Check for
updates

WILEY

Received: 22 June 2020
DOI: 10.1002/ajmg.c.31822

Revised: 2 July 2020 Accepted: 21 July 2020

AMERICAN JOURNAL OF

medical genetics

RESEARCH ARTICLE

Seminars in Medical Genetics

A genetic and clinical study of individuals with nonsyndromic
retinopathy consequent upon sequence variants in HGSNAT,
the gene associated with Sanfilippo C mucopolysaccharidosis

Elena R. Schiff?® |
Karen Pierpoint? |
Ehsan Ullah® |
Michel Michaelides? |

Malena Daich Varela® | Anthony G. Robson?* |
Rola Ba-Abbad®? |
Laryssa A. Huryn®
Derek Burke® |

Wadih M. Zein® |

Omar A. Mahroo®?7 |
1250 |

Savita Nutan® |
| Sari Tuupanen® |

Katie Harvey® | Gavin Arno

Robert B. Hufnagel® | Andrew R. Webster!?

1Genetics Service, Moorfields Eye Hospital,
London, UK

2UCL Institute of Ophthalmology, London, UK

3Ophthalmic Genetics and Visual Function
branch, National Eye Institute, National
Institutes of Health, Bethesda, Maryland

“Department of Electrophysiology, Moorfields
Eye Hospital, London, UK

5North Thames Genomic Laboratory Hub,
Great Ormond Street NHS Foundation Trust,
London, UK

6Blueprint Genetics, Espoo, Finland

’Section of Ophthalmology, King's College
London, London, UK

8Enzyme Unit, Chemical Pathology, Paediatric
Laboratory Medicine, Great Ormond Street
Hospital for Children NHS Foundation Trust,
London, UK

Correspondence

Elena R. Schiff, Genetics Service, Moorfields
Eye Hospital, London, UK.

Email: e.schiff@ucl.ac.uk

Funding information

Fight for Sight UK; NIHR Moorfields
Biomedical Research Centre ; UCL Institute of
Ophthalmology, University College London;
Wellcome Trust, Grant/Award Number:
206619/72/17/Z

Abstract
Pathogenic HGSNAT

acetyltransferase) have been reported to underlie two distinct recessive conditions,

variants in the gene (heparan-a-glucosaminide  N-
depending on the specific genotype, mucopolysaccharidosis type IlIC (MPSIIIC)—a
severe childhood-onset lysosomal storage disorder, and adult-onset nonsyndromic
retinitis pigmentosa (RP). Here we describe the largest cohort to-date of HGSNAT-
associated nonsyndromic RP patients, and describe their retinal phenotype, leukocyte
enzymatic activity, and likely pathogenic genotypes. We identified biallelic HGSNAT
variants in 17 individuals (15 families) as the likely cause of their RP. None showed
any other symptoms of MPSIIIC. All had a mild but significant reduction of HGSNAT
enzyme activity in leukocytes. The retinal condition was generally of late-onset,
showing progressive degeneration of a concentric area of paramacular retina, with
preservation but reduced electroretinogram responses. Symptoms, electrophysiology,
and imaging suggest the rod photoreceptor to be the cell initially compromised.
HGSNAT enzymatic testing was useful in resolving diagnostic dilemmas in compatible
patients. We identified seven novel sequence variants [p.(Arg239Cys); p.(Ser296Leu);
p.(Phe428Cys); p.(Gly248Ala); p.(Gly418Arg), c.1543-2A>C; c.1708delA], three of
which were considered to be retina-disease-specific alleles. The most prevalent
retina-disease-specific allele p.(Ala615Thr) was observed heterozygously or homozy-
gously in 8 and 5 individuals respectively (7 and 4 families). Two siblings in one fam-
ily, while identical for the HGSNAT locus, but discordant for retinal disease, suggest

the influence of trans-acting genetic or environmental modifying factors.
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1 | INTRODUCTION

