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a b s t r a c t

We develop methods for robust Bayesian inference in structural vector autoregressions
(SVARs) where the parameters of interest are set-identified using external instruments,
or ‘proxy SVARs’. Set-identification in these models typically occurs when there are
multiple instruments for multiple structural shocks. Existing Bayesian approaches to
inference in proxy SVARs require researchers to specify a single prior over the model’s
parameters, but, under set-identification, a component of the prior is never revised. We
extend the robust Bayesian approach to inference in set-identified models proposed by
Giacomini and Kitagawa (in press[a]) – which allows researchers to relax potentially
controversial point-identifying restrictions without having to specify an unrevisable prior
– to proxy SVARs. We provide new results on the frequentist validity of the approach
in proxy SVARs. We also explore the effect of instrument strength on inference about
the identified set. We illustrate our approach by revisiting Mertens and Ravn (2013) and
relaxing the assumption that they impose to obtain point identification.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proxy structural vector autoregressions (SVARs) are an increasingly popular method for estimating the dynamic causal
ffects of macroeconomic shocks.1 The key identifying assumption in the proxy SVAR is that there exist one or more
ariables external to the SVAR – ‘proxies’ or ‘external instruments’ – that are correlated with particular structural shocks
i.e., ‘relevant’) and uncorrelated with all other structural shocks (i.e., ‘exogenous’). The impulse responses to a single
tructural shock can be point-identified when a single proxy is correlated with that structural shock and uncorrelated with
ll other structural shocks (Stock, 2008). Mertens and Ravn (2013) (henceforth MR) develop a proxy SVAR with multiple
roxies for multiple structural shocks and show that point identification of the impulse responses to these shocks requires
ero restrictions on the structural parameters in addition to the zero restrictions implied by exogeneity of the proxies.
ther papers that use multiple proxies to identify multiple structural shocks given additional point-identifying restrictions
nclude Lunsford (2015) and Mertens and Montiel-Olea (2018). The additional restrictions required to achieve point
dentification may not always have a theoretically sound motivation. Consequently, there may be interest in assessing
he robustness of the analysis to relaxing these additional restrictions, which would result in set identification.

The majority of the literature that makes use of proxy SVARs conducts inference in the frequentist setting. A notable
xception is Arias et al. (in press) (henceforth ARW), who develop algorithms for Bayesian inference that are applicable
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nder set identification. Bayesian inference may be appealing because it allows the researcher to use prior information
bout the model’s parameters and, under set identification, it may be computationally more convenient than a frequentist
pproach. This is perhaps why, since Uhlig (2005), the dominant inferential approach in set-identified SVARs has been
ayesian.2 However, under set identification, posterior inference is sensitive to the choice of prior over the set-identified
arameters, even asymptotically (Poirier, 1998), and Bayesian credible intervals do not asymptotically coincide with
requentist confidence intervals (Moon and Schorfheide, 2012). Moreover, in the context of SVARs, Baumeister and
amilton (2015) show that even priors that are ‘uniform’ over a set-identified parameter may be informative about the
bjects of interest, such as impulse responses.
To address these issues, Giacomini and Kitagawa (in press[a]) (henceforth GK) propose an approach to Bayesian

nference in set-identified models that is robust to the choice of prior over the set-identified parameters. The approach
onsiders the class of all priors over the model’s set-identified parameters that are consistent with the identifying
estrictions. This generates a class of posteriors, which can be summarised by reporting the set of posterior means (an
stimator of the identified set) and a robust credible region. GK provide conditions under which these quantities have
alid frequentist interpretations and they apply their approach to SVARs in which the impulse responses are set-identified
y imposing sign and zero restrictions.
In this paper we extend the approach of GK to set-identified proxy SVARs. Following MR and ARW, we consider

he case where there are k < n proxies that are correlated with k structural shocks (a ‘relevance’ condition) and are
ncorrelated with the remaining n − k shocks (an ‘exogeneity’ condition), where n is the dimension of the SVAR. If
> 3 and 1 < k < n − 1, the impulse responses to all structural shocks are set-identified in the absence of further

ero restrictions on the structural parameters. For other values of n and k, it may be the case that impulse responses
o particular structural shocks are point-identified, while other impulse responses are set-identified. We focus on cases
here the impulse responses of interest are set-identified.
This paper makes several new contributions relative to GK. First, we provide conditions under which our procedure is

uaranteed to have a valid frequentist interpretation in proxy SVARs. These results do not follow directly from those in
K, and are tailored to the different structure of the problem in proxy SVARs. Second, we show that, in the presence of
eak proxies, both the frequentist and the Bayesian approach no longer provide asymptotically valid inference about the

dentified set: the estimators of the bounds of the identified set are not consistent, they converge to non-degenerate and
ata-dependent distributions, and these distributions are different for the frequentist and the Bayesian approach (implying
failure of the Bernstein–von Mises property that we prove holds under strong proxies). Third, we show how to conduct
osterior inference not only about the impulse responses, but also about the forecast error variance decomposition (FEVD),
hich is the relative contribution of a particular structural shock to the unexpected variation in a particular variable
ver some horizon.3 Finally, we provide an algorithm for computing impulse responses to a unit shock (as opposed to a
tandard-deviation shock), which are often considered in the proxy-SVAR literature.
As in ARW, our algorithms allow for zero and sign restrictions on the covariances between the proxies and the

tructural shocks in addition to the zero restrictions implied by the exogeneity assumption. These types of restrictions
re likely to be justifiable in applications, given that the proxies are typically constructed with the purpose of measuring
particular structural shock. An example of a zero restriction would be to assume that, among the k structural shocks

hat are assumed to be correlated with the k proxies, a particular structural shock is uncorrelated with a particular proxy.
xamples of sign restrictions are when a particular proxy is positively correlated with a particular structural shock, or
hen the covariance between a particular proxy and a particular structural shock is larger than the covariance between
hat proxy and another structural shock.4 Additionally, our algorithms allow for restrictions of the kind considered in
K, including ‘short-run’ zero restrictions (as in Sims, 1980; Christiano et al., 1999), ‘long-run’ zero restrictions (as in
lanchard and Quah, 1989), sign restrictions on impulse responses (as in Uhlig, 2005), and zero or sign restrictions on
he matrix determining the contemporaneous relationships among the endogenous variables (as in Arias et al., 2019). By
xtending and adapting the algorithms in GK to allow for identification using proxy variables alongside standard zero
nd sign restrictions, we provide a general and flexible tool for empirical researchers to relax potentially controversial
oint-identifying restrictions without having to adopt an unrevisable prior.
Some existing approaches to Bayesian inference in proxy SVARs place priors directly on the model’s structural

arameters. For example, ARW place a normal-generalised-normal conjugate prior over the proxy SVAR’s structural
arameters and propose algorithms for drawing from the resulting normal-generalised-normal posterior. More generally,
aumeister and Hamilton (2015, 2018, 2019) advocate placing priors on the structural parameters of an SVAR, because
hese parameters can have economic interpretations that facilitate prior elicitation. A problem with this approach in
et-identified models is that the prior implicitly incorporates a component that is unrevisable by the data. Our approach

2 Gafarov et al. (2018) and Granziera et al. (2018) develop frequentist inferential tools in set-identified SVARs. Ludvigson et al. (2018) use a
bootstrap to conduct inference in an SVAR subject to restrictions on correlations between proxies and shocks, but the frequentist validity of this
bootstrap is unknown.
3 Plagborg-Møller and Wolf (2020) develop frequentist procedures for conducting inference about the FEVD in a general semiparametric moving

average model when there are valid external instruments available. The setting that they consider allows for cases where the FEVD is set-identified.
4 Similar types of sign restrictions are considered by Braun and Brüggemann (2017), Ludvigson et al. (2018) and Piffer and Podstawski (2018).

These papers allow the proxies to be correlated with all structural shocks (i.e., there are no exogeneity restrictions); it would be straightforward to
implement this setup under approach.
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vercomes this problem by decomposing the prior over the structural parameters into a revisable prior over reduced-
orm parameters and an unrevisable prior over the orthonormal matrix that maps VAR innovations into structural shocks
see, for example, Uhlig, 2005). We then allow for multiple priors for this matrix, which delivers inference that is robust
o the choice of unrevisable prior. We see our approach as being complementary to existing Bayesian approaches. In
articular, we suggest reporting output based on the multiple-prior robust Bayesian approach together with output from
he single-prior Bayesian posterior to document the sensitivity of posterior inference to the choice of unrevisable prior.5

It is well-known that frequentist inference in the linear instrumental-variables model is non-standard when the
nstruments are weakly correlated with the included endogenous variables (e.g., Stock et al., 2002). Similar problems arise
n the proxy SVAR when the proxies are weakly correlated with the structural shocks. In the case where there is one proxy
or one structural shock, Lunsford (2015) shows that the estimator of the impulse–response is inconsistent when the proxy
s weak, and he derives a test for the presence of a weak proxy. Montiel-Olea et al. (in press) show that standard asymptotic
delta-method) inference about the objects of interest in the proxy SVAR is invalid when the proxy is weak, and they derive
weak-instrument-robust confidence interval for the impulse–response. As noted in Caldara and Herbst (2019), from the
tandpoint of Bayesian inference, having a weak proxy does not invalidate posterior inference in the sense that one still
btains (numerical approximations of) the exact finite-sample posterior distributions of the objects of interest. However,
ractitioners may be interested in the asymptotic frequentist properties of Bayesian inferential procedures. For example,
ayesians may be better able to credibly communicate their results to frequentist audiences when the Bayesian inferential
rocedure is asymptotically equivalent to a frequentist procedure. Accordingly, we investigate the asymptotic properties
f our robust Bayesian procedure in the presence of weak instruments. Using a simple analytical example, we show that
ur robust Bayesian procedure does not provide valid frequentist inference about the identified set under weak-proxy
symptotics, which contrasts the results in Kline and Tamer (2016) and GK. To the best of our knowledge, this is the first
aper to provide formal results on the interplay between set identification and weak identification.
We illustrate our procedure by considering the analysis in MR, which is also discussed in Jentsch and Lunsford (2019)

nd Mertens and Ravn (2019). MR use series of plausibly exogenous, unanticipated changes in average personal and
orporate income tax rates in the United States as proxies for structural shocks to these tax rates to identify the effects of
iscal shocks on macroeconomic variables. Since there are two proxies for two structural shocks, the impulse responses to
hese shocks are set-identified in the absence of additional zero restrictions. MR impose a zero restriction in addition to
hose implied by exogeneity of the proxies, which yields point identification. The additional restriction is a causal ordering,
hich restricts the direct contemporaneous response of one tax rate to the other. This assumption could be violated if,

or instance, there are constraints that impinge on the ability of the government to change tax rates independently of
ne another. MR assess the robustness of the results to imposing the additional restriction by considering two alternative
ausal orderings of the tax rates within the proxy SVAR. Our approach extends and formalises this robustness analysis
y providing an estimator of the set of impulse responses compatible with relaxing the additional zero restriction and
eplacing it with a set of – arguably weaker – sign restrictions. We compare the results under our multiple-prior Bayesian
pproach to those obtained under a single prior to assess the role of prior choice in driving posterior inference.
The remainder of the paper is structured as follows. Section 2 describes our robust Bayesian inferential framework for

et-identified proxy SVARs. Section 3 provides results on the frequentist properties of this approach and explores how
eak proxies affect posterior inference asymptotically. Section 4 details the numerical algorithms used to implement the
pproach. Section 5 contains the empirical application and Section 6 concludes the paper.
Generic notation: For the matrix X, vec(X) is the vectorisation of X and vech(X) is the half-vectorisation of X (when
is symmetric). ei,n is the ith column of the n×n identity matrix, In. 0n×m is a n×m matrix of zeros. ∥.∥ is the Euclidean

norm. Sn−1 is the unit sphere in Rn.

