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Abstract

Principal component analysis (PCA) has been widely applied in various fields such

as bioscience, chemistry, computer science and social science as a signal processing,

dimension reduction or feature extraction tool. Regardless of its popularity, when

PCA is used as a preliminary dimension reduction step in developing classification

rules with high-dimensional data it has a drawback that as an unsupervised method

PCA fails to use the class labels when constructing the components. As a result, its

maximization of the variance of the projected patterns is not necessarily in favour

of discrimination among classes.

To address this problem, in this thesis we propose five methods from three

perspectives: 1) We propose two methods, reweighted PCA and between PCA,

which combine supervised information in the feature generation step of PCA, so that

more discriminating features are constructed within the classic PCA framework. 2)

We propose two feature filtering methods, reordered PCA and stepwise-reordered

PCA. In these methods, principal components are generated with the classic PCA

framework, but re-ranked and selected according to their discriminating power with

quadratic discriminant analysis (QDA). 3) We propose a penalised QDA based su-

pervised feature extraction method to replace PCA, which can use the label infor-

mation to generate more discriminating features.

We use two near infrared (NIR) spectroscopic data sets, a wheat data set and a

paddy rice data set to evaluate our methods in both binary and multi-class classifi-

cation. We compare our methods with the classic principal component discrim-
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inant analysis (PCDA) and partial least squares discriminant analysis (PLS-DA).

Enhancements in classification accuracy are witnessed for all our modified meth-

ods in all examples compared with the classic PCDA. Four simulations have been

constructed to help understanding the mechanism and evaluating the performance

of our penalised QDA based feature extraction method in Chapter 3.



Impact Statement

Principal component analysis is an indispensable signal processing, dimension re-

duction and feature extraction tool which has been extensively applied in various

fields such as bioscience, chemistry, computer science and social science. Regard-

less of its popularity, when PCA is used as a preliminary dimension reduction step

in high dimensional classification it has a drawback that as an unsupervised method

PCA fails to use the class labels when constructing the components. As a result, its

maximization of the variance of the projected patterns is not necessarily in favour

of discrimination among classes.

In this thesis, we propose five variants of PCA to resolve the abovementioned

problem and improve the performance of PCA in binary and multi-class classifi-

cation. We apply our methods in two NIR spectroscopic data sets to classify wheat

and paddy rice samples. The results show that our methods can considerably im-

prove the classification accuracy in both binary and multi-class classification.

The impact of our work is owing to the extensive applications of PCA, and the

effectiveness of NIR spectroscopic technique.

PCA is a fundamental tool in analysing high-dimensional data such as gene

expression data, facial image data and medical image data. Hence our methods

have potential in improving the classification in other impactful fields, such as face

recognition, tumor diagnosis, etc.

Besides, over the past decades NIR has increasingly been adopted as an effi-

cient analytical tool in various fields, such as petrochemical, pharmaceutical, envi-
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ronmental, agricultural, food and biomedical sectors. For example in food science,

NIR spectroscopy is widely used in the determination of the origin of food, quality

of food, and in adulteration detection. Our methods have been shown to perform

well in NIR spectral classification. Accordingly, our work will have huge potential

in attracting funding and collaboration from industries such as food, agriculture and

pharmacy for real-world applications, and also boost innovation in the development

of NIR spectral analysis technique in these fields.
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Chapter 1

Introductory Material

1.1 Near Infrared Spectral Data and its Classifi-

cation

1.1.1 Introduction to Near Infrared Spectroscopy

Over the past three decades, Near-infrared (NIR) spectroscopy has increasingly

been adopted as an efficient analytical tool in various fields, such as the petro-

chemical (Murugesan et al., 2009; Meher et al., 2006), pharmaceutical (Gendrin

et al., 2008; Roggo et al., 2007), environmental (Nyström and Dahlquist, 2004;

Shepherd and Walsh, 2007), clinical (Erickson and Godavarty, 2009; Caplan et al.,

2006; Sakudo et al., 2006), agricultural (Shepherd and Walsh, 2007; Moreda et al.,

2009; Williams et al., 1987), food (Karoui and De Baerdemaeker, 2007; Prieto et al.,

2009a) and biomedical sectors (Landau et al., 2006). The most salient advantage of

NIR spectroscopy over other analytical techniques is its ability to record spectra for

solid and liquid samples without complex pretreatment of the samples. This char-

acteristic makes it especially attractive for straightforward, speedy characterization

of natural and synthetic products (Xiaobo et al., 2010).

The near infrared region of the electromagnetic spectrum is from 780 nm to

2500 nm. The transmittance or reflectance in this region is measured and recorded
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as the NIR spectral data. This region comprises broad bands associated with the

combinations of vibration modes (O-H, N-H, and C-H) and overtones of molecular

vibrations. As a result NIR spectroscopy can be used in predicting the content of

chemical components, detecting adulteration or distinguishing different species of

samples (Prieto et al., 2009a; Wang et al., 2017). Besides, by constantly analysing

the spectra of samples from different batches quality changes can be monitored and

thus NIR spectroscopy can be used in fault diagnosis and quality control in chemical

process (Cho et al., 2005; Lee et al., 2004; Wang et al., 2017).

Figure 1.1.1. NIR spectra plot of avian and fish particles

Figure 1.1.1 shows an example of NIR spectroscopic data. These are spec-

tra of avian and fish particles collected by NIR microscopy (Pérez-Marı́n et al.,

2009). They have been collected as the training data for further classification on the

mixtures of animal protein by-products particles. Here wavelengths from 1500nm

to 2400nm have been selected and the absorbances at these wavelengths have been

recorded. Derivatives of the absorbance are often taken to remove the additive base-

line shift of spectra. In this example, the second derivative of the absorbance is used.

In this figure, each curve depicts the spectrum of a particle. The blue ones corre-

spond to spectra of the avian samples while the red ones correspond to that of the
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fish samples. Calibration models can be built based on the training spectra of the

two classes and then used in predicting the species of test samples. This is a simple

example of how NIR spectroscopy can contribute to distinguishing sample species.

Despite the widespread application of NIR spectroscopy, it also has some lim-

itations. One crucial problem is due to the high dimension of the spectral data. The

NIR region includes wavelengths from 780 nm to 2500 nm and the absorbances at

these wavelengths are recorded as predictor variables. The measurement step length

of absorbance depends on the spectral resolution and it is typically set to be 2nm.

Thus the number of variables can be hundreds or even more than a thousand. How-

ever, the reference data needed for calibration is often relatively expensive to obtain

(Blanco and Villarroya, 2002) and the typical sample size of a NIR data set is a cou-

ple of hundred or even less (Pérez-Marı́n et al., 2009). In other words the number

of variables p is usually enormous compared with the number of observations n in

the NIR spectral analysis. Due to this reason, classic regression methods such as

multiple linear regression (MLR) and classification methods such as linear discrimi-

nant analysis (LDA) fail to work. Besides, absorbances at adjacent wavelengths can

contain very similar information and thus there exists strong collinearity between

NIR absorbances. Apart from these problems, absorbances in some ranges may be

noninformative or even harmful to further analysis (Xiaobo et al., 2010). Due to

the above reasons, suitable dimension reduction or variable selection techniques are

commonly applied to construct or select informative features from a large number

of highly correlated variables in the NIR spectral analysis.

The most widely used dimension reduction techniques in chemometrics in-

clude principal component analysis (PCA) and partial least squares (PLS) regres-

sion. Both methods construct latent variables comprised of combinations of the

original features and accordingly project data from the original high-dimensional

feature space to a low-dimensional subspace. PCA aims at extracting a small

number of latent variables to maintain the highest variability among the predictor
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variables, while PLS generates latent variables which have the largest covariance

with the predicted variables. With the use of PCA and PLS, data are projected to

a low-dimensional subspace and further analysis can be carried out on this low-

dimensional subspace, such as quantitative prediction, classification and so on. By

doing this, most information is maintained with less features while noise is reduced.

It has been shown in many literatures that calibration models with dimension re-

duction techniques usually perform well in chemometrics owing to their ability to

reduce collinearity, band overlaps, and interactions (Berrueta et al., 2007; Xiaobo

et al., 2010). Despite their benefits, dimension reduction methods usually suffer

from the fact that the latent variables are hard to interpret in terms of original fea-

tures. Another problem of dimension reduction with PCA is that the feature con-

tributing most to maintaining variability among predictor variables does not neces-

sarily contribute to further tasks such as prediction or classification, a problem that

is a focus of this thesis.

Another way to alleviate the high dimensionality of NIR data is variable selec-

tion. Variable selection techniques are based on the principle of choosing a subset

of variables from the original large number of features that produce the smallest

possible errors when used to perform operations such as making quantitative deter-

minations or discriminating between dissimilar samples. It is commonly acknowl-

edged that the predictive ability will be increased and the complexity of the model

will be reduced by a judicious selection of wavelengths. Classically, this selec-

tion is made from the basic knowledge about the spectroscopic properties of the

sample. Nowadays, it is more often to select variables based on some statistical

or machine learning methods, such as interactive variable selection, uninformative

variable elimination, interval PLS, significance tests of model parameters, and ge-

netic algorithms (Xiaobo et al., 2010). Classic statistical methods such as LASSO

can also be employed to select variables for NIR data. However, since NIR data

usually have hundreds or even more than one thousand variables, using LASSO in
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such high dimension can be time demanding. Accordingly, dimension reduction

technique is more suitable in this case and in this thesis, we focus on dimension

reduction techniques for NIR spectral data.

Note that the common way of analysing NIR data is to regard each spectrum

as a vector of p dimension where p is the number of wavelengths. In the mean-

while, another way of analysing NIR data is to regard each spectrum as a function

of wavelength and then employ functional data analysis (FDA) on the smoothed

spectral data (Aguilera et al., 2013). In FDA the smoothing of data usually requires

extra tuning parameters (such as the number and location of knots) and additional

assumptions of data (such as the degree of smoothness). Typical FDA methods that

can be applied to NIR spectral analysis include functional linear regression (Saeys

et al., 2008), functional PCA (Huang et al., 2008) and functional PLS (Preda et al.,

2007), etc. As summarized by Aguilera (Aguilera et al., 2013), the FDA of NIR

data yields similar results on prediction to its discrete counterpart, while usually

requires more complex models.

1.1.2 NIR Spectral Classification

As discussed in the previous section, NIR spectroscopy is widely used in the quan-

titative prediction of the content of chemical compositions, adulteration detection,

classification and chemical process control. Among these, classification is an im-

portant task and there has been a long history of using NIR spectroscopy in the

classification of food, for example, dairy products (Wang et al., 2017; Rodriguez-

Otero et al., 1997), meat products (Prieto et al., 2009a,b), oil (Wang et al., 2017),

grains (Delwiche and Norris, 1993) and the geographical classification of alcoholic

beverages (Liu et al., 2006; Wang et al., 2017) and honey (Tewari and Irudayaraj,

2005), etc. NIR spectroscopy is also widely used in the classification of pharma-

ceuticals (Gendrin et al., 2008; Roggo et al., 2007; Wang and Yu, 2015), wood

(Tsuchikawa and Kobori, 2015) and paper (Tsuchikawa, 2007), etc.
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The most widely used classification models in NIR spectral classification can

be roughly divided into two categories, depending on whether they can work in the

situation of large p small n. If the method implicitly includes a dimension reduction

procedure and it can work well when the number of variables exceeds the number

of samples, there is no need to apply a dimension reduction or variable selection

technique prior to it. This kind of method typically includes partial least squares

discriminant analysis (PLS-DA) and soft independent modelling of class analogy

(SIMCA), and their variants (Rosipal et al., 2003; Rosipal and Trejo, 2001). With

the principle of PLS, PLS-DA can extract features owning the highest covariance

with the label variables and then use the extracted features in the classification. As

one of the most widely used methods in chemometrics, PLS-DA has been exten-

sively applied to the geographical classification of red wine (Wang et al., 2017; Liu

et al., 2006), honey (Tewari and Irudayaraj, 2005), Chinese herbs (Wang and Yu,

2015), the discrimination of meat (Prieto et al., 2009a) and the identification of

wood species (Tsuchikawa and Kobori, 2015), etc. SIMCA constructs an indepen-

dent PC subspace for each class with relatively small number of PCs, projects the

training data to the corresponding PC subspace, and uses the residual distances of

the training samples to determine a critical distance for classification, with F dis-

tribution. A new observation is assigned to the class when its residual distance to

the PC subspace is below the statistical limit for this class. The main difference be-

tween SIMCA and PCA is that it builds a PC model for each class while PCA builds

one model based on all samples. SIMCA implicitly contains a dimension reduction

step with PCA. This characteristic makes SIMCA applicable to high-dimensional

data. SIMCA has also been widely used in the discrimination of food (Prieto et al.,

2009a), medicine (Roggo et al., 2007), and wood (Tsuchikawa, 2007), etc.

On the contrary, some other classification methods fail to work in the large p

small n case and a dimension reduction step is necessary before the classifier. These

kinds of methods typically include linear discriminant analysis (LDA) and quadratic
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discriminant analysis (QDA). LDA and QDA have been widely applied to the geo-

graphical classification of the red wine (Liu et al., 2006), Chinese rice wine (Wang

et al., 2017), medicine (Roggo et al., 2007), as well as the identification of meat of

different quality grade (Prieto et al., 2009a), demolition waste of wood, plastics, and

stone (Tsuchikawa, 2007), etc. In the above applications PCA is usually applied as

a dimension reduction and pre-processing procedure for LDA and QDA.

Apart from the above methods, k-nearest neighbours and support vector ma-

chine do not explicitly require a dimension reduction step, but they can also benefit

from a dimensionality reduction procedure prior to them (Berrueta et al., 2007).

In this thesis we mainly focus on LDA, QDA and PLS-DA. These algorithms

will be discussed in detail in the next three sections.

1.2 Discriminant Analysis

1.2.1 Fisher’s Linear Discriminant

The classic method of linear discrimination was described by Fisher (Fisher, 1936)

for two classes and extended to more by Rao (Rao, 1948). This method focuses on

binary classification and it aims to find a linear combination of variables that well

separates the two classes.

To be specific, Fisher’s linear discriminant is implemented by finding an orien-

tation vector www that maximises the following objective JJJ(www) in binary classification:

JJJ(www) =
wwwT SSSBwww
wwwT SSSW www

, (1.2.1)

where SSSB is the between-group sum-of-squares and products (SSP) matrix:

SSSB =
2

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T =
n1n2

n1 +n2
(x̄xx1− x̄xx2)(x̄xx1− x̄xx2)

T , (1.2.2)
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and SSSW is the within-group sum-of-squares and products matrix,

SSSW =
2

∑
i=1

ni

∑
j=1

(xxxi j− x̄xxi)(xxxi j− x̄xxi)
T . (1.2.3)

In formula (1.2.2) and (1.2.3), ni is the number of data examples in group i (where

i =1, 2), x̄xxi is the column mean of group i and x̄xx is the column mean of all samples.

Differentiating (1.2.1) with respect to www (Bishop, 2006), we find that JJJ(www) is

maximised when:

(wwwT SSSBwww)SSSW www = (wwwT SSSW www)SSSBwww. (1.2.4)

As both (wwwT SSSBwww) and (wwwT SSSW www) are scalars we can divide the above equation

by (wwwT SSSW www). Let λ = (wwwT SSSBwww)
(wwwT SSSW www) , then equation (1.2.4) becomes:

λSSSW www = SSSBwww, ⇒ SSS−1
W SSSBwww = λwww, (1.2.5)

if SSSW is invertible. Then we can find www by solving this eigen-decomposition problem

and www is the eigenvector of SSS−1
W SSSB.

In particular, note that

SSSBwww =
n1n2

n1 +n2
(x̄xx1− x̄xx2)(x̄xx1− x̄xx2)

T www

=
n1n2

n1 +n2
(x̄xx1− x̄xx2)

T www(x̄xx1− x̄xx2), (1.2.6)

Here n1n2
n1+n2

(x̄xx1− x̄xx2)
T www is a scalar, thus SSSBwww is in the same direction as (x̄xx1− x̄xx2).

According to equation (1.2.5),

SSSW www =
1
λ

SSSBwww, (1.2.7)
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so that SSSW www must be in the same direction as (x̄xx1− x̄xx2) as well, namely

SSSW www ∝ (x̄xx1− x̄xx2), (1.2.8)

and then

www ∝ SSS−1
W (x̄xx1− x̄xx2), (1.2.9)

when SSSW is invertible. Symbol ∝ represents proportional to and here it means in

the same direction. In other words, formula (1.2.9) means that www is in the same

direction as SSS−1
W (x̄xx1− x̄xx2). Therefore the orientation vector www is found as the unit

vector in the direction of SSS−1
W (x̄xx1− x̄xx2) and it also can be obtained by implementing

eigen-decomposition on SSS−1
W SSSB, as long as SSSW is invertible.

1.2.2 Relationship between Fisher Linear Discriminant and

Linear Regression in Binary Classification

As is shown by Zhang et al. (2005) and Ye (2007), when linear regression (LR) is

used as the classifier in a binary classification the estimate of the linear regression

coefficient vector is proportional to the orientation vector www obtained from LDA.

Moreover, LR and LDA are found to achieve equivalent classification boundaries as

long as the proportions of the two classes in the training set are equal (Ripley, 2007).

This relationship provides the possibility to transform linear regression problems

with label outputs into LDA problems, or vice versa. In this section, we will show

the relationship between the LR coefficient and the LDA orientation vector in detail.

For simplicity we assume the two classes are of the same sample size and

yi = 1 if the sample i belongs to class 1 and yi = −1 if the sample belongs to

class 2. Assume the total sample size is n then the sample size of the two groups

n1 = n2 =
n
2 .

For this purpose, we fit a linear regression model with coefficients www and w0
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where w0 is the intercept, i.e.

ŷyy = XXXwww+hhhw0, (1.2.10)

where ŷyy ∈ Rn×1 is the predicted value, XXX ∈ Rn×p is the data matrix, hhh ∈ Rn×1 is a

vector of 1s where n is the total number of samples. Then the sum of squared errors

is:

SSE = ||yyy− ŷyy||2 = ||yyy−XXXwww−hhhw0||2 = (yyy−XXXwww−hhhw0)
T (yyy−XXXwww−hhhw0) (1.2.11)

Taking the first derivative of SSE with respect to www and w0 and then setting

them to zero, we get

∂SSE
∂www

=−XXXT yyy+nw0x̄xx+XXXT XXXwww = 0, (1.2.12)

∂SSE
∂w0

= w0 +wwwT x̄xx = 0. (1.2.13)

Here x̄xx is the column vector containing the column mean of XXX . From equation

(1.2.13):

w0 =−wwwT x̄xx. (1.2.14)

Substitute (1.2.14) into (1.2.12) we obtain:

−nwwwT x̄xxx̄xx+XXXT XXXwww = XXXT yyy, (1.2.15)

which leads to

(XXXT XXX−nx̄xxx̄xxT )www = XXXT yyy. (1.2.16)

Note that when the two classes are of equal size, XXXT yyy = n
2(x̄xx1− x̄xx2). Then (1.2.16)
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becomes:

(XXXT XXX−nx̄xxx̄xxT )www =
n
2
(x̄xx1− x̄xx2). (1.2.17)

Since

SSST =
n

∑
i=1

(xxxi− x̄xx)(xxxi− x̄xx)T =
n

∑
i=1

xxxixxxT
i −

n

∑
i=1

x̄xxx̄xxT = XXXT XXX−nx̄xxx̄xxT , (1.2.18)

is the total SSP matrix, we have

SSST www =
n
2
(x̄xx1− x̄xx2). (1.2.19)

Similarly we have,

SSSW = SSS1 +SSS2 = (XXXT
1 XXX1−n1x̄xx1x̄xxT

1 )+(XXXT
2 XXX2−n2x̄xx2x̄xxT

2 ) = XXXT XXX− n
2
(x̄xx1x̄xxT

1 + x̄xx2x̄xxT
2 ),

(1.2.20)

where SSS1 and SSS2 are the SSP matrices of the two groups, XXX1 and XXX2 are the data

matrices of the two groups. From formula (1.2.2) we have,

SSSB =
n1n2

n1 +n2
(x̄xx1− x̄xx2)(x̄xx1− x̄xx2)

T =
n
4
(x̄xx1x̄xxT

1 + x̄xx2x̄xxT
2 )−

n
2

x̄xx1x̄xxT
2 . (1.2.21)

Then

SSSW +SSSB = XXXT XXX− n
4
(x̄xx1x̄xxT

1 + x̄xx2x̄xxT
2 )−

n
2

x̄xx1x̄xxT
2

= XXXT XXX− n
4
(x̄xx1 + x̄xx2)(x̄xx1 + x̄xx2)

T

= XXXT XXX−nx̄xxx̄xxT = SSST , (1.2.22)

or namely,

SSST = SSSW +SSSB. (1.2.23)
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Then from equation (1.2.19) we have,

(SSSW +SSSB)www =
n
2
(x̄xx1− x̄xx2). (1.2.24)

From (1.2.6) we know that no matter the direction of www, SSSBwww is always in the direc-

tion of (x̄xx1− x̄xx2), then according to equation (1.2.24), SSSW www is also in the direction

of (x̄xx1− x̄xx2), namely

SSSW www ∝ (x̄xx1− x̄xx2), (1.2.25)

and

www ∝ SSS−1
W (x̄xx1− x̄xx2), (1.2.26)

if SSSW is invertible.

Compare formula (1.2.26) with formula (1.2.9), we shall see the direction of

the coefficient vector of linear regression is the same as the projection vector of

Fisher linear discriminant.

So far we have shown that the coefficient vector of linear regression is in the

same direction as the projection vector of Fisher linear discriminant, when the sam-

ple size is equal for the two groups. When the sample sizes are not equal, according

to Bishop (2006), same conclusion can be made by setting yi = n
n1

for group 1 and

yi = - n
n2

for group 2, where n1 and n2 are the sample sizes of the two groups and n

is the total sample size.

The above derivation shows that Fisher linear discriminant analysis with equal

sample size finds the same orientation direction as LR. In other words using LDA as

the classifier is analogous to using LR as the classifier. Note that PLS-DA uses the

principle of PLS to reduce dimension while using LR as its classifier, then PLS-

DA can be regarded as an analogue of PLS-LDA (as DA in this case is analo-

gous to LDA). Here by PLS-LDA we mean, using PLS in dimension reduction

and latent variable extraction and then using LDA to classify samples with the new
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variables. This conclusion makes it easier to compare PLS-DA and PCA-LDA in

high-dimensional classification. PCA-LDA uses PCA to reduce dimension and then

classify the samples with LDA on the PC subspace. As PLS-DA is an analogue of

PLS-LDA, the difference of PLS-DA and PCA-LDA is regarded as mostly due to

the dimension reduction step with PCA or PLS. Then we can easily compare the

performance of PCA and PLS in high dimensional classification.

1.2.3 Linear Discriminant Analysis and Quadratic Discrimi-

nant Analysis

The well-known linear discriminant analysis and quadratic discriminant analysis are

developed based on the classic Fisher’s linear discriminant analysis. Though they

are derived in a probabilistic way, it can be shown that in binary classification with

balanced groups the projection vector in LDA is identical to the orientation vector

in Fisher linear discriminant, which is also the reason why these two algorithms are

regarded closely related to each other. The algorithm of the well-known LDA and

QDA in binary classification are as follows.

In general binary classification, we assume label variable y = 1 for samples

from the first class and label variable y= -1 for samples from the second class.

Assume xxx |y = 1∼ NNN(µµµ1,ΣΣΣ1) and xxx |y =−1∼ NNN(µµµ2,ΣΣΣ2). Here LDA assumes

ΣΣΣ1 and ΣΣΣ2 to be identical, while QDA is more general and does not make this as-

sumption. To simplify the notation, we write P(xxx,y = 1) = f (xxx|y = 1)P(Y = 1)

where f (xxx|y = 1) donotes the conditional density of xxx given y = 1. P(xxx,y = −1)

will be defined in a similar way.

Then for data belonging to class 1,

P(xxx,y = 1) =
1√

(2π)p|ΣΣΣ1|
exp{−1

2
(xxx−µµµ1)

T
ΣΣΣ
−1
1 (xxx−µµµ1)} ·P(y = 1), (1.2.27)

where p is the dimension of xxx and P(y = 1) is the prior probability of class 1.
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Similarly the joint probability of class 2 can be obtained,

P(xxx,y =−1) =
1√

(2π)p|ΣΣΣ2|
exp{−1

2
(xxx−µµµ2)

T
ΣΣΣ
−1
2 (xxx−µµµ2)} ·P(y =−1),

(1.2.28)

where P(y =−1) is the prior probability of class 2.

For simplicity we take the logarithm for these two joint probability formulas:

g1(xxx) =−
p
2

ln(2π)− 1
2

ln(|ΣΣΣ1|)−
1
2
(xxx−µµµ1)

T
ΣΣΣ
−1
1 (xxx−µµµ1)+ ln(P(y = 1)),

(1.2.29)

and

g2(xxx) =−
p
2

ln(2π)− 1
2

ln(|ΣΣΣ2|)−
1
2
(xxx−µµµ2)

T
ΣΣΣ
−1
2 (xxx−µµµ2)+ ln(P(y =−1)).