Inherited retinal dystrophy (IRD) denotes a phenotypically and geneti-
cally heterogeneous group of disorders causing retinal dysfunction
with or without retinal degeneration. They are associated with over
200 genes acting in a Mendelian fashion causing retinal disease, either
uniquely or in association with systemic or syndromic disease. Collec-
tively, IRD is the most frequent cause of blindness in the working-age
population, at least in England and Wales (Liew, Michaelides, &
Bunce, 2014). Retinitis pigmentosa (RP), or synonymously, rod-cone
dystrophy, is in turn the most prevalent form of IRD and is due to
pathology primarily and initially of rod photoreceptors. Generally,
patients with RP first experience loss of night vision (nyctalopia)
followed by progressive loss of peripheral vision. Central vision can be
preserved in some affected individuals. The age of onset and degree
of sight impairment is hugely variable.

Distinct genotypes in several autosomal genes, acting in a
recessive Mendelian fashion (e.g., USH2A, FLVCR1, CEP290, CLN3,
and MFSD8) have been shown to be associated with both syn-
dromic or nonsyndromic forms of RP, depending on the specific
component alleles. In certain genes, hypomorphic alleles have been
identified that are associated with the nonsyndromic forms such
as USH2A (Lenassi et al, 2015; Rivolta, Sweklo, Berson, &
Dryja, 2000). Specific genotypes of HGSNAT (encoding heparan-
a-glucosaminide N-acetyltransferase) in which sequence variants
generally cause mucopolysaccharidosis type IIIC (MPSIIC) or
Sanfilippo C syndrome (MIM 252930)—a severe childhood onset
lysosomal storage disorder—have also been associated with iso-
lated retinal disease in a few reported individuals.

There are four clinically indistinguishable (Valstar, Marchal,
Grootenhuis, Colland, & Wijburg, 2011) subtypes of autosomal reces-
sive MPSIII—A, B, C, and D—each caused by deficiency of a different
enzyme involved in the stepwise degradation of heparan sulfate, a
glucosaminoglycan (GAG). The membrane-bound HGSNAT (E.C.
2.3.1.3) catalyzes the transmembrane acetylation of the terminal glu-
cosamine residue of heparan sulfate (Bame & Rome, 1986). Patho-
genic variants in HGSNAT lead to the accumulation of unacetylated
heparan sulfate in the lysosomes of all tissues and organs and to its
excretion in the urine (Hrebicek et al., 2006).

Predominant features of MPSIIIC are progressive behavioral diffi-
culties including hyperactivity, aggression and progressive mental
deterioration leading to severe dementia. Other signs and symptoms
include sleep disorders, coarse facial features, full lips, thick eyebrows,
hearing impairment, vision loss (retinopathy), and seizures. The age of
death for typical disease is at the end of the second or beginning of
the third decade of life (Valstar, Ruijter, van Diggelen, Poorthuis, &
Wijburg, 2008). In 2015, three families with specific HGSNAT geno-
types were first associated with isolated late-onset slowly progressive
retinal disease (Haer-Wigman et al., 2015) and this was followed by
several reports, each of a few additional families (Carss et al., 2017,
Comander et al, 2017; Long et al, 2020; Van Cauwenbergh
etal., 2017).

In this study we report 20 patients from 18 families with mild or
late-onset nonsyndromic RP, in whom HGSNAT-associated disease
was explored, including clinical findings and results of enzymatic
assays and genetic testing. For 17 of these patients (15 families), vari-
ants in HGSNAT were felt to be the cause of their disorder.

2 | METHODS

2.1 | Patients and genetic analysis

This study adhered to the tenets of the Declaration of Helsinki and
was approved by the Institutional Review Boards and ethics commit-
tees of Moorfields Eye Hospital (MEH) and the National Eye Institute
(NEI NCT02471287). Informed consent was obtained from all partici-
pants prior to inclusion in the study. We studied 20 patients clinically
diagnosed with late onset RP: MEH1 to MEH16 attended the
inherited retinal disease clinics at Moorfields Eye Hospital and under-
went whole genome sequence analysis through participation in the
National Institute of Health Research BioResource Rare Diseases
(NIHRBR-RD) study (Carss et al., 2017) or the 100,000 Genomes Pro-
ject (Turnbull et al, 2018). MEHS, a sibling of MEH7 underwent
Sanger sequencing of familial HGSNAT variants (Manchester Centre
for Genomic Medicine) and MEH16 underwent clinical exome
sequencing and analysis of a panel of retinal genes (https://panelapp.
genomicsengland.co.uk/panels/307/, North Thames Genomic Hub,
Great Ormond Street Hospital, London). Patients NEI-1 to NEI-4
attended the National Eye Institute (NEI) and underwent sequencing
of panels of 280 (Molecular Vision Laboratory) or 266 (Blueprint
Genetics) retinal dystrophy genes.

