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A BSTR A C T

The Skyrme Model is used to investigate dense baryonic m atter.

A general review of skyrmionic crystalline arrays thus far investigated, reveals 

the existence of a universal delocalising phase transition as the density of baryonic 

m atter is increased. At low densities the skyrmions localise on the lattice points, 

while at high densities they become delocalised and an array of half skyrmions 

remains. This phase transition is believed to represent the restoration of chiral 

sym m etry of high densities.

Numerical solutions of static arrays with fee, bcc and interm ediate symmetries 

are considered as a function of density. The fee array is found at high densities to 

be the most stable of all the arrays so far considered. As the density is decreased 

the fee array becomes unstable against deformations to arrays with intermediary 

symmetries. This instability occurs at a critical density slightly greater than  tha t 

of the delocalising phase transition.

A single skyrmion on a three sphere has an analogous delocalising phase 

transition as the volume of the sphere increases. Generalising this simple model 

of a skyrmion on a three sphere, to a skyrmion on an elliptical three surface, 

we identify th a t varying the shape of this sphere is analogous to deforming the 

fee array. It is shown tha t the deformation transition occurs at the same critical 

volume as the delocalising phase transition. Beyond this density there are a large 

number of unstable modes, suggestive of a solid to liquid phase transition. There
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also exists a first order phase transition, corresponding to a phase separation.

The relevance of The Chiral Bag Model to dense crystalline skyrmionic m atter 

is discussed and its possible future application is outlined.
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C H A PT E R  1

IN T R O D U C T IO N

1.1 General Introduction

In this thesis, I will present the results of my investigations involving dense 

skyrmionic m atter systems, which are believed to  pertain  to dense baryonic 

m atter systems. We shall see th a t there exist a num ber of differing forms of 

skyrmionic m atter and th a t I have employed a variety of differing techniques in 

order to establish an understanding of each.

The most direct of these approaches involves the brute force technique, of 

numerically obtaining results for dense skyrmionic m atte r in its crystalline form 

and I shall present numerical results for infinite crystalline arrays of skyrmionic 

m atter. In particular, I consider a fee array, a bcc array and a series of ar­

rays of interm ediate symmetries. The discovery of the existence of these arrays 

of skyrmionic m atter and their respective numerical results, have already been 

reported in reference [1] .

I shall also extend some of the results obtained by M anton [2] for a single 

skyrmion on a three sphere, Sphy. I shall generalise this simple model of dense 

skyrmionic m atter, to more general shaped physical space. Using an ellipsoidal
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shaped space as an example, I dem onstrate the significance of the curvature and 

the sym m etry of physical space in a dense skyrmion environment. This model 

is constructed so th a t its relation to dense crystalline skyrmionic m atter can be 

revealed.

A final approach to understanding of the nature  of skyrmionic m atter will be 

outlined, in which the Chiral Bag Model is invoked in order to  include an explicit 

quark content w ithin crystalline skyrmionic m atte r and to establish the physical 

relevance of such dense baryonic m atter.

In the rem ainder of this chapter, we shall briefly outline historically, the 

development of the Skyrme Model and finally, the m anner in which the rest of 

this thesis has been organised.

The Skyrme model was originally proposed by Skyrme [3] in 1961, as a phe­

nomenological description of the nucleon and this model has recently a ttracted  

much interest. The model describes the nucleon as a topological soliton of an 

extended version of the Non-Linear Sigma Model. This revolutionary approach 

to nuclear physics, attem pts to describe the fermionic nature of nucleons in terms 

of bosonic pion fields.

Skyrme [3] was able to deduce many of the properties of his model, by as­

suming tha t a spherical symmetric solution existed w ithin his model. He showed 

th a t such a solution gave a reasonable picture of a nucleon. The spherically sym­

m etrical hedgehog solution, he viewed as a classical degenerate com bination of 

nucleons and deltas. Fixing the mass of the soliton to th a t of the nucleon led



to an energy distribution, with a r.m.s.  of ~  0 .5 /m , he also deduced th a t the 

correct asym ptotic form for the one-pion exchange potential between nucleons 

emerged. He proposed th a t the topologically conserved winding number of these 

hedgehog skyrmions, be identified with the baryon number.

Though Skyrm e’s work was generally ignored during the 60’s and 70’s, it 

has recently received a revival of interest. Indeed, much of this new interest 

stems from the realisation w ithin theoretical physics, th a t such a topological non­

trivial solution of the non-linear bosonic field theories, can be used to describe 

fermionic particles. Indeed, within other sim pler models [4], the relationship 

between fermion number and topological charge, originally predicted by Skyrme 

in 1961, was dem onstrated.

A ttem pts to understand hadronic physics from a Q.C.D. stance, had naturally  

led to a series of effective meson models w ith similarities to the Skyrme model. 

Indeed, T ’Hooft [5] showed, assuming confinement, th a t the 1 /N C expansion of 

Q.C.D. leads to an effective Lagrangian in the low energy sector, containing only 

mesons. W itten [6] later argued th a t baryons then emerge as solitons in the large 

N c limit of Q.C.D.. This reasoning naturally led physicists to look for an effective 

model for low energy mesonic sectors, which support solitonic solutions. Since 

the lowest mass meson is the pion and the Non-Linear Sigma model is known to 

describe low energy pionic physics successfully, this model certainly represents 

a natural starting  point. Hence, Skyrme’s extension of the Non-Linear Sigma 

Model, by introducing his Skyrme term , is now viewed as the first and simplest
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term  in a truncated  infinite series of mesonic term s, which extends the Non- 

Linear Sigma so as to support non-trivial solitonic solutions. Thus, the Skyrme 

Model is now viewed as an effective model for low energy Q.C.D. mesonic physics. 

However, no derivation of this exists.

The bag approach to nuclear physics presents an instructive alternative to 

such effective low energy Lagrangians. This model directly attem pts to under­

stand the relationship between such effective Lagrangians and Q.C.D.. In the 

model quarks and gluons are governed by Q.C.D. and placed w ithin a spherical 

cavity. In the  Chiral Bag Model [7][8], the exterior of the bag’s mesonic degrees 

of freedom are governed by the Skyrme or similar low energy effective models. 

The quarks are assumed to  be confined to the interior of the bag and mesons to 

the exterior by the boundary conditions on the bag surface. Imposition of conser­

vation of axial current across the surface of the bag, connects the two dynamical 

regions and leads to the so called, chiral boundary conditions. Assuming the 

existence of a  spherically symmetric mesonic field, leads to a hedgehog form with 

a spherical cavity cut out at its centre, in which spherically symmetric, massless 

Dirac fermion wave functions, obeying the Dirac Equation, have been obtained

[7] [9]. This object is then viewed as a baryon w ith the short distance quark 

degrees of freedom explicitly present. Thus, this elegant, effective, low energy 

model has developed as a generalisation of the pure skyrmionic description of a 

baryon.

Balachandron et al [10] and W itten [11] in 1982, showed Skyrme’s identifica­
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tion of baryon num ber with winding number of the soliton was indeed correct. 

In order to make physical predictions for properties, Adkin’s etal[12] developed 

a projection procedure to obtain physical N  and A states from the classical 

hedgehog solution. They showed tha t such an approach produces a reasonable 

description of the N A mass splitting, nucleon magnetic moments, nucleon charge 

radii and the  coupling constant ratio  for i r N N  and n N A.

More recently, attem pts have been made to understand the interaction be­

tween two skyrmions [13] [14]. By considering the interactions between two hedge­

hogs with relative spin-isospin degrees of freedom, they numerically studied the 

skyrmion-skyrmion potential a t finite separations. Invoking the quark hedgehog 

model, they dem onstrated th a t mesons which couple to hedgehogs, are precisely 

those which are known to have couplings to nucleons. This model for the two 

nucleon system  was thus shown to successfully describe the nucleon-nucleon po­

tential.

More recently there have been considerable developments in the extension of 

this model to finite baryon num ber systems and their application to light nuclear 

m atter systems. Thus, in C hapter 2, having described the Skyrme model and 

outlined its success in describing a single baryon, we go on to discuss many of 

the recent and fascinating results obtained for the two baryon system and other 

finite baryon num ber systems. These results have shown th a t the the model 

seems versatile enough to model single baryons, the deutron and the two nucleon 

potential.
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In C hapter 2 we also briefly introduce M anton’s simple model of baryonic 

m atte r on a three sphere. The results of this model bear a striking similarity 

to  those which we discuss in C hapter 3 for skyrmionic m atter in a crystalline 

form. Both models reveal, th a t as the average baryon density of skyrmionic m at­

ter is increased, it generally undergoes a phase transition  from an uncondensed 

phase, in which skyrmionic m a tte r’s baryon density is well localised in space, to 

a condensed phase in which skyrmionic m a tte r’s baryon density is more evenly 

distributed throughout space.

For a skyrmion on a three sphere we see th a t this phase transition occurs 

as we reduce the volume of physical space and in the uncondensed phase the 

skyrmion is localised about a point in space, while in the condensed phase it 

becomes completely delocalised over the whole of space. For skyrmionic m atter 

in its crystalline form, as the average baryon density of the crystal is increased, 

this phases transition is shown to correspond to  an uncondensed array of spherical 

skyrmions centred at the points of an infinite lattice, becoming a condensed array 

of half skyrmions.

In C hapter 3 we outline the differing lattices and orientations of skyrmions 

on these lattices, which have to date been numerically investigated. We also 

show the m anner in which these lattice arrangem ents of periodic skyrmions are 

deduced from the analytic form of the asym ptotic skyrmion-skyrmion poten­

tial. This construction also leads us to discover th a t there exist other crystalline 

arrays of skyrmions which maximise the asym ptotic attraction  between neigh­
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bouring skyrmions within the lattice, which have date gone unnoticed. We show 

th a t these new simple cubic arrays of skyrmions represent a simple generalisation 

of the rectangular array which Jackson et al [15] investigated as an alternative 

to Klebanovs [16] original cubic array of skyrmions. We see th a t this general­

isation of the Jackson et al array, corresponds to a simple continuous relative 

isospin-rotation of the skyrmions within successive parallel planes. Comparing 

the asym ptotic binding energies of this generalised array to  the Jackson et al ar­

ray, by sum m ing the net asymptotic potential of an individual skyrmion within 

the array over increasingly d istant nearest neighbours, reveals th a t e l s  the relative 

isospin-rotation angle of skyrmions within successive planes is varied, the net the 

asym ptotic attraction  of progressively increasing numbers of nearest neighbours 

does not change. Hence we appear, a t legist asymptotically, to have discovered a 

genuine zero mode of the Jackson et al array.

We also present in C hapter 3 the arrangem ents of the fee array, bcc array 

and an array of interm ediate symmetry. Numerically we show how the binding 

energy of these arrays increases as their densities are increased. The m anner in 

which these calculations were performed is first described and then we show th a t 

their results reveal th a t a condensed fee array of skyrmions, corresponding to  a 

simple cubic array of half skyrmions, has an energy which is ju s t 3.8% above the 

energy lower bound and thus, th a t it represents the m ost bound crystalline array 

of skyrmions so far considered.

We also investigate the effect th a t bulk deformations have on the fee array of
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skyrmionic m atte r by varying the length of the fee cube in one direction, while 

keeping the other lengths fixed. The results reveal th a t the fee lattice becomes 

unstable w ith respect to these bulk deformations a t a density close to  th a t at 

which the phase transition to a condensed array of half skyrmions occurs and 

th a t at high densities the fee array is stable, while a t low densities it is unstable 

to  bulk deform ation.

The striking similarity of the behaviour of skyrmionic m atte r on a three sphere 

and w ithin a crystalline environment, as the average baryon density is increased, 

leads one to believe th a t the curvature of the sphere results in a self interaction 

of a skyrm ion which closely resembles the interactions experienced by skyrmions 

w ithin dense crystalline skyrmionic m atter. Thus, in C hapter 4 we a ttem pt to 

uncover w hat might be the simple analogue of bulk deformations of crystalline 

skyrmionic m atte r, for a single skyrmion on a curved physical space. Having 

detailed the geometric interpretation of the Skyrme M odel’s energy functional 

and reviewed M anton’s [2] elegant formalism for considering such general shaped 

physical spaces, we consider the effect of an infinitesimal variation in the shape of 

the sphere Sphy, by varying its m etric. This deformation in the shape of physical 

space we argue should provide the correct analogue of bulk deformations of the 

fee array of skyrmions. We are able to prove th a t w ith respect to fluctuations of 

the metric on the sphere, th a t the the sphere shape is stable up to volume equal 

to th a t at which the delocalising phase transition occurs. Thus, we are able to 

dem onstrate th a t this is the direct analogue the bulk deformations we consider
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in our flat space array calculation.

To illustrate  this result and also to enable us to  consider finite variations 

in the shape of the sphere, we generalise this sphere to an elliptically shaped 

three dimension surface. By varying the volume and the eccentricity of this 

ellipse, we obtain  numerically, the energy of a single hedgehog on a physical space 

whose curvature varies locally. In some detail, we the outline the effect th a t the 

curvature has on the  skyrmion and show in general, th a t all our results can be 

explained using very simple arguments. These show th a t skyrmions prefer to sit 

on regions of space w ith the same curvature as th a t of the target space, the isospin 

three sphere. Moreover, if a skyrmion is forced to choose between regions of space 

in which the curvature is greater or less than  this optim al value, they prefer the 

regions of lower curvature. The other effect which determines the regions of 

space th a t skyrmions prefer, is th a t they particularly dislike being stretched over 

large regions of space and thus localise as the volume of physical space increases 

substantially. Finally, by considering a hedgehog skyrmion on a more general 

shaped closed surface, w ith radius th a t is allowed to vary in one dimension from 

point to point, we show th a t the insights gained from the elliptical example 

enable us to explain all of the numerical results of the minim isation calculation 

we performed. This calculation involved minimising the energy of a variational 

ansatz for the m ap and radius variable at fixed volume and w ith the curvature 

constrained to be negative semi-definite. This la tte r constraint we deduce to 

be necessary, in order to avoid certain pathological problems in minimising the
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energy functional with respect to variations in the shape of physical space.

In C hapter 5, we a ttem pt to extend the crystalline skyrmionic calculations of 

C hapter 3 by incorporating explicit quark degrees of freedom within the minimal 

energy condensed fee array. Thus, initially we outline the fundam entals of the 

Chiral Bag M odel’s description of a baryon. We then propose the m anner in 

which the Chiral Bag M odel’s two phase description of baryonic m atter, with 

its explicit quark content, can be incorporated consistently w ithin the condensed 

fee half skyrm ion array. We dem onstrate th a t there exists the possibility of 

cubic bag being cut out of this field in a consistent m anner, which is in itself, 

a non-trivial result due to the discontinuities a t the edges of this cube. Having 

established th a t cubic bags can exist and having argued th a t these bags are the 

most relevant to the condensed fee array, we the outline a calculation which could 

be perform ed numerically and which would involve solving the Dirac equation 

for the ground state  up and down quark wave function w ithin the cubic bag. The 

results of this calculation would then reveal the particle content w ithin this cubic 

bag and suggest the physical in terpretation th a t should be placed on skyrmionic 

crystalline m atter.

We go on to present an appealing argum ent, based on analogies w ith the 

spherical bag, to assess the effects th a t the interior quark vacuum  will have on 

physical quantities. In particu lar we concentrate on its contribution to the baryon 

num ber which is required in order th a t the to tal baryon number of valence quarks, 

exterior mesonic field and quark vacuum give a to tal baryon number which has
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an integer value, since clearly this is a physical requirem ent of any reasonable 

model of baryonic m atter. For the spherical bag, this net contribution to the 

baryon num ber is indeed an integer value [17] and thus we show the m anner in 

which this cancelation occurs in this case. We then a ttem pt to dem onstrate th a t 

a sim ilar cancelation should occur for our cubic bag. These suggestive arguments 

are appealing, though inconclusive.

