then proposition b 

A <z B : a € A => a e  B 

A z ) B : a e B = $ a e A

Ch , d ): History table entries consisting o f location and version number of physical file

copies and a boolean flag set to true when the file is deleted:

v i ) , ( / 2 > v 2),...} ,d = [tru e , fa lse )

m tb f : Exponential m ean time between failures

m ttr : Mean o f the normally distributed repairs periods
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Appendix B

The following method is followed for the analysis o f the replication control system 

whose states are represented (Section 4.2) by three parameters; number of available 

copies, number o f available nodes and the status o f the copies(same, different). This sys­

tem represents a M arkov process under the observation that the future (being in a state) is 

conditionally independent of the past. This is the M arkovian property specified by the 

transition probability o f the states:

= P {Sm+t = j  I Sm — i}.

In words, given that the present state is 5r, the past (5/, / <t), the future (Sj ,  j  >t) are con­

ditionally independent, or given the history of the process (5,-, i< t \  the future (S?,  i> t)  

depends only the present S t . 1

Let’s define the transition probability matrix as

U (t) = (K ij(t))

transition probabilities, n  (t) together with an initial distribution (at t=0  the system is 

assumed to be fully operating e.g. all nodes are up) determine the state probabilities 

(P j(t)), which satisfies the forward equation

1 In general, the future depends on the past — it is only conditionally independent given the present.
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(d /d t)p j(t)  = Y P i{ t)q ij

The matrix Q = (<7,j) is the infinitesimal generator o f the Markov process where

n(r) = I - Q t  + o ( t)

or in open form,

7C|t;(f) = 1 -  q ij t  + o ( t)  as f-* 0  

K i j U )  = Qi.fi +  0  ( 0  W  i *  j )

The interpretation o f the generator matrix is that, the system remains in a state for some 

random amount o f time. The time in state i is exponentially distributed with

1 - e x p ( - q u t)

W hen the system leaves state it makes a transition to state j  w ith probability - q , j / q t j . 

The mathematical details can be found in reference (87).

The following example employs the above method to a two state system whose transition 

rates are shown below.

0.99 0.9

0.01

0.1

This diagram represents a system with:

n = 0.99 O.Of 
0.10 0 .9

The generator m atrix ( 0  is found and its inverse is divided by the determinant. The 

resulting column vector, R , is the state probabilities as

r t T ,  _  f—0.01 0 .1 0 ]
11 1 “ [o.oi -o.iql



Availability M odel 145

Following are the inverse of the generator matrix Q and state probability matrix R:

Q~l = 1 - 0.10 
-1  - 0.01

R j ( ° ° )  =
7=1.2

i -o.id 
- 1  - o . o i

-0 .11 - p
Therefore this two-state system yields a solution at steady state:

/>(1) = 0.91 P (2) = 0.09 as r —> oo

The solutions to the system applying various consistency algorithms have been given in 

Chapter Four. The results have been presented in Figure 4.1 to Figure 4.4. The follow­

ing diagrams represent the states of the system for available copies and majority voting 

algorithms with n copies.

nX n-lX

n-1

nF

Figure B.l. STR diagram for the availability with AC (n copies)

n-1

Figure B.2. STR diagram for the availability with MV (n copies)
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Equilibrium  State C onditions of the system  w hen m - 5

The following state-transition-rate diagram represents the reliable histories 

algorithm’s availability behavior in a system of five processing nodes:

'00

2X.

2\i 2X

'00

Figure B.3. STR diagram for the availability with RH (m—5)
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There are a total o f 28 states. Equilibrium state conditions representing some of 

these states are given below. These conditions are derived from the above diagram and 

example states show a group of transactions for different status conditions of file replicas 

(5, D , W). Each row o f the transition probability matrix represents the equilibrium condi­

tion of an individual state under the observation that for any state i

i n  Uj = i
j=0

P S 2 5 5 ^  =  ( P S 2 4  + P S 1 4 )H ' +  P £ > 2 5 W

P S 2 4 ( 4 A . +  | X )  =  3 P S 2 5 ^ + ( P S 1 3  + ( 2 P s 2 3 ) ! X + P d 2 4 M

p s 14(6 A . +  |1  +  m )  =  2 P 5 2 , A  +  ( P 5 13 + 2 P 5 0 3 ) p

ps 23 (3 A. + 2|i) = 2Ps24X + ( 2 P522 + Ps12)M' + p d 23w 

ps 13(3A. +  2|i) = (3P$14 + 2 P 524)A. + (2Ps12 + 2 P 5o2)|X

p d 25( 5 ^ + m) =  (PDl4 + p D24 + p w 14)P' 

pd24(4A,+ M- + u) = 3P£)25X + (2P£)23+P/)13+ P ^ 13)p

P d h ^ ^  +  M-) =  p D 25^  +  ( p D 13 + p D 0 3 ) lx  +  ps14w

pw 14(4A, +p,) = Pd 25^  +  (p d 03 + p w I3)M’

pw t3(3X +  2jx) = (PD24 +  3P ^ u )A. +  (PDo2 + 2 P w 12)|i-

A  =  X ( P S 2 5 » P S 2 4 . p 523 . 14 * P S  13 * P D 25 > P D u  ’ P D t3 >P D U > P D 13 )

The above conditions generate a 28x28 Q matrix o f w hich some entries are given below.

fl-5A. 3A, 2X 0 0 0 
\L 1-(|X+4A,) 0 2 X 2 X 0

Q =
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Appendix C

The following model narrows the unlim ited spare assumption to that in which the 

number of nodes in the system is finite. Two state-transition-flow-rate diagrams for the 

reliability o f regenerative-reliable histories m ethod with finite spares are given in Figure 

C .l and Figure C.2. In the first model, the system has 2 copies of the file and 1 spare 

node (in other words, m=3 where 2 of these nodes contain a copy o f the file). In the 

second model, the system has 2 copies of the file and 3 spare nodes (m=5).

The differential equation describing the behavior of the system within the given 

parameters (num ber of spares, number of copies) m anaged by the method is derived from 

the state-transition-rate diagrams. The following model describes a general method for 

the system maintaining n copies with an additional m spare nodes. It is a costly model in 

terms of complexity. A similar model is derived by Long in reference (58) for the 

analysis of regenerative-voting and regenerative-available copies algorithms. The below 

model adopts the same technique for the RH algorithm and discusses the complexity of 

this analytic method.