2.2 | Ophthalmic and electrophysiological
assessment

Ophthalmic examination included visual acuity (VA, using Snellen
visual acuity charts), color vision (Ishihara plates) and color fundus
photography, either 35° (Topcon Great Britain Ltd, Berkshire, UK) or
ultra-widefield (200°) confocal scanning laser imaging (Optos plc,
Dunfermline, UK). Fundus autofluorescence was performed with
30 or 55° Spectralis (Heidelberg Engineering Ltd, Heidelberg, Ger-
many), or ultra-widefield Optos (Optos plc) imaging with excitation
wavelength 488 and 532 nm, respectively. Spectral-domain optical
coherence tomography (OCT) scans (Spectralis; Heidelberg Engineer-
ing Ltd) and kinetic visual fields (Goldmann or Octopus 900 Perimeter;
Haag-Streit) were performed.

Electrophysiological testing included full-field and pattern electro-
retinography (ERG; PERG) and incorporated the International Society
for Clinical Electrophysiology of Vision (ISCEV) standards (Mcculloch
et al., 2015). Pattern ERG testing included recordings to standard
(15 x 11°) and large (30 x 22°) stimulus fields (Lenassi, Robson,
Hawlina, & Holder, 2012)Additional On-Off ERGs (Sustar et al., 2018)
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degeneration of the mid-peripheral retina. All had initial symptoms of
nyctalopia and visual field constriction and in most cases, onset in the
fourth to seventh decades of life. Visual acuity was variable with
severe reduction in a number of patients while other members of the
cohort retained good acuity levels. Fundus photographs, FAF imaging
and OCT are shown in Figure 1. Cystoid macular edema was a feature

in some. Imaging showed loss of the ellipsoid-line and outer-nuclear

(i) MEH3 Age 53

(i) MEHS5 Age 58

(iii) MEH9 Age 59

(ivYMEH10 Age 52

(v) MEH12 Age 79

e
>

-

(vi) MEH13 Age 73

(vii) NEI2 -Age 60

(viii) NEI4 —Age 66

layer with retained autofluoresence in the outer macular in less
severely affected individuals, suggesting loss of rod photoreceptors as
the primary degenerative event.

Of the nine patients who had electrodiagnostic testing, full-field
ERG (Figure 2), indicated generalized photoreceptor dysfunction con-
fined to the rod system (N = 2); mild and similar rod and cone system
involvement (N = 1), rod-cone dysfunction that ranged from mild to

FIGURE 1 Retinal imaging—color,
autofluorescence (Optos), foveal optical
coherence tomography (OCT) (Heidelberg
Spectralis) for patients MEH3, MEHS5,
MEH9, MEH10 (a)-(d) and for (e) affected
(MEH12) and (f) unaffected (MEH13)
siblings HOM for p.Ala615Th, and for
patients NEI2 and NEI4 (g and h)
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FIGURE 2 Full-field ERG and PERG findings in cases MEH1 (a), MEH4 (b), MEHS5 (c) and MEH12 (d) compared with a representative
unaffected control subject (e). Full-field ERGs include the dark-adapted (DA) ERGs (flash strengths 0.01 and 10.0 cd s/m?; DA 0.01 and DA 10.0)
and light-adapted (LA) ERGs for a flash strength of 3.0 cd s/m? (LA 3.0; 30 and 2 Hz). The PERG is recorded to an alternating chequerboard