We also note in this chapter, th a t since the condensed fee array is composed of 

te trahedral four skyrmion units, these might represent a  particle like structures 

within dense skyrmionic m atter. This suggestion is further justified by com par­

ing the structures of these te trahedral units w ith the true  m inim al energy four 

skyrmion field configuration [18]. Recently it was proposed, th a t this minimal 

energy four skyrmion field configuration should represent the Skyrme M odel’s 

description of an alpha particle.

Finally, in C hapter 6 we give a number of concluding rem arks concerning the 

results outlined in the previous chapters.
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C H A PT E R  2

IN T R O D U C T IO N  TO THE SK Y R M E M ODEL

2.1 The Skyrme M odel

It is now believed th a t Q uantum  Chromodynamics, (Q .C .D .), provides the fun­

dam ental description of strong interactions. Thus, in principle the structu re  of 

baryons and mesons should be derivable from this S'17(3) colour gauge theory 

of quarks and gluons. Due to its non-abelian nature , the Q.C.D.  vacuum  is 

param agnetic and gives rise to  strong infrared forces. At short distances, colour 

anti-screening takes place, resulting in an effective coupling constant tending to 

zero. In this perturbative phase quarks and gluons are asym ptotically free [l][2]. 

However, at large distances the coupling constant grows and only colour singlet 

states exist asymptotically. This non-perturbative regime at low energies, with 

colour confinement, is relevant to nuclear physics. Since here perturbative m eth­

ods are inappropriate, lattice calculations aimed at numerically solving Q.C.D.  

have been developed in an a ttem p t to uncover the nature  of this phase. How­

ever, these calculations are far from making physical predictions and contain 

many difficulties yet to be resolved.

Thus, phenomenological models of low energy hadronic physics have been
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developed. At low energies the dom inant quark degrees of freedom of Q.C.D.  

are the lightest quark fields. These are the up and down quarks, w ith current 

quark masses of about 10M e V .  Neglecting these masses, massless, two flavour 

Q.C.D.  is chiral invariant, w ith the global sym m etry

U(2)l  x 17(2)* -  S U ( 2)l  x S U ( 2)r  x  U(1)v x  U( 1)a , (2.1.1)

where L  and R  denote the left the right sym m etry groups, V  refers to the vector 

and A  to  the axial vector sym m etry groups. At the quantum  level, it is well 

known th a t the U( 1)^ sym m etry group is explicitly broken by the A-B-J anomaly

[3] [4] leaving the global invariance group

S U ( 2)l  x S U ( 2)r  x U ( l ) v . (2.1.2)

The Chiral Sym m etry group S U ( 2) l  x  S U ( 2)r  is then  spontaneously broken 

down to SU (2 )v ,  via the Nambu-Goldstone mechanism. The resulting three 

massless pseudo-scalar particles are the pions. Thus, the vacuum  carries axial 

charge and pions are able to decay to the vacuum. This leads to the Goldberg- 

Teimann relation between the axial form factor for the nucleon ga and the pion 

decay constant f K. This physically appealing scenario is consistent w ith the 

symmetries of Q.C.D..  However, due to  the non-perturbative nature  of Q.C.D.  

a t low energies, little information can be deduced from Q.C.D.  about ga and f T.

It is clear th a t Chiral Symmetry is fundam ental to low energy strong inter­

actions. Due to the smallness of the pion mass, about ldOMeV,  as com pared to 

the mass of the nucleon is about 1 G e V , one would also expect Chiral Sym m etry
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to hold approxim ately on physical grounds.

Thus, one is led to  believe th a t the Non-Linear Sigma Model [5], which in­

corporates all the essential features of chiral sym m etry breaking, would provide 

a good model of the low energy mesonic physics as dom inated by pions. More­

over, the expansion of Q.C.D.  in the number colours N e, developed by t ’Hooft, 

suggests th a t a t low energies, assuming confinement, Q.C.D.  becomes a theory 

described by an effective mesonic field [6]. Since a t low energies the dom inant 

chiral degrees of freedom are pionic, the Non-Linear Sigma Model should provide 

a first approxim ation to  this effective low energy theory, even though N c is not 

infinite bu t three.

Thus, Skyrm e’s proposal th a t the Non-Linear Sigma model be used to de­

scribe low energy mesonic interactions [5] has been justified many times over. It 

provides a model which describes Chiral Symm etry breaking and is also consis­

tent w ith soft pion threshold theorems [7]. Its Lagrangian reads

L 2 = ^ { d ^ c r d ^ c  +  d^nd^n) ,  (2.1.3)

w ith the non-linear constraint,

<72 +  if2 =  f l ,  [2.1.4)

where /*- is the pion decay constant, 7r is the iso-triplet pion field and a  the scalar 

sigma field of the [1/ 2, 1/ 2] representation of S U ( 2) l * S U ( 2)r .  Thus the theory 

is manifestly chiral invariant.

In the trivial vacuum the pion fields are not excited and the sigma field
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atta ins a constant value /*. throughout space. The introduction of an explicit 

chiral sym m etry breaking term , generates masses for the pions which are viewed 

as fluctuations of the sigma field along the valley of a ‘mexican h a t’ potential. 

Such a mass term  is

L m =  - m \ f l a , (2.1.5)

where m T is the pion mass and the coefficient has been chosen so as to generate 

a pion mass term  to leading order in the weak pion field limit. The inclusion 

of this term  also leads to the correct form for the P.C.A.C. [8] relation for the 

divergence of the axial current. Not only does this model satisfy the low energy 

requirem ents of Chiral Symmetry, bu t it has also been found to describe well, 

the self interaction and propagation of pions in the exterior of a nucleus [7].

The configuration space of this model possesses a non-trivial topological struc­

ture resulting from its non-linear nature. This observation led Skyrme to propose 

th a t i t ’s non-trivial field configuration be identified as classical baryons [5].

It is convenient to  introduce the quaternionic representation of 517(2), in 

order to understand the topology of this configuration space. Thus we write

U(t ,x) = -^-(a(t,x)  -f i f .n ( t , x ) ) ,  (2.1.6)
J  7T

with constraint (2.1.4) becoming

U ( t , x ) U ( t , x ) + = 1, (2.1.7)

where U(t ,x )  is an 5(7(2) valued m atrix. In term s of this field variable we can
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represent the Non-Linear Sigma Model Lagrangian as:

L2 =  f- f T r ( L , . L %  (2.1.8)
4

where

Lp =  U( t , x) + (2. 1. 9)

At a fixed tim e t0, the field U(t0,x ) ,  maps physical space R 3 into S U ( 2), whose 

group manifold is isomorphic to a three sphere, S 3. For a static  field configuration 

the energy is given by:

e2 =  -  J  d3x L 2. (2.1.10)

On physical grounds it is natu ral to consider only finite energy fields. Thus, the 

derivative of U(x)  must vanish outside some finite region, in order th a t (2.1.10) 

be finite. Hence, we are led to consider static configurations satisfying the natural 

boundary condition th a t U(x)  takes a constant value at spacial infinity, which

on physical grounds, we choose to be its trivial vacuum value. T h a t is, we have

the boundary condition

U (| x  |—► oo) =  1. (2.1.11)

This boundary condition compactifi.es physical space R 3, to  a three sphere, S 3 

and so topologically the field U (x) is a map

U(x)  : S'3 ^  S'3. (2.1.12)
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It is well known th a t such m appings are classified topologically into homotopy

classes. The set of m appings (2.1.12), is classified by the th ird  homotopy class

of a three sphere,

n3(S3) = Z, (2.1.18)

which is iso-morphic to  the additive group of integers Z, the winding num ber of 

the m apping. Thus, if we consider only continuous fields, then the configuration 

space is disconnected and the time evolution of a configuration can be view as a 

homotopic deform ation. Moreover, this disconnected topology of configuration 

space, means the winding num ber of a configuration is a conserved quantity 

independent of its dynamics. The winding num ber of a static field configuration, 

U (x ), is defined to be

B  — j  d x ^ —T r (L tlL vL p). (2.1.14)

At the origin we require the condition

I7 (| x \ )  = - l  (2.1.15)

be satisfied. This, together w ith condition (2.1.11), results in a continuous map 

U(x),  m apping the whole of physical space onto the whole of the target space 

S 3, an integer num ber of times. Thus B , as given by equation (2.1.14), takes 

only integer values when U (x ) satisfies boundary conditions (2.1.11) and (2.1.15). 

It has been shown th a t associated w ith this topological conservation there is a
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current,[18]

B ° = ~ ^ ~ r T r ( L llL vL f ), (3.1.16)

which is conserved independently of the dynamics and the winding number 

(2.1.14) and is its corresponding charge.

Skyrme proposed th a t this current be identified w ith the baryon current and 

hence the baryon num ber w ith the winding num ber of a configuration [5]. Thus, 

baryons are described as topological solitons of the sigma and pion fields. Fur­

therm ore, he proposed th a t the fermionic nature of baryons in this soliton picture, 

results as a consequence of the skyrm ion’s non-trivial topological nature. This 

was shown later to be possible by Finkelstein et al [9]. Moreover, much of the 

resurgence of interest in the Skyrme Model, stem s from W itten ’s observation of 

the mesonic fields [10], th a t in an effective mesonic theory of Q.C.D.  in the large 

N c limit, baryon num ber should be identified w ith the winding number.

Finite energy static field configurations of the Non-Linear Sigma Lagrangian 

(2.1.8), are however, unstable. This can be seen if we consider rescaling a static 

field, U(x).  The energy of this field will be reduced by shrinking it to a point, 

since the static energy functional e2, scales w ith length. Thus, finite energy 

configurations are unstable to rescaling to a point.

To remedy this instability, Skyrme proposed th a t an additional term  be in­

cluded in the Lagrangian, which is fourth order in the derivatives of the fields

[5]. Such a term  scales w ith inverse length and stabilises finite energy field con-
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figurations against rescaling to a point. Thus, Skyrme considered an extended 

chiral sym m etric model, w ith Lagrangian given by [11]

L  = L 2 +  L4, (2.1.11)

where the additional Skyrme Term,

L * =  j ^ T r \L M '

has a dimensionless param eter e, characterising the size of the finite energy con­

figurations. The energy of a static field configuration is now given by

E  = e2 +  €4, (2.1.19)

with

€4 =  — J  d3x L 4. (2.1.20)

This energy is minimised with respect to scale transform ations, when both  the 

e2 term  (2.1.10), and the e4 term s (2.1.20), are equal.

To this order, the additional fourth order term  is the unique term  yielding

a positive definite Ham iltonian, th a t is only second order in tim e derivatives of

U(t , x) .

A skyrm ion is now taken to be a static, non-trivial finite energy field configu­

ration, minimising the energy function (2.1.19). It has a topologically conserved 

charge and its winding num ber is to be identified w ith its baryon number. As we 

shall show later, (see chapter 4), the energy of a static  configuration of winding
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num ber B , is bounded from  below by

f
E  > 6tt2— \ B \ .  (2.1 .21)

e

Thus, finite energy configurations are locally stabilized as a result of the under­

lying global topology of configuration space.

The detailed s tructu re  of these skyrmionic solutions is determ ined by the

highly non-linear Euler Equation, which results from functional m inim isation of

the Skyrme M odel’s energy function w ith respect to  the field variables. Except 

for fields possessing a high degree of symmetry, finding analytic solutions to this 

equation poses a virtually  intractable problem.

Skyrme [5] was thus led to consider the spherically sym m etric hedgehog 

ansatz ,

U(x)  =  exp(t-p rr f ( r )) (2.1.22)
I x  I

for the fields. This field configuration, in terms of the sigma and pionic fields, 

takes the form

<r(r) =  fn cos / ( r ) ,

n(x)  =  7-^rr s in / ( r ) .  (2.1.23)
I x  I

The ansatz greatly simplifies the resulting equation of m otion, which becomes 

an ordinary non-linear equation for the profile function f ( r ) .

The hedgehog ansatz couples the spatial and isospin degrees of freedom. U (x) 

commutes w ith the grand-spin generator K  = J  + I,  (where J  =  S  +  L  is the
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to ta l angular m om entum  generator and I  is the isospin generator), bu t not w ith 

J  or I  separately. This leads one to suspect th a t K  will be a conserved quantum  

num ber for the quantized hedgehog and th a t it is a scalar in grand-spin space. 

Since this configuration has positive parity, i t ’s quantum  num bers are 0+ .

Substitu ting the hedgehog ansatz (2.1.22), into the energy functional (2.1.19), 

gives the energy for a hedgehog field

/ 2 • 2 sin2 /  , 1 sin2 / . s i n 2 /
E

C°° . ? sin f . 1 si n /  .sin /  ,
=  4 * J  dr r * { ± ( ?  +  2— ± )  +  — — i L ( — J - + 2 F ) } ,  (3.1.24)

where we have perform ed the trivial angular integration and /  denotes the deriva­

tive of f ( r )  w ith respect to the radial coordinate, r.

Upon functionally minimizing the energy for the hedgehog configuration (2.1.22),

w ith respect to its profile function / ( r ) ,  the Euler Equation is given by:

, 1~9 . 9 ..x", 1 -v  . , 1 . „ sin2 f  sin 2 /  ,( ~r +  2 sin / ) /  +  ~ r f  +  s i n 2 / / 2 -  -  sin 2 / -----------—------  =  0, (2.1.25)
4 2 4 r l

where we have introduced the dimensionless variable r = ef^r,  of reference [12].

The hedgehog solutions of this equation are also solutions of the general 

Euler Equation, obtained from a general field variation of the energy functional 

(2.1.19), subject to the non-linear constraint (2.1.4). This was shown to be the 

case [13] for any field configuration possessing a high degree of symmetry, such 

as the hedgehog ansatz.

Integer winding num ber configurations can be obtained by numerically inte­

grating this equation subject to the boundary conditions:

/(0 )  =  H tt,
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f ( o o) =  0, (2.1.26)

to give a baryon num ber B  configuration. We note th a t for a field taking its trivial 

vacuum value a t spatial infinity, the winding num ber of such fields is dependent 

only on the boundary condition at the origin. The interpolating function between 

the two points is determ ined by the Euler Equation (2.1.25).

For hedgehog configurations, the resulting energy was found to  be 864M e V  

for B  =  1 and 2523M e V  for B  =  2 [19]. Here we have taken the param eters 

of the model to  have values /*- =  64.5M e V  and e =  5.45, as used by Adkins 

et al [12]. They were determ ined by employing a semi-classical quantization 

technique, which enables physical baryon states to investigated. The collective 

spinning modes of the Skyrme Lagrangian generate classical angular m om entum . 

Upon quantizing these collective coordinates, states of definite spin and isospin 

and hence physical baryon states, can be investigated. The param eters were 

subsequently fixed so as to  reproduce, independently, the nucleon and delta(1236) 

masses. This approach fails to  reproduce the N N tt coupling constant, giving a 

value gNMn approxim ately 30% too small.

For the B  = 1 hedgehog, from equation (2.1.16), the baryon density is given

by:

I*-1 -*7)

The exact solution yields a r.m .s. baryon num ber radius of about half a fermi. 

Skyrme’s proposal th a t the B  = 1 hedgehog should represent a generalised
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classical baryon, thus leads to a reasonable mass and a r.m .s radius for the 

nucleon.

Since this is a model of a baryon, the hedgehog field should be quantized 

as a fermion for it to make sense. However, the Skyrme fields are bosonic. It 

was proposed by Skyrme [5] and later dem onstrated by Finkelstein et al [9], th a t 

topological excitations of non-trivial field configurations are capable of carrying 

half integer angular m om entum . For such an effective theory of Q.C.D.  w ith  an 

odd num ber of colours, W itten [10] further confirmed Skyrme’s proposal, th a t 

a skyrm ion field has a fermionic nature. Thus Adkins et al procedure involved 

quantizing the B  =  1 hedgehog as a fermion.