The system is in state (j\k)  if j  copies are immediately accessible and k  nodes are 

currently available as spares. The state 0 denotes the inaccessible state.
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Definition C .l.  The reliability R ( n ym ,t)  of an n —copies system with m spares managed 

by reliable histories algorithm is defined as the probability that the system will operate 

correctly over time interval of duration t given that an initial complement of n copies and 

m spares were operating correctly at time t=  0.

As shown in the figures, finite-spares lead to more complex sets of equations. These 

systems can be represented with linear, constant coefficient ordinary differential 

equations(ODEs) of the form

P'{t) = AP (t)

with initial condition

P (  0) = P 0

The solution is given analytically by

P ( t )  = e ,AP 0

where e denotes the matrix exponential.

For simplicity o f exposition, assume A  has full geom etric multiplicity. Its Jordan 

canonical form

A  =  TAr-1

consists o f the diagonal m atrix A with eigenvalues, A.;, o f  A on the diagonal and T, whose 

columns are the eigenvectors o f A. The ODE can then be diagonalized:

/ ’'(f) = T A T ~ l P 0

Defining

z ( f )  = r _1/»(f) 

the differential equation is 

Z i t )  = A Z0

with solution
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Z ( t )  = e ' AZo

where e lA is the diagonal matrix with entries e , i  = 1, , n.  The general solution iIS

thus

P ( t )  = T e 'AT~l Po  

which can be evaluated at any point t in time.

This procedure is costly. The vector Zq = T ~ l P  o need only be computed once, 

1 ,
requiring approximately — n flops, where a flop is a floating point add coupled with a

floating point multiply. The n exponentials e 1̂ ' that comprise e tA would be formed for 

each value of t of interest. The cost would be reduced by computing the solution at 

equally spaced points 7* = k.At using

e l>+' Xi =

The propagation matrix

, A/A _

A/X̂e 0 0 0
0 A/ta e • • 0 0

0 0 • • ^A/X*_, 0
0 0 • 0 e Atkn

need only be formed once, and later time step values can then be formed recursively from 

the previous step beginning with P q and using

Pt+l = T . e ^ . P ,

at a cost o f one matrix-vector multiply (n flops) per step. The major cost, though, arises 

when the eigensystem o f A  is computed.

Obtaining the eigensystem of A  is equivalent to finding the roots o f its characteristic 

polynomial. It was shown by Evariste Galois in reference (89) that there is no direct 

method for computing the roots of a polynomial o f degree higher than 4. This implies
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that, since the model has more than 5 states it requires an iterative process to obtain the 

eigensystem. The m ost effective method is the QR algorithm. Actual convergence o f the 

iterative QR algorithm depends on the problem and the conditioning of the eigenvectors, 

but this one-time cost is estimated at 15n 3 flops. This is shown in reference (58).

Thus, computing the matrix exponential directly is very costly and alternate 

methods of solution are desirable. For small configurations Runge-Kutta method is sug­

gested. For larger configurations, the following inverse Taylor method is an effective 

technique.

The Taylor method can exploit the linear, constant coefficient nature o f problem. 

The matrix exponential is defined by the convergent power series

= /  + M + M )l  + M l i + . . .
2! 3!

Truncating this series after 6  terms yields a fifth order numerical approxim ation to the 

propagation matrix, e ^ A above, Let

t5 = I + A t A  + m t +._.+m ) 5
2! 5!

w hich can be formed effectively using nested multiplications in 4 m atrix-matrix multi­

plies costing about n 3 flops each. Using 15 to approximate the solution at forward time 

steps,

Pm  =  t 5Pk= e ^ P k = (eM )k+lP 0 = e 'k*'AP 0 

The cost per step is just the n 2 flops for the matrix-vector multiplication.

Unfortunately, the coefficient matrices that tend to arise in the reliability model 

have eigenvalues that are all real and non-positive. Summing these series leads to a loss 

o f significance in forming 15 since the terms will alternate in sign.

15 =  r { /  +  A/A +  — A2 +  •••  + —  A5 )T _1 
2! 5!
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A slightly more expensive approximation o f the inverse of e ^ A is required. Just as 

an approximation o f the scalar e xio i x  <0 is accomplished more accurately in the pres­

ence of finite precision arithmetic using

1 1
= -jr 2 3 4 5e . x x x  x

T r i r  4T - ! ! '

The matrix equivalent is

- —ata _  ■ ,  . (A/A )2 (A /A )3 (A/A )4 (A/A )5
« - ,  j  -  /  -  A/A — —  +  4 , -  5 ,

Besides the cost o f forming the series using nested multiplication as before, there is also

1 3the one-time cost o f about — n to factor the matrix. The solution values are given by 

solving the linear system 

hP k+ i  = ?k,

costing about n 2 flops per output point. This allows the flexibility to  change the number 

of terms for the series depending on the solution behavior.

Figure C.l. STR diagram for the reliability with RH (m -3 )



Figure C.2. STR diagram for the reliability with RH (m=5)
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Appendix D

Simulation Activities

The dual approach of analysis and simulation is a common technique amongst sys­

tem designers because it offers a degree of confidence through two sets of supporting 

results. Though the major performance measures for availability are gained from the two 

statistical analysis presented in Chapter Four, an analytical approach for reliability is far 

harder to develop in the same degree for the algorithm proposed because of the number 

o f states involved in a model which gains advantage over the other algorithms. A suite of 

software simulation has been developed to support the analytical work on availability and 

to obtain the major performance measures for reliability of the consistency schemes 

while supporting a minor analytical work in this area.