2. Framework

2.1. The SVAR

Let yt be an n × 1 vector of endogenous variables following the SVAR(p) process:

A0yt =

p∑
l=1

Alyt−l + εt , t = 1, . . . , T ,

where A0 has positive diagonal elements (a sign normalisation) and is invertible, and εt are structural shocks with
E(εtε

′
t ) = In. The initial conditions (y1−p, . . . , y0) are given. We omit exogenous regressors (such as a constant) for

simplicity of exposition, but these are straightforward to include. Letting xt = (y′

t−1, . . . , y
′
t−p)

′ and A+ = (A1, . . . ,Ap),
we can rewrite the SVAR(p) as

A0yt = A+xt + εt , t = 1, . . . , T . (1)

5 An alternative approach is to consider variation in the prior within some neighbourhood around a benchmark prior, as in Giacomini et al.
(2019).
3
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(
A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt + ut , t = 1, . . . , T ,

where B = (B1, . . . ,Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εt with E(utu′
t ) = Σ = A−1

0 (A−1
0 )′. (B,Σ ) are the

reduced-form parameters. We assume that B is such that the VAR(p) can be inverted into an infinite-order vector moving
average (VMA(∞)) model.6

To facilitate computing the identified set of the objects of interest, we reparameterise the model into its ‘orthogonal
reduced form’:

yt = Bxt + Σ trQεt , t = 1, . . . , T ,

where Σ tr is the lower-triangular Cholesky factor of Σ (i.e., Σ trΣ
′

tr = Σ ) with diagonal elements normalised to be
non-negative, Q ∈ O(n) is an n × n orthonormal matrix and O(n) is the set of all such matrices. The parameterisations
are related through the mapping B = A−1

0 A+, Σ = A−1
0 (A−1

0 )′ and Q = Σ−1
tr A−1

0 , or A0 = Q′Σ−1
tr and A+ = Q′Σ−1

tr B.
The sign normalisation that the diagonal elements of A0 are nonnegative therefore corresponds to the restriction that
diag(Q′Σ−1

tr ) ≥ 0n×1.
The VMA(∞) representation of the model is

yt =

∞∑
h=0

Chut−h =

∞∑
h=0

ChΣ trQεt , t = 1, . . . , T ,

where Ch is the hth term in (In −
∑p

l=1 BlLl)−1 and L is the lag operator. The (i, j)th element of the matrix ChΣ trQ, which
we denote by ηi,j,h, is the impulse–response of the ith variable to the jth structural shock at the hth horizon:

ηi,j,h = e′

i,nChΣ trQej,n = c′

i,hqj, (2)

where c′

i,h ≡ e′

i,nChΣ tr is the ith row of ChΣ tr and qj ≡ Qej,n is the jth column of Q.
Another object that is also often of interest in analyses using (proxy) SVARs is the FEVD. Under quadratic loss, the

optimal h-step-ahead forecast of yt given information available at time t is E (yt+h|Ft) =
∑

∞

k=0 Ch−kut−k. The h-step-
ahead forecast error is then yt+h − E (yt+h|Ft) =

∑h−1
k=0 Ckut+h−k =

∑h−1
k=0 CkΣ trQεt+h−k. It follows that the forecast

error variance of yi,t+h is var(yi,t+h|Ft ) =
∑h−1

k=0 c
′

i,kci,k. The contribution of the jth structural shock to the forecast
error variance of the ith variable at the hth horizon is var(yi,t+h|Ft , ε−j,t+1, . . . , ε−j,t+h) =

∑h−1
k=0 c

′

i,kqjq′

jci,k, where
ε−j,t = {εi,t : i ̸= j ∧ i = 1, . . . , n}. The contribution of the jth structural shock to the forecast error variance of the
ith variable at the hth horizon as a fraction of the total forecast error variance is then

FEVDi,j,h =

∑h−1
k=0 c

′

i,kqjq′

jci,k∑h−1
k=0 c

′

i,kci,k
. (3)

2.2. Identification using proxies

In the absence of identifying restrictions, the structural parameters – and any function of these parameters, such as
the impulse responses or FEVD – are set-identified. Since any A0 = Q′Σ−1

tr satisfies Σ = A−1
0 (A−1

0 )′, the identified set for
A0 is

{
A0 = Q′Σ−1

tr : Q ∈ O(n)
}
. Imposing identifying restrictions restricts Q to lie in a subspace Q of O(n), which shrinks

the identified set.
The key identifying assumption in the proxy SVAR is that there are variables external to the SVAR that are correlated

with particular structural shocks and uncorrelated with all other structural shocks. Let ε(i:j),t = (εi,t , εi+1,t , . . . , εj−1,t , εj,t )′
for i < j. Assume that mt is a k× 1 vector of proxies (with k < n) that are correlated with the last k structural shocks, so
E(mtε

′

(n−k+1:n),t ) = Ψ , where Ψ is a full-rank k × k matrix. Further, assume that mt is uncorrelated with the first n − k
structural shocks, so E(mtε

′

(1:n−k),t ) = 0k×(n−k). The first condition is commonly referred to as the ‘relevance’ condition
and the second as the ‘exogeneity’ condition. We assume that mt is generated by the process

Γ 0mt = Λεt +

pm∑
l=1

Γ lmt−l + νt , t = 1, . . . , T , (4)

where:Γ l, l = 0, . . . , pm, is a k×kmatrix withΓ 0 invertible;Λ is a k×nmatrix; and the initial conditions (m1−pm , . . . ,m0)
are given. We assume that (ε′

t , ν
′
t )

′
|Ft−1 ∼ N(0(n+k)×1, In+k), where Ft−1 is the information set at time t−1, which includes

the lags of yt and mt . The assumption about the joint distribution of (εt , νt ) implies that νt |Ft−1, εt ∼ N(0k×1, Ik). This
process is an SVAR(pm) in mt where the structural shocks εt are included as exogenous variables. The process implies that

6 The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix lie inside the unit circle. See Hamilton (1994)
or Kilian and Lütkepohl (2017).
4
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he proxies contain information about the structural shocks after allowing for possible serial correlation in the proxies.7
he information content of each proxy for each structural shock is jointly determined by the matrices Γ 0 and Λ. This
etup allows for the number of lags of mt in the SVAR for mt to differ from the number of lags of yt in the SVAR for yt .8
Given the distributional assumption on εt and νt , and the exogeneity and relevance assumptions, it follows from (4)

hat

E(mtε
′

t ) = Γ−1
0 Λ =

[
0k×(n−k),Ψ

]
. (5)

Left-multiplying (4) by Γ−1
0 and substituting out εt using (1) yield

mt = Γ−1
0 ΛA0yt − Γ−1

0 ΛA+xt +

pm∑
l=1

Γ−1
0 Γ lmt−l + Γ−1

0 νt .

The reduced-form process for the proxies, which we refer to as the ‘first-stage regression’, is

mt = Dyt + Gxt +

pm∑
l=1

Hlmt−l + vt , (6)

where: D = Γ−1
0 ΛA0; G = −Γ−1

0 ΛA+; Hl = Γ−1
0 Γ l for l = 1, . . . , pm; and vt = Γ−1

0 νt with E(vtv′
t ) = Υ = Γ−1

0 (Γ−1
0 )′.

This is a VAR(pm) in mt with exogenous variables yt and xt . The first-stage regression should also include any exogenous
variables (e.g., a constant) that are included in the SVAR for yt . Since Γ−1

0 Λ = DA−1
0 = DΣ trQ, we can write (5) as

E(mtε
′

t ) = DΣ trQ =
[
0k×(n−k),Ψ

]
. (7)

The (i, j)th element of this matrix is e′

i,kDΣ trQej,n = d′

iqj, where d′

i ≡ e′

i,kDΣ tr is the ith row of DΣ tr . The exogeneity
assumption therefore generates linear restrictions on the first n − k columns of Q given the reduced-form parameters D
and Σ tr . The proxies satisfy the relevance assumption rank(Ψ ) = k if and only if rank(D) = k.