To study physical baryon states, it is necessary to obtain states of definite 

spin and iso-spin from the hedgehog state, a hedgehog sta te  being an adm ixture 

of states of equal spin and iso-spin. Quantizing the spinning modes of the Skyrme 

Lagrangian allows these to be isolated. The Skyrme Lagrangian is invariant un­

der a global iso-rotation of the pion fields produced by A U A +, where A  =  a0-f a .r  

is a constant S U ( 2) valued m atrix. This also leaves the boundary conditions for 

the hedgehog unchanged. The iso-spin degrees of freedom of the hedgehog are 

coupled to  spatial rotations by the hedgehog ansatz and these ro tational modes 

generate classical angular momentum . Thus, this iso-spin collective coordinate 

is taken to  be the dom inant effective degrees of freedom of the hedgehog. Thus, 

spinning the hedgehog adiabatically and allowing the collective coordinate A  to 

vary in tim e, one can semi-classically quantize the zero modes of the skyrmion



as a fermion. This am ounts to quantizing the hedgehog like a rigid rotor, with 

the hedgehog being a sym m etric top. The resulting hedgehog states are par­

tially characterized by the conserved quantum  num ber K , which takes integer 

values from zero upwards. These states have equal half integer values of S  and 

/ ,  w ith the nucleon states having S  = 1/2 and I  = 1/2. The tower of grand- 

spin states thus contains the nucleons, deltas and higher resonances. The masses 

of the nucleons and deltas, as already sta ted , are then  used to fix the param eter e.

2.2 The B —2 Sector Of The Skyrme M odel and Beyond

This elegant picture of a skyrm ion as a generalized baryon was further extended 

to the B  — 2 sector. The physics of this sector are characterised by the nucleon- 

nucleon potential and the existence of a B  = 2 bound s ta te , the deutron. In the 

initial studies a p roduct ansatz, of two B  = 1 hedgehogs, Ujj(x ), was employed

(5),

u{z  1,X2) =  UH{xi)UH(xt ). (2.2.1)

It has been shown [11] th a t for such a product, the baryon num ber is additive 

and hence, such a configuration has B  = 2.

In the limit of large separation between the two hedgehogs this ansatz is 

valid, as the overlap of their localised baryon densities is insignificant. However,
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as the skyrmions approach each other at finite separations, this overlap becomes 

significant and results in a  large distortion of their fields which this ansatz is 

no t able to describe. Thus, as the hedgehogs approach each other, the p roduct 

ansatz becomes an increasingly less valid approxim ation for the true B  — 2 

m inim al energy configuration. Hence, the product ansatz as been used to describe 

asym ptotic nucleon-nucleon interactions. Indeed, Skyrme [5] himself originally 

addressed this problem  and deduced an analytic expression for the asym ptotic 

poten tial between two hedgehogs by employing this ansatz.

For two hedgehog skyrmions centred a t the points Xi and £2, which are well 

separated , the field configuration is described by two undistorted  hedgehogs w ith 

a relative isospin ro tation of their pion fields, which can be represented as

U( x u x 2) =  Uh (x M U h (2 2)A + , (2.2.2)

where A  =  ao -f a.r and Uh (x ) is a B  =  1 hedgehog solution. The resulting 

potential, defined as the difference between the energy of the B  = 2 p roduct 

configuration and twice the energy of the B  =  1 skyrmion,

V = E B = t - 2E B = u  (2.2.3)

in the asym ptotic limit is given by

v { F l t )  =  2 C { H - - n f . - ^ h  { e e 4 )
I r 12 I

where C  is a positive constant and r 12 =  x,\ — x2. This potential represents the

asym ptotic one pion exchange potential between the two skyrmions, which in the
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zero pion mass limit considered here, goes w ith the inverse separation distance 

cubed. This is indeed similar to the form of the nucleon-nucleon tensor potential.

Equation (2.2.4) for the potential, shows th a t the tensor force between two 

well separated hedgehogs is optim ally a ttractive  when the conditions a 2 =  1 and 

a .r12 =  0 are satisfied. To understand  the non-isotropic nature  of the  poten­

tial, one should note th a t the p roduct ansatz (2.2.2), represents two hedgehog 

skyrmions relatively ro tated  about the axis a, by an angle 9 , w ith | a |=  s in (0/ 2). 

Thus, the optim al relative isospin orientation condition, corresponds to the two 

hedgehogs being relatively ro ta ted  about an axis perpendicular to their line of 

centre, by an angle 7r. The resulting configuration has the n  fields of the hedgehog 

centred on pointing radially outw ards, while those of the hedgehog centred 

on x 2 point radially inwards, having been ro ta ted  through an angle nr, about 

an axis perpendicular to x\  — x2. This configuration of hedgehogs is such th a t 

their respective fc fields m atch sm oothly along their line of centre and this non­

frustra ted  arrangem ent minimises the 7r field gradients and hence optimises the 

attraction .

We shall later see th a t the detailed non-isotropic s tru c tu re  of this potential 

has been used to construct optim ally a ttractive  arrangem ents of hedgehogs [14], 

in order to deduce optim al rarified crystaline arrays of skyrmions. Since this is 

the starting  point from which we shall proceed to study dense crystaline m atter, 

the subject of the next chapter, we shall at this point note only th a t the sign of 

this potential depends entirely upon relative isospin orientation of the hedgehog
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fields and is thus strongly anisotropic.

Skyrm e’s asym ptotic result (2.2.4), employing the product ansatz (2.2.2), has 

since been extended using numerical techniques to give the poten tia l (2.2.3) a t 

all separations [15]. These studies revealed the skyrm ion-skyrm ion po tentia l to  

give a reasonably successful description of the phenomenological nucleon-nucleon 

potential.

In the small separation limit, the product ansatz (2.2.2) is no longer valid 

due to significant field distortion and an alternative description for the  B  — 2 

configuration is certainly required. Thus Verbaarschot et al [16] were led to  solve 

directly, for the exact minimal energy, B  =  2 configurations a t all separations, 

using a num erical relaxation technique. They found the m inim al energy field 

configuration occurred at a separation at which the overlap of the hedgehog 

fields would be large. It was realised [17] th a t a finite reflection sym m etry of 

the  pion fields a t large separations becomes a continuous axial sym m etry of this 

m inim al energy configuration. The appearance of new sym m etries as the density 

of skyrmion m atter is increased to its optim al configuration over and above th a t 

of the well separated skyrmion configuration, has since been seen to  be the rule 

ra ther than  the exception. While a t large separation for the B  = 2 configuration, 

an  identification of two individual skyrmions is valid, this is not so for the m inim al 

energy field configuration. Here bo th  skyrmions completely lose there identity 

as a consequence of their close proxim ity and as a result of the substantia l field 

deform ations this involves.
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These additional sym m etries are im portan t in themselves, due to  the addi­

tional restrictions they place upon collective coordinate semi-classical quantiza­

tion of the zero modes of skyrmions and result in selection rules for the ir quantum  

states. Thus, in the B  =  2 case they were shown to result in the appearance of 

a non-degenerate ground sta te  w ith the quantum  num bers of the deutron  [18]. 

However, the binding energy of this ground state  was found to  be unrealistic, 

as was expected, due to the naive semi-classical quantization of only the zero 

modes of the classical solution, which neglects the im portan t degrees of freedom 

describing nuclear break up. In order to overcome the restric ted  n a tu re  of this 

quantization procedure, it is necessary to identify the degrees of freedom for 

nuclear separation. However, due to the non-renorm alisability of the Skyrme 

Model, a semi-classical quantization procedure is still required.

Hence Atiyah and M anton [19] have recently developed a technique by which 

a non-trivial truncation of a skyrm ion field’s infinite num ber of degrees of freedom 

is possible. Their procedure of integrating over tim e lines for instanton fields in 

four dimensional Euclidean space, leads to non-trivial field configurations which 

are not m inim al energy solutions. However, in both  the  B  = 1 and B  — 2 sectors 

their param etric forms give good approxim ations to  the true  m inim al energy 

field configurations, possessing all the known sym m etries of the true  solutions. 

Moreover, their param etric B  — 2 configuration is capable of representing the 

m inim al energy configurations a t all separations and hence nuclear break up. 

U nfortunately, their techniques become highly complex in the higher baryon
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num ber sectors and their construction was based on the numerically discovered 

sym m etries of the true  field configurations. But it does now seem possible th a t 

a realistic evaluation of the binding energy of the B  =  2 ground s ta te  will be 

possible and th a t in this sector the true  economy of the Skyrme Model description 

will be realised, incorporating a description of both  the bound s ta te  system  and 

nuclear collisions.

Recently Carson et al [20] found num erical m inim al energy B  =  3 ,4 ,5  and 

6 solutions and found these also to  have a significant binding energy relative to 

isolated skyrm ion configurations of the same baryon number. These fields also 

possess a high degree of symmetry, as revealed by the baryon density plots given 

by Carson et al. One thus expects th a t these fields may lead to  a description of 

their corresponding baryon num ber light nuclei.

2.3 A Sim ple M odel Of Dense Skyrmionic M atter

Given the successes of the Skyrme Model as described here, it is n a tu ra l to try  

and discover w hat its predictions are for infinite baryonic m atte r systems. In 

particu lar, regular static  crystalline arrays of skyrmions have been investigated 

and the results reveal new forms of baryonic m atte r at high densities. Since 

the classical spherical hedgehog skyrmions contain nucleons, deltas and higher 

resonances, whose properties are obtained by projecting out the relevant spin and
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isospin content, it is interesting to see w hat the Skyrme Model predictions are 

for dense baryonic m atter. Due to economical dual description of bo th  baryonic 

struc tu re  and baryonic interactions, the model presents a means of describing the 

radical changes which occur when the density of baryonic m atter is increased. 

The subject of C hapter 3 will be to review the results of these calculations and 

to present our own result for an fee arrangem ent of skyrmionic m atter.

An im portant insight into the nature of dense skyrmionic m atte r has been 

gained with the realisation of a simple alternative and com plem entary model of 

dense baryonic m atter to th a t of the flat space arrays.

The flat space static array  calculations we shall later review, require one to 

solve numerically for the m inim al energy field configuration at a given average 

baryon density. For these arrays, a set of twisted periodic boundary conditions 

are imposed and the resulting m inim al energy fields can be generated by la t­

tice translations from the solution w ithin a representative unit cell. Even so 

these calculations are tedious, it being technically difficult to obtain  converged 

solutions.

The complementary model initiated by M anton[2l] of dense baryonic m atter, 

replaces flat physical three dim ensional space by a three sphere . Now a skyrm ion 

is a m apping of a three sphere of radius T, S^hy(L),  onto a three sphere, Sfso, 

of radius one. Due to the sim ilar shapes of both the dom ain and target spaces, 

m athem atical results are sim pler to obtain  than  for flat space arrays and analytic 

solutions are even possible. The analogue of the average baryon density variable
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for flat space arrays on Sphy(L ), is given by B / 2n 2L 3 for a s ta tic  solution of 

winding num ber B  and thus for a given baryon num ber we can find solutions 

a t all average baryon densities by varying the radius L , of this sphere. A single 

B  — 1 skyrm ion on S^hy(L) will have a self interaction due to  the  curvature of 

space and this is believed to give a good model of the  interactions of skyrmions 

w ithin flat space crystalline baryonic m atte r. This will also be tru e  in the higher 

baryon num ber sector on S^hy(L).

The results of calculations w ithin bo th  the B  = 1 and B  = 2 sectors have 

indeed been shown to  have rem arkable sim ilarities to those obtained  num erically 

for flat space arrays. Of course, even though analytical results are possible w ithin 

the B  = 1 sector, direct physical results are not possible w ith this sim pler model 

since real physical space is flat no t spherical.

For the m om ent we shall describe the B  — 1 sector results on S^hy(L) and 

leave the drawing of parallels w ith the physical flat space arrays until we present 

results in the next chapter.

The Skyrme M odel’s static  energy functional on Sj)hy(L) in M an ton ’s dimen- 

sionless units[21] reads,

E  =  f s \  (l ) d V ^ i i K i ’ + (*-9.1)

where gij are the com ponents of the  m etric on Sphys(L),  w ith t , j  running from  1 

to 3 and

K i j  = di<f)adj(j)a, a =  1 ,2 ,3 ,4  (2.3.2)
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where the dimensionless fields satisfy the constraint (f)a4>a =  1. In equation (2.3.1) 

dV  is the m easure on S^hy(L). The dimensionless units of length and energy 

can be related to physical units by rescaling the dimensionless energy unit by 

/*■/2e =  5.92M e V  and the dimensionless length unit by l/e /V  =  0.561 fermi. 

Using the standard  extension of polar coordinates for physical space,

0 < / u < t t ,  O< 0 , < £ < 2 t t  (2.3.3)

the metric components, , are diagonal w ith elements,

g = (L2, L 2 sin2 /i, L 2 sin2 / i sm 2 0). (2.3.4)

The B  =  1 field configuration we shall assume to be of the hedgehog form. This

gives,

(jP =  COS f(fl)

(j)1 =  sin f(fj,) cos 0

<f>2 =  sin f (n)  sin 0 cos <j)

<f>3 =  sin f (n)  sin 0 sin <f>. (2.3.5)

In order to ensure the hedgehog has winding num ber one, we have the boundary 

conditions for the profile function

/ (o )  =  0, / ( 7r) =  7r. (2.3.6)

The m atrix  Kij  is now diagonal w ith elements

K  = ( f 2, sin2 / ,  sin2 / s i n 2 0), (2.3.7)
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where /  denotes the derivative of /(/x) w ith respect to fj, and hence the static 

energy functional takes the form

9 sin2 / ,  sin2 f  . • - sin2 / , ,  . ,
E( f )  = 4tt / d/xsin /x{£(/ +  2^ —) +  . -5 (2/  +  )}, (2.3.8)

Jo sin /x L sin  fi sin /x

where we have perform ed the trivial 9 , <f> integrations. The Euler Equation for

the m inim al energy hedgehog field is obtained from a functional variation of E ( f )

with respect to / ( a x )  and is

, » sin2 / , "  oSin2u* s in 2 /  ■, s in 2 / . , ,  sin2 / ,  , ,
(L + 2 —r-)f  +  +  T T 1 /  -  - r /  i  +  (Z-Msin /x sin /x sin fi sin /x sin fj.

Exam ination of this Euler Equation, which is an ordinary second order differential

equation, reveals th a t th a t there exists a trivial solution

/ ( A x )  =  M  (2.3.10)

at all values of L.  This solution is the trivial m apping of S 3ky(L) onto 5 t?0(l). 

The energy (2.3.8) of the trivial m ap is then given by

E  =  Qn2(L  +  y ) .  (2.3.11)
L

This a tta ins a minim um  energy a t L —  1, when it is simply the identity m apping, 

of two three spheres of radius one, which saturates the lower bound w ith a value of 

the energy 127T2. This completely delocalised solution has the full 0(4) sym m etry 

of the Skyrme Model and is an isometry of S 3.

The baryon density for a hedgehog skyrmion is given by

^ n /  v 1 sin 2  f  •B°(n) =  ir-2TZ - \ />  {e-s.ieL 6 sin /x 
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which for the trivial m ap (2.3.10), reduces to 1/27r2L 3 and is a constant over phys­

ical space. Thus, on a three sphere the trivial skyrmion represents a completely 

delocalised baryon over the whole of space.