(1.2.30)

Then sample xxx is classified as class 1 (y = 1) if g1(xxx) − g2(xxx) > 0, namely if

1
2

ln
(
|ΣΣΣ2|
|ΣΣΣ1|

)
+

1
2
(xxx−µµµ2)

T
ΣΣΣ
−1
2 (xxx−µµµ2)−

1
2
(xxx−µµµ1)

T
ΣΣΣ
−1
1 (xxx−µµµ1)+ln

P(y = 1)
P(y =−1)

> 0,

(1.2.31)

i.e.

(xxx−µµµ2)
T

ΣΣΣ
−1
2 (xxx−µµµ2)−(xxx−µµµ1)

T
ΣΣΣ
−1
1 (xxx−µµµ1)+ln|ΣΣΣ2|−ln|ΣΣΣ1|+2ln

P(y = 1)
P(y =−1)

> 0.

(1.2.32)

Otherwise, an input xxx is classified as class 2 (y = -1).

Here if ΣΣΣ1 and ΣΣΣ2 are identical, the problem reduces to the LDA case. Denote

ΣΣΣ1 = ΣΣΣ2 = ΣΣΣ, then the classification criterion can be simplified as

(xxx−µµµ2)
T

ΣΣΣ
−1(xxx−µµµ2)− (xxx−µµµ1)

T
ΣΣΣ
−1(xxx−µµµ1)+2ln

P(y = 1)
P(y =−1)

> 0, (1.2.33)
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which reduces to

(µµµT
1 −µµµ

T
2 )ΣΣΣ

−1 xxx > ln
P(y =−1)
P(y = 1)

+
1
2

µµµ
T
1 ΣΣΣµµµ1−

1
2

µµµ
T
2 ΣΣΣµµµ2. (1.2.34)

If we define:

www = (µµµT
1 −µµµ

T
2 )ΣΣΣ

−1, (1.2.35)

and

T = ln
P(y =−1)
P(y = 1)

+
1
2

µµµ
T
1 ΣΣΣµµµ1−

1
2

µµµ
T
2 ΣΣΣµµµ2, (1.2.36)

then (1.2.33) can be rewritten as:

www · xxx > T. (1.2.37)

This criterion is a linear inequality of xxx and that is why this algorithm is named as

linear discriminant analysis.

Formula (1.2.35) can be rewritten as:

wwwT = ΣΣΣ
−1(µµµ1−µµµ2). (1.2.38)

In practice, the common covariance of the two groups ΣΣΣ can be estimated by 1
n−2SSSW

where SSSW is the pooled within-group SSP matrix and n is the total sample size.

µµµ1 and µµµ2 can be estimated by the sample mean of the two classes, x̄xx1 and x̄xx2

respectively. Then the LDA projection vector www in (1.2.38) becomes:

wwwT =
1

n−2
SSS−1

W (x̄xx1− x̄xx2). (1.2.39)

Note that compared with the scale, the direction of the projection vector is usually
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of higher importance and the projection vector www is usually set to be of norm 1, then

wwwT
∝ SSS−1

W (x̄xx1− x̄xx2), (1.2.40)

is the unit vector in the direction of SSS−1
W (x̄xx1− x̄xx2), which is the same as the orien-

tation vector in the Fisher linear discriminant (1.2.9). Then the projection vector

www in LDA and the orientation vector in Fisher linear discriminant are transpose to

each other. In Fisher linear discriminant the orientation vector is defined as a col-

umn vector and in LDA the projection vector is defined as a row vector, but actually

they are unit vectors in the same direction. This suggests that although Fisher linear

discriminant makes no distributional assumptions, the orientation vector in Fisher

linear discriminant is optimal in the case of two multivariate normals with equal

variances.

On the other hand, if ΣΣΣ1 and ΣΣΣ2 cannot be regarded as identical, the simplifi-

cation in (1.2.33) cannot be made. In other words the classification criterion would

be:

xxxT (ΣΣΣ−1
2 −ΣΣΣ

−1
1 )xxx+2(µµµT

1 ΣΣΣ
−1
1 −µµµ

T
2 ΣΣΣ
−1
2 )xxx > 2ln

P(y =−1)
P(y = 1)

+ ln|ΣΣΣ1|− ln|ΣΣΣ2|+µµµ
T
1 ΣΣΣ
−1
1 µµµ1−µµµ

T
2 ΣΣΣ
−1
2 µµµ2.

(1.2.41)

Let

WWW 1 = (ΣΣΣ−1
2 −ΣΣΣ

−1
1 ), (1.2.42)

www2 = 2(µµµT
1 ΣΣΣ
−1
1 −µµµ

T
2 ΣΣΣ
−1
2 ), (1.2.43)

T = 2ln
P(y =−1)
P(y = 1)

+ ln|ΣΣΣ1|− ln|ΣΣΣ2|+µµµ
T
1 ΣΣΣ
−1
1 µµµ1−µµµ

T
2 ΣΣΣ
−1
2 µµµ2, (1.2.44)

criterion (1.2.41) can be rewritten as:

xxxTWWW 1xxx+www2 xxx > T. (1.2.45)

(1.2.45) is a quadratic function of the input xxx and that is why this algorithm is called
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quadratic discriminant analysis.

1.2.4 LDA as a Feature Extraction Technique

So far we have shown the orientation vector of Fisher linear discriminant and the

probabilistic version of LDA in the binary case. Actually, LDA can not only be

used as a classifier in the binary classification, but also in multiclass classification.

Apart from these, the idea of LDA, especially the Fisher criterion, is widely used

in high-dimensional feature extraction. In this section, we will show some variants

of LDA, which make it a fundamental feature extraction technique in multiclass

high-dimensional classification.

Multiclass LDA is implemented by searching for the orientation vectors WWW

such that |WWW
T SSSBWWW |

|WWW T SSSWWWW | is maximised, where SSSW = ∑
c
i=1 ∑

ni
j=1(xxxi j− x̄xxi)(xxxi j− x̄xxi)

T is the

within-class SSP matrix, SSSB = ∑
c
i=1 ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T is the between-class SSP

matrix, c is the number of classes and | · | is the determinant. WWW is found to contain

the eigenvectors of SSS−1
W SSSB. However, when the dimensionality of the data exceeds

the number of samples, SSSW becomes singular and its inversion becomes impossible,

accordingly the evaluation of eigenvalues and eigenvectors of SSS−1
W SSSB becomes im-

possible. This is called the small sample size (SSS) problem of LDA (Sharma and

Paliwal, 2015b). Variants of LDA have been developed during the last two decades

to resolve this SSS problem and make it a feasible feature extraction technique in

high-dimensional classification.

Four spaces are mainly employed to reduce dimensionality and resolve the SSS

problem of LDA, the null space of SSSW (SSSnull
w ), the range space of SSSW (SSSrange

w ), the

range space of SSSB (SSSrange
b ) and the null space of SSSB (SSSnull

b ). Here the null space of a

matrix AAA ∈ Rm×n consists of all the vectors www ∈ Rn×1 such that AAAwww = 000, while the

range space of a matrix AAA ∈ Rm×n is the space spanned by the column vectors of

AAA, i.e. the range space of AAA consists of vectors www ∈ Rm×1 such that www = AAAxxx where

xxx ∈ Rn×1. Since the goal of LDA is to maximise the ratio of |wwwT SSSBwww| to |wwwT SSSW www|,
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the null space of SSSW is generally regarded as of high discriminative power, for on

this subspace |wwwT SSSW www|= |wwwT ·000|= 0 for all www (Sharma and Paliwal, 2015b). SSSrange
b

contains the between class information and it is regarded as discriminative as well.

On the contrary, SSSnull
b is the space on which |wwwT SSSBwww|= |wwwT ·000|= 0 for all www and it

contributes very little to the separation of the classes. Accordingly, SSSnull
b is regarded

as of the lowest discriminating power among the above four. Dimensionality reduc-

tion is then carried out by jointly employing the above four spaces and the resolu-

tions to this problem are categorised into 4 types by the different combination of

spaces used in the method.

The first category of resolutions to SSS is to combine the usage of SSSrange
b and

SSSrange
w . The typical methods include direct LDA (Yu and Yang, 2001) and its variants

(Lu et al., 2003; Song et al., 2007; Paliwal and Sharma, 2010). In direct LDA, firstly

the data are projected to the range space of SSSB while discarding SSSnull
b . After the first

projection the dimension of the data is reduced from p to (c− 1), where c is the

number of classes, and the singular problem is solved. Afterwards the data are

further projected to the range space of SSSW with small eigenvalues. However, this

type of methods fails to use the discriminative SSSnull
w and thus can be enhanced by

including SSSnull
w into consideration.

The second category of resolutions to SSS is to combine the usage of the most

discriminative two spaces SSSnull
w and SSSrange

b . This type of methods include Null LDA

(NLDA) (Chen et al., 2000), orthogonal LDA (OLDA) (Ye, 2005) and their variants

(Chu and Thye, 2010; Sharma and Paliwal, 2012a). The null LDA technique finds

the orientation www in two stages. In the first stage, it computes www such that wwwT SSSW www

= 0, i.e., data are projected onto the null space of SSSW . In the second stage it finds www

that satisfies wwwT SSSBwww 6= 0.

The third category of resolutions combines the usage of SSSnull
w , SSSrange

b and SSSrange
w .

The most well known methods in this category include regularised LDA (Friedman,

1989; Dai and Yuen, 2007) and improved regularised LDA (Sharma et al., 2014).
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To overcome the singularity problem, in the regularized LDA a small perturbation

matrix has been added to SSSW . This makes the matrix non-singular and invertible.

Then the original Fisher criterion will be generalised as:

JJJ(www,δ ) =
wwwT SSSBwww

wwwT (SSSW +δ III)www
, (1.2.46)

and a generalised eigen-decomposition will be implemented to find the vector www:

(SSSW +δ III)−1SSSBwww = λwww. (1.2.47)

Here the transformation vector www is found to be the eigenvector of (SSSW +δ III)−1SSSB.

The additional δ in the regularised method helps in incorporating both the null space

and range space of SSSW and (SSSW + δ III) is invertible now. The performance of this

method is highly dependent on the choice of δ (Sharma and Paliwal, 2015b). This

δ can be chosen either by cross-validation, or in a deterministic approach (Sharma

and Paliwal, 2015a). In the improved RDA, the above criterion (1.2.46) is converted

into a constrained maximisation problem and the value of δ can be determined using

method of Lagrange multipliers (Sharma et al., 2014).

Methods from the final category use all of the four spaces. For example in

the two stage LDA (Sharma and Paliwal, 2012b), the eigenvectors of SSS
′−1
W SSSB and

SSS
′−1
B SSSW are concatenated, so as to include the information of SSSnull

b and SSSrange
w . Here

SSS
′
W is a regularised version of SSSW while SSS

′
B is a regularised version of SSSB.

In this section we introduce four typical categories of methods to resolve

the SSS problem of LDA so as to make it a feature extraction technique in high-

dimensional classification. However the performance of a given category of meth-

ods can vary a lot, depending on how effectively the corresponding spaces are

utilised. And the performance of a given method also varies from case to case,

depending on the discriminating power of the spaces it uses in a specific data set
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(Sharma and Paliwal, 2015b). It has been shown in real data experiments that using

variants of LDA such as OLDA and NLDA to directly extract features led to in-

ferior performance compared with applying the conventional LDA after dimension

reduction with PCA (Prasad et al., 2010).

Although none of the abovementioned LDA-based methods are explicitly used

in this thesis, the idea of using discriminant analysis as a feature extraction method

enlightens us to propose our penalised QDA feature extraction method (Chapter 3).

1.2.5 Comparison of LDA and QDA in Classification

QDA and LDA make different assumptions on the covariance structure of the data

and thus obtain different type of decision boundaries. As shown in (1.2.35) to

(1.2.37) LDA assumes the covariances to be homogeneous and thus leads to a linear

boundary, while according to (1.2.42) to (1.2.45) QDA assumes the covariance of

different classes to be inhomogeneous and this gives a quadratic boundary.

There is a long-lasting debate on comparison of the performance of LDA and

QDA. In some literature (Hong et al., 2017; Siqueira et al., 2017; Naghibi et al.,

2018; Costa et al., 2017) QDA was found to be more powerful than LDA, while in

some other literature (Wu et al., 1996, 2003; Vaid et al., 2001) QDA was found less

powerful than LDA. Meanwhile, in many other literatures (Balabin et al., 2010; Kim

et al., 2011; Higdon et al., 2004) these two methods were found to be of comparable

discrimination power.

The performance of LDA and QDA highly depends on the data set we imple-

ment the two algorithms on. If the homogeneous covariance assumption is clearly

inappropriate (Wu et al., 1996; Yan and Dai, 2011) or when the linear boundary is

no longer adequate to separate classes (Friedman et al., 2001a), QDA outperforms

LDA. While when the true decision boundary is linear on the predictor variables,

or when the sample size is too small to afford a quadratic decision boundary or too

small for the number of parameters to be estimated, LDA out performs QDA (Wu
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et al., 2003, 1996; Vaid et al., 2001).

QDA was found to work well after dimension reduction or variable selection

techniques, as higher dimension means a dramatic increase in the number of param-

eters to be estimated in QDA (Yan and Dai, 2011). To be specific, if we assume p

to be the dimensionality of feature space and c is the number of classes to separate,

in LDA there are (c− 1)× (p+ 1) parameters to estimate while in QDA there are

(c−1)×
(

p(p+3)
2 +1

)
parameters (Friedman et al., 2001a). Therefore, it is impor-

tant to control the number of parameters, and thus the number of features if QDA is

employed as the classifier. For this reason, dimension reduction is often seen as a

necessary step before QDA.

In this thesis we use QDA as our classifier after dimension reduction with some

novel variants of PCA. PCA-based methods help reducing noise while maintaining

the most influential features, which lightens the burden of the parameter estimation

in QDA. In this case QDA can utilise the second order structure of the variables

to build a nonlinear classification. The combination of PCA and QDA is shown to

outperform the combination of PCA and LDA in all of our examples.

1.3 Principal Component Analysis
Principal component analysis is a well known dimension reduction technique that

has been extensively applied in signal processing, pattern recognition and informa-

tion retrieval (Yu et al., 2006; Duda et al., 2001). In PCA, an orthogonal transfor-

mation is employed to convert the original possibly correlated variables into a set

of linearly uncorrelated variables called principal components (PCs) with the vari-

ability captured decreasing PC by PC (Jolliffe, 1986). Each principal component

is a linear combination of the original variables and can be obtained as the solu-

tion to an eigendecomposition problem of the covariance matrix or, alternatively,

from the singular value decomposition (SVD) of the centred data matrix (Jolliffe

and Cadima, 2016).
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One of the novel methods proposed in this thesis is based on the covariance

matrix decomposition version of PCA. Hence we introduce PCA below in this way.

1.3.1 Algorithm

Consider a data matrix XXX ∈ Rn×p in which there are n instances (xxx1,xxx2, . . . ,xxxn)
T of

a p-dimensional vector xxxi ∈ Rp×1.

The classic PCA algorithm starts with data centering. The data matrix XXX is

centred by subtracting the column means from it:

XXXc = XXX−hhhuuuT , (1.3.1)

where hhh ∈ Rn×1 is a column vector of 1s, uuu ∈ Rp×1 is a column vector containing

the mean of each column of XXX . Then the principal components can be obtained by

implementing eigendecomposition on the sample covariance matrix.

In the classic PCA the sample covariance matrix SSS is denoted as:

SSS =
1

n−1
(XXXc)T XXXc. (1.3.2)

In eigendecomposition this symmetric sample covariance SSS is decomposed as:

SSS =VVV ΣΣΣVVV T , (1.3.3)

where VVV ∈ Rp×p contains the normalised eigenvectors of SSS as its columns and ΣΣΣ is

a diagonal matrix of eigenvalues σ1 > σ2>. . .>σp> 0.

Dimension reduction is implemented by selecting the first k columns (k 6 p)

from VVV and projecting data to this subspace of k dimensions. In dimension reduc-

tion, some criteria can be used to choose the threshold k, for example requiring that

at least 80% of the total variation should be contained in the first k components

(Jolliffe, 1986). If used as a dimension reduction method before discrimination, the
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number of components k kept in the model can be tuned with the target of minimis-

ing cross-validated classification error rate.

Then the projected data matrix of lower dimension can be calculated by:

ZZZ = XXXcVVV k, (1.3.4)

where XXXc ∈ Rn×p is the centred data matrix and VVV k ∈ Rp×k consists of the first k

PC loadings. Here ZZZ ∈ Rn×k are the first k principal component scores.

1.3.2 Further Developments

PCA was invented in 1901 by Karl Pearson (Pearson, 1901) as an analogue of the

principal axis theorem in mechanics and was later independently developed and

named by Harold Hotelling in the 1930s (Hotelling, 1933). However, it was compu-

tationally infeasible to use PCA on large data set until electronic computers became

widely available (Jolliffe and Cadima, 2016). Since then its utility has burgeoned

and can be discovered in many disciplines including signal and image processing

in engineering (Algazi et al., 1993; Sirovich and Kirby, 1987; Kirby and Sirovich,

1990; Turk and Pentland, 1991), gene expression analysis in biology (Yeung and

Ruzzo, 2001; Sturn et al., 2002), and even in finance and other social science fields

(Zou et al., 2006; Olawale and Garwe, 2010; Ince and Trafalis, 2007).

In analytical chemistry, PCA was firstly introduced by Malinowski in 1960s

under the name principal factor analysis (Wold et al., 1987) and since the 1970s a

large number of applications in analytical chemistry have been published. Espe-

cially, PCA can contribute to quantitative prediction of the concentration of chem-

ical elements (Chiang et al., 2000; Moghimi et al., 2010; Geladi, 2003), chemical

image analysis (Geladi et al., 1989; Gowen et al., 2008), fault detection in chemical

processes (Chiang et al., 2000; Kresta et al., 1991; Wise et al., 1990) and classifi-

cation (Kallithraka et al., 2001; Christy et al., 2004; Tewari and Irudayaraj, 2005).
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In high-dimensional classification, PCA is usually applied as a dimension reduc-

tion technique before the classifier, such as LDA, QDA or support vector machine

(SVM) (Berrueta et al., 2007; Christy et al., 2004; Tewari and Irudayaraj, 2005).

Regardless of its prevalence, the classic PCA approach has many limitations and

this has led to the development of various adaptations and extensions of PCA in the

last two decades.

Firstly, the classical PCA approach is based on the calculation of sample mean

and sample covariance and as a result it is very sensitive to the presence of out-

liers (Candès et al., 2011; Hubert and Engelen, 2004). This has led to attempts to

define robust variants of PCA. There are two kinds of robust approaches of PCA.

One type is based on PCA on a robust covariance matrix. Among these multivari-

ate trimming (MVT), minimum volume ellipsoid (MVE) and minimum covariance

determinant (MCD) (Egan and Morgan, 1998; Devlin et al., 1981; Hubert et al.,

2005) are the most prevailing robust estimation methods. The other group of ap-

proaches are based on the idea of searching the projections of the data most ex-

posing outliers (Daszykowski et al., 2007). Based on this idea, Li and Chen pro-

posed their projection-pursuit method (Li and Chen, 1985). This method sought

low-dimensional projections that maximise a robust measure of spread and it was

further developed by Xie et al. (Xie et al., 1993) and Hubert et al. (Hubert et al.,

2002) in chemometrics.

Another prevailing adaptation of PCA is sparse PCA. In the classic algorithm,

each PC is a linear combination of all variables and the loadings are typically

nonzero, which makes PCs lack interpretability with respect to the original fea-

tures (Zou et al., 2006). It has been an interesting topic for years how to achieve

dimension reduction while simultaneously reducing the number of explicitly used

variables. This has led to the development of sparse PCA. The widely acknowl-

edged sparse PCA was proposed in 2006 by Zou et.al (Zou et al., 2006) After that,

Guan et al. developed a probabilistic version of robust PCA in 2009 (Guan and Dy,
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2009), Toczydlowska (2020).

Due to its nature as a linear projection method, another limitation of PCA is

its inability to discover nonlinear relationships in the data. This led to the devel-

opment of nonlinear PCA. A well-known nonlinear form of PCA, kernel PCA was

proposed in 1997 (Schölkopf et al., 1997) via the use of integral operator kernel

functions. Since the computational complexity of kernel PCA does not grow with

the dimensionality of the feature space, it was shown to be more efficient than the

classic algorithm in both theory, simulation and empirical studies when the number

of variables is far beyond the number of observations (Kim et al., 2002). Kernel

PCA was widely used in fault detection (Chiang et al., 2000) and chemical process

monitoring (Cho et al., 2005; Lee et al., 2004) in chemistry.

Another limitation of PCA is that it is neither a probabilistic model nor a gen-

erative model (Kim and Lee, 2003), thus it is difficult to combine PCA with other

probabilistic models (Tipping and Bishop, 1999). To address this limitation of PCA,

probabilistic PCA (PPCA) was built by Roweis et al. in 1998 (Roweis, 1998) and

by Tipping et al. in 1999 from the perspective of a Gaussian latent variable model

(Tipping and Bishop, 1999). In probabilistic PCA, the observed variables XXX of p di-

mensions are regarded as generated from latent variables ZZZ of d dimensions, where

d < p. The latent variables ZZZ follow a multivariate Gaussian distribution NNN(000, III)

while the observed variables XXX are the results of linear transformation of the latent

variables ZZZ, plus a location parameter µµµ and a random noise εεε ∼NNN(000,σ2III), namely

XXX = WWWZZZ + µµµ + εεε and XXX ∼ NNN(µµµ,WWWWWW T +σ2III). Then the maximum likelihood es-

timates of WWW and σσσ can be obtained either in a closed form (Tipping and Bishop,

1999) or by the Expectation maximisation (EM) algorithm (Roweis, 1998). The

EM version of PPCA has the advantage of reducing the computational complexity

from OOO(np2) to OOO(nd p), and is able to process missing data (Nyamundanda et al.,

2010). Afterwards, a robust version of PPCA was developed. The Gaussian distri-

bution in the regular PPCA was replaced by the student’s t-distribution to achieve a
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more robust model (Archambeau et al., 2006; Chen et al., 2009) Yu et al. proposed

a supervised PPCA in 2006 (Yu et al., 2006) in which the response variables are

considered as a linear transformation of the latent variables ZZZ as well, and the esti-

mate of parameters can be obtained by EM algorithm. In 2010, a novel extension of

PPCA, called probabilistic principal component and covariates analysis (Nyamun-

danda et al., 2010) was introduced to extend the usage of PPCA to metabolomic

data. This method provides a flexible approach to jointly model metabolomic data

and additional covariate information. Also, PPCA has become a common technique

in detecting abnormal events of chemical processes after Kim et al. introduced it to

analytical chemistry in 2003 (Kim and Lee, 2003).

1.3.3 Discriminative PCA

Apart from the above adaptions, one more limitation of PCA has drawn consider-

able attention from researchers, and is a focus of this thesis. As an unsupervised

method, PCA fails to use the class labels of the observations (Chen and Sun, 2005;

Huang et al., 2015). As a result, when it is utilised as a dimension reduction tech-

nique in a supervised classification, its maximisation of variance of the projected

patterns might not necessarily be in favour of discrimination among classes. This

problem has been identified in many literatures (Chen and Sun, 2005; Huang et al.,

2015; Fan et al., 2014; Qiu et al., 2012).

Solutions to this problem can be generally classified into three categories.

The first category of approaches add a subspace-based pre-processing step before

PCA. Data are firstly projected to a subspace which is more discriminative than the

original feature space and then the classic PCA can be implemented on this dis-

criminative subspace. This type of methods include discriminative common vectors

PCA (Cevikalp et al., 2005), dimension reduction by orthogonal projection for dis-

crimination (DROP-D) (Hadoux et al., 2015) and discriminative PCA (Qiao, 2019).

In discriminative common vectors PCA, data are firstly projected to the null space
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of SSSW and the classic PCA is implemented. In DROP-D, data are projected to the

null space of SSSB, then the within SSP matrix S̃SSW of the projected data is calculated

and the dominating directions in S̃SSW are discarded from the original feature space by

orthogonal projection. Then the classic PCA is implemented on the new subspace

orthogonal to the dominating directions in S̃SSW . Here we use the tilde symbol to dis-

tinguish the within SSP matrix S̃SSW of the projected data (projected on the null space

of SSSB), with the within SSP matrix SSSW of the raw data. While in the discriminative

PCA proposed by Qiao in 2019 (Qiao, 2019) data are projected to the intersection

of two subspaces, the range space of SSSB and the small eigenvector subspace of SSSW .

Here by small eigenvector subspace of SSSW we mean the subspace spanned by the

eigenvectors of SSSW with small eigenvalues, and then the classic PCA is implemented

on this intersection subspace. All these approaches are based on subspace method

and orthogonal projection.

The second category of approaches enhances the discriminating power of PCA

by combining supervised information into the feature generation procedure. The

most straightforward way to do it is to include the label variable into the data matrix

when implementing PCA (Chen and Sun, 2005). In robust discriminative PCA (Xu

et al., 2018), the idea of ridge regression is incorporated in the feature generation

of PCA. In this algorithm, features are generated with the target of simultaneously

minimising the prediction error of ridge regression and the reconstruction error of

PCA. Although this algorithm is not specialised for classification, it combines su-

pervised information within the classic PCA framework. Eigenboosting by Grabner

et al. (Grabner et al., 2007) tries to balance the discrimination power and generalisa-

tion power of features as well. Here the generalisation power is guaranteed by PCA

while the discrimination power is measured by a perceptron-based model. Features

providing a good balance between these two are generated.