The steady-state availability observations are made for two different failure models 

using several failure modes. In the first model, availability o f individual processing nodes 

are obtained from a uniform number generator. This simulation is used to verify the 

results obtained from the combinatorial analysis in Section 4.1. In  the second model, 

failure times and repair periods of individual nodes are generated from an exponential 

distribution with the means m tbf  and mttr which produce the failure to repair ratio for the 

nodes corresponding to the same values of individual node availabilities used in the com­



156 Appendix D

binatorial analysis simulation. The results of simulation for both analysis have been 

given in Figure 4.4 and Figure 4.8 to support the upper and lower bounds of availability 

provided by the algorithm proposed and simple partitioning analysis. Note that the two 

sets o f results digress more in the upper bound analysis. This is due increase in the 

confidence interval as the num ber o f nodes are increased resulting from the behavior of 

random failure time generators. The results shown represent the average of around 20 

simulations for 50,000 simulation time period.

The C programming language was used to implement simulation. The system is 

regarded as a set of processes, comprising a set of network operations initiated from a 

local node in order to access the replicated file. The nodes are operating in parallel and 

interacting with each other via com munication links. Changes o f state in the nodes can 

only take place in accordance with simulation clock pulses. The parallel processes are 

implemented sequentially before the clock ticks.

G rap h -W alk  Algorithm

The simulation of partitioned systems is rather more complicated. This analysis has 

been done by defining the topology as a graph whose nodes represents the vulnerable 

components; subnets, bridges, processing nodes. The G raph-W alk  algorithm is used to 

check the state o f individual nodes o f the graph. This algorithm calculates the availabil­

ity o f replicated data in a network o f vulnerable components w ith independent availabili­

ties. The availability appears different from node to node. The network is described 

using a connection matrix where con_matrix[i][j] = 1 if there is a connection between 

node i and j, 0 otherwise. Node failures are exponential and the repairs are normally dis­

tributed. Failure[i][l] keeps the next failure time o f node i and Failure[i][2] keeps the 

corresponding repair time for this particular failure.

collect (src, have)

/* This is a recursive function to w alk the graph starting in node ’src’. It returns in ’have’
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the number of available nodes at current_time. */

define c a s e - 1: Failure[src][l] > current_time /* node failed */

define case -2:  current_time = Failure[src][l] + Failure[src][2] /* node repaired */

visited[src] = 1; /*m ark the visited nodes*/

if c a s e - I

then have = have + 1; /* if the node is reached acquire the votes*/ 

if  case - 2  /*find next failure time */

then Failure[src][l] = Failure[node][l] + Failure [node] [2] + expntl(mean);

Failure [src] [2] = normal(mean,st_dev); 

for (dst= l; dst<=nodes; dst++) /*visit all reachable nodes */ 

if ( (visited[dst] == 0 ) & (con_matrix[src][dst] == 1 )) 

then have=collect(dst,have); 

collect=have;

activato r()

/* this function calls the collect () function to check the availability of the majority of 

nodes starting from a randomly chosen node; ’node’. The total number o f nodes is stored 

in ’nodes’ and the number of tables required for access in ’tables’ */

node=random( 1 ,nodes); 

if ((t_avail = collect(node)) < tables)
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Exam ple Scenarios Em ploying the Range A lgorithm

Steps o f the range algorithm during consecutive calls o f ReadHistory and Wri­

te History operations are given below. Each scenario consists o f an update request on the 

file therefore requires an independent read in the history, finds the R ea d S e t , returns the 

up-to-date history table and after the file operation is performed, writes back the new his­

tory on the available nodes. The file operations are excluded from scenarios as they are 

assumed to be always successful.

The following terms are used in the scenarios:

ReadHistory

The function is initiated from node i w ith the request number j  

w = [{Rin, R 0Ut, tx , tablex)i j  t {Rin, R out, ty , tabley)kJ • • • }: w herex^y

The members o f the set w are the replies returned to the readHR() (see Chapter Six). 

Each reply is subscribed by its sender i.e. nodes i and j  return the same reply with 

tablex (last table update time is tx) and, nodes k  and / return the same reply with 

tabley (last table update time is ty ).

WriteHistory :

The function is initiated from node i the corresponding table read request number is 

j. It writes the new table and the new range sets. The nodes which are accepted the 

new table becom e a member o f the new set.

retum((/z,d) = table i):

returns the table from the reply o f node i

A i=  { • • • } :

The set o f available nodes during the scenario i

The scenarios are not related but each scenario takes up the system parameters from pre­

vious scenario. Initial parameters are: m -  7 ( numbered 1..7), R ln -  {1,2,3,4} and 

Rout — 11 •
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A i = { 1, 5, 6 , 7 }, node(5): write ( /)

ReadHistory ̂  i>:

w = {({1, 2, 3, 4}, {}, t 0 , table0 ) j }

R eadSe t  = {1 , 2, 3, 4} 

return{(h,d) = table y)

File operations are performed here (updateF , [copyF])

WriteHistory ̂ y y { { {  1, 5, 6 , 7}, {}, t y j a b l e l ) l 5 6 ? }

A 2 = {1 ,2 ,3,4,7} ,n o d e(l): write i f )

ReadHistory

w = {({1, 2, 3, 4 ), {2},  t 0 , table0)2 ({1,  2, 3, 4 ), {3}, t 0 , table0)3 

({ 1 ,2 , 3 ,4 } , { 4 } , t 0 , ta b le0 \ ( { l  ,5, 6 , 7}, {}, t y ,  table y)7 }

Read.Set = {1, 5, 6 , 7} since max(r) = ty

return((h,d)  = table yv -j) —  (both nodes (1,7) contain the up-to-date history. As 1 

is the local node and 7 has replied to the history read request and returned the table 

as well, either table can be returned here)

File operations are performed here (updateF , [copyF])

WriteHistory(i>2) :{({1, 2, 3, 4, 7}, {}, t 2,table2){<2,3,4.7 ^

A 3 = {5,6,7} , node(5): write i f )

ReadHistory (5 3)-.

w = {({1, 5, 6 , 7}, [5],  t y ,  table y) y {[ 1, 5, 6 , 7}, {6 ) , t y ,  table y)6 ,

({ 1 ,2 , 3, 4 , 7 ) , { ) , t 2 , t abl e2)1 )

R eadSe t  = {1, 2, 3, 4, 7} since max(r) = t 2 

return{(h,d) = table 7 )

The write request does not succeed since the WriteHistory returns error —  only three 

nodes are available.
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A 4 = {3, 4, 5, 6, 7} , node(5): write i f )