As the radius of physical space is increased beyond one, the energy of the 

trivial solution (2.3.11) grows, becoming linear a t large L.  At infinite volume 

the trivial solution thus has infinite energy. At some interm ediary volume, this 

solution, which is an absolute m inim al energy solution a t L  — 1, might be ex­

pected to become unstable w ith respect to another solution which does have a 

finite energy in the infinite volume limit and which would correspond to the flat 

space hedgehog as the curvature of physical space becomes zero in this limit.

This is indeed the case and it as been dem onstrated th a t the trivial m ap 

becomes unstable to a hedgehog solution of equation (2.3.9), above a volume 

corresponding to a critical value of L  =  L c = \ / 2 . The transition  at L = L c is 

of second order and instability of the trivial m ap has been shown to be due to 

the existence of infinitesimal conformal modes which are the paths of steepest 

descent in energy from the trivial m ap at L  = L c. Thus, up to  a volume of 

L  — \J2 , the trivial delocalised solution is a local m inim um  of energy and beyond 

this critical radius it is a local maximum. The local conformal modes result 

in the m inim al energy hedgehog solution beyond Lc, this becomes increasingly 

localised about one of the poles of Sphy(L) as L  increases. Thus, there are two 

hedgehog solutions in this region of L  corresponding to  localisation centred upon 

either pole. These two solutions are degenerate in energy and transform ed into
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each o ther by the  transform ation

f{f i )  ■-> 7T -  f ( w -  ti). (2.3.13)

In the  lim it of infinite volume the hedgehog skyrm ion is centred on one of the 

poles, being well localised and having a finite energy corresponding to  th a t of 

the flat space hedgehog [22].

The instability  of the triv ial m ap w ith respect to  infinitesim al conformal 

m odes, for values of L  g reater than  \ / 2 , in general produces a  localisation of 

the skyrm ion abou t any point on S*h (L).  However, the hedgehog form  (2.3.5) 

is only consistent w ith the skyrm ion localising about either pole and hence gives 

a two-fold degeneracy of localised solutions.

M anton [21] fu rther dem onstrated  th a t the trivial m ap solution on S 3phu(L) 

is an absolute m inim um  of energy for volumes of physical space less th an  or 

equal to th a t of the target th ree sphere. Beyond these volumes, for an arb itra ry  

space, this is no longer the case, as we shall dem onstrate  in C hapter 4 when 

we investigate the effect of generalising the shape of this sphere. The global 

stab ility  of the triv ial m ap up to the critical volume for the sphere is however, 

still a realistic possibility which up until now has not been dem onstrated.

These results show th a t dense baryonic m a tte r undergoes a localising-delocalising 

phase transition  a t some critical baryonic density. The phase transition  described 

here is of second order and of the s tandard  ‘pitch fork’ type. Here of course, the 

term  ‘phase tran s itio n ’ is some w hat m isleading, since we are only considering



the  potentia l energy surface generated by varying the average baryon density and 

have not included kinetic effects. Since all our results are thus a t zero kinetic 

energy, there is no tem peratu re  involved and stric tly  speaking this is not a phase 

transition .

Sim ilar results were also found for the B  = 2 [23] sector of this m odel, w ith  a 

second order phase transition  occurring a some critical radius and the low density 

phase having two spherical skyrm ions centred on opposite poles of the sphere.

These phase transitions have been in terpreted  as representing the  resto ration  

of Chiral Sym m etry a t high densities [24], in the sense th a t for bo th  the B  — 1 

and 2 system s the average values of the sigm a field < a > and pion field <  n > , 

are zero in the high density phase. This in terpre ta tion  was fu rther justified 

by the observation th a t for the B  — 1 solutions a t the transition  point, the 

form ation of the high density phase is associated w ith the disappearance of the  

three Goldstone modes.

This simple model thus provides us w ith an insight in to the n a tu re  of the 

different forms of baryonic m a tte r a t high densities which the Skyrme M odel 

predicts. Indeed, for flat space arrays of skyrm ions, sim ilar delocalising phase 

transitions have been discovered as we shall describe in C hapter 3.

Recently W irzba et al [25] obtained analytically, the com plete m ode spec­

tra  for the B  =  1 trivial background field. Moreover, the  classification of the 

modes for the localised B  = 1 background was given and these m odes were cal­

culated numerically. This developm ent enables one to  fu rther understand  the
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effective degrees of freedom of dense skyrmionic m atte r and gives the possibility 

of perform ing finite tem perature  calculations for dense skyrmionic m atter.

i
Iit\tti
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C H A P T E R  3

D E N S E  SK Y R M IO N IC  M A T T E R  

IN  A  CRYSTALLINE FO R M

3.1 M ulti-Skyrm ion Crystals

In C hapter 2 we have seen th a t the Skyrme M odel provides a topological de­

scrip tion of a generalized classical baryon which is bo th  elegant and  physically 

reasonable, w ith m axim um  discrepancies of around 30%. M oreover, the  large 

N c expansion of Q .C .D ., suggests th a t one loop corrections to  these classical 

results will be of order 1/ N C and w ith the physical value of N c being 3, these 

discrepancies seem reasonable a t the classical level.

This description of baryons was also seen to  lead to  a skyrm ion-skyrm ion po­

ten tia l, possessing m any of the salient features of the  phenom enological nucleon- 

nucleon po ten tia l [l][2]. Moreover, w ithin the  B  =  2 sector, the  existence of a 

ground sta te , w ith the  quantum  num bers of the deu tron , has also been dem on­

s tra ted  [3], though the stability  of this bound s ta te  has yet to  be conclusively 

established. It has even been suggested by Carson et al [4], th a t  the  model offers 

the possibility of describing the B  = 4 ,5  and 6 light nuclear system s, the classical 

skyrm ion solutions having already been calculated numerically.
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These successful developm ents in the application of the  Skyrme M odel to  

light nuclear system s have been m irrored by progress w ith in  the  realm  of infinite 

baryonic m a tte r  system s. Indeed, it is n a tu ra l to believe, th a t  w ith in  th is  sphere 

the  m odel m ay provide an economical description of infinite baryonic m a tte r  and 

th a t it may provide a  description of heavy nuclei or neu tron  s ta r  m atte r.

The economy of the  description offered by the  Skyrm e M odel for such system s, 

follows from  the m anner in which bo th  the s tru c tu re  and interactions of baryons 

are placed on a sim ilar footing from  the outset. For infinite baryonic m a tte r, this 

provides the opportun ity  of describing the  radically  different forms of baryonic 

m a tte r  expected to  exist a t high and  low densities.

In C hap ter 2 we also discussed M anton’s [5] results for a skyrm ion on Syhy(L) 

and  this revealed two distinct forms of skyrm ionic m a tte r th a t  exist a t high and 

low average baryon density. At low densities the skyrm ion’s baryon density is 

well localised abou t a point in space, while a t high densities it is com pletely de­

localised over the  whole of space. The economy provided by the  Skyrm e M odel’s 

description of baryonic m a tte r, results here in a single descrip tion of bo th  phases 

of m atte r. This would not have been the case had  two differing m odels been 

required  to  describe these two differing phases.

The insight gained from  the understand ing  of th e  sim ple Syhy(L) m odel, has 

provided a fu rth er insight, by which m any of the  features of the  num erically 

obtained  flat space array results have been in terpreted . It thus appears, th a t 

there  exist ‘universal’ features of dense skyrm ionic m a tte r  which are com m on to
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bo th  the crystalline and Syhy(L) environments.

The beauty  of the Syhy(L) model of skyrmionic m atte r is its simplicity, en­

abling one to  obtain analytical results which have subsequently revealed the 

existence of a second order phase transition  and this is due to  the presence of a 

local conformal instability. An analogous conformal instability in flat space has 

also been proposed, in order to explain the existence of an analogous transition  

from a condensed to an uncondensed array of skyrmions and we shall see later 

th a t this proposal would seem to have been numerically justified.

Klebanov [6] pioneered the a ttem pts to construct infinite arrays of skyrmionic 

m atte r and recently this field has a ttrac ted  increased atten tion . His model was 

based on the belief, th a t a classical array of crystalline skyrmions might describe 

the dense neutron m atter which exists a t the core of a neutron  star.

The idea th a t dense neutron m atte r has a crystalline form was proposed by 

Sm ith et al [7]. They investigated a  pion condensate model of a neutron s ta r and 

suggested th a t a t short distances the dom inant forces of interaction w ithin dense 

neutron m atte r are the tensor force and hard  core repulsions between neutrons. 

This tensor force is strongly anisotropic and for an optim al spin configuration is 

attractive. Thus, a crystalline array of neutrons, w ith an optim ally arranged spin 

configuration, will enhance the size of the tensor a ttraction . However, w ithin a 

disordered system , the tensor force experienced by a neutron  will be averaged 

out to zero. Thus, the tensor force strongly prefers an ordered configuration of 

neutrons to a disordered neutron superfluid, while hard  core repulsion cannot
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distinguish between the two. However, the high quantum  zero point energy, 

associated w ith a crystalline array of localised neutrons, will work against the 

form ation of such crystalline m atter.

Klebanov was thus led to consider an infinite cubic crystalline array of skyrmions, 

based in p a rt on the cubic array of neutrons proposed by Sm ith et al. It is 

no t however possible within this model, to estim ate the  effect of the  zero point 

m otions of skyrmionic m atter, due to the non-renorm alisability of the Skyrme 

Model.

The asym ptotic form of the tensor potential between two skyrmions is highly 

anisotropic and their topological natu re  enforces strong repulsive forces a t high 

densities. Hence we see, th a t the two dom inant nucleon-nucleon interactions in 

neutron m atte r have analogies w ithin the Skyrme Model a t the classical level.

The argum ent th a t led Klebanov to deduce the s truc tu ra l form th a t an in­

finite array of skyrmions should take, was based upon the insights which had 

previously been gained from the understanding of the interaction between two 

B  =  1 hedgehogs a t large separations.

As we have already mentioned, Skyrme [8] deduced the analytic form  of 

the asym ptotic tensor potential between two B  = 1 hedgehogs. Klebanov re- 

expressed this in the form given in C hapter 2, (2.2.4). This expression reveals 

the anisotropic na tu re  of the tensor potential. The resulting optim al arrange­

m ent of two hedgehogs is one in which their respective pion fields are relatively 

iso-rotated about an axis lying in a plane perpendicular to their line of centre by
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an angle n.

Thus, in order to  picture this arrangem ent, we imagine th a t bo th  B  = 1 

hedgehogs are s itua ted  on the x  axis and located a t x = ± 00. Presum ing th a t the 

one at x = —00 is un ro ta ted  and thus has its pion field pointing radially outwards 

from  its centre, the optim al field configuration has the pion fields of the hedgehog 

located a t x  =  + 00, iso-rotated about an axis lying in the (x , y) plane through an 

angle 7r. W ithout loss of generality, we can choose this axis to be the z  axis, then 

the hedgehog at x  =  +00 has its pion field in the (x ,y) plane pointing radially 

inwards, while along the line parallel to  the z  axis, which passes through its 

centre, its pion field points outwards. Thus, on transversing the ar-axis from the 

centre of the hedgehog located at x  — —00, to the centre of the hedgehog located 

a t x  =  + 00, the pion field on this axis flows in the positive x  direction. Thus, 

this optim al arrangem ent has the pion fields of these two hedgehogs relatively 

non-frustrated . All o ther non-frustrated optim al arrangem ents of two hedgehogs 

are related to this configuration by a com bination of constant global space and 

iso-space rotations. These rotations leave the Skyrme Lagrangian invariant and 

are thus sym m etry transform ations of a skyrm ion field.

Klebanov realised th a t it was reasonable to assume th a t a t low densities 

Skyrmionic m atte r is composed of well separated spherical hedgehogs. This be­

ing the case, an optim al orientation arrangem ent of these hedgehogs will give 

an asym ptotic tensor interaction which is a ttractive  and will thus result in the 

skyrm ion array having significant binding.
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In order to construct optim al arrays of skyrmions, it is useful to imagine 

placing hedgehogs a t the points of an infinite lattice. In this way, Klebanov 

deduced th a t in order to  maximise this binding, one should dem and th a t nearest 

neighbouring hedgehogs be optim ally orientated. The pion fields of neighbouring 

hedgehogs will run  sm oothly in to  each other and neighbouring hedgehogs will 

have their pion fields relatively non-frustrated.

To illustrate  this, let us first consider a simple cubic array of skyrmions. We 

choose a particu lar lattice point to define our origin and the lattice spacing to be 

a. At each point on the lattice there is situated  a hedgehog, which at the origin 

we choose to  be unro ta ted  so th a t its pion field points radially outw ards. We 

shall now consider those hedgehog skyrmions located on points w ithin the  plane 

z = 0 . If we move to the hedgehog located at the point (a, 0 ,0 ), we should require 

th a t the pion field of this hedgehog be iso-rotated about an axis lying in the  (y, z) 

plane by an angle 7r, in order to produce a non-frustrated pion field arrangem ent 

along the x  axis. W ithout loss of generality, we choose a t this point th a t the 

hedgehog be ro ta ted  about the z  axis by an angle 7r. On moving along the  line 

x — a, from the point (a, 0,0) towards the point (a, a ,0 ), the pion field will flow 

in the negative y direction. Thus, the hedgehog located a t the point (a, a ,0) 

should have its pion field either iso-rotated about the y axis or be unro tated . In 

either instance, its pion field along the line x — a will flow outw ards from its 

centre a t the  point (a ,a ,0 )  in the y direction and the resulting pion fields of the 

hedgehogs a t (a, 0,0) and (a, a ,0 ) will be relatively non-frustrated.
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Thus, we see th a t there  are two choices of ro ta tion  axis a t the point ( a ,a ,0) 

which result in a relatively non-frustrated  arrangem ent of the pion field of the 

hedgehogs located a t the points (a, 0 , 0) and (a, a, 0). If we choose the  axis 

of ro ta tion  to  be the y  axis, then  on moving along the  line y = a, from  the 

point (a, a, 0) towards the lattice point (0 , a , 0), the pion field of the  hedgehog at 

(a, a , 0) will flow inwards along the line y = a and thus the hedgehog a t (0 ,a , 0) 

should have its pion fields pointing outw ards along this line. However, on moving 

from  the un ro ta ted  hedgehog at the origin to the point (0 , a , 0), the pion field 

flows in the positive y direction and hence, a t the point (0 , a, 0) they should flow 

inwards. Thus, the hedgehog at (0 ,a , 0) should have its pion field on the line 

y = a pointing outw ards, while on the y-axis they should be pointing inwards. 

Hence, a t the point (0 , a, 0), the hedgehog pion fields m ust be iso-rotated about 

the x-axis by an angle 7r, in order th a t its pion field be non-frustrated  relative to 

the pion fields of the other hedgehogs a t the origin and the point (a, a, 0).

In Figure (3.1.1a) this arrangem ent has been depicted and we have indicated 

the direction of the axis a t each of the lattice points for th is square p laquette  

in the positive (x,y) plane at z — 0 , about which the hedgehog a t th a t point is 

iso-rotated by an angle 7r. We have indicated, th a t the pion fields of the hedgehog 

located a t the origin are unro ta ted  and point radially outw ards, by drawing a 

circle a t the origin. This figure shows clearly for an optim al arrangem ent, th a t 

moving to a neighbouring lattice point involves an iso-rotation about an axis 

perpendicular to the direction we move in by an angle 7r.
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F igu res  (3.1.JLa) am i (3 .1 .1b ):  Non-frustrated arrangement of four hedgehogs 
in I,ho 2  -- 0 plane, on the vertices of a square plaquctte. Arrows indicating Uie 
rotation axis about which tin' pion holds of the hedgehogs are iso-rotated by an 
angle n.



The alternative choice for an unro tated  hedgehog at the point (a, a ,0 ) , re­

quires th a t the hedgehog located a t the point (0 , a, 0) have its pion field flowing 

inwards along the line x = a and inwards along the y-axis. Hence, the hedgehog 

at the  point (0 , a , 0) will have its pion fields iso-rotated about the z  axis by an 

angle 7r. This arrangem ent is indicated on Figure (3.1.1b).