(15 x 11°). The full-field ERGs show evidence of similar rod and cone dysfunction (a), rod > cone dysfunction (b and d) or a loss of rod function
with preserved peripheral cone system function (c). PERG P50 shows reduction, in keeping with severe (a, b) or relatively mild (c, d) macular
dysfunction. There was a high degree of interocular symmetry and recordings are shown from the right eye only. Patient traces are superimposed
to demonstrate reproducibility. Broken lines replace blink artifacts for clarity

severe (N = 5) or undetectable responses consistent with a severe loss 3.2 | Enzymatic analysis

of rod and cone function (N = 1). Of the five patients who underwent
P50 was

standard-field PERG testing of macular function, Leukocyte HGSNAT activity and urinary GAG/creatinine ratio were

undetectable (N = 2), subnormal (N = 3; including one with additional
delay) or normal (N = 1), but all five had a subnormal response to a
large field size, in keeping with severe paracentral macular involve-
ment. It is highlighted that macular function could not be predicted
from the severity of the full-field ERG findings; two of those with rela-
tively mild rod and cone dysfunction had undetectable PERGs,

suggesting severe macular dysfunction (Figure 2a,b).

assessed in 16 of the 20 patients (Table 1). Enzyme activity was
decreased in 13 of the 16 patients (0.1-0.4 nmol/hr/mg protein for
MEH patients and 2.9 nmol/17 hr/mg for the NEI patient) compared
with the healthy control ranges (0.64-4.2 and 5.8-45 for MEH and
NEI, respectively) and increased compared with the observed range in
MPSIIIC patients (0.013-0.02). MEH14, MEH15, and MEH16 had

enzyme activities well within the normal range (3.3, 0.8, and
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2.1 nmol/hr/mg protein, respectively), indicating that any HGSNAT

variants were benign.

3.3 | HGSNAT variant findings in our cohort of
nonsyndromic RP patients

About 20 patients (18 families) were assessed in this study, 17 of
whom (15 families), were found to have biallelic HGSNAT variants as
the most likely cause of their RP. Of the 30 alleles in these families,
12 distinct variants were observed, detailed in Table 2.

Seven of the 12 distinct variants have not previously been
reported in patients (five missense variants, one splice acceptor, and
one frameshift), and were found in seven patients (from seven differ-
ent families). Three of the missense variants were present homozy-
gously; p.(Ser296Leu) in MEH1, p.(Phe428Cys) in MEH2, and p.
(Arg239Cys) in NEI-2. p.(Ser296Leu) was also identified as a com-
pound heterozygote with the missense p.(Gly248Ala) in MEH3. The
other three unreported variants—missense p.(Gly418Arg), splice
acceptor ¢.1543-2A > C, and frameshift p.(Thr570ProfsTer8) were all
identified as compound heterozygotes with the reported hypomorphic
variant p.(Ala615Thr) in patients MEH5, MEH6, and MEH10, respec-
tively. The peptide context of these novel missense variants in various
organisms is shown in Figure 3.

About 4 of the 12 variants have been previously reported in
patients with MPSIIIC as compound heterozygotes with other patho-
genic missense or nonsense variants, and in this study were found in
five patients (four families) in trans with the p.(Ala615Thr) variant.
These p.(Pro283Leu) in MEH4 (Fedele &
Hopwood, 2010; Feldhammer, Durand, Mrazova, et al, 2009b;
Hrebicek et al., 2006); c.1542+4dupA (Feldhammer, Durand, Mrazova,
2009b) in MEH7 and MEHS8; ¢.1250+1G>A
(Feldhammer, Durand, Mrazova, et al., 2009b; Fernandez-Marmiesse
et al., 2014; Hrebicek et al., 2006) in MEH9 and p.(lle425HisfsTer45)
(Feldhammer, Durand, Mrazova, et al., 2009b; Martins et al., 2019) in
MEH11. MEH4 and MEH7 have been previously reported in a large
cohort analysis of WGS (Carss et al., 2017). The frameshift p.

variants were

et al, sisters

(lle425HisfsTer45) in MEH11, who originates from Greece, has been
reported in four other MPSIIIC patients who likewise all originated
from Greece (Martins et al., 2019), further supporting the common
ethnic origin of this variant.

