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This paper introduces active listening, as a unified framework for synthesising and recognising speech.
The notion of active listening inherits from active inference, which considers perception and action under
one universal imperative: to maximise the evidence for our (generative) models of the world. First, we
describe a generative model of spoken words that simulates (i) how discrete lexical, prosodic, and
speaker attributes give rise to continuous acoustic signals; and conversely (ii) how continuous acoustic
signals are recognised as words. The ‘active’ aspect involves (covertly) segmenting spoken sentences and
borrows ideas from active vision. It casts speech segmentation as the selection of internal actions, cor-
responding to the placement of word boundaries. Practically, word boundaries are selected that maxi-
mise the evidence for an internal model of how individual words are generated. We establish face
validity by simulating speech recognition and showing how the inferred content of a sentence depends
on prior beliefs and background noise. Finally, we consider predictive validity by associating neuronal or
physiological responses, such as the mismatch negativity and P300, with belief updating under active
listening, which is greatest in the absence of accurate prior beliefs about what will be heard next.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This paper could be read at three complementary levels: it could
be regarded as a foundational paper introducing a generative model
of spoken word sequences and an accompanying inversion (i.e.,
word recognition) scheme that has some biological plausibility;
e.g., (Kleinschmidt and Jaeger, 2015). Alternatively, one could read
this article as a proposal for a speech recognition scheme based
upon first (Bayesian) principles; e.g., (Rosenfeld, 2000). Finally, one
could regard this work as computational neuroscience, which
makes some predictions about the functional brain architectures
that mediate hierarchical auditory perception, when listening or
repeating spoken words; e.g., (Hickok and Poeppel, 2007; Houde
and Nagarajan 2011; Tourville and Guenther, 2011; Ueno et al.,
2011). In the latter setting, the generative model can be used to
predict the effects of synthetic lesions, i.e., as the basis for
computational neuropsychology. In other words, one could
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optimise the parameters of the active listening scheme described
below to best explain empirical (electrophysiological or behav-
ioural) responses of individual subjects. We hope to pursue this in
subsequent work. The current paper focuses on the form of the
generative model, the accompanying recognition or inference
scheme, and the kinds of behavioural and neuronal responses it
predicts.

Speech recognition is not a simple problem. The auditory system
receives a continuous acoustic signal and, in order to understand
the words that are spoken, must parse a continuous signal into
discrete words. To a naïve listener, the acoustic signal provides few
cues to indicate where words begin and end (Altenberg, 2005;
Thiessen and Erickson, 2013). Furthermore, even when word
boundaries are made clear, there exists a many-to-many mapping
between lexical content and the acoustic signal. This is because
speech is not ‘invariant’ (Liberman et al., 1967)dwords are never
heard out of a particular context. When considering howwords are
generated, there is wide variability in the pronunciation of the
same word among different speakers (Hillenbrand et al., 1995;
Remez 2010)dand even when spoken by the same speaker, pro-
nunciation depends on prosody (B€anziger and Scherer, 2005). From
the perspective of recognition, two signals that are acoustically
identical can be perceived as different words or phonemes by
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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human listeners, depending on their contextdfor example, the
preceding words or phonemes (Mann, 1980; Miller et al., 1984),
preceding spectral content (Holt et al., 2000), or the duration of a
vowel that follows a consonant (Miller and Liberman, 1979). The
current approach considers the processes involved in segmenting
speechdand inferring the words that were spokendas
complementary.

The idea that speech segmentation and lexical inference operate
together did not figure in early accounts of speech recognition. For
example, the Fuzzy Logic Model of Perception (FLMP) (Oden and
Massaro, 1978; Massaro 1987, 1989) matches acoustic features
with prototype representations to recognise phonemes, evenwhen
considered in the context of words and sentences. Similarly, the
Neighbourhood Activation Model (NAM) (Luce, 1986; Luce and
Pisoni, 1998) considers individual word recognition; it accounts
for effects of word frequency, but does not address the segmenta-
tion problem. Later connectionist accounts, such as TRACE
(McClelland and Elman, 1986), assumed that competition between
lexical nodes drives recognition, where competition is mediated by
inhibitory connections between nodes: bottom-up cues determine
recognition of phonemes and top-down cues take into account the
plausible words in the lexicon. Shortlist B (Norris and McQueen,
2008) reformulates this problem as one of an optimal Bayesian
observer and incorporates word frequency effects.

Implicit in these connectionist and Bayesian accounts is the idea
that speech segmentation depends on words in the listener’s
lexicon. For example, word recognition under TRACE assumes that
speech will be segmented into words rather than combinations of
words and non-words. However, it does not explain how alterna-
tive segmentations leading to valid word combinations are recon-
cileddfor example, distinguishing “Grade A00 from “grey day”. This
example is problematic for the above accounts, because the two
segmentations are phonetically identical, acoustically similar, and
are both valid word combinations in English. Early accounts also
ignored the problem of converting the acoustic signal into words or
phonemes. Specifically, they assume that phonetic features
(McClelland and Elman, 1986) or acoustic features that underlie
perceptual confusions in human listeners (NAM; Shortlist B) have
already been successfully extracted from the signal. In short, ac-
counts of inputs that are not continuous acoustic signals cannot
explain findings that acoustically identical signals are perceived as
different words or phonemes depending on their context (Miller
and Liberman, 1979; Mann, 1980; Holt et al., 2000).

Here, we consider speech recognition as a Bayesian inference
problem. We introduce a simplified generative model that maps
from the continuous acoustic signal (i.e., a time varying auditory
signal or spectral fluctuations containing particular formant fre-
quencies) to discrete words using lexical, speaker, and prosodic
information. Generating continuous states from a succession of
discrete states is a non-trivial issue for a first principle (i.e., ideal
Bayesian observer) approach. However, the requisite neuronal
message passing can be solved by combining variational (marginal)
message passing and predictive coding (a.k.a. Bayesian filtering).
This allows one to simulate perception using generative models
that entertain mixtures of continuous and discrete states (Friston
et al., 2017b,c).

Previous Bayesian accounts (e.g., Shortlist B: Norris and
McQueen, 2008) have assumed that listeners use exact Bayesian
inference. However, performing the calculations required for exact
inference would be difficult for biological systems like ourselves,
given the complexity of the speech generation process; see (Friston,
2010; Bogacz, 2017; Friston et al., 2017a). Appealing to variational
inference (Beal, 2003) affords a much simpler implementation,
which has been applied to a variety of other domains in human
perception and cognition (Brown et al., 2011; Brown et al., 2013;
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
Parr and Friston, 2017a,b). Consequently, speech recognition be-
comes an optimisation problem that corresponds to minimising
variational free energydor, equivalently, maximising the evidence
for a particular generative model.

In this paper, we provide a computational perspective on the
segmentation problemdaddressing the challenge that there are
often several ways in which a sentence can be parsed, and multiple
segmentations engender valid word combinations. We therefore
treat speech recognition as a problem of selecting the most
appropriate segmentation among several alternatives. We assume
that the listener selects the segmentation that is least surprising
from the perspective of their generative model. In doing so, we cast
segmentation as an internal action that selects among competing
hypotheses for the most likely causes of the acoustic signal.
Although this is a novel computational implementation of speech
segmentation, it aligns with the basic idea that competing seg-
mentations are held in working memory before a listener decides
on the most appropriate segmentation, as supported by behav-
ioural studies of word recognition in human listeners (Shillcock,
1990; Davis et al., 2002). This idea is similar to that used in previ-
ous accounts such as TRACE and Shortlist B. Here, we address the
problem of selecting among multiple segmentations of valid word
combinations. Our approach accounts for contextual effects using
priors; we show that alternative segmentationsdsuch as “Grade A00

and “grey day”dcan be accounted for by appealing to these (e.g.,
semantic or contextual) priors.

Conceptualising speech segmentation as an internal (covert)
action appeals to the ‘active’ aspect of listening. It is distinct from
‘passive’ listening, whichdif truly passivedwould not require
mental or covert actions. This conceptualisation is grounded in
active inference, which has previously been applied to active vision
(Grossberg et al., 1997; Davison and Murray, 2002; Ulanovsky and
Moss, 2008; Andreopoulos and Tsotsos, 2013; Ognibene and
Baldassarre, 2014; Mirza et al., 2016; Parr and Friston, 2017a,b;
Veale et al., 2017). Here, we consider the covert placement of word
boundaries from the same computational perspective as has been
used to model an observer whose task is to decide where to sample
the visual scene by making overt saccades (Mirza et al., 2016; Parr
and Friston, 2017a,b). The types of computations in this framework
therefore appeal to general principles that the brain may use to
solve a variety of problems.

This paper comprises four sections, which each describe
different elements of active listening. The first section reviews
active inference and then describes a simplified but plausible
generative model of how (continuous) sound waves are generated
from a discrete word with particular (discrete) attributes. The at-
tributes include lexical content, prosody, and speaker characteris-
tics. The division of attributes into lexical, prosodic, and speaker
attributes is logical from a generative perspectivedand is consis-
tent with neuropsychological studies showing selective deficits in
the processing of these attributes (Miller and Liberman, 1979;
Peretz et al., 1994). Indeed, these attributes have been considered
fundamental characteristics in qualitative models of speech
perception such as the ‘auditory face’ model (Belin et al., 2004)d
and are known to interact to affect human speech perception
(Nygaard et al., 1994; Johnsrude et al., 2013; Holmes et al., 2018a).
We, therefore, assume these are the types of attributes that human
listeners infer when trying to explain the (hidden) causes of an
acoustic (speech) signal. This section describes how the generative
model can be inverted to determine the most likely lexical, pro-
sodic, and speaker attributes of a word, given a continuous sound
wave.

The second section deals with the speech segmentation prob-
lem, which becomes important when recognising words within
sentences, rather than individual words. It considers the question:
arch, https://doi.org/10.1016/j.heares.2020.107998
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how do we determine the most likely onsets and offsets of words
within a sentence? For example, how dowe parse auditory input to
disambiguate "Grade A00 from "grey day"? To address this question,
we use simple acoustic properties to identify plausible word
boundaries. We then appeal to the ‘active’ element of active infer-
ence, considering the (implicit) placement of word boundaries as a
covert ‘action’. This allows us to use established inference schemes
to select among competing segmentations (i.e., hypotheses about
different word boundaries). These inference schemes essentially
ask: which of the possible segmentations minimise free energy or,
equivalently, provide the greatest evidence for the listener’s (in-
ternal) model of how words are generated? It is at this point that
the relationship between the generative model from the first sec-
tion and ‘active’ speech segmentation becomes clear: these
different elements work in unison when inferring words within a
sentence. The generative model operates at the individual word
level, whereas speech segmentation operates at the sentence level:
the best speech segmentation will maximise the combined evi-
dence for attributes of constituent words. This section concludes
with an illustration of the face validity of the active listening
scheme by comparing speech recognition (i.e., lexical inference)
with and without prior beliefs about the sequence of plausible
words that could be encounteredddemonstrating how different
segmentations that contain valid English words can be
disambiguated.

The third section highlights an aspect of speech recognition that
has not been simulated under previous accounts. We show that a
quantity within active listening can predict neurophysiological re-
sponses of the sort measured by electromagnetic recordings
(Hasson et al., 2008) or functional magnetic resonance imaging
(fMRI). In particular, the magnitude of belief updating in active
listening appears to capture the fluctuations in evoked (or induced)
responses that have been demonstrated empirically; e.g., the
mismatch negativity (Garrido et al., 2009; Morlet and Fischer,
2014), P300 (Donchin and Coles, 1988; Morlet and Fischer, 2014),
and N400 (Kutas and Hillyard, 1980). Broadly speaking, this sug-
gests that elements of speech perception are consistent with pre-
dictive coding (see Poeppel and Monahan, 2011 for a review).
Formally, belief updating is related to the difference between prior
beliefs about states in the generative model to posterior beliefs. In
other words, the amount that beliefs change after sampling sensory
evidence. This is variously known as Bayesian surprise, salience,
information gain, or complexity. In this section, we illustrate the
similarity between belief updates and violation responses, showing
that the magnitude of belief updating depends upon prior expec-
tations about particular words in the lexicon (Cole et al., 1980;
Mattys andMelhorn, 2007;Mattys et al., 2007; Kim et al., 2012) and
the quality of sensory evidence; e.g., when speech is acoustically
masked by background noise (“speech-in-noise”) (Sams et al., 1985;
Winkler et al., 2009). We conclude by discussing how the model
could be developed for future applications, and its potential utility
in the cognitive neuroscience (and neuropsychology) of auditory
perception and language.

2. A generative model of spoken words

Active inference is a first principle account of action and
perception in sentient creatures (Friston et al., 2017a). It is based
upon the idea that synaptic activity, efficacy and connectivity all
change tomaximise the evidence for amodel of howour sensations
are generated. Formally, this means treating neuronal dynamics as
a gradient flow on a quantity that is always greater than (negative)
log evidence (Friston et al., 2017b). This quantity is known as
variational free energy in physics and statistics (Feynman, 1972;
Hinton and Zemel, 1993). The complement (i.e., negative) of this
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
quantity is known as an evidence lower bound (ELBO) in machine
learning (Winn and Bishop, 2005). A gradient flow is simply a way
of writing down dynamics in terms of equations of motion that
ensure a certain function is minimiseddin this case, variational
free energy. The resulting dynamics furnish a model of neuronal
fluctuations (and changes in synaptic efficacy and connectivity)
that necessarily minimise free energy or maximise model evidence.
In short, if one simulates speech recognition using active inference,
one automatically provides an account of the accompanying
neuronal dynamics.

This approach to understanding and modelling (active) infer-
ence in the brain has been applied in many settings, using exactly
the same schemes and principles. The only thing that distinguishes
one application from another is the form of the generative model.
In other words, if one can write down a probabilistic model of how
some sensory input was generated, one can invert the mod-
eldusing standard model inversion schemesdto simulate
neuronal dynamics and implicit belief updating in the brain: See
Friston et al. (2017b) for a detailed summary of these schemes that
cover models of both discrete and continuous states generating
sensations. See also Bastos et al. (2012) and Friston et al. (2017a) for
a discussion of neurobiological implementation, in terms of
attending process theories, for continuous and discrete state space
models, respectively.

In this section, we focus on the form of a (simplified) generative
model that can be used to generate continuous acoustic signals
associated with a particular word. A benefit of this active inference
approach is that the generative model can be used to both generate
synthetic speech (by applying the forward model) and recognise
speech (by inverting the model). The goal is not to provide a state-
of-the art speech synthesis system, but rather to use the generative
model and accompanying inference scheme to simulate listening
behaviour and neural responses. The work reported in this paper is
a prelude to a model of natural language processing (Friston et al.,
2020), in which the current generative model is equipped with
higher levels to enable dyadic exchanges; namely, conversations
that entail questions and answers that resolve uncertainty about
shared narratives or beliefs. In the current paper, we restrict our-
selves to inference about sequences of wordsdand assume that
simulated subjects are equipped with prior beliefs about which
words are more or less likely in a short sentence or phrase. In a
more complex (i.e., deep hierarchical) model, these beliefs would
be available from a higher level. These prior beliefs are about the
likely semantic content of spoken words; for example, based on
previous words in a sentence (Dubno et al., 2000) or the topic of
conversation (Holmes et al., 2018b). Note that previous accounts of
speech recognition, such as Shortlist B (Norris andMcQueen, 2008),
assume that priors reflect only word frequency, rather than priors
that can be flexibly updated based on context. Technically, these
kinds of context-sensitive priors are known as empirical prior-
sdand are an integral part of hierarchical generative models.

In this paper, we deal with the lowest level of the generative
model; namely, given a particular lexical content, prosody and
speaker identity, how would one generate a spoken word in terms
of its acoustic timeseries. In the next section of this paper, we turn
to the problem of segmentation (i.e., identifying word boundaries)
and the enactive aspects of the current scheme. It will become
apparent later on that these two (perceptual and enactive) aspects
of active listening go hand-in-hand.

Fig. 1 summarises the modelling of a spoken word, from the
perspectives of generation and recognition. The model considers:
how is an acoustic signal generated given the causes of a spoken
word, in terms of ‘what’ word is spoken (lexical), ‘how’ it is spoken
(prosody), and ‘who’ is speaking (speaker identity)? From the
perspective of word generation, it takes lexical, speaker, and prosody
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 1. A generative model of a word. This figure illustrates the generative model from the perspective of word generation (green panels) and accompanying inversion (orange
panels), which corresponds to word recognition. In brief, the first stepdwhen generating a worddis to construct a time-frequency representation based on the lexical content of
the word. This representation is then transformed into distinct transients, which are aggregated to form the acoustic timeseries of the spoken word. For word recognition, the steps
are essentially inverted: the timeseries is segregated into transients, which are transformed into a time-frequency representation. The time-frequency representation is used to infer
the lexical content of the spoken word. For the equations describing these probabilistic transformations, please see Appendix 1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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parameters and generates an expected acoustic signal. The lexical
state consists of frequency and temporal coefficients corresponding
to words in the lexicon. The model includes two speaker states:
fundamental frequency and formant scaling. It includes four pros-
ody states: amplitude, duration, timbre, and inflection. Within each
of these states, different factors correspond to different lexical
items, or the fundamental frequency associated with different
speakers, for example.

The model starts by sampling parameters from a set of proba-
bility distributions, which are modelled as separate Gaussians. The
means and covariances of the Gaussians have been specified in
advance; they can be entered into the model explicitly (by hand) or
they can be estimated empirically based on training samples of
speech. Sampling parameters from distributions with particular
means and variances accounts for the fact that the same lexical item
spoken by the same speaker with the same prosody does not always
produce an identical acoustic signal, anddconverselydbecause the
distributions are allowed to overlap, a similar acoustic signal can be
generated by different combinations of factors. The (discrete) lexical
content of a word is sampled from a (categorical) probability
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
distribution over words in a lexicon. This is based on how likely
particular words are to be spoken. Ultimately, the selected param-
eters are combined, in a nonlinear way, to generate an acoustic
timeseries corresponding to the articulated word.

The acoustic timeseries is generated from a sequence of tran-
sients, whose properties are determined by the selected parame-
ters. Each word (i.e., lexical item) is associated with a matrix of
frequency and temporal coefficients (for a discrete cosine trans-
form) that can be used to generate a time-frequency representation
of the spoken word (i.e., the spectrogram) when combined with
speaker and prosody information. Each column of the time-
frequency representation is used to generate a transient. These
transients can be thought of as pulses or ‘shockwaves’ at the glottal
pulse rate, which are modulated by the shape of the vocal tract. The
instantaneous fundamental frequency is related to the average
fundamental frequency of a particular speaker, but also varies
smoothly over time based on inflections due to prosody. The pro-
sodic inflection parameters encode: (1) the average fundamental
frequency relative to the speaker average, (2) increases or decreases
in fundamental frequency over time, and (3) the acceleration or
arch, https://doi.org/10.1016/j.heares.2020.107998
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deceleration of changes in fundamental frequency. The instanta-
neous fundamental frequency determines the spacing of the tran-
sients. The durations of the transients are determined by the
formant frequencies, which depend on the lexical parameters and
the speaker formant scaling parameter. The formant frequencies
correspond to the frequency bins in the time-frequency represen-
tation. The number of transients that are aggregated to construct
the timeseries is determined by the time intervals in the time-
frequency representation. Fig. 2 provides an illustration of how a
sequence of transients is generated. In the final step, the transients
are summed together and scaled by an amplitude parameter. For
mathematical detail, the equations corresponding to the generative
model are shown in Fig. 11 and are described in Appendix 1. For an
algorithmic description, please see the demonstration (annotated
Matlab) codedthat reproduces the simulations belowdwhich can
be read as pseudocode (see Software note).