Let fi be the number of equality restrictions on the ith column of Q. Rubio-Ramírez et al. (2010) show that a necessary
and sufficient condition for point identification of the structural parameters in an SVAR is that fi = n− i for i = 1, . . . , n.
We focus on cases where fi ≤ n − i for all i = 1, . . . , n, with strict inequality for at least one i, and where interest is
in a particular set-identified object. Eqs. (2) and (3) imply that the impulse–response and FEVD corresponding to the jth
structural shock are point-identified if and only if the jth column of Q is point-identified. Assume for now that the only
zero restrictions are those corresponding to the exogeneity assumption and that n ≥ 3. Assume also that rank(D) = k, so
the relevance condition holds. If k = 1, then fi = 1 for i = 1, . . . , n− 1 and fn = 0. In this case, the first n− 1 columns of
Q are set-identified and qn is point-identified.9 If k = n− 1, then f1 = n− 1 and fi = 0 for i = 2, . . . , n. In this case, q1 is
point-identified and qi, i = 2, . . . , n, is set-identified.10 For 1 < k < n − 1, all columns of Q are set-identified.11

As in ARW, we allow for additional equality and sign restrictions on elements of Ψ . An example of an equality
restriction is that the first proxy variable (m1t ) is not only uncorrelated with the first n − k structural shocks, but is
also uncorrelated with one of the last k structural shocks (e.g., E(m1tε(n−k+1),t ) = 0). This type of restriction is a linear
equality restriction on a single column of Q. An example of a sign restriction is that the covariance between the first proxy
and one of the last k structural shocks is nonnegative (e.g., E(m1tεnt ) ≥ 0), which is a linear inequality restriction on a
single column of Q. Another example is that the covariance between a particular proxy and a particular structural shock
is greater than or equal to the covariance between that proxy and another structural shock, which is a linear inequality
restriction on two columns of Q; for example, E(m1tεnt ) ≥ E(m1tεn−1,t ) implies that d′

1(qn − qn−1) ≥ 0.
Our approach also allows for other restrictions commonly used in SVARs, such as zero restrictions on A0 = Q′Σ−1

tr ,
A−1
0 = Σ trQ or the long-run cumulative impulse–response CIR∞

= (In −
∑p

l=1 Bl)−1ΣtrQ, and sign restrictions on the
impulse responses or A0.

2.3. Robust Bayesian inference

We assume for now that the object of interest is the impulse–response ηi,j,h, although the discussion in this section
also applies to the FEVD or any other scalar-valued function of the structural parameters. Given the formulation of the

7 We could also allow for up to p lags of yt to appear in (4) without altering the reduced form for mt or the restrictions on Q implied by proxy
exogeneity (derived below).
8 ARW specify a joint SVAR for (y′

t ,m′
t )

′ where zero restrictions rule out feedback from mt to yt . This process also implies that the proxies
contain information about the structural shocks and, under the exogeneity assumption, yields the same set of identifying zero restrictions that we
derive below.
9 The exogeneity restrictions imply that d′

1qi = 0 for i = 1, . . . , n− 1. Since the columns of an orthonormal matrix are orthogonal and have unit
length, qn = ±d1/∥d1∥. The sign normalisation pins down the sign of qn .
10 The exogeneity restrictions imply that DΣ trq1 = 0, where D is a (n − 1) × n matrix. Under the relevance assumption, rank(DΣ tr ) = n − 1 and
he nullspace of DΣ tr is of dimension one by the rank-nullity theorem. q1 is therefore a unit-length vector in the (one-dimensional) nullspace of
DΣ tr , which is uniquely determined given the sign normalisation.
11 The result for k = 1 corresponds to Corollary 2 in ARW. The results for k = n − 1 and 1 < k < n − 1 follow from their Proposition 2.
5
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i

xogeneity restrictions and any additional zero or sign restrictions as restrictions on the columns of Q, robust Bayesian
nference about the identified set for ηi,j,h proceeds as in GK. We summarise the salient features of this approach here.

Collect the coefficients on xt and mt in (6) as J = [vec(G)′, vec(H1)′, . . . , vec(Hpm )
′
]
′. We denote the proxy-SVAR

reduced-form parameters as

φ = (vec(B)′, vech(Σ )′, vec(D)′, J′, vech(Υ )′)′ ∈ Φ.

Since the zero restrictions are linear equality restrictions on single columns of Q and are otherwise functions only of
the reduced-form parameters, we can represent them in the general form

F(φ,Q) =

⎡⎢⎣F1(φ)q1
...

Fn(φ)qn

⎤⎥⎦ = 0(
∑n

i=1 fi)×1,

where Fi(φ) is an fi × n matrix that stacks the coefficient vectors of the zero restrictions constraining qi. If the zero
restrictions do not constrain qi, Fi(φ) does not exist and fi = 0. We represent the sign restrictions as S(φ,Q) ≥ 0s×1, where
s is the number of sign restrictions (excluding the sign normalisation). If there are no sign restrictions, then S(φ,Q) does
not exist and s = 0.

To simplify implementation of the robust Bayesian inferential approach, we order the variables in yt to satisfy
Definition 1.

Definition 1 (Ordering of Variables).: Given an ordering of the proxies in mt , order the variables in yt so that fi satisfies
f1 ≥ f2 ≥ · · · ≥ fn ≥ 0. In case of ties, if the impulse–response of interest is to the j∗th structural shock, order the j∗th
variable first. That is, set j∗ = 1 when no other column of Q has a larger number of restrictions than qj∗ . If j∗ ≥ 2, order
the variables so that fj∗−1 > fj∗ .

This ordering convention is used when iteratively constructing columns of Q satisfying the zero restrictions. It is an
extension of the ordering convention used by Rubio-Ramírez et al. (2010) in the point-identified setting to allow for set
identification due to sign restrictions and underidentifying zero restrictions, and mirrors Definition 3 in GK. The ordering
convention uniquely determines j∗, but the ordering of the remaining variables will not be unique when fi = fk for some
i, k ̸= j∗. However, re-ordering the remaining variables will have no effect on the results of our algorithms, as long as the
ordering convention is satisfied. The following example illustrates how to order the variables to satisfy Definition 1 and,
given the ordering, how the matrices of restrictions are constructed.

Example 2.1. Consider a proxy SVAR for (ct , it , yt , πt ), where ct is consumption growth, it is investment growth, yt is
output growth and πt is inflation. Assume that there exist two proxy variables, mt = (mc,t ,mi,t )′, which are correlated
with the structural shocks εc,t and εi,t , and are uncorrelated with εy,t and επ,t . In the absence of additional zero restrictions,
all impulse responses are set-identified. If the impulse–response of interest is to εi,t , an ordering of the variables that
satisfies Definition 1 is (yt , πt , it , ct ), with (f1, f2, f3, f4) = (2, 2, 0, 0) and j∗ = 3. If, instead, the impulse–response of
interest is to επ,t , an ordering of the variables that satisfies Definition 1 is (πt , yt , it , ct ), with (f1, f2, f3, f4) = (2, 2, 0, 0)
and j∗ = 1. In both cases, F1(φ) = F2(φ) = DΣ tr is a 2 × 4 matrix. In the case where j∗ = 3, consider the additional
sign restrictions E(mc,tεc,t ) ≥ 0, E(mi,tεi,t ) ≥ 0, E(mc,tεc,t ) ≥ E(mc,tεi,t ) and E(mi,tεi,t ) ≥ E(mi,tεc,t ). The matrix of sign
restrictions can be represented as

S(φ,Q) =

⎡⎢⎣01×4 01×4 01×4 d′

1
01×4 01×4 d′

2 01×4
01×4 01×4 −d′

1 d′

1
01×4 01×4 d′

2 −d′

2

⎤⎥⎦ vec(Q) ≥ 04×1.

The identified set for the impulse–response ηi,j,h given a generic set of zero and sign restrictions is

ISηi,j,h (φ|F , S) = {ηi,j,h(φ,Q) : Q ∈ Q(φ|F , S)},

where Q(φ|F , S) is the set of orthonormal matrices that satisfy the zero and sign restrictions and the sign normalisation:

Q(φ|F , S) = {Q ∈ O(n) : F(φ,Q) = 0(
∑n

i fi)×1, S(φ,Q) ≥ 0s×1, diag(Q′Σ−1
tr ) ≥ 0n×1}.

Let πφ be a prior over the reduced-form parameter φ. A joint prior for θ = (φ′, vec(Q)′)′ ∈ Φ × vec(O(n)) can be
written as πθ = πQ|φπφ , where πQ|φ is supported only on Q(φ|F , S). Under point identification, the identifying restrictions
pin down a unique value of Q given φ. Consequently, specifying a prior for φ is sufficient to induce a single prior – and
thus a single posterior – for θ. In the set-identified case, the identifying restrictions do not uniquely determine Q given φ,
so specifying a prior for the reduced-form parameters does not induce a single prior for θ and thus does not yield a single
posterior. Following Uhlig (2005), the vast majority of the empirical literature using Bayesian methods in set-identified

SVARs imposes a single prior for Q|φ, including ARW in their set-identified proxy SVARs. However, while the prior for
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is updated by the data, the conditional prior for Q|φ is not updated, even asymptotically, because the likelihood does
ot depend on Q (Poirier, 1998; Moon and Schorfheide, 2012). This is problematic, because posterior inference may be
riven by an arbitrary prior for Q, which has no direct economic interpretation, and even a uniform prior over O(n) may
e informative about the objects of interest, such as impulse responses (Baumeister and Hamilton, 2015).
Rather than specifying a single prior, the robust Bayesian approach of GK considers the class of all priors for Q|φ that

re consistent with the identifying restrictions:

ΠQ|φ =
{
πQ|φ : πQ|φ(Q(φ|F , S)) = 1

}
.

ombining the class of priors with the posterior for φ generates a class of posteriors for θ:

Πθ|Y,M =
{
πθ|Y,M = πQ|φπφ|Y,M : πQ|φ ∈ ΠQ|φ

}
,

here Y = (y′

1−p, . . . , y
′

T )
′ and M = (m′

1−p, . . . ,m
′

T )
′. In turn, the class of posteriors for θ induces a class of posteriors for

i,j,h. GK suggest summarising this class of posteriors by reporting the ‘set of posterior means’:[∫
Φ
l(φ)dπφ|Y,M,

∫
Φ
u(φ)dπφ|Y,M

]
,

here l(φ) = inf{ηi,j,h(φ,Q) : Q ∈ Q(φ|F , S)} and u(φ) = sup{ηi,j,h(φ,Q) : Q ∈ Q(φ|F , S)}. They also suggest reporting a
obust credible region with credibility level α (see Proposition 1 of GK). This region is interpreted as the shortest interval
stimate for ηi,j,h such that the posterior probability put on the interval is greater than or equal to α uniformly over
he posteriors in the class. One can also report posterior probability bounds, which are the lowest and highest posterior
robabilities of an event over all priors in the class.
When there are zero restrictions only, the identified set is never empty and so the data are not informative about the

lausibility of the identifying restrictions. When there are sign restrictions, the identified set may be empty at particular
alues of φ. The posterior probability that the identified set is non-empty, πφ|Y,M({φ : ISηi,j,h (φ|F , S) ̸= ∅}), can thus be
sed to quantify the plausibility of the identifying restrictions.