These two arrangem ents, of four hedgehogs around a square p laquette, w ith 

neighbouring hedgehogs having their pion fields relatively non-frustrated , are 

essentially unique. O ther optim al arrangem ents will be related to these two 

arrangem ents by global spatial and iso-spatial rotations.

To simplify m atters, we assume th a t the relative pion field arrangem ent th a t 

we choose w ithin a p laquette, is repeated in all successive p laquettes in the (x, y ) 

plane and th a t no mixing of these two arrangem ents occurs. In this m anner, 

we see th a t a neighbouring plaquette will be related to  the original by a global 

ro ta tion , in such a way th a t they are the sam e on the line on which they meet. 

Hence, on translating  the plaquette of Figure (3.1.1a), by a lattice spacing a in 

the x direction, we require th a t the pion field w ithin the p laquette be iso-rotated 

about the £ axis by an angle 7r, while a translational along the y axis involves an 

iso-rotation about the x  axis by an angle ir.

For the p laquette  arrangem ent in Figure (3.1.1b), a lattice translation  of a 

distance a, in the x  or y directions, will involve an iso-rotation about the z  axis 

through an angle 7r.

We now consider the lattice point (a, 0 , a). For bo th  of our p laquette  arrange­
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m ents in the (x, y) plane, we have to choose, for a hedgehog located a t the  point 

(a, 0 ,a ) , to  iso-rotate about an axis lying in the (x ,y ) plane by an angle 7r. We 

have also to  make the sim ilar choice a t the point (0 , 0 , a) and these two axes 

should be chosen such th a t they are perpendicular to  each other.

For p laquette  (3.1.1a) however, for the  hedgehog located a t the point (a, a, a), 

we have to choose either no t to  iso-rotate its pion field or, to  iso-rotate its pion 

field about the  2-axis by an angle n and sim ilarly a t the poin t (0 , a, a). Choosing 

to iso-rotate the pion field abou t the 2-axis, a t the  point (a, a, a), requires th a t a t 

the point (0 , a, a), we choose an u n ro ta ted  hedgehog in order to avoid frustra tion  

of the respective hedgehog’s pion fields. B ut a t the point (0 , 0 , a), we m ust make 

the choice of the x-axis to iso-rotate abou t and finally, a t the point (a, 0 , a), we 

m ust choose to  iso-rotate abou t the  y-axis. In this way, th is arrangem ent ensures 

th a t all pion fields are non-frustrated  as we move along the  edge of the  cube and 

this arrangem ent is illustrated  in Figure (3.1.2a)

The alternative choice a t the  point (a, a, a) of an un ro ta ted  hedgehog, also 

results in a unique arrangem ent in a sim ilar m anner and is shown in Figure 

(3.1.2b)

The first of these cubes, Figure(3.1.2a), has on the face lying in the x =  0 

plane, a pion field arrangem ent which is sim ilar to th a t indicated in Figure 

(3.1.1b) in the 2 =  0 plane. Thus, th is arrangem ent is related  by global spa­

tial and iso-spatial relations, to  the  arrangem ents which resu lt from  this choice 

of base p laquette  in the (x, y) plane.
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(a')

Cb)

Cc)

F igu res  (3 .1 .2 a ) ,  (3121)) and (312c): Non-frustrated arrangement of oiglit 
| hedgehogs at the ver t ic e s  of a cuhe. (a) and (c) correspond to the Jackson of al
j  arrangement and (b) corresponds to the Klebanov arrangement.(
ii
}
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The second of the arrangem ents, indicated in Figure (3.1.2b), corresponds 

to  the cubic cell arrangem ent considered by Klebanov, if we assum e translation  

sym m etry in the 2-direction. Thus, a translation  of a in the 2-direction will 

involve an iso-rotation about the y axis by an angle 7r.

For the second choice of the x , y  base p laquette, Figure (3.1.1b), we have 

an infinite variety of possible options for orientation of pion fields w ithin the 

plaquette  in the z  = a plane, all of which would be relatively non-frustrated . The 

Jackson [9] choice is shown in Figure (3.1.2c). This generalisation of the  Jackson 

arrangem ent, can be generated from Jackson’s arrangem ent, by perform ing a 

global iso-rotation on the pion fields about the z  axis by an  angle $, for all those 

hedgehogs w ithin the plaquette lying in the z =  a plane.

To see this, consider the relation between the two neighbouring layers parallel 

to  the (x ,y)  plane. This relation is such th a t the pion fields along the  edges of 

the cube, parallel to the 2-axis, point upwards. Thus, w ithin the ( x , y )  planes at 

2 =  0 and 2 =  a, we are free to ‘globally’ iso-rotate the hedgehogs w ithin these 

planes about the 2-axis, w ithout breaking the condition of non-frustration  of the 

pion fields along lines of centre. These other lattice arrangem ents appear to have 

gone unnoticed and  thus, have so far not been investigated.

Having fixed the relative field orientation w ithin one cubic cell, for simplicity 

we choose to dem and the whole lattice be generated from successive repetitions of 

these representative cells by lattice translation  and corresponding iso-rotations. 

This translation  symmetry, coupled to  iso-rotations, can be expressed as a set
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of tw isted  boundary  conditions which relate the pion fields w ith in  neighbouring 

cells. These conditions shall be given in the next section.

As an a lternative  to a cubic array, an fee array, w ith its increased num ber 

of nearest neighbours to  twelve, has been investigated. Once m ore we can con­

s tru c t this arrangem ent in a sim ilar m anner. We shall prove th a t there  is only 

one unique arrangem ent which satisfies K lebanov’s condition of relative non­

fru stra tio n  of the pion field of nearest neighbouring hedgehogs.

We choose our hedgehog a t the origin to  be u n ro ta ted  and so its nearest 

neighbours in the  positive o c tan t are located a t the  points r\ =  ( a / 2, a / 2 , 0), 

r  2 =  ( a /2 , 0 , a / 2) and r3 =  (0 , a / 2 , a / 2). In itially  we shall consider ju s t this 

oc tan t. T he pion fields of the hedgehogs, located a t the  point r,-(i =  1 ,2 ,3 ), will 

be iso-rotated by an angle 7r, about an axis a t (« =  1 ,2 ,3 ) , chosen such th a t it

A

satisfies the non-frustration  condition at .r, =  0 , w here rt is the  position vector of 

the  point r t .

Thus, the  pion fields of the hedgehog at the  origin are relatively non-frustra ted  

to  the  pion fields of its nearest neighbours a t the  points rt-. However, all these 

nearest neighbours of the hedgehog at the origin, are also nearest neighbours to 

each other. Thus, we require th a t the pion fields of these th ree  hedgehogs are also 

relatively non-frustrated  to  each other. In order to  establish  the  generalisation of 

K lebanov’s non-frustration  condition, for the pion fields of two skyrm ions which 

are bo th  iso-rotated, we m ust u n ro ta te  the pion fields of one of the  hedgehogs, 

while keeping their relative orientations fixed. Thus, we perform  a global ro ta tion
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on all four of these hedgehogs, such th a t the hedgehog at becomes unro tated .

A

T h a t is to say, we perform ed an iso-rotation about the axis at , through an angle 

7r, on the pion fields of all four hedgehogs. To deduce the new direction of the 

iso-rotation axis, after perform ing this global iso-rotation of the hedgehog located

A

a t r 2, we need to observe th a t under a global ro ta tion , about an axis a by an 

angle 6 , a skyrm ion field U is transform ed to

(cos0/2  +  id.TsmO/2)U(cos 9/2 — ia .Tsm9/2) .  (8.1.1)

Hence, if 0 = 7r we have th a t,

U !—► a.rUf .d.  (3.1.2)

Since before we perform  the global ro tation , the hedgehog a t the point r 2 has its 

pion fields iso-rotated about the axis a 2, we should consider the expression,

A A A A A A

(a ! .f ) (a 2.f) =  (di .a2) +  i(ai  x a2).r, (3.1.3)

in order to deduce its new axis of iso-rotation. We then  see th a t we have two 

possibilities. Since the hedgehog a t r2 m ust now be non-frustrated  relative to  the 

unro ta ted  hedgehog at r l3 it m ust be iso-rotated about some axis by an angle

A A

7r. Therefore, from  (3.1.2) and (3.1.3), we deduce th a t a i .a 2 =  0 and th a t the

A A

pion fields of the hedgehog located a t r 2 are now ro ta ted  about the axis d\  x a 2. 

We can sim ilarly deduce th a t the non-frustration condition, for the  pion fields of 

the  hedgehog located at the point r 3, relative to the pion field of the unro ta ted  

hedgehog located a t the point r i, leads to the condition d\ .d3 =  0 and th a t the

62



A A

axis of iso-rotation of the pion field of the hedgehog located a t r 3, is ai X <z3.

A

Since the un ro ta ted  hedgehog at the origin is now ro ta ted  about the axis a 1? we 

again have the relative non-frustration condition a i .r i  =  0 , for the  pion field of 

the hedgehog located at the origin and a t the point rx.

A A A

These conditions imply th a t the vectors a l 5a 2 and a 3 form a m utually  or­

thogonal set of unit vectors. We require one further subsidiary condition. After 

perform ing the global iso-rotation, the pion field of the hedgehog located a t r 2

A A

is iso-rotated about the axis ai x a 2 and the pion field of the hedgehog at r\  is 

unro ta ted . Therefore, in order for the pion fields of these two hedgehogs to  be

relatively non-frustrated , the following condition m ust be satisfied,

(ai x  a 2).(r2 -  ri) =  a3.(r2 -  r i)  =  a3. ( - y  +  z) =  0 . (3.1.4)

However, before we perform ed this global iso-rotation, we deduced th a t =  0 

(for i =  1, 2,3 ), from  which we have, th a t

£3. $ + 5 )  =  0. (3.1.5)

  A A

Thus, from equations (3.1.4) and (3.1.5), we deduce th a t a3 =  x.  Similarly we

A A A A

can dem onstrate th a t a2 =  y and ai =  z.

Hence, we have proven th a t there exists one unique arrangem ent of four neigh­

bouring hedgehogs which satisfies K lebanov’s non-frustration  condition for the 

pion fields of all four neighbouring hedgehogs and this arrangem ent is indicated 

in Figure (3.1.3a).
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Figure's ( ‘3.JL3a) and (3 .1 .3 b ) : (a)-INon-frustrated arrangement of four skyrmions 
in a representative cell of I. lie lee lattice. (b)- Non-frustrated arrangement of 
hedgehogs within the hce array, The figure shows eight adjacent bcc cubes.



From  this unique arrangem ent of four hedgehogs we can generate the full fee 

lattice. A lattice translation  by a, along the ( x , y  or z) axes, will no t involve an 

iso-rotation and thus, this fee cube generates the full fee array by a trivial lattice 

transla tion  along the lines parallel to the coordinate axes. This four skyrm ion 

arrangem ent w ithin a representative cubic cell, shown in Figure (3.1.3a), forms 

an octan t quadrant of the full fee cube. This arrangem ent was proposed bo th  by 

us [10] and independently [11] [12].

Finally it was discovered th a t a bcc array of optim ally orientated hedgehogs 

could be constructed [10] and this arrangem ent is indicated in Figure (3.1.3b). 

Here we have indicated the orientations of the hedgehogs located a t the  points of 

the eight neighbouring bcc cubes. Focusing on the un ro ta ted  hedgehog, located 

at the point (3a/2 , a /2 ,3 a /2 )  a t the centre of a bcc cube and where a is the 

length of the bcc cube, we see th a t its eight nearest neighbours a t the  vertices 

of this cube, are alternately iso-rotated about the (x  -f y)y/ 2 and (x  — y ) V 2  axes 

by an angle ir. Thus, the pion field of the hedgehog at the  centre of this cube, 

which points radially outwards from its centre, m atches sm oothly those of the 

eight ro ta ted  hedgehogs a t the vertices. The neighbouring bcc cube, in the x  or 

y direction, will have the same relative orientation of hedgehogs. However, th is 

lattice translation  involves an overall iso-rotation about the  z  axis, by an angle 

7r.

This bcc arrangem ent is related to  the fee arrangem ent shown in Figure 

(3.1.3a) by an expansion of \/2  of the bcc lattice along one of its coordinate



axes. To see th a t this is indeed the case, the  Figure (3.1.4a) indicates the ori­

en tations of the twelve nearest neighbours of an u n ro ta ted  hedgehog w ithin the 

fee array. Here, the coordinate axes are those we chose to  describe the  fee ar­

rangem ent. Now consider the u n ro ta ted  hedgehog a t the  point (3 a /2 , a / 2 , 3a/2) 

w ith in  the bcc lattice, Figure (3.1.3b). In F igure (3.1.4b) we have depicted this 

hedgehog’s eight nearest neighbours lying in the  x  = y  and x = — y  planes in 

the  bcc coordinates. We have also indicated the  positions and  orientations of the 

four next nearest neighbours lying w ithin the  plane parallel to  the  ( x , y )  plane 

located a t z  — 3 a /2, each of which is iso-rotated abou t the  z  axis by an angle 

7T. On expanding this bcc arrangem ent by a factor \/2  along the z  axis and 

perform ing a triv ial global spatial ro ta tion  about the  z  axis th rough  an angle 

7 t / 4 ,  we find th a t the resulting arrangem ent is identical to  the fee arrangem ent 

depicted in Figure (3.1.4a).

In th is discussion of the various lattice arrangem ents of skyrm ions, we have 

denoted each lattice arrangem ent, according to the  nam e given to  the array 

of points a t which the skyrmions are located. Taking the  prim itive cell of this 

particu lar array, we can generate the whole skyrm ion crystal by com bining lattice 

transla tions w ith iso-rotations. However, alternatively, we can construct the tru e  

prim itive spatial lattice for each of these crystals, for which a sim ple lattice 

transla tion  would not involve an iso-rotation.

These spatial lattices simply correspond to  the elem entary cells of the crystal, 

which when repeated will produce the full la ttice and not require iso-rotations.



Y - -
i

*

F igures  (3 .1 .1a )  and (3 .1 .1b): (a)-Twelve nearest neighbours of an unrotated 
hedgehog within the fee array. (l») I'bght nearest neighbours and the four next 
nearest neighbours within the (:/:,//) plane, of an unrotated hedgehog within the 
bee array.
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Hence, it is simple to deduce, th a t for K lebanov’s arrangem ent, the prim itive

A A A  A A A  A A A

space lattice vectors are a(x  +  y — z), a(x — y +  z) and a(—x  +  y +  z).  Hence, 

the true  prim itive cell of the Klebanov simple cubic arrangem ent corresponds to 

th a t of a  bcc crystal.

For the Jackson cubic lattice, w ith its rectangular sym m etry, the spatial 

skyrmionic s truc tu re  gives the prim itive lattice vectors to be a(x  +  y),  a(x — y )

A

and 2az  and these correspond to the prim itive cell of a d istorted  cubic crystal.

For the fee lattice, the spatial s truc tu re  of skyrmionic m atte r gives the prim ­

itive lattice vectors to be a x , ay  and az  and this corresponds to a  cubic lattice. 

Finally, the bcc lattice has a spatial skyrmionic struc tu re  for which the prim -

A A A A A

itive lattice vectors are a(x  +  y), a(x  — y) and az  and which corresponds to  the 

prim itive cell of a d istorted cubic crystal.

In the following sections, we shall describe the num erical investigations th a t 

have so far been undertaken for a lattice of skyrmions corresponding to  these four 

arrangem ents. For all these lattices, the requirem ent of nearest neighbour non- 

frustration  results in a sm ooth pionic field arrangem ent of the full crystalline field 

configuration. These numerical studies have investigated the effects of reducing 

the lattice spacing a.