ReadHistory 4) :

w  = {({1, 2, 3, 4, 1), [3],  12 , table2 )3 , ( { f  2, 3, 4, 7}, {4}, t 2, table2)A,

({ 1 ,5 , 6, 7}, {5}, r !, table i )5 ), ({1, 5, 6, 7}, {6}, 11, table 0 6 }, ({1, 2, 3, 4, 7}, {), t 2, table

R eadSe t -  {1, 2, 3, 4, 7}—{3, 4, 5, 6} = {1, 2, 7} since max(r) = t 2 

return({h,d) = table 7 )

File operations are performed here (updateF , [copyF])

WriteHistory{5A):{({3, 4, 5, 6, 7}, {}, U d a b le^ )3 4 5 6 1 }

A 4 = {1, 2}

ReadHistory d' Sy

w = {({1, 2, 3, 4, 7}, { l } , r 2* ^ ^ 2 )1*(U.  2 , 4 > 7 )« {2}, t 2 , table2)2 }

R eadSe t  = {1, 2, 3, 4, 7}-{ 1, 2} = {3, 4, 7} since max(f) = t 2

Since non o f the nodes from the R ea d S e t  returned a reply, ReadHistory returns error —

table is not available.
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Appendix E

The first paper was presented at the IEEE COMPCON Spring'89 conference in San 

Fransisco in February 1989. This paper discusses the RH algorithm and compares the 

steady-state availability for small number o f copies. A  similar paper was also published 

in the proceedings o f the ISCIS-V International Conference held in Cesme, Turkey in 

November 1989.

The second is the position paper which will be presented at the 

IEEE Workshop on Management o f  Replicated Data  in Houston in November 1990. 

This paper presents an original work on the effect o f network partitions on reliability.
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A Low Cost File Replication Algorithm

B S B acarisse S Bek Bayderc

Department of Computer Science 
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London WCIE 6BT.

ABSTRACT
An algorithm suitable for reading and writing replicated files is 
described. It provides high availability with very low replica­
tion factors by combining variations of existing replication 
control strategies. The algorithm is presented together with 
some statistical analysis, comparing the availability provided 
by this and other well known methods.

1. Introduction
Increased reliability is often quoted as one of the principal 

advantages of distributed systems. Unfortunately the potential 
for fault tolerance that is offered by distributed systems has 
only been realised in a few applications, such as real-time con­
trol of life-threatening processes and financial transaction pro­
cessing, where the increased complexity of the system can be 
justified by the unacceptable cost of a failure. Commercially 
available distributed file systems have tended to concentrate on 
the problems providing efficient remote access, rather than 
offering increased reliability through replication. Ironically, 
system managers may then be tempted to distribute functional­
ity across the network, thereby decreasing the overall reliabil­
ity of applications.

The authors believe that there are three main design cri­
teria that must be met before replicated file systems can 
become commonplace in general purpose computing environ­
ments. First, the communications overhead inherent in any 
replicated system must be brought within acceptable bounds. 
Secondly, the storage cost of replicating files must be kept 
down and, thirdly, mechanisms need to be provided to allow 
control over the level of reliability (or replication) required for 
particular sets of files.

This paper presents an algorithm for controlling access 
and updates to replicated files. It combines the advantages of 
available copy algorithms (high availability) and voting 
algorithms (consistency in the face of network partition) to 
provide fault tolerance with low levels of replication (even 2 
copies) while keeping the communication overheads incurred 
by file operations down. The design is aimed at 
loosely-coupled systems; typically a collection of workstations 
linked by a local area network. It is not suitable for database 
applications which require concurrency control, stringent con­
sistency constraints and support for atomic transactions. Our 
main concern was to provide fault tolerance efficiently as an

extension to file systems that, typically, do not provide transac­
tions nor ensure consistency in the face of concurrent updates.

The design contains some support for controling the level 
of replication and the placement of copies, although how these 
facilities are presented to users and system administrators 
needs, we believe, much more work. The rest of this paper 
consists of a summary of related work in section 2 and an over­
view of the file system design and a description of the algo­
rithms in section 3. Section 4 presents some analytical results 
concerning file availability and communication overheads. 
The section concludes with a discussion of some possible 
implementation techniques and future work.

2. Relevant Work
Consistency schemes for replication control can be 

divided, broadly, into voting algorithms and available copy 
algorithms. The latter group are intellectual descendants of 
Alsberg’s primary site algorithm.1 Failed sites are dynamically 
detected by high priority status transactions and configured out 
of the system while newly recovered sites are configured back 
in. Recovered sites bring themselves up to date by copying 
from other sites before accepting any user transactions. Clients 
may read data from any available copy but must write to all 
available copies. This form of unanimous update2 provides 
better availability than all other methods but does not prevent 
inconsistencies in the presence of communication failures such 
as network partition. Only clean, detectable, site crashes are 
handled correctly by this method.

El-Abbadi et a l extended this method to handle parti­
tions. Two approaches were proposed. In the first, nodes 
maintain virtual partitions which are logical groups 
corresponding to actual partitions. Unanimous update being 
used within each virtual partition. Only a virtual partition con­
taining a majority of the replicas may access the data. The 
second offered greater flexibility. In this system, nodes main­
tain views similar to virtual partitions but within each view 
weighted voting is used between sites.

The latest variation of the available copy algorithm is 
regeneration.4 Here, the availability of the data is restored 
immediately after a node crash by regenerating the failed copy 
on a new available node. Again, this approach cannot maintain 
consistancy in the case of network partitions.

CH2686-4/89/0000/0191$01.00 © 1989 IEEE
191
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In voting algorithms, each site maintains a number of 
votes. Client requests must gather a quorum of votes before 
being accepted. In its simplest form, majority voting every 
copy, or site, has one read and one write vote. For a request to 
be accepted a majority need to approve it. The algorithm 
employs time-stamps both in the voting procedure and in the 
application of updates to data copies.

In weighted voting6,7,8 sites may be assigned different 
numbers of votes. Read transactions collect a read quorum of 
r votes to read a file, and a write quorum of w votes to write a 
file, such that r  + w is greater than the total number of votes 
assigned to the file. There is then always an intersection 
between read and write quorums so every read quorum is 
guaranteed to include an up to date copy. Weighted voting 
provides serial consistency which means that it appears to each 
transaction that it is running alone.