. Frequentist validity

In this section we provide conditions under which the robust Bayesian inferential approach provides valid frequentist
nference about impulse responses in the proxy SVAR. This may be of interest to frequentists who use Bayesian approaches
o inference purely for computational convenience. Bayesians may also be interested in the asymptotic frequentist
roperties of Bayesian procedures if this facilitates the communication of their results to frequentist audiences.
The set of posterior means can be interpreted as a consistent estimator of the true identified set if ISηi,j,h (φ|F , S) is

onvex and is a continuous correspondence of φ at the true value φ0 (see Theorem 3 in GK). If, in addition, l(φ) and u(φ)
re differentiable in φ at φ0 with nonzero derivatives, and the posterior for φ satisfies the Bernstein–von Mises property,
he robust credible region is an asymptotically valid confidence set for the true identified set (see Proposition 2 in GK). In
he context of an SVAR, Propositions B.1 and B.2 of GK provide conditions under which the impulse–response identified
et is guaranteed to be convex and continuous in φ, respectively, while Proposition B.3 provides conditions under which it
s guaranteed to be differentiable in φ.12 In the proxy SVAR, we can show that having the relevance condition satisfied at
0 is a necessary condition for continuity of the identified-set correspondence at φ0. In Section 3.1 we proceed under the
ssumption that the relevance condition is satisfied and provide conditions under which the identified-set correspondence
s convex and is differentiable in φ. We explore issues associated with ‘weak’ proxies – where the relevance condition is
close’ to being violated – in Section 3.2.

.1. Strong proxies

Assume that there are k proxies correlated with the last k structural shocks and uncorrelated with the remaining n−k
tructural shocks. Assume also that n > 3 and 1 < k < n − 1, so there are multiple proxies for multiple shocks and
he impulse responses to all shocks are set-identified. This is the setting in MR and Mertens and Montiel-Olea (2018)
before the imposition of additional point-identifying zero restrictions), and so is of empirical relevance. The propositions
elow clarify conditions for ISηi,j,h (φ|F , S) to be convex and differentiable in φ, in which case the robust Bayesian approach
rovides asymptotically valid frequentist inference about the impulse–response identified set. We relegate proofs to
ppendix A.

roposition 3.1. Let the object of interest be ηi,j∗,h = ci,h(φ)qj∗ , the impulse–response of the ith variable at the hth horizon
o the j∗th structural shock, where the variables are ordered according to Definition 1.

(I) Suppose there are only zero restrictions arising from the exogeneity assumption and that the relevance condition holds,
o rank(DΣ tr ) = k. Then, for every i and h and almost every φ ∈ Φ, the identified set of ηi,j∗,h, ISηi,j∗,h (φ|F , S), is convex.

12 References to Propositions B1–B3 of GK refer to the supplemental material accompanying that paper; see Giacomini and Kitagawa (in press[b]).
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(II) Consider the case with both zero and sign restrictions. Suppose the only zero restrictions are those arising from the
exogeneity restrictions and that the relevance condition holds, so rank(DΣ tr ) = k. Also assume that any sign restrictions
onstrain the j∗th column of Q only and let Sj∗ (φ)qj∗ ≥ 0s×1 represent the sign restrictions.
(i) If interest is in the impulse responses to one of the first n − k structural shocks, then j∗ = 1 by Definition 1, and

ISηi,j∗,h (φ|F , S) is convex for every i and h if there exists a unit-length vector q ∈ Rn satisfying

DΣ trq = 0k×1 and S1(φ)q > 0s×1.

(ii) Let N(DΣ tr ) be an orthonormal basis for the nullspace of DΣ tr (so N(DΣ tr ) is an n × (n − k) matrix). If interest is in
the impulse responses to one of the last k structural shocks, then j∗ = n − k + 1 by Definition 1, and ISηi,j∗,h (φ|F , S) is convex
for every i and h if there exists a unit-length vector q ∈ Rn satisfying

N(DΣ tr )′q = 0(n−k)×1 and Sn−k+1(φ)q > 0s×1.

Proposition 3.1 states that, when there are exogeneity restrictions only, the identified set for the impulse–response is
convex for almost every φ ∈ Φ. When there are also sign restrictions constraining qj∗ only, the identified set is convex
conditional on it being nonempty. Note that convexity of the identified set in the empirically relevant case, when interest
is in the responses to one of the last k shocks, does not follow from Proposition B.1 of GK. The key difference from the
general setting of GK is that, in our case, Fi(φ) = DΣ tr has full row rank and is common for i = 1, . . . , j∗ − 1. These
special features of the matrix of zero restrictions makes it possible to characterise the set of feasible values for qj∗ .

For the same cases in which we can guarantee convexity of the impulse–response identified set, we provide sufficient
conditions for the differentiability of u(φ) and l(φ). To do this, we follow GK by building on results from Gafarov et al.
(2018), who show the directional differentiability of the upper and lower bound of the impulse–response identified set
when there are zero and sign restrictions on qj∗ only.

Proposition 3.2. Let the object of interest be ηi,j∗,h = ci,h(φ)qj∗ , where the variables are ordered according to Definition 1.
Suppose the only zero restrictions are those arising from the exogeneity assumption and that the relevance condition holds, so
rank(DΣ tr ) = k. Also assume that any sign restrictions constrain the j∗th column of Q only and let Sj∗ (φ)qj∗ ≥ 0s×1 represent
the sign restrictions.

(i) Suppose the impulse responses of interest are those to one of the first n − k structural shocks, so j∗ = 1 by Definition 1,
and that the column vectors of

[
(DΣ tr )′, S1(φ)′,Σ−1

tr e1,n
]
are linearly independent at φ = φ0. If, at φ = φ0, the set of solutions

of the optimisation problem

max
q∈Sn−1

(
min

q∈Sn−1

)
c′

i,h(φ)q s.t. DΣ trq = 0k×1 and
[

S1(φ)
(Σ−1

tr e1,n)′

]
q ≥ 0(s+1)×1

is singleton, the optimised value u(φ) (l(φ)) is nonzero, and the number of binding sign restrictions at the optimum is less than
or equal to n − k − 1, then u(φ) (l(φ)) is differentiable at φ = φ0.

(ii) Suppose the impulse responses of interest are those to one of the last k structural shocks, so j∗ = n−k+1 by Definition 1,
and that the column vectors of

[
N(DΣ tr ), S1(φ)′,Σ−1

tr en−k+1,n
]
are linearly independent at φ = φ0. If, at φ = φ0, the set of

solutions of the optimisation problem

max
q∈Sn−1

(
min

q∈Sn−1

)
c′

i,h(φ)q s.t. N(DΣ tr )′q = 0(n−k)×1 and
[

Sn−k+1(φ)
(Σ−1

tr en−k+1,n)′

]
q ≥ 0(s+1)×1

is singleton, the optimised value u(φ) (l(φ)) is nonzero, and the number of binding sign restrictions at the optimum is less than
or equal to k − 1, then u(φ) (l(φ)) is differentiable at φ = φ0.

When n ≥ 3, it is also straightforward to show that the identified set is convex when k = 1 and interest is in the
impulse responses to one of the first n − 1 structural shocks (the impulse responses to the last structural shock are
point-identified), or when k = n− 1 and interest is in the impulse responses to one of the last n− 1 shocks (the impulse
responses to the first structural shock are point-identified). Differentiability in these cases is also obtained under similar
conditions to those in Proposition 3.2.

When there are sign restrictions that constrain multiple columns of Q, we cannot guarantee convexity of the identified
set (see Example B.5 in GK), nor differentiability. Nevertheless, the set of posterior means and robust credible region can
be interpreted as providing inference about the convex hull of the identified set.

Since FEVDi,j∗,h is a continuous function of qj∗ , ISFEVDi,j∗,h (φ|F , S) is continuous at φ0 and it is convex whenever
ISηi,j∗,h (φ|F , S) is convex. If ISFEVDi,j∗,h (φ|F , S) is also differentiable in φ, we can guarantee frequentist validity of the robust
Bayesian inferential procedure when applied to the FEVD in the same cases as for the impulse–response. However, we
are unaware of results on the differentiability of ISFEVDi,j∗,h (φ|F , S). We leave exploration of this to further work.

3.2. Weak proxies

In this section we investigate how weak proxies affect robust Bayesian posterior inference about set-identified impulse

responses in the proxy SVAR. Our focus is on the asymptotic frequentist properties of our procedure. We consider the
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ase where n = 3, k = 1 and the objects of interest are the impulse responses to ε1t . We choose this case because it is
traightforward to analytically characterise the identified set and hence to discuss the effects of weak proxies.
At a given value of φ ∈ Φ (and ignoring the sign normalisation), the upper bound of ISηi,1,h (φ|F , S) is the value function

ssociated with the following optimisation problem13:

u(φ) = max
q∈Sn−1

c′q subject to d′q = 0,

here c ≡ ci,h(φ) and d′
≡ DΣ tr . Applying the change of variables x = Σ trq yields the problem in Equation (2.5) of

afarov et al. (2018). Using their results, the value function satisfies

u(φ)2 = c′

[
I3 − d

(
d′d
)−1 d′

]
c. (8)

Eq. (7) implies that E(mtε3t ) = d′q3 = Ψ . The exogeneity restrictions require that q1 and q2 are orthogonal to d. Since
the columns of Q are orthogonal and have unit length, q3 = ±d/∥d∥, which implies that d′d/∥d∥ = ∥d∥ = |Ψ |.

A ‘weak’ proxy correlates with one of the structural shocks only weakly, so |Ψ | is close to zero. This is equivalent to
∥d∥ being small. Note that u(φ) as the square root of (8) is continuous and smooth in c, while it is discontinuous in d at
d = 03×1. Hence, if the posterior distribution of d concentrates near a point of singularity of u(φ) due to the weak proxy,
the posterior of u(φ) can exhibit a nonstandard distribution even when the posterior of (c, d) is consistent and can be
well approximated by a normal distribution centred at the maximum likelihood estimator (MLE).

To investigate the posterior for u(φ) in the weak-proxy case, we consider the local asymptotic approximation of the
posterior for u(φ) with a drifting sequence of the true values of φ converging to a point of singularity. We here present
the heuristic exposition of the results and defer the regularity conditions and formal proofs to Appendix B.