The third category of approaches add a filter after the PC generation and re-

rank PCs according to their discriminating power. In other words, in this type of
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methods PCs are generated as usual, but the most discriminating ones are selected

and included in the calibration model while the non-discriminating ones are dis-

carded from the model. The discriminating power of a PC could be measured by

the similarity between this PC and the mean difference direction in the PC subspace

(Zhu and Martinez, 2006), or the similarity between this PC and the hyperplane sep-

arating vector of LDA and SVM in the PC subspace (Thomaz and Giraldi, 2010).

For example, the hyperplane separating vector in LDA is the transformation vector

www that maximises wwwT SSS′Bwww over wwwT SSS′W www where SSS′B and SSS′W are the between-group

SSP matrix and within-group SSP matrix in the PC subspace (Thomaz and Giraldi,

2010). The prime symbol is used here to distinguish the above scatter matrices from

the scatter matrices in the original feature space. Also, the discriminating power can

be measured by the Fisher’s discriminant ratio of different PCs (Huang et al., 2015)

or more naively the group mean difference of the corresponding PC scores (Grabner

et al., 2007).

1.3.4 Scaling in PCA

Scaling is another important topic in PCA. Rescaling all features for equal times

will magnify or reduce the total covariance matrix by the same times. This will

impact the magnitude of the covariance matrix and PCs, but not the direction of

PCs. Rescaling a subset of features will influence not only the magnitude of the

covariance matrix, but also the composition of it and will lead to totally different

PCs. In the new PCs the magnified features will own higher weights, the reduced

features will become own less weights.

Whether to conduct a rescaling before PCA depends on the data. If all variables

in the data are measured on the same scale having the same unit, it may be a good

idea not to rescale the variables. This is also the case of NIR. NIR spectroscopy

measures the transmittance or reflectance against NIR wavelengths and all variables

have the same scale. Thus in this thesis we do not do scaling before PCA.
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On the other hand, if you have different types of variables with different units,

it is probably wise to scale the data first. If some variables have scales very different

from the others, the variables with significantly high numerical values will have

more weights in the PCA because of their greater numerical values. In this case it

is wise to do rescaling before implementing PCA. For example, log transformation

is generally used to decrease the impact of dominant values.

1.4 Partial least squares discriminant analysis

1.4.1 Introduction to Partial Least Squares Regression and Par-

tial Least Squares Discriminant Analysis

Partial least squares regression (PLSR) is a statistical tool in modelling the relation-

ship between one or more response variables and multiple explanatory variables.

It is particularly suited when the matrix XXX of predictors has more variables than

observations, or when there is multicollinearity among the explanatory variables.

Unlike PCA which constructs components that contain the highest variability of

XXX , it tries to find latent variables that describe as much the variation of the input

variables as possible and simultaneously have maximal correlation with the target

value in YYY (Berrueta et al., 2007). PLS achieves this by maximising the covariance

of the constructed components and the response variables. Partial least squares dis-

criminant analysis (PLS-DA) is a widely applicable high-dimensional classification

method based on PLSR, using response variables which are categorical instead of

numerical. When dealing with c-class classification (c > 2), PLS-DA employs c

dummy variables with entries 0 or 1 to represent labels of c classes. Specifically, if

the i-th sample belongs to the j-th class, yi j = 1 while all yik = 0 for all 1 6 k 6 c

and k 6= j. In the implementation of multigroup PLS-DA an arbitrary column of

YYY is used as the starting vector uuu to calculate the weight vector (see the NIPALS

algorithm below for more details).
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PLSR can be regarded as a generalisation of multiple linear regression (MLR).

Traditionally, this modeling of YYY by means of XXX is done using MLR, which works

well as long as the XXX-variables are few and uncorrelated (Wold et al., 2001). How-

ever, when the number of variables exceeds the number of observations and when

there exists collinearity between variables, XXXT XXX is noninvertible and the collinearity

will lead to inaccurate estimates of model parameters and accordingly poor predic-

tion performance. In this case, PLSR is more used than MLR, as it can extract a

few predictive factors from strongly correlated, noisy and numerous XXX variables and

also simultaneously model the response variables (Wold et al., 2001).

There are many ways to implement PLS, including the nonlinear iterative par-

tial least squares algorithm (NIPALS) by Wold, et al. (Wold et al., 1984), the non-

orthogonalized scores algorithm by Martens, et al. (Martens and Naes, 1992), SIM-

PLS by De Jong (De Jong, 1993), etc. Here we only introduce the most widely

applicable algorithm, NIPALS (Wold et al., 1984).

We consider the general case in which the response variable has more than one

column. Assume the predictor variables XXX and the response variables YYY have been

transformed to have zero column means. Then the nonlinear iterative partial least

squares algorithm (NIPALS) is as follows:

(A) Get a starting vector uuu, usually one of the YYY columns (with a single yyy, uuu = yyy).

(B) The XXX-weights, www can be calculated as:

wwwold =
XXXT uuu
uuuT uuu

, (1.4.1)

and if ‖ · ‖ represents the L2-norm of a vector,

www =
wwwold

||wwwold||
. (1.4.2)
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(C) Then the XXX-scores, ttt:

ttt = XXXwww. (1.4.3)

(D) The YYY -weights, qqq can be calculated as:

qqqold =
YYY T ttt
tttT ttt

, (1.4.4)

and then normalised as:

qqq =
qqqold
||qqqold||

. (1.4.5)

(E) An updated set of YYY -scores, uuu is calculated as:

uuu =
YYY qqq
qqqT qqq

. (1.4.6)

(F) Iterate from step B) to step E) until the component ttt in the next two adjacent

iterations does not change significantly, i.e. ||tttold−tttnew||
||tttnew|| < η , where tttold and

tttnew are the same components obtained from two adjacent iterations and η is

a pre-defined small number. If this condition is satisfied, continue with step

G).

(G) The loading vector ppp of XXX can be calculated as:

pppold =
XXXT ttt
tttT ttt

, (1.4.7)

and normalised:

ppp =
pppold

||pppold||
. (1.4.8)

(H) Deflate the present component from XXX and YYY and replace XXX and YYY by the
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deflated matrices EEE and FFF in the generation of the next PLS component, i.e.

EEE = XXX− ttt pppT , (1.4.9)

FFF = YYY − tttqqqT . (1.4.10)

(I) Continue with the next component (back to step A) until the maximium number

of components is reached, or cross-validation shows that more factors will not

contribute to improving the prediction performance.

The matrices of WWW , TTT , PPP and QQQ can be obtained by combining the corresponding

vectors in the algorithm. Then an explicit relationship between XXX and YYY can be

denoted as:

YYY = XXXBBB+ ε, (1.4.11)

where

BBB =WWW (PPPTWWW )−1QQQT , (1.4.12)

and here ε is the error term.

Then for a new sample xxx, the corresponding predictive value would be:

ŷyy = xxxBBB. (1.4.13)

If used in binary classification, i.e. PLS-DA, then ŷyy = 1 if xxxBBB > 0 and ŷyy = -1 if

xxxBBB < 0.

In summary, as a multivariate regression method PLSR has the advantage of

coping with highly collinear and numerous predictor variables. Here the best num-

ber of components can be decided via cross-validation, with the target of minimising

prediction error. Similarly, the discriminant analysis PLS-DA based on PLSR is also

free from the constraint that the number of predictor variables should not exceed the

number of observations. For PLS-DA the best number of component can also be
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decided by cross-validation, with the target of maximising classification accuracy.

Compared with the unsupervised dimension reduction method PCA, PLS has the

advantage of taking the label information into consideration (Andrade-Garda et al.,

2009).

1.4.2 The optimisation idea behind the NIPALS algorithm

NIPALS is the most extensively applied PLS algorithm which was proposed in 1984

by Wold et al. (Wold et al., 1984). It finds PLS factors by iterations and deflations.

However, what NIPALS tries to optimise is not clear at first when it was proposed.

In this section we will show a brief derivation, from which we can clearly see what

optimisation problem NIPALS actually solves and how the NIPALS factors are alike

(Frank and Friedman, 1993).

From step B) in the NIPALS algorithm,

wwwold =
XXXT uuu
uuuT uuu

and www =
wwwold

||wwwold||
, (1.4.14)

then ||wwwold||=
||XXXT uuu||

uuuT uuu
and www=

wwwold

||wwwold||
=

XXXT uuu
uuuT uuu
· uuuT uuu
||XXXT uuu||

=
XXXT uuu
||wwwT uuu||

. (1.4.15)

From step C) we know,

ttt = XXXwww. (1.4.16)

From step D),

qqqold =
YYY T ttt
tttT ttt

and qqq =
qqqold
||qqqold||

, (1.4.17)

then ||qqqold||=
||YYY T ttt||

tttT ttt
and qqq =

qqqold
||qqqold||

=
YYY T ttt
tttT ttt
· tttT ttt
||YYY T ttt||

=
YYY T ttt
||YYY T ttt||

. (1.4.18)

From step E) we know,

uuu =
YYY qqq
qqqT qqq

= YYY qqq, (1.4.19)

as qqq is of norm 1. When the convergence is obtained, www, uuu, ttt are qqq are stable. Then
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we can substitute (1.4.16), (1.4.18) and (1.4.19) into (1.4.15),

www =
XXXT uuu
||wwwT uuu||

=
XXXTYYY qqq
||wwwTYYY qqq||

=
XXXTYYY · YYY T ttt

||YYY T ttt||

||wwwTYYY · YYY T ttt
||YYY T ttt|| ||

=
XXXTYYYYYY T ttt
||XXXTYYYYYY T ttt||

=
XXXTYYYYYY T XXXwww
||XXXTYYYYYY T XXXwww||

(1.4.20)

Assume λ = ||XXXTYYYYYY T XXXwww||, then

www =
1
λ

XXXTYYYYYY T XXXwww or λwww = XXXTYYYYYY T XXXwww. (1.4.21)

Here www is the eigenvector of XXXTYYYYYY T XXX . In fact, (1.4.21) is exactly the update rule

in the Power method used for computing the largest eigenvalue-eigenvector pair for

the symmetric matrix XXXTYYYYYY T XXX (Watkins, 2004). In other words, the loading vector

www found by NIPALS is the eigenvector corresponding to the largest eigenvalue of

XXXTYYYYYY T XXX .

Note that the eigenvector of XXXTYYYYYY T XXX corresponding to its largest eigenvalue

is the solution to this optimisation problem:

argmax
||www||=1

wwwT XXXTYYYYYY T XXXwww

=argmax
||www||=1

(YYY T XXXwww)T (YYY T XXXwww)

=argmax
||www||=1

(Cov(YYY ,XXXwww))T (Cov(YYY ,XXXwww)). (1.4.22)

Hence, NIPALS finds the loading vector www that maximises the covariance between

the PLS factor ttt = XXXwww and YYY .

1.4.3 PLS as a Discriminative Dimension Reduction Technique

Though both aim at extracting informative features from high-dimensional data,

PLS is generally regarded as a more applicable dimension reduction technique in

classification task compared with PCA (Berrueta et al., 2007). One obvious reason

is that PCA and PLS have different goals in the feature generation. PLS aims at
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maximising the covariance between yyy and the generated feature while PCA aims

at maximising the variance of the feature itself. In other words, PLS makes better

use of the label information than PCA and thus can generate features with higher

correlation with the response variable. According to Friedman et al. (2001b), this

can be easily shown:

In PCA, the m-th principal direction vvvm solves:

max
vvvm

Var(XXXvvvm),

subject to ||vvvm||= 1 and vvvT
mSSSvvvl = 0, for l = 1,2, . . . ,m−1. (1.4.23)

Here SSS is the sample covariance matrix of data. The condition vvvT
mSSSvvvl = 0 ensures

that the m-th feature tttm = XXXvvvm is uncorrelated with all the previous features ttt l =

XXXvvvl , for l = 1,2, . . . ,m−1, note that:

(tttm− t̄ttm)
T (ttt l− t̄tt l) = (tttm− x̄xxT vvvm)

T (ttt l− x̄xxT vvvl) = (tttm−0)T (ttt l−0) = tttT
mttt l

= (XXXvvvm)
T (XXXvvvl) = vvvT

mXXXT XXXvvvl = (n−1)vvvT
mSSSvvvl = 0, (1.4.24)

where x̄xx is the column mean of XXX . Since in PCA XXX is mean-centred, x̄xx = 0.

While in PLS with univariate yyy, the m-th PLS direction wwwm solves:

max
wwwm

Cov(yyy,XXXwwwm),

⇔max
wwwm

√
Var(XXXwwwm)Corr(XXXwwwm,yyy)

√
Var(yyy),

⇔max
wwwm

√
Var(XXXwwwm)Corr(XXXwwwm,yyy),

⇔max
wwwm

Var(XXXwwwm)Corr2(yyy,XXXwwwm).

subject to ||wwwm||= 1 and wwwT
mSSSwwwl = 0, for l = 1, . . . ,m−1. (1.4.25)
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Here the constraint wwwT
mSSSwwwl = 0 guarantees that the m-th PLS score tttm is orthogonal

to the previous scores as:

tttT
mttt l = (XXXwwwm)

T XXXwwwl = wwwT
m(XXX

T XXX)wwwl = (n−1)wwwT
mSSSwwwl = 0, (1.4.26)

for l = 1 , . . . , m−1. However unlike PCA, here the orthogonality between wwwm and

wwwl cannot be guaranteed. As mentioned in the last section, there are other versions

of PLS with different constraints. In some other algorithms, for example, in the non-

orthogonalised scores PLS algorithm (Martens and Naes, 1992), the loading vectors

wwwm and wwwl are orthogonal, but the scores tttm and ttt l are non-orthogonal. Unlike PCA,

PLS cannot have both orthogonal loadings and uncorrelated (or orthogonal) scores.

It needs to choose one from orthogonal scores and orthogonal loadings.

Comparing formula (1.4.14) with (1.4.25), the feature generation criterion of

PLS penalises the criterion of PCA with a correlation term Corr2(yyy,XXXwwwm). Thus the

generated PLS features will have stronger power in predicting the response variable,

i.e. the class label in classification task. Then the PLS factors are in general regarded

as higher discriminating power than PCs.

The discriminating ability of PLS can be more clearly seen by analysing the

direction of the first PLS component in classification. Here for simplicity we assume

a binary classification task with balanced sample size, n1 = n2 =
1
2n and yi = 1 if

sample i belongs to class 1 and yi =−1 if sample i belongs to class 2.

Firstly, the data can be centred by:

XXX = XXX0−hhhx̄xx0, (1.4.27)

yyy = yyy0−hhhȳyy0. (1.4.28)

Here XXX0 and yyy0 are the original uncentred data, x̄xx0 contains the column mean of XXX0

while ȳyy0 is the mean of yyy, hhh ∈ Rn×1 is a column vector of 1s. Note that under our
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setting yyy0 already has zero mean. Nevertheless, to follow the classic PLS framework

and without loss of generality, here we still implement the centralisation of yyy0.

The first loading vector www1 maximises the sample covariance of the first feature

ttt1 = XXXwww1 and the centred yyy. The sample covariance of a mean-centred n×m matrix

X̃XX and a mean centred n× p matrix ỹyy is defined as:

Cov(X̃XX , ỹyy) =
1

n−1
X̃XXT ỹyy. (1.4.29)

Here XXXwww1 is a mean-centred n×1 vector and yyy is a mean centred n×1 vector, then:

max
www1

Cov(XXXwww1,yyy),

⇔max
www1

1
n−1

(XXXwww1)
T yyy,

⇔max
www1

wwwT
1 XXXT yyy,

⇔max
www1

wwwT
1 (n1x̄xx1−n2x̄xx2),

⇔max
www1

wwwT
1 (x̄xx1− x̄xx2),

⇔max
www1

(x̄xx1− x̄xx2)
T www1. (1.4.30)

Here x̄xx1 and x̄xx2 are the column vectors containing the column mean of the two

classes. Aiming at maximising Cov(yyyT ,XXXwww1), www1 has to be in the same direction

as (x̄xx1− x̄xx2) with norm 1. Namely,

www1 =
(x̄xx1− x̄xx2)

(x̄xx1− x̄xx2)T (x̄xx1− x̄xx2)
. (1.4.31)

Then the first PLS factor,

ttt1 = XXXwww1. (1.4.32)

By simple algebra we can find, to maximise covariance between ttt and yyy, the

first PLS projection direction www1 needs to be in the mean difference direction. This
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mean difference direction contains information about different group means and it

often can contribute to the separation of the two classes. Thus PLS is generally re-

garded as of higher discriminating power than PCA. Nevertheless, this is not always

true. It was shown in many real examples that PCA-based models gave more accu-

rate classification than PLS-based models, (Khan et al., 2018; Sampson et al., 2011)

and it was shown in many other literatures that if the label information can be com-

bined in the PCA algorithm, even better classification can be obtained (Yu et al.,

2006; Perez and Narasimhan, 2018). This is the reason why we want to develop

discriminative PCA algorithms.

1.4.4 Nonlinear PLS

PLSR is an extension of MLR to cope with high dimensional and highly collinear

data. It builds a linear relationship for the feature ttt generated from XXX and the feature

uuu from YYY . An important extension to the classic PLS algorithm is not to simply

consider a linear relationship, but also take into account the nonlinear relationship

among variables.

One of the most straightforward way to build nonlinear PLS is to expand the

data matrices by nonlinear terms (such as quadratic terms, cubic terms, logarithms,

etc.) and then apply the classic linear PLS framework in the nonlinear data frame.

Many nonlinear PLS algorithms have been developed based on this idea in the past

three decades (Wold et al., 1989; Berglund and Wold, 1997; Baffi et al., 1999; Ver-

dun et al., 2012). Several quadratic PLS algorithms have been built by integrating

quadratic features within the linear framework (Baffi et al., 1999; Mejdell and Sko-

gestad, 1991). For example, the input matrix can be extended by including second

order terms of the original variables (square terms and interactions) and then a lin-

ear PLS can be performed on the extended input and output matrices (Wold et al.,

1989). This approach can be generalised by applying quadratic transformations

to both the predictor and the predicted variables (Mejdell and Skogestad, 1991).
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However, the number of nonlinear terms increases excessively with the dimension

of variables and the results become difficult to compute and interpret (Baffi et al.,

1999). Afterwards, this type of methods has been further developed by employing

the kernel trick. The original data space can be expanded to an even higher dimen-

sional feature space by various kernel functions and the classic linear PLS algorithm

is implemented on this high-dimensional feature space (Rosipal et al., 2003; Rosipal

and Trejo, 2001).

Another way to develop nonlinear PLS models is to introduce a nonlinear func-

tion between the predictor and the response latent variables without modifying the

input and output matrices. Wold et al. (Wold et al., 1989) proposed a polynomial

PLS algorithm which modified the relationship between the output scores uuu and the

input scores ttt to be polynomial. Wold then went on to propose a SPLINE-PLS al-

gorithm where a smooth bivariate spline function (quadratic or cubic) was used to

fit the non-linear mapping between each pair of latent variables (Wold, 1992).

The idea behind these nonlinear PLS algorithms is that, a linear function is

sometimes not sufficient to model the relationship between the predictors and the

response variables. This idea, especially the idea of quadratic PLS, has given rise

to our penalised QDA algorithm, which will be discussed in detail in Chapter 3.



Chapter 2

Reweighted PCA and Reordered

PCA

2.1 Introduction

As discussed in the introductory chapter the classic PCA has many limitations, such

as its sensitivity to the outliers and deficiency in constructing nonlinear features.

Apart from these, one limitation of PCA has drawn considerable attention from

researchers. As an unsupervised method, PCA fails to use the class labels of the ob-

servations (Chen and Sun, 2005; Huang et al., 2015). As a result, when it is utilised

as a dimension reduction technique in a classification, its maximization of variance

of the projected patterns might not necessarily be in favour of discrimination among

classes. If the total variation is mainly caused by the difference between different

classes, the generated PCs will work well for classification. However, if the total

variability is mainly caused by the variance within classes, then these features may

not be useful in classification (Fan et al., 2014). This problem has been identified

in many literatures (Chen and Sun, 2005; Huang et al., 2015; Qiu et al., 2012; Fan

et al., 2014) and can be easily illustrated by the following example. Figure 2.1.1 is

an illustrative example showing that large variability does not always relate to good

discriminability. Assume the blue spots and the red spots are the two classes in the
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(a) Data in 3 dimensions (b) Projections onto x2 and x3 (c) Projections onto x1 and x3

Figure 2.1.1. An illustrative example where PCA fails to extract discriminative features

3-dimensional space (see Figure 2.1.1 (a)), and our target is to extract features to

efficiently separate the two classes. Most of the variability is in the x2 & x3 plane,

and the first two PCs will be dominated by these variables. However the direction

needed for discrimination is x1.

There are various kinds of approaches to avoid this problem. One straightfor-

ward idea would be instead of using PCA to extract features, supervised feature ex-

traction methods can be employed. This kind of approach is widely used in pattern

recognition, especially, face recognition (Ye and Xiong, 2006; Bhele and Mankar,

2012). As discussed in the last chapter, the most well-known supervised feature ex-

traction method is LDA. However, LDA fails to work when the number of variables

exceeds the sample size. Therefore, extensions of LDA to deal with small sample

size (SSS) issues have been investigated in many literatures (Sharma and Paliwal,

2015b; Yu and Yang, 2001; Chen et al., 2000; Ye, 2005). Among them RDA, OLDA

and NLDA are the best-known ones (Ye and Xiong, 2006). They can be used as fea-

ture extraction methods in the SSS case. However, it was shown in some real data

experiments that using variants of LDA to directly extract features has led to in-

ferior performance compared with applying the conventional LDA after dimension

reduction with PCA (Prasad et al., 2010). Although dimension reduction with PCA

might fail to use the supervised information to extract discriminative features, it is
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conducive to noise reduction and is still a commonly used step in high-dimensional

classification.

The second kind of solutions are implemented by combining the supervised

information in the feature extraction step of PCA, so as to generate more appro-

priate features for discrimination. As PCA is based on eigendecompositon of the

sample covariance matrix, Chen and Sun suggested to put the class label at the end

of sample matrix as the additional dimension and conducted eigendecomposition on

the new covariance matrix (Chen and Sun, 2005). Similar to NLDA, Hadoux et al.

identified a subspace of within-group variation that was orthogonal to the between-

group variation, and projected data orthogonal to this subspace before implementing

PCA (Hadoux et al., 2015). They claimed the between-group variation was always

important in classification while the within-group variation did not contain much

discriminative information. By projecting data orthogonal to the within-group vari-

ation subspace, they excluded some dimensions in the within-group variation that

were unhelpful in discrimination. This method is most appropriate for LDA, which

takes no account of the difference of within-group variation of different groups.

However, it can be argued that the within-group variation can contain discriminative

information as well. Totally excluding it from the model may have the risk of losing

discriminative information. This can be illustrated in the following example.

Figure 2.1.2 is the scatter plot of two classes in a 3-dimensional space. The

blue spots and the red spots represent samples from the two classes respectively.

As shown, the blue class mainly varies in x1 direction while the red class mainly

varies in x2 direction. The two classes show a slight mean difference in x3 direction.

In binary classification, the between-class variation is the variance of two group

means and it is significant in classification, while x1 and x2 only contain within-

group variation and are orthogonal to the between-class variation. Hadoux et al.

suggested that these two dimensions should be discarded from the feature space.

However, in this illustrative example the directions x1 and x2 expose very different



2.1. Introduction 57

within-class variation structures of the two classes. Class 1 varies in the x1 direction

while class 2 varies in the x2 direction. Most of the samples can be categorised

into the correct group using information provided by x1 and x2 dimensions. In

other words, although x1 and x2 mainly describe within-group variability and are

orthogonal to the between-group variation, they have considerable discriminative

power as well. If there is noise in the x3 direction this additional within-group

information can be very valuable. Accordingly, discarding the whole within-group

variation may lose some discriminant information.

Figure 2.1.2. An illustrative example showing the discriminatory power of within-group variation

In the c-class classification, the total covariance can be decomposed as the

weighted sum of a between-group covariance matrix and c within-group covari-

ance matrices (Krzanowski, 2000). The between-group covariance is the variance

of the group means. It reflects location difference of the groups and is usually dis-

criminative. In terms of dimensions in the within-group covariance, they are non-

discriminative if they correspond to the common variation of different groups and

are discriminative if they correspond to the distinct characteristic of an individual

class (Fan et al., 2014). This has led to the development of our reweighting PCA

algorithms. As shown in the first illustrative example, the total covariance matrix
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can be dominated by the within-group covariance, especially when the data are of

high dimension. Accordingly, the information contained in the between-class co-

variance may not appear in early PCs. Based on this idea, we consider highlighting

the discriminative between covariance over the within covariance by giving it higher

weight. Similarly, the weights of the within-group covariance matrices can be mod-

ified as well. They are naturally weighted by the sample size of each group. How-

ever, these may not be the best weights for discrimination. The within covariance

that can describe distinct variation structure would ideally be highlighted over those

that mainly describe common variations. Based on the above idea, we propose two

reweighting algorithms, one called reweighted PCA, in which the c+1 covariance

matrices are all reweighted by introducing c weight parameters. The second algo-

rithm is called between-PCA, in which dimensions from between-group covariance

are extracted first, and then the c within-group covariances are reweighted. In both

cases the best weight can be obtained by cross-validation. These two algorithms

will be introduced in detail in the next section.