Quorum consensus and primary copy methods work well 
if the number of copies is large. A number of variations have 
been proposed for reducing the storage cost of the algorithm by 
replacing some of the copies by so called witnesses^ that 
record only the current status of the file and for increasing the 
write availability by replacing unavailable copies by so called 
ghosts10 that vote but hold no actual data.

Most of the work in this area has grown out of database 
applications where the cost can be justified by the requirement 
for availability and consistency. Some distributed file sys­
tems11,11 have realised the potential of replication for fault 
tolerance. Most, like LOCUS,1-* use a simple primary copy 
algorithm2 because of its simplicity and relatively high relia­
bility at low levels of replication. Voting algorithms have also 
been used. KUDOS14 uses the majority consensus approach 
with a locking mechanism15 for concurrency control and vot­
ing with ghosts is currently being implemented for the 
AMOEBA16,17 file system.

These voting schemes offer consistency even with serious 
communication failures, such as network partititions, but 
require at least three copies for practical use. The authors’ 
approach can provide some of the advantages of both tech­
niques: high availability with low levels of replication, com­
bined with resilience to serious network and server failures.

3. System Model and Algorithms
We view a distributed computing system as a finite set,

M = {1, 2, 3, ...,m }, of processing nodes connected by a data 
network. In the absence of failures the underlying network 
routes messages between these nodes. Nodes may crash, the 
network may fail and its failure may result in the system 
becoming partitioned. Failed nodes and links can recover 
spontaneously or because of system maintenance. It is 
assumed that a processing node can determine the status of 
another only by receiving a message from that node. A node is 
said to be available from another if both are running and the 
network can route packets between them (both ways). It is 
assumed that a transport level protocol will provide reliable 
error free communication between nodes, in fact a remote pro­
cedure call (RPC) mechanism1̂ ’19 that offers at-most-once 
semantics is likely to be the best communication protocol for 
most of the algorithms.

The algorithms presented here are designed with this 
model of a distributed computing system in mind. The file sys­
tem, as a whole, is configured in the following way.

ServerServer Server

Application

File System

History Table C ontrol

A vailability Control

Com m unication

Replication Control Service

Figure 1 —  Logical structure o f the file system.

The file system presents applications with the abstraction 
of a logical file consisting of a sequence of bytes and identified 
by a unique identifier /  e F . They are considered to be 
sequences of bytes, any subsequence of which may be read or 
replaced by any other byte sequence. The file system provides 
four operations on these logical files: create, read, write and 
delete.

Logical files are implemented by a (possibly empty) set of 
physical files each holding a complete copy of the data in the 
logical file and each residing at a single, distinct processing 
node shown on the diagram as a file server. Two protocol 
layers within the Replication Control Service co-ordinate 
access to the physical copies so as to ensure that read requests 
return the most up-to-date version of the file. The availability 
control layer determines the appropriate update strategy for a 
file operation based on the file’s history table. The history 
table records the location and version number of each copy 
along with a flag that marks the file as having been deleted. 
The history is maintained by the history table control layer and 
is discussed below.

The number and location of the copies of each file are 
controllable by its owner, and both may change during the 
file’s lifetime. This is implemented as an interface into the 
lower control layers of the replication control system.

Notation
The algorithms in this paper are presented in a pseudo­

code based on set notation and predicate calculus mainly 
because the algorithms rely heavily on set manipulation and 
require very little in the way of conventional control structures. 
The following sets are used throughout.

T  = {true, f  alse )
Z the integers
M the set of processing nodes 
F the set of file identifiers
V = 2m xZ (sets of server and version number pairs)
X* the set of byte strings

The notation 25 denotes the power set of S , ie the set of all 
subsets of S .

192
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4. The Availability Control Layer
Each logical file /  e F has a history table h ( f ) e  V x T  

that records the version numbers and locations of every physi­
cal copy of the file along with a boolean flag used to mark the 
file as having been deleted. Two operations,

ReadHistory: F V x T

WriteHistory: F x (V x T) —» {success , error )

are provided to manipulate this table. A read of the table for a 
particular file returns this flag together with the locations and 
corresponding version numbers of its physical copies. A write 
to the table records new machine and version number pairs and 
can be used to set the delete flag. This history information is 
itself replicated using a separate algorithm; the details of which 
are described in the next section.

At file creation time, all copies are in equilibrium, with 
all version numbers zero:

create i f , S) : F x 2s —> {success ,error } 
let h <— ((m, 0) | m e S } 
return WriteHistory i f  ,{h,  fa ls e ))

No physical copies are accessed until the file is first written to.
The delete simply attempts to write a new history that 

records the file as having been deleted using the flag already 
mentioned.

delete i f ) :  F —» [success, error}
return WriteHistory ( f , (empty, true))

A file may be in any one of four availability states, deter­
mined by inspecting its reliable history table.
1) All copies are available and up to date.
2) All available copies are up to date but some copies are

unavailable.
3) Some of the available copies are not up to date.
4) No up to date copy is available.
The availability control layer determines the appropriate access 
and update policy for each state. In order to read a file it must 
be in state 1, 2 or 3, ie at least one available copy must be up to 
date:

read i f , posn , size): F x Z  x Z  —> L * u  [error} 
let {h , d)  <— ReadHistory i f ) 
if d = true v h = 0  
return error
let latest <— max({i | 3 (m , i ) e h }) 
if latest <0
return error — can’t happen! 
let U <- [m | 3 (m, latest) e h) 
return readF(U, / ,  posn, size)

If the file has been deleted (d = true) or the file’s history is not 
available (h = 0  ) then the operation fails. Negative version 
numbers are used by the configure operation to mark new 
copies that must be brought up to date at the next write, and 
must therefore be excluded from read operations, although the 
algorithm used ensures that there will always be on positive 
version number in any history. The set of servers holding

copies with the highest version number is found and a read 
request is multicast to them using readF, defined as follows. 
readF(t/, /  , p o s n 2 M x F x Z  x Z  —> L * u  [error )

returns data (specified by size and position) obtained from 
any server in the set U , or an error indication if no server 
responds.
An alternative read operation can be provided for files in 

availability state 4 that will read the most up to date version 
that is available. We expect this operation to be used when all 
up to date copies have been lost forever (by disc failure, for 
example) or the file has very weak consistency requirements. 
For example it may be better to read an old version of a host 
address table than none at all.