We consider a drifting sequence of data-generating processes {φT : T = 1, 2, . . .} that induces a drifting sequence
of parameter values {(cT , dT ) : T = 1, 2 . . . , } converging to a point of singularity. Following the weak-instrument
asymptotics of Staiger and Stock (1997), we consider the drifting sequence of (c, d) with T−1/2-convergence rate,

cT = c0 +
γ

√
T

, dT =
δ

√
T

, (9)

where c0 ̸= 03×1, δ ̸= 03×1 and (γ, δ) ∈ R3
× R3 are the localisation parameters. The magnitude of δ characterises the

relevance of the proxy; that is, a smaller value of ∥δ∥ implies a weaker proxy.
Let (ĉT , d̂T ) be the MLE for (c, d) (which is a constant once we have conditioned on the sample). We assume that the

sampling distribution of the MLE is
√
T -asymptotically normal:(

ẐcT

ẐdT

)
≡

√
T
(
ĉT − cT
d̂T − dT

)
d

→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ω c Ω cd
Ω ′

cd Ωd

))
. (10)

e also assume that the posterior for (c, d) converges to a normal distribution with data-independent variance. That is,
onditional on the sampling sequence,

√
T
(
c − ĉT
d − d̂T

)
d

→

(
Zc
Zd

)
∼ N

(
06×1,

(
Ω c Ω cd
Ω ′

cd Ωd

))
, (11)

s T → ∞ for almost every sampling sequence, where Ω ≡

(
Ω c Ω cd
Ω ′

cd Ωd

)
is the posterior asymptotic variance, which

oes not depend on the sampling sequence. The asymptotic equivalence of the probability laws in (10) and (11) implies
hat the reduced-form parameters (c, d) are regular in the sense that the well-known Bernstein–von Mises Theorem
olds. See, for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient conditions for posterior asymptotic
ormality with the Bernstein–von Mises property.
Under this setting, Proposition B.1 in the Appendix derives the following asymptotic approximation of the posterior

or u(φ). Conditional on the sampling sequence,

u(φ)
d

→

√c′

0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

∥δ + Ẑd + Zd∥
2

)
c0, (12)

s T → ∞ for almost every sampling sequence, where Ẑd is a constant that depends on the sample, and Zd ∼ N (03×1,Ωd).
This representation of the asymptotic posterior provides the following insights about the influence of the weak proxy

n posterior inference. First, the posterior of u(φ) is not consistent and remains a non-degenerate distribution in large
amples. Second, the asymptotic posterior for u(φ) depends not only on the localisation parameter δ, but also on the
tatistic Ẑd realised in the data. Hence, unlike in the well-identified case, the influence of the data on the shape of the

13 In the absence of sign normalisation restrictions, the lower bound of the identified set l(φ) is given by −u(φ). This section hence focuses only
n the posterior for u(φ).
9
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osterior does not disappear in large samples. Also, the asymptotic posterior mean almost always (in terms of the sampling
robability) misses the upper bound of the true identified set defined by the limit along the drifting data-generating
rocesses {φT : T = 1, 2, . . .} yielding (9):

lim
T→∞

u(φT ) =

√
c′

0

(
I3 −

δδ′

∥δ∥2

)
c0.

his implies that, under the current weak-proxy asymptotics, the set of posterior means for the impulse–response is not
consistent estimator for the identified set.
Under the same drifting sequence inducing (9), Proposition B.2 in the Appendix derives the asymptotic sampling

istribution of the MLE for the upper bound of the identified set:

u(φ̂)
d

→

√c′

0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

∥δ + Ẑd∥
2

)
c0, (13)

here Ẑd ∼ N (03×1,Ωd). Like the posterior for u(φ), the sampling distribution of u(φ̂) is not consistent and remains
on-degenerate. A comparison of (12) and (13) shows that the posterior and the sampling distribution of the MLE for
he bound of the identified set do not asymptotically coincide for almost every sampling sequence. The Bernstein–von
ises property therefore fails for the estimation of the upper and lower bounds of the identified set. This implies that

he asymptotic frequentist coverage of the robust credible region of GK can also fail, because a condition analogous to
ssumption 4 in GK 18 does not hold in the current setting of weak proxy asymptotics.
When the proxy is strong in the sense that |Ψ | = ∥d∥ is far from zero, the pointwise asymptotic approximation

f the posterior of u(φ) approximates well the finite-sample posterior. Noting that u(φ) is smooth at d ̸= 03×1 and
ssuming that the posterior of (c, d) centred at the MLE is

√
T -asymptotically normal, the delta method implies that

T (u(φ)−u(φ̂)) is asymptotically normal with a data-independent variance. This asymptotic posterior coincides with the
sampling distribution of the MLE, so correct frequentist coverage of the robust credible region can be attained in addition
to posterior consistency. This stark contrast in the asymptotic behaviour of the posteriors suggests that, in the current
simple setting, whether the posterior of u(φ) is non-normal could be useful for diagnosing whether the proxy is weak.

e leave a formal analysis of this for future research.

. Numerical implementation

In this section, we provide numerical algorithms to conduct robust Bayesian inference about set-identified objects
f interest in proxy SVARs. The algorithms numerically approximate the set of posterior means and associated robust
redible interval. When there are sign restrictions, the algorithms also give estimates of the plausibility of the identifying
estrictions. Throughout, we assume that the order of the variables satisfies Definition 1. Since the identifying restrictions
re linear restrictions on columns of Q, the algorithms are similar to the algorithms in GK. We repeat them here for
ompleteness and discuss further details, and issues specific to the proxy SVAR case, below. Algorithm 1 assumes that
he object of interest is the impulse–response; the subsequent remarks discuss how to conduct robust Bayesian inference
bout other objects of interest. Matlab code implementing the algorithms is available on the authors’ personal websites.

lgorithm 1. Let F(φ,Q) = 0(
∑n

i=1 fi)×1 and S(φ,Q) ≥ 0s×1 be the set of identifying restrictions and let ηi,j∗,h = c′

i,hqj∗ be
he impulse–response of interest.

• Step 1: Specify a prior for φ, πφ , and obtain the posterior πφ|Y,M.14

• Step 2: Draw φ from πφ|Y,M and check whether Q(φ|F , S) is empty using the subroutine below.

– Step 2.1: Draw z1 ∼ N(0n×1, In) and let q̃1 =
[
In − F′

1(F1F
′

1)
−1F1

]
z1. For i = 2, . . . , n, run the follow-

ing procedure sequentially: draw zi ∼ N(0n×1, In) and compute q̃i =

[
In − F̃′

i(F̃iF̃
′

i)
−1F̃i

]
zi, where F̃′

i =

[F′

i, q̃1, . . . , q̃i−1].
– Step 2.2: Given q̃i, i = 1, . . . , n, define15

Q0 =

[
sign((Σ−1

tr e1,n)′q̃1)
q̃1

∥q̃1∥
, . . . , sign((Σ−1

tr en,n)′q̃n)
q̃n

∥q̃n∥

]
.

– Step 2.3: Check whether Q0 satisfies S(φ,Q0) ≥ 0s×1. If so, retain Q0 and proceed to Step 3. Otherwise, repeat
Steps 2.1 and 2.2 (up to a maximum of L times) until Q0 is obtained satisfying S(φ,Q0) ≥ 0s×1. If no draws of
Q0 satisfy S(φ,Q0) ≥ 0s×1, approximate Q(φ|F , S) as being empty and return to Step 2.

14 πφ does not have to be proper or to satisfy the condition πφ({φ : Q(φ|F , S) ̸= ∅}) = 1 for all φ ∈ Φ; that is, πφ may assign positive probability
to regions of Φ that yield an empty set of orthonormal matrices satisfying the identifying restrictions.
15 If (Σ−1e )′q̃ = 0 for some i, set sign((Σ−1e )′q̃ ) equal to 1 or −1 with equal probability.
tr i,n i tr 1,n i
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• Step 3: Compute the lower bound of ISηi,j∗,h (φ|F , S) by solving the following constrained optimisation problem with
initial value Q0:

l(φ) = min
Q

c′

i,hqj∗

subject to

F(φ,Q) = 0(
∑n

i fi)×1, S(φ,Q) ≥ 0s×1, diag(Q′Σ−1
tr ) ≥ 0n×1, Q′Q = In.

Similarly, obtain u(φ) = maxQ c′

i,hqj∗ under the same set of constraints.
• Step 4: Repeat Steps 2–3 M times to obtain [l(φm), u(φm)] for m = 1, . . . ,M . Approximate the set of posterior means

by the sample averages of l(φm) and u(φm).
• Step 5: To obtain an approximation of the smallest robust credible region with credibility α ∈ (0, 1), define

d(η, φ) = max{|η − l(φ)|, |η − u(φ)|} and let ẑα(η) be the sample α-th quantile of {d(η, φm),m = 1, . . . ,M}.
An approximated smallest robust credible interval for ηi,j∗,h is an interval centred at argminη ẑα(η) with radius
minη ẑα(η).

• Step 6: Approximate πφ|Y,M({φ : Q(φ|F , S) ̸= ∅}) by the proportion of draws of φ passing Step 2.3.

4.1. Remarks

4.1.1. Further details about step 2
Given a draw of φ from its posterior, Step 2 attempts to draw Q satisfying the zero and sign restrictions. The vectors

q̃i, i = 1, . . . , n, are residual vectors from the linear projection of multivariate standard normally distributed random
variables on vectors representing the zero restrictions and previously constructed columns of Q. These residual vectors
therefore satisfy the zero restrictions represented in F(φ,Q) and are orthogonal.16 Step 2.2 rescales the residual vectors
to have unit length and imposes the sign normalisation that the diagonal elements of A0 are nonnegative.

Step 2 can be interpreted as implementing a particular implicit prior over Q(φ|F , S). This implicit prior is irrelevant for
the class of posteriors generated by the robust Bayesian procedure, since the draw of Q is used only as an initial value in
the numerical optimisation step. However, one could use these draws to construct the posterior for ηi,j,h induced by this
prior; in the empirical application below, we do this to illustrate how posterior inference may be sensitive to the choice
of prior for Q|φ. The algorithm used to draw Q possesses similarities to the algorithms described in Arias et al. (2018),
who conduct single-prior Bayesian inference in set-identified SVARs. However, differences in the algorithms mean that
the implicit priors are different. Algorithm 3 in Arias et al. (2018) draws a value of Q satisfying the zero restrictions only
once at each draw of φ and discards the joint draw of φ and Q if the sign restrictions are not satisfied. In contrast, we
draw Q satisfying the zero restrictions until we obtain a value satisfying the sign restrictions. Relative to the prior implicit
in the second approach, the prior implicit in the first approach places more weight on values of φ with a larger identified
set for Q (see Uhlig, 2017 for a discussion of this point).