The most common variant in the cohort was p.(Ala615Thr),
observed heterozygously in eight patients from seven families, and
homozygously in five patients from four families (siblings MEH12 and
MEH13, NEI-1, NEI-3, and NEI-4). Siblings MEH12 and MEH13 were
discordant for phenotype, MEH12 had nonsyndromic mild RP with
mid-peripheral field loss, with onset in his 60s and slow progression
while MEH13, at age 73 was asymptomatic with a normal retinal
examination (Figure 1e,f). Together with the other p.Ala615Thr homo-
zygous patient who also underwent enzyme analysis (NEI-3), all three
showed decreased HGSNAT

GAG/creatinine ratio within the normal range, similar to the other

enzyme activity and urinary
HGSNAT-associated retinopathy patients in this study.

Of the three remaining unrelated patients in our cohort, two
(MEH14 and MEH15) had benign HGSNAT variants and other causes
of their RP: MEH14 who was mixed Caucasian and African-Caribbean
was a compound heterozygote for two missense variants p.(Thr417lle)
and p.(Glu587Lys), reported, respectively, as benign and likely benign
in ClinVar and predicted in silico to be benign (polyphen)/tolerated
(SIFT) and benign/ deleterious respectively. Both p.(Thr417lle) and p.
(Glu587Lys) are similarly quite common in Africans (0.0045 and
0.0043 in gnomAD African alleles, respectively) and also both present
in one unaffected brother (therefore likely to be in-cis, parents were
not segregated) and therefore unlikely to be the cause of his RP. This
was confirmed by showing HGSNAT activity within the normal range
(8.3 nmol/hr/mg protein) in this patient.

MEH15 was one of the two outliers in terms of age of onset. His
symptoms of difficulty in the dark and with bright light began at age
10 and by age 19 his VA was hand movements. He was homozygous
for the rare (0.000003099) in gnomAD) synonymous HGSNAT variant
of unknown significance (ClinVar), p.(Ser376=), which has a low confi-
dence prediction of loss of function (pLoF), but he also harbored a
homozygous PROM1 stop-gain pathogenic reported variant
[c.1726C>T, p.(GIn576Ter)] which instead was the likely cause of his

p.R239C p.G248A

Human SALPPRLRSVDTFRGIALIL
Chimp SALPPRLRSVDTFRGIALIL
Rhesus Macaque SVPPPRLRSVDTFRGIALIL
Cat T-SRORLRSLDTFRGLSLIT
Mouse PASPPRLRCVDTFRGIALIL
Chicken ——SANRLRCVDTFRGLALVL
Zebrafish ATTGRRLRSLDTFRGLSLVI
Melon Fruit Fly VTPSKRMRSLDAFRGMAIVL

* o % ek eoekhkhkhkeo oo oo

FIGURE 3

p.S296L p.G418R p.F428C
| | !

SIFLSMTSI GCPTGYLGPGGIGDFGKYP
SIFLSMTSI GCPTGYLGPGGIGDFGKYP
SIFLSMTSI GCPTGYLGPGGIGDFGKYP
SISLSLSST GCPRGYLGPGGIGDFGNYL
SIFLSMTSI GCPTGYLGPGGIGDLGKYP
SIFLSMTSI GCPTGYLGPGGIGDLGKYP
SIGLSLSGS GCPTGYLGPGGIGDFGQYQ
CIPISVKSQ NCPTGYLGPGGKHSNAQYP
.*k :*:.- .** * Kk k kK k %k . .:*k

Multiple organism sequence alignment of regions spanning the R239, G248, 5296, G418, and F428 amino acids of the HGSNAT

protein, showing their conservation, highly conserved in red and moderately conserved in blue. Alignment was performed using https://www.
uniprot.org/align/. Protein sequences used for alignment are Q68QP4-2 in the human, KZBY75 in the chimp, H9EWF5 in the Rhesus macaque,
FINBK1in the cat, M3X793 in the mouse, Q3UDWS8 in the chicken, F1Q893 in the zebrafish, and AOAOA1XN23 in the Melon fruit fly
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FIGURE 4 Schematic representation of the HGSNAT gene showing the localization and distribution of variants associated with MPSIIIC
and with nonsyndromic retinitis pigmentosa (RP). Exonic variants are represented below and intronic variants above. Each vertical dot represents
a unique variant. Blue dots represent the 71 variants associated with MPSIIIC described to date (Martins et al., 2019). Red dots represent the