The algorithm is similar to that for the read operation 
above, except that it iterates if the readF request fails, picking 
all servers that hold versions one less than latest until the 
lowest (positive) version number has been tried. We do not 
present the details here for reasons of space.

A write operation will succeed if at least one file copy 
can be updated and the file’s new history can be recorded. The 
update is multicast to all up to date copies, and servers holding 
out of date versions are asked to copy the new file. The set of 
servers which accepted either the update, R , or a new copy, C , 
will hold up to date versions and this is recorded in the new 
history with an incremented version number for these sites. 
Untouched servers have their history table entries copied into 
the new table from the old one. If all servers either accepted 
the update or took a fresh copy, (availability state 1), then the 
file can be put back into equilibrium by recording all the ver­
sion numbers as zero.

write i f , data, posn ): F x Z* x Z —» (success, error} 
let {h , d ) «- ReadHistory i f ) 
if h = error v d  = true 
return error
let latest <— max({/ | 3 (m , i ) € h ) 
if latest < 0
return error — can’t happen! 
let U <— (m | 3 (m , latest) e  h )
let R «- updateF(U, / ,  data, posn)
if R = 0  
return error
let S +- [m | 3 (m , /) e  h }
let C copyF(R, / ,  (5 - R ))
i f C v R  =S
then let h'  «— {( m, 0) |  m e  5}
else let h'  <— {(m, /aresr+1) | m e C u / ? )

u  {(m , i ) s h  | m e C u  R } 
return WriteHistory i f , {hi, fa ls e ))

The following support operations are invoked on physical file 
copies:
updateF(U,/ ,  data, posn ): 2M x F x I *  x Z  -> 2M

Multicasts a request to write data to the file /  to all the 
servers in the set U. It returns the set of servers that 
accepted the request.
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copyF(R j  JX)\ 2M x F x 2M -> 2M
Copies the file /  from any server in the set R to all the 
servers in the set X . Again, the result is the set of servers 
that accepted the operation.
The configure operation allows the set of servers that file 

copies of a file to be changed during the file’s lifetime. The 
table is reconfigured so as to ensure that the new server set 
contains at least one up to date copy. If the intersection 
between the old and the new server sets is empty and none of 
the servers in the new set are available to take a copy of the 
file, the operation will fail. Copies are deleted simply by modi­
fying the history table. New new sites that are unavailable to 
take a copy of the file are added with negative version 
numbers. The write algorithm will bring them up to date as 
soon as possible, and the read algorithm will ignore these 
copies. The details are a little messy and, again, have been 
omitted to save space.

configure i f  , P): F x 2S1 {success, error }
ensure that file /  is replicated on each of the servers in 
the set P .

5. History Table Control Layer
The modified available copy algorithm presented above, 

requires a highly reliable, consistent history table to be main­
tained for each file. This layer provides the operations

ReadHistory : F —> V x T

WriteHistory: F x (V x T) —» {success, error }

The history records whether the file has been deleted (the truth 
value is interpreted as a "deleted" flag) and a set of machine 
and version number pairs (V = 2S1 xZ).

The history table control layer supports these operations 
by replicating the table using a variation of the basic majority 
voting algorithm so that the file histories are consistent in the 
face of network partitions. The history tables are made highly 
available by replicating them on k sites, where k » n , the 
number of file copies.

In its simplest form, k = [m/2|, where m is the total 
number of processing nodes. Each node is assigned one read 
and one write vote, regardless of whether or not it holds a copy 
of any file’s history table. The algorithm will allow a read to 
succeed even if only one copy of the table is available, so long 
as the majority of nodes is available. Writes to the table 
require a majority of nodes to accept the new table version. In 
the case of random node crashes the method will offer a high 
degree of read availability. Random network partitions will 
reduce availability more seriously but the table will still be 
consistent. More statistical analysis of partitioning is still 
required.

In order to reduce the communication cost, weighted vot­
ing can be used to reduce the numbers of responses required to 
complete an operation. This will reduce table availablility will 
unless the nodes with high weights are highly available them­
selves. Fortunately, the history table information is quite small 
— eight bytes per copy per file is quite sufficient, so high lev­
els of replication are not costly in terms of storage.

A simple locking scheme is required to ensure that the file 
state and the history table are kept in step — the table being

locked when it is read and unlocked when it is written back. A 
more subtle scheme is possible, but from our studies of active 
file stores we believe concurrent update of replicated files is 
likely to be very rare in practice.

In many distributed systems the number of messages, 
rather than their size, is the predominant factor in determining 
the cost of network protocols.20 Many of the low-level opera­
tions required to support this algorithm would benefit from a 
multicast request response mechanism. If the underlying com­
munication system uses a broadcast link level protocol, the 
cost of such a mechanism is a factor of the number of replies 
required from a request, not the number of servers to which the 
request was sent, nor the size of the request parameters. Many 
studies, including our own, have shown that read operations 
predominate in most general purpose file systems, and 
ReadHistory is the most costly part of our logical file read 
request. If the problem of concurrent write operations is 
ignored (as it very often is in non-replicated file systems), then 
it is possible to increase the performance of this algorithm by 
adding a file open operation, that caches the file’s history 
locally, writing it back only when a corresponding close 
operation is performed.

6. Analysis and Conclusions
In this section we present a simple combinatorial analysis 

of this modified available copy method (MACM). We will 
derive expressions for P(AU) — the probability that a file is 
available for update. In this analysis we assume that machines 
fail independently with a probability p and that update and 
read requests originate at random from machines not in the set 
of file servers M . Relaxing these assumptions severely com­
plicates a combinatorial analysis, but we hope that a stochastic 
process model may provide more realistic formula.