Apart from replacing PCA with a supervised feature extraction method or

modifying the feature extraction step of PCA, the third kind of approach is to gen-

erate PCs as the classic algorithm does, but select the discriminative ones from the

generated ones. This approach is implemented by adding a feature filtering step

to the classic PCA and it is very easy to apply. The key step in this kind of ap-

proach is how to measure the discriminative power of PCs. Huang et al. (2015)

proposed to re-rank PCs according to the Fisher criterion. In other words, they

used the idea of LDA to evaluate the discriminatory power of PCs. However as we

said, LDA takes no account of the difference of within-group variation and accord-

ingly neglects the discriminative information contained in the within covariances.

Compared with LDA, QDA can better recognise the difference of within variation

and identify the corresponding discriminative features. In this thesis, we propose

two QDA based reordered PCA algorithms, in which the generated PCs are ranked
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by the classification performance of QDA using the corresponding PCs as the new

predictors. PCs corresponding to high classification accuracy are considered more

discriminative and then selected into the model. Compared with the LDA-based

reordered PCA algorithm that Huang, et al proposed in 2015, our algorithms have

three improvements: 1) We use QDA to select PCs instead of LDA, which can make

better use of the discriminative information in the within covariance. 2) A cut-off

number q is set to avoid the influence of noise and only the first q PCs are taken into

reordering instead of using all the features. The most discriminative k PCs out of q

are selected. Here both q and k can be tuned via cross-validation. 3) We allow the

PCs to be selected individually, or jointly in a stepwise manner.

In summary, in this chapter we propose four PCA-based discriminative di-

mension reduction methods, reweighted PCA, between PCA, reordered PCA and

stepwise-reordered PCA, to remedy the deficiency of the classic PCA algorithm in

high-dimensional classification problems. The full algorithms will be discussed in

detail in the next section.

2.2 Methodologies

2.2.1 Decomposition of the total covariance matrix

As shown in, for example, Krzanowski (2000) if data can be categorised into mul-

tiple groups the total sample covariance matrix can be decomposed as the sum of

within-group covariances and between-group covariances of different group means.

Suppose our data contain c groups and n samples in total, ni is the number of

data examples xxxi1, xxxi2, . . . , xxxini in group i ( where i 6 c and n = ∑
c
i=1 ni), and x̄xxi is

a column vector containing the mean of group i. Then the within-group covariance

SSSi of class i can be denoted as:

SSSi =
1

ni−1

ni

∑
j=1

(xxxi j− x̄xxi)(xxxi j− x̄xxi)
T , (2.2.1)
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where the superscript T denotes transpose of the vector.

Assume x̄xx to be the mean vector of all data examples, then the between-class

sum-of-squares and products matrix,

SSSB =
c

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T . (2.2.2)

As shown in Krzanowski (2000), the total sample covariance SSST can be de-

composed as follows:

SSST =
1

n−1
(

c

∑
i=1

(ni−1)SSSi +SSSB). (2.2.3)

The full derivation is shown in the Appendix A.

Assume SSS
′
i = ni−1

n−1 SSSi and SSS
′
B = 1

n−1SSSB, then:

SSST =
c

∑
i=1

SSS
′
i +SSS

′
B. (2.2.4)

Note that as shown in the first chapter, PCA can then be implemented via eigen-

decomposition of this total covariance matrix.

2.2.2 Reweighting algorithms

2.2.2.1 Reweighted principal component analysis (Reweighted

PCA)

As shown in section (1.2.1), in binary classification the between-group covariance

SSS
′
B = 1

n−1SSSB = n1n2
n(n−1)(x̄xx1− x̄xx2)(x̄xx1− x̄xx2)

T contains information about different group

means. Here SSS
′
B is a matrix with rank 1 and the only nonzero eigenvector of SSS

′
B is the

unit vector in the mean difference direction (x̄xx1− x̄xx2). As we discussed, the mean

difference direction is usually conducive to distinguishing the two classes. In other

words, in binary classification the between-group covariance SSS
′
B contains important

information discriminating the two classes and should be attached more emphasis.
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While in multi-class classification the between-class sum-of-squares and prod-

ucts matrix:

SSSB =
c

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T

=
c

∑
i=1

ni(x̄xxix̄xxT
i − x̄xxx̄xxT

i − x̄xxix̄xxT + x̄xxx̄xxT )

=
c

∑
i=1

nix̄xxix̄xxT
i − x̄xx

c

∑
i=1

nix̄xxT
i − (

c

∑
i=1

nix̄xxi)x̄xxT +
c

∑
i=1

nix̄xxx̄xxT

=
c

∑
i=1

nix̄xxix̄xxT
i −nx̄xxx̄xxT

=
c

∑
i=1

nix̄xxix̄xxT
i −

1
n

( c

∑
i=1

nix̄xxi
)
·
( c

∑
i=1

nix̄xxT
i
)

=
1
n

( c−1

∑
i=1

c

∑
j=(i+1)

nin j(x̄xxi− x̄xx j)(x̄xxi− x̄xx j)
T
)
, (2.2.5)

also contains the discriminative mean difference information and the between-group

covariance SSS
′
B = 1

n−1SSSB should also be emphasized. In other words higher weight

is expected to attach to this between-group covariance over the within-covariance.

Similarly, to emphasize the distinct variation pattern of an individual class, it is

useful to attach different weights to different within covariance matrices.

Accordingly, we introduce c parameters to (2.2.4) to modify the relative weight

of these c+1 covariance matrices. Here α is used to modify the weight of between

covariance relative to the pooled within covariance while βi (i 6 c− 1) is used to

change the relative weights of the within covariance matrices.

Then the reweighted total sample covariance matrix SSS
′
T can be denoted as:

SSS
′
T = (1−α)SSS

′
W +αSSS

′
B, (2.2.6)

where

SSS
′
W = β1SSS

′
1 +Σ

c−1
l=2 Π

l−1
s=1(1−βs)βlSSS

′
l +Π

c−1
i=1 (1−βi)SSS

′
c, (2.2.7)
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is the reweighted pooled within covariance.

Here all the weight parameters α and β ’s can take values from 0 to 1. The

larger α is, the more importance is attached to the between covariance SSS
′
B. The

larger βi is, the more highlighted is SSS
′
i over the other SSS

′
j’s for all j 6= i. Note that in

the c-class case, the natural weighting is α= 1
c+1 and βi = 1

c+1−i . With this weight,

the reweighted total sample covariance SSS
′
T is equivalent to the original sample co-

variance matrix SSST up to a scalar. This can be easily shown as follows. When

α= 1
c+1 and βi = 1

c+1−i (i = 1,2, . . . ,c−1), the reweighted total covariance

SSS
′
T =(1− 1

c+1
)SSS
′
W +

1
c+1

SSS
′
B

=
c

c+1

(1
c

SSS
′
1 +Σ

c−1
l=2

(
Π

l−1
s=1

c− s
c+1− s

)
1

c+1− l
SSS
′
l

+

(
Π

c−1
i=1

c− i
c+1− i

)
SSS
′
c

)
+

1
c+1

SSS
′
B

=
1

c+1

c

∑
i=1

SSS
′
i +

1
c+1

SSS
′
B

∝

c

∑
i=1

SSS
′
i +SSS

′
B = SSST .

(2.2.8)

As shown, if α= 1
c+1 and βi = 1

c+1−i (i = 1,2, . . . ,c−1) the reweighted total covari-

ance SSS
′
T is proportional to the origianl covariance SSST . As eigendecomposition will

not be affected by the magnitude of proportional matrices, identical eigenvectors

will be extracted for SSS
′
T and SSST . Namely identical PC directions will be gener-

ated before and after reweighting. Accordingly, these weights can be regarded as a

baseline to compare with. If running as a dimension reduction before classification,

the best weights can be found via cross-validation with the target of minimising

classification error rate in the cross-validation.

Here as all the weight parameters are bounded in [0,1], one naive idea could

be finding the best weights by grid search. However grid search is extremely

time-consuming in practice. Instead we use the Nelder-Mead simplex optimisation
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method (Nelder and Mead, 1965) to find the optimal value for α and βi’s. However,

as Nelder-Mead is an unconstrained method, a large loss is added to the objective

function when any α or β goes beyond the range [0,1].

With each combination of α and β ’s we could reconstruct a total covariance

matrix according to equation (2.2.6) and (2.2.7), then the reweighted PCA can pro-

ceed by carrying out eigendecomposition on the reweighted total sample covari-

ance matrix SSS
′
T and then projecting data to the subspace with lower dimension as

the classic PCA does. Note that the reweighted sample covariance matrix can be

decomposed as:

SSS
′
T =VVV

′
ΣΣΣ
′
(VVV
′
)T , (2.2.9)

where VVV
′ ∈ Rp×p contains the eigenvectors of the reweighted total covariance SSS

′
T

as its columns and ΣΣΣ
′

contains eigenvalues of SSS
′
T , σ

′
1 > σ

′
2>. . .>σ

′
p. The first k PC

loadings can be selected as usual and data can be projected to the subspace of lower

dimension:

ZZZ
′
k = XXXcVVV

′
k. (2.2.10)

Here XXXc is the centred data matrix and ZZZ
′
k are the first k PCs of this reweighted PCA

algorithm.

Afterwards, classification with QDA can be carried out on the projected data of

lower-dimension. The number of components k kept in the model can be chosen by

the classification performance. For each possible k, we implement the reweighting

algorithm and find the best α and βi (i = 1,2, . . . ,c− 1). The specific k that pro-

vides the most precise classification in the cross-validation with the corresponding

weights α and βi is selected as the optimal k.

So far we have shown the reweighted PCA algorithm in the general c-class

case. In this thesis we focus on the two-class and three-class classification problems.

In the binary case, equation (2.2.6) can be simplified as:
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SSS
′
T = (1−α)(βSSS

′
1 +(1−β )SSS

′
2)+αSSS

′
B, (2.2.11)

and only two weight parameters are needed.

2.2.2.2 Between principal component analysis (Between PCA)

As discussed, the between covariance usually contains information useful for group

separation and thus should be highlighted. Combining this idea with reweighting,

it is reasonable to consider extracting PCs from the between covariance first and

then reweighting the within-group covariance matrices before extracting further PCs

from their combination.

Note that SSS
′
B = 1

n−1SSSB and together with equation (2.2.2), the between-class

covariance in the c-class case:

SSS
′
B =

1
n−1

c

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T . (2.2.12)

Here SSS
′
B is a matrix of rank c− 1 and the PCs of SSS

′
B can be obtained by eigen-

decomposition,

SSS
′
B =VVV BΣΣΣBVVV T

B , (2.2.13)

where VVV B contains the orthonormal eigenvectors of SSS
′
B as its columns and ΣΣΣB con-

tains the corresponding eigenvalues. And then

ZZZB = XXXcVVV B, (2.2.14)

become the first (c−1) PCs of this between PCA algorithm.

To keep the orthogonality of PCs data are projected to the p− (c−1) dimen-

sional subspace orthogonal to the subspace spanned by VVV B, i.e.,

X̃XXc
= XXXc(III−VVV BVVV T

B). (2.2.15)
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In the p− (c− 1) dimensional subspace, the within-group covariance of each

class can be denoted as usual:

S̃SSi =
1

ni−1

n1

∑
j=1

(x̃xxi j− ¯̃xxxi)(x̃xxi j− ¯̃xxxi)
T , (2.2.16)

for all i 6 c. Here the within-group covariance is calculated with the projected data

instead of the raw data and the tilde symbol is used to distinguish the projected data

from the raw one.

Then the pooled within covariance:

S̃SSW =
c

∑
i=1

ni−1
(∑c

i=1 ni)− c
S̃SSi. (2.2.17)

As before, c−1 parameters can be applied into the above formula, so as to modify

the relative weights of these c within covariance matrices, and we have:

S̃SS
′

W = β1S̃SS
′

1 +Σ
c−1
l=2 Π

l−1
s=1(1−βs)βl S̃SS

′

l +Π
c−1
i=1 (1−βi)S̃SSc

′
, (2.2.18)

where S̃SS
′

i =
ni−1

(∑c
i=1 ni)−c S̃SSi for 1 6 i 6 c. Here all the weight parameters are from [0,1].

The larger βi is, the more highlighted is S̃SS
′

i over the other S̃SS
′

j for all j 6= i. Similar to

the reweighted PCA, the optimal values of the weight parameters can be obtained

by Nelder-Mead simplex optimisation, aiming at minimising the cross-validation

classification error rate with QDA. With each specific weight series of β we can

reconstruct a pooled within covariance matrix according to equation (2.2.18). Then

the within PCs can be obtained by eigendecomposition of the reweighted pooled

within covariance, i.e. we have:

S̃SS
′

W =VVVW Σ̃ΣΣWVVV T
W , (2.2.19)
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where VVVW contains the eigenvectors of S̃SS
′

W as its columns, then:

ZZZW = X̃XXcVVVW , (2.2.20)

are the within PC scores of this between PCA algorithm. Then combined with

the between PCs ZZZB in equation (2.2.14), the full PCs ZZZ = (ZZZB,ZZZW ) can be ob-

tained. Here the number of PCs kept in the model can be chosen as usual, by

cross-validation. As the between covariance is usually discriminative, we normally

take all PCs from ZZZB. In this case, the cross-validation is mostly used to determine

the number of PCs retained from ZZZW .

So far we have shown the between PCA algorithm in the general c-class case.

In this thesis we focus on the two-class and three-class classification problems. In

binary classification this between PCA algorithm can be simplified, for in this case

the only nonzero eigenvector of SSS
′
B is:

vvvB =
(x̄xx1− x̄xx2)√

(x̄xx1− x̄xx2)T (x̄xx1− x̄xx2)
. (2.2.21)

Therefore we only need to project data orthogonal to this mean difference direction

vvvB, and in this case equation (2.2.18) can be simplified as:

S̃SS
′

w = β S̃SS
′

1 +(1−β )S̃SS
′

2. (2.2.22)

Since here we have only one parameter to tune, the one-dimensional bounded op-

timisation method (Brent, 2013) can be applied to search for the optimal weight

β .
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2.2.3 Reordering algorithms

2.2.3.1 Reordered principal component analysis (Reordered PCA)

Similar to the reweighting algorithms, the reordering algorithms also target mak-

ing PCA a more appropriate dimension reduction technique in classification. The

reweighting algorithms accomplish this by modifying the covariance matrix and

then generating more discriminative PCs, while the reordering algorithms accom-

plish this by ordering the classic PCs by their discrimination power and selecting

the discriminative ones from them.

As in the classic algorithm, data are centred first and the covariance matrix

is calculated as usual. However in the reordered PCA, PCs are no longer ranked

by their associated eigenvalues, they are sorted by their discrimination power in a

classifier. In the proposed method we use QDA as the classifier. Compared with

LDA, QDA can better utilise different within-group covariance structure to identify

the discriminative information in within-group covariance. Accordingly, the dis-

crimination power of a PC can be defined as the classification accuracy when data

are projected to this specific PC direction and the corresponding projections are

used as the single predictor of a QDA model. This predictive power can be assessed

by cross-validation using a single PC in QDA.

We set a cut-off point in the reordering algorithm. We only take the first q

PCs into the reordering scheme and the most discriminative k PCs out of q PCs are

selected for discrimination. Here both k and q can be tuned by cross-validation.

The reason for setting up a cut-off point is threefold. First, in the classic PCA PCs

with very small eigenvalues are more likely to contain noise instead of capturing

any valid information about the data and thus taking these PCs into consideration

will not contribute to classification. Second, with the decrease in eigenvalues the

estimation of PCs gets more and more difficult. The estimate of small PCs can be

unstable. For example, the 20th PC in each fold can be much different in direction
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than the first a few PCs. Thus invoking PCs at the tail by their index may not be

a good idea. Third, a cut-off point can help saving computing time. Nevertheless,

it is worth further investigating the impact of the cut-off point on the reordered

algorithm. This can be regarded as an influential future work.

In this reordered PCA algorithm, the constraint of the first q PCs guarantees

the generalisation power of the features while the reordering scheme enhances the

discriminative ability of the features. Combining both robustness and discriminabil-

ity, this reordered PCA algorithm is expected to work better with the subsequent

classification with QDA, especially when the total covariance matrix is dominated

by some common but not discriminative features.

2.2.3.2 Stepwise-reordered principal component analysis (Stepwise-

reordered PCA)

Stepwise-reordered PCA is a similar idea to the reordered PCA. Instead of ranking

PCs by their contribution to the total variability we rank PCs by their discrimination

power. However as the name implies, in the stepwise-reordered PCA, PCs are no

longer ranked and selected individually, they are ranked sequentially to build a clas-

sifier.

Specifically, in the stepwise-reordered PCA the first PC(1) is the one that pro-

vides the highest classification accuracy with the univariate QDA. Namely, the first

stepwise-reordered PC is the same as the first PC in the reordered PCA algorithm.

In the stepwise algorithm, the second PC is the one that provides the most accurate

two components QDA with the pre-selected predecessor. The rest of the PCs can

be selected in the same manner. As usual, both the number of PCs considered q and

the number in the final classifier k can be tuned by LOOCV in the training set.
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2.3 Examples
Two near infrared spectral data sets, a wheat data set and a paddy rice data set, have

been explored to illustrate the superiority of our discriminative PCA algorithms to

the classic algorithm in high-dimensional classification.

2.3.1 Binary classification with wheat data set

The wheat data consist of NIR transmission spectra on 292 samples of un-

ground wheat. The spectra were measured using a Tecator Infratec Grain Analyzer

which measures transmittance through the wheat sample of radiation at 100 wave-

lengths from 850 to 1048 nm in steps of 2 nm (Fearn et al., 1999). The wheat sam-

ples were classified into nine varieties, on the basis of known provenance, and the

sample size for each variety can be found in Table 2.3.1. Here one binary classifi-

cation example and one three-class classification example will be discussed with

the wheat data. Improvement in classification accuracy can be witnessed in both

binary and multi-class cases by replacing the classic PCA with our discriminative

dimension reduction algorithms.

Variety 1 2 3 4 5 6 7 8 9 Total

Number of samples 52 14 36 29 68 13 16 37 27 292

Table 2.3.1

Composition of the wheat data set

From Table 2.3.1, variety 2, variety 6 and variety 7 have very limited samples

and thus these three varieties have been excluded from our classification example.

To do binary classification, we need choose a pair of groups from the other six

groups. There are 15 possible pairs considering 6 possible varieties. Apart from

the pair of variety 1 and variety 5 and the pair of variety 1 and variety 9, which can

be well separated by classic PCA-QDA with less than 8% classification error rate,
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decrease in classification error rate can be witnessed from all of the other 13 pairs

(see Appendix B) with our reweighted PCA algorithm. Here we choose two groups

with relative comparable sample size to prevent from the impact of data unbalance

on the example. Here we use variety 3 and variety 9 as our example to illustrate the

idea of our reweighting and reordering algorithms. The composition of our target

data can be found in Table 2.3.2.

Class Number of samples
Class 1 (Variety 3) 36
Class 2 (Variety 9) 27

Total 63
Table 2.3.2

Composition of the two target classes

A plot of the spectra of the two classes can be found in Figure 2.3.1. In the

figure, each curve represents the spectrum of a sample. The blue curves in figure

(a) represent the spectra of samples from class 1 while the red curves in figure

(b) represent those of class 2. Here the number of wavelenghs is 100, while the

number of observations is 63. The number of predictors exceeds the number of

observations. A small number of discriminative features need to be extracted from

the original high-dimensional data and then classification will be implemented on

the new features.

Here we take the second derivative of the spectra as our data. Since the second

derivative of the spectra removes the additive baseline shift and the multiplicative

effect of the spectra, it is much likely to lead to higher classification result than the

raw spectra. Here we choose to use the second derivative as it provides the most ac-

curate classification with the methods. In general, the selection of the raw data, first

derivative or second derivative mostly depends on the corresponding classification

performance. We choose the one that gives the most accurate classification results

with the pre-selecting methods. The second derivative of the spectra is shown in
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Figure 2.3.2.

(a) Spectra of samples from class 1 (b) Spectra of samples from class 2

Figure 2.3.1. Spectra of wheat samples from class 1 (variety 3) and class 2 (variety 9)

(a) Second derivative of spectra from class 1 (b) Second derivative of spectra from class 2

Figure 2.3.2. Second derivative of spectra of wheat samples

Our reweighting algorithms (reweighted PCA and between PCA) and reorder-

ing algorithms (reordered PCA and stepwise-reordered PCA) are applied to extract

discriminative features from high-dimensional spectral data. Their performances

with QDA classifier are compared with that of PCA and PLS. Here PLS-QDA pro-

ceeds by generating factors according to the principle of PLS, maximising the co-

variance of the generated factors and the categorical response variables, and then

using the generated factors in the QDA classifier. We use QDA as the classifier

instead of LDA based on two reasons: 1) As we discussed before, compared with

LDA, QDA can better identify the discriminative information in within-group co-

variance. 2) Empirically, QDA can provide lower classification error rate in this
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example than LDA.

Here performance of the above six methods in the leave-one-out cross-

validation (LOOCV) will be discussed first, so as to illustrate the idea of the six

methods in this specific example. Afterwards, results of a double cross-validation

will be presented as a verification of performance. To begin with, classification per-

formances of the above methods in the LOOCV are shown in the following figure.

Figure 2.3.3 shows the classification performance of the above six high-

dimensional classification methods via LOOCV. In the figure, the black line and the

green line represent classification error rates of classic PCA-QDA and PLS-QDA.

The other four coloured lines show the classification error rates of our modified

algorithms.

Figure 2.3.3. LOOCV classification error rate of the wheat data with classic PCA-

QDA, Reweighted PCA-QDA, Between PCA-QDA, Reordered PCA-

QDA, Stepwise-reordered PCA-QDA and PLS-QDA.

Considering the limited sample size, here we only explore models with no

more than 12 components. Around 95% of the total variation can be explained by

these 12 components. It was argued in many literatures that in PCA capturing 85%

or 90% of the total variation would be sufficient while including more features into
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the model has the risk of bringing in noise and damaging further analysis (Ferré,

1995; Peres-Neto et al., 2005; Jolliffe, 1986). Here if all PCs are used, all methods

will eventually converge to the same point as identical subspace is employed for

each method. Nevertheless, this convergence point does not necessarily lead to

lowest classification error rate or optimal classification performance.

Above all, a significant decrease in classification error rate can be witnessed

from all of our modified algorithms when compared with classic PCA-QDA. The

lowest error rate among all the methods is obtained by reweighted PCA-QDA at

9.5% with 5 components while the lowest error rate the classic PCA-QDA can

achieve is 25.4% with 10 components. The classification error rate decreases by

15.9% and the number of components needed for discrimination reduces from 10

to 5.

Specifically, reweighted PCA-QDA achieves its lowest error rate 9.5% with

between weight α = 0.525 and within weight β = 0.025. Compared with the nat-

ural weights α = 1
3 and β = 1

2 , between covariance is given higher weight and the

variance of group 1 is given much less weight than that of group 2. In binary classifi-

cation the between-covariance contains the mean difference direction which reveals

the location difference of the two classes in the space. This mean difference di-

rection is usually discriminative and highlighting it would benefit the classification.

This is why reweighting towards the between covariance helps. The within weight

β controls the relative weight of the two within-covariance matrices. When the

weight of group 1, β is 0.025, the relative weight of group 2 is (1− β ) = 0.975.

That is to say, the covariance of group 2 is strongly highlighted over the covariance

of group 1. The reason why this asymmetrical weight helps in classification can be

found in the following analysis.

Table 2.3.3 lists the cosines of the angles between the first four PCs of group

1, group 2, classic PCA and reweighted PCA. If the cosine value is close to 1 (or

-1), these two PCs are collinear while if the cosine value is close to 0, the corre-
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sponding PCs are almost orthogonal. Here classic PCA is implemented on the two

groups separately to extract dominant directions from them. Then we can analyse

the relationship between the classic PCs, reweighted PCs and the main directions of

the two groups.

Table 2.3.3

Cosines of angles between the first four PCs obtained from Group 1, Group 2, classic PCA
and reweighted PCA

Group1 PC1 Group2 PC1 Group1 PC2 Group2 PC2
Classic PC1 0.9810 -0.9893 0.1207 0.0804

Reweighted PC1 0.9438 -0.9904 0.1950 -0.0115

Group1 PC2 Group2 PC2 Group1 PC3 Group2 PC3
Classic PC2 0.9805 -0.9886 -0.1159 -0.0151

Reweighted PC2 -0.9434 0.9999 0.1636 0.0027

Group1 PC3 Group2 PC3 Group1 PC4 Group2 PC4
Classic PC3 -0.9503 0.0450 -0.0116 0.4765

Reweighted PC3 -0.0562 -0.6654 0.0624 0.3604

Group1 PC3 Group2 PC3 Group1 PC4 Group2 PC4
Classic PC4 0.0130 -0.2648 0.9863 -0.1353

Reweighted PC4 -0.2209 0.7356 -0.1617 0.4293

As shown in Table 2.3.3, the first two classic and reweighted PCs have simi-

lar directions. They are almost collinear with the first two PCs of the two groups,

having nearly 1 (or -1) cosine values. As shown in Figure 2.3.2, the classification

performance of the first two reweighted PCs and the first two classic PCs are com-

parable as well. In other words, the improvement in classification accuracy is not

because of the first two PCs.

Nevertheless, the performance of the third and the fourth PCs of the two algo-

rithms are very different. As can be seen from Figure 2.3.3, the third and the fourth

classic PCs are not only unhelpful, but even harmful to classification. The error rate

rises considerably after including the third and the fourth classic PC. Meanwhile,
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the third and the fourth reweighted PCs successfully decrease the classification error

rate by 19.1%.