8 reported variants associated with nonsyndromic RP in HGSNAT of which 6 were novel (see text). Green dots represent the 12 variants
associated with nonsyndromic retinitis pigmentosa in HGSNAT described in this study, 7 of which are novel (see Table 2)

retinal disorder. In addition, the HGSNAT enzyme activity was well
within the normal range.

No HGSNAT variants were identified in patient MEH16. This
patient's ophthalmic findings were consistent with HGSNAT-
associated RP, however, HGSNAT activity was well within the normal
range (2.1 nmol/hr/mg protein), so while no pathogenic variants were
identified using the 236-gene RETINAL panel of a clinical exome not
including HGSNAT, it was not necessary to proceed to HGSNAT gene

sequencing.

4 | DISCUSSION

In this study we describe the largest cohort to date of nonsyndromic
RP associated with variants in HGSNAT. We identify seven novel
sequence variants and four previously reported MPSIIIC variants
which were in trans with the hypomorphic allele p.(Ala615Thr), thus
expanding the phenotypic and genotypic spectrum of HGSNAT-associ-
ated
(Ala615Thr) variant in a patient and in their unaffected 73-year-old

retinopathy. Furthermore we identify a homozygous bp.
younger sibling, suggesting the influence of transacting genetic and/or
environmental modifiers on the retina. We also highlight the clinical
utility of simple enzymatic testing to verify the molecular diagnosis in
patients with a consistent phenotype with or without rare variants in
the HGSNAT gene.

The genotypes associated with retinal disease identified in this
study support the model that the two distinct phenotypes of MPSIIIC
and nonsyndromic retinal dystrophy arise due to two nonoverlapping
classes of HGSNAT genotype. As far as the authors are aware there

are no reports of identical genotypes causing both disorders. It is likely
that broadly speaking those genotypes that completely, or almost
completely, abolish HGSNAT function lead to the more severe early
onset disorder. This is supported by biallelic null genotypes being seen
in some MPSIIIC families but never in those with late-onset retinal
disease. In this severe genotype class, there may be further, more sub-
tle genotype-phenotype correlations, with frameshifts, nonsense and
canonical-splice variants and missense variants giving rise to rapidly
progressing forms, while some combinations of other noncanonical
splicing and missense variants may give rise to slower progressing
forms (Feldhammer, Durand, & Pshezhetsky, 2009a;
et al., 2019; Ruijter et al., 2008).

Observations of the genotypes in our cohort and those previously

Martins

reported, suggest a class of allele that when paired together, or in
trans with a null, give rise to the retina-only phenotype. This is analo-
gous to the situation for genes such as USH2A (Lenassi et al., 2015;
Rivolta et al., 2000) and CLN3 (Ku et al., 2017) where specific alleles
confer nonsyndromic disease when together or paired with severe
alleles. The assignment to this class of allele would be made if it is
seen homozygously in a retinal patient, or else in trans with a null, or
previously characterized MPSIIC allele, in a retinal patient. Inspection
of our data suggests that the following alleles are potentially associ-
ated with nonsyndromic retinal disease: p.(Ala615Thr), p.(Arg239Cys),
p.(Ser296Leu), and p.(Phe428Cys). Applying these same rules to previ-
ously published genotypes, in retinal degeneration patients, would
suggest that p.(Arg124Trp) identified homozygously in two families
(Haer-Wigman et al., 2015), and p.(Ser318Asn), homozygous in one
family (Comander et al., 2017), also belong to this class of alleles. In

addition, the extension allele at the end of exon 18 in trans with a null,
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described recently in a Chinese family (Long et al., 2020) would also
fit into this class of retinal disease-specific allele. Alleles found
uniquely in retinal dystrophy patients, but only paired with another
known allele of this class, could belong to either class and are here
termed “undefined.” This includes both p.(Gly418Arg) and p.
(Gly248Ala) in this study. The peptide position of these alleles is
shown in Figure 4, in the context of all those previously reported in
families with MPSIIIC (Martins et al., 2019) and retinal dystrophy
(Table S1). There is no obvious clustering of those missense variants
associated with nonsyndromic retinal disease.