In its simplest form, the available copy algorithm has a 
read and write availability of P(Ay) = 1 -  (1 —p ) n for a file 
with n replicas. As m , the number of file server nodes, 
increases the update availability of our MACM approaches 
this. To show this we must demonstrate that:
a) A,,  the availability of the history table for a file, and A f , 

the availability of the file, are asymptotically independent 
events:
With k table and n file copies chosen from m nodes, the 
probability that a node holds a copy of both the table and

k nthe file is — x — which tends to zero as m tends to m m
infinity.

b) The probability that a file is available for update, P(AU), is 
asymptotically equal to the probability that the file is 
available:

For an update to succeed, both the file history and at least 
one copy of the file must be available. The table, repli­
cated using majority voting, is available with probability

PGM = £  p H i - p r - *k >m 12
which tends to 1 as m tends to infinity.21,22 Since A, and 
A f are (asymptotically) independent,

P(AU) = P(A/ )P(A,) = 1 -  (1 - p ) n
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for large rn.
Table 3 shows file availabilities when /?=0.7 and p=0.9 

for five common replication strategies: unanimous update, sin­
gle primary, moving primary, majority voting and available 
copies under the assumptions presented above. Figures for 
n = 2, 3, 4 and 5 are shown.

method n-2 n=3 n=4 n-5
U Update 0.49 0.34 0.24 0.16
S Primary 0.70 0.70 0.70 0.70
M Primary 0.49 0.78 0.91 0.96
M Voting 0.49 0.78 0.65 0.83
A Copies 0.91 0.97 0.99 0.99

Table 3a — Availability when p =0.7

method n=2 n=3 n-4 n=5
U Update 0.81 0.73 0.66 0.59
S Primary 0.90 0.90 0.90 0.90
M Primary 0.81 0.97 0.95 0.99
M Voting 0.81 0.97 0.95 0.99
A Copies 0.99 0.99 0.99 0.99

Table 3b — Availability when p  =0.9
In order to derive a more realistic formula, it is necessary 

to consider conditional probabilities.

P(AU) =  1 - P ( - A f  v -  A, )

= 1 — P( -  Ay ) — P( — P( -  Ayr I ~A , )P (~ A , )

In the first step, we will show that P( -  A ,) = (1 -  p )* where in 
the following expression P(N, ) is the probabaility that i nodes 
are down (not necessarily holding a table copy) and P(T, ) is 
the probability that all tables are on those i nodes.

P ( - ^ ) =

=  f  ( ” » - * ) !  n m - ' ( \  - n ) i
,4 j .  (m-i ) ! ( i  - k ) !  P P

put j  =i -k  and i=j+k and we get

= <■ - P + % (mC? 4 ) !7Tp^ ~ ;(1 ~ p ) i

and since the second part is a binomial expansion we can write,

P ( - A , )  = ( l - p ) *

Now it is simple to show that P { -  A f )  = (I — p ) n . By work­
ing from the observation that

P ( ~ A f  | -A,)  = £ P ( S i ) P { R n )

where P(S,) is the probability that n - i  copies are on the 
servers that hold tables, and P(/?„) is the probability that none 
of the remaining servers hold available copies, we can derive

p(-4j = i -  ( i - p r - ( i - p ) *  +
A k ! (m—n +/)! ,, »,■+*
^(Jfc-n+i) ! P)

This formula gives more realistic availability statistics for 
the modified algorithm. Table 4 shows the update availability 
computed from this formula for two values of p .  A value of 
m = 50 was used throughout.

n-2 n=3 n=4 n=5
p-0 .7 0.90 0.97 0.99 0.99
p=0.9 0.99 0.99 0.99 0.99

Table 4 — Update and read availability for MACM. 

Conclusions
These figures show an expected availability very close to 

those obtained from the unmodified available copy method and 
significantly higher than those available from majority voting 
unless high replication factors are used. The history table 
enables the method to give consistent update in the presence of 
network partition which is not possible with an unmodified 
available copy approach. Although the history table must be 
replicated using a voting strategy and requires a high level of 
replication in order to give the degree of fault tolerance 
required, it is relatively small compared to the size of the file 
itself.

We are pursuing this work by simulating this and other 
algorithms in order to estimate the likely communication over­
head involved and to verify the combinatorial analysis above. 
The simulations will also allow us to investigate file availabil­
ity in the presence of failures that are harder to study 
analytically, such as network partition. An analysis based on 
stochastic processes is also being conducted.

Many areas require further study. In particular there are 
several interesting systems administration questions that arrise 
only with replicated files. Who may alter the file’s replication? 
How does the user or system administrator specify the replica­
tion — explicitly or by asking for a given level of fault toler­
ance? Should the positioning of files be decided automatically, 
by users, or by administrators? If the results from the simula­
tion are encouraging, we hope to use a pilot implementation of 
this work to explore these and other issues.
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Reliabi l i ty  o f  Rep l ica ted  Files in Part i t ioned N e tw ork s
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1. Introduction
The potential for increased reliability is often given as one of the benefits of a distributed system. The 

hardware is, by definition, replicated so hardware and software problems are more likely to cause only a partial 
failure rather than affect the whole system. As networks grow and evolve, subnets can become bridged 
together and machines moved from subnet to subnet; more often than not as required by geographical con­
straints. As a result, it is reasonable to assume that network partitioning is a relatively likely event.

We believe that three central problems must be solved before the benefits of file replication can be real­
ized in general purpose distributed systems:
1. High reliability must be provided with minimum storage cost (say, 2 file copies).
2. The system should provide simple mechanisms to alter the reliability of files as users’ requirements

change.
3. The reliability should not be adversely affected by changes to the network topology and therefore to the

failure modes of the network.
This position paper concentrates on the first and third of these and outlines our work estimating the com­

parative reliability of files replicated using a variety of strategies under the realistic assumption the network 
may become partitioned. Of particular interest is the reliable history strategy (presented in an earlier paper)1 
which, we believe goes some way towards addressing these three points.

Most of the algorithms used to control updates to replicated data fall into one of two families: voting--4 
and available copy methods.5 Available copy algorithms with two copies offer better availability than voting 
with three; but require all the nodes in the system to have the same understanding of which nodes are available 
and which are not. This requirement is at odds with the failure model of distributed systems that we outlined 
above and.