4.1.2. Choice of prior
The method used to draw φ|Y,M depends on the posterior, and thus on the prior. In the empirical application below

we use independent (improper) Jeffreys’ priors over the blocks of reduced-form parameters in the VAR for yt and the first-
stage regression; that is, πφ = πB,ΣπD,J,Υ , where πB,Σ ∝ |Σ |

−
n+1
2 and πD,J,Υ ∝ |Υ |

−
k+1
2 .17 This makes it simple to draw

from the posterior of φ|Y,M, since it is the product of independent normal-inverse-Wishart posteriors.18 We emphasise
that our algorithm does not rely on using independent priors over the reduced-form parameters; all that matters is that
one can sample from the posterior of φ. For example, if the prior is over the model’s structural – rather than reduced-form
– parameters, one could draw from the posterior of the structural parameters and transform these draws into draws of
the reduced-form parameters.

4.1.3. Convergence issues and alternative algorithms
The optimisation problem in Step 3 is nonconvex. Consequently, the convergence of gradient-based optimisation

methods in this problem is not guaranteed. Accordingly, we suggest drawing multiple values of Q0 in Steps 2.1–2.3 to
se as initial values in the optimisation step, and computing optima over the set of solutions obtained from the different
nitial values. GK also provide an algorithm that can be used to check for convergence of, or as an alternative to, the
umerical optimisation step.

16 If the relevance condition fails, Fi(φ) is of reduced row rank for i = 1, . . . , n − k and the coefficients in the linear projection are not identified.
his is a measure zero event so long as πφ does not place positive probability mass on the event rank(D) < k.
17 πB,Σ is nonzero only for values of B such that the VAR is invertible into a VMA(∞).
18 This follows from the fact that the joint likelihood of (M,Y) is multiplicatively separable across the two blocks of parameters: πY,M|φ =

M|Y,D,J,ΥπY|B,Σ . For an algorithm that draws from the normal-inverse-Wishart posterior distribution, see Del Negro and Schorfheide (2011). Imposing
ndependent normal-inverse-Wishart priors would also yield a posterior that is the product of independent normal-inverse-Wishart posteriors.
11
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lgorithm 2. In Algorithm 1, replace Step 3 with the following:

• Step 3’: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, . . . , K̃ } be the K̃ draws of Q that satisfy the identifying
restrictions. Let qj∗,l be the j∗th column of Ql. Approximate [l(φ), u(φ)] by [minl c′

i,hqj∗,l,maxl c′

i,hqj∗,l].

Algorithm 2 yields an approximated identified set that is smaller than the true identified set at every draw of
. However, the approximated identified set will converge to the true identified set as K̃ goes to infinity. In our
mplementation of this algorithm, we fix K̃ and let K vary. We suggest determining an appropriate value of K̃ by fixing the
alue of φ (e.g., at the MLE) and comparing the bounds obtained given different values of K̃ . In some cases, Algorithm 2may
e computationally less demanding than Algorithm 1. For example, when the dimension of the VAR is large or if interest
s in the impulse responses of many variables at many horizons, the computational cost of generating a sufficiently large
umber of draws of Q to accurately approximate the bounds of the identified sets may be smaller than the cost of carrying
ut the optimisation step for each variable of interest at each horizon (particularly when using multiple initial values).
onversely, Algorithm 2 may be computationally more demanding when there are sign restrictions that substantially
runcate the support of Q, because many draws of Q will be rejected. In practice, Step 3 and Step 3’ are parallelisable, so
arge reductions in computing time are possible in both algorithms by distributing computation across multiple processors.

Under constraints on qj∗ only, Gafarov et al. (2018) develop an algorithm to compute the bounds of the identified
et using an analytical expression for the bounds given a set of active zero and/or sign restrictions. This approach will
ypically be computationally more efficient than approximating the bounds via gradient-based numerical optimisation or
imulation. However, it is not generally applicable in proxy SVARs that are likely to be of interest empirically, because
he types of sign restrictions on Ψ that naturally arise in this setting will usually constrain multiple columns of Q.19

.1.4. Point identification
If fj∗ = j∗ − 1, the equality restrictions on qj∗ are sufficient to point identify the object of interest. This means that

he prior for φ induces a single posterior for the object of interest. In this case, Steps 1 and 2.1–2.2 of Algorithm 1 can
till be used to draw from this posterior. Because qj∗ is exactly identified, any draw of Q satisfying the zero restrictions
ill contain the same qj∗ and thus will yield the same object of interest. We make use of this in the empirical application
elow when estimating a proxy SVAR under point-identifying restrictions.

.1.5. Other objects of interest
When interest is in the FEVD rather than the impulse–response, Algorithms 1 and 2 can be modified by replacing

i,h(φ)′qj∗ with FEVDi,j∗,h. If one is interested in both impulse responses and FEVDs, Algorithm 2 may deliver large gains
n computation time over Algorithm 1, because the same draws of Q can be used to compute bounds for all objects of
nterest rather than having to carry out the numerical optimisation step for each object separately. Note also that when
nterest is in the cumulative impulse–response, ci,h(φ)′qj∗ is replaced with

(∑h
k=0 ci,k(φ)

′

)
qj∗ .

.1.6. Impulse responses to a unit shock
The algorithms above impose the normalisation E(εtε

′
t ) = In, which is typical in set-identified SVARs (e.g., Uhlig, 2005).

his means that the impulse responses are to a standard-deviation shock. Algorithm 3 shows how to obtain the set of
osterior means and the robust credible interval for impulse responses to a unit shock, which may be of more interest in
articular applications (see Stock and Watson, 2016, 2018 for a discussion of this point).

lgorithm 3. In Algorithm 1, replace Step 3 with the following:

• Step 3’’: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, . . . , K̃ } be the K̃ draws of Q that satisfy the identi-
fying restrictions. Let A−1

0,l = Σ trQl and compute aj∗,l = (A−1
0,l ej∗,n)/(e′

j∗,nA
−1
0,l ej∗,n). Approximate [l(φ), u(φ)] by

[minl e′

i,nChaj∗,l,maxl e′

i,nChaj∗,l].

The algorithm generates impulse responses to a standard-deviation shock that are consistent with the identifying
estrictions, rescales the impulse responses so that they are with respect to a unit shock (the ith element of aj∗,l is equal
o one), and computes the bounds of the identified set using the extreme values of the rescaled impulse responses. One
otential issue is that the set of posterior means and robust credible interval may be unbounded when the relevant
iagonal elements of A−1

0 = Σ trQ are not bounded away from zero for all φ ∈ Φ and Q ∈ Q(φ|F , S).

19 There are special cases where the results in Gafarov et al. (2018) could be extended to compute the bounds of the identified set. For example,
if n > 3, 1 < k < n− 1 and j∗ = n− k+ 1, one could compute an orthonormal basis for the nullspace of DΣ tr and include the vectors representing
this basis in the set of active restrictions. If k = n−1 and j∗ = 2, one could include the restriction q′

1q2 = 0 in the set of active restrictions, since in
this case q1 is point-identified. As in the example in Section 3.2, the analytical results could also be applied if there are exogeneity restrictions only
and interest is in the (set-identified) impulse–response to the first structural shock. These examples would all still require that any sign restrictions
constrain only q ∗ .
j
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. Empirical application: The dynamic effects of personal and corporate income tax changes in the United States

We illustrate our methodology using the proxy SVAR considered in MR, who estimate the macroeconomic effects of
hocks to average personal and corporate income tax rates in the United States. The variables included in their benchmark
pecification are the average personal income tax rate (APITR), the average corporate income tax rate (ACITR), the personal
ncome tax base, the corporate income tax base, government purchases of final goods, gross domestic product and
ederal government debt. The last five variables are in real per capita terms and are included in logs. MR decompose
he sequence of plausibly exogenous changes in tax liabilities constructed by Romer and Romer (2010) into those related
o personal income taxes and those related to corporate income taxes, and they exclude changes in tax liabilities with
lag between announcement and implementation of more than one quarter. These changes in tax liabilities are divided
y the relevant tax base in the previous quarter and the resulting variables are used as proxies for structural shocks to
he APITR and ACITR. The data are quarterly and run from 1950Q1 to 2006Q4. The VAR includes a constant and four lags
f the endogenous variables. See MR for further details about the construction of the variables used in the VAR and the
roxies.20
When the objects of interest are impulse responses to εAPITR,t , any ordering of the variables such that yt =

[xt , APITRt , ACITRt ], where xt contains all variables other than APITRt and ACITRt , will satisfy Definition 1. When interest
is in the impulse responses to εACITR,t , any ordering such that yt = [xt , ACITRt , APITRt ] will satisfy Definition 1. In both
cases, fi = 2 for i = 1, . . . , 5, f6 = f7 = 0 and j∗ = 6. Let mt = (mAPITR,t ,mACITR,t )′, where mAPITR,t and mACITR,t are the
rescaled changes in personal and corporate income tax liabilities, respectively. MR impose the identifying restrictions that
E(mtε

′

(1:5),t ) = 02×5 and E(mtε
′

6:7) = Ψ , where Ψ is an (unknown) full-rank 2 × 2 matrix. These identifying restrictions
are insufficient to point identify any structural shock. As discussed in MR, if one were willing to assume that mAPITR,t
is uncorrelated with εACITR,t , or vice versa for mACITR,t and εAPITR,t , the additional zero restriction would be sufficient to
point identify both structural shocks of interest.21 However, positive correlation between the proxies suggests that these
assumptions may be inappropriate.

To achieve point identification, MR consider additional zero restrictions on the direct contemporaneous response of one
tax rate to the other (i.e., causal orderings). For example, when interest is in the impulse responses to εAPITR,t , they assume
that the ACITR does not respond directly to a structural shock in the APITR on impact. In our setting, this restriction is
e′

7,7A0e6,7 = (Σ−1
tr e7,7)′q6 = 0. This restriction also point-identifies the ACITR shock. To assess robustness of their results,

they consider the alternative causal ordering that the APITR does not respond directly to a structural shock in the ACITR
on impact. Either of these zero restrictions could be violated if, for instance, there are constraints that impinge on the
ability of the government to change personal and corporate income tax rates independently of one another. Accordingly,
we extend their robustness analysis by providing an estimator of the set of impulse responses compatible with relaxing
the additional zero restriction and replacing it with a set of – arguably weaker – sign restrictions.