In effect, the lexical parametersdwhich, under this generative
model, determine the formant frequenciesdparameterise a tra-
jectory through high-dimensional formant frequency space, which
becomes apparent as the word unfolds. The prosody of the word
determines the duration and inflection of the fundamental interval
function, while speaker identity determines the average funda-
mental frequencydwhich relates to the interval between tran-
sientsdand a formant scaling parameter that determines the
duration of each transient. With such a model in place, one can, in
principle, generate any word, spoken with any prosody by any
speaker, by sampling the correct parameters from their appropriate
distributions. In what follows, we briefly review the inversion of
this model given an acoustic timeseries.

2.1. Model inversion or word recognition

Now we have established a generative model that is capable of
producing a spoken word, word recognition can be achieved by
inverting the model. This section describes a plausible inversion
Fig. 2. Fundamental and formant intervals. This figure illustrates the way in which an acou
interval that is inversely proportional to the (instantaneous) fundamental frequency. The
frequenciesdand corresponds to the minimum frequency, which we take to be the first fo

Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
scheme in the context of our particular generative model of spoken
words. In principle, given any generative model it should be
possible to use Bayesian model inversion to invert the timeseries,
using generalised (variational or Bayesian) filtering; also known as
predictive coding (Norris et al., 2016). However, given we have
assumed a deterministic generation of acoustic signals from pa-
rameters, we know that the posterior beliefs about parameters will
take the form of Dirac delta functions, whose only parameter is a
mode. This means that in practice, it is simpler to cache an epoch of
the timeseries and use maximum a posteriori (MAP; Kim et al.,
2006) estimates of the parameters, based upon least squares. One
can then evaluate the posterior probability of discrete lexical,
prosody and speaker states, using the respective likelihood of the
MAP parameter estimates (and any priors over discrete states
should they be available). This MAP scheme can be read in the spirit
of predictive coding that has been amortised (Zhang et al., 2018). In
other words, the inversion scheme reduces to a nonlinear recog-
nition functionda series of equations that map from epochs of the
acoustic signal to parameters encoding lexical content, prosody and
identity.

Model inversion rests on the assumption that we have isolated
the acoustic timeseries corresponding to an individual word. The
next section deals with the segmentation problem, which involves
enactive processes. For now, wewill assume that we have identified
an epoch of the acoustic signal that might plausibly contain one
worddand that we wish to evaluate the probabilities of lexical,
prosody, and speaker states within this epoch.

In brief, the recognition scheme comprises the following steps
(see Fig. 1). The instantaneous frequency is estimated by first
calculating ‘fundamental intervals’, which are the reciprocal of the
instantaneous frequency. The fundamental intervals are calculated
by bandpass filtering the acoustic signal around the prior value for
the speaker fundamental frequency parameter; the positions of
peaks in the filtered signal correspond to the fundamental intervals.
Please see Fig. 3 for an illustration of how the fundamental intervals
stic timeseries is generated by assembling a succession of transients separated by an
duration of each transient places an upper bound on the wavelength of the formant
rmant frequency.

arch, https://doi.org/10.1016/j.heares.2020.107998
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are estimated and Fig. 4 to see the fundamental frequency and
formant frequencies projected onto the spectrum of a speech
sample.

Next, the inversion scheme essentially deconstructs transients
(i.e., segments) from the epoch. The formant frequencies are
estimated by evaluating the cross-covariance function over short
segments; the length of the segments is the inverse of the first
formant frequency and the segments are centred on each
fundamental interval. This is based on the simplifying assump-
tion that the spectral content of each transient, within each
segment, is sufficient to generate the word. The formant fre-
quencies are then used to project back to a time-frequency
representation.
Fig. 3. Fundamental frequencies and intervals. This figure illustrates the estimation of fluctua
word. These fluctuations correspond to changes in the fundamental interval; namely, the r
Panel B shows the same timeseries after bandpass filtering. The peaks (i.e., phase crossings) t
Panel C (as a blue line). The solid red line corresponds to the mean frequency (here, 109 Hz),
(here, 96 Hz) which is centred on the prior for the speaker average fundamental frequency.
the spectral energy (the absolute values of the accompanying Fourier coefficients of the ti
Panels A and B. (For interpretation of the references to colour in this figure legend, the rea

Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
To infer the lexical content, prosody and speaker, the parameter
estimates from the nonlinear transformations above can be used to
evaluate the likelihood of each discrete attribute. This likelihood is
then combined with a prior to produce a posterior categorical
distribution over the attributes in question. For the lexical content
of the word, this just corresponds to an index in the lexicon. Here,
the lexicon is assumed to be small for simplicity, although it would
be trivial to extend the model to accommodate more comprehen-
sive lexicons. The likelihood is based upon the mean and precision
(i.e., inverse covariance) of the lexical parameters in the usual way,
where the sufficient statistics of this (likelihood) modeldfor each
worddare evaluated using some exemplar or training set of words.
This completes the description of word recognition based upon the
tions around the fundamental frequency during the articulation of (the first part of) a
eciprocal of the instantaneous frequency. Panel A shows the original timeseries, while
hen determine the intervals, which are plotted in terms of instantaneous frequencies in
while the broken red line corresponds to the centre frequency of the bandpass filtering
The same frequencies are shown in panel D (this time on the x-axis), superimposed on
meseries in Panel A). The ensuing fundamental intervals are visualised as red lines in
der is referred to the Web version of this article.)

arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 4. Fundamental and formant frequencies: Both plots show the root mean square power (i.e., absolute value of Fourier coefficients) following the Fourier transform of a short
segment of speech. The frequency range in the upper plot covers the first 500 Hz. The first peak in power (illustrated by the blue vertical line) corresponds to the fundamental
frequency, which is typically between 80 and 150 Hz for adult men and up to 350 Hz for adult women. The lower panel shows the same spectral decomposition but covers 8000 Hz
to illustrate formant frequencies. The solid blue lines show the calculated formant frequency and its multiples, while the grey lines arbitrarily divide the frequency intervals into
eight bins. These frequencies define the frequencies used for the spectral decomposition. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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generative model above. For details of the equations used in model
inversion, please see Appendix 2.

In summary, the above transformations simply reverse the op-
erations used for word generation in the previous section. The
combination of prior expectations with the likelihoods of each
attribute is a key feature of this inversion scheme that will allow the
model to accommodate contextual effects on speech recognition. In
other words, we are more likely to interpret speech consistent with
our prior expectations. This will become evident in the simulations
later in this paper.

After the discrete parameters have been inferred from a
continuous timeseries through model inversion, they could be
entered back into the generative model to synthesise a new
timeseries that would share some properties with the timeseries
that was used to infer the discrete parameters. This simply involves
projecting the lexical coefficients back into a time frequency rep-
resentation, implementing the inverse discrete cosine transform to
produce (after scaling with the timbre parameter and exponenti-
ation) a series of (time symmetric) transients, which are aggregated
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
to form the acoustic timeseries. This is essentially what is illus-
trated in Fig. 1. Indeed, the processes of inversion and generation
can be iterated (see below) to check the fidelity of the forward and
inverse transformations that map between the acoustic timeseries
and formant representation.

3. Speech segmentation as an active process

So far, we have a generative model (and amortised elements of a
predictive coding scheme) that generates an appropriate time se-
ries, given discrete lexical (i.e., what), prosody (i.e., how) and speaker
(i.e., who) states (i.e., latent causes of the word). It can also be
inverted to infer the attributes of a word given an acoustic times-
eries. However, in our everyday lives, we usually hear series of
words rather than words in isolation. In this section, we combine
the generative model with an active segmentation process, to infer
the most likely sequence of words given a continuous timeseries.

This requires us to address the following problem: we have not
specified how the onsets and offsets of the interval containing the
arch, https://doi.org/10.1016/j.heares.2020.107998
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word are generated (i.e., when). Clearly, there are some prior con-
straints on the generation of these intervals. For example, the offset
of one word should precede the onset of the subsequent word.
Furthermore, the intervals contained between the onset and offset
must lie in some plausible time range. We also know that seg-
mentations are more likely to contain words than non-words
(Ganong, 1980; Billig et al., 2013), and listeners have prior knowl-
edge of the words that are possible in a language (‘possible word
constraint’) (Norris et al., 1997). In the current segmentations, we
account for these simple constraints and, effectively, offload infer-
ence about word boundaries to the active part of active inference.
The only acoustic cue we use is the contour of the amplitude en-
velope, which has previously been identified as a cue that human
listeners use for speech segmentation (Lehiste, 1960).

In brief, we assume that boundary segmentations are not
entirely specified by the acoustic signal, and conceptualise the
segmentation problem as a problem of choosing which boundaries
to select given several possible segmentations; in a similar way as
we would select visual actions (e.g., saccadic eye movements or
oculomotor pursuit) to fixate or track a visual object given multiple
possible actions. In the current setting, this simply means identi-
fying a number of plausible boundary intervals and finding the
interval that provides the greatest evidence for our prior beliefs
about the words we hear. This is the same principle used to explain
motor and autonomic action under active inference (Friston et al.,
2011). For example, classical motor reflexes can be construed as
minimising proprioceptive prediction error (i.e. minimising varia-
tional free energy or maximising model evidence) as described in
Adams et al. (2013). Formally identical arguments have been
applied in the setting of interoceptive inference where motor re-
flexes are replaced by autonomic reflexes that realise autonomic
set-points or homoeostasis (Seth et al., 2014).

In the current context, we essentially treat the decision about
speech segmentation as a covert action from a computational
perspective, which shares similarities with the overt actions used in
other settings. This can be implemented in a straightforward
fashion by selecting boundary pairs (i.e., offsets and onsets) and
evaluating their free energy under some prior beliefs about the next
word. Ultimately, we want to select the boundary pairs with the
smallest free energydwhich effectively selects the interval with
the greatest evidence (a.k.a., marginal likelihood) of auditory out-
comes contained in that interval. This follows because the varia-
tional free energy, by construction, represents an upper bound on
log evidence (see Appendix 3 for more details and the corre-
sponding equations). Importantly, both posterior beliefs about
latent states (i.e., lexical, prosody, and speaker) and the active se-
lection of acoustic intervals optimise free energy. This is the
signature of active inference. In this instance, the posterior beliefs
obtain from the likelihood of the lexical, prosody and identity pa-
rameters, given the associated states.

For words spoken in isolation, one can identify candidate
boundaries using threshold crossings of the amplitude envelope
(where the threshold is a low value, roughly corresponding to the
noise floor). However, it is well known that a continuous stream of
words does not always contain ‘silent’ (i.e., below-threshold) gaps
between words and, conversely, silence can occur between two
syllables of the same word. We therefore include local minima of
the amplitude envelope as candidate boundaries. It is important to
note that these are only candidate boundariesdin other words,
plausible hypotheses for segmentations of the acoustic signal. We
will turn to the question of which interval is selected later, during
which candidate segmentations are combined with (lexical) priors.
In practice, this means that two syllables separated by a silent gap
are not always classified as separate wordsdconsistent with the
knowledge that naturally spoken words often contain silent gaps
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
thatdto a naïve listenerdcould be confusedwithword boundaries.
An example of the candidate boundary points is illustrated in Fig. 5.
Please see figure legend for details.

Using this procedure to identify candidate intervals, one can
select the interval that minimises free energy (or has the greatest
evidence under prior beliefs about the next word). In other words,
for each candidate interval, the likelihood of the lexical parameters
is evaluateddfor all plausible wordsdto create a belief over lexical
content, in terms of a probability distribution. This posterior belief
is then used to evaluate the log evidence (i.e., free energy) of each
interval. The interval (and associated posterior beliefs) with the
greatest evidence is selected. The offset of this interval specifies the
onset of the next segment and the process starts again.

Treating speech segmentation as a problem of (covertly) sam-
pling among plausible intervals is interesting from a mathematical
perspective. The free energy associated with a particular action is a
trade-off between the accuracy of sensory observations under the
generative model and the complexity of belief updating on the
basis of those observations (see Appendix 3 for the equations). In
the current setting, these quantities can be evaluated explicitly,
because the evidence has already been accumulated. Thus, the
accuracy term simply scores the expected log likelihood of the
auditory observations under posterior beliefs about the lexical
categories that generated them. The complexity term scores the
difference between the prior beliefs and the new beliefs based on
auditory observations. This will become an important quantity later
and, essentially, reflects the degree of belief updating associated
with selecting one lexical parsing over another. Phrased another
way, the goal of segmentation under active listening is to sample
data in a way that requires the most parsimonious degree of belief
updating, in accord with Ockham’s principle (Maisto et al., 2015).

Fig. 6 shows the consequence of this form of active listening by
comparing segmentation and recognition with and without
appropriate prior beliefs (please see the figure legend for details).
The input to this simulation is a continuous acoustic signal that has
alternative parsings, leading to different lexical segmentations. The
timeseries in Fig. 6A and E are identical, but the segmentation (as
indicated by the colours) differs. The point of this simulation is to
show that the selected segmentation depends on the distribution of
the priors. When the artificial listener has no particular prior beliefs
about which words will be heard (left panel), the priors are uni-
form, and recognition goes awry after the first two words (“triangle
square”). The scheme inferred that the best possible explanation for
the subsequent words was a series of shorter words (“a is red a is
red”; Fig. 6B). From Fig. 6C, we can tell that the artificial listener was
uncertain about the correct parsingdreflecting the fact that this
signal was difficult to segment because there were several parsings
that would be plausible in English (displayed as grey shaded re-
gions). However, when the artificial listener was equipped with
strong prior beliefs that the words they would hear would be shape
words (the words “triangle” and “square”), it recovered the correct
parsing (“triangle square triangle square triangle square”; Fig. 6F).
Note that the acoustic boundaries for these two lexical segmenta-
tions differdhighlighting that speech segmentation and lexical
inference go hand-in-hand under this framework.

These two examples are analogous to the “Grade A” versus “grey
day” example that we considered in the introduction. As in our
simulated example, there is no consistent acoustic cue that differ-
entiates “Grade A00 from “grey day”dand, therefore, priors play an
essential disambiguating role. The active segmentation would
identify these two (and perhaps additional) possible segmenta-
tions, and the percept would be the one that was most similar to
the priors. In other words, these two segmentations would be
distinguished by different prior beliefs, which could originate from
a higher (semantic or contextual) leveldfor example, whether the
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 5. Spectral envelopes and segment boundaries. This figure provides an example of how candidate intervals containing words are identified using the spectral envelope. The upper
panel shows a timeseries produced by saying "triangle, square". The timeseries is high pass filtered and smoothed using a Gaussian kernel. The red line in the upper panel shows the
resulting spectral envelope, after subtracting the minimum. This envelope is reproduced in the lower panel (red line). The horizontal blue line corresponds to a threshold: 1/16th of
the maximum encountered during the (1250 ms) epoch. Boundaries are then identified as the first crossing (black dot) of the threshold (horizontal blue line) before the spectral
peak and the last crossing after the peak. These boundaries are then supplemented with the internal minima between the peak and offset (red dots). These boundaries then
generate a set of intervals for subsequent selection during the recognition or inference process. Here, there are three such intervals. The first contains the first two syllables of
triangle, the second contains the word "triangle". The third additionally includes the first phoneme of "square". In this example, the second interval was selected as the most
plausible (i.e., free energy reducing) candidate to correctly infer that this segment contained the word "triangle". The vertical blue line corresponds to the first spectral peak
following the offset of the last word, which provides a lower bound on the onset. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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topic of conversation was about the weather or a student’s exam
results. In a comprehensive treatment, these would be empirical
prior beliefs generated by deep temporal models of the sort
described in Kiebel et al. (2009) and Friston et al. (2017c). For
simplicity and focus, we assume here that priors about sequential
lexical contentdof the sort that could be formed by lexical and
semantic predictionsdare available to a subject in the form of
categorical probability distributions.

3.1. Belief updating and neuronal dynamics

Fig. 6 includes a characterisation of simulated word recognition
in terms of neuronal responses (Fig. 6CeD, GeH). These (simulated)
neuronal responses inherit from the neuronal (marginal) message
passing scheme described in Friston et al. (2017b) and Parr et al.
(2019). They reflect belief updating about the lexical category for
each word; the simulated neuronal responses are simply the
gradient flow on free energy that is associated with belief updating
in active listening. The prediction error is the (negative) free energy
gradient that drives neuronal dynamics. Mathematically, the pre-
diction error is the difference between the optimal log posterior
and current estimate of this. As detailed in Appendix 3, log ex-
pectations about hidden states can be associated with depolarisa-
tion of neurons or neuronal populations encoding expectations
about hidden states, while firing rates encode expectations per se.

Fig. 6 reproduces these simulated neuronal responses following
the processing of each word. These responses are shown in terms of
spike rates, as would be recorded with single unit electrodes
(Fig. 6C, G) and depolarisation that would be measured with EEG
(Fig. 6D, H). Under this formulation, neuronal activity starts off from
some prior expectations and evolves, via a gradient flow on free
energy (i.e., prediction error) to encode posterior expectations.
Because depolarisation corresponds to the rate of change of these
beliefs (expressed as log expectations) they show peak responses
during the greatest degree of belief updating from priors to pos-
terior expectations. After filtering, the simulated depolarisations
look like evoked responses that are typically observed in human
studies (as discussed in more detail below).

3.2. Summary

The message from the simulations in Fig. 6 is that proper seg-
mentation and subsequent inference about lexical content obtain
only with particular priors. If we remove prior constraints entirely,
the synthetic listener failed to identify the correct intervals; it falsely
inferred the presence of words that were not uttered and ‘missed’
words that were spoken. It is worth mentioning that the absence of
priors would be extremely unlikely in realistic contexts, because our
knowledge of language generates expectations about plausible
words in any given sentence (e.g., due to syntactic and semantic
constraints, as well as simple effects of word frequency) and
contextual knowledge (e.g., knowing the topic of conversation, or
being in a particular setting) will also supply empirical priors.
Indeed, the effect of priors on speech segmentation is well-
established in human speech perception. The common observation
that word boundaries are difficult to ascertain in an unknown lan-
guage is an intuitive example that priors based on lexical knowledge
help to determine speech segmentation. In addition, the way that
humans segment speech depends on previous words in a sentence
(Cole et al., 1980; Mattys andMelhorn 2007; Mattys et al., 2007; Kim
et al., 2012)da simple demonstration that priors are flexibly applied
in different contexts. The aim of this simulation was to demonstrate
the role of priors in speech recognition under active listening.