At low densities a crystalline array of skyrmions will consist of an infinite 

product of spherically sym m etric skyrmions, centred on well separated  points and 

with their pion fields m utually iso-rotated. K lebanov’s choice of a simple cubic 

array of skyrmions, was guided mainly by sym m etry and optim ising asym ptotic
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nearest neighbour a ttraction  between the  neighbouring skyrmions.

We shall now outline, historically, the developments th a t have taken place 

w ithin  this field. As we have seen, Klebanov proposed th a t the classical ground 

s ta te  configuration should possess cubic sym m etry and in the asym ptotic separa­

tion  lim it, have neighbouring spherical skyrm ions relatively iso-rotated, so as to 

m axim ise their tensor force of a ttraction . In the low density lim it, the  configu­

ra tion  will be well described as a product of spherical hedgehogs, w ith  a periodic 

relative iso-rotation of the pion fields of neighbouring hedgehogs. This periodic­

ity, results in a set of tw isted boundary conditions describing the full sym m etry 

of K lebanov’s simple cubic array. These boundary  conditions were imposed in 

order to  allow exact num erical m inim al energy configurations to  be found over a 

wide range of densities.

A further num erical study of this cubic arrangem ent, by W urst et al [13], 

revealed th a t as the baryon density was increased, there was a phase transition  

from  a phase of isolated skyrmions, to  a condensed phase in which the energy 

density was more uniformly distributed. It was later realised [9] th a t this phase 

was characterised by the m ean value of the o  field, <  a  > , rigorously vanishing. 

These two phases of skyrmionic m atte r were subsequently seen to  be analogous 

to the two forms of m atte r which exist in the simple Sphy(L) model and to  a 

realisation of the natu re  of this delocalising phase transition .

G oldhaber et al [14] identified th a t the phase transition  and the vanishing of 

<  cr >  observed in the flat space arrays in the condensed phase, were accom panied
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by the appearance of an additional sym m etry in the crystalline field configura­

tion. Moreover, they deduced th a t in the condensed phases the skyrm ion array 

can be described as an array of half skyrmions, a half skyrm ion being a skyrm ion 

field configuration which has a baryon num ber of a half. This follows as a direct 

consequence of the additional translation  sym m etry, which the condensed field 

configuration possesses a t high densities. In Section 3.3, we shall describe in de­

tail the na tu re  of the tw isted boundary conditions which describe this additional 

sym m etry and the m anner in which it is realised w ithin crystalline skyrmionic 

m atte r a t high densities.

The analogue of the a lternate spin-isospin sym m etry of dense neutron  m atte r 

proposed by Sm ith et al and resulting from  the long range tensor force of a ttra c ­

tion between neutrons, was not completely realised in K lebanov’s cubic arrange­

ment. The analogue of this sym m etry for skyrm ions, was subsequently proposed 

by Jackson et al [9] for the classical ground sta te  configuration of crystalline 

skyrm ion m atter. Their investigations indicated th a t the rectangular arrange­

m ent depicted in Figure (3.1.2c), was indeed preferable to  K lebanov’s choice over 

alm ost the entire density range. Moreover, they found a phase transition  to exist 

and also th a t the condensed phase was again characterized by <  a  >=  0 and the 

appearance of an additional half skyrmion sym m etry in the  field.

Though long range forces clearly dictate  the optim al array a t low densities, 

the strong repulsion between skyrmions would indicate th a t a close packed array 

could be energetically favoured a t high densities. In particu lar, our fee arrange­
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m ent in Figure (3.1.3a), would enable the long range forces to  be effective and  at 

the sam e tim e avoid too close an approach. We shall see later, th a t the  results of 

our num erical investigations of the fee lattice [10], reveal th a t this is indeed the 

case. At high densities the fee array, which also undergoes a  phase transition  to 

a condensed phase of half skyrmions, has a m inim um  energy which is ju s t 3.8% 

above the lower bound. Thus, this arrangem ent has been shown to  be the m ost 

likely candidate for the classical ground configuration of crystalline skyrmionic 

m atte r. Cook et al [15] have even proposed an fee lattice arrangem ent as a 

candidate  for a nuclei. Kugler et al [12] perform ed variational calculations for 

this fee array, of the m inim al energy configuration, composed of an array of half 

skyrm ions.

In the rem ainder of this chapter we shall review the results obtained for the 

various arrays which have been investigated and com pare these to  the results for 

the  fee and the bcc arrays and a series of arrays w ith in terpolating sym m etries 

th a t we also have investigated. We shall also present the results of our num erical 

calculations for these lattice arrangem ents and draw our conclusions, m entioning 

the m ost interesting, recent developments which have since taken place.

3.2 Skyrmion Arrays At Low Densities

At low densities a skyrmion crystal will be composed of isolated, d istinct, well 

separated  spherical skyrmions centred on the points of a lattice. Thus, a t low
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densities the static skyrm ion field can be approxim ately represented as an infinite 

product of hedgehogs, Uh(x) (2.1.22), of the  form,

U(x)  =  n AiUH(x -  R i ) A t , (S.S. l )
i

w ith Ai  determ ining the orientation of the skyrm ion centred a t the lattice site 

Ri.  This ansatz will be valid in the large separation lim it

| Ri  -  Rj  | »  1/e/*-. {3.2.2)

At the points of the lattice, the  field U ( x ) will have the value —1, though th rough­

out m ost of space, the  field in the low density limit will have a value close to its 

triv ial vacuum  value of 1. These regions w ithin the crystal, where the skyrm ion 

field U(x)  is close to  its triv ial vacuum  value, separate  those regions containing 

localised baryon density and thus, a t low densities these regions fill m ost of space. 

Hence, this uncondensed phase of skyrmionic m atte r will be characterised by the 

< a  > being close to  unity.

Asym ptotically, the optim al lattice and relative orientation of the skyrmions 

w ithin the lattice, will be determ ined by the tensor potential between neighbour­

ing skyrmions as given in equation (2.2.4). In the zero pion mass lim it, this 

potential has a 1/  | Ri — Rj  |3 asym ptotic behaviour and is m axim ally a ttractive  

for a non-frustrated arrangem ent of the hedgehog skyrm ion’s pion fields. Thus, 

in order to optimize the asym ptotic binding energy a t low density, we require 

nearest neighbours to  be relatively iso-rotated about an axis perpendicular to 

their line of centre by angle by 7r. However, as we have seen in the previous
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section, there exist many differing lattices, w ith  various relative orientations of 

skyrm ions, which satisfy th is requirem ent. To differentiate these structures, there 

are o ther factors which we expect to be im portan t in determ ining the  optim al ar­

rangem ent. Thus, the num ber of nearest neighbours and  the interactions between 

more d istan t neighbours, should be im portan t and  as the  density is increased, the 

effectiveness of the packing arrangem ent will also become increasingly significant 

in determ ining the optim al skyrm ion array.

The skyrmionic arrays so for considered, are such th a t the skyrm ionic field 

configuration w ithin neighbouring representative cells, satisfies a set of tw isted 

boundary  conditions. Thus, fields w ith in  all cells of the crystal, are related to 

the field w ith in  a representative cell by the  lattice transla tion  expressed as a 

set of tw isted boundary conditions. Each of these cells is m apped by the field 

onto 517(2) once and thus contributes 1 to the baryon num ber of the  skyrmionic 

crystal.

The boundary conditions which determ ine the  fields w ith in  a representative 

cell and hence the lattice translations relating the  fields w ith in  different cells, 

are deduced from the p icture of an array of localised spherical hedgehogs at 

low densities described in the previous section. These boundary  conditions are 

enforced as the  density of the crystalline m a tte r is increased.

To com pare these lattices, we can evaluate the  asym ptotic binding energy by 

sum m ing the tensor potential (2.2.4), of a single representative skyrm ion, over a 

large num ber of neighbouring skyrm ions and for differing lattices com pare them
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a t the  sam e baryon density.

For each infinite array of skyrmionic m atter so far investigated, we shall now 

present, in detail, the boundary  condition which follows from  the picture of a low 

density array of relatively ro ta ted  B  — 1 hedgehogs described in the  previous 

section.

1. The Klebanov [6] cubic lattice depicted in F igure (3.1.2b), asym ptotically 

has spherical skyrm ions centred on the point of a sim ple cubic lattice. A 

translation  by a lattice spacing a, in the x  d irection, involves iso-rotation 

about the z  axis cyclicly and by an angle 7r. The resulting tw isted boundary 

conditions are best expressed in term s of the u n ita ry  m atrix  fields

U = (a + ir • 7 ? ) / / * - .  (8.2.8)

Klebanov’s tw isted boundary conditions are then  given by

U(x  +  a ,t/ ,z )  =  TzU ( x , y , z ) r g,

U ( x , y  +  a, z) =  TxU ( x , y , z ) r x ,

U ( x , y , z  + a) = ryU(x ,  y, z)rv, (8.2.4)

on the points of the  lattice U(x)  =  — 1 and these points correspond to  the 

centres of the spherical skyrm ions. It follows from  expression (3.2.4) and 

from the fact th a t the points a t the body centres of the cubic lattices are 

the points which are furthest from the regions of localised baryon density, 

th a t U(x) = 1 a t the body centres of the cubic lattice. Hence, these ±1
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points form two intersecting cubic lattices and taken together, form a bcc 

lattice. There exists an alternative lattice arrangem ent, which is degenerate 

in energy w ith this la ttice and  this corresponds to  the  o ther possible cyclic 

ordering in equation (3.2.4).

The lattice arrangem ent (3.2.4) results in no nearest neighbour frustration . 

A representative skyrm ion has i t ’s six nearest neighbours m axim ally a t­

tractive. However, its twelve second nearest neighbours are repulsive a t 

large separations. Its th ird  and fourth neighbours interactions give zero 

a ttrac tion , as these are u n ro ta ted  relative to  a representative skyrm ion.

2 . The Jackson and V erbaarschot [9] cubic lattice, depicted in F igure (3.1.2c), 

consists of a lternate  layers parallel to  the  ( x , y) planes, one layer w ith  

skyrm ions alternately  u n ro ta ted  and iso-rotated abou t th e  z  axis by an 

angle 7r, and the next layer w ith  skyrm ions alternately  iso-rotated  about 

the x  and y axes by an angle n.  This leads to the boundary  conditions

U(x  +  a , y ,2) = U ( x , y  +  a, z) =  rzU( x , y ,  z)rz ,

U ( x , y , z  + a) =  TvU ( x , y , z ) r v. (8.2.5)

For this rectangular arrangem ent of skyrm ions on a cubic lattice w ithin  

the (x ,y)  plane, the  U(x)  =  —1 points form  a p a tte rn  of squares. I t is 

n a tu ra l to require th a t U(x)  =  4-1, a t the centres of these squares and 

at the centres of the  squares in the successive planes parallel to  the (x ,y ) 

plane.
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The corresponding asym ptotic arrangem ent of localised spherical skyrm ions 

has a two-fold advantage over K lebanov’s ra ther a rb itra ry  choice of lattice 

arrangem ent. These are;

(a) For a given representative skyrm ion all six nearest neighbours are still 

m axim ally a ttractive  in the asym ptotic lim it. However, the twelve next 

nearest neighbours in the ( x , y ) , ( x , z )  and (y , z )  planes, give differing ten­

sor interactions, w ith an overall net a ttraction . The th ird  and fourth  next 

nearest neighbours interactions are once more bo th  zero. This rectangular 

sym m etry gives a net gain in asym ptotic a ttrac tio n  over K lebanov’s full 

cubic sym m etry arrangem ent.

(b)A lthough a skyrm ion is a classical baryon and as such spin is not a 

relevant quantum  num ber, Klebanov was able to  show how the average 

value of the spin and isospin changes in moving from cell to  cell w ithin a 

skyrm ion crystal. For K lebanov’s lattice, a representative cell is cubic and 

can be chosen such th a t it has a skyrm ion a t its centre and U(x)  =  +1 at 

its six vertices.

To ensure electrical neutrality, a skyrm ion crystal should, upon quantiza­

tion, have its iso-spin exited so as to correspond to an array of neutrons. 

In order to  achieve this, Klebanov employed a semi-classical quantization 

technique, quantizing the single collective iso-rotational zero mode of the 

crystal. This collective coordinate ro tates the whole crystal globally in iso­
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space. It is inappropriate  to collectively quantize the individual iso-spin 

ro ta tional modes of the skyrm ions in the array in this m anner, even at 

low densities, since these skyrmions are stuck together and these ro ta tions 

are not zero modes. Prom oting this overall iso-spin ro tational collective 

coordinate to a dynam ical variable we have,

17(4, r) -  A( t )Uc(r)A+(t),  (3.2.6)

where Uc(x) is the static crystalline m inim al energy skyrm ion field. For 

a general skyrm ion field, U(x),  the iso-spin is given by the integral of the 

iso-vector current density,

I k = iXjrk( U ) T r ( A A +rj ), (3.2.7)

where A*J (C/) is the tensor of inertia  of iso-space, which for bo th  K lebanov’s 

cubic [6] and the rectangular array of Jackson et al [16], has been shown to 

be a m ultiple of the identity. A  denotes the derivative of A(t)  w ith  respect 

to tim e.

Similarly, the angular m om entum  is given by

,Jk =  j  d3x£iikToi =  i \ $ T r ( A + A T j ) ,  (S.e,8)

where T is the energy m om entum  tensor and A ^ fJ )  is the tensor of 

inertia  in real space, which has also been shown to be proportional to  the 

identity for both  of these simple cubic lattices.
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Klebanov was thus able to deduce from (3.2.7) and (3.2.8) th a t

i l - r  ~  A A +,

i S - T  ~  A+A.  (3.2.9)

Thus, on moving from  one cell to the next, the  field configuration (3.2.6) 

changes by,

U ^ B U B +, or equivalent ly A(t)  i—> A ( t ) B , (3.2.10)

where B  =  ir^. Hence we see, th a t on moving from  one cell to  the  next we 

have,

A A + ^  A A +,

A +A  B +A +A B , (3.2.11)

—t  —# —# A

and th a t /  rem ains the sam e in all cells, while S  flips. Choosing S  = z s z , 

we have th a t for K lebanov’s arrangem ent, as defined by equation (3.2.4), 

sz changes sign as we move from  cell to  cell in the  y and z  directions 

and rem ains the same as we move in the x  direction. The resulting spin 

configuration does not correspond to th a t discovered by Sm ith et al [7]. 

The rectangular arrangem ent of Jackson et al defined by equation (3.2.5), 

does however have the additional m erit, th a t the average spin arrangem ent 

w ithin the cells does correspond to the spin arrangem ent of Sm ith et al, w ith 

a lternate  (x ,y)  planes having spins in the -\-z and — z  directions. For the 

rectangular arrangem ent, a lattice displacem ent of a in the  x  or y directions,
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leaves s z unchanged, while a displacem ent in the 2-direction changes its 

sign. T hus, the arrangem ent of Jackson et al is in closer analogy to  the 

arrangem ent predicted, by Sm ith et al, to exist in dense neutron  m atter.

We no ted  in the previous section, th a t there exists an infinite num ber of 

lattices which generalise the Jackson et al rectangular arrangem ent. These 

arrangem ents correspond to hedgehogs w ith in  the  a lte rnate  layers parallel 

to th e  ( x , y )  plane, iso-rotating about the z  axis by an angle 0 , relative to 

those hedgehogs w ithin  the in term ediate planes.

This would correspond to  generalising the Jackson et al boundary  con­

d ition , (3.2.5), by m aking the replacem ent, ry i—► (rx s in 0 /2  +  rv cos 0/2).  