In Table 2.3.3, the third and the fourth classic PCs are dominated by the first

group and are almost collinear with the third and the fourth PCs of group 1. Mean-

while, the third and the fourth reweighted PCs are closer to the corresponding PCs

of group 2. They describe some variation of the second group. If we can show that

the third and the fourth PC of group 2 can contribute more to classification than

that of group 1, we can understand why the third and the fourth reweighted PCs

outperform the classic ones. This is shown in Figure 2.3.4.

Figure 2.3.4. A comparison of the discrimination power of the first six PCs from

the two groups.

Figure 2.3.4 shows the discrimination power of the first six PCs of the two

groups. As defined in the methodology section, the discrimination power of a PC

can be defined as the classification accuracy when data are projected to this specific

PC direction and the corresponding projections are used as the single predictor in a

QDA classifier. In the figure the blue line and the red line show the discrimination

power of the two groups respectively. Except for the first PC, the other PCs of

group 2 are significantly more discriminative than that of group 1, while actually the

first PC of the two groups do not differ much in either direction or discrimination
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power. The cosine value between these two PCs is -0.9536 which means they are

almost collinear while the discrimination power only differs by 3.2%. So in this

case reweighting towards the second group is almost harmless in respect of the first

component, and beneficial to classification if considering the following PCs.

So far we have shown how reweighting helps in binary classification.

Reweighting towards the between-covariance attaches more importance to the

mean difference direction while reweighting towards the more discriminative group

contributes to generating features with higher discrimination power.

As for between PCA, as a one-way reweighting algorithm, it extracts the mean

difference direction first and then reweights the two within covariance matrices, just

as the reweighted PCA does. In this example, when the relative weight of group 1

equals 0.144 and the weight of group 2 equals 0.856, the lowest error rate of 12.7%

is achieved. Compared with the lowest error rate 25.4% of classic PCA-QDA, the

error rate decreases to about a half by implementing this one-way reweighting al-

gorithm. Similar to the two-way reweighting algorithm, here we emphasize group

2 over group 1 as it contains more discriminative features.

So far we have explained how the reweighted PCA and the between PCA help

in this high-dimensional classification issue and next we will investigate the re-

ordered and the stepwise-reordered algorithm in this example.

In the reordered algorithm, instead of ranking PCs according to their associated

eigenvalues, we rank PCs by their discrimination power and select PCs with high

discrimination power. In this algorithm, only the first q PCs are taken into the

reordering scheme and ranked by their discrimination power in descending order.

The first k PCs among these q PCs which provide the highest overall accuracy will

be included in the discrimination model.

In this specific example, the reordered PCA-QDA obtains its lowest error rate

19.1% with 3 components and cut-off number q = 11, while the stepwise-reordered

PCA-QDA achieves its lowest error rate 12.7% with 5 components and cut-off num-
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ber q = 11. Note that the lowest error rate accomplished by the classic PCA-QDA

is 25.4% with 12 components. By introducing this simple feature filtering scheme,

the classification error rate can be decreased by 12.7% with the stepwise-reordered

PCA-QDA and by 6.5% with the reordered PCA-QDA. The number of components

used in discrimination can be reduced from 12 to 5 with the stepwise-reordered

algorithm and from 12 to 3 with the reordered algorithm.

Here we can witness improvements in two aspects. The first improvement is

that the number of components needed for discrimination is reduced. This is a direct

outcome of selecting PCs. The second improvement is the decrease in classification

error rate. The error rate decreases to about half of its previous value by applying

the stepwise algorithm. This is much likely to happen if the total variation is domi-

nated by some common variation of the two groups. If this is the case, the first few

PCs will correspond to the common variation of groups. Although these PCs con-

tain high variability and the directions they correspond to are the most influential

directions in the data, if used in classification they may not be favourable. This idea

can be further verified in Figure 2.3.5 and table 2.3.4.

Figure 2.3.5. Discrimination power of classic PCs

Figure 2.3.5 shows the discrimination power of the first 12 PCs in the clas-

sic PCA algorithm. As we can see, the first, the sixth and the eleventh PCs have
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high discriminative power, while the second, the third and the fourth classic PCs

only have around 50% discrimination power, which means if the corresponding PC

directions are used for discrimination only half of the samples can be correctly clas-

sified. This is only as good as random guess. The low discriminating power of

leading PCs are mainly due to the fact that they mostly correspond to the common

variation of the two classes while revealing little distinct variation. These features

are good at capturing variability but are not beneficial to classification. As a result,

they should be excluded from the model.

Here we only show the discriminative power of the first 12 PCs. The reason is

twofold. First, 12 PCs contain about 95% of the total variability. It was argued in

many literatures that in PCA capturing 85% or 90% of the total variation would be

sufficient while including more features has the risk of bringing in noise. Second,

experiment result shows that the most accurate classification is achieved with 3

components and cutting off point 11. The largest cutting off point we consider is

20. In other words, next couple of PCs (from the 12nd PC to the 20th PC) will not

contribute to the classification anyway. So we omit them.

Table 2.3.4

Cosines of angles between the first two PC directions and dominating directions of the two
groups, and cosines between the first two PCs and the mean difference direction.

Group1 PC1 Group2 PC1 Mean difference

PC1 0.981 -0.989 0.972

Group1 PC2 Group2 PC2 Mean difference

PC2 0.944 -0.990 0.100

Table 2.3.4 lists cosines of angles between the first two classic PCs and the

dominating directions of the two classes (the first two PC directions of each group),

as well as the cosines between the first two PCs and the mean difference direction.

As shown in the table, the first two PC directions are almost collinear with the
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first two PCs of the two groups. In other words the first two PCs describe the

common variation of the two groups. As we discussed, we cannot expect features

describing the common pattern of the two groups to be good at distinguishing one

from the other. As shown in Figure 2.3.5, the second PC fails to assign half of

the samples to the correct group. It is not a good discrimination feature. In terms

of the first PC, although it also describes common variation of the two groups it

owns high discrimination power. In Figure 2.3.5 it successfully classifies more than

70% of the samples. This is because, as shown in Table 2.3.4, the first classic

PC happens to be collinear with the mean difference direction. As we discussed

before, the mean difference direction is usually discriminative as it demonstrates

position difference of the two groups. Accordingly, the first PC is a discriminative

feature. However, except the first one, all of the next 5 PCs are of limited use in

classification. They misclassify around 50% of the samples. That is why reordering

PCs helps in enhancing classification accuracy.

So far we have explained how reweighting algorithms (reweighted PCA and

between PCA) and reordering algorithms (reordered PCA and stepwise-reordered

PCA) help in enhancing classification in the wheat example. Figure 2.3.6 shows the

classification error rates of the six methods via double cross-validation. Here as the

sample size is limited, we cannot have a separate training and test set. Therefore

double cross-validation is used to verify the results.

In double cross-validation, we randomly split the data 10 times. Each time,

10 samples are selected as the validation samples while the remaining 53 samples

are taken as the calibration samples. Here we control the sample proportion of

the two classes in the calibration and the validation set to be as close as possible.

In each run, the best number of components used in discrimination, the optimal

weights in the reweighting algorithms are decided via LOOCV in the calibration

set. The calibrated model is used to predict labels for the validation samples. The

average error rate over 10 repetitions of validation is regarded as a measurement of
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Figure 2.3.6. Double CV error rates of the six methods in the binary wheat example.

the model performance.

In Figure 2.3.6, each box represents the error rates of a method. The red spot

represents the average error rate over the 10 validation sets and the black line corre-

sponds to the median. As we can see, classic PCA-QDA owns the highest average

error rate 24% among the six, while reweighted PCA-QDA achieves the lowest error

rate 9%, i.e., the highest classification accuracy among all. The average error rate of

between PCA-QDA, reordered PCA-QDA and stepwise-reordered PCA-QDA are

14%, 15% and 15% respectively, while that of PLS-QDA is 13%. In this example,

all of our four discriminative modifications outperform PCA but only reweighted

PCA-QDA outperforms PLS-QDA. We will see one example later in which the re-

ordered PCA manages to extract discriminative features more efficiently than all the

others.

2.3.2 Binary classification with paddy rice data set

The paddy rice data consist of NIR spectra of 100 paddy rice samples that

were cultivated from 2014 to 2017. The samples were naturally classified into four

groups according to their year of cultivation. Since the illumination and moisture

condition differs from year to year, the nutriment content and quality grade varies

for paddy rice cultivated in different years. This leads to different selling price in
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the market. Some vendors try to cheat the grain cultivated in good natural condi-

tions with the bad one. Besides, the content of nutriment decreases gradually with

the time of storage, which also causes different selling price for grain cultivated in

different year. Accordingly, it is an important topic to distinguish the cultivation

year of grain. NIR spectroscopy can be of great use in this circumstance. Paddy

rice cultivated in different years varies in nutrient and thus has different absorp-

tivity against the NIR spectroscopy. In this example, we use NIR spectroscopy to

distinguish paddy rice grown in different years.

Year of cultivation Number of samples
2014 24
2015 29
2016 25
2017 22
Total 100

Table 2.3.5

Composition of the paddy rice data

The year of cultivation and the corresponding sample size can be found in Table

2.3.5. For each sample, the absorbance at 1154 wavelengths from 800 to 2782

nm was recorded and used as spectral information to predict labels for unknown

samples. As the number of predictors is far beyond the number of observations,

dimension reduction is necessary before classification. Here a binary example and a

three-class example will be discussed with the paddy rice data. Samples from year

2017 can be easily separated from the others with less than 5% error rate, while

samples from the other three groups are difficult to discriminate with the classic

PCA-QDA algorithm. Here we use samples from year 2014 and 2016 to illustrate

our dimension reduction methods in binary classification. The spectra of the two

classes are shown in Figure 2.3.7. In the figure each curve represents the spectrum

of a sample. The blue curves in the left subfigure represent the spectra of samples

from class 1 while the red curves in right subfigure represent those of class 2. Here
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the number of predictors exceeds the number of observations. A small number of

discriminative features needs to be extracted from the original high-dimensional

data and then classification will be implemented using the new features. As usual,

to remove the additive baseline shift of spectra and obtain better classification, we

take the second derivative of the spectra and the corresponding spectra are shown in

Figure 2.3.8.

(a) Spectra of samples from class 1 (b) Spectra of samples from class 2

Figure 2.3.7. Spectra of paddy rice samples from class 1 and class 2

(a) 2nd derivative of spectra of class 1 (b) 2nd derivative of spectra of class 2

Figure 2.3.8. The second derivative of the spectra of paddy rice samples

As before, we firstly use the performance in the LOOCV to understand the

mechanism of our modified methods in this example, and then present the results

of double CV for verification. The corresponding LOOCV classification error rate

can be found in Figure 2.3.9.

As in the wheat example, due to the limited sample size we take no more than

10 components into our model. Overall, the lowest error rate 2.0% is achieved by
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Figure 2.3.9. CV error rates of the above methods in binary paddy rice example.

the PLS-QDA algorithm with 10 components. In this case PLS-QDA manages to

categorise 48 samples into the correct group and ends up with only 1 misclassi-

fication. Meanwhile, reordered PCA-QDA misclassifies 1 more sample than the

PLS-QDA, the reweighted algorithms misclassify 2 more samples than PLS, while

the best result the classic PCA-QDA can achieve is 44 correct classifications and

5 errors. In other words, all of our methods succeed in outperforming PCA-QDA

but are inferior to PLS-QDA in accuracy. Here reweighted PCA-QDA achieves the

lowest error rate with α = 0.912, β = 0.275 and the number of components k =

9, between PCA-QDA achieves its optimum with β = 0.2358 and k = 9, reordered

PCA-QDA performs best when k= 10 and q = 11 while stepwise-reordered PCA-

QDA performs best when k = 3 and q = 9.

However, we may notice that the reordering methods achieve a comparable

accuracy with only 2 or 3 components. With two components the reordered method

successfully classifies 46 samples into the correct group and ends up with only

3 errors and the stepwise-reordered method makes only 4 errors. Note that the

best result the classic PCA-QDA can achieve is 5 errors with 10 components. The

reordered and the stepwise-reordered PCA-QDA with 2 components outperform

the classic algorithm with 10 components. Furthermore, with the same number of
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components the PLS algorithm can only achieve around 70% accuracy. In this case

the reordered methods succeed in extracting discriminative features more efficiently

than the others. The reason why reordering has such a significant impact in this

example can be found in the following analysis.

Figure 2.3.10. Discrimination power of classic PCs in binary paddy rice example

Figure 2.3.10 shows the discrimination power of the classic PCs while Table

2.3.6 demonstrates the directions of them. In Figure 2.3.10 the first seven PCs ex-

cept the first one own poor discrimination power. Less than half of the samples

can be correctly categorised if data are projected to each single PC direction. Con-

sequently, including these PCs in the model will not only be unhelpful but also

detrimental to the discrimination.

Table 2.3.6

Cosines of angles between the classic PCs and the main directions of the two groups

Group1 PC1 Group2 PC1
PC1 0.9118 -0.9768

Group1 PC2 Group2 PC2
PC2 0.9230 0.9763

Group1 PC3 Group2 PC3
PC3 0.9686 0.9732
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Table 2.3.6 illustrates the relationship of the first three PCs and the dominant

directions of the two groups. From the table, the first three classic PCs are almost

collinear with the common dominant directions of the two groups. Namely, they

mainly describe the common variation of the two groups. We cannot expect fea-

tures that describe the common variation of the two groups but display no position

difference to be good at distinguishing one from the other. Unsurprisingly, as shown

in Figure 2.3.9 these PCs are not discriminative.

From Figure 2.3.10 there exist some discriminative features. The 8th PC man-

ages to correctly classify 85.7% of the samples while the 9th PC manages to classify

63.3% of the samples. They are more discriminative than the first seven PCs. How-

ever, since the total variation is dominated by the common variation of the two

groups, these discriminative features cannot get exposed easily, while by includ-

ing a simple feature reordering and filtering scheme PCs with high discrimination

power can be extracted with few components.

Last but not least, even if the discriminative components (the 8th and the 9th

PC) are included in the classic model, the classic PCA-QDA still cannot accom-

plish the same precision as the reordered methods. With 9 components the classic

PCA-QDA misclassifies 5 samples while with 2 components only the reordered

method misclassifies 3 samples. This indicates the reordering scheme benefits the

classification not only by extracting good features quicker and reducing the number

of components, but also by avoiding the detrimental features such as the 4th PC in

this example and then enhancing the absolute classification accuracy.

So far we have explained how reordering contributes to the binary classifi-

cation. In terms of the reweighting algorithm, it highlights the between-covariance

and the more discriminative group as usual. The highest precision 93.9% can be

obtained when the between weight α = 0.912 and within-ratio β = 0.275.

Figure 2.3.11 shows the classification performance of the six methods via dou-

ble cross-validation. As usual we randomly split the data 10 times. Each time, 4
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(a) Classification error rates of each model (b) Number of PCs needed in each model

Figure 2.3.11. Classification performance of the six methods in double CV in the

binary paddy rice example, with subfigure (a): error rates in the

test sets, subfigure (b): the number of components needed in each

method to accomplish the corresponding classification error rate.

samples from each class are selected as the validation samples while the remaining

41 samples are taken as the calibration samples. The average error rate over the 10

validation sets is regarded as a measurement of the model performance.

In Figure 2.3.11, subfigure (a) displays the classification error rates of the

above six methods while the right subfigure shows the corresponding number of

components each method uses. As we can see the classic PCA-QDA owns the

highest error rate 30%, among the six. When comparing the median error rate,

PLS-QDA and the reweighted PCA-QDA own the lowest median error rate. When

comparing the mean, PLS-QDA and the stepwise-reordered PCA-QDA achieve the

lowest average error rate, 15%. When comparing the number of components each

method uses, the reordered and the stepwise-reordered PCA-QDA use significantly

fewer PCs than the other methods. On average, the reordered PCA-QDA needs

only 3.1 PCs and the stepwise-reordered PCA-QDA only needs 3.8 PCs to outper-

form the classic PCA-QDA with 10 components. When considering the average

classification accuracy, PLS-QDA and stepwise reordered PCA-QDA obtain iden-

tically high classification accuracy, however stepwise reordered algorithm achieves

this with 3.8 components only, while PLS-QDA needs 6.5 components to achieve
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the same accuracy. Hence, the stepwise reordered approach is considered more

efficient in this example due to the smaller number of required components. This

paddy rice example shows that the reordering scheme can play an indispensable role

in reducing the number of components while enhancing the performance of binary

classification.

2.3.3 Three-class classification with wheat data set

So far we have shown how reweighting and reordering contribute to binary

classification. Now we will apply our models to multi-class case. A three-class

classification example will be explored using the wheat data. Here we take three

varieties among the nine as our target data and implement the above six methods

as before. We choose variety 5, variety 8 and variety 9 as our target groups and as

usual, the second derivative of the spectra is used. The corresponding classification

results are shown in the following figure.

Figure 2.3.12. Classification error rates of the abovementioned six methods in the

three-class example via LOOCV and double CV.

Figure 2.3.12 shows the three-class classification performances of the above

six methods via LOOCV and double CV. The left subfigure represents the classifi-

cation performance in LOOCV, the right subfigure represents that in the double CV.

In the LOOCV, all of our four algorithms outperform classic PCA-QDA while the

reweighted PCA-QDA provides the most precise classification among the six. The
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LOOCV error rate decreases from 33.3% to 15.9% after reweighting. In double CV

the error rates witnesses a remarkable decrease for all of our PCA modifications.

The Reweighted PCA-QDA performs the best, with 23% average error rate, fol-

lowed by Reordered PCA with 26% error rate and Between PCA with 27% error

rate. Meanwhile, Stepwise-reordered PCA-QDA and PLS-QDA achieve 30% and

31% error rate respectively. The classic algorithm only has around 62% average ac-

curacy in this three-class classification example. We may notice here the reweighted

PCA performs much better than the between PCA. The between group covariance

can contain noise as well. If this is the case, PCs from the between covariance are

less discriminative. Highly reweighting towards the between covariance matrix or

using its PCs directly as features can lead to unsatisfactory result. On the contrary,

reweighted PCA can avoid this by giving less weight to the between group co-

variance and higher weight to the individual group containing more discriminative

information.

In this multi-class example the reordered method is significantly better than

the classic PCA-QDA and even slightly outperforms PLS-QDA. PCA generates

factors merely according to the contribution to variability. With more classes, the

generated PCs are more likely to be a blend of within-group variations. The PCs do

not target at discrimination and they are not representative of a single class either.

Accordingly, classification based on these features can be even less satisfactory than

in the binary case. In other words, in multi-class classification the role of reordering

and reweighting becomes even more important.

2.3.4 Three-class classification with the paddy rice data set

In this section we discuss the performance of the abovementioned six methods

in three-class classification with the paddy rice data set. The paddy rice data consist

of NIR spectra of 100 paddy rice samples that were cultivated from 2014 to 2017.
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Paddy rice samples cultivated in year 2017 can be easily separated from the others,

thus samples of year 2014, 2015 and 2016 are selected as the three classes. As

usual, we take the second derivative of the spectra, to remove the addictive baseline

shift and the multiplicative effect.

Figure 2.3.13. Classification error rates of the above six methods in the paddy rice

three-class example via LOOCV and double CV.

Figure 2.3.13 shows the performance of the six methods in three-class classifi-

cation via LOOCV and double CV. Improvement in accuracy can be witnessed from

all of our methods in LOOCV as well as double CV, when compared with the clas-

sic PCA-QDA. In double CV, data are split into a training set with 58 samples and

a test set with 20 samples 10 times. We control the sample proportion of the three

classes in the training and the test set to be as close to their natural proportion as

possible. Namely, every time we randomly select 6 samples from year 2014, 7

samples from year 2015 and 6 samples from year 2016 to be the test set, and the

remaining samples become the training set. The corresponding error rates in 10 test

sets can be found in the right subfigure of Figure 2.3.13. The lowest average error

rate 42% is obtained by the between, the reweighted as well as the PLS-QDA algo-

rithms. The reordered method and the stepwise method decrease the median error

rate from 50% to 45% with the average number of components decreasing from 9.2

to 6.4 and 6.9 respectively. We may notice that after our enhancements the average

error rate in the test set is still above 40% in each three-class paddy rice example. In
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other words, our methods need to be further enhanced in multi-class classification

tasks and this could be investigated in future work.

2.4 Conclusion
In this chapter, we proposed four PCA-based discriminative dimension reduc-

tion methods, the reweighted PCA, the between PCA, the reordered PCA and the

stepwise-reordered PCA. All of them aim at incorporating supervised information

with PCA and making PCA a more appropriate dimension reduction method in high

dimensional classification. In reweighted PCA and between PCA, the between-

group-covariance is given more importance, to expose the discriminative feature

contained in it more efficiently, and the within-group-covariance of an individual

class which contains more discriminative information is emphasized over the one

mainly describing common variation. By doing that, the reconstructed pooled co-

variance matrix becomes more discriminative than the original one. In reordered

PCA and stepwise-reordered PCA, PCs are generated as usual but re-ordered by the

discrimination power with QDA. By applying this simple feature filtering scheme

to classic PCA, the discriminating power of selected features can be enhanced

remarkably. The results for two NIR spectral data sets, the wheat data and the

paddy rice data, have verified the effectiveness of our algorithms. Improvements in

classification accuracy can be witnessed in both binary classification and multi-class

classification by replacing the classic PCA with our discriminative algorithms.

Reweighted PCA-QDA obtains the highest accuracy in three classification ex-

amples out of four, compared with between, reordered, stepwise reordered, clas-

sic PCA-QDA and PLS-QDA. Namely, generally speaking, reweighted PCA-QDA

is the most accurate algorithm among the four proposed methods. Moreover, in

both three-class classification examples the highest accuracy is obtained by the re-

weighted algorithm. Reweighted PCA gives different weights to different groups,

which makes it more adaptive to multi-class classification. Accordingly, the re-
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weighted algorithm has great potential to be used in multi-class classification. How-

ever, one potential concern about the reweighted algorithm is on its computation

time. In c class classification a c-dimensional optimisation problem in a bounded

area is implicitly contained in the procedure of the reweighted algorithm. As a re-

sult, the computation time of the reweighted algorithm increases significantly with

the increase of the number of classes.

On the contrary, the computation complexity of the reordered algorithm and the

stepwise reordered method does not grow with the number of classes. The reordered

algorithms only include a filter step under the classic PCA framework, which does

not require complex computation or optimisation technique. This provides the re-

ordered algorithms high potential to replace the reweighted algorithm in multi-class

classification with a large number of classes. Moreover, in the binary classification

of the paddy rice data, the stepwise reordered PCA-QDA achieved the highest accu-

racy with only 3.8 PCs on average. This further verifies the computation efficiency

of the stepwise reordered method. In other words, when the computation efficiency

is the main concern of the users or when we have multi-class classification problems

with a large number of classes, the stepwise reordered method is more likely to be

the appropriate algorithm to apply.

In terms of interpretability, all of our proposed methods have high interpretabil-

ity. As we discussed, the reweighting algorithms usually attach higher weights to

the between covariance to uncover the difference of group means, as well as the

group with distinct variation information, to help generating more discriminative

PCs. Meanwhile, the reordering algorithms extract PCs with high discriminative

power first. The mechanism of all proposed methods are clear and easy to under-

stand.

In this chapter, we primarily apply our methods to balanced data set. The

reason is twofold. First, unlike medical data the inherent unbalance of NIR data

is usually not severe. The costs of misclassifying different samples are usually
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comparable as well. Second, we want to avoid the impact of data unbalance on the

experiment results and simplify the analysis. On the binary classification task of

the paddy rice data the two classes contain 24 and 25 samples respectively while

on the three-class classification task of paddy rice data, the three classes contain

24, 25 and 29 samples. Accordingly, the highly asymmetric weights obtained in

the experiments and the varied rank of PCs are mainly due to the difference in

discriminating power instead of the impact of data imbalance.

Nevertheless, our methods can be applied in unbalanced classification. In the

binary classification of the wheat data there is slight data imbalance. The sample

size of one group is 1.33 times of that of the other. In the three-class classification of

the wheat data, one group is about 2.5 times of the sample size of another group. Our

proposed methods work well and can significantly enhance the classification perfor-

mance in both cases. Namely, our methods are applicable to imbalanced classifi-

cation. Moreover, owing to the asymmetric weights given to different classes, the

reweighted algorithm has inherent capability in handling unbalanced data set. Intu-

itively, when one group has significant fewer samples than the other groups, higher

weight can be attached to this minority group, so as to give higher importance to its

samples and improve the classification accuracy of this minority group. Neverthe-

less, when the data are extremely unbalanced and when one class has too limited

samples to be estimated accurately, the weights given to the classes should con-

sider both the discriminating power and generalisation power of the generated PC.

The performance of the proposed methods under extremely data unbalance can be

regarded as a rewarding future work.



Chapter 3

A Penalised QDA-based Feature

Extraction Method

3.1 Introduction

As discussed in Chapter 2, as an unsupervised method, PCA fails to use the la-

bel information of the observations (Chen and Sun, 2005; Huang et al., 2015). It

gives high weights to features with higher variabilities irrespective of whether they

contribute to classification. This may give rise to the situation where the chosen

principal component corresponds to the attribute with the highest variability but

without any discriminating power (Pechenizkiy et al., 2006).

In chapter 2 we proposed four methods to overcome this deficiency of PCA.