We assume that each proxy is positively correlated with its associated structural shock (i.e., E(mAPITR,tεAPITR,t ) ≥ 0
and E(mACITR,tεACITR,t ) ≥ 0) and that each proxy is more highly correlated with its associated structural shock than with
the structural shock to the other average tax rate (i.e., E(mAPITR,tεAPITR,t ) ≥ E(mAPITR,tεACITR,t ) and E(mACITR,tεACITR,t ) ≥

E(mACITR,tεAPITR,t )). We also assume that the response of each average tax rate to its own structural shock is nonnegative
on impact, which is a sign restriction on impulse responses (as in Uhlig, 2005). Importantly, our approach allows us to
relax the additional point-identifying zero restriction while avoiding the need to impose an unrevisable prior over the
model’s set-identified parameters.

First, we obtain impulse responses under point-identifying restrictions. When interest is in responses to the APITR,
the additional point-identifying restriction is that the ACITR does not respond directly on impact to a shock in the APITR,
and vice versa when interest is in responses to the ACITR. We compare estimates under these restrictions against those
obtained under the set-identifying restrictions and using the single prior for Q|φ implied by Steps 2.1–2.3 of Algorithm 1
(see the discussion in Section 4). The purpose of this exercise is to explore the effect of the additional zero restriction
on posterior inference. We then compare the impulse responses under the set-identifying restrictions and the single
prior against those obtained using our robust Bayesian approach. This isolates the effect of the single prior on posterior
inference. To quantify the sensitivity of posterior inference in this model to the choice of prior for Q, we report the ‘prior
informativeness’ statistic proposed in GK, which measures the extent to which the Bayesian credible region is tightened
by choosing a particular prior:

Prior informativeness = (14)

1 −
Width of Bayesian credible region for ηi,j,h with credibility α

Width of robust Bayesian credible region for ηi,j,h with credibility α
.

20 We obtained the data from Karel Mertens’ website: https://karelmertens.com/research/.
21 qi , i = 1, . . . , 5, is restricted to the 5-dimensional subspace of R7 in the nullspace of DΣ tr . q6 and q7 therefore lie in the 2-dimensional subspace
spanned by the rows of DΣ tr . If interest is in impulse responses to εAPITR,t and E(mACITR,tεAPITR,t ) = d′

2q6 = 0, q6 is additionally constrained to be
orthogonal to d2 and so lies in a 1-dimensional subspace. q7 is orthogonal to q6 , and so lies in the 1-dimensional subspace spanned by d2 . Assuming
that E(mAPITR,tεACITR,t ) = 0 yields point identification through similar reasoning (given a re-ordering of the variables to satisfy Definition 1). Assuming

that E(mAPITR,tεACITR,t ) = 0 and E(mACITR,tεAPITR,t ) = 0 would yield one overidentifying restriction, but our algorithms do not allow for this.

13
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As discussed in Section 4, we assume independent Jeffreys’ priors over the reduced-form parameters such that the VAR
for yt is invertible into a VMA(∞). The posterior is the product of independent normal-inverse-Wishart distributions, from
which it is straightforward to obtain independent draws. We obtain 10,000 draws from the posterior of φ with non-empty
dentified set. In the first-stage regression, we include a constant and exclude lags of the proxies. In this application,
he optimisation step of Algorithm 1 is slow due to the dimension of the VAR and the number of horizons considered.
onsequently, we use Algorithm 2 with K̃ = 10,000 to approximate the bounds of the identified set at each draw of φ via
imulation.22 If we cannot obtain a single draw of Q satisfying the sign restrictions after 100,000 draws satisfying the zero
estrictions, we approximate the identified set as being empty at that draw of φ. Under the additional zero restriction in
R, we obtain the point-identified object of interest at each draw of φ by drawing a single value of Q using Steps 2.1–2.2
f Algorithm 1.
Fig. 1 plots impulse responses to a positive standard-deviation shock in the APITR under the point-identifying

estrictions, under the set-identifying restrictions with a single prior for Q|φ, and under the set-identifying restrictions
ith the robust Bayesian approach.23 The posterior distribution of the response of the APITR is similar under the point-
nd set-identifying restrictions when the single prior is used. Focusing on the output response, the 90 per cent highest
osterior density (HPD) credible intervals include zero at all horizons under both sets of restrictions. Considering the class
f all priors consistent with the set-identifying restrictions widens the credible intervals further; the prior informativeness
tatistic indicates that the choice of the single prior shrinks the width of the 90 credible interval for the output response
y about 25 per cent on average over the horizons considered.
Fig. 2 repeats Fig. 1 for a shock to the ACITR. The response of the ACITR to its own shock is qualitatively similar under

he two sets of identifying restrictions when a single prior is used. Under the point-identifying restrictions, the 90 per cent
PD intervals for the output response include zero at all horizons, which suggests that shocks to the AICTR have no effect
n output. In contrast, under the set-identifying restrictions, the HPD intervals exclude zero at short horizons. However,
nferences about the response of output are sensitive to the choice of single prior; the 90 per cent robust credible intervals
or the output response include zero at all horizons and the prior informativeness statistic is about 20 per cent on average
ver the horizons considered.
Fig. 3 plots the FEVD of output with respect to the two income tax shocks. Focusing on the posterior mean of the

EVD, the APITR shock accounts for about 20 per cent of the forecast error variance at the one-year horizon under the
oint-identifying restrictions. This figure falls to 10 per cent under the set-identifying restrictions and the single prior,
ut the result is sensitive to the choice of prior for Q|φ; the set of posterior means includes values from about 5 per
ent to about 25 per cent. Under the point-identifying restrictions, the ACITR shock accounts for around 20 per cent of
he forecast error variance of output at the one-year horizon, which is similar to the contribution of the APITR under the
ame identifying restrictions. This contribution rises to 26 per cent under the set-identifying restrictions and the single
rior. The set of posterior means ranges from 15 to 35 per cent, which suggests that ACITR shocks explain a nontrivial
hare of the unexpected variation in output at short horizons regardless of the choice of prior.
Since our set-identifying restrictions include both zero and sign restrictions, the identified set may be empty at

articular draws of φ. The posterior probability that the identified set is non-empty, πφ|Y,M({φ : ISηi,j,h (φ|F , S) ̸= ∅}),
s over 90 per cent, which suggests that the identifying restrictions are consistent with the data.

. Conclusion

This paper develops algorithms for robust Bayesian inference in proxy SVARs where the impulse responses or FEVDs of
nterest are set-identified. This approach allows researchers to relax potentially controversial point-identifying restrictions
ithout having to specify a single, unrevisable prior over the model’s set-identified parameters. This is likely to be of
articular value in proxy SVARs where more than one proxy is used to identify more than one structural shock.
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point-identifying restrictions used to identify εACITR,t , the posterior probability that our sign restrictions are satisfied is around 45 per cent. Another
reason is that the robust credible interval is not a union of the highest posterior density intervals over the class of posteriors.
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Fig. 1. Impulse Responses to APITR Shock. Notes: Coloured solid lines are posterior means and coloured dashed lines are associated 90 per cent
highest posterior density credible intervals; vertical bars represent the set of posterior means and black solid lines are 90 per cent robust credible
intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Appendix A

This appendix contains the proofs of the propositions in Section 3.1.

roof of Proposition 3.1. Consider the first case (I), where the only restrictions are due to exogeneity of the proxies.
f interest is in the impulse responses to the first shock, j∗ = 1 by Definition 1; if interest were in the responses to the
th shock for some j ∈ {2, . . . , n − k}, Definition 1 would require a re-ordering of the variables such that j∗ = 1. The
xogeneity assumption requires DΣ trq1 = 0k×1. q1 therefore lies in the nullspace of DΣ tr , which, by the rank-nullity
heorem, is a linear subspace of Rn with dimension n − k. Since k < n − 1 by assumption, this subspace has dimension
f at least two. The sign normalisation (Σ−1

tr e1,n)′q1 ≥ 0 further constrains q1 to lie in a halfspace of Rn. The set of
easible q is the intersection of the k-dimensional linear subspace satisfying the exogeneity restrictions, the halfspace
1
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Fig. 2. Impulse Responses to ACITR Shock. Notes: Coloured solid lines are posterior means and coloured dashed lines are associated 90 per cent
ighest posterior density credible intervals; vertical bars represent the set of posterior means and black solid lines are 90 per cent robust credible
ntervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

enerated by the sign normalisation and the unit sphere, which is a path-connected set. Since the impulse–response is
continuous function of q1, the identified set is an interval and is thus convex, because the set of a continuous function

with a path-connected domain is always an interval.24

If, instead, interest is in responses to one of the last k shocks, j∗ = n − k + 1 by Definition 1; if interest were in the
esponses to the jth shock for some j ∈ {n − k + 2, . . . , n}, Definition 1 would require a re-ordering of the variables such
hat j∗ = n−k+1. For i = 1, . . . , n−k, Fi(φ) = DΣ tr , which is a k×n matrix with rank k under the relevance assumption.
i, i = 1, . . . , n − k, lies in the nullspace of DΣ tr , which is of dimension n − k by the rank-nullity theorem. Since the
olumns of an orthonormal matrix are orthogonal, qn−k+1 is orthogonal to this nullspace and so lies in the k-dimensional
inear subspace of Rn spanned by the rows of DΣ tr . By assumption, k > 1, so this subspace has dimension of at least

24 This result also follows directly from Proposition B.1(I)(i) of GK, since f = k < n − 1.
1
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Fig. 3. Contribution of Tax Shocks to Forecast Error Variance of Real GDP. Notes: Coloured solid lines are posterior means and coloured dashed lines
re associated 90 per cent highest posterior density credible intervals; vertical bars represent the set of posterior means and black solid lines are
0 per cent robust credible intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)

wo. The sign normalisation (Σ−1
tr en−k+1,n)′qn−k+1 ≥ 0 further constrains qn−k+1 to lie in a halfspace of Rn. The set of

feasible qn−k+1 is the intersection of the k-dimensional linear subspace, the halfspace and the unit sphere, which is a
path-connected set, and convexity of the identified set follows as above.25

Now consider case (II), where there are sign restrictions constraining qj∗ only in addition to the exogeneity restrictions.
Each of the s sign restrictions described by Sj∗ (φ)qj∗ ≥ 0s×1 defines a halfspace in which qj∗ must lie. The intersection
of these halfspaces with the halfspace defined by the sign normalisation and the linear subspace with dimension of at
least two defined by the exogeneity restrictions will still have dimension of at least two. The intersection of the resulting
linear subspace with the unit sphere will therefore be a path-connected set and the impulse–response identified set will
be convex. □

Proof of Proposition 3.2. Consider case (i), where j∗ = 1. The optimisation problem to find the upper bound of the
identified set can be written as

u(φ) = max
q∈Sn−1

c′

i,h(φ)q s.t. DΣ trq = 0k×1 and
[

S1(φ)
(Σ−1

tr e1,n)′

]
q ≥ 0(s+1)×1.