This simulation also shows that active listening goes beyond
simply inferring the best explanation for a particular sensory
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
signal: active listening also infers which signals to ‘sample’. By this,
we mean that different segments (corresponding to plausible word
boundaries) of the speech signal are evaluated, with the goal of
‘sampling’ or selecting one set of intervals. The action (here, covert
placement of word boundaries, which can be considered more
generally as active sampling) therefore goes hand-in-hand with
perception. This is demonstrated in the left panel of Fig. 6: Although
the words recognised provide the best MAP (Kim et al., 2006)
explanation for acoustic sensations, both thewords themselves and
the placement of word boundaries are categorically different from
the right panel of Fig. 6, in which the model was equipped with
different (uniform) prior beliefs. This ability to integrate different
levels of beliefs and inference is consistent with a hierarchical ar-
chitecture, as suggested by (i) experimental studies that have
measured brain responses during speech perception (Davis and
Johnsrude, 2003; Vinckier et al., 2007; DeWitt and Rauschecker,
2012), (ii) studies that examine the weights participants assign to
different cue types during speech segmentation; e.g., (Mattys et al.,
2005), and (iii) cognitive accounts of speech processing
(McClelland and Elman, 1986; Gaskell and Marslen-Wilson, 1997).
In the next section, we turn to the electrophysiological correlates of
this belief updating and askwhat predictions thismodel of auditory
inference can offer.

3.3. Face validity: simulating sentence recognition

Here, we use the generative model and inversion scheme
described above, under simple prior beliefs about a sentence, to
illustrate the circular causality implicit in Bayesian belief updating.
In brief, we will examine how prior beliefs underwrite word seg-
mentation and how segmentation changes in the absence of
appropriate priors. We then look at how the selected speech seg-
mentation updates subsequent prior beliefs and how the ensuing
Bayesian surprise may manifest electrophysiologically. To illustrate
the effect of priors, we chose the following sentence: “Is there a
square above?” This is a completely arbitrary sentence but is
interesting because the formant frequencies in the word “square”
have a bimodal (biphone) structure (Bashford et al., 2008), which
means there is a fairly severe segmentation problem at hand. Will a
simulated subject segment “square” properly ordas in
Fig. 6dappend the first phone to the previous word? If they do
infer the words correctly, how do priors manifest in terms of belief
updating?

Fig. 7 shows the results of integrating the active inference
scheme above with strong (left panels) or uniform (right panels)
prior beliefs. In this example, prior beliefs were definitive for the
first three words (“is there a”) with more ambiguous prior for the
last two words: for the fourth word, the possibilities included
“square” and “triangle”. For the final word, the possibilities
included “above”, “below” and “there”). These priors were selected
because they are lexically congruent and represent a plausible
belief that a listener might have about the content of a sentence.
Please see the figure legend for technical details. The message from
this simulation is that priors play a key role in resolving uncertainty
and subsequent competition among neuronal representation.

In the absence of precise prior constraints, the uncertainty asso-
ciated with speech recognition is expressed as an increased ampli-
tude of simulated electrophysiological responses. This can be seen
most clearly by comparing the simulated electrophysiological re-
sponses in the lower right panel: the dotted lines reflect belief
updating in the absence of specific priors, while the dashed lines are
the same responses under informative priors. Fig. 8 drills down on
thesedifferences by focusingon the responses to the thirdword. In so
doing, the simulated waveform looks very much like a P300 that is
frequently observed in electrophysiological studies (Donchin and
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 6. Speech recognition and segmentation. Left panel: This panel shows the results of active listening to a sequence of words: a succession of “triangle, square, triangle, square…. ”.
Its format will be used in subsequent figures and is described in detail here. Panel A shows the acoustic timeseries as a function of time in seconds. The different colours correspond
to the segmentation selected by the active listening scheme, with each colour corresponding to an inferred word. Regions of cyan denote parts of the timeseries that were not
contained within a word boundary. Panel B shows the accompanying spectral envelope (back line) and the threshold (red dashed line) used to identify subsequent peaks. The first
peak of each successive word centres the boundary identification scheme of Panel A. The words that have been inferred are shown in the same colours as the upper panel at their
(inferred) onset. Panels CeD show the results of simulated neuronal firing patterns and local field potentials or electroencephalographic responses. These are based upon a simple
form of belief updating cast as a neuronally plausible gradient descent on variational free energy (please see main text). Panel C shows the activity of neuronal populations encoding
each potential word (here, 14 alternatives listed on the Y axis). These are portrayed as starting at the offset of each word. Effectively, these reflect a competition between lexical
representations that record the selection of the most likely explanation. Sometimes this selection is definitive: for example, the first word (“triangle”) supervenes almost
immediately. Conversely, some words induce a belief updating that is more uncertain. For example, the last word (“red”) has at least three competing explanations (i.e., “no”, “not”
and “a”). Even after convergence to a particular posterior belief, there is still some residual uncertainty about whether “red” was heard. Note that the amplitude of the spectral
envelope is only just above threshold. In other words, this word was spoken rather softly. Panel D shows the same data after taking the temporal derivative and filtering between 1
and 16 Hz. This reveals fluctuations in (simulated) depolarisation that drives the increases or decreases in neuronal firing of the panels above. In this example, the sequence of words
was falsely inferred to be a mixture of several words not actually spoken. This failure to recognise the words reflects the fact that the sequence was difficult to parse or segment.
Once segmentation fails, it is difficult to pick up the correct sequence of segmentations that will, in turn, support veridical inference. These results can be compared with the
equivalent results when appropriate priors are supplied to enable a more veridical segmentation and subsequent recognition. Right panel: This panel shows the results of active
listening using the same auditory stream as in the left panel. The only difference here is that the (synthetic) subject was equipped with strong prior beliefs that the only words in
play were either “triangle” or “square”. This meant that the agent could properly identify the succession of words, by selecting the veridical word boundaries and, by implication, the
boundaries of subsequent words. If one compares the ensuing segmentation with corresponding segmentation in the absence of informative priors, one can see clearly where
segmentation failed in the previous example. For example, the last word (i.e., “square”) is correctly identified in dark blue in Panel F. Whereas, in Panel B (without prior constraints),
the last phoneme of the word “square” was inferred as "red" and the first phoneme was assigned to a different word (“is”). The comparative analysis of these segmentations
highlights the ‘handshake’ between inferring the boundaries in a spectral envelope and correctly inferring the lexical content on the basis of fluctuations in formant frequencies.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Coles, 1988; Morlet and Fischer, 2014; Ylinen et al., 2016). To under-
stand this more formally, the next section explains how these simu-
lated electrophysiological responses were derived and how they can
be interpreted in terms of belief updating and Bayesian surprise.

To conclude this section, we will use this example to illustrate
the fidelity of recursively generating and recognising words, under
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
this generative model. Fig. 9 shows the segmentation and word
recognition following the presentation of the sentence above ("is
there a square above"), without priors. The sentence was then
generated using the recognised lexical, prosodic and speaker at-
tributes. The synthetic speech was then presented to the active
listening scheme, to recover the original utterance. This shows that
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 7. The role of priors in a word recognition: This figure uses the same format as Fig. 6. In this example, the spoken sentence was “Is there a square above?” The left panel (AeD)
shows the results of segmentation and word recognition under informative priors about the possible words. In other words, for each word in the sequence, a small number of
plausible options were retained for inference. For example, the word “above” could have been “below” or “there”, as shown by the initial neuronal firing in Panel C at the end of the
last word (red arrow). The right panel (EeH) shows exactly the same results but in the absence of any prior beliefs. The inference is unchanged; however, one can see in the
neuronal firing (Panel G) that other candidates are competing to explain the acoustic signal (e.g., blue arrows). The key observation is that the resulting uncertaintydand
competition among neuronal representationsdis expressed in terms of an increased amplitude of simulated electrophysiological responses. This can be seen by comparing the
simulated EEG trace in Panel Hdin the absence of priors (solid lines)dwith the equivalent EEG response under strong priors (solid lines in Panel D, reproduced as dashed lines in
Panel H). In this example, there has been about a 50% increase in the amplitude of evoked responses. A more detailed analysis of the differences in simulated EEG responses is
provided in Fig. 8. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the scheme can understand itself and perform rudimentary speech
repetition. More formally, it illustrates the validity of the amortised
inversion scheme.

4. Predictive validity: belief updating and neurophysiology

Fig. 8 suggests that belief updating during word recognition
depends sensitively on prior beliefs and implicit differences in the
confidence with which a particular word is inferred. Here, we
pursue the predictive validity of this active listening formulation,
by looking in greater detail at belief updating under the model. In
doing so, we highlight qualitative similarities to canonical violation
responsesmeasuredwith EEG andMEG that arewell-established in
the empirical literature (as discussed inmore detail below). In brief,
the message of this section is that evoked or induced responses in
the brainwill increase in proportion to the degree of belief updating
following sensory input.
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
Generally speaking, the idea that belief updating may underpin
vigorous neuronal responses to surprising sensations is broadly
consistent with experimental observations. Under predictive cod-
ing models of auditory perception, the mismatch negativity has
been considered in light of precision weighted prediction error
responses (Garrido et al., 2009; Wacongne et al., 2012; Heilbron
and Chait, 2018). In this literature, the mismatch negativity is
related to deviants in elementary acoustic events, such as fre-
quency (N€a€at€anen et al., 1978; Giard et al., 1995; Jacobsen et al.,
2003b), intensity (N€a€at€anen et al., 1978; Giard et al., 1995;
Jacobsen et al., 2003a), or timbre (Tervaniemi et al., 1997a;
Tervaniemi et al., 1997b; Toiviainen et al., 1998)dand its amplitude
covaries with the probability of a deviant (Picton et al., 2000; Sato
et al. 2000, 2003). Mismatch negativity responses have also been
recorded in the context of spoken phonemes (Dehaene-Lambertz,
1997; N€a€at€anen et al., 1997). In the current framework, precision
weighted prediction errors induced by acoustic deviations reflect
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 8. Mismatch responses and speech-in-noise: Panel A reproduces the results of Fig. 7H, but focuses on the simulated electrophysiological responses of a single neuronal population
responding to the third word (“a”). The upper row reports simulated responses evoked with (green lines) and without (blue dashed lines) priors (as in Fig. 7), while the lower row
shows the differences between these two responses. These differences can be construed in the spirit of a mismatch negativity or P300 waveform difference. Removing the priors
over the third word (Panels CeD) isolates the evoked responses and their differences more clearly. The grey shaded area corresponds to a peristimulus time of 500 ms, starting
250 ms before the offset of the word in question. Assuming update time bins of around 16 ms means that we can associate this differential response with a P300. In other words,
when the word is more surprisingdin relation to prior beliefs about what will be hearddthey evoke a more exuberant response some 300 ms after its offset. Panels EeH report the
same analysis with one simple manipulation; namely, the introduction of noise to simulate speech-in-noise. In this example, we doubled the amount of noise; thereby shrinking the
coefficients by about a factor of half. This attenuates the violation (i.e., surprise) response by roughly a factor of two (compare difference waveform in Panel D without noisedred
arrowsdwith the difference waveform in Panel H without noisedblue arrow). Interestingly, in this example, speech-in-noise accentuates the differences evoked in this simulated
population when the word is not selected (i.e., on the previous word). The underlying role of surprise and prior beliefs in determining the amplitude of these responses is addressed
in greater detail in the final figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the surprise and concomitant belief updating induced by heard
(spoken) words. At a slightly longer latency, reorientation re-
sponses could also be construed as a reflection of belief updating at
higher levels of hierarchical inference. For example, the P300 has
been proposed to reflect contextual violations (Donchin and Coles,
1988) and the N400 has been proposed to reflect semantic viola-
tions (Kutas and Hillyard 1980, 1984; Van Petten, Coulson et al.,
1999; Kutas and Federmeier, 2000). The whole field of repetition
suppression and adaptation in functional magnetic resonance im-
aging rests upon exactly the same notion; namely, an attenuation of
neuronal responses that induce less belief updating, in virtue of
being predictable or repetitious (Larsson and Smith, 2012; Grotheer
and Kov�acs, 2014).

In the current simulations, our agenda is to identify generic
principles that may underpin neuronal responses to surprising
sensations under active listening. Our goal was not to simulate any
particular type of ERP component, but merely to observe belief
updating in the current framework. In the discussion section, we
visit the finer details of the mismatch negativity and later endog-
enous (e.g., P300, N400) responses, which would be interesting
avenues for future work. An advantage of the current setup is that
we can expand upon the qualitative explanation for violation or
surprise related responses using explicit, quantitative simulations.

If we take the average change in depolarisation under expected
firing rates (after belief updating), we recover a quantity that scores
the degree of belief updating (see Appendix 4 for details)da
quantity that emerges in many guises in different disciplines. For
example, in statistics, it is known as the complexity (see equation
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
(A.18)), which scores the departure from prior beliefs required to
provide an accurate account of some data (Penny, 2012). In the
visual neurosciences, this quantity is known as Bayesian surprise
(Schmidhuber, 1991; Itti and Baldi, 2009) that underwrites the
salience or epistemic affordance of locations in the visual scene that
attract saccadic eye movements (Parr and Friston, 2017a,b). In ro-
botics, this quantity is known as intrinsic motivation; namely the
information gain associated with a particular move or action (Ryan
and Deci, 1985; Oudeyer and Kaplan, 2007). In short, we have a link
between the information theoretic quantity that reflects the degree
of Bayesian belief updating and the average neuronal responses
that perform belief updating.

There are a number of reasons that one might consider this a
sensible predictor of evoked responses in the brain, above and
beyond the idealised dynamics described above. These reasons rest
upon the statistical physics of belief updating in any sentient sys-
tem making inferences about external states of affairs. The tech-
nical back story to active inferencedthat is, the free energy
principledallows one to associate the degree of belief updating and
implicit changes in variational free energy in terms of a thermo-
dynamic potential (Landauer, 1961; Bennett, 2003; Friston, 2013).
This means that for an ensemble of neurons (or neuronal processes)
belief updating can be translated directly into thermodynamic free
energy. The corresponding thermodynamic cost of belief updating
may be reflected in nearly every sort of electrophysiological neu-
roimaging measurement. For example, the excursions of trans-
membrane potentials from their Nernst equilibrium in EEG (c.f., a
mismatch negativity amplitude). Similarly, in fMRI, activations may
arch, https://doi.org/10.1016/j.heares.2020.107998



Fig. 9. Recursive recognition and generation: The upper part of this figure shows the recognition of words (Panel B) contained within an acoustic signal (Panel A). Here, the acoustic
signal is parsed into the words “is there a square above”. The corresponding lexical states can be used to synthesise a new acoustic signal (Panel C) containing the same words. Here,
we inverted the model a second time, to recover the words contained within the synthetic acoustic signal (Panel D). Happily, the recovered words from the synthetic signal (Panel D)
match those from the original signal (Panel B).
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reflect the metabolic costs of belief updating (Attwell and Iadecola,
2002).

The second line of argument is based upon the common sense
observation that, in the absence of an informative sensory cue,
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there can be no belief updating and no complexity cost or accom-
panying thermodynamic cost (Sengupta et al., 2016). In this
instance, there will be, clearly, no evoked or induced response. This
argument further suggests that the precision of continuous sensory
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(e.g., auditory) signals will determine the degree of belief updating
and related violation responses, such as the mismatch negativity. In
speech perception, reduced precision could correspond to speech-
in-noise, for which this model predicts an attenuation of mismatch
responses as noise levels increase. The basis of this effect rests upon
the estimation of random fluctuations in sensory cues that, under
predictive coding, shrink the posterior expectations of the lexical
coefficients towards their prior mean.

If we revisit the results in Figs. 6 and 7, and compare responses
evoked with and without priors, it is immediately obvious that, on
average, evoked responses in the absence of (accurate) priors have
a larger amplitude. This is sensible because priors that are
congruent with the words presented mean that the belief updating
has a smaller complexity cost because the prior is closer to the
posterior. In other words, there is less information gain because the
(synthetic) subject already had accurate prior beliefs about the
lexical content of the spoken words.

To illustrate the sort of effect more quantitatively, we repeated
the simulations reported in Fig. 7 but introduced uncertainty about
the third word by relaxing its priors. This allowed us to introduce
differences in belief updating, from word to word, and show that
simulated neuronal responses vary monotonically with information
gain or Bayesian surprise. Fig. 10 reports the results of this numerical
analysis in terms of the variance of depolarisation over neurons
encoding lexical expectations (blue line in panel D) and the corre-
sponding Kullback-Leibler divergence (red bars). Their monotonic
relationship is apparent (see panel E), although the relationship is
not perfect due to filtering the simulated EEG data and our ad hoc
measure of neuronal responses. At the (coarse-grained) level of the
current treatment, this can be regarded as a simulation of neuronal
responses to Bayesian surprise at a fairly high level in the auditory
hierarchy (encoding the lexical content of a word).

With this characterisation of mismatch responses, we can now
return to the effect of noise, which highlights a key feature of active
listeningdthat the quality of sensory evidence affects the magni-
tude of belief updating. In Fig. 8, noise was simulated by decreasing
the prior precision associated with the lexical coefficients at the
auditory level of inference (namely, the prior precision in Equation
(A.20)). This manipulation attenuates the mismatch or surprise
response because the degree of belief updating has been reduced.
The attenuation arises because there is less confidence placed in
the evidence ascending from lower (sensory) levels of auditory
processing. In other words, the attenuation of belief updating (and
mismatch responses) in Fig. 8 arises because the posteriors have
beenmoved closer to the priors. This contrasts Fig. 7, inwhich belief
updating and mismatch responses were attenuated by one moving
the priors closer to the posteriors. In subsequent work, we will
revisit the effects of manipulating speech-in-noisedand prior
beliefsdto demonstrate their effects empirically and, crucially, how
they interact in the genesis of difference waveforms. For the pur-
poses of this paper, the basic phenomenology illustrated above will
be taken as a validation of the belief updating scheme by appealing
to the literature on the canonical mismatch and violation responses
of this sort.

5. Discussion

Active listening considers the enactive synthesis or inference
that might underwrite the recognitiondand generationdof
spoken sentences. The notion of active listening inherits from active
inference, which considers perception and action under a universal
imperativedto maximise the evidence for our (generative) models
of the world. Here, the ‘active’ component is the (covert) parsing of
words from a continuous auditory signal. Active listening entails
the selection of internal actions (i.e., placement of word
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boundaries) that minimise variational free energy. Practically, word
boundaries are selected so as to minimise surprise or maximise the
evidence for an internal model of word generation. We have
described the formal basis of this kind of active listening, using
simulations of speech recognition to establish its face validity in
behavioural terms.We then considered predictive validity, in terms
of neuronal or physiological responses to violations and surprise, of
the sort associated with the mismatch negativity, P300, and N400.

In treating the segmentation of a continuous sensory stream into
meaningful words as an active sensing problem, we imagine that
several segmentation operations are applied by the auditory system
in parallel and the interval that maximises model evidence or mar-
ginal likelihood (i.e.,minimises variational free energy) is selected for
further hierarchical processing. From the perspective of hierarchical
Bayesian inference, this follows the usual way of mapping from pos-
terior density estimates, based upon continuous signals, to posterior
beliefs about the discrete causes of those signals. This is generally cast
in terms of Bayesian model selection. In other words, selecting some
discrete explanation orhypothesis for the data that ismost consistent
with the estimated parameters of a generative model at the lower
(sensory) level (Friston et al., 2017b). The twist here is that thismodel
selection has been framed in terms of action selection by treating the
selection of word boundaries as an active process.