We propose providing a highly available file replication history by recording a version number for each 
file copy. The table of version numbers is replicated many times and updates to it are controlled using a 
regenerative-majority consensus voting algorithm.6 Any client wishing to read a file consults the file’s history to 
determine which file copies are up to date. A read in the file is allowed as long as one up to date copy is avail­
able. Write operations proceed in the same way with the update being performed on all the up-to-date copies. 
Copies that are out of date but whose servers are available are brought up to date by copying.

Because the file’s history is small compared to the size of the file itself the high degree of replication 
involved does not add greatly to the storage cost. It has a communication cost associated with the history access 
operations but, we believe a multicast transport protocol can reduce this cost into acceptable bounds.

The algorithm is a hybrid of voting and available copies techniques but it doesn’t require a mechanism to 
distinguish network failures from node crashes. For obvious reasons we call this the reliable histories method.
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2. A nalysis

It is a relatively simple matter to analyse the availability offered by various 
algorithms. We have carried out a combinatorial analysis of the behaviour of major­
ity voting (MV), available copy (AC) and the reliably history (RH) techniques under 
the assumption the network partitions do not occur.1 When partitions are possible, 
the analysis becomes much more involved and only simple network topologies can 
be studies. For example the simple network shown on the right was studied and the 
file availability obtained as a function of the availability of the bridge for both MV 
(three copies) and RH (two copies). A graph of the results is shown below. The two 
graphs show the effect of allocating different numbers of nodes between the two 
subnets. In each case, two configurations were assumed. One in which all copies 
are on the same subnet and the other in which they are split.

Not surprisingly, MV is much more sensitive to the topology and the placement of copies than RH 
believe this is an important property of the algorithm.
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Availability is only one measure of an algorithm’s behaviour. Reliability (the probability that the file is 
continuously available for a given period of time) is probably more important. To study reliability we turned to 
simulation. The graphs below shows the reliability offered by the MV, AC and RH algorithms in a partition 
free network of 50 nodes with the reliability of a single copy is given as a reference. An exponential distribu­
tion of the mean time between failures was used, whereas the mean time to repair were normally distributed. 
RH and AV with two copies perform considerably better than MV with three copies.

Reliability in a Partition Free System
sin gle RH  ̂ MV AC
c o p y  2 c o p ie s  j  c o p ie s  2  c o p ie s

reliability
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e la p se d  time (mtt^frnttr -  100/7)

sin g le RH MV AC
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e la p se d  tim e (mfcif/mUr = 3 0 0 /7 )
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3. Effect o f Partition ing on Reliability

The position becomes more interesting when partitioning is considered. A number of network topologies 
and file configurations have been simulated to study the effect these have on reliability. Since the available 
copies algorithm is not applicable in this environment, only majority voting is compared with RH. For exam­
ple, given the two networks show here,

I BRIDGE | | BRIDGE | | BRIDGE I | BRIDGE |
— I BRIDGE 1— — | BRIDGE 1—

- o o - o - o -

o - o - - o - o o - o o o -
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IBRID
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o -

o

o -

o -

Topology 3

different configurations can be represented by the distribution of the nodes on the links and the link numbers 
where copies reside. For example, in topology 2, the configuration (10, 15, 5, 12; 2, 4) has 10 nodes on subnet 
1, 15 on subnet, etc. The file has two copies: one on subnet 2 and the other on subnet 4.

The graphs below compare MV between three copies and RH with two copies in these two network topo­
logies. In each topology, two configurations were used. In the first (given above), all copies were on different 
links and in the second, all copies were on the same link: (10, 15, 5, 12; 4 ,4).

For topology 3, the two configurations were (5, 7, 7, 10, 10; 3, 4, 5) and (5, 7, 7, 10, 10; 5, 5, 5). A 
failure/repair time ratio of 300/7 was used in all cases.

Topology 2: The Effect of Copy Placement
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3.1. Resiliency to Network Topologies and Copy Placement

The above results show that there is great variation in the the reliability offered by voting algorithms. In 
these particular cases the same is not true for RH though in other studies greater variation was observed. In 
order to leam more, we studied the distribution of reliabilities obtained for several, randomly chosen, 
configurations. The probability of continuous availability for 1000 time units was used, since there is consider­
able variation for this value.
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Tlie results, shown below, are rather interesting. Majority voting gave exponentially distributed reliabili­
ties with a mean less than 0.1, where the reliable histories algorithm gave more normally distributed reliabilities 
with a mean of about 0.25.

Distribution of Reliability at 1000 time units
(randomly chosen copy placements)

% freq u en cy  % freq u en cy

MV 
3 copies

0.1 -  0.2 0 2  -  0.3 0.3 -  0.4 0.4 -  0.5 0.5 -  0.6 0.6 - 0.7

RH 
2 copies

0.0 -  0.1 0.1 - 0.2 0.2 - O J 0.3 -  0.4 0.4 -  0 5  0 5  - 0.6 0 6  -  0.7

reliability reliability

4. Conclusions
In terms of availability and reliability, the proposed reliable histories algorithm has performs very simi­

larly to available copy methods whilst maintaining consistency in the face of network partition. In many 
configurations, RH with two copies gives reliability than voting algorithms using three copies (or two copies 
and one witness). There is also some evidence that the algorithm is less sensitive to the topology of the network 
and to the placement of file copies. This is likely to be an important property in systems where the 
configuration can not be planned to maximize file reliability, say, because it is dictated by physical considera­
tions.

'The effect of network configuration and file placement needs much further work. One plan of attack is to 
generate and simulate “ random” configurations. While this is relatively simple for copy placement, the notion 
of a random topology must first be clarified. Perhaps by studying networks in the field some criteria for prob­
able topologies and node distributions can be determined so that suitable configurations can be randomly 
chosen and simulated. Such a study may make it possible to derive rules that would allow the reliability of a 
file to be calculated when the topology and location of the copies are given as parameters.

An analytical model for reliability in partitioned systems would certainly help to generalize and verify the 
results obtained above. Unfortunately this is a difficult task for reliable histories approach because of the 
number of nodes required before a significant improvement over voting methods can be obtained. We plan to 
produce pilot implementation to test the practicality of this algorithm and to investigate how multicast protocols 
could be used to reduce the communication overhead involved in the history table operations.
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