This generalised la ttice arrangem ent satisfies the  condition of nearest neigh­

bours, being non-frustrated  for all values of 0. However, th is generalisation 

has to  date  not been investigated and its appearance seems not to  have 

been noticed by Jackson et al.

It would be of particu lar relevance here, to com pare numerically, the  en­

ergy of the field configuration satisfying this generalised tw isted boundary  

condition. We can also com pare these lattices asym ptotically, by consid­

ering the tensor interaction of a representative hedgehog skyrm ion w ith 

neighbouring skyrm ions. We find th a t  the net contribution  to  the tensor 

potential, of all successive num bers of nearest neighbours, is independent 

of the angle 0. This startling  result suggests th a t this ‘global p lan a r’ iso-
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ro ta tion  through an angle 0, is a true  zero m ode of the Jackson crystalline 

arrangem ent.

However, this asym ptotic result may not hold a t finite separations. Here, 

we would have to perform  a num erical calculation in order to  see w hether 

or not this is a true zero mode. However, the existence of a zero mode 

would provide us w ith an alternative collective coordinate, which could 

be semi-classically quantized. Presum ably, this would lead to  different 

possible in terpretations to  K lebanov’s in terpreta tion  of a skyrm ion crystal 

corresponding to  a neutron crystal. Finally, it would be expected th a t a t 

high densities, this generalised sym m etry would be present in the condensed 

phase of skyrmionic m atter.

3. The fee array depicted in Figure (3.1.3a), for which we shall la ter present

num erical results, will have a more efficient close packed s truc tu re  and

thus would be expected to lead to  a greater binding energy th an  these 

cubic lattices a t high densities, when the localised spherical skyrm ion fields 

are increasingly forced to d istort. The fee array has the skyrm ions a t the 

corners of the fee cube unro ta ted  and those on the faces iso-rotated about 

the norm al to the corresponding face by an angle ir and this leads to  the 

following set of twisted boundary conditions,

U(x  +  a / 2, y +  a / 2 , 2) =  rzU( x , y ,  z ) t z ,

U(x  +  a / 2 , t/, 2 +  a / 2) =  rvU( x , y ,  z ) t v ,
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U ( x , y  +  a / 2 ,0 +  a / 2) =  rxU ( x , y ,  z ) t x . (3.2.12)

This arrangem ent has all twelve nearest neighbours asym ptotically  m ax­

imally a ttractive , b u t the six next nearest have zero a ttrac tion . Thus, a 

significant asym ptotic binding energy results.

A particu larly  representative cell was depicted in F igure (3.1.3a) of the 

fee crystal and is a cubic oc tan t of the full fee cube. The points where 

U(x)  =  —1, lie a t four of the  vertices of th is representative cell and taken 

together form  the vertices of a te trahed ron  inscribed w ith in  the  cell. A t the 

rem aining four vertices the  skyrm ion field has a value 1 and these vertices 

also lie a t the  vertices of a  sim ilar te trahedron . The field U(x)  m aps this 

cell onto S U ( 2) and hence, w ith in  a representative cell, the field contributes 

B  = 1 to  the crystalline skyrm ions field’s to ta l w inding num ber B.

4. The bcc array th a t we shall consider is depicted in Figure (3.1.3b) and 

can be obtained  from the fee lattice described above, by contracting the 

z axis by a factor \ /2,  the fee nearest neighbours in the  (x , y)  plane now 

becoming the  corners of the bcc cube and the skyrm ions on the centres of 

the (x , z )  and (y , z )  faces becom ing the  ones a t the centre of the bcc cube. 

A lternatively, expressed in term s of the bcc variables we have the tw isted 

boundary  conditions;

U (x ±  a, y, z) — U ( x , y  ±  a , z )  = tzU ( x , y , z ) r z , (3.2.13)

U ( x ±  a / 2 , y  + a / 2 , z  + a/2)  =  (ry rt )U(x,  y, z ) ( t v rx)/2.
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The eight nearest and four of the six next nearest neighbours are m axi­

m ally attractive, and  the rem aining two neighbours produce no long range 

a ttrac tion . Hence th is arrangem ent also leads to  high asym ptotic binding 

energy.

We can take a representative cell of th is bcc array  to  be th a t cell which 

results when the cubic fee representative cell is contracted  along the  z-axis 

by a factor of \ 2 .  This representative bcc cell is thus a square based prism .

Q uantitatively  we can com pare the binding energies of these lattices by 

sum m ing the asym ptotic tensor in teraction, (2.2.4), of a  representative 

skyrm ion, with its nearest and next nearest neighbours, as well as over 

a large num ber of neighbours a t the sam e baryon density. The resulting 

asym ptotic potentials are given in Table (3.2.1).

T ab le 3 .2 .1

L3 x (Potent ial)  K lebanov Jackson fee bcc
near neighbours -949 -1640 -2075 -1995

many neighbours -931 -1485 -1593 -1634

The asym ptotic p ten tia ls  from equation (2.2.4) for a single skyrmion divided by the 

skyrmion density. Near neighbours includes nearest neighbours and next nearest and many 

neighbours include about 160 for Klebanov (6) and Jackson [9] arrays and all neighbours 

within a distance *f 20a for fee and bcc type arrays. L  =  (skyrmion density)- 1 / 3

T he co n trib u tk n  of d istan t skyrm ions, is of course only m eaningful in the
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zero pion mass lim it, which is the case considered here. Table (3.2.1) shows 

th a t the bcc array is m ost bound, while the fee and Jackson and  Ver- 

baarschot arrangem ents are next and about equal. As expected K lebanov’s 

array  is the  least bound array asym ptotically.

5. Since the fee and bcc arrays, (3.2.12) and (3.2.13), are sm oothly related 

by a sim ple contraction in the z direction by factor y/2, it is bo th  na tu ra l 

and  of interest to  consider the  rectangular in terpolating lattices which are 

form ed as the contraction factor is sm oothly varied. Hence, we consider a 

regular array which interpolates between fee and bcc, by changing the  unit 

aspect ra tio  of the fee cube of side a into a rectangular region of aspect 

ra tio  r 3 w ith lattice displacem ents in the x  and y directions of ra and 

la ttice displacem ents in the  z directions of a / r 2. O therw ise, the boundary  

conditions of equation (3.2.12) are unaltered.

We define p — r — l / r t o  m easure the deviation from  fee sym m etry (p = 0). 

Hence, p =  0.23 (r3 =  \ / 2) describes a bcc array, p ;»  1 describes sep­

a ra te  one dim ensional columns of closely packed and relatively unro ta ted  

skyrm ions, while p <C — 1 describes separate  planes of square arrays of 

skyrm ions, w ithin which first, th ird  and successively odd num bered near­

est neighbours are m axim ally a ttractive  and the  rem aining even num bered 

nearest neighbours are relatively unro ta ted , w ith  zero a ttrac tion .

Perform ing the sums of the asym ptotic interaction in (2.2.4), over nearest and



next nearest neighbours as well as Over a large num ber of neighbours a t varying 

values of p, gives the binding energies shown in Table (3.2.2).

Table  3 .2 .2

L 3 x (Potential)
p TL3 ^h2 T h l 0 0  O l Cb2 0 3  0 6  2XT

m any -1776 -1663 -1614 -1593 -1604 -1614 -1651 -1697 -1619

The asym ptotic potentials from equation (2.2.4) for a single skyrmion divided by the skyrmion 

density. Many neighbours, is all the neighbours within a distance of 20a, fee corresponds to 

(p =  0.0), bcc to (p =  0.23). L — (skyrmion density)- 1 / 3

The dependence on p , of this asym ptotic form ula, indicates th a t the  fee 

binding energy is a local m axim um , dropping away indefinitely for negative p 

since the  separated  planes contain a lternating  u n ro ta ted  and  optim ally  orien­

ta ted  skyrm ions. For large positive values of p, the  lim it of separate  columns 

of skyrm ions which are non-interacting, the poten tia l is zero and so there is a 

m inim um  in the asym ptotic energy near p =  1.3. B ut these argum ents fail as 

soon as the short range repulsion comes into play.

Since the fee array is close packed, it is quite likely to  have a lower energy th an  

the o thers a t high density. Furtherm ore, the lim its p —► ±oo, of the  asym ptotic 

form ula a t fixed density, are unphysical, since a t some value of p the effect of
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the repulsive cores of the nearby skyrm ions can no longer be neglected. This 

indicates the existence of another m inim um  a t negative p and a m ajor change in 

the m inim um  at positive p.

Thus, we see th a t by varying the  value of p we are able to investigate the 

behaviour of the fee array at high densities to  bulk deform ations, which may be 

useful in the  study of heavy ion collisions.

3.3 The High D ensity Phase Of Skyrm ionic M atter

W hile a t low densities a skyrm ion crystal can be p ic tu red  as being composed 

of weakly in teracting individual spherical skyrm ions, centred on the  points of a 

lattice, this will not be a reasonable p icture a t high densities. At high densities 

the  fields of the  individual skyrm ions will undergo considerable deform ation and 

can no longer be said to  be weakly interacting.

This is in direct analogy w ith  the  s itua tion  which arises for the  B  = 2 

skyrm ion configuration [17]. At large separations, the  configuration consists of 

two distinct, spherical skyrm ions, weakly in teracting and  orien tated  relatively 

so as to optim ize their tensor a ttrac tion . At sm all separations the  individual 

skyrm ions com pletely loose their identity. A p articu la r discrete reflection sym ­

m etry  of the field configuration a t large separation, becom es, a t sm all separations, 

a continuous axial sym m etry [18].

For a crystal at low densities, w ith large regions of triv ia l vacuum  surrounding
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the  localised skyrm ions, <  a  >  is close to  1. As the  density increases, th is value 

decreases to  zero as the  size of the triv ial vacuum  region is reduced. For all 

the  arrays described in the previous section this behaviour of <  a > has been 

dem onstrated  num erically [13] [9] [10] and  beyond some critical density it as been 

found th a t a condensed phase, characterized by its value being rigorously zero, 

is energetically preferred. Thus, the value of <  a  >  has been used as an order 

p a ram eter to identify the differing phases and the  exact critical density beyond 

which the  condensed phase of skyrm ionic m a tte r is energetically preferred. The 

vanishing of <  a  >  and hence the  form ation of the condensed phase, is associated 

w ith  the  field configuration a tta in ing  an additional exact half skyrm ion sym m etry 

a t high densities and we shall describe th is sym m etry  in this section.

T here is an analogous behaviour for a skyrm ion on Sphy(L) [5], w ith a second 

order phase transition  a t a value of L  =  y/2 from the low density phase, consisting 

of a hedgehog localised at a pole w ith <  a  >  close to  unity, to the  high density 

delocalised phase, consisting of a triv ial m ap skyrm ion w ith  <  o  > =  0. Here the 

vanishing of <  a  >  is a trivial consequence of the resto ra tion  of 0 (4 ) sym m etry 

a t high densities.

G oldhaber and M anton [14] proposed th a t a t high densities, the  condensed 

phase of a  crystalline array of skyrm ions could be p ic tu red  as being com posed of 

an array of half skyrm ions centred on the U{x) — ± 1  points of the  original low 

density array.

A sim ple picture of a  half skyrm ion is provided by considering a spherically
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sym m etric hedgehog field in flat space, w ith  its profile function / ( r )  satisfy­

ing the  boundary  conditions f ( r  = 0) =  n  a t the centre of the  hedgehog, and 

/ ( r  =  r0) =  7r/2  on a spherical surface of rad ius r0. The field is taken to  be un­

defined outside of th is spherical boundary. This half skyrm ion has B  = 1/2 and 

its energy is bounded from  below by 67r2/* ./2e. G oldhaber and M anton found 

th a t a half skyrm ion has an energy of 1.015 x (67r2/ ^ / 2e) a t an optim al value of 

the rad ius r0 =  2 .09Fra. The profile function of th is solution was observed to  be 

approxim ately linear.

The closeness of a  half skyrm ion’s energy to  the  energy bound and the lin­

earity  of the  profile function are consequences of the half skyrm ion boundary 

condition a t r =  r0. Since this half skyrm ion resides w ithin  a finite volume, 

47rrQ/3, it is not required to  stre tch  over the  whole of space and hence it does 

not have the  usual ta il behaviour, required for the physical B  = 1 skyrm ion in 

order for it to  have a finite energy. A second type of half skyrm ion, degenerate in 

energy and  w ith the sam e value of r0, can be obtained  by a triv ial m odification 

of the half skyrm ion boundary  conditions corresponding to  the  transform ation  

/ ( r )  »—► f ( r )  — tt/2  and this also has B  = 1/ 2 . At the  centre of the first type of 

half skyrm ion U(x) =  —1, while a t the centre of the second type, the field as a 

value 1 and on the spherical boundary surface the cr field vanishes for both . The 

first type of half skyrm ion has its pion field pointing radially outw ards, while 

the second type has its pion field pointing radially inwards. T he skyrm ion field 

is not defined outside of the spherical boundary  a t r0 and these half skyrm ions



exist w ith in  a ‘physical space’ of finite volume.

In order to  understand  the  reasoning behind th is proposed half skyrm ion 

p ic tu re  of dense skyrm ionic m a tte r, it is instructive to consider the  effect th a t  an 

increase of the  baryon density of a skyrm ion array has on its field configuration, 

U ( x ) .

At low baryon densities, the  field’s baryon density is localised in spherical 

regions of space about the lattice points w ith U(x)  =  —1. These points are well 

separa ted  a t low densities and in the in term ediate regions of space, the  field U(x)  

has a value close to  unity and thus < a > also has a value close to  unity. As 

the average baryon density of the array is increased, the  size of these U(x)  ~  1 

regions decrease and hence, so does <  a  > . However, since the w inding num ber 

of the skyrm ion field will be conserved a t all densities, the  num ber of connected 

regions of space in which U(x) = —1 and U(x) = -Hi m ust be conserved and 

also, there  m ust be the sam e num ber of U ±  1 regions. Thus, as the  density is 

increased, the regions of U(x)  ~  +1  will reduce to  poin ts, w ith  U(x) = + 1. In 

response to  a reduction in the size of the U(x)  ~  + 1  regions of space, the  field 

U(x),  w ith in  the regions of space w ith localised baryon density, will deform  in a 

m anner which is consistent w ith the particu lar sym m etry  of the array. A t some 

critical density the skyrm ion array undergoes a delocalising phase transition , to 

a condensed phase of skyrmionic m atte r. This phase of skyrm ionic m a tte r  has 

the field’s baryon density about the  U(x) = ±1 points, identical and  < a  > =  0 . 

The delocalising na tu re  of this phase transition  corresponds to  the fact th a t there



are now no regions of zero baryon density separating  the  U(x)  =  —1 points and 

thus, the field’s overall baryon density is spread m ore evenly over the whole of 

space.

The additional sym m etry of the baryon density and  the vanishing of <  o  >  in 

th e  condensed phase, is due to  the field U (£) a tta in ing  an additional translational 

sym m etry, which relates to  the  fields about the U(x)  =  ± 1  points. T h a t is to 

say, a  representative cell of the array in the uncondensed phase, can be taken 

to  contain a U(x)  =  +  1, or a U(x) = —1 poin t and  moreover, th a t w ith in  

one of these cells the  field’s baryon num ber is 1/ 2 . Thus we see, th a t w ith in  a 

condensed array of skyrmionic m atte r, representative cells exist which contain 

half skyrm ions.

We have seen th a t as the density of an array  is increased beyond the  phase 

transition  density, the identification of individual skyrm ions on th e  lattice points, 

possible in the uncondensed phase, is no longer possible in the  condensed phase 

of half skyrm ions. Its is also not possible to identify which were the  neighbouring 

half skyrm ions which formed the original skyrm ions in the  uncondensed phase.