Reweighted PCA and between PCA enhance PCA by reweighting the total covari-

ance matrix. Reordered PCA and stepwise reordered PCA enhance PCA by rank-

ing the classic PCs by their discriminating power with QDA and only retaining the

discriminative ones in the model. The idea of selecting features based on the per-

formance in a classifier can be further developed as generating features specialised

for a classifier. This enlightens the penalised QDA based feature extraction method

that we propose in this chapter. As this method is from a supervised point of view

and it is more based on QDA than PCA, we use a separate chapter to illustrate it.
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The most well-known supervised feature extraction method is Fisher LDA. In

binary classification it aims at finding a normalised vector www that maximises wwwT SSSBwww
wwwT SSSW www ,

where SSSB is the between-class SSP matrix and SSSW is the within-class SSP matrix.

When SSSW is non-singular www is found to be the eigenvector of SSS−1
W SSSB. However,

when the number of variables exceeds the number of observations, SSSW does not

have full rank and the inverse of SSSW is inaccessible. Consequently, the classic Fisher

LDA fails to work in the small sample size case (Huang et al., 2002).

As introduced in the first chapter, variants of LDA have been developed in the

past two decades to solve this problem, such as orthogonal LDA (Ye and Xiong,

2006), RDA (Friedman, 1989) and Null Space LDA (Chen et al., 2000). However,

it was shown in some real data experiments that using Orthogonal LDA, Null Space

LDA or RDA to directly extract features has led to inferior performance compared

with applying the conventional LDA after dimension reduction with PCA, as PCA

reduces noise through its feature generation (Prasad et al., 2010).

De Jong and Kiers (1992) claimed that when generating features two criteria

should be taken into account and also balanced: (1) the features should account for

much of the variance of the data, as this stabilises the estimation, and (2) the features

should correlate well with the predicted variables, as this entails a good fit. PCA

attaches full importance to the first criterion while LDA-based feature extraction

methods devote most of the attention to the second criterion.

As we know, PLS extracts features that maximise Cov(ttt,yyy), i.e.:

max
ttt

Cov(ttt,yyy),

⇔max
ttt

√
Var(ttt)Corr(ttt,yyy)

√
Var(yyy),

⇔max
ttt

√
Var(ttt)Corr(ttt,yyy),

⇔max
ttt

Var(ttt)Corr2(ttt,yyy), (3.1.1)
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where ttt is the generated PLS component. In the above criterion (3.1.1), maximising

Var(ttt) guarantees the first criterion of high variability, while maximising Corr2(ttt,yyy)

ensures the second criterion of a good fit. PLS manages to balance between stability

and goodness-of-fit while PCA neglects the latter. This is also the reason why PLS

components are generally regarded of higher predictive power than PCs (Berrueta

et al., 2007).

Similarly, De Jong and Kiers (1992) proposed a PLS-like feature extraction

method in 1992, which is called principal covariates regression (PCovR) (De Jong

and Kiers, 1992). In this method the criterion of feature generation is to maximise:

max
ttt

(
α R2

XXXttt +(1−α)R2
yyyttt

)
, (3.1.2)

where R2
XXXttt is the percentage of variance in the independent variables XXX explained

by the feature ttt while R2
yyyttt is the percentage of variance in yyy explained by ttt. α is a

weight parameter to balance between stability and goodness-of-fit.

Note that PCA generates features ttt such that Var(ttt) is maximised, the first cri-

terion of stability is already satisfied. Inspired by PLS and PCovR, the performance

of PCA in classification can be enhanced by including a criterion corresponding

to the discriminating power. Further enlightened by PCovR, we can use a weight

parameter β to balance stability and discriminability, i.e. the feature generation

criterion can be:

max
ttt

(
β Var(ttt)+(1−β )IIID(ttt)

)
, (3.1.3)

where IIID is a measure of classification performance, e.g. classification accuarcy,

log-likehood, etc., and it also depends on the feature ttt. Here we employ the loglike-

lihood of QDA as the indicator of discriminative power and correspondingly use

the logarithm of the sample variance log(Var(ttt)) as the indicator of generalisation
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ability, instead of Var(ttt). Now we define the loglikelihood of QDA.

We assume in binary classification:

yi =


0, if the i-th sample belongs to class 1

1, if the i-th sample belongs to class 2
(3.1.4)

We denote the probability of classifying the i-th sample to class 2 (yi = 1) in QDA

by pi and correspondingly the probability of classifying it into class 1 is (1− pi).

Then the likelihood of observing this sample as it is:

pyi
i (1− pi)

1−yi. (3.1.5)

Accordingly, the likelihood of observing all samples is:

Π
n
i=1 pyi

i (1− pi)
1−yi. (3.1.6)

Formula (3.1.6) is the probability of observing the current data, taking logarithm of

the above likelihood we can get the loglikelihood:

log
(
Π

n
i=1 pyi

i (1− pi)
1−yi
)
. (3.1.7)

This loglikelihood can be regarded as an indicator of classification performance.

The higher value obtained in (3.1.7), the more precise the classifier is. Then com-

bining it with logVar(ttt), we get the following feature generation criterion:

max
ttt

(
β log

(
Π

n
i=1 pyi

i (1− pi)
1−yi
)
|ttt +(1−β ) logVar(ttt)

)
. (3.1.8)

Here the loglikelihood log
(
Πn

i=1 pyi
i (1− pi)

1−yi
)

depends on the generated feature

ttt, and β is a weight parameter to balance generalisation ability and discrimination
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power. For simplicity we divide (3.1.8) by β and get:

max
ttt

(
log(Πn

i=1 pyi
i (1− pi)

1−yi)|ttt +α logVar(ttt)
)
, (3.1.9)

where α = 1−β

β
.

The reason why we use the loglikelihood of QDA as an indicator of dis-

crimination is, as we discussed in the last chapter QDA has some advantages over

LDA in classification. In spite of its higher requirement of sample size to obtain

robust estimation of the parameters, QDA can utilise the heterogeneity in variation

of the groups to better classify them, while LDA fails to use this information. The

classic PCA generates features merely according to the contribution to variability

and fails to utilise the heterogeneity in variation as well. By employing the QDA

loglikelihood into the feature generation criterion, not only can we improve the dis-

crimination power of the features but also maintain some important second order

and non-linear structure of the data.

The importance of the second order information has been recognised in the

literatures (Baffi et al., 1999; Wold et al., 1989). Various quadratic PLS algorithms

were developed during the last a few decades (Wold et al., 1989; Berglund and

Wold, 1997; Wold, 1992). The original PLS algorithm generates features which

have high covariance with the response variables and can fit the response vari-

ables well in a linear regression. Quadratic PLS generates features having high

covariance with the response variables and fitting the response variables well in a

quadratic regression. The motivation of our algorithm is to find features specialised

for QDA. Though all considering quadratic relationship, quadratic PLS optimises

for quadratic regression, while our algorithm optimises for QDA. This is the differ-

ence between our method and other quadratic variants of PLS.

So far we have discussed the idea of building a penalised QDA-based feature

extraction method. The detailed derivation of the feature generation criterion in bi-
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nary classification and the complete algorithm can be found in the next section. The

idea of this penalised QDA-based feature extraction method can be easily extended

to multi-class case as QDA is also a widely used multi-class classifier.

3.2 Methodologies

3.2.1 Feature Extraction Criterion

Assume we have a data matrix XXX ∈ Rn×p in which there are n instances

(xxx1,xxx2, . . . ,xxxn)
T of a p-dimensional vector xxxi ∈ Rp×1. Features ttt1, ttt2, · · ·, tttm,

· · · , tttM (M 6 p) are designed to be generated sequentially. The m-th feature tttm is

generated based on its predecessors ttt1, ttt2, · · ·, tttm−1 in an iterative fashion and thus

during the generation of tttm, all the previous (m− 1) features can be regarded as

known.

Each time when a new feature tttm is generated, the original data are projected

to the subspace orthogonal to tttm and the subsequent features are generated from this

subspace orthogonal to tttm and to all the earlier features. By doing this, the orthog-

onality of features can be guaranteed and the collinearity problem of features can

be avoided. The detailed orthogonalisation procedure will be discussed in section

(3.2.2.3). Without loss of generality, we introduce the generation procedure of the

m-th feature tttm.

Let

tttm = XXXmwwwm, (3.2.1)

where XXXm is the projected data matrix onto the subspace orthogonal to the previous

(m−1) features and wwwm ∈ Rp×1 is the new loading vector used to generate tttm. The

m-th component tttm has the form tttm =



t1,m

t2,m

· · ·

tn,m


, where ti,m is the m-th component
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score of the i-th sample. We denote the series of all m components as TTT m = (ttt1,

ttt2, · · ·, tttm) = (TTT m−1, tttmmm), where TTT m−1 = (ttt1, ttt2, · · ·, tttm−1) are the (m− 1) com-

ponents that have already been generated. Since during the generation of the m-th

component tttm, the previous m− 1 components are regarded as known. tttm is the

only unknown part in TTT m.

Similarly, we can use a column vector TTT i,m =



ti,1

ti,2

· · ·

ti,m


to denote the first m

component scores of the i-th sample. Note that TTT i,m =

TTT i,m−1

ti,m

, where TTT i,m−1

denotes the previous (m− 1) scores of the i-th sample. Similarly, ti,m is the only

unknown part in TTT i,m.

In m components QDA, if the i-th sample belongs to class 1, we have

P(TTT i,m|yi = 0) =
1

(2π)
m
2 |ΣΣΣ0m|

1
2

exp(−1
2
(TTT i,m−U0m)

T
ΣΣΣ
−1
0m(TTT i,m−U0m)), (3.2.2)

where ΣΣΣ0m is the covariance matrix of the first m components of class 1 and U0m is

the mean vector of class 1. Similarly, if the i-th sample belongs to class 2, we have

P(TTT i,m|yi = 1) =
1

(2π)
m
2 |ΣΣΣ1m|

1
2

exp(−1
2
(TTT i,m−U1m)

T
ΣΣΣ
−1
1m(TTT i,m−U1m)), (3.2.3)

where ΣΣΣ1m is the covariance matrix of the first m components of class 2 and U1m is

the mean of class 2. In practice, the covariance matrices ΣΣΣ0m, ΣΣΣ1m and the means

U0m and U1m are regarded as known and estimated by the sample covariance matri-

ces and sample means of the two groups.
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Taking logarithms of (3.2.2) and (3.2.3) we get:

logP(TTT i,m|yi = k) =−m
2

log(2π)− 1
2

log |ΣΣΣkm|−
1
2
(TTT i,m−Ukm)

T
ΣΣΣ
−1
km(TTT i,m−Ukm),

(3.2.4)

for k = 0 and 1.

Assume pi to be the conditional probability of classifying the i-th sample in

class 2 (yi = 1) given m component scores TTT i,m:

pi = P(yi = 1|TTT i,m) =
P(TTT i,m|yi = 1)P(yi = 1)

∑
1
k=0P(TTT i,m|yi = k)P(yi = k)

, (3.2.5)

then the corresponding conditional probability of classifying this sample in class 1

(yi = 0) is:

1− pi = P(yi = 0|TTT i,m) =
P(TTT i,m|yi = 0)P(yi = 0)

∑
1
k=0P(TTT i,m|yi = k)P(yi = k)

. (3.2.6)

Taking logarithms of (3.2.5) and (3.2.6), it follows that

log pi = logP(TTT i,m|yi = 1)+ logP(yi = 1)− log
1

∑
k=0

P(TTT i,m|yi = k)P(yi = k),

(3.2.7)

log(1− pi) = logP(TTT i,m|yi = 0)+ logP(yi = 0)− log
1

∑
k=0

P(TTT i,m|yi = k)P(yi = k)

(3.2.8)

For the i-th sample, the likelihood of observing it as it is:

pyi
i (1− pi)

1−yi, (3.2.9)

then the likelihood of observing the current data:

Π
n
i=1 pyi

i (1− pi)
1−yi (3.2.10)
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To enhance the classification performance of QDA and generate features specialised

for QDA, we generate components which maximise (3.2.10) of QDA. Namely, our

first goal is to:

max
pi,16i6n

Π
n
i=1 pyi

i (1− pi)
1−yi

⇒ max
pi,16i6n

logΠ
n
i=1 pyi

i (1− pi)
1−yi

⇒ max
pi,16i6n

(
n

∑
i=1

yi log pi +(1− yi) log(1− pi)

)
(3.2.11)

Substituting (3.2.4), (3.2.7) and (3.2.8) into formula (3.2.11), we obtain

logΠ
n
i=1 pyi

i (1− pi)
1−yi

=

(
n

∑
i=1

yi log pi +(1− yi) log(1− pi)

)

=
n

∑
i=1

{
yi

[
logP(TTT i,m|yi = 1)+ logP(yi = 1)− log

1

∑
k=0

P(TTT i,m|yi = k)P(yi = k)

]

+(1− yi)

[
logP(TTT i,m|yi = 0)+ logP(yi = 0)− log

1

∑
k=0

P(TTT i,m|yi = k)P(yi = k)

]}

=

{
1
2

n

∑
i=1

(yi−1)(TTT i,m−UUU0m)Σ
−1
0 (TTT i,m−UUU0m)

T − 1
2

n

∑
i=1

yi(TTT i,m−UUU1m)Σ
−1
1 (TTT i,m−UUU1m)

T

+
1
2

n

∑
i=1

(yi−1) log |ΣΣΣ0m|−
1
2

n

∑
i=1

yi log |ΣΣΣ1m|+
n

∑
i=1

yi logP(yi = 1)+
n

∑
i=1

(1− yi) logP(yi = 0)

−
n

∑
i=1

log

(
1

∑
k=0

1

|ΣΣΣkm|
1
2

exp(−1
2
(TTT i,m−Ukm)ΣΣΣ

−1
km(TTT i,m−Ukm)

T )P(yi = k)

)}
. (3.2.12)

We can clearly see from formula (3.2.12) that the explicit variable here is TTT i,m.

Note that TTT i,m can be denoted as TTT i,m =

TTT i,m−1

ti,m

 and TTT i,m−1 contains the previous

(m−1) scores of the i-th sample. Note that features are generated sequentially and

during the generation of the m-th feature, all the previous (m− 1) features can be

regarded as known. Namely, during the generation of the m-th feature, TTT i,m−1 is
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regarded as known and ti,m is the only unknown part in TTT i,m. In other words, the

QDA criterion (3.2.11) can be rewritten as:

max
ti,m,16i6n

log
(

Π
n
i=1
(

pi(ti,m)
)yi
(
1− pi(ti,m)

)1−yi
)
. (3.2.13)

Here pi is regarded as a function of ti,m.

The second goal of feature generation is to maintain as much information of

the data as possible. To achieve it, we want the new feature tttm to contain as much

variability as possible, i.e., we want

max
ti,m,16i6n

1
n−1

n

∑
i=1

(ti,m− t̄m)2, (3.2.14)

or namely,

max
ti,m,16i6n

(
log

n

∑
i=1

(ti,m− t̄m)2
)
, (3.2.15)

Here t̄m is the mean of all ti,m’s (1 6 i 6 n) and (3.2.14) is the sample variance of

feature tttm.

Combining the QDA criterion in (3.2.13) and the variability criterion inspired

by PCA in (3.2.15), the feature generation criterion becomes:

max
ti,m,16i6n

F,

where F= log
(

Π
n
i=1
(

pi(ti,m)
)yi
(
1− pi(ti,m)

)1−yi
)
+α

(
log

n

∑
i=1

(ti,m− t̄m)2
)
.

(3.2.16)

Here α is a weight parameter to balance QDA and PCA and it can be chosen by

cross-validation.

The above criterion controls the relative importance of PCA and QDA in the
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feature generation. The first half of the criterion guarantees the classification per-

formance with QDA while the second half of the criterion indicates the variability

criterion of PCA and secures the generalisability of this method.

Note that ti,m = xxxT
i,mwwwm where xxxi,m is the projected data of sample i onto the

subspace orthogonal to the preceding features, and wwwm is the true implicit variable

in the above criterion. Therefore, to generate a feature which can contribute to

QDA classification while maintaining high variability, we need to find a loading

vector wwwm that maximises (3.2.16).

Namely, the above feature generation criterion can be re-formulated as a func-

tion with respect to wwwm, i.e.:

max
wm

G,

where G= log
(

Π
n
i=1(pi(ti,m))yi(1− pi(ti,m))1−yi

)
+α

(
log

n

∑
i=1

(ti,m− t̄m)2
)
,

ti,m = xT
i,mwm.

(3.2.17)

This maximisation problem can be further converted to a minimisation problem by

setting J(wwwm) =−G(wwwm), namely the optimisation problem turns into:

min
wwwm

J,

where J=− log
(

Π
n
i=1(pi(ti,m))yi(1− pi(ti,m))1−yi

)
−α

(
log

n

∑
i=1

(ti,m− t̄m)2
)
,

ti,m = xxxT
i,mwwwm.

(3.2.18)

Here the weight parameter α is employed to balance between the QDA criterion and

the variability criterion. Since α can be any non-negative value, first of all a proper
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range should be decided for α and then we can find the optimal wwwm’s (1 6 m 6 M)

for possible values of α inside this range. In practice, the range of α can be found

this way: the scale of the QDA part can be found by taking a generous number

of PCs, fitting (3.2.1) with α = 0 and implementing the following optimisation

algorithm, then in this case the value of J is all about the QDA term and can be

regarded as an indicator of the scale of the QDA part. The scale of the variability

part can be found by implementing classic PCA on the data. We take the log sample

variance of the first PC as the rough scale of the variability part. Then α varies in

the range where the contribution of the QDA part is no more than 10 times of the

contribution of the variability part and no less than 1
10 of that as well. Once we get

the range, possible values of α can be refined by grid search. For a specific value

of α , features are generated according to the above criterion (3.2.18). We select the

combination of wwwm’s and α that provides the lowest average classification error rate

in the cross-validation.

So far we have obtained the feature generation criterion of the m-th feature.

This minimisation problem can be solved using a gradient descent based method.

However our problem is nonconvex and under nonconvexity there is no guaran-

tee of global optimum (Ruder, 2016a). Gradient descent tends to stop at a local

optimum or even a saddle point without further searching of the global optimum

under nonconvexity while repeated randomised initialisation is commonly used in

non-convex optimisation tasks such as parameter tuning in deep learning (Sutskever

et al., 2013). Here we borrow the idea of repeated randomised initialisation to find

a better value for wwwm. In practice, we start the optimisation of wwwm from 2p random

initial values and obtain 2p different stable points of wwwm, then we select best wwwm

from these 2p candidates which gives the lowest objective value J(wwwm). Here p is

the dimension of wwwm, and the definition of stable point will be explained in detail in

section 3.2.2.3. Though by doing this we still have no guarantee of global optimum,

we have better chance to obtain a good wwwm which yields a small loss. Also, results of
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real data experiments and simulations show that repeated randomised initialisations

help in refining the value of wwwm.

3.2.2 Algorithms

The aim of this method is to generate features specialised for QDA classification

while conserving as much variability as possible. The full algorithm is divided

into a training phase algorithm and a test phase algorithm and will be introduced

successively. Afterwards, a few details in the algorithms will be discussed, such as

the definition of convergence and stable points in the algorithm, the gradient descent

technique used in this method, data deflation and orthogonalisation, etc.

3.2.2.1 Notation

Firstly, let us clarify the notation used in the following algorithms. In the following

algorithms:

p The number of variables in the spectral data;

M The maximum number of components we consider;

ntrain The number of training samples;

ntest The number of test samples;

XXX train ∈ Rntrain×p Training data matrix;

XXX test ∈ Rntest×p Test data matrix;

µµµ train ∈ Rp×1 A column vector containing the column means of XXX train;

In the cross-validation phase, the training data XXX train is further split into F

folds. Each time we randomly select 1 fold to be the validated data XXXcv in the cross-

validation, and use the remaining (F−1) folds as the calibration data XXXcal , i.e. we

have:

ncal The number of calibration samples in each CV split;

ncv The number of test samples in each CV split;

XXXcal ∈ Rncal×p Calibration data in each CV split (different for each split);
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XXXcv ∈ Rncv×p Validation data in each CV split (different for each split);

µµµcal ∈ Rp×1 Column mean of XXXcal;

wwwm ∈ Rp×1 The loading vector of the m-th component;

w̃wwm ∈ Rp×1 The optimal loading vector of the m-th component;

q The number of stable points of wwwm used to select w̃wwm;

w̃wwml ∈ Rp×1 The l-th stable point found of wwwm (1 6 l 6 q);

km Index of the iterations in the gradient descent of wwwm;

K The max iteration times allowed in the gradient descent of wwwm;

wwwkm
m ∈ Rp×1 The value of wwwm in the km-th iteration of gradient descent;

J(wwwm) Objective function to be optimised shown in formula (3.2.18);

IIIp ∈ Rp×p Identity matrix of dimension p.

gggkm
m = rkm5J(wwwm|wm = wkm

m ) The scaled gradient of J(wwwm) in the km-th iteration;

111cal ∈ Rncal×1, 111cv ∈ Rncv×1, 111train ∈ Rntrain×1, 111test ∈ Rntest×1 are vectors of 111s.

3.2.2.2 Algorithm

As discussed, we split data into a training set and a test set. We run the training

phase algorithm on the training data and use the model obtained from the training

phase to predict labels for the test data, according to the test phase algorithm. We

use the following Algorithm 1 at page 108 for the training phase and Algorithm 2

at page 109 for test phase.

Note that the whole training algorithm is implemented using a fixed α . As we

discussed in section (3.2.1), in theory α can take any non-negative value. Here α is

set to vary in a range where the magnitude of the QDA loglikelihood is no more than

10 times of the magnitude of the log variability, and no less than 1
10 of that as well.

Possible candidates for α can be decided by grid search. For any specific value of

α , a series of w̃wwm (1 6 m 6 M) can be found following Algorithm 1. We select

the combination of α and the corresponding w̃wwm’s which gives the lowest average

classification error rate in the cross-validation.
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Algorithm 1 Algorithm in the training phase (with a fixed weight α)
1: Split the training data into F folds for F-fold cross-validation;

Denote the calibration data in each cross-validation split as XXXcal;
Denote the validation data in each cross-validation split as XXXcv;

2: for each fold f , 1 6 f 6 F do
3: Centralise the data:

XXXcal ← XXXcal−111calµµµ
T
cal;

XXXcv← XXXcv−111cvµµµT
cal;

4: for the number of components m, 1 6 m 6 M do
5: Draw an initial random value www0

m for wwwm;
6: Update wwwm using constrained mini-batch stochastic gradient descent (see

section (3.2.2.3)): wwwkm+1
m = wwwkm

m −gggkm
m√

1−2(wwwkm
m )T gggkm

m +||gggkm
m ||2

, for 0 6 km 6 K−1;

7: Stop updating when the convergence (stable point) is obtained or when the
max number of iterations K is reached;

8: Repeat steps 5-7 until q optimal w̃wwml are found, where 1 6 l 6 q;
Set w̃wwm = argmin

w̃wwml

{J(w̃wwml) for 1 6 l 6 q};

9: Compute the m-th generated factor:
tttcal,m = XXXcalw̃wwm;
tttcv,m = XXXcvw̃wwm;

10: Build QDA classifier with the generated factors tttcal,1, tttcal,2, . . . ,tttcal,m;
Use the model to predict CV data with tttcv,1, tttcv,2, . . . ,tttcv,m and record the
number of errors n f ,m in the f -th fold;

11: Deflate and orthogonalise the data by:

EEEcal = XXXcal(IIIp−
w̃wwmw̃wwT

mXXXT
calXXXcal

||w̃wwT
mXXXT

calXXXcalw̃wwm||
);

EEEcv = XXXcv(IIIp−
w̃wwmw̃wwT

mXXXT
calXXXcal

||w̃wwT
mXXXT

calXXXcalw̃wwm||
);

12: Replace XXXcal with the deflated data matrix EEEcal;
Replace XXXcv with the deflated data matrix EEEcv;

13: end for
14: end for
15: The total number of misclassifications with m components, Nm = ∑

F
f=1 n f ,m;

16: Output:
The optimal number of components m̃ which gives the smallest Nm;

So far the optimal α and the best number of components m̃ can be found. For

a fixed α and m̃, the algorithm in the test phase is Algorithm 2. Here the training is

done on the whole training set and then we use the training model to predict labels

of a disjoint unused test set (see next page for more details).
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Algorithm 2 Algorithm in the test phase
1: Centralise the data:

XXX train = XXX train−111trainµµµT
train;

XXX test = XXX test−111test µµµ
T
train;

2: for the number of component m, 1 6 m 6 m̃ do
3: Draw an Randomise initial value www0

m for wwwm;
4: Update wwwm via mini-batch constrained stochastic gradient descent using

wwwkm+1
m = wwwkm

m −gggkm
m√

1−2(wwwkm
m )T gggkm

m +||gggkm
m ||2

, for 0 6 km 6 K−1;

5: Stop updating when the convergence is obtained or when the max number of
iterations K is reached;

6: Repeat steps 3-5 until q optimal w̃wwml are found where 1 6 l 6 q;
Set w̃wwm = argmin

w̃wwml

{J(w̃wwml) for 1 6 l 6 q};

7: Compute the m-th generated factor:
ttttrain,m = XXX trainw̃wwm;
ttttest,m = XXX testw̃wwm;

8: Deflate and orthogonalise the data by:
EEEtrain = XXX train(IIIp− w̃wwmw̃wwT

mXXXT
trainXXX train

||w̃wwT
mXXXT

trainXXX trainw̃wwm||
);

EEEtest = XXX test(IIIp− w̃wwmw̃wwT
mXXXT

trainXXX train

||w̃wwT
mXXXT

trainXXX trainw̃wwm||
);

9: Replace XXX train with the deflated data matrix EEEtrain;
Replace XXX test with the deflated data matrix EEEtest ;

10: end for
11: Build a QDA classifier on the training data with generated factors ttttrain,1, ttttrain,2,

. . . , ttttrain,m̃;
Use this QDA model to predict the test data with ttttest,1, ttttest,2, . . . ,ttttest,m̃;
Record the number of misclassifications in the test set nm̃;

12: Output:
The number of misclassifications in the test set nm̃.