The generative model of word production that we considered
has been stripped down to its bare essentials. More complex
models could be conceived that synthesise more natural speech.
Expanding the parameter space would not only allow it to produce
more natural speech, but also allow the model to explain more
domains of auditory production and perception. We discuss some
of these possibilities in the discussion that follows. Nevertheless,
we have demonstrated with this simplified generative model that
inversion of the modeldwhich corresponds to speech recog-
nitiondis associated with belief updating that makes plausible
predictions for neuronal dynamics. In this paper, we produced
quantitative simulations of electrophysiological responses and
showed that they depend on the prior knowledge of the listenerda
phenomenon that has commonly been observed in human speech
perception (Marslen-Wilson, 1975; Marslen-Wilson and Welsh,
1978; Cole et al., 1980; Mattys and Melhorn, 2007; Mattys et al.,
2007; Kim et al., 2012).

In borrowing ideas from active vision, we highlight parallels by
which the brain could plausibly accumulate evidence among sen-
sorymodalities. The covert actions considered in this paper (i.e., the
placement of word boundaries) follow in the spirit of overt (motor
or autonomic) actions that have been used to simulate saccadic
searches of the visual scene (Mirza et al., 2016; Parr and Friston,
2017a,b). We discuss the relationship between covert and overt
actions in greater depth below. Intuitively, sensory observations in
the auditory and visual modalities may appear to differ because
speech unfolds over time, whereas visual experiments frequently
use static stimuli that are spatially distributed. However, many
parallels can be drawn between cortical processing in these mo-
dalities (O’Leary, 1989), consistent with findings that sensory
cortices can reorganise and subsequently process inputs from a
different sensory modality (Sur et al., 1988; Shiell et al., 2015).
Shamma and colleagues (Shamma, 2001; Shamma et al., 2011)
propose a unified computational framework for auditory and visual
perception, suggesting that the neural processes proposed for
vision could also operate in auditory cortex. In short, this is based
on the idea that the cochlea transforms temporally unfolding sound
into spatiotemporal response patterns early in auditory processing.
In other words, this is a ‘spatial’ view of auditory processing. Under
this view, the computations for analysing auditory signals in time
could be similar to the computations used for analysing visual
signals in space; e.g., (Bar et al., 2006).
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Fig. 10. Bayesian surprise and evoked responses: this shows the same results as in Fig. 7 but after removing priors from the third word (“a” in blue). Panel A shows the acoustic
timeseries and Panels BeC show the results of simulated neuronal firing patterns and simulated electroencephalographic responses. The result is a more vigorous (simulated) event
related response after the onset of the third word (green line in Panel C). A simple measure of these surprise-related responses can be obtained by taking the variance of the
(simulated) responses over all populations as a function of time (c.f., evoked power). This is shown in Panel D as a solid blue line (normalised to a maximum of four arbitrary units).
The red bars in Panel D correspond to the degree of belief updating or Bayesian surprise, as measured by the KL divergence between prior and posterior beliefs after updating. The
key conclusion from these numerical analyses is that there is a monotonic relationship between the evoked power and Bayesian surprise, reflected by the nearly linear relationship
between Bayesian surprise and the maxima of evoked power in Panel E. In short, the greater the Bayesian surprise, the greater the belief updating and the larger the fluctuations in
neuronal activity. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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5.1. Active listening and Bayesian surprise

Selecting intervals containing auditory cues that minimise free
energy (i.e., maximise marginal likelihood or model evidence)
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follows from the basic premise of the free energy principle; namely,
both action and perception are in the game of self-evidencing
(Hohwy, 2016). Having said this, there is something unique about
the particular selective process (which are implicit in Equation
arch, https://doi.org/10.1016/j.heares.2020.107998
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(A.19)) that distinguishes it from overt actions, such as moving
one’s head or making visual saccades to a location in a visual scene.
This is because the corresponding selection of ‘where to look next’
is based upon anticipated data that would be sampled if one looked
‘over there’. However, predictive coding (in some amortised form)
of speech segmentation here is based on evidence that has already
accumulated under different interval or segmentation schemes. In
other words, there is a distinction between overt actionsdsuch as
moving one’s eyes or moving one’s headdwhich changes obser-
vations in the future, and covert actionsdsuch as covert visual
attention, or selecting a particular segmentation of speechdwhich
is based on sampling current observations. In the case of these
covert actions, the sensory evidence (and subsequent posterior) can
be computed explicitly to evaluate the free energy expected under a
particular interval choice. In contrast, expected free energy based
on overt actions has to be averaged under predicted sensory out-
comesdknown technically as a posterior predictive density. This
means that evaluating the free energy for particular speech seg-
mentation intervals is much simpler than evaluating the expected
free energy under a posterior predictive density, conditioned upon a
particular overt action. It is useful to bear this distinction in mind
because it can resolve some apparent paradoxes.

These paradoxes pertain largely to the question: does active
inference minimise or maximise Bayesian surprise? In the current
setting, covert actions associated with speech segmentation mini-
mise Bayesian surprise, because Bayesian surprise relates to the
complexity (i.e., cost) associated with belief updating based on
current observations. In other words, because the free energy
associated with covert actions can be evaluated explicitly, a listener
can choose the covert action that requires the least belief updating
(i.e., that is closest to their priors), but still provides an accurate
explanation for the auditory observations. This leads to a con-
ceptualisation in which neuronal dynamics and implicit message
passing aim to explain sensory input with minimal complexity and,
therefore, minimum accompanying thermodynamic cost (Sengupta
et al., 2013). On this view, large mismatch or violation responses
indicate that an accurate explanation for sensory inputs required a
costly update to posterior beliefs.

The situation flips for overt actions, for which action selection
depends on expected free energydwhich is evaluated on the basis
of predicted (i.e., unknown) outcomes in the future. Future sensory
outcomes are random (i.e., unknown or hidden) variables and
active inference maximises expected Bayesian surprise, which
corresponds to expected information gain. In other words, it re-
flects the reduction in uncertainty in how the world is sampled.
Actions that maximise Bayesian surprise will lead to the greatest
reduction in uncertainty. This is why expected Bayesian surprise has
to be maximised when selecting actions, where it plays the role of
epistemic affordance (Parr and Friston, 2017a,b). As noted above,
this is an important imperative that underwrites uncertainty
reducing, exploratory behaviour; known as intrinsic motivation in
neurorobotics (Schmidhuber, 2006) or salience when ‘planning to
be surprised’ (Sun et al., 2011; Barto et al., 2013). An intuitiveway of
thinking about whether surprise should be maximised or mini-
mised is to appeal to the analogy of scientific experiment. We may
attempt to analyse empirical data that we have collected in a way
that minimises how surprising it appears; for example, by giving
greater weight to hypotheses consistent with our measurements.
Having done so, wemaywant to design a future experiment, which
would aim is to collect data that will tell us something new; in this
case, we should design an experiment that we expect to maximise
our (Bayesian) surprise (a.k.a., information gain).

In future work, we will expand upon this distinction by using
the current model to simulate conversations (Friston et al., 2020).
The act of speaking is an overt action, and the basic principle of
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conversational turn taking has been simulated using active infer-
ence in the setting of bird song (Friston and Frith, 2015). We hope to
combine the current active listening implementationwith an agent
who is able to ask questions. In brief, the agent will actively listen to
speech by minimising Bayesian surprise at the level of word
recognition considered in this paper, and select words to speak (i.e.,
overt actions, here in the form of questions) thatmaximise expected
Bayesian surprise to maximise information gain (i.e., resolve un-
certainty). This leads to a first principle account of language ‘un-
derstanding’ that can be described in terms of self-evidencing:
namely, minimising free energy through belief updating, and
planning to take actions that minimise expected free energy.

Although evaluating the free energy of alternative data features
(i.e., segments) that have already been sampled is more straight-
forward than evaluating the expected free energy when planning
how to sample data, it is not as straightforward as reflexive action;
e.g., (Adams et al., 2013). Reflexive or elementary action, under
active inference, changes the sensory data solicited, e.g., the stretch
receptor signals that are attenuated by classical motor reflexes.
However, this kind of reflexive action does not change internal
brain states or the posterior beliefs that they parameterise. This
means that the only part of free energy that can be minimised
directly is the accuracy term (Equation (A.18)). This is why it is
sufficient to minimise interoceptive and proprioceptive prediction
errors when accounting for autonomic and motor action; very
much along the lines of the equilibrium point hypothesis (Feldman
and Levin, 1995) and the passive movement paradigm (Mohan and
Morasso, 2011). However, in the active listening framework pro-
posed here, the situation is a little more involved. This is because
hierarchical inference means that committing to one data feature
(i.e., interval) or another will change posterior beliefs. This means
that to comply with the free energy principle, it is necessary to
select data features (i.e., intervals) that not only maximise accuracy
but also minimise complexity. This entails a more nuanced form of
action selection, in virtue of the fact that it requires the (covert)
selection of data features that have been (overtly) acquired. Even
though the data have already been acquired, and selecting different
data features does not change the auditory outcomes (acoustic
timeseries), these processes are nevertheless ‘active’ from our
perspective, because the agent has an epistemic imperative to
sample auditory outcomes in a way that reduces uncertainty. In
other words, the agent is in charge of the data features (i.e., seg-
mentation). Thus, we can think of speech segmentation as a kind of
action that is internal or attentional, related to how the acoustic
timeseries is covertly sampled. The framework we have introduced
in this paper highlights thatdmathematicallydthese covert ac-
tions can be considered in a similar way as overt actions.

5.2. Acoustic envelope and spectral fluctuations

Under active listening, the implicit generative model of an en-
velope, which is used to create a repertoire of intervals fromwhich
to select, is distinct from the spectral fluctuations (i.e., formant
frequencies) generated by latent states (i.e., lexical and prosody).
This formulation of speech recognition may explain why there are
‘envelope following responses’ in distinct parts of the auditory
system, whose functional architecture can be distinguished from
the tonotopicmapping of auditory cortex per se (Easwar et al., 2015;
Braiman et al., 2018). This leads to an interesting picture of how the
brain thinks words are generated that echoes the distinction be-
tween ‘what’ and ‘where’ in the visual hierarchy (Ungerleider and
Haxby, 1994). In other words, there may be a homologous distinc-
tion between ‘what’ and ‘when’ in the auditory system that mani-
fests as an anatomical separation of the pathways inferring ‘what’ is
being spoken (i.e., tonotopic predictions and representations) and
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when this content is deployed (i.e., envelope following responses)
(Romanski et al., 1999; Alain et al., 2001). From the point of view of
word generation, these two streams converge to generate the cor-
rect formants at the correct time. From the point of view of
recognition or generative model inversion; this would imply a
functional segregation of the sort seen in other modalities
(Ungerleider and Haxby, 1994; Friston and Buzsaki, 2016); for
example, the segregation into dorsal and ventral streams e or,
indeed, parvocellular and magnocellular streams (Zeki and Shipp,
1988; Nealey and Maunsell, 1994). Interestingly, this sort of segre-
gation into ‘what’ and ‘how’ pathways has already been proposed
for the auditory system (Kaas and Hackett, 1999; Belin and Zatorre,
2000).

5.3. Active listening and electrophysiological responses

In a general sense, we have shown that belief updating under
active listening qualitatively resembles physiological responses to
violations and surprise that are already in the literature. Our goal
was not to simulate any particular type of ERP component or the
empirical results from any particular study, but rather to explore
belief updating in an artificial agent whose goal is to generate and/
or recognise speech. So, can we interpret this belief updating in
light of particular ERP responses?

One canonical violation response is the mismatch negativity.
The mismatch negativity is observed in classic ‘oddball’ paradigms
(Garrido et al., 2009), in which a deviant sound follows a sequence
of sounds that all share a particular acoustic property. Mismatch
negativity responses have been observed when a sound deviates in
frequency (N€a€at€anen et al., 1978; Giard et al., 1995; Jacobsen et al.,
2003b), intensity (N€a€at€anen et al., 1978; Giard et al., 1995; Jacobsen
et al., 2003a), or timbre (Tervaniemi et al., 1997a; Tervaniemi et al.,
1997b; Toiviainen et al., 1998) from preceding stimuli. Crucially, the
mismatch negativity has recently been interpreted in terms of
predictive codingdspecifically, it has been assumed to reflect
precision weighted prediction errors (Garrido et al., 2009;
Wacongne et al., 2012; Heilbron and Chait 2018)dwhich relates
nicely to the current framework. The finding that the amplitude of
the mismatch negativity covaries with the probability of a deviant
(Picton et al., 2000; Sato et al. 2000, 2003) is consistent with the
idea that it reflects belief updating. Most previous studies of the
mismatch negativity have used basic auditory stimuli, such as
artificial pure or complex tones; it is therefore assumed to reflect
deviations to low-level acoustic properties, rather than processes
that are specific to speech. Nevertheless, observations of the
mismatch negativity during phoneme perception (Dehaene-
Lambertz, 1997; N€a€at€anen et al., 1997) can be interpreted as
reflecting acoustic violations that occur within speech.

The P300 is often observed in similar ‘oddball’ settings as the
mismatch negativity (Polich, 2007). It has a longer latency than the
mismatch negativity and has been related to higher-level context
violations (Donchin and Coles, 1988). It could, therefore, be inter-
preted as reflecting belief updating when the listener’s context
changes. In the domain of speech, the P300 has been associated
with word frequency (Polich and Donchin, 1988).

The N400 is commonly observed in response to meaningful
speech, and has also been associated with word frequency (Kutas
and Hillyard, 1984; Van Petten and Kutas, 1990; Van Petten et al.,
1999). Kutas and Hillyard, (1984) found that the amplitude of the
N400 was inversely correlated with a word’s cloze proba-
bilitydthat is, participants’ ratings of the probability that a
particular word would come at the end of the sentence in question.
They found that the same effect transferred to words that were
semantically related to high-probability words. They, therefore,
concluded that the N400 relates to semantic activation.
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Modulations of N400 responses have been reported in a variety of
semantic contexts (reviewed by Kutas and Federmeier, 2000)d
including sentence-final words, the semantic congruency of words
that occur mid-sentence, and the semantic relatedness of word
pairsdand has been shown to build up as the semantic context
becomes increasingly constrained throughout a sentence. Syntactic
violations do not elicit an N400 response (Kutas and Federmeier,
2009), but instead evoke a P600 (Osterhout and Holcomb, 1992;
Friederici et al., 1996; Kuperberg et al., 2003).

An N400-like negativity, termed the frontocentral negativity
(‘FN400’) has been related to speech segmentation by transitional
probabilities (Balaguer et al., 2007; Cunillera et al., 2009; François
et al., 2017). For example, stronger FN400 responses were elicited
from acoustic signals that comprised strong statistical relationships
between syllables than syllables that were selected randomly
(François et al., 2017). The FN400 also appears to increase in
amplitude as the segmentation process becomes more prominent
as new words are learned (Balaguer et al., 2007; Cunillera et al.,
2009).

Speech segmentation by prosodic cues has been associated with
a different ERP: the closure positive shift (CPS) (Steinhauer et al.,
1999). The closure positive shift is evoked around the time of a
prosodic boundary, and has been reported to last until the onset of
the next word (B€ogels et al., 2011a,b). It has been found in several
different languages (see (B€ogels et al., 2011a,b) for a review) and
even in hummed speech (Pannekamp et al., 2005), which has no
lexical content.

So, which level of processing does belief updating in the current
scheme reflect? This level could be intermediate between lower
acoustic levels at which amismatch negativity is generated, and the
kind of violation responses associated with a change in context or
semantics. Possibly, this could be something like the phonological
mismatch negativity, which has been interpreted as reflecting
acoustic-phonetic processing in response to the initial phoneme of
a spoken word, occurring 270e300 ms after onset (Connolly et al.,
1992). Connolly and Phillips, (1994) observed the phonological
mismatch negativity when the final word of a sentence was
semantically congruent, but the word (and the initial phoneme)
differed from the word with the highest Cloze probability. An N400
was not observed in this condition and was instead observed when
the word was semantically incongruent. Interestingly, the phono-
logical mismatch negativity was not observed when a word was
semantically incongruent, but the initial phoneme matched the
word with the highest Cloze probability. These observations are
consistent with the idea that the phonological mismatch negativity
reflects acoustic-phonetic processing.

One advantage of the current framework is that it generates
quantitative predictions that can be explicitly tested in future
electrophysiological studies. The predictive validity we have
considered here is a first step: the next step is to scrutinise the
particular parameters of the simulation using empirical data. To
study this in more detail, specific sequences of words and/or
acoustic features could be posed to the model that generate
particular violations. Belief updating in active listeningdand,
indeed, the parameters of other models (Aitchison and Lengyel
2017)dcould be quantitatively compared to empirical electro-
physiological results (which are defined in arbitrary units here, but
can simply be arbitrarily scaled so that the units match those
commonly used in electrophysiology). This speaks again to future
directions, in which the current framework will be extended to a
hierarchical model that can simulate conversations. Speech has a
deep temporal structure, with phrases evolving over longer time
intervals than words or phonemesdand a more complete genera-
tive model of speech will have to incorporate this temporal hier-
archy (Friston et al., 2017c). The idea of an interlocutor asking
arch, https://doi.org/10.1016/j.heares.2020.107998



K.J. Friston et al. / Hearing Research xxx (xxxx) xxx 19
questions to resolve uncertainty relates to a higher-level semantic
processing of speechdand violations of semantic expectations
might be associated with later electrophysiological responses, such
as the N400. Consistent with the types of hierarchies that have
often been suggested based on empirical data (Kumar et al., 2007;
Ding et al., 2015), a deep generative model implies that belief
updating occurs at multiple time scales, and we anticipate that this
will give rise to more structured ERPs that include contributions
from later components.

5.4. Background noise during active listening

In this paper, we simulated a simple case of speech-in-noise, in
which we imposed random fluctuations (of constant amplitude) on
the speech signal. We showed that noisier signals attenuate belief
updating. We plan to extend this model to incorporate other types
of noise, including fluctuating-amplitude maskers such as multi-
speaker environments. This should allow one to investigate
which aspects of the signal are most informative for minimising
Bayesian surprise, when some parts of the signal (but not others)
undergo energetic masking (Brungart, 2001; Brungart et al., 2001;
Durlach, 2006) or when informational masking (Durlach et al.,
2003a,b; Kidd et al., 2007) comes into play. In other words, in the
presence of noise, a listener needs to reduce their uncertainty about
the words that were spoken by deciding which attributes of the
acoustic signal they should attend to.