One-to-one differentiable reparameterisation of this problem using x = Σ trq yields the optimisation problem in
Equation (2.5) of Gafarov et al. (2018). Differentiability of u(φ) at φ = φ0 follows from their Theorem 2 under the
assumptions that, at φ = φ0, the column vectors of

[
(DΣ tr )′, S1(φ)′,Σ−1

tr e1,n
]
are linearly independent, the set of solutions

to the optimisation problem is singleton, the optimised value u(φ) is nonzero, and the number of binding sign restrictions
at the optimum is less than n − k − 1. Differentiability of l(φ) follows similarly, with l(φ) defined as the minimiser of
c′

i,h(φ)q with respect to q ∈ Sn−1 and subject to the same set of constraints.

Consider case (ii), where j∗ = n− k+ 1. Let N(DΣ tr ) be an orthonormal basis for the nullspace of DΣ tr (an (n− k)× n
matrix). The optimisation problem to find the upper bound of the identified set can be written as

u(φ) = max
q∈Sn−1

c′

i,h(φ)q s.t. N(DΣ tr )′q = 0(n−k)×1 and
[

Sn−k+1(φ)
(Σ−1

tr en−k+1,n)′

]
q ≥ 0(s+1)×1.

One-to-one differentiable reparameterisation of this problem using x = Σ trq yields the optimisation problem in
Equation (2.5) of Gafarov et al. (2018) with the expanded set of equality restrictions including N(DΣ tr )′Σ−1

tr x = 0(n−k)×1.
Differentiability of u(φ) at φ = φ0 follows from their Theorem 2 under the assumptions that, at φ = φ0, the column
vectors of

[
N(DΣ tr ), Sn−k+1(φ)′,Σ−1

tr en−k+1,n
]
are linearly independent, the set of solutions to the optimisation problem

is singleton, the optimised value u(φ) is nonzero, and the number of binding sign restrictions at the optimum is less than
n − (n − k) − 1 = k − 1. Differentiability of l(φ) follows similarly. □

25 This result does not follow from Proposition B.1 of GK. The conditions for Proposition B.1(I)(ii) are not satisfied because fj∗−1 = k ≮ n− (j∗ − 1).
he conditions for Proposition B.1(I)(iii) are not satisfied because there does not exist 1 ≤ i∗ ≤ j∗ − 1 such that fi < n − i for all i = i∗ + 1, . . . , j∗

and [q1, . . . , qi∗ ] is exactly identified. To see this, note that the necessary condition for exact identification of [q1, . . . , qi∗ ] is that fi = n − i for all
i = 1, . . . , i∗ . But f = k < n − 1, so this condition fails.
1
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This appendix sets up the framework for the weak-proxy approximations of the posterior distribution and the sampling
istribution of the MLE for the upper bound of the identified set, and derives formally the claims in (12) and (13).
As in Section 3.2, we consider the simple setting of n = 3 and k = 1, where the upper bound of the identified set u(φ)

s given by (8). Since u(φ) depends on the reduced-form parameters only through (c, d), we express u(φ) as u(c, d). The
ingularity points of u(c, d) that we focus on are c ̸= 03×1 and d = 03×1, where the weak-proxy scenario corresponds to
alues of d close to 03×1. We hence consider a sequence of reduced-form parameters {φT : T = 1, 2, . . . } along which the
mplied parameters (cT , dT ), T = 1, 2, . . . , converge to (c0, 03×1), c0 ̸= 03×1, as T → ∞. As in the main text, we specify
drifting sequence of {φT } that leads to(

cT
dT

)
=

(
c0 + γ/

√
T

δ/
√
T

)
, (B.1)

where (γ, δ) ∈ R3
× R3 are the localisation parameters.

Let ŜT ∈ Rs, s < ∞, T = 1, 2, . . . , be a finite-dimensional vector of sufficient statistics for φ that converges in
distribution to a random vector Ŝ ∈ Rs as T → ∞. Since we consider a Gaussian proxy SVAR, these sufficient statistics
are the first and second sample moments of the observables. By the Skorokhod representation theorem, we can embed
this sequence of sufficient statistics {ŜT } and the limiting random variables Ŝ into a common probability space on which

ŜT → Ŝ as T → ∞, almost surely, (B.2)

holds.
Let (ĉT , d̂T ) be the MLE of (c, d). Since the MLE depends only on the sufficient statistics ŜT , we can embed the MLE

into the probability space on which {ŜT } and Ŝ are commonly defined. Hence, conditioning on the sequence of sufficient
statistics {ŜT : T = 1, 2, . . . , } pins down the constant sequence of MLEs. We assume that the (unconditional) sampling
distribution of the MLEs centred at the drifting true values is asymptotically normal:(

ẐcT

ẐdT

)
≡

√
T
(
ĉT − cT
d̂T − dT

)
d

→

(
Ẑc

Ẑd

)
∼ N

(
06×1,

(
Ω c Ω cd
Ω ′

cd Ωd

))
. (B.3)

ollowing the Skorokhod representation for the sufficient statistics (B.2), we have the almost-sure convergence of the MLE
o the limiting Gaussian random variables(

ẐcT

ẐdT

)
→

(
Ẑc

Ẑd

)
as T → ∞, almost surely, (B.4)

n the common probability space. We also impose a high-level assumption of the strong consistency of the MLE for c in
he sense of

ĉT → c0 as T → ∞, almost surely, (B.5)

n the same probability space.
Since the posterior distribution depends on the data only through the sufficient statistics, it suffices to consider the

onvergence of the posterior distribution for u(c, d) conditional on the sequence of sufficient statistics {ŜT }. We assume
hat the posterior for (c, d) centred at their MLEs is asymptotically normal in the following sense. Let(

ZcT
ZdT

)
≡

√
T
(
c − ĉT
d − d̂T

)
, (B.6)

and assume(
ZcT
ZdT

)
d

→

(
Zc
Zd

)
∼ N

(
06×1,

(
Ω c Ω cd
Ω ′

cd Ωd

))
, (B.7)

for almost every conditioning sequence of {ST }. We assume that the asymptotic posterior variance given in (B.7) is
independent of the conditioning variable {ŜT : T = 1, 2, . . .} and coincides with the asymptotic variance of the MLE
given in (B.3).

The asymptotic normality of the posterior (centred at the MLE with data-independent variance) holds for a wide class
of regular parametric models, and its almost-sure coincidence with the asymptotic (sampling) distribution of the MLE
leads to the Bernstein–von Mises Theorem. See, for instance, Schervish (1995) and DasGupta (2008) for a set of sufficient
conditions for posterior asymptotic normality.

Under these assumptions, we obtain the following weak-proxy asymptotic approximation of the posterior for u(φ).

roposition B.1. Consider a drifting sequence of reduced-form parameters that satisfy (B.1) with c0 ̸= 03×1, along which

e assume that the MLE for (c, d) and its posterior satisfies (B.3), (B.4), (B.5) and (B.7). Then, for almost every conditioning
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equence of the sufficient statistics {ŜT }, the asymptotic posterior of u(c, d) is

u(c, d) d
→ u(c0, δ + Ẑd + Zd) =

√c′

0

(
I3 −

(δ + Ẑd + Zd)(δ + Ẑd + Zd)′

∥δ + Ẑd + Zd∥
2

)
c0,

here Ẑd is a constant given the sampling sequence, and Zd ∼ N (03×1,Ωd).

roof. Since u(c, d) is homogeneous of degree zero with respect to d, we have

u(c, d) = u(c, T 1/2d)

= u(ĉT + T−1/2ZcT , T 1/2d̂T + ZdT )

= u(ĉT + T−1/2ZcT , T 1/2dT + ẐdT + ZdT )

= u(ĉT + T−1/2ZcT , δ + ẐdT + ZdT ),

here the second equality uses (B.6), the third equality uses (B.3), and the fourth equality uses (B.1). Conditional on the
ampling sequence of the sufficient statistics {ŜT }, the assumptions of almost-sure convergence (B.4) and (B.5) and the
osterior distributional convergence (B.7) imply(

ĉT + T−1/2ZcT

δ + ẐdT + ZdT

)
d

→

(
c0

δ + Ẑd + Zd

)
,

s T → ∞, where (c0, δ, Ẑd) are constants and Zd is a random vector following N (03×1,Ωd). Since u(c, d) is discontinuous
t d = 03×1, and {δ + Ẑd + Zd = 03×1} is the null event in terms of the probability law of the limiting random
ariables, an application of the continuous mapping theorem (see, for example, Theorem 10.8 of Kosorok, 2008) yields
he conclusion. □

The next proposition gives the asymptotic sampling distribution of u(ĉT , d̂T ).

roposition B.2. Consider a drifting sequence of reduced-form parameters that satisfy (B.1) with c0 ̸= 03×1, along which we
ssume that the MLE of (c, d) satisfies (B.3). Then, the asymptotic distribution of u(ĉT , d̂T ) is

u(ĉT , d̂T )
d

→ u(c0, δ + Ẑd) =

√c′

0

(
I3 −

(δ + Ẑd)(δ + Ẑd)′

∥δ + Ẑd∥
2

)
c0,

here Ẑd ∼ N (03×1,Ωd).

roof. Since u(c, d) is homogeneous of degree zero with respect to d, it holds that u(ĉT , d̂T ) = u(ĉT , T 1/2d̂T ). Under the
rifting sequence (B.1) and

√
T -asymptotic normality of the MLE (B.3),(

ĉT
T 1/2d̂T

)
d

→

(
c0

δ + Ẑd.

)
.

Noting that {δ + Ẑd = 03×1} is a null event in terms of the limiting probability law, an application of the continuous
mapping theorem leads to the conclusion. □
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