The variant, p.(Ala615Thr) is of particular interest for two reasons.
Firstly, it is by far, the most common HGSNAT allele seen in retinal
degeneration patients in this study. Furthermore, data from Blueprint
genetics (verbal communication ST), in which NGS panel analysis has
been performed on 5,753 referred cases of retinal dystrophy shows
this allele is present in 36 patients in a genotype likely to explain their
molecular diagnosis (0.63%). About 14 of these were homozygous and
12 heterozygous paired with a second likely pathogenic variant in
HGSNAT. Secondly the variant has a relatively high prevalence in the
general population (gnomAD v2.1.1 accessed June 2020—minor allele
prevalence = 0.00403, including four homozygotes). One explanation
for this would be that such genotypes may, in some individuals, be
nonpenetrant which would be relevant for genetic counseling.

In this study, we show evidence for this conjecture in two
siblings—one with late onset mild RP and the other who was asymp-
tomatic at age 73—both homozygous for p.(Ala615Thr). Further,
inspection of the whole-genome data suggests both siblings are geno-
typically identical at the HGSNAT locus (no discordance for SNPs
within 500 kb flanking the variant). This excludes the effect of differ-
ing haplotypic backgrounds (cis-modifiers) and instead suggests the
action of, as yet unknown, trans-acting genetic or environmental mod-
ifiers. Their identification might provide clues to effective ameliorating
measures or drug treatments. Further, both siblings were shown to
have similarly reduced leukocyte HGSNAT enzymatic activity,
suggesting these factors might be acting through photoreceptor pro-
tection, rather than affecting the underlying lysosomal pathway.

This study has demonstrated the utility of enzyme testing in
supporting the molecular diagnosis, and that enzymatic activity levels
appear to play an important role in determining the phenotype. Three
patients MEH14, MEH15, and MEH16 had a phenotype consistent
with HGSNAT-retinopathy, with slowly progressive degeneration of
the midperipheral retina, with two having bi-allelic HGSNAT variants
of unknown significance (MEH16 was not tested for HGSNAT vari-
ants). The finding that enzyme activities of all three within the normal
range, suggested the variants to be benign and the retinopathies were
unlikely to be related to HGSNAT. Regarding the threshold level for
retinal disease, given the lack of reports of retinal degeneration in par-
ents of MPSIIIC affected children, that required for nonsyndromic ret-
inal disease might be expected to lie between 10 and 40% of normal
activity.

The phenotype presented here and by others appears distinct—
with a late-onset of presentation and diagnosis, a symmetrical (both

inter- and intraocular) distribution of degeneration that is pericentral.

The functional phenotype was more variable with full-field ERGs,
ranging from undetectable to showing relatively mild loss of rod func-
tion (see Fig ERG1 A and D; both aged 70 years with relatively mild
ERG abnormalities). The PERG indicated spared or relatively spared
central macular function in the majority, consistent with a previous
report that labeled the condition “pericentral RP” (Comander
et al., 2017), but there were also exceptions, with severe macular dys-
function occurring in some with ERG evidence of mild peripheral reti-
nal dysfunction. Depending upon the resources available, enzymology,
rather than nucleotide sequencing, might be the most efficient test to
secure a molecular diagnosis. The distinct phenotype also helps clini-
cians interpret variants found in panel, exome-, or genome-wide
testing.

In conclusion, we have here expanded the phenotypic and geno-
typic spectrum of nonsyndromic HGSNAT-retinopathy, and added at
least three further alleles to those that appear to confer disease that
affects only the retina. The discordant siblings in our cohort suggest
the action of as yet unknown trans-acting genetic and/or environmen-
tal modifiers that might determine nonpenetrance and help explain
the high population prevalence of the most prevalent retinal disease

specific variant.
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