One problem that the current segmentation algorithm would
facedwhen adding background noise to speechdis that envelope
minima may not always be present at word boundaries. In human
listeners, segmentation at envelope minima could be achieved
based on envelope following responses. Indeed, the magnitude of
envelope following responses (i) has been linked to speech intel-
ligibility in humans (Drullman, 1995; Muralimanohar et al., 2017;
Vanthornhout et al., 2018), (ii) is greater for attended than unat-
tended speakers (Ding and Simon, 2012; O’Sullivan et al., 2014), and
(iii) can be reconstructed from measurements of brain activity
(Pasley et al., 2012; O’Sullivan et al., 2014). These envelope re-
sponses could, therefore, reflect the success of speech segmenta-
tion. Other cues to segmentation have been reported in the
literaturedand may be particularly important when background
noise is present. These cues include durations: a lengthening of
syllables at the end of words (Klatt, 1975; Beckman and Edwards,
1990), and possibly also the beginning (Lehiste 1960, 1972; Oller,
1973; Klatt, 1976; Nakatani and Dukes, 1977; Gow Jr and Gordon,
1995). They also include a shortening of the middle portion of
words (Lehiste, 1973; Oller, 1973; Harris and Umeda, 1974; Klatt,
1976). Other work has also reported metrical (stress) cues (Cutler
and Norris, 1988), allophonic variation (Christie Jr, 1974; Nakatani
and Dukes, 1977; Gow Jr and Gordon, 1995), and fundamental fre-
quency contour (Ladd and Schepman, 2003) as segmentation cues.
Although the current algorithm of finding envelope minima was
sufficient for the current simulations, these other cues could be
implemented into active listening in other contexts in which seg-
mentation may be particularly challenging. While the current
implementation retrospectively places word boundaries, future
work could also consider that word boundaries are somewhat
predictable from the lexical statistics of the preceding sequences
(Marslen-Wilson 1984)dfor example, the offset of “trombone”may
be predicted upon hearing “trom”, given it is the only valid ending
to the word in English.

5.5. Active listening and language production and perception

The active listening scheme can also be used as a foundation to
gain a neuronal-level understanding of language production and
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perception behaviours. For example, engaging in a two-way dia-
logue (Kuhlen et al., 2017), verbal fluency (Paulesu et al., 1997) and
reading (Fiez and Petersen, 1998; Landi et al., 2013; Taylor et al.,
2013); see Price (2012) for a detailed overview. Previous in-
vestigations of these behaviours have been motivated by the desire
to better understand the underlying neuropsychology (Aring, 1963;
Hodges et al., 1992; Warburton et al., 1999; Thiel et al., 2005; Nardo
et al., 2017; Hope et al., 2018). In other words, what are the causal
mechanisms associated with (language) behavioural modifications
following neurological disorders? Despite valiant efforts, none of
the current computational accounts of language can fully explain
these behaviours (Rueschemeyer et al., 2018): examples include
Directions Into Velocities of Articulators model (Tourville and
Guenther, 2011), State Feedback Control model (Houde and
Nagarajan 2011), and Hierarchical State Feedback Control model
(Hickok, 2014). Crucially, these approaches do not simultaneously
account for higher-order language processing (semantic, syntactic,
etc.) and lower level articulatory control (prosody, etc.); however,
human language processing requires both. The active listening
scheme presented here departs from previous approaches: it
explicitly considers the segmentation of continuous signals (which
come into play through the accuracy term in Equation (A.18) and
relate to lower-level processing) and beliefs about the lexical con-
tent of those signals (key to the complexity term in Equation (A.18)
and relating to higher-level language processing). Not only do these
two aspects exist in the model, but they go hand-in-hand during
word recognition. This makes the generative model described here
a prime candidate for developing a mechanistic and neuro-
biologically plausible account of (healthy and impaired) language
behaviour.

The idea that a generative model for speech generation can be
inverted for the purpose of recognising speech touches upon a
longstanding debate in the literaturedare similar neural processes
used to recognise speech, as those that are used to produce speech?
This is an interesting question, and one that the current formula-
tion does not address. Of relevance, the properties of spoken sen-
tences that active listening uses to produce and recognise speech
are acoustic (e.g., fundamental and formant frequencies) rather
than biological (e.g., vocal chords and vocal tract) attributes
(Guenther and Vladusich, 2012). Thus, it does not necessarily follow
from this framework that an individual who is unable to speak is
unable to comprehend speech. On the contrary, we expect that an
individual who is unable to speak could still generate an internal
model that specifies the causes of spoken words, which they have
learnt by perceiving speech. Whether the experience of producing
speech contributes to the same model is an interesting question. In
short, there may be an opportunity to examine how computational
lesions to the model impair speech perception and production.

5.6. Active listening and voice recognition

One strength of the current scheme is that it deals with both
speech generation and recognition, and can be iteratively applied to
recognise the lexical content of simulated speech (see Fig. 9). The
simulated speech that the model produces is discernibly artificial,
but the keymessage here is that the model reduces the problems of
speech generation and recognition to their necessary parameters.
The generative model introduced in this paper lays the groundwork
for a complete model of voice recognition. In other words, a model
that infers who is speaking. The current model includes states for
the speaker attributes of their average fundamental frequency and
formant spacing. From a speech production perspective, a speaker’s
fundamental frequency relates to the rate of vocal fold vibration
(known as glottal pulse rate), and formant spacing is affected by the
length and shape of the vocal tractdwhich are relatively fixed for a
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speaker, although can be modified slightly by changing the posi-
tions of the articulators, such as the tongue and lips. Previous
research demonstrates that listeners use both fundamental fre-
quency and speech formants to judge the identity of people who
are familiar (LaRiviere, 1975; Abberton and Fourcin, 1978; Van
Dommelen 1987, 1990; Lavner et al., 2000; Lavner et al., 2001;
Holmes et al., 2018a) and unfamiliar (Matsumoto et al., 1973;
Walden et al., 1978; Murry and Singh, 1980; Baumann and Belin,
2009; Gaudrain et al., 2009). To extend the current model to
recognise voices, the next step is to specify how combinations of
fundamental and formant frequencies are used to infer speaker
identity. From the perspective of the generative model, funda-
mental and formant frequencies are generated from hidden states
that correspond to particular speakers. This approach differs from
that proposed by Kleinschmidt and Jaeger, (2015), who assume that
listeners construct a separate generative model for each talker they
encounter. In the current implementation, we have focused on
fundamental and formant frequencies, because these attributes are
most prevalent in the voice recognition literature. However, they
are not the only relevant speaker attributes (Cai et al., 2017; Holmes
et al., 2018a). More complex models of voice recognition could
incorporate additional speaker parameters, for example, relating to
speaker-specific accent, stress, and intonation.

5.7. Active listening and music

Finally, the generative and inversion schemes presented here
could also form the basis for models of other complex auditory
signals. Music, for example, shares several features with language
(Patel, 2010) and relies on partly overlapping brain networks
(Musso et al., 2015), which makes it a natural choice for future
work. It is not difficult to imagine how the generative model in
Fig. 1 could be adapted to simulate music in an active listening
framework. For example, somewhat akin to determining the cor-
rect onsets and offsets of word boundaries, we need to decide
where a musical phrasedor longer section of musicdbegins and
ends.

Recent empirical findings have shown that mismatch responses
to unexpected musical sounds are larger in contexts with low than
high uncertainty (Quiroga-Martinez et al., 2019). This fits
comfortably with the proposed explanation of evoked responses as
reflecting Bayesian surprise or salience, which would be reduced
when sensory signals are unreliable or imprecise. Since music is
rich and multifaceted and relies greatly on statistical learning
(Pearce, 2018), it would be an ideal means to understand how
neuronal dynamics change with uncertainty.

6. Summary

In summary, this paper introduces active listeningda unified
framework for generating and recognising speech. The generative
model specifies how discrete lexical, prosodic, and speaker attributes
give rise to a continuous acoustic timeseries. As the name implies,
the framework also includes an active component, in which plau-
sible segmentations of the acoustic timeseriesdcorresponding to
the placement of word boundariesdare considered, and segmen-
tation that minimises Bayesian surprise is selected. In the simula-
tions presented here, we demonstrate that speech can be iteratively
recognised and generated under thismodel.We show that thewords
that the model recognises depend on prior expectations about the
content of the words, as is the case for human listeners, and that
simulated neuronal responses resemble human electrophysiological
responses. This work establishes a foundation for future work that
will simulate human conversations, voice recognition, speech-in-
noise, and musicdand which we anticipate will provide key
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
insights into neuropsychological impairments to language
processing.

7. Software note

The routines described in this paper are available as Matlab code
in the SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/.
The simulations reported in the figures can be reproduced (and
customised) via a graphical user interface by typing (in the Matlab
command window) DEM and selecting appropriate (speech
recognition) demonstration routines. The accompanying Matlab
scripts are called spm_voice_*.m.
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Appendix 1. The generative model

This appendix covers technical details of the generative model
introduced in Fig. 1. Fig. 11 is designed to supplement Figure 1, and
includes the equations corresponding to word generation (left
column) and word recognition (right column). This section first
provides a summary of the technical details of the generative
model, then goes on to unpack each of the equations of the
generative model in Fig. 11. Although these may seem complicated
for a non-technical reader, they are simply a sequence of non-linear
transforms that specify the mapping from lexical, speaker, and
prosody parameters to an acoustic timeseries.

In brief, each word (i.e., lexical item) is associated with a matrix
of discrete cosine transform coefficients (q Q) that generate a time-
frequency representation (W) of the spoken word (i.e., the spec-
trogram), when combined with speaker and prosody information.
In this scheme, the lexical form and structure comprise a discrete
cosine transform with 8 basis functions over time and 32 over
formant frequencies (see Fig. 11C). The number of basis functions
was selected as a compromise between the quality of the generated
acoustic timeseries and computational efficiency. Each column of
the time-frequency representation generates a transient: thus, the
number of transients corresponds to the number of columns in the
time-frequency representation.
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The transients are emitted at an instantaneous fundamental
frequency, which is inversely proportional to the time intervals
between successive transients (Di). These time intervals are stored
in a fundamental interval variable (I). The instantaneous funda-
mental frequency is affected by the average fundamental frequency
of the speaker (q 0), corresponding to their average glottal pulse rate.
It also depends on a discrete cosine transform (D) based upon
(three) coefficients (q I) that encode inflection around the speaker’s
average fundamental frequency (q 0): (1) the average fundamental
frequency relative to the speaker average, (2) increases or decreases
in fundamental frequency over time, and (3) the acceleration or
deceleration of changes in fundamental frequency. The ensuing
time-frequency representation is then multiplied by an inverse
temperature (q T) parameter, which affects the quality of the sound
and can be thought of as a timbre parameter. Its exponential is,
effectively, Fourier transformed to create a succession of transients
that are deployed over fundamental intervals. The resulting
timeseries is then scaled by an amplitude parameter (q A) to furnish
the final (continuous) acoustic timeseries.
Fig. 11. A generative model of a word. This figure illustrates the generative model from the
panels), which corresponds to word recognition. This model maps from hidden states (s; sho
prosody, and speaker identity), to outcomes (o; shown in box C), which corresponds to th
generation. The centre panels illustrate the non-linear mappings between model parameter
the transients are then aggregated to form a timeseries. Recognition (boxes DeE) corresp
parameterise the time-frequency representation (box D) by simply inverting or ‘undoing’ the
prosody and speaker states (box E). The equations displayed in this figure are unpacked in
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Inwhat follows, we unpack each of the equations in Fig. 11, from
the perspective of word generation (left column of Fig. 11). Note
that word generation simply involves a sequence of non-linear
transformations, which specify the relationship between parame-
ters and the acoustic timeseries.

Each discrete state is associated with a Gaussian distribution
(Fig. 11B) with a mean ƞ and covariance Ʃ. When generating words,
parameters are sampled from these state-dependent distributions.
The subscript notation indicates hidden state j and its i-th possible
value:

qji ¼ hji þ ε
j
i

ε
j
i � N

�
0;Sj

i

� (A.1)

The spectrum is constructed from frequency (U) and temporal
(V) basis functions, which are combined with a matrix of co-
efficients (q Q) corresponding to lexical parameters. The spectrum is
scaled with an inverse temperature (i.e., precision; q T) parameter,
perspective of word generation (green panels) and accompanying inversion (orange
wn in box A), which denote the attributes of a spoken word (in this case lexical content,
e continuous acoustic timeseries. Box B shows how parameters are sampled for word
s and the acoustic spectrum (i.e., time-frequency representation). Box C specifies how
onds to the inversion of the generative model: a given time series is transformed to
generative operations. These parameters are used to evaluate the likelihood of lexical,
the text.
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which is then exponentiated to create a matrix of fluctuations W of
(formant) frequencies over time:

W ¼ exp
�
qTUqQVy

�
(A.2)

Each column ofW is transformed into a transient as a function of
time (using discrete cosine transform matrix D):

oi ¼DQWi (A.3)

The duration of the transients (l) is determined by the speaker
formant spacing (q1)dsuch that a high formant spacing value
squashes (shortens) the transients, rendering the frequencies
higher when placed in the timeseries. Fs indicates the sampling rate
of the audio timeseries:
Fig. 12. A graphical formulation of the generative model. This figure illustrates the same model as described in Fig. 11, but uses a normal (Forney) factor graph form. This graphical
notation relies upon the factorisation of the probability density that underwrites the generative model. Each factor is specified in the panel on the left. Factor 1 is the prior
probability associated with the hidden states and takes a categorical form. Factor 2 is a normal distribution that specifies the dependence of parameters on states. Each discrete state
is associated with a different expectation and covariance for the parameters. Factor 3 describes how the observed timeseries is generated from the parameters, and this is
decomposed into factors 4e9. These are Dirac delta functions that may be thought of as normal distributions, centred on zero, with infinite precision (i.e., zero covariance). In the
graphs on the right, factors are indicated by numbered squares, and these are connected by edges (Hasson et al., 2008), which represent the variables common to the factors they
connect. The upper right graph shows factors 1e3, and the lower graph unpacks factor 3 in terms of factors 4e9. The process of generating data may be thought of in terms of a
series of local operations taking place at each factor from top to bottom (i.e., sample states from factor 1, then parameters from factor 2, then perform the series of operations in
factor 3 to get the timeseries). The recognition process can be thought of as bidirectional message passing across each factor node, such that empirical priors and likelihoods are
combined at each edge to form posterior beliefs about the associated variable. Factor 5 is of particular interest here, as it determines the internal ‘action’ that selects the interval for
segmentation.
l¼ FS
.
q1 (A.4)

The spacing (D) of the transients is inversely proportional to the
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speaker fundamental frequency parameter (q 0), and is also affected
by inflections due to prosody (q I):

D¼ FS
q0
DIq

I (A.5)

A fundamental interval (I) variable stores the absolute positions
of all of the transients:

Ii ¼
Xt¼i

t¼1
Dt (A.6)

The timeseries (o) is constructed by summing the transients and
multiplying this by the amplitude parameter:

o¼ qA
X
i

oi (A.7)
For readers familiar with graphical formulations of generative
models, Fig. 12 illustrates the same model in factor graph form
(Forney, 2001). This provides an alternative visual representation of
the generative model, and highlights inferences based on message
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passing. This perspective is used below to describe the form of local
(neuronal) message passing that underwrites simulated electro-
physiological responses.

Appendix 2. Model inversion or word recognition

Next, we turn our attention toword recognition (right column of
Fig.11). Inversion of the generativemodel simply requires ‘undoing’
the sequence of events that we used for word generation. Likeword
generation, word recognition simply requires a series of non-linear
transformsdexcept, for word recognition, we map from epochs of
the acoustic signal to discrete lexical, speaker, and prosody
parameters.

In brief, the recognition scheme comprises the following steps.
The peak energy of the auditory timeseries is identified by
convolving its absolute values with a Gaussian kernel. A 1 second
epoch, centred on the peak, is selected as a signal to search for the
onset and offset of the word (although in principle this epoch could
be any length). Onsets and offsets are identified based on threshold
crossings of the amplitude envelope. Here, the amplitude envelope
is calculated from the absolute values of the timeseries convolved
with a Gaussian kernel. This is, for all practical purposes, equivalent
to the absolute values of the Hilbert transform, but is computa-
tionally more efficient. The threshold we use here is 1/16th of the
maximum envelope value across the window, after subtracting the
minimum; this value was selected to be above the noise floor. Word
recognition is largely unaffected by small deviations from this
value. In technical applications, tuning parametersdlike thresh-
oldsdcan be optimised with respect to free energy (i.e., marginal
likelihood) using line searches. In neurobiological applications,
they provide interesting degrees of freedom, which may be useful
in modelling different kinds of perceptual deficits.

The fundamental interval function is estimated using a discrete
cosine transform (with three coefficients) of the fundamental in-
tervals. The fundamental intervals are defined as phase crossings
following a Hilbert transform and bandpass filtering around the
prior for the speaker average fundamental frequency (e.g., 100 Hz,
with a standard deviation of 8 Hz).

Equipped with the fundamental interval function, the formant
frequencies are then estimated by evaluating the cross-covariance
function over short segments centred on each fundamental inter-
val. The duration of these segments corresponds to the inverse of
the first formant frequency. The formant frequencies per se are
evaluated using a modified (by retaining even terms) discrete
cosine transform at each slice, to evaluate the spectral density over
the acoustic range (in 256 frequency bins, where each bin is
determined by the formant spacing; for example, with a formant
spacing of 32 Hz, the highest spectral density is 8000 Hz). Following
a log transform and normalisation, fluctuations in (log) spectral
density are recovered with a discrete cosine transform with 32
basis functions over (formant) frequencies and eight basis functions
over intervals. The inverse temperature (timbre) parameter corre-
sponds to the standard deviation of these lexical (formant fre-
quency) parameters, which is used to normalise the lexical (32x8)
parameter matrix.

To infer the lexical content, prosody and speaker, the MAP
parameter estimates above can be used to evaluate the likelihood of
each discrete attribute. As described in the main text, the likeli-
hoods are combined with a prior to produce a posterior categorical
distribution over the attributes in question. For the prosody pa-
rameters, each parameter is divided into eight bins and the likeli-
hood of belonging to any particular bin is evaluated under Gaussian
assumptions as above; using a priori means and precisions of the
discrete levels of each prosody attribute (i.e., amplitude, duration,
timbre, inflection). Similarly, the categorical speaker identity is
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
determined by a 16 x 16 discrete states space, covering funda-
mental and formant frequencies.

Inwhat follows, we unpack each of the equations in Fig. 11dthis
time, from the perspective of word recognition (right column of
Fig. 11).