3.2.2.3 Explanation of the algorithm

Randomised Initialisation

The gradient descent method is commonly applied in nonconvex optimisation,

though the global optimum cannot be guaranteed under non-convexity. Under non-

convexity gradient descent tends to stop at a local optimum or even a saddle point.

Nevertheless, repeated randomised initialisation can help in finding a better stable

point. In this algorithm, for each wwwm we initialise the searching algorithm at certain

number of randomised initial points in the p-dimensional feature space and obtain



3.2. Methodologies 109

q stable points w̃wwml where 1 6 l 6 q. The selected w̃wwm is the one corresponding to

the smallest objective value J(w̃wwml) among all w̃wwml’s. Here q can be regarded as a

hyperparameter to tune. In general, the larger q is, the more comprehensive this

method can be. Nevertheless, computation cost needs to be taken into consideration

as well and thus this q cannot be too large. In practice we set q to be 2p. In other

words, we randomly initialise the optimisation of wwwm and get 2p candidates, and the

optimal w̃wwm is selected from the 2p candidates.

Mini-batch Stochastic Gradient Descent

Gradient descent is a widely-used optimisation algorithm and it has many variations.

Stochastic gradient descent updates the value of the parameter for each example in

the training dataset, batch gradient descent updates the value of the parameters after

the whole batch of training data have been evaluated, while mini-batch stochastic

gradient descent is a balance between the efficiency of stochastic gradient descent

and the robustness of batch gradient descent. It splits the training dataset into small

batches that are used to calculate loss and then update model coefficients after each

small batch. The batch size can also be determined via cross-validation or via some

prior knowledge of the data. Since the sample size of most NIR data sets are limited

to a hundred or couple of hundred most, the mini-batch size cannot be too large,

while too small batch size will need extra time to obtain convergence. In our real

data examples and simulations we set our batch size to be 24.

Constrained Gradient Descent

As in this case wwwm needs to be of norm one, adaptation of the gradient descent

method with unit-norm constraint can be employed (Douglas et al., 2000).

Following Douglas et al. (2000), in the constrained gradient descent wwwm can be

updated by:

wwwk+1
m =

wwwk
m−gggk

m√
1−2(wwwk

m)
T gggk

m + ||gggk
m||2

, (3.2.19)

where the iteration time k, 0 6 k 6 K−1.
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In formula (3.2.19) the scaled gradient

gggk
m = rk5J(wwwm|wwwm = wwwk

m), (3.2.20)

where rk is the learning rate in the k-th iteration of gradient descent and

5J(wwwm|wwwm = wwwk
m) is the gradient of the objective function when wwwm = wwwk

m.

In the training of gradient descent based algorithms the choice of the learning

rate is one of the most tricky and important parts (Bishop et al., 1995). It is often

useful to reduce learning rate as the training progresses. Learning rate can be re-

duced in a time-based decay, a step-based decay, or an exponential decay (Ruder,

2016b). Here we let the learning rate decay with the number of iterations, i.e. with

time. We set rk = 1
k , where k is the number of iterations. As the learning rate decays

with the iteration time the max iteration time cannot be too large. Here we set the

max number of iterations to be 500.

Finally, as the analytic solution to the gradient of the above objective func-

tion is too complicated to be calculated directly, we use the numerical gradient to

approximate it in practice (Quarteroni et al., 2010).

Convergence

As the optimised object wwwm is of dimension p, here we have a high dimensional

non-convex optimisation problem and it is not very likely to converge to the global

optimum easily. Thus, to terminate the algorithm at a feasible point, the algorithm

is deemed to have converged if the following conditions are satisfied.

In this high dimensional optimisation problem we set the condition of conver-

gence to be in three aspects: 1) The value of the objective function J(wwwm) should be

stabilised; 2) The loading vector wwwm should be steady; 3) The norm of the gradient

should be close to zero. To be more specific, in practice the criterion of convergence

is set to be that in 5 successive iterations the following 3 conditions hold: 1) The

five objective values cannot differ by more than 1%; 2) The norms of the differ-
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ence of the 5 successive wwwm’s do not exceed 0.1, i.e. max||wwwl1
m−wwwl2

m||6 0.1 for any

k 6 l1 < l2 6 k+4; and 3). The norm of the gradient is no larger than 10.

If the above three conditions are satisfied, the algorithm is deemed to have con-

verged and the wwwm corresponding to the smallest objective value among the five is

regarded as the local optimiser or as we call it, a stable point. Otherwise the conver-

gence is not reached and we continue the iteration, until either we reach convergence

or the max number of iterations is reached.

Deflation and Orthogonalisation

In the algorithm, the j-th and the m-th component ttt j and tttm ( j 6= m) are required to

be orthogonal. The orthogonalisation is achieved by setting:

EEE = XXX(III− wwwmwwwT
mXXXT XXX

wwwT
mXXXT XXXwwwm

), (3.2.21)

where EEE is the deflated matrix of XXX . By doing this, the generated components ttt j and

tttm are guaranteed to be orthogonal, i.e. we have orthogonal scores. It is important

to have orthogonal scores, otherwise when using the scores in subsequent QDA

classification there might be collinearity problem.

To check the orthogonality of components, we consider two successive tttm and

tttm+1 where tttm = XXXwwwm and tttm+1 = EEEwwwm+1. Then we have

tttT
m · tttm+1

=(XXXwwwm)
T EEE wwwm+1

=wwwT
mXXXT XXX(III− wwwmwwwT

mXXXT XXX
wwwT

mXXXT XXXwwwm
)wwwm+1

=(wwwT
mXXXT XXX− wwwT

mXXXT XXXwwwmwwwT
mXXXT XXX

wwwT
mXXXT XXXwwwm

)wwwm+1

=(wwwT
mXXXT XXX−wwwT

mXXXT XXX)wwwm+1

=000 ·wwwm+1 = 000,
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i.e. tttm and tttm+1 are orthogonal.

In short, every time when obtaining a new component tttm the data matrix XXX is

deflated using formula (3.2.21) and then the following components are guaranteed

to be orthogonal to tttm.

3.3 Simulations

In this section we use one near infrared spectral data example and four simulations

to illustrate our algorithm in high-dimensional classification.

As we discussed, QDA can well utilise the variance heterogeneity between

the two classes, while LDA mainly uses the variance-regularised group mean dif-

ference information. Thus QDA-based methods are expected to work better than

LDA-based methods when there is variance heterogeneity between the two classes

and the mean difference is not discriminating enough. Figure 3.3.1 shows an illus-

trative example of this situation. In Figure 3.3.1, samples from class 1 and class

2 follow normal distributions with different means and variances. When LDA is

used as the classifier, it implicitly assumes the two classes to have same variance in

this direction, then we can hardly separate the two classes merely using the mean

difference information. However, when QDA is used as the classifier it can use both

the mean difference information and the variance heterogeneity of the two classes

to better separate them.

In this section, we consider four simulation scenarios. In the first two scenar-

ios, there is no mean difference between the two classes but heterogeneity in vari-

ance exists. In the third scenario, there is a highly noisy mean difference direction.

While in the last scenario, the mean difference is sufficiently large to separate the

two classes. We compare the performance of the proposed method and PCA-QDA,

PLS-QDA, PCA-LDA and PLS-DA under these four scenarios.
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Figure 3.3.1. An illustrative example of the variance heterogeneity. In the xxx1 di-

rection samples from class 1 follow NNN(0.5,0.82) while samples from

class 2 follow NNN(−0.5,52).

3.3.1 Scenario 1

In this subsection we consider discrimination of two groups with same mean but

distinct covariance structure. The composition of data is: 3 discriminative variables

showing distinct covariance structure and 7 noise variables with larger variance than

the discriminative variables. Here we assume our data is composed of 10 variables

following normal distributions with zero means but different variances. In the first

scenario, we assume the two classes to have the same population mean on these

10 variables, in other words, there is no significant mean difference between the

two classes. Among these 10 variables we set the first three variables to be the

potentially discriminating variables. Though not holding any difference in the mean

location, the two classes have heterogeneous variance in these three directions. The

remaining 7 variables contain Gaussian random noise of larger scale to the first 3

variables. Here we simulate a training set with 60 samples (30 of each class) and

a test set with 60 samples (30 of each class). We repeat our simulation 10 times
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to obtain the average classification performance. The detailed scenario setting is as

follows.

Scenario Setting

For both training and test set:

Let y = (y1, ...,y60)
T , such that yi = 0 for 1≤ i≤ 30 and yi = 1 for 31≤ i≤ 60.

Let Σs, 1 ≤ s ≤ 3 be 60× 60 diagonal matrices with corresponding diagonals σs,i,

where 1≤ s≤ 3 and 1≤ i≤ 60.

For s = 1, let σs,i = 52 for 1≤ i≤ 30, σs,i = 0.52 for 30≤ i≤ 60;

For s = 2, σs,i = 0.52 for 1≤ i≤ 30, and σs,i = 52 for 30≤ i≤ 60;

For s = 3, σs,i = 52 for 1≤ i≤ 60.

Consider 10 independent 60-dimensional vectors x j, 1≤ j ≤ 10 such that

x j ∼ N(0,Σ1), j = 1,2,

x j ∼ N(0,Σ2), j = 3,

x j ∼ N(0,Σ3),4≤ j ≤ 10.

Let XXX be a 60×10 matrix with xxx j as its j-th column, i.e. XXX = [xxx1,xxx2, . . . ,xxx10]. Then

a data matrix containing 60 samples (30 samples of each class) and 10 variables is

generated. Both the training data XXX train and the test data XXX test are generated in this

way. To better visualise and understand the structure of the simulated data, three

illustrative scatter plots can be found in Figure 3.3.2, 3.3.3 and 3.3.4.

Though holding no difference in the group means, the heterogeneous variance

structure of the two classes has discriminating power. However, large noise con-

tained in directions xxx4, xxx5, . . ., xxx10 is a challenge to feature extraction. Note that the

noise directions xxx4 to xxx10 are set to have standard error 5 while the pooled sample

standard deviation of xxx1, xxx2 and xxx3 are 3.5. Then how to generate discriminative fea-

tures from non-discriminative variation of larger scale is a challenge to all feature

extraction and classification methods. Here we compare our QDA-adaptive method
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with PCA-LDA, PCA-QDA, PLS-QDA and PLS-DA. Performance of them on the

training set via 6-fold CV and on the test set can be found in Figure 3.3.5.

Figure 3.3.2. Illustrative scatter plot of the two classes in the direction of xxx1 or xxx2.

Class 1 and class 2 are set to have same mean in direction xxx1 and xxx2 but

class 1 is set to have higher variance than class 2. This heterogeneity

in variance can be used to discriminate the two classes.

Figure 3.3.3. Illustrative scatter plot of the two classes in direction xxx3. Class 1 and

class 2 are set to have same mean in direction xxx3 but class 2 is set to

have greater variance than class 1. This heterogeneity in variance can

be used to discriminate the two classes.

Figure 3.3.4. Illustrative scatter plot of the two classes in the other directions, xxx4,

xxx5, . . ., xxx10. The two classes are set to follow identical distribution on

the remaining 7 directions. They are the noise directions.

Simulation Result

Figure 3.3.5 (a) shows the classification error rates of the five methods in 6-fold

cross-validation while 3.3.5 (b) shows the error rate in the test set.

In the training phase, 60 training samples are randomly split into 6 folds, with

each fold containing 5 samples from each class. Five folds are used to train the
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(a) Classification error rate in 6-fold CV (b) Classification error rate on the test set

Figure 3.3.5. Classification performance of PCA-QDA, PCA-LDA, PLS-QDA,

PLS-DA and our method in the first scenario. The triangular symbol

in each box represents the average error rate over 10 simulations.

calibration model, one fold is used as a validation. The classification error rate in

each CV fold is averaged and then recorded as the CV error rate in Figure 3.3.5

(a). The average CV error rate in 10 simulations is regarded as a measurement of

the model performance. In the CV, our method achieves the lowest average error

rate, 24.5%, followed by PLS-QDA with 43.7%, PCA-QDA with 48.0%, PCA-

LDA with 57.8% and at last PLS-DA with 61.2% error rate. In this scenario, since

there is no group mean difference LDA-based methods, PCA-LDA and PLS-DA,

almost have no discriminative power. Figure 3.3.5(b) shows the classification error

rate in the test set. The lowest average error rate 18.5% is obtained by our QDA-

adaptive method, followed by PLS-QDA with 26.8%, PCA-QDA with 32.8%, PCA-

LDA with 47.5% and at last PLS-DA with 48.2% error rate. Similar to the CV

result, LDA-based methods have very low discriminating power in this scenario.

Furthermore, among all three QDA-based methods our proposed method minimises

the impact of the large noise by giving very small weight to the PCA part. The value

of the weight α varies from 0.2 to 0.6 in 10 repetitions. Also, we can observe from

Figure 3.3.5 that all QDA based methods achieve lower error rate in the test set than

in the CV. This can be owing to the larger training sample size we have on the test
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phase, known that QDA based methods are sensitive to sample size.

Conclusion

This simulation shows when there is no significant difference in the group mean but

non-discriminative features containing large within group variability, LDA-based

methods, such as PCA-LDA and PLS-DA can hardly distinguish the two classes,

while PCA-QDA and PLS-QDA suffer from the large noise and thus discriminating

features cannot be easily generated with these two methods. In the meanwhile, our

QDA-adaptive method utilises the variance heterogeneity of the two groups and is

free from the deficiency of PCA. This is accomplished by balancing between PCA

and QDA. In this case a very small weight is given to the PCA part and the influence

of the large and non-discriminative within group variation can be reduced.

3.3.2 Scenario 2

In this scenario we consider discrimination of two groups with same mean but dis-

tinct covariance structure. The composition of data is: 3 discriminative variables

showing distinct covariance structure and 27 less noisy variables.

In the first scenario we show how dimension reduction and classification meth-

ods perform when there is no significant mean difference but a small number of

noise variables which are of larger scales to the discriminative ones. In the second

scenario, we will examine the performance of the above five methods when there

are a large number of noise variables containing small disturbance. Also, in this

scenario the mean difference is set to be zero.

We assume the data contain 30 variables with zero mean, 3 of them are dis-

criminative variables as in the first scenario, 27 of them contain Gaussian noise, but

of smaller scale. As before, both the training set and the test set contain 60 samples

(30 samples each class). We repeat our simulation 10 times to obtain the average

classification performance. The detailed simulation setting is found as follows.
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Scenario Setting

For both training and test set:

Let y = (y1, ...,y60)
T , such that yi = 0 for 1≤ i≤ 30, and yi = 1 for 31≤ i≤ 60.

Let ΣΣΣs, 1 ≤ s ≤ 3 be 60× 60 diagonal matrices with corresponding diagonals σs,i,

where 1≤ s≤ 3 and 1≤ i≤ 60.

For s = 1, let σs,i = 52 for 1≤ i≤ 30, σs,i = 0.52 for 30≤ i≤ 60;

For s = 2, σs,i = 0.52 for 1≤ i≤ 30, and σs,i = 52 for 30≤ i≤ 60;

For s = 3, σs,i = 1 for 1≤ i≤ 60.

Consider 30 independent 60-dimensional vectors x j, 1≤ j ≤ 30 such that

x j ∼ N(0,Σ1), j = 1,2,

x j ∼ N(0,Σ2), j = 3,

x j ∼ N(0,Σ3),4≤ j ≤ 30.

Let XXX be a 60×30 matrix with xxx j as its j− th column. Both the training data XXX train

and the test data XXX train are generated in this way.

The difficulty in this scenario lies in two aspects. 1) There is no significant

mean difference, 2) a large number of noise variables have been included in the

data, though of small scale. How to extract discriminative features from a large

number of non-discriminative features is the challenge to all dimension reduction

and classification methods. Performance of the above five methods is described

below.

Simulation Result

Performance of PCA-LDA, PCA-QDA, PLSQDA, PLS-DA and our QDA-based al-

gorithm in the training set via 6-fold CV and in the test set can be found in Figure

3.3.6. As in the previous simulation the left subfigure shows the classification error

rate of the five methods in the training set via 6-fold cross-validation over 10 repeti-
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tions. The right subfigure shows the corresponding error rates in the test set over 10

repetitions. From Figure 3.3.6 (a), our method and PCA-QDA, PLS-QDA achieve

comparably low average error rates on the training set, which are 3.5%, 2.9% and

7.1% respectively. The average CV classification error rates of PCA-LDA and PLS-

DA are 38.3% and 39.0% respectively. In this scenario, both PCA-LDA and PLS-

DA have low discriminative power. Figure 3.3.5 (b) shows the classification error

rate in the test set. The lowest average error rate 2.5% is obtained by our QDA-

adaptive method, which means this method only misclassified around 1.5 samples

on average out of 60 samples. Meanwhile, PCA-QDA and PLS-QDA achieve 2.9%

and 3.8% error rate on the test set, while that of PCA-LDA and PLS-DA are 40.8%

and 26.3% respectively.

(a) Classification error rate in 6-fold CV (b) Classification error rate on the test set

Figure 3.3.6. Classification performance of PCA-QDA, PCA-LDA, PLS-QDA,

PLS-DA and our QDA-based method under the second scenario

Conclusion

This scenario shows when there is no difference in the group means, PCA-LDA

and PLS-DA have low discriminative power, while PCA-QDA, PLS-QDA and our

QDA-adaptive method utilise the heterogeneity in variance to separate the two

groups and achieve high classification accuracy. Moreoever, generally speaking

higher classification accuracy is obtained in this scenario, compared with the first

scenario. This is because in this scenario discriminative features happen to be of
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larger scale, i.e. containing higher variation than the non-discriminative variables

and as a result PCA and PLS suffer less from the noise.

3.3.3 Scenario 3

In scenario 3 we consider discrimination of two groups with small mean difference

and distinct covariance structure. The composition of data is: 2 discriminative vari-

ables showing small mean difference and distinct covariance structure, 1 variable

showing no mean difference but distinct covariance, 5 non-discriminative variables

containing large Gaussian noise, 5 variables containing small Gaussian noise.

In this scenario we simulate a situation in which the mean difference between

the two groups exists but noise is also contained in this mean difference direction. In

other words, there is a mean difference between the two groups but the difference

is not sufficiently large when compared with the within-group variability in this

direction. Specifically, in the direction of xxx1, class 1 follows a normal distribution

with mean 0.5 and standard deviation 5, i.e. xxx1i |y = 0 ∼ NNN(0.5,25) for 1 6 i 6 30

while class 2 follows a normal distribution with mean -0.5 and standard deviation 1,

i.e. xxx1i |y = 0 ∼ NNN(−0.5,1) for 31 6 i 6 60. A mean difference of 1 is contained in

the xxx1 direction. Similarly, a mean difference of 1 is contained in the xxx2 direction.

Meanwhile, xxx3 contains heterogeneity in variance but no mean difference, as in

the previous scenarios. Apart from these, 5 variables containing large Gaussian

noise and 5 variables containing small Gaussian noise are included in the data. In

scenario 1 we only included non-discriminative variables containing large Gaussian

noise (mean 0 and variance 25). In scenario 2 we only included non-discriminative

variables with small Gaussian noise (mean 0 and variance 1), while in this scenario

we included both variables with large variance and variables with small variance.

Combining with xxx1, xxx1 and xxx3, the variance-covariance structure becomes more

complex in this case. The detailed simulation setting is found as follows.
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Scenario Setting

For both training and test set:

Let yyy = (y1, ...,y60)
T , such that yi = 0 for 1≤ i≤ 30, and yi = 1 for 31≤ i≤ 60.

Let µµµ = (µ1, ...,µ60)
T , such that µi = 0.5 for 1 ≤ i ≤ 30, and µi = −0.5 for 31 ≤

i≤ 60.

Let ΣΣΣs, 1 ≤ s ≤ 4 be 60× 60 diagonal matrices with corresponding diagonals σs,i,

where 1≤ s≤ 4 and 1≤ i≤ 60.

For s = 1, let σs,i = 5 for 1≤ i≤ 30, σs,i = 0.5 for 30≤ i≤ 60;

For s = 2, σs,i = 0.5 for 1≤ i≤ 30, and σs,i = 5 for 30≤ i≤ 60;

For s = 3, σs,i = 3.5 for 1≤ i≤ 60.

For s = 4, σs,i = 1 for 1≤ i≤ 60.

Consider 13 independent 60-dimensional vectors x j, 1≤ j ≤ 30 such that

x j ∼ N(µµµ,Σ1), j = 1,

x j ∼ N(µµµ,Σ2), j = 2,

x j ∼ N(0,Σ2), j = 3,

x j ∼ N(0,Σ3),4≤ j ≤ 8

x j ∼ N(0,Σ4),9≤ j ≤ 13.

Let XXX be a 60×13 matrix with xxx j as its j-th column. Both the training data XXX train

and the test data XXX test are generated in this way. The difficulty in this scenario is,

1) how to identify discriminative features from non-discriminative ones, 2) as the

mean difference direction is noisy, how to utilise heterogeneous variance-covariance

information to assist the classification. Performance of the above five methods is

displayed in Figure 3.3.7.

As in the previous simulation, Figure 3.3.7 (a) shows the classification error

rates of the five methods in the training set via 6-fold cross-validation over 10 rep-
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(a) Classification error rate in 6-fold CV (b) Classification error rate on the test set

Figure 3.3.7. Classification performance of PCA-QDA, PCA-LDA, PLS-QDA,

PLS-DA and our QDA-based method under the third scenario

etitions. Figure 3.3.7 (b) shows the corresponding error rates in the test set over 10

repetitions. From Figure 3.3.7 (a) our method and PCA-QDA achieve relatively low

average error rate in the training set, which are 8.2% and 12.3% respectively. The

average CV classification error rates of classic PLS-QDA, PCA-LDA and PLS-DA

are 26.8%, 40.8% and 41.7% respectively. Though there is a mean difference in this

scenario, PCA-LDA and PLS-DA fail to use the heterogenous variance of the two

groups and consequently misclassify more samples than the QDA-based methods.

Among three QDA based methods, the proposed method is adaptive to the QDA

classifier and hence obtains higher accuracy. Here the penalty weight of our algo-

rithm varies from 2 to 3 over 10 simulations. The best number of components varies

from 3 to 6 over the 10 simulations.

Figure 3.3.5 (b) shows the classification error rates in the test set. The low-

est average error rate 8.8% is obtained by our QDA-adaptive method, followed by

11.5% by PCA-QDA. Classification error rates of PLS-QDA, PCA-LDA and PLS-

DA are 24.5%, 46.2% and 47.8% respectively.

Conclusion

This scenario shows when there is a noisy mean difference direction and this direc-

tion also contains heterogeneity in variance, PCA-LDA and PLS-DA fail to utilise
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this heterogeneity information and possess low discriminative power. QDA-based

high dimensional classification methods utilise heterogeneous variance-covariance

information to assist the classification and achieve higher classification accuracy.

3.3.4 Scenario 4

In this scenario, we consider discrimination of two groups with large mean dif-

ference and distinct covariance structure. The composition of data is: 2 dis-

criminative variables showing large mean difference and distinct covariance struc-

ture, 2 variables showing no mean difference but distinct covariance structure, 8

non-discriminative variables containing large Gaussian noise, 8 variables contain-

ing small Gaussian noise.

Here we simulate a scenario where there is a large mean difference compared

with the variability in that direction. In this situation we have a significant mean

difference as well as more complex covariance structure than before. The first two

variables xxx1 and xxx2 contain the mean difference with heterogeneous variance as in

the previous scenarios, xxx3 and xxx4 contain heterogeneity in variance but no mean

difference. Eight variables xxx5, xxx6, · · ·, xxx12 contain large Gaussian noise while eight

variables xxx13, xxx14, · · ·, xxx20 contain small Gaussian noise. The detailed simulation

setting is found as follows.

Scenario Setting

For both training and test set:

Let yyy = (y1, ...,y60)
T , such that yi = 0 for 1≤ i≤ 30, and yi = 1 for 31≤ i≤ 60.

Let µµµ = (µ1, ...,µ60)
T , such that µi = 2 for 1≤ i≤ 30, and µi =−2 for 31≤ i≤ 60.

Let ΣΣΣs, 1 ≤ s ≤ 4 be 60× 60 diagonal matrices with corresponding diagonals σs,i,

where 1≤ s≤ 4 and 1≤ i≤ 60.

For s = 1, let σs,i = 52 for 1≤ i≤ 30, σs,i = 0.52 for 30≤ i≤ 60;

For s = 2, σs,i = 0.52 for 1≤ i≤ 30, and σs,i = 52 for 30≤ i≤ 60;

For s = 3, σs,i = 3.52 for 1≤ i≤ 60.
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For s = 4, σs,i = 1 for 1≤ i≤ 60.