The amplitude parameter is the standard deviation of the
timeseries (o):

qA ¼ stdðoÞ (A.8)

Each transient (oi) is defined as an interval of the timeseries,
based on the positions of fundamental intervals (I) and transient
durations (l):

oiboIiþl
Ii�l

(A.9)

The spacing (D) of the transients corresponds to the difference
between successive fundamental intervals (I):

Di ¼ Ii � Ii�1 (A.10)

Inflection parameters are proportional to the speaker funda-
mental frequency (q0) and are constructed using discrete cosine
transform matrix D. Fs indicates the sampling rate of the audio
timeseries:

qI ¼ q0
FS
Dy
ID (A.11)

The formant scaling parameter (q1) is inversely proportional to
the transient duration (l):

q1 ¼ FS=l (A.12)

The duration parameter (q D) is proportional to the fundamental
interval (I):

qD ¼ IN=FS (A.13)

The (squared) matrix of fluctuations of (formant) frequencies
over time (W) is constructed from the transients using discrete
cosine transform matrix D:

W2
i ¼Dy

Q ðoi 5 oiÞ (A.14)

The timbre parameter (q T) is the standard deviation of the log
spectral decomposition:

qT ¼ stdðvecðlnWÞÞ (A.15)

Lexical parameters (q Q) are a matrix of coefficients that control
the joint expression of formant frequency and temporal basis
functions. These are calculated from the frequency (U) and tem-
poral (V) basis functions and the log spectral decomposition, scaled
by the timbre parameter:

qQ ¼Uy
�
ln W

.
qT
�
V (A.16)

The parameters are used to evaluate the likelihood of lexical,
prosody and speaker states, as shown in the following equations:
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ln P
�
sji

���qji
�
¼ ln P

�
qji

���sji
�
P
�
sji
�

ln P
�
qji

���sji
�
¼ �1

2
ε
j
i,P

j
iε
j
i

ε
j
i ¼ qji � hji

(A.17)
Appendix 3. Speech segmentation as an active process

In the current framework, speech segmentation is treated as a
covert action from a computational perspective: We select
boundary pairs (I0 and IT) and evaluate their free energy under prior
beliefs about the word. Formally, this can be expressed as mini-
mising free energy both with respect to (approximate) posterior
beliefs about the attributes of the word (Q) and the intervals
selected (I0, IT):
Q ¼ argminQF
�
Q ; oITI0

�

ðI0; IT Þ ¼ argminIF
�
Q ; oITI0

�

FðQ ; oÞ ¼ EQ ½ln QðsÞ � ln Pðo; sÞ� ¼ EQ ½ln QðsÞ � ln PðsjoÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Evidence bound

� ln PðoÞ|fflfflfflffl{zfflfflfflffl}
Log evidence

¼ EQ ½ln QðsÞ � ln PðsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Complexity

� EQ ½ln PðojsÞ�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Accuracy

� �ln PðoÞ
(A.18)
Choosing the interval with the smallest free energy effectively
selects the interval that maximises the evidence or marginal like-
lihood of auditory outcomes contained in that interval; namely,
P(o). This follows because the variational free energy, by con-
struction, represents an upper bound on log evidence. In (A.18), the
free energy is expressed in terms of log evidence and an evidence
bound. It is also expressed as the difference between complexity and
accuracy by rearranging the equation. Complexity is the Kullback-
Leibler divergence between a posterior over latent states Q(s),
and prior beliefs P(s), while accuracy is the expected log likelihood
of auditory signals contained in the interval in question. Impor-
tantly, both posterior beliefs about latent states (i.e., lexical, prosody,
and speaker) and the active selection of acoustic intervals optimise
free energy. This is the signature of active inference. In this instance,
the posterior beliefs obtain from the likelihood of the lexical,
prosody and identity parameters, given the associated states. From
Fig. 11, the optimal posterior beliefs satisfy (A.18) when (ignoring
constants):
ln Q
�
sji
�
¼ ln P

�
sjijoÞ ¼ ln P

�
sji

���qji
�
¼ ln P

�
sji
�
þ ln P

�
qji

���sji
�
¼ ln P

�
sji

0

FðQ ; oÞ ¼ �ln PðoÞ
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Here, P is the prior precision of lexical parameters from Fig. 11.
The second equality on the first line may seem a little counterin-
tuitive, but rests upon the assumed relationship between the pa-
rameters and the timeseries. The equality holds in virtue of the
absence of random fluctuations in this mapping, such that a given
parameter deterministically generates time-series data. In other
words, the implicit conditional probability density describing the
generation of the timeseries from the parameters (and the associ-
ated posterior distribution over parameters) takes the form of a
Dirac delta function. The last equality reflects the fact that when the
evidence bound in Eqn (A.18) collapses to zero, free energy be-
comes negative log evidence. The subscript notation indicates the
value that a discrete state might take (i.e. P(sji) should be read as
‘the probability that the hidden state j takes its i-th possible value’).

Fromtheequations above, it shouldbe clear thatwecan identifya
variety of candidate boundaries for words and evaluate their free
energy to select the final parsing of the acoustic signal. But where
should these candidate boundaries be placed? In an extreme case,
we could place boundaries at every combination of time points
within the acoustic signaldbut that would be computationally
inefficient given that we can reduce the scope of possibilities by
using sensible priors. Here, we use the simple prior that word
boundaries aremore likely to occur at localminimaof the amplitude
envelopedso these are the boundaries that we choose to evaluate.

Practically, based upon the spectral content of speech, we esti-
mate the amplitude envelope by removing low frequencies up to
about 512 Hz. The envelope is then simply the average of the
ensuing absolute values, smoothed with a Gaussian kernel (with a
standard deviation of FS/16). This method is less computationally
demanding than using the absolute values of the Hilbert transform,
yet practically gives the same result in this setting.
Appendix 4. Belief updating and neuronal dynamics

The form of neuronal dynamics is calculated by constructing
ordinary differential equations whose solution satisfies Equation
�
� 1
2
ε
j
i,P

j
iε
j
i

(A.19)
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(A.18). Using n ¼ lns to denote the log of the approximate posterior
expectation about hidden states and introducing a prediction error
(ε) one obtains the following update scheme (Friston et al., 2017a)
(dropping the superscript j for clarity):

vibln QðsiÞ
sibQðsiÞ

εi ¼ ln PðsiÞ �
1
2
εi,Piεi � vi

_vi ¼ εi

s ¼ sðvÞ

(A.20)

Here, s denotes the softmax (normalised exponential) function
and P is the prior precision of lexical parameters from Fig. 11. The
prediction error (ε) is the difference between the optimal log pos-
terior and current estimate of this (v). The log posterior, via Bayes
theorem, is equal to the sum of the log prior and the log likelihood
(minus a normalisation constant). As the likelihood is assumed to
be normally distributed, its log is quadratic in the difference (ε)
between the mode and lexical parameters. The mode of this dis-
tribution is different under each state, so the likelihood of a given
parameter value varies with states. For readers familiar with clus-
tering procedures, this is like having a series of clusters (states)
with different centroids (i.e., modes of the likelihood).

The prediction error (ε) is the (negative) free energy gradient
that drives neuronal dynamics. Intuitively, the fourth line of
Equation (A.20) drives v to change until it is equal to the Bayes
optimal posterior, at which point ε is zero. To account for the nor-
malisation constant that would have appeared in Bayes theorem,
the conversion from v to s requires not only that we exponentiate
(i.e., convert a log probability into a probability), but that we
normalise the result. This ensures that s comes to encode a vector of
posterior probabilities for each hidden state.

The sigmoid (softmax) function in Equation (A.20) can be
thought of as a sigmoid (voltageefiring rate) activation function,
which mediates competition among posterior expectations.
Equation (A.20) therefore, provides a process theory for neuronal
dynamics. Based on this equation, log expectations about hidden
states can be associated with depolarisation of neurons or neuronal
populations encoding expectations about hidden states (vi), while
firing rates (si) encode expectations per se. The simulated responses
in Fig. 6 use a finite difference scheme that has the same solution as
A.20:

vðtÞi ¼ lnsðtÞi
εðtÞi ¼ ln PðsiÞ �

1
2
εi,Piεi � vi

sðtþ dtÞi ¼ sðvi þ k,εiÞ

(A.21)

where k is chosen to reproduce dynamics at a plausible, neuronal
timescale.

When considering electrophysiological responses in terms of
belief updating, our formal interpretation relates to Equation
(A.20), which suggests that depolarisation corresponds to the log
posterior. The change in depolarisation is the difference between
the log posterior and prior expectations. The average of these dif-
ferences is the Kullback-Leibler divergence between the posterior
and prior:
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ni ¼ ln QðsiÞ
vðtÞi � vð0Þi ¼ ln QðsiÞ � ln PðsiÞ

0
EQ ½vðtÞ � vð0Þ� ¼ EQ ½ln QðsÞ � ln PðsÞ� ¼ D½QðsÞjjPðsÞ�

(A.22)

References

Abberton, E., Fourcin, A.J., 1978. Intonation and speaker identification. Lang. Speech
21 (4), 305e318.

Adams, R.A., Shipp, S., Friston, K.J., 2013. Predictions not commands: active infer-
ence in the motor system. Brain Struct. Funct. 218 (3), 611e643.

Aitchison, L., Lengyel, M., 2017. With or without you: predictive coding and
Bayesian inference in the brain. Curr. Opin. Neurobiol. 46, 219e227.

Alain, C., Arnott, S.R., Hevenor, S., Graham, S., Grady, C.L., 2001. “What” and “where”
in the human auditory system. Proc. Natl. Acad. Sci. Unit. States Am. 98 (21),
12301e12306.

Altenberg, E.P., 2005. The perception of word boundaries in a second language. Sec.
Lang. Res. 21 (4), 325e358.

Andreopoulos, A., Tsotsos, J., 2013. A computational learning theory of active object
recognition under uncertainty. Int. J. Comput. Vis. 101 (1), 95e142.

Aring, C.D., 1963. Traumatic aphasia: a study of aphasia in war Wounds of the brain.
JAMA Neurology 8 (5), 579e580.

Attwell, D., Iadecola, C., 2002. The neural basis of functional brain imaging signals.
Trends Neurosci. 25 (12), 621e625.

Balaguer, R.D.D., Toro, J.M., Rodriguez-Fornells, A., Bachoud-L�evi, A.-C., 2007.
Different neurophysiological mechanisms underlying word and rule extraction
from speech. PloS One 2 (11), e1175.

B€anziger, T., Scherer, K.R., 2005. The role of intonation in emotional expressions.
Speech communication 46 (3-4), 252e267.

Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale, A.M.,
H€am€al€ainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., 2006. Top-down
facilitation of visual recognition. Proc. Natl. Acad. Sci. Unit. States Am. 103 (2),
449e454.

Barto, A., Mirolli, M., Baldassarre, G., 2013. Novelty or surprise? Front. Psychol. 4.
Bashford Jr., J.A., Warren, R.M., Lenz, P.W., 2008. Evoking biphone neighborhoods

with verbal transformations: illusory changes demonstrate both lexical
competition and inhibition. J. Acoust. Soc. Am. 123 (3), El32.

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012.
Canonical microcircuits for predictive coding. Neuron 76 (4), 695e711.

Baumann, O., Belin, P., 2009. Perceptual scaling of voice identity: common di-
mensions for different vowels and speakers. Psychol. Res. 74 (1), 110e120.

Beal, M.J., 2003. Variational Algorithms for Approximate Bayesian Inference.. PhD.
Thesis University, College London.

Beckman, M.E., Edwards, J., 1990. Of prosodic constituency. Between the grammar
and physics of speech 152.

Belin, P., Fecteau, S., Bdard, C., 2004. Thinking the voice: neural correlates of voice
perception. Trends Cognit. Sci. 8 (3), 129e135.

Belin, P., Zatorre, R.J., 2000. What’, ’where’ and ’how’ in auditory cortex. Nat.
Neurosci. 3 (10), 965e966.

Bennett, C.H., 2003. Notes on Landauer’s principle, reversible computation, and
Maxwell’s Demon. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 34 (3),
501e510.

Billig, A.J., Davis, M.H., Deeks, J.M., Monstrey, J., Carlyon, R.P., 2013. Lexical in-
fluences on auditory streaming. Curr. Biol. 23 (16), 1585e1589.

Bogacz, R., 2017. A tutorial on the free-energy framework for modelling perception
and learning. J. Math. Psychol. 76, 198e211.

B€ogels, S., Schriefers, H., Vonk, W., Chwilla, D.J., 2011a. Prosodic breaks in sentence
processing investigated by event-related potentials. Language Linguistics
Compass 5 (7), 424e440.

B€ogels, S., Schriefers, H., Vonk, W., Chwilla, D.J., 2011b. The role of prosodic breaks
and pitch accents in grouping words during on-line sentence processing.
J. Cognit. Neurosci. 23 (9), 2447e2467.

Braiman, C., Fridman, E.A., Conte, M.M., Voss, H.U., Reichenbach, C.S.,
Reichenbach, T., Schiff, N.D., 2018. Cortical response to the natural speech en-
velope correlates with neuroimaging evidence of cognition in severe brain
Injury. Curr. Biol. 28 (23), 3833e3839 e3833.

Brown, H., Adams, R.A., Parees, I., Edwards, M., Friston, K.J., 2013. Active inference,
sensory attenuation and illusions. Cognit. Process. 14 (4), 411e427.

Brown, H., Friston, K.J., Bestmann, S., 2011. Active inference, attention, and motor
preparation. Front. Psychol. 2, 218.

Brungart, D.S., 2001. Evaluation of speech intelligibility with the coordinate
response measure. J. Acoust. Soc. Am. 109 (5 Pt 1), 2276e2279.

Brungart, D.S., Simpson, B.D., Ericson, M.A., Scott, K.R., 2001. Informational and
energetic masking effects in the perception of multiple simultaneous talkers.
J. Acoust. Soc. Am. 110 (5), 2527e2538.

Cai, Z.G., Gilbert, R.A., Davis, M.H., Gaskell, M.G., Farrar, L., Adler, S., Rodd, J.M., 2017.
Accent modulates access to word meaning: evidence for a speaker-model ac-
count of spoken word recognition. Cognit. Psychol. 98, 73e101.

Christie Jr., W.M., 1974. Some cues for syllable juncture perception in English.
J. Acoust. Soc. Am. 55 (4), 819e821.
arch, https://doi.org/10.1016/j.heares.2020.107998

http://refhub.elsevier.com/S0378-5955(19)30349-1/sref1
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref1
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref1
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref2
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref2
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref2
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref3
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref3
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref3
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref4
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref4
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref4
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref4
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref5
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref5
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref5
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref6
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref6
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref6
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref7
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref7
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref7
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref8
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref8
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref8
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref9
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref9
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref9
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref9
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref218
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref218
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref218
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref218
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref10
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref11
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref12
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref12
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref12
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref13
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref13
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref13
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref14
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref14
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref14
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref15
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref15
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref16
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref16
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref17
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref17
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref17
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref18
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref18
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref18
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref19
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref19
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref19
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref19
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref20
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref20
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref20
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref21
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref21
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref21
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref22
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref22
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref22
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref22
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref22
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref23
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref23
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref23
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref23
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref23
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref24
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref24
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref24
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref24
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref24
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref25
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref25
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref25
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref26
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref26
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref27
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref27
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref27
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref28
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref28
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref28
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref28
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref29
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref29
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref29
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref29
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref30
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref30
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref30


K.J. Friston et al. / Hearing Research xxx (xxxx) xxx26
Cole, R.A., Jakimik, J., Cooper, W.E., 1980. Segmenting speech into words. J. Acoust.
Soc. Am. 67 (4), 1323e1332.

Connolly, J.F., Phillips, N.A., 1994. Event-related potential components reflect
phonological and semantic processing of the terminal word of spoken sen-
tences. J. Cognit. Neurosci. 6 (3), 256e266.

Connolly, J.F., Phillips, N.A., Stewart, S.H., Brake, W., 1992. Event-related potential
sensitivity to acoustic and semantic properties of terminal words in sentences.
Brain Lang. 43 (1), 1e18.

Cunillera, T., C�amara, E., Toro, J.M., Marco-Pallares, J., Sebasti�an-Galles, N., Ortiz, H.,
Pujol, J., Rodríguez-Fornells, A., 2009. Time course and functional neuro-
anatomy of speech segmentation in adults. Neuroimage 48 (3), 541e553.

Cutler, A., Norris, D., 1988. The role of strong syllables in segmentation for lexical
access. J. Exp. Psychol. Hum. Percept. Perform. 14 (1), 113.

Davis, M.H., Johnsrude, I.S., 2003. Hierarchical processing in spoken language
comprehension. J. Neurosci. 23 (8), 3423e3431.

Davis, M.H., Marslen-Wilson, W.D., Gaskell, M.G., 2002. Leading up the lexical
garden path: segmentation and ambiguity in spoken word recognition. J. Exp.
Psychol. Hum. Percept. Perform. 28 (1), 218.

Davison, A.J., Murray, D.W., 2002. Simultaneous localization and map-building us-
ing active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24 (7), 865e880.

Dehaene-Lambertz, G., 1997. Electrophysiological correlates of categorical phoneme
perception in adults. Neuroreport 8 (4), 919e924.

DeWitt, I., Rauschecker, J.P., 2012. Phoneme and word recognition in the auditory
ventral stream. Proc. Natl. Acad. Sci. U. S. A. 109 (8), E505eE514.

Ding, N., Melloni, L., Zhang, H., Tian, X., Poeppel, D., 2015. Cortical tracking of hi-
erarchical linguistic structures in connected speech. Nat. Neurosci. 19 (1),
158e164.

Ding, N., Simon, J.Z., 2012. Neural coding of continuous speech in auditory cortex
during monaural and dichotic listening. J. Neurophysiol. 107 (1), 78e89.

Donchin, E., Coles, M.G.H., 1988. Is the P300 component a manifestation of context
updating? Behav. Brain Sci. 11 (3), 357.

Drullman, R., 1995. Temporal envelope and fine structure cues for speech intelli-
gibility. J. Acoust. Soc. Am. 97 (1), 585e592.

Dubno, J.R., Ahlstrom, J.B., Horwitz, a.R., 2000. Use of context by young and aged
adults with normal hearing. J. Acoust. Soc. Am. 107 (1), 538e546.

Durlach, N., 2006. Auditory masking: need for improved conceptual structure.
J. Acoust. Soc. Am. 120 (4), 1787e1790.

Durlach, N.I., Mason, C.R., Kidd Jr., G., Arbogast, T.L., Colburn, H.S., Shinn-
Cunningham, B.G., 2003a. Note on informational masking (L). J. Acoust. Soc. Am.
113 (6), 2984e2987.

Durlach, N.I., Mason, C.R., Shinn-Cunningham, B.G., Arbogast, T.L., Colburn, H.S.,
Kidd, G., 2003b. Informational masking: Counteracting the effects of stimulus
uncertainty by decreasing target-masker similarity. J. Acoust. Soc. Am. 114 (1),
368.

Easwar, V., Purcell, D.W., Aiken, S.J., Parsa, V., Scollie, S.D., 2015. Evaluation of
speech-evoked envelope following responses as an objective Aided outcome
measure: effect of stimulus level, Bandwidth, and Amplification in adults with
hearing Loss. Ear Hear. 36 (6), 635e652.

Feldman, A.G., Levin, M.F., 1995. The origin and use of positional frames of reference
in motor control. Behav. Brain Sci. 18, 723e806.

Feynman, R.P., 1972. Statistical Mechanics. Benjamin, Reading MA.
Fiez, J.A., Petersen, S.E., 1998. Neuroimaging studies of word reading. Proc. Natl.

Acad. Sci. U. S. A. 95 (3), 914e921.
Forney, G.D., 2001. Codes on graphs: normal realizations. IEEE Trans. Inf. Theor. 47

(2), 520e548.
François, C., Cunillera, T., Garcia, E., Laine, M., Rodriguez-Fornells, A., 2017. Neuro-

physiological evidence for the interplay of speech segmentation and word-
referent mapping during novel word learning. Neuropsychologia 98, 56e67.

Friederici, A.D., Hahne, A., Mecklinger, A., 1996. Temporal structure of syntactic
parsing: early and late event-related brain potential effects. J. Exp. Psychol.
Learn. Mem. Cognit. 22 (5), 1219.

Friston, K., 2013. Life as we know it. J. R. Soc. Interface 10 (86), 20130475.
Friston, K., Buzsaki, G., 2016. The functional anatomy of time: what and when in the

brain. Trends Cognit. Sci.
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G., 2017a. Active

inference: a process theory. Neural Comput. 29 (1), 1e49.
Friston, K., Frith, C., 2015. A duet for one. Conscious. Cognit. 36, 390e405.
Friston, K., Mattout, J., Kilner, J., 2011. Action understanding and active inference.

Biol. Cybern. 104, 137e160.
Friston, K.J., 2010. The free-energy principle: a unified brain theory? Nat. Rev.

Neurosci. 11 (2), 127e138.
Friston, K.J., Parr, T., de Vries, B., 2017b. The graphical brain: belief propagation and

active inference. Netw. Neurosci. 1e78.
Friston, K.J., Rosch, R., Parr, T., Price, C., Bowman, H., 2017c. Deep temporal models

and active inference. Neurosci. Biobehav. Rev. 77, 388e402.
Friston, K., Parr, T., Yufik, Y., Sajid, N., Price, C.J., Holmes, E., 2020. Generative models,

language and active inference. https://doi.org/10.31234/osf.io/4j2k6.
Ganong, W.F., 1980. Phonetic categorization in auditory word perception. J. Exp.

Psychol. Hum. Percept. Perform. 6 (1), 110.
Garrido, M.I., Kilner, J.M., Stephan, K.E., Friston, K.J., 2009. The mismatch negativity:

a review of underlying mechanisms. Clin. Neurophysiol. 120 (3), 453e463.
Gaskell, M.G., Marslen-Wilson, W.D., 1997. Integrating form and meaning: a

distributed model of speech perception. Lang. Cognit. Process. 12 (5e6),
613e656.

Gaudrain, E., Li, S., Ban, V.S., Patterson, R.D., 2009. The role of glottal pulse rate and
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
vocal tract length in the perception of speaker identity. In: Proceedings of the
Annual Conference of the International Speech Communication Association.
INTERSPEECH, pp. 148e151. January 2009.

Giard, M., Lavikahen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J.,
N€a€at€anen, R., 1995. Separate representation of stimulus frequency, intensity,
and duration in auditory sensory memory: an event-related potential and
dipole-model analysis. J. Cognit. Neurosci. 7 (2), 133e143.

Gow Jr., D.W., Gordon, P.C., 1995. Lexical and prelexical influences on word seg-
mentation: evidence from priming. J. Exp. Psychol. Hum. Percept. Perform. 21
(2), 344.

Grossberg, S., Roberts, K., Aguilar, M., Bullock, D., 1997. A neural model of multi-
modal adaptive saccadic eye movement control by superior colliculus.
J. Neurosci. 17 (24), 9706e9725.

Grotheer, M., Kov�acs, G., 2014. Repetition probability effects depend on prior ex-
periences. J. Neurosci. : Off. J. Soc. Neurosci. 34 (19), 6640e6646.

Guenther, F.H., Vladusich, T., 2012. A neural theory of speech acquisition and pro-
duction. J. Neurolinguistics 25 (5), 408e422.

Harris, M., Umeda, N., 1974. Effect of speaking mode on temporal factors in speech:
vowel duration. J. Acoust. Soc. Am. 56 (3), 1016e1018.

Hasson, U., Yang, E., Vallines, I., Heeger, D.J., Rubin, N., 2008. A hierarchy of temporal
receptive windows in human cortex. J. Neurosci. 28 (10), 2539e2550.

Heilbron, M., Chait, M., 2018. Great expectations: is there evidence for predictive
coding in auditory cortex? Neuroscience 389, 54e73.

Hickok, G., 2014. The architecture of speech production and the role of the
phoneme in speech processing. Lang. Cognit. Process. 29 (1), 2e20.

Hickok, G., Poeppel, D., 2007. Opinion - the cortical organization of speech pro-
cessing. Nat. Rev. Neurosci. 8 (5), 393e402.

Hillenbrand, J.M., Getty, L.A., Clark, M.J., Wheeler, K., 1995. Acoustic characteristics
of American English vowels. J. Acoust. Soc. Am. 97 (5), 3099e3111.

Hinton, G.E., Zemel, R.S., 1993. Autoencoders, minimum description length and
Helmholtz free energy. In: Proceedings of the 6th International Conference on
Neural Information Processing Systems. Morgan Kaufmann Publishers Inc.,
Denver, Colorado, pp. 3e10.

Hodges, J.R., Patterson, K., Oxbury, S., Funnell, E., 1992. Semantic dementia. Pro-
gressive fluent aphasia with temporal lobe atrophy. Brain 115 (Pt 6), 1783e1806.

Hohwy, J., 2016. The self-evidencing brain. Noûs 50 (2), 259e285.
Holmes, E., Domingo, Y., Johnsrude, I.S., 2018a. Familiar voices are more intelligible,

even if they are not recognized as familiar. Psychol. Sci. 29 (10), 1575e1583.
Holmes, E., Folkeard, P., Johnsrude, I.S., Scollie, S., 2018b. Semantic context improves

speech intelligibility and reduces listening effort for listeners with hearing
impairment. Int. J. Audiol. 57 (7), 483e492.

Holt, L.L., Lotto, A.J., Kluender, K.R., 2000. Neighboring spectral content influences
vowel identification. J. Acoust. Soc. Am. 108 (2), 710e722.

Hope, T.M.H., Leff, A.P., Price, C.J., 2018. Predicting language outcomes after stroke:
is structural disconnection a useful predictor? NeuroImage. Clinical 19, 22e29.

Houde, J., Nagarajan, S., 2011. Speech production as state feedback control. Front.
Hum. Neurosci. 5 (82).

Itti, L., Baldi, P., 2009. Bayesian surprise attracts human attention. Vis. Res. 49 (10),
1295e1306.

Jacobsen, T., Horenkamp, T., Schr€oger, E., 2003a. Preattentive memory-based com-
parison of sound intensity. Audiol. Neurotol. 8 (6), 338e346.

Jacobsen, T., Schr€oger, E., Horenkamp, T., Winkler, I., 2003b. Mismatch negativity to
pitch change: varied stimulus proportions in controlling effects of neural
refractoriness on human auditory event-related brain potentials. Neurosci. Lett.
344 (2), 79e82.

Johnsrude, I.S., Mackey, A., Hakyemez, H., Alexander, E., Trang, H.P., Carlyon, R.P.,
2013. Swinging at a cocktail party: voice familiarity aids speech perception in
the presence of a competing voice. Psychol. Sci. 24 (10), 1995e2004.

Kaas, J.H., Hackett, T.A., 1999. What’ and ’where’ processing in auditory cortex. Nat.
Neurosci. 2 (12), 1045e1047.

Kidd, G., Mason, C.R., Richards, V.M., Gallun, F., Durlach, N., 2007. Inform. Masking
29, 143e189.

Kiebel, S.J., Daunizeau, J., Friston, K.J., 2009. Perception and hierarchical dynamics.
Front. Neuroinf. 3, 20.

Kim, D., Stephens, J.D., Pitt, M.A., 2012. How does context play a part in splitting
words apart? Production and perception of word boundaries in casual speech.
J. Mem. Lang. 66 (4), 509e529.

Kim, S., Frisina, R.D., Mapes, F.M., Hickman, E.D., Frisina, D.R., 2006. Effect of age on
binaural speech intelligibility in normal hearing adults. Speech Commun. 48
(6), 591e597.

Klatt, D.H., 1975. Vowel lengthening is syntactically determined in a connected
discourse. J. Phonetics 3 (3), 129e140.

Klatt, D.H., 1976. Linguistic uses of segmental duration in English: acoustic and
perceptual evidence. J. Acoust. Soc. Am. 59 (5), 1208e1221.

Kleinschmidt, D.F., Jaeger, T.F., 2015. Robust speech perception: Recognize the
familiar, generalize to the similar, and Adapt to the novel. Psychol. Rev. 122 (2),
148e203.

Kuhlen, A.K., Bogler, C., Brennan, S.E., Haynes, J.-D., 2017. Brains in dialogue:
decoding neural preparation of speaking to a conversational partner. Soc.
Cognit. Affect Neurosci. 12 (6), 871e880.

Kumar, S., Stephan, K.E., Warren, J.D., Friston, K.J., Griffiths, T.D., 2007. Hierarchical
processing of auditory objects in humans. PLoS Comput. Biol. 3 (6), e100.

Kuperberg, G.R., Sitnikova, T., Caplan, D., Holcomb, P.J., 2003. Electrophysiological
distinctions in processing conceptual relationships within simple sentences.
Cognit. Brain Res. 17 (1), 117e129.
arch, https://doi.org/10.1016/j.heares.2020.107998

http://refhub.elsevier.com/S0378-5955(19)30349-1/sref31
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref31
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref31
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref32
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref32
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref32
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref32
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref33
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref33
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref33
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref33
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref34
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref35
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref35
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref36
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref36
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref36
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref37
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref37
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref37
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref38
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref38
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref38
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref39
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref39
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref39
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref40
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref40
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref40
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref41
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref41
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref41
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref41
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref42
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref42
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref42
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref43
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref43
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref44
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref44
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref44
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref45
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref45
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref45
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref46
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref46
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref46
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref47
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref47
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref47
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref47
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref48
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref48
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref48
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref48
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref49
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref49
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref49
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref49
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref49
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref50
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref50
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref50
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref51
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref52
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref52
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref52
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref54
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref54
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref54
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref55
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref55
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref55
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref55
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref56
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref56
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref56
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref57
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref58
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref58
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref59
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref59
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref59
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref60
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref60
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref61
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref61
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref61
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref62
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref62
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref62
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref63
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref63
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref63
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref64
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref64
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref64
https://doi.org/10.31234/osf.io/4j2k6
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref65
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref65
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref66
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref66
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref66
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref67
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref67
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref67
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref67
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref67
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref68
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref68
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref68
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref68
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref68
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref69
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref70
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref70
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref70
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref71
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref71
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref71
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref71
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref72
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref72
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref72
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref72
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref73
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref73
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref73
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref74
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref74
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref74
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref75
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref75
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref75
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref76
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref76
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref76
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref77
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref77
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref77
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref78
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref78
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref78
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref79
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref79
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref79
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref80
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref80
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref80
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref80
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref80
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref81
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref81
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref81
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref82
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref82
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref83
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref83
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref83
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref84
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref84
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref84
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref84
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref85
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref85
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref85
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref86
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref86
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref86
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref87
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref87
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref88
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref88
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref88
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref89
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref89
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref89
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref89
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref90
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref91
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref91
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref91
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref91
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref92
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref92
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref92
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref93
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref93
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref93
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref94
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref94
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref95
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref95
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref95
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref95
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref96
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref96
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref96
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref96
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref97
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref97
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref97
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref98
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref98
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref98
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref99
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref99
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref99
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref99
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref100
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref100
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref100
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref100
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref101
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref101
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref102
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref102
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref102
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref102


K.J. Friston et al. / Hearing Research xxx (xxxx) xxx 27
Kutas, M., Federmeier, K.D., 2000. Electrophysiology reveals semantic memory use
in language comprehension. Trends Cognit. Sci. 4 (12), 463e470.

Kutas, M., Federmeier, K.D., 2009. N400 Scholarpedia 4 (10), 7790.
Kutas, M., Hillyard, S.A., 1980. Reading senseless sentences: brain potentials reflect

semantic incongruity. Science 207 (4427), 203e205.
Kutas, M., Hillyard, S.A., 1984. Brain potentials during reading reflect word expec-

tancy and semantic association. Nature 307 (5947), 161.
Ladd, D.R., Schepman, A., 2003. “Sagging transitions” between high pitch accents in

English: experimental evidence. J. Phonetics 31 (1), 81e112.
Landauer, R., 1961. Irreversibility and Heat generation in the computing process.

IBM J. Res. Dev. 5 (3), 183e191.
Landi, N., Frost, S.J., Menc, W.E., Sandak, R., Pugh, K.R., 2013. Neurobiological bases

of reading comprehension: insights from neuroimaging studies of word level
and text level processing in skilled and impaired readers. Read. Writ. Q. 29 (2),
145e167.

LaRiviere, C., 1975. Contributions of fundamental frequency and formant fre-
quencies to speaker identification. Phonetica 31 (3e4), 185e197.

Larsson, J., Smith, A.T., 2012. fMRI repetition suppression: neuronal adaptation or
stimulus expectation? Cerebr. Cortex 22 (3), 567e576.

Lavner, Y., Gath, I., Rosenhouse, J., 2000. Effects of acoustic modifications on the
identification of familiar voices speaking isolated vowels. Speech Commun. 30
(1), 9e26.

Lavner, Y., Rosenhouse, J., Gath, I., 2001. The prototype model in speaker identifi-
cation by human listeners. Int. J. Speech Technol. 4 (1), 63e74.

Lehiste, I., 1960. An acousticephonetic study of internal open juncture. Phonetica 5
(Suppl. 1), 5e54.

Lehiste, I., 1972. The timing of utterances and linguistic boundaries. J. Acoust. Soc.
Am. 51 (6B), 2018e2024.

Lehiste, I., 1973. Rhythmic units and syntactic units in production and perception.
J. Acoust. Soc. Am. 54 (5), 1228e1234.

Liberman, A.M., Cooper, F.S., Shankweiler, D.P., Studdert-Kennedy, M., 1967.
Perception of the speech code. Psychol. Rev. 74 (6), 431.

Luce, P.A., 1986. "Neighborhoods of Words in the Mental lexicon." Research on
Speech Perception, Technical Report, vol. 6, pp. 1e91.

Luce, P.A., Pisoni, D.B., 1998. Recognizing spoken words: the neighborhood activa-
tion model. Ear Hear. 19 (1), 1e36.

Maisto, D., Donnarumma, F., Pezzulo, G., 2015. Divide et impera: subgoaling reduces
the complexity of probabilistic inference and problem solving, 12 (104),
20141335.

Mann, V.A., 1980. Influence of preceding liquid on stop-consonant perception.
Percept. Psychophys. 28 (5), 407e412.

Marslen-Wilson, W.D., 1975. Sentence perception as an interactive parallel process.
Science 189 (4198), 226e228.

Marslen-Wilson, W.D., 1984. Function and Process in Spoken Word Recognition: A
Tutorial Review. Attention and Performance: Control of Language Processes.
Erlbaum, pp. 125e150.

Marslen-Wilson, W.D., Welsh, A., 1978. Processing interactions and lexical access
during word recognition in continuous speech. Cognit. Psychol. 10 (1), 29e63.

Massaro, D.W., 1987. Categorical Partition: A Fuzzy-Logical Model of Categorization
Behavior. Categorical Perception: the Groundwork of Cognition. Cambridge
University Press, New York, NY, US, pp. 254e283.

Massaro, D.W., 1989. Testing between the TRACE model and the fuzzy logical model
of speech perception. Cognit. Psychol. 21 (3), 398e421.

Matsumoto, H., Hiki, S., Sone, T., Nimura, T., 1973. Multidimensional representation
of personal quality of vowels and its acoustical correlates. IEEE Trans. Audio
Electroacoust. 21 (5), 428e436.

Mattys, S.L., Melhorn, J.F., 2007. Sentential, lexical, and acoustic effects on the
perception of word boundaries. J. Acoust. Soc. Am. 122 (1), 554e567.

Mattys, S.L., Melhorn, J.F., White, L., 2007. Effects of syntactic expectations on
speech segmentation. J. Exp. Psychol. Hum. Percept. Perform. 33 (4), 960.

Mattys, S.L., White, L., Melhorn, J.F., 2005. Integration of multiple speech segmen-
tation cues: a hierarchical framework. J. Exp. Psychol. Gen. 134 (4), 477e500.

McClelland, J.L., Elman, J.L., 1986. The TRACE model of speech perception. Cognit.
Psychol. 18 (1), 1e86.

Miller, J.L., Green, K., Schermer, T.M., 1984. A distinction between the effects of
sentential speaking rate and semantic congruity on word identification.
Percept. Psychophys. 36 (4), 329e337.

Miller, J.L., Liberman, A.M., 1979. Some effects of later-occurring information on the
perception of stop consonant and semivowel. Percept. Psychophys. 25 (6),
457e465.

Mirza, M.B., Adams, R.A., Mathys, C.D., Friston, K.J., 2016. Scene construction, visual
Foraging, and active inference. Front. Comput. Neurosci. 10 (56).

Mohan, V., Morasso, P., 2011. Passive motion paradigm: an alternative to optimal
control. Front. Neurorob. 5, 4.

Morlet, D., Fischer, C., 2014. MMN and novelty P3 in coma and other altered states of
consciousness: a review. Brain Topogr. 27 (4), 467e479.

Muralimanohar, R.K., Kates, J.M., Arehart, K.H., 2017. Using envelope modulation to
explain speech intelligibility in the presence of a single reflection. J. Acoust. Soc.
Am. 141 (5), El482.

Murry, T., Singh, S., 1980. Multidimensional analysis of male and female voices.
J. Acoust. Soc. Am. 68 (5), 1294e1300.

Musso, M., Weiller, C., Horn, A., Glauche, V., Umarova, R., Hennig, J., Schneider, A.,
Rijntjes, M., 2015. A single dual-stream framework for syntactic computations
in music and language. Neuroimage 117, 267e283.

N€a€at€anen, R., Gaillard, A.W., M€antysalo, S., 1978. Early selective-attention effect on
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
evoked potential reinterpreted. Acta Psychol. 42 (4), 313e329.
N€a€at€anen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A.,

Vainio, M., Alku, P., Ilmoniemi, R.J., Luuk, A., 1997. Language-specific phoneme
representations revealed by electric and magnetic brain responses. Nature 385
(6615), 432.

Nakatani, L.H., Dukes, K.D., 1977. Locus of segmental cues for word juncture.
J. Acoust. Soc. Am. 62 (3), 714e719.

Nardo, D., Holland, R., Leff, A.P., Price, C.J., Crinion, J.T., 2017. Less is more: neural
mechanisms underlying anomia treatment in chronic aphasic patients. Brain
140 (11), 3039e3054.

Nealey, T.A., Maunsell, J.H., 1994. Magnocellular and parvocellular contributions to
the responses of neurons in macaque striate cortex. J. Neurosci. 14 (4), 2069.

Norris, D., McQueen, J.M., 2008. Shortlist B: a Bayesian model of continuous speech
recognition. Psychol. Rev. 115 (2), 357e395.