Consider 13 independent 60-dimensional vectors x j, 1≤ j ≤ 30 such that

x j ∼ N(µµµ,Σ1), j = 1,

x j ∼ N(µµµ,Σ2), j = 2,

x j ∼ N(0,Σ1), j = 3,

x j ∼ N(0,Σ2), j = 4,

x j ∼ N(0,Σ3),5≤ j ≤ 12

x j ∼ N(0,Σ4),13≤ j ≤ 20.

Let XXX be a 60× 20 matrix with xxx j as its j-th column. Both the training data

XXX train and the test data XXX test are generated in this way. The challenge is to identify

a small number of discriminative variables xxx1 to xxx4 from a large number of noise

variables from xxx5 to xxx20. Performance of the above five methods is shown in the

following figure.

(a) Classification error rate in 6-fold CV (b) Classification error rate on the test set

Figure 3.3.8. Classification performance of PC-DA (PCA-QDA, PCA-LDA), PLS-

QDA, PLS-DA and our QDA-based method under the fourth scenario

Figure 3.3.8 (a) shows the classification error rates of the five methods in the

training set via 6-fold cross-validation over 10 repetitions. Figure 3.3.8 (b) shows

the corresponding error rates in the test set over 10 repetitions. From Figure 3.3.8
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(a) our method and PCA-QDA achieve relatively low average error rates, which are

10.0% and 11.8% respectively, while the average CV classification error rates of

classic PLS-QDA, PCA-LDA and PLS-DA are 18.8%, 23.3% and 25.2% respec-

tively. In Figure 3.3.5 (b), the lowest average test error rate 10.2% is obtained by

our QDA-adaptive method, followed by 11.7% by PCA-QDA. Classification error

rates of the remaining three methods are 20.5%, 26.2% and 15.3% respectively.

Conclusion

This scenario shows when there is a significant and large mean difference, LDA-

based methods can utilise this information and obtain significantly higher classifi-

cation accuracy than in the previous scenarios. Nevertheless, assistance of the sec-

ond order information is still beneficial to classification. Furthermore, our method

generate features specialised for QDA and accordingly achieve even higher classifi-

cation accuracy with the QDA classifier than the other methods.

3.4 Examples
The real data example is based on the wheat NIR spectral data set. The wheat data

set contains NIR transmittance spectra of 9 varieties of unground wheat, on the

basis of known provenance. In this section variety 3 and variety 8 are selected as

the two classes, so as to obtain two relative large and balanced groups. Another

possible choice is variety 1 versus variety 5. However, these two groups can be

well separated by classic PCA-QDA with 5.7% error rate, while the performance

of PCA-QDA on separating variety 3 and variety 8 is much weaker, achieving only

about 70% accuracy. Thus here we choose variety 3 and variety 8 as the two groups,

to improve the performance of PCA-QDA on separating them.

Figure 3.4.1 shows the spectra of these two classes. In the figure, each curve

represents the spectrum of a sample. The blue curves represent spectra of samples

from class 1 (variety 3) while the red curves represent those from class 2 (variety 8).

The two classes contain 36 and 37 samples respectively, while the number of wave-
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(a) Spectra of samples from class 1 (b) Spectra of samples from class 2

Figure 3.4.1. Spectra plot of class 1 (variety 3) and class 2 (variety 8)

lengths is 100. The number of variables exceeds the number of observations and

the variables are highly correlated, thus a feature extraction technique is required in

this case.

Here the number of wavelengths is 100. If implementing the above algorithm

directly with the raw data, we will face a 100-dimensional optimisation problem.

Further considering the randomised initiallisation and the cross validation required

by the algorithm, the whole procedure will be computationally very expensive. As

a result, though not ideally, we replace the raw spectra with the top 20 PCs of

them, and use these PCs as the spectra data in the algorithm. Top 20 PCs contain

most of the information (above 99% of the variability) thus we will not lose much

information with 20 PCs. 99% variability indicates that most of the common in-

formation of the two groups as well as the discriminative information is retained.

However, common information or noise are bound with the discriminative informa-

tion in the PCs, thus a feature extraction or variable selection is better applied before

the classification. Meanwhile, using 20 PCs simplifies the original 100-dimensional

optimisation problem to 20-dimensional and significantly relieves the computation

burden. This is the reason why we use 20 PCs. In this example, we use the raw

spectra instead of the derivatives, as the derivatives will not lead to significantly

better classification performance in this particular example. Note that the selection
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of derivatives and raw spectra mostly depends on the corresponding classification

performances.

Our QDA-adaptive algorithm is applied to this NIR data to extract QDA spe-

cialised features and simultaneously reduce dimension. When our penalised QDA-

based method is selected as the feature extraction method, QDA is naturally selected

as the subsequent classifier. The combined use of our feature extraction method and

QDA is compared with PCA-QDA, PCA-LDA, PLS-QDA and PLS-DA. Classifi-

cation performance of these methods in the wheat example can be found in Figure

3.4.2.

The data set is too limited to afford a separate training and test set. Thus we use

double CV. In double CV, data are randomly split into a training set of 59 samples

and a test set of 14 samples 10 times. In each split, 7 samples from each class are

selected into the test set, in consideration of data balance. In terms of the training

set, the remaining 59 samples are split into 6 folds with 9 or 10 samples, with each

fold containing the same number of samples from each class, or as close as possible.

We use 5 folds to train the calibration model, one fold to validate. Once all the

folds are traversed as the cross-validation fold, the average error rates in the cross-

validation fold can be obtained. The penalty weight α together with its best number

of components which gives the smallest average error rate in the CV is selected.

Then we use our QDA-adaptive model together with the selected parameter values

to predict labels for the test samples. The classification error rate in the test set

is regarded as the evaluation criterion of models. After 10 times of splitting, we

compare the classification performance of our penalised QDA-based method, with

PCA-QDA, PCA-LDA, PLS-QDA and PLS-DA. In PCA-QDA and PCA-LDA, PCs

are obtained as solution to the eigendecomposition of the total sample covariance

matrix and then used in QDA and LDA to classify samples. In PLS-QDA and PLS-

DA, components are generated in the classic PLS manner and used in QDA and

linear regression to predict the labels of samples. For PLS-DA, the predicted value
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is compared with a threshold value. For example if the labels are set to be 1 and -1

then the threshold is often set to be 0. If the predicted value is greater than 0 the

sample is set to class 1 otherwise it is set to class 2. All four methods as well as our

QDA-based method are implemented under the same cross-validation structure and

the best number of components used in each methods is chosen by cross-validation.

Figure 3.4.2 shows the classification performance of the five methods in the training

and the test set.

(a) Classification error rate in 6-fold CV (b) Classification error rate on the test set

Figure 3.4.2. Classification performance of PCA-QDA, PCA-LDA, PLS-QDA,

PLS-DA and our QDA-based method in the training and test set. The

triangular symbol in each box represents the average error rate over

10 simulations.

As shown in 3.4.2 (a), in 6-fold CV the average error rate decreases from 30.2%

to 24.9% from the classic PCA-QDA to our QDA-adaptive algorithm. The corre-

sponding error rates of PCA-LDA, PLS-QDA and PLS-DA are 27.3%, 30.3% and

25.3% respectively. Our method outperforms the classic PCA-QDA and PLS-QDA

and achieves comparable error rate with PLS-DA. Here the best weight α of our

algorithm varies, from 1 to 3, and the best number of components varies from 4 to

6 in these 10 times of splitting.

Figure 3.4.2 (b) shows the corresponding classification error rate on the test set.

Our QDA-based method obtains the lowest test error rate, 27.1%, while that of the
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original PCA-QDA is 37.1%. The error rates of PCA-LDA, PLS-QDA and PLS-

DA are 29.3%, 37.9% and 30.7% respectively. Our method outperforms the classic

PCA-QDA and PLS-QDA, obtains slightly lower average error rate compared with

PCA-LDA and PLS-DA.

In this example we only consider models with no more than 6 features for all

methods. The reasons are: 1) the first 6 PCs contain more than 99% of the to-

tal variability of the data and including more features have the risk of bringing in

noise, 2) the classic PC-DA (PCA-LDA and PCA-QDA), PLS-QDA and PLS-DA

will not obtain better result with more than 6 components in this example, 3) Last

but not least, the computation time of our method is relatively high. The first two

components take only couple of seconds to converge. However, the computation

time increases significantly with the increase of the number of components. The

sixth component takes couple of minutes to converge (or achieving the max itera-

tion times). Also, we need to initialise the optimisation from a few different starting

points, which further multiplies the computation time. In consideration of the com-

putation time, we do not go further than 6 components.

3.4.1 Conclusion

As an unsupervised method PCA fails to use the label information of the obser-

vations. It gives high weights to features with higher variability irrespective of

whether they contribute to further analysis, such as prediction and classification.

One way to avoid this deficiency is to replace PCA with supervised feature extrac-

tion method. LDA-based methods such as Direct LDA, OLDA, NLDA and RDA

are widely used in high dimensional feature extraction. However, contrary to PCA,

these methods attach most of the importance to the discriminating power of features

while neglecting their generalisation ability. It was argued in the literature (De Jong

and Kiers, 1992) that two criteria should be taken into consideration and also bal-

anced in feature extraction, one is the generalisation ability of features, one is the
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predictive ability of them. Specifically, in classification tasks the predictive ability

is expressed as the power of assigning the true label to the samples, i.e. the discrim-

inating power. In this chapter we propose a penalised QDA-based feature extraction

method to simultaneously maximise the generalisation ability and the discriminat-

ing power of generated features. In this algorithm the discriminating power of a

feature is measured by the QDA loglikelihood and the generalisation ability is mea-

sured by the variability contained in this feature. Our method is based on QDA

instead of LDA, so that we can utilise the heterogeneity in the second order struc-

ture of the data and build a nonlinear feature extraction method. A weight parameter

α is employed to balance between generalisation and discrimination, which can be

determined by cross-validation. Then we use mini-batch stochastic gradient descent

to search for the best loading vector of each feature.

In this chapter we use one real data experiment and four simulations to illus-

trate the performance of our algorithm in high dimensional classification. In the

wheat example, the average classification error rate on the training set via cross-

validation decreases from 30.2% to 24.9% from the classic PCA-QDA to our QDA-

based method, while the average error rate on the test set decreases from 37.1%

to 27.1%. Results of four simulations show: 1) when there is no mean difference

between the two classes and large noise, the proposed method can utilise variance

heterogeneity to separate the two classes and is less impacted by the large noise than

the regular PCA-QDA and PLS-QDA, 2) when there is a noisy mean difference di-

rection and this direction also contains heterogeneity in variance, our method can

combine the mean difference information and the heterogeneity information and

achieve 91.2% classification accuracy on the test set, while the corresponding error

rates of PCA-QDA, PLS-QDA, PCA-LDA and PLS-DA are 11.5%, 24.5%, 46.2%

and 47.8% respectively, 3) when there exists a significant mean difference, all five

methods obtain better separation. However the assistance of second order informa-

tion can still benefit the classification. The lowest test error rate 10.2% is achieved
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by our QDA-adaptive method, while that of PCA-QDA, PLS-QDA, PLS-DA and

PCA-LDA are 11.7%,15.3%, 20.5% and 26.2% respectively.

Regardless of the advantage of our penalised QDA-based method, one obvious

disadvantage of this method is its high requirement of computation time. In the

search of the best loading vector www, we need to solve a p-dimensional nonconvex

optimisation problem with norm 1 constraint. This optimisation itself takes rela-

tively long time, and the global optimum cannot be guaranteed. To address this, we

randomly initialise the optimisation process at multiple different start points and try

to find the best local optimum resulted from different start points. However, ran-

domised initialisation further multiplies the computation time. Hence, future work

can be done to enhance the computational efficiency of this method.



Chapter 4

General Conclusions

As the most well-known dimension reduction technique, PCA has been extensively

applied in various fields, such as chemistry, bioscience, computer science, social

science, and so forth. However, when PCA is used as a preliminary dimension re-

duction step in developing classification rules with high-dimensional data, it has a

drawback that as an unsupervised method PCA fails to use the class labels when

constructing the components. As a result, its maximisation of the variance of the

projected patterns is not necessarily in favour of discrimination among classes. In

this thesis, we propose five solutions to this problem from the following three per-

spectives.

Firstly, we can enhance the performance of PCA in high-dimensional classifi-

cation by combining supervised information in the feature generation step. From

this perspective, we propose two methods, reweighted PCA and between PCA. In

c class classification, Reweighted PCA reweights c within group covariance matri-

ces and 1 between group covariance with c weight parameters. Between PCA first

extracts dimensions from between-group covariance and then reweights the other

c within-group covariance matrices with (c− 1) weight parameters. These param-

eters, as well as the best number of components to use in the subsequent classifi-

cation, can be determined via cross-validation. Results in two NIR data sets, the

wheat data and the paddy rice data, show that these two methods outperform the
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classic PCA in both binary classification and multi-class classification with QDA.

Secondly, PCs can be generated as usual. However, instead of ranking PCs by

their associated eigenvalues, we can rank them by their discriminating power in a

classifier. Here we use QDA as the classifier. Based on this idea we propose two

methods, reordered PCA and stepwise-reordered PCA. In reordered PCA, PCs are

ranked and selected individually by their discriminating power in a univariate QDA

model, while in stepwise-reordered algorithm, PCs are ranked sequentially by their

joint discriminating power in a multivariate QDA model. In these two methods

both the cut-off point deciding the number of components taken into the re-ranking

scheme and the best number of components to use in the subsequent classification

are determined via cross-validation. By implementing them on the wheat data set

and the paddy rice data set we find that both methods provide higher classification

accuracy than the classic PCA in both binary and multi-class classification.

Moreover, supervised feature extraction methods such as DLDA, OLDA and

NLDA are widely applied in face recognition. Borrowing this idea we propose a

penalised QDA-based feature extraction method which simultaneously maximises

the generalisation ability and the discriminating power of features. In this algorithm

the discriminating power of a feature is measured by the QDA loglikelihood and the

generalisation ability is measured by the variability contained in this feature. Here

we use QDA instead of LDA, so as to utilise heterogeneity in the second order

structure of the data and build a nonlinear feature extraction method. A weight

parameter α is employed to balance between generalisation and discrimination, and

it can be determined by cross-validation. Mini-batch stochastic gradient descent

has been employed to search for the best loading vector for each feature. In the

binary classification with wheat data, error rate on the test set decreases from 37.1%

to 27.1% from the classic PCA-QDA to our method. Besides, simulation results

show that when there is no mean difference between the two classes, or when the

mean difference direction is highly noisy, our QDA-based method can utilise the
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covariance heterogeneity to assist the classification and is free from the deficiency

of PCA. Even when there is a large mean difference between the two groups, our

method can generate features specialised for QDA and achieve better classification

than the classic PCA-QDA, PLS-QDA, PCA-LDA and PLS-DA.

So far we have shown five modifications of PCA from three perspectives. We

compare the performance of reweighted PCA, between PCA, reordered PCA and

stepwise-reordered PCA on two NIR spectra data sets, the wheat data set and the

paddy rice data set. Reweighted PCA performs the best among these four methods

in the binary and the three-class classification of wheat samples. Stepwise-reordered

PCA outperforms the others in the binary classification of paddy rice samples, while

reweighted PCA and between PCA are the joint best performers in the three-class

classification of paddy rice samples. Reweighted PCA-QDA is the best performer

or the joint best performers in three classification examples out of four. In other

words, reweighted PCA-QDA is the most accurate algorithm among the four pro-

posed methods. Moreover, in both three-class classification examples, the highest

accuracy is obtained by the reweighted algorithm. It gives different weights to dif-

ferent groups and this makes the reweighted algorithm inherently more adaptive to

multi-class classification. In other words, when the classification accuracy is the

driven reason of choosing a dimension reduction method, or when we deal with

multi-class classification problems, the reweighted PCA-QDA is probably appro-

priate algorithm to apply.

However, one potential concern about the reweighted algorithm is on its com-

putation time. Reweighted PCA gives different weights to different groups, and

then search for the optimal combination of weights. The computation complexity

of this algorithm (as well as the between PCA) does not depend on the dimen-

sion of the data (the number of variables), but the number of classes. In c class

classification a c-dimensional bounded optimisation problem is implicitly contained

in the procedure of the reweighted algorithm. As a result, the computation time of
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the reweighted algorithm increases significantly with the increase of the number

of classes. Similar concern is with the penalised QDA based method. In the pe-

nalised QDA based feature extraction method, though the computation cost does

not grow with the number of classes, a p-dimensional optimisation problem is im-

plicitly contained in the procedure of this method, where p is the number of vari-

ables. For high dimensional data, the number of variables is usually very large.

Thus the QDA based method is usually computationally intensive. On the contrary,

reordered methods (reordered PCA and stepwise-reordered PCA) add a filter step in

the original PCA framework and have only two parameters to tune. They are com-

putationally inexpensive compared with the other methods proposed in this thesis.

Besides, the computation complexity of the reordered algorithm and the stepwise

reordered method does not grow with the number of classes. The reordered algo-

rithms only add a filter step under the classic PCA framework, which does not re-

quire complex computation or optimisation technique. This provides the reordered

algorithms high potential to replace the reweighted algorithm in multi-class classifi-

cation with a large number of classes. Moreover, in the binary classification of the

paddy rice data, the stepwise reordered PCA-QDA achieved the highest accuracy

with only 3.8 PCs on average to outperform the classic PCA-QDA with 10 com-

ponents. This further verifies the computation efficiency of the stepwise reordered

method. In other words, when the computation efficiency is the main concern of

the users or when we have multi-class classification problems with a large num-

ber of classes, the stepwise reordered method is more likely to be the appropriate

algorithm to apply.

In terms of interpretability, all of our proposed methods have high interpretabil-

ity. As we discussed, the reweighting algorithms usually attach higher weights to

the between covariance to uncover the difference of group means, and the group

with distinct variation information, to help generating more discriminative PCs. The

reordering algorithms extract PCs with high discriminative power first. In penalised
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QDA based algorithm, the generated features are linear combination of the original

variables which provide the best classification with QDA while maintaining large

variability. The mechanism of all proposed methods is clear and easy to understand.

In this thesis, we implement the proposed dimension reduction methods with

QDA. The reason of using QDA as the classifier is twofold. First, QDA can utilise

the distinct variation information of each group to better separate them. Second, the

reweighted PCA algorithm assumes each group to have different covariance matrix

and gives asymmetric weights to each covariance matrix. This is consistent with

the QDA setting. Thus the natural classifier used with the reweighted PCA is QDA

rather than LDA. LDA assumes each group to have identical covariance. However,

all of our proposed methods can be easily extended to work with other classifiers.

Though reweighted PCA and between PCA naturally work with QDA, they can

be undoubtedly applied to LDA. Higher weight can be attached to the between

covariance, to uncover the difference in group means, and higher weight can be

attached to the group contributing more to the classification with LDA. The idea

of reordered PCA and stepwise reordered PCA can be extended to LDA as well.

Instead of ranking PCs according to their discriminative power with QDA, we rank

PCs according to their discriminative power with LDA. The penalised QDA based

algorithm can take the loglikelihood of LDA as the indicator of discrimination,

rather than the loglikelihood of QDA, and build a penalised LDA based algorithm.

All of our models can be easily extended to LDA, and even other kinds of classifiers

such as SVM and logistic regression.

Future work can be done based on the abovementioned methods. 1) As men-

tioned in the last chapter, our penalised QDA-based feature extraction method re-

quires high computation time. On one hand, some acceleration techniques can be

employed to expedite this algorithm, such as parallel computing. On the other

hand, nonconvex optimisation is a rapidly developing field in the past few years.

Advanced nonconvex optimisation methods can be employed to accelerate the con-
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vergence of our method. 2) Here we only apply our methods with QDA. Future

work can be done to combine the proposed methods with other kinds of classifiers,

such as LDA and logistic regression. 3) In this thesis we only apply our high-

dimensional classification methods in NIR spectral data. The NIR spectrum of a

sample can be represented by a 1-D vector. Hyperspectral image data are 3-D data

cubes that measure both spectral and spatial information. It is natural to extend the

methods proposed in this thesis to classify hyperspectral image data. 4) In this the-

sis, we have only used a few examples. These examples have shown the potential

of our new methods, but more examples will be needed to see how beneficial they

are in general.



Appendix A

Decomposition of total covariance

Assume we have a c-class classification problem. Firstly, let us clarify the notation

used in the following derivation.

Notations:

c The number of classes in the classification problem

n The total sample size;

ni The sample size of class i;

xxxi j The j-th sample in the i-th class;

x̄xxi A column vector containing the mean of class i;

x̄xx A column vector containing the mean of all samples.

Let us start the derivation by defining the covariance matrices we need.

The covariance of class i can be denoted as:

SSSi =
1

ni−1

ni

∑
j=1

(xxxi j− x̄xxi)(xxxi j− x̄xxi)
T , (A.1)

where the superscript T denotes transpose of the vector.

The between-class sum-of-squares and products (SSP) matrix can be denoted as,

SSSB =
c

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T . (A.2)
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The total covariance:

SSST =
1

n−1

c

∑
i=1

ni

∑
j=1

(xxxi j− x̄xx)(xxxi j− x̄xx)T . (A.3)

Our task is to show:

SSST =
1

n−1

( c

∑
i=1

(ni−1)SSSi +SSSB

)
. (A.4)

Here the between SSP matrix:

SSSB =
c

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)T

=
c

∑
i=1

ni(x̄xxix̄xxT
i − x̄xxx̄xxT

i − x̄xxix̄xxT + x̄xxx̄xxT )

=
c

∑
i=1

nix̄xxix̄xxT
i − x̄xx

c

∑
i=1

nix̄xxT
i − (

c

∑
i=1

nix̄xxi)x̄xxT +
c

∑
i=1

nix̄xxx̄xxT

=
c

∑
i=1

nix̄xxix̄xxT
i −nx̄xxx̄xxT (A.5)

From formula (A.1) the covariance matrix SSSi of class i:

SSSi =
1

ni−1

ni

∑
j=1

(xxxi j− x̄xxi)(xxxi j− x̄xxi)
T ,

=
1

ni−1

ni

∑
j=1

(xxxi jxxxT
i j− x̄xxixxxT

i j− xxxi jx̄xxT
i + x̄xxix̄xxT

i ),

=
1

ni−1

( ni

∑
j=1

xxxi jxxxT
i j−

ni

∑
j=1

x̄xxixxxT
i j−

ni

∑
j=1

xxxi jx̄xxT
i +

ni

∑
j=1

x̄xxix̄xxT
i

)
,

=
1

ni−1

( ni

∑
j=1

xxxi jxxxT
i j−2nix̄xxix̄xxT

i +nix̄xxix̄xxT
i

)
,

=
1

ni−1

( ni

∑
j=1

xxxi jxxxT
i j−nix̄xxix̄xxT

i

)
. (A.6)

Namely,

(ni−1)SSSi =
ni

∑
j=1

xxxi jxxxT
i j−nix̄xxix̄xxT

i , (A.7)
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and
c

∑
i=1

(ni−1)SSSi =
c

∑
i=1

ni

∑
j=1

xxxi jxxxT
i j−

c

∑
i=1

nix̄xxix̄xxT
i . (A.8)

Similarly, the total covariance matrix:

SSST =
1

n−1

( c

∑
i=1

ni

∑
j=1

xxxi jxxxT
i j−

c

∑
i=1

nix̄xxx̄xxT
)
. (A.9)

According to equation (A.5) and equation (A.8), The total covariance:

SSST =
1

n−1

( c

∑
i=1

ni

∑
j=1

xxxi jxxxT
i j−

c

∑
i=1

nix̄xxx̄xxT
)

=
1

n−1

( c

∑
i=1

ni

∑
j=1

xxxi jxxxT
i j−

c

∑
i=1

nix̄xxix̄xxT
i +

c

∑
i=1

nix̄xxix̄xxT
i −

c

∑
i=1

nix̄xxx̄xxT
)

=
1

n−1

( c

∑
i=1

(ni−1)SSSi +SSSB)
)
.

(A.10)



Appendix B

Comparison of classification error

rates of the classic PCA-QDA and

our reweighted PCA-QDA

(rPCA-QDA) on the wheat data set

Varieties PCA-QDA error rate Data used in PCA-QDA rPCA-QDA error rate Data used in rPCA-QDA
Variety 1 vs 3 21.6% Raw data 19.3% Raw data
Variety 1 vs 4 17.3% 1st Derivative 14.8% 1st Derivative
Variety 1 vs 5 5.7% 1st Derivative 5.7% 1st Derivative
Variety 1 vs 8 11.2% 1st Derivative 9.0% 1st Derivative
Variety 1 vs 9 7.9% Raw data 7.9% 2nd Derivative
Variety 3 vs 4 18.5% Raw data 15.4% 1st Derivative
Variety 3 vs 5 11.5% Raw data 10.6% 2nd Derivative
Variety 3 vs 8 28.8% 1st Derivative 26.0% 2nd Derivative
Variety 3 vs 9 14.3% 1st Derivative 9.5% 2nd Derivative
Variety 4 vs 5 16.5% 1st Derivative 12.4% 1st Derivative
Variety 4 vs 8 19.7% 1st Derivative 16.7% 1st Derivative
Variety 4 vs 9 25.0% 1st Derivative 21.4% Raw data
Variety 5 vs 8 8.6% Raw data 7.6% Raw data
Variety 5 vs 9 15.8% 1st Derivative 13.7% 1st Derivative
Variety 8 vs 9 7.8% 1st Derivative 6.3% 1st Derivative

Table B1

Comparison of classification error rates of the classic PCA-QDA and our reweighted PCA-
QDA (denoted as rPCA-QDA on the table) on 6 varieties of wheat
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