Norris, D., McQueen, J.M., Cutler, A., 2016. Prediction, Bayesian inference and
feedback in speech recognition. Lang. Cogn Neurosci. 31 (1), 4e18.

Norris, D., McQueen, J.M., Cutler, A., Butterfield, S., 1997. The possible-word
constraint in the segmentation of continuous speech. Cognit. Psychol. 34 (3),
191e243.

Nygaard, L.C., Sommers, M.S., Pisoni, D.B., 1994. Speech perception as a talker-
contingent process. Psychol. Sci. 5 (1), 42e46.

O’Leary, D.D.M., 1989. Do cortical areas emerge from a protocortex? Trends Neu-
rosci. 12 (10), 400e406.

O’Sullivan, J.A., Power, A.J., Mesgarani, N., Rajaram, S., Foxe, J.J., Shinn-
Cunningham, B.G., Slaney, M., Shamma, S.a., Lalor, E., 2014. Attentional selection
in a cocktail party environment can be decoded from single-trial EEG. Cerebr.
Cortex 1e10.

Oden, G.C., Massaro, D.W., 1978. Integration of featural information in speech
perception. Psychol. Rev. 85 (3), 172.

Ognibene, D., Baldassarre, G., 2014. Ecological Active Vision: Four Bio-Inspired
Principles to Integrate Bottom-Up and Adaptive Top-Down Attention Tested
with a Simple Camera-Arm Robot. IEEE Transactions onAutonomous Mental
Development, IEEE.

Oller, D.K., 1973. The effect of position in utterance on speech segment duration in
English. J. Acoust. Soc. Am. 54 (5), 1235e1247.

Osterhout, L., Holcomb, P.J., 1992. Event-related brain potentials elicited by syntactic
anomaly. J. Mem. Lang. 31 (6), 785e806.

Oudeyer, P.-Y., Kaplan, F., 2007. What is intrinsic motivation? a typology of
computational approaches. Front. Neurorob. 1, 6.

Pannekamp, A., Toepel, U., Alter, K., Hahne, A., Friederici, A.D., 2005. Prosody-driven
sentence processing: an event-related brain potential study. J. Cognit. Neurosci.
17 (3), 407e421.

Parr, T., Friston, K.J., 2017a. The active construction of the visual world. Neuro-
psychologia 104, 92e101.

Parr, T., Friston, K.J., 2017b. Working memory, attention, and salience in active
inference. Sci. Rep. 7 (1), 14678.

Parr, T., Markovic, D., Kiebel, S.J., Friston, K.J., 2019. Neuronal message passing using
Mean-field, Bethe, and Marginal approximations. Sci. Rep. 9 (1), 1889.

Pasley, B.N., David, S.V., Mesgarani, N., Flinker, A., Shamma, S.A., Crone, N.E.,
Knight, R.T., Chang, E.F., 2012. Reconstructing speech from human auditory
cortex. PLoS Biol. 10 (1), e1001251.

Patel, A.D., 2010. Music, Language, and the Brain. Oxford Univ. Press, Oxford, UK.
Paulesu, E., Goldacre, B., Scifo, P., Cappa, S.F., Gilardi, M.C., Castiglioni, I., Perani, D.,

Fazio, F., 1997. Functional heterogeneity of left inferior frontal cortex as revealed
by fMRI. Neuroreport 8 (8), 2011e2017.

Pearce, M.T., 2018. Statistical learning and probabilistic prediction in music cogni-
tion: mechanisms of stylistic enculturation. Ann. N. Y. Acad. Sci.

Penny, W.D., 2012. Comparing dynamic causal models using AIC, BIC and free en-
ergy. Neuroimage 59 (1), 319e330.

Peretz, I., Kolinsky, R., Tramo, M., Labrecque, R., Hublet, C., Demeurisse, G.,
Belleville, S., 1994. Functional dissociations following bilateral lesions of audi-
tory cortex. Brain 117 (6), 1283e1301.

Picton, T.W., Alain, C., Otten, L., Ritter, W., Achim, A., 2000. Mismatch negativity:
different water in the same river. Audiol. Neurotol. 5 (3e4), 111e139.

Poeppel, D., Monahan, P.J., 2011. Feedforward and feedback in speech perception:
Revisiting analysis by synthesis. Lang. Cognit. Process. 26 (7), 935e951.

Polich, J., 2007. Updating P300: an integrative theory of P3a and P3b. Clin. Neuro-
physiol. 118 (10), 2128e2148.

Polich, J., Donchin, E., 1988. P300 and the word frequency effect. Electro-
encephalogr. Clin. Neurophysiol. 70 (1), 33e45.

Price, C.J., 2012. A review and synthesis of the first 20 years of PET and fMRI studies
of heard speech, spoken language and reading. Neuroimage 62 (2), 816e847.

Quiroga-Martinez, D.R., Hansen, N.C., Højlund, A., Pearce, M., Brattico, E., Vuust, P.,
2019. Reduced prediction error responses in high-as compared to low-
uncertainty musical contexts. Cortex 120, 181e200. https://doi.org/10.1016/
j.cortex.2019.06.010.

Remez, R.E., 2010. Spoken expression of individual identity and the listener. In:
Expressing Oneself/expressing One’s Self: Communication, Cognition, Lan-
guage, and Identity, pp. 167e181.

Romanski, L.M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P.S., Rauschecker, J.P.,
1999. Dual streams of auditory afferents target multiple domains in the primate
prefrontal cortex. Nat. Neurosci. 2 (12), 1131e1136.

Rosenfeld, R., 2000. Two decades of statistical language modeling: where do we go
from here? Proc. IEEE 88 (8), 1270e1278.

Rueschemeyer, S.-A., Gaskell, M.G., Walker, G., Hickok, G., 2018. Speech
arch, https://doi.org/10.1016/j.heares.2020.107998

http://refhub.elsevier.com/S0378-5955(19)30349-1/sref103
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref103
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref103
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref104
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref105
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref105
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref105
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref106
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref106
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref107
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref107
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref107
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref108
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref108
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref108
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref109
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref109
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref109
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref109
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref109
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref110
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref110
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref110
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref110
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref111
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref111
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref111
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref112
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref112
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref112
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref112
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref113
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref113
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref113
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref114
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref114
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref114
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref114
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref115
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref115
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref115
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref116
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref116
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref116
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref117
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref117
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref118
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref118
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref118
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref119
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref119
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref119
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref120
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref120
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref120
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref121
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref121
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref121
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref122
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref122
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref122
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref123
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref123
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref123
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref123
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref124
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref124
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref124
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref125
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref125
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref125
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref125
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref126
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref126
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref126
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref127
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref127
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref127
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref127
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref128
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref128
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref128
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref129
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref129
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref130
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref130
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref130
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref131
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref131
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref131
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref133
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref133
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref133
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref133
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref134
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref134
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref134
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref134
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref135
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref135
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref136
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref136
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref137
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref137
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref137
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref138
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref138
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref138
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref139
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref139
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref139
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref140
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref140
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref140
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref140
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref141
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref142
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref143
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref143
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref143
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref144
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref144
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref144
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref144
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref145
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref145
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref146
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref146
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref146
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref147
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref147
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref147
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref148
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref148
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref148
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref148
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref149
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref149
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref149
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref150
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref150
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref150
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref151
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref151
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref151
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref151
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref151
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref152
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref152
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref153
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref153
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref153
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref153
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref154
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref154
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref154
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref155
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref155
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref155
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref156
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref156
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref157
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref157
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref157
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref157
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref158
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref158
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref158
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref159
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref159
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref160
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref160
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref161
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref161
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref161
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref162
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref163
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref163
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref163
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref163
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref164
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref164
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref165
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref165
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref165
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref166
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref166
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref166
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref166
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref167
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref167
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref167
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref167
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref168
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref168
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref168
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref169
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref169
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref169
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref170
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref170
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref170
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref171
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref171
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref171
https://doi.org/10.1016/j.cortex.2019.06.010
https://doi.org/10.1016/j.cortex.2019.06.010
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref173
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref173
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref173
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref173
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref174
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref174
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref174
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref174
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref175
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref175
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref175
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref176


K.J. Friston et al. / Hearing Research xxx (xxxx) xxx28
ProductionIntegrating Psycholinguistic, Neuroscience, and Motor Control Per-
spectives. Oxford University Press.

Ryan, R., Deci, E., 1985. Intrinsic Motivation and Self-Determination in Human
Behavior. Plenum, New York.

Sams, M., Paavilainen, P., Alho, K., 1985. Auditory frequency discrimination and
event-related potentials. Electroencephalogr. Clin. Neurophysiol. 62, 437e448.

Sato, Y., Yabe, H., Hiruma, T., Sutoh, T., Shinozaki, N., Nashida, T., Kaneko, S., 2000.
The effect of deviant stimulus probability on the human mismatch process.
Neuroreport 11 (17), 3703e3708.

Sato, Y., Yabe, H., Todd, J., Michie, P., Shinozaki, N., Sutoh, T., Hiruma, T., Nashida, T.,
Matsuoka, T., Kaneko, S., 2003. Impairment in activation of a frontal attention-
switch mechanism in schizophrenic patients. Biol. Psychol. 62 (1), 49e63.

Schmidhuber, J., 1991. Curious model-building control systems. In: Proc. Interna-
tional Joint Conference on Neural Networks, Singapore, vol. 2. IEEE,
pp. 1458e1463.

Schmidhuber, J., 2006. Developmental robotics, optimal artificial curiosity, crea-
tivity, music, and the fine arts. Connect. Sci. 18 (2), 173e187.

Sengupta, B., Stemmler, M.B., Friston, K.J., 2013. Information and efficiency in the
nervous systemda synthesis. PLoS Comput. Biol. 9 (7), e1003157.

Sengupta, B., Tozzi, A., Cooray, G.K., Douglas, P.K., Friston, K.J., 2016. Towards a
neuronal Gauge theory. PLoS Biol. 14 (3), e1002400.

Seth, A., 2014. The Cybernetic Brain: from Interoceptive Inference to Sensorimotor
Contingencies. MINDS Project. In: Metzinger, T., Windt, J.M. (Eds.) (MINDS).

Shamma, S., 2001. On the role of space and time in auditory processing. Trends
Cognit. Sci. 5 (8), 340e348.

Shamma, S.A., Elhilali, M., Micheyl, C., 2011. Temporal coherence and attention in
auditory scene analysis. Trends Neurosci. 34 (3), 114e123.

Shiell, M.M., Champoux, F., Zatorre, R.J., 2015. Reorganization of auditory cortex in
early-deaf people: functional connectivity and relationship to hearing aid use.
J. Cognit. Neurosci. 27 (1), 150e163.

Shillcock, R., 1990. Lexical hypotheses in continuous speech.
Steinhauer, K., Alter, K., Friederici, A.D., 1999. Brain potentials indicate immediate

use of prosodic cues in natural speech processing. Nat. Neurosci. 2 (2), 191.
Sun, Y., Gomez, F., Schmidhuber, J., Schmidhuber, J., Th�orisson, K.R., Looks, M., 2011.

Planning to Be surprised: optimal Bayesian exploration in dynamic Environ-
ments. In: Artificial General Intelligence: 4th International Conference, AGI
2011, Mountain View, CA, USA, August 3-6, 2011. Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 41e51.

Sur, M., Garraghty, P.E., Roe, A.W., 1988. Experimentally induced visual projections
into auditory thalamus and cortex. Science 242 (4884), 1437e1441.

Taylor, J.S., Rastle, K., Davis, M.H., 2013. Can cognitive models explain brain acti-
vation during word and pseudoword reading? A meta-analysis of 36 neuro-
imaging studies. Psychol. Bull. 139 (4), 766e791.

Tervaniemi, M., Ilvonen, T., Karma, K., Alho, K., N€a€at€anen, R., 1997a. The musical
brain: brain waves reveal the neurophysiological basis of musicality in human
subjects. Neurosci. Lett. 226 (1), 1e4.

Tervaniemi, M., Winkler, I., N€a€at€anen, R., 1997b. Pre-attentive categorization of
sounds by timbre as revealed by event-related potentials. Neuroreport 8 (11),
2571e2574.

Thiel, A., Habedank, B., Winhuisen, L., Herholz, K., Kessler, J., Haupt, W.F.,
Heiss, W.D., 2005. Essential language function of the right hemisphere in brain
tumor patients. Ann. Neurol. 57 (1), 128e131.
Please cite this article as: Friston, K.J et al., Active listening, Hearing Rese
Thiessen, E., Erickson, L., 2013. Discovering words in fluent speech: the contribution
of two kinds of statistical information. Front. Psychol. 3 (590).

Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M., N€a€at€anen, R.,
1998. Timbre similarity: convergence of neural, behavioral, and computational
approaches. Music Percept. 16 (2), 223e241.

Tourville, J.A., Guenther, F.H., 2011. The DIVA model: a neural theory of speech
acquisition and production. Lang. Cognit. Process. 26 (7), 952e981.

Ueno, T., Saito, S., Rogers, T.T., Lambon Ralph, M.A., 2011. Lichtheim 2: synthesizing
aphasia and the neural basis of language in a neurocomputational model of the
dual dorsal-ventral language pathways. Neuron 72 (2), 385e396.

Ulanovsky, N., Moss, C.F., 2008. What the bat’s voice tells the bat’s brain. Proc. Natl.
Acad. Sci. U. S. A. 105 (25), 8491e8498.

Ungerleider, L.G., Haxby, J.V., 1994. What’ and ’where’ in the human brain. Curr.
Opin. Neurobiol. 4 (2), 157e165.

Van Dommelen, W.A., 1987. The contribution of speech Rhythm and pitch to
speaker recognition. Lang. Speech 30 (4), 325e338.

Van Dommelen, W.A., 1990. Acoustic parameters in human speaker recognition.
Lang. Speech 33 (3), 259e272.

Van Petten, C., Coulson, S., Rubin, S., Plante, E., Parks, M., 1999. Time course of word
identification and semantic integration in spoken language. J. Exp. Psychol.
Learn. Mem. Cognit. 25 (2), 394.

Van Petten, C., Kutas, M., 1990. Interactions between sentence context and word
frequencyinevent-related brainpotentials. Mem. Cognit. 18 (4), 380e393.

Vanthornhout, J., Decruy, L., Wouters, J., Simon, J., Francart, T., 2018. Speech intel-
ligibility predicted from neural entrainment of the speech envelope. bioRxiv
(637424), 246660.

Veale, R., Hafed, Z.M., Yoshida, M., 2017. How is visual salience computed in the
brain? Insights from behaviour. Neurobiol. Model. (1714), 372.

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J.P., Sigman, M., Cohen, L., 2007. Hierar-
chical coding of letter strings in the ventral stream: dissecting the inner or-
ganization of the visual word-form system. Neuron 55 (1), 143e156.

Wacongne, C., Changeux, J.P., Dehaene, S., 2012. A neuronal model of predictive
coding accounting for the mismatch negativity. J. Neurosci. 32 (11), 3665e3678.

Walden, B.E., Montgomery, A.A., Gibeily, G.J., Prosek, R.A., Schwartz, D.M., 1978.
Correlates of psychological dimensions in talker similarity. J. Speech Lang. Hear.
Res. 21, 265e275.

Warburton, E., Price, C.J., Swinburn, K., Wise, R.J.S., 1999. Mechanisms of recovery
from aphasia: evidence from positron emission tomography studies. J. Neurol.
Neurosurg. Psychiatry 66 (2), 155e161.

Winkler, I., Denham, S.L., Nelken, I., 2009. Modeling the auditory scene: predictive
regularity representations and perceptual objects. Trends Cognit. Sci. 13 (12),
532e540.

Winn, J., Bishop, C.M., 2005. Variational message passing. J. Mach. Learn. Res. 6,
661e694.

Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., Paavilainen, P., 2016.
Predictive coding of phonological rules in auditory cortex: a mismatch nega-
tivity study. Brain Lang. 162, 72e80.

Zeki, S., Shipp, S., 1988. The functional logic of cortical connections. Nature 335,
311e317.

Zhang, C., Butepage, J., Kjellstrom, H., Mandt, S., 2018. Advances in variational
inference. IEEE Trans. Pattern Anal. Mach. Intell.
arch, https://doi.org/10.1016/j.heares.2020.107998

http://refhub.elsevier.com/S0378-5955(19)30349-1/sref176
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref176
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref177
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref177
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref178
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref178
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref178
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref179
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref179
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref179
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref179
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref180
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref180
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref180
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref180
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref181
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref181
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref181
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref181
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref182
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref182
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref182
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref183
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref183
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref183
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref184
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref184
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref185
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref185
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref186
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref186
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref186
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref187
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref187
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref187
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref188
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref188
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref188
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref188
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref189
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref190
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref190
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref191
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref192
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref192
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref192
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref193
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref193
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref193
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref193
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref194
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref195
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref196
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref196
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref196
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref196
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref197
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref197
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref198
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref199
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref199
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref199
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref200
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref200
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref200
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref200
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref201
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref201
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref201
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref202
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref202
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref202
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref203
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref203
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref203
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref204
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref204
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref204
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref205
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref205
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref205
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref206
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref206
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref206
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref207
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref207
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref207
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref208
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref208
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref209
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref209
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref209
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref209
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref210
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref210
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref210
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref211
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref211
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref211
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref211
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref212
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref212
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref212
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref212
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref213
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref213
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref213
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref213
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref214
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref214
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref214
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref215
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref215
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref215
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref215
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref216
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref216
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref216
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref217
http://refhub.elsevier.com/S0378-5955(19)30349-1/sref217

	Active listening
	1. Introduction
	2. A generative model of spoken words
	2.1. Model inversion or word recognition

	3. Speech segmentation as an active process
	3.1. Belief updating and neuronal dynamics
	3.2. Summary
	3.3. Face validity: simulating sentence recognition

	4. Predictive validity: belief updating and neurophysiology
	5. Discussion
	5.1. Active listening and Bayesian surprise
	5.2. Acoustic envelope and spectral fluctuations
	5.3. Active listening and electrophysiological responses
	5.4. Background noise during active listening
	5.5. Active listening and language production and perception
	5.6. Active listening and voice recognition
	5.7. Active listening and music

	6. Summary
	7. Software note
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	Appendix 1. The generative model
	Appendix 2. Model inversion or word recognition
	Appendix 3. Speech segmentation as an active process
	Appendix 4. Belief updating and neuronal dynamics
	References