W ithin the condensed half skyrm ion array, there  exist continuous m ultiply 

connected < cr > =  0 surfaces which divide the field into two disconnected re­

gions. Thus, the  regions w ith a  <  0 will contain iso-rotated  half skyrm ions, 

which are d istorted  versions of the spherical half skyrm ions which have the ir 

pion fields pointing radially outw ards and the region w ith  o  >  0 will contain 

iso-rotated, d istorted  versions of the second type of half skyrm ion. These d isto r­
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tions occur because the  c  =  0 boundary  surfaces are no t spherical and the  half 

skyrm ion boundary  conditions cannot be com pletely a tta in ed  w ithin a  crystal, 

since touching balls will no t fill space. Moreover, since the  regions w ith  c r = 0 , 

which would exist if spherical half skyrm ions form ed the  full la ttice, have a finite 

energy density, unlike triv ial vacuum  regions, these half skyrm ions m ust d isto rt 

to fill all of space.

A reasonable p icture of the  half skyrm ion lattice arrangem ent, is however, 

ob tained  by placing spherical half skyrm ions centred on the  U(x) =  ± 1  points 

w ith in  the W igner-Seitz cells of the  lattice, so th a t neighbouring half skyrm ions 

are non-frustra ted . The true  crystalline array will then  be ob tained  by d istorting  

the shapes of the spherical a = 0 surfaces, of neighbouring half skyrm ions, so 

th a t they m eet sm oothly and fill the whole of space. The d isto rtion  of the 

half skyrm ion boundary  conditions, will require bo th  a rad ial d isto rtion  and  an 

in ternal tw ist of the  half skyrm ion field. One expects the  d isto rtion  will however, 

not be too large and will produce little  change of the  half skyrm ion field near its 

centre. This p icture suggest th a t a condensed skyrm ion array will have an energy 

per un it baryon, which is bounded from below and which is a factor 1.015 above 

the lower bound (1.1.21). W ith  this p icture it also seems reasonable to  predict 

th a t the m inim al energy configuration would be a tta in ed  when the  volum e of the 

half skyrm ion lattices W igner-Seitz cell is equal to 47^ / 3 , so as to  reduce the 

ex tent of the field deform ations required for the half skyrm ions to  fill space.

For all of the  lattice arrangem ents described is Section 2 , the  existence of a
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phase tran sitio n  to  a condensed phase of half skyrm ions possessing an additional 

half skyrm ion sym m etry  a t high densities, has been num erically dem onstrated . 

We shall now describe these add itional sym m etries.

1. For K lebanov’s cubic arrangem ent the  U(x) =  —1 points lie on the points of 

a sim ple cubic lattice, while the  U(x)  =  + 1  points are a t the  body centres 

of th is cubic lattice. T hus, these two sets of points form  two intersecting 

sim ple cubic lattices and  taken together form  a bcc array. Hence, the 

condensed phase, which exists a t high densities, consists of a bcc array 

of half skyrm ions. The additional half skyrm ion sym m etry of this array, 

which relates the  U(x)  = 1  and U(x)  =  — 1 points, is expressed as

a ( x , y , z )  = — a( a / 2  — z ,  a /2  — y, a /2  — x),

7rx( x , y , z )  =  ny(a/2 -  z , a / 2  -  y , a / 2 - x ) ,

7Ty( x , y , z )  =  7rx(a /2  -  2 , a /2  -  y , a / 2  -  x),

**{x , y , z )  = 7rz ( a / 2 - z , a / 2 - y , a / 2 - x ) ,  (3.3.1)

and cyclicly. The boundary  conditions express the  effect of a la ttice tran s la ­

tion and relate  the  fields of both  types of half skyrm ion w ith in  neighbouring 

cells.

At the U(x) = + 1  points, a t the  body centre of the cubic representative 

cell, there sits a half skyrm ion of the type which has its pion field pointing 

radially inwards. M anton and G oldhaber [14] showed th a t these boundary  

conditions resu lt in the half skyrm ion at the  body centre being iso-rotated
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about the line passing th rough  the points (a /2 , a /4 ,0 )  and (0, a /4 , a /2 ) , by 

an angle 7r. Exam ination of Figure (3.1.2b), shows th a t the  resulting  pion 

field arrangem ent of th is half skyrm ion to  its eight nearest neighbours a t the 

vertices of the  cube, is relatively non-frustrated . Thus, a t high densities, 

the  bcc array of th is half skyrm ion, has neighbouring half skyrm ion pion 

fields m eeting sm oothly.

2 . The Jackson and Verbaarschot array has the  field’s U(x) =  —1 points 

centered on the  points of the simple cubic lattice. The U( x ) =  + 1  points 

are located w ith in  the planes parallel to  the (x,y) planes a t the  centres of 

the squares form ed by the  U(x)  = — 1 points. Thus, in the  condensed phase 

one type of half skyrm ion will be centred on the  original cubic lattice points 

and the  o ther type  of half skyrm ion will be centred on a cubic lattice  which 

is related  to  the  original lattice by a la ttice transla tion  ( a /2, a / 2 , 0).

The additional half skyrm ion sym m etry  is given by,

a ( x , y , z )  = a ( y , x , z ),

<r(x,y,z)  =  -cr(a/2 -  x , a / 2  -  y , z ) ,

7r[ x , y , z )  = 7r(a /2  — x,  a /2  — y, z),  (8.3.2j

and cyclicly. Jackson et al [9] noted th a t  the  reflection sym m etry of the 

sigm a field, about the plane x = y,  was no t present in the pion fields. 

These sym m etries, (3.3.2), show th a t a t the  point ( a /2 , a / 2 , 0), (see Fig­

ure (3.1.1c)), there  is a U(x)  =  +1 type ha lf skyrm ion, which has been
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iso-rotated  about a line parallel to  the line x  =  j/, z  =  0 by an angle 7r, in 

order to  a tta in  a non-frustra ted  pion field arrangem ent w ithin a square pla- 

quette. However, the absence of the reflection sym m etry about the x  =  y 

plane, seems to  be due to  the p articu la r choice of the tw isted boundary  

condition Jackson et al imposed in the ir num erical investigations. Had 

they considered instead, the  boundary  condition (3.2.5), th a t  is , the  gen­

eralised boundary  condition in which tv is replaced by rTsin^  +  r„ co s0, 

then  presum ably, for 9 — 7r / 4 , the ir num erical results would have revealed 

th a t the  pionic fields were reflection sym m etric abou t the x — y  plane. 

This expectation can easily be understood, by noting th a t when 9 =  7r / 4 , 

the low density arrangem ent of the  pion field is such th a t the plane x  =  y  

is e ither parallel or perpendicular to  all of the axes about which the  pion 

fields of the  hedgehogs are iso-rotated, by an angle 7r.

3. The fee array  has U(x) — — 1 a t the  lattice points and  these and  the 

U(x) — 1 points, form two intersecting fee lattices. W hen taken together 

these form a simple cubic lattice of U(x)  ±  1 and so in the  condensed phase 

there exists a simple cubic array of half skyrm ions. T he add itional half 

skyrm ion sym m etry a t high densities can be expressed as;

a ( x , y , z )  = - o ( x  +  a / 2 , y , z ) ,

7f ( x , y , z )  = - t t ( x  + a / 2 , y , z ) ,  (3.3.3)

and cyclicly. This sym m etry of the  condensed half skyrm ion array can  also



be p ic tu red  in term s of the  condensed array  being com posed of a lternating  

U(x)  — ± 1  half skyrm ions.

In order to  clarify m atters  we shall briefly describe the effect th a t  increas­

ing the  density has on this fee array. At low densities the  skyrm ions are 

localised abou t four of the  vertices of the  representative cube of the fee 

array, as indicated in F igure (3.1.3c). Each skyrm ion has a spherical cr =  0 

surface separating  its inner half skyrm ion, a  <  0 , from  its ou ter half cr >  0 . 

The <7 <  0 regions fill m ost of space and connect neighbouring skyrm ions. 

As the  density increases, the inner half skyrm ions increasingly fill more of 

space and in response, the  field deforms such th a t the <7 =  0 surface becomes 

m ore cubical. Beyond the phase transition  in the  half skyrm ion condensed 

phase, the  <7 =  0 surfaces become perfect cubes, w ith  sides a /2  which touch 

along the edges, leaving the  <7 >  0 regions divided up in to  exactly sim ­

ilar cubes. This half skyrm ion arrangem ent is depicted in Figure (3.3.1). 

Here we have indicated the axis of ro ta tion  about which the  pion fields of 

the half skyrm ions are ro ta ted  th rough an angle n. The inward pointing 

arrows signify th a t the half skyrm ion has U ( x ) =  +1 a t the  lattice point 

and its pion field arrangem ent is obtained from  a spherical half skyrm ion, 

w ith  its pion field pointing radially  inwards by an iso-rotation of angle 7r, 

about the  axis indicated. T he open and solid circles indicate an un ro ta ted  

half skyrm ion of the  U(x)  =  —1 and U(x)  =  +1 types respectively. The 

<7 =  0 surfaces are the orthogonal planes, w ith  either x , y  or z  equal to  a /2



F ig u re  (3 .3 .1 ):  A lion-frustrated arrangement of eight; half skyrmions a I; the 
vertices of a representative fee cube. The inward pointing array indicates a 
U ( x )  — H-l type half skyrmion which is iso-rotated about tlje direction of the 
arrow by an angle /r and the full circle denotes an unrotated U  {'£) =  -ff  half 
skyrmion.
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or 3a /4 . For this arrangem ent all neighbouring half skyrm ions have pion 

fields which are relatively non-frustrated , as is indicated  in Figure (3.3.2). 

This shows the  flow of the pion field w ithin  the  (x, y ) plane a t 2 =  0 of the 

fee representative cell.

The figure clearly shows, th a t in the condensed phase the  pion fields of 

either type of half skyrm ion are identical and also the m anner in which 

these fields m eet sm oothly on the a = 0 surfaces. The dashed line indicates 

the  positions of these o  =  0 surfaces w ithin  the  representative cell and each 

square represents a cross-section a t z  =  0 , th rough  th e  o c tan t of one of the 

cubes which contains half a skyrm ion.

This sym m etry also enables us to perform  our num erical calculations in 

th e  condensed half skyrm ion phase, w ith in  a  o c tan t of th e  representative 

cell of the  fee array, F igure (3.3.1), since the  pion fields w ith in  each o  <  0 

and o  >  0 cube are re la ted  by expression (3.3.3). We shall la ter detail the 

m anner in which these num erical studies were perform ed.

B oth the bcc and the in terpolating lattices, which resu lt as p varies, possess 

the  sam e sym m etry as fee, w ith  a triv ial change in the  la ttice spacings in 

one direction as com pared to  the others. Thus, the  variation of p generalises 

the cubic array of half skyrm ions a t p =  0 , to  a rec tangu lar array of half 

skyrm ions.



( 0 , 0 , 0 )  CO,* * 2, 0 )

F igu re  (3 .3 .2 ):  Tlu: iso-vector pion Held arrangements in the z  — 0 plane, 
within the half skyrmion cube depicted in Figure (3.3.1).
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3.4 N um erical Calculations

In th is section we shall outline the num erical procedure we adopted  for the study 

of th e  fee, bcc and in terpolating  lattice. This procedure was the sam e as the one 

employed by Jackson et al [9] and has the advantage over K lebanov’s procedure 

of increasing the ra te  of convergence by a factor of two.

Num erical calculations of the m inim um  energy of the  Skyrme Lagrangian, as 

a function of a, have been carried ou t for the  fee and bcc configurations and for 

a range of crystal arrays in terpolating between them  w ith —0.35 <  p <  0.32.

The calculation procedure employed, involved solving a discretised form  of 

H am ilton’s Equations. Introducing the  canonical m om entum

n ‘  =  6MS ( S 4 -1}

where L  is given by equation (2.1.17) and the field <j>k satisfies the  constrain t 

(f>a<f)a — /* , the  H am iltonian E quations read

=  ArfUn,

IT*: =  d t ( B kidi<j>i) +  (8.4.2)

where,

Aki =  (1 /4  +  {dt<j>m}2)fiki — di<f>kdi<f>i,

Bkl  =  (1 /4  +  — d ^ k d ^ i .  (S. 4 .3)

The R om an indices ru n  from 1 to  3 (spatial coordinates) and the Greek indices 

run  from 0 to  3 (space-tim e coordinates). The Lagrange m ultiplier, A, has been
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introduced to  enforce the field constraint. Here we have introduced the dim en- 

sionless units via the transform ation x M ■-* x llj 2ef^.

In order to  obtain static , m inim al energy configurations we tre a t the  tim e 

variable as a ‘pseudo tim e’ variable and use a field relaxation technique th a t 

ensures as we advance in ‘pseudo tim e’ steps A t ,  we always move down hill in 

energy. We perform  the m inim isation of the energy in a single oc tan t of the  face 

centered cube for the dilute phase and in an octan t of the half skyrm ion cube in 

the  condensed phase. T h a t is, an octan t of the fee representative cell depicted in 

F igure (3.3.1). Exactly the sam e procedure was used for the bcc and  interm ediate 

cases, by trivially changing the aspect ratio  of the cube into a  rectangular region, 

w ith lattice displacements in the x  and y or z  directions becoming ra or a / r 2 

respectively, b u t otherwise keeping the same boundary conditions.

As an initial field configuration we employed hedgehog fields sm oothed at the 

boundaries of the cell. We assume th a t across the plane connecting the  centres 

of the skyrm ion, the pion fields are reflection sym m etric.

The mesh size was typically 183 mesh points to  the octan t of the cube in 

the  dilute phase and the same num ber, or fewer points in the octan t of the half 

skyrm ion cube in the condensed phase, providing substantially  greater accuracy. 

Convergence was assumed, when the ex trapolated  energy did not vary signif­

icantly over several hundred iterations, during which the baryon num ber was 

stab le to  0 .01%. Converged non-condensed phase solutions always had a baryon 

density greater th an  0.96 and condensed phase solutions a baryon density greater
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th a n  0.99,

The resu lts so obtained for the field energies and values of <  o  >  were ex trap ­

o lated  to  an  infinite num ber of iterations, as in [9], where th is error was shown to 

be exponential. Then the energies were ex trapo lated  to  zero m esh size. This was 

easy in the  condensed phase, where the energy and  baryon density are spread 

fairly uniform ly in space so th a t the energy varies linearly w ith  1/ n 2, where n 3 is 

the  num ber of m esh points; b u t in the dilute phase the  num ber of points covering 

each skyrm ion reduces as the size of the cube increases and the ex trapo lation  is 

less clean. The baryon density also reflects th is feature, so the  deviation of the 

num erical calculation of the baryon num ber B  from  1, is also a m easure of errors 

due to  finite m esh size and th is provided an alternative ex trapo lation  procedure. 

T he value of 1 — B  is proportional to  1 /n 2 for large n  in the  condensed phase, 

b u t the slope varies w ith a. The extrapolations to zero m esh size was therefore 

perform ed by linear ex trapolation  of the energy w ith  respect to  1 — B ,  the  slope 

determ ined  by varying n  for some typical cases.

This procedure is very accurate for the  condensed phase, leading to  errors of 

a fraction of an MeV, bu t in the dilute phase typical errors are two MeV. To 

ensure continuity  a t the second order phase transition  points the  energies in the 

d ilu te  phase were adjusted  (w ithin their errors) to  agree w ith  the m ore accurate 

values determ ined w ith the condensed phase boundary  conditions.

The ra te  of convergence of the energy, as in [9], was observed to  be about 

two tim es as fast as th a t for <  a  > . In order to  determ ine the location of the
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phase transition  point accurately, much use was m ade of the  value of the order 

pa ram ete r < a >.  By following the variation of <  a  >  as the  la ttice spacing 

was reduced, we accurately determ ined lattice spacing a t which <  cr >  vanishes. 

However, in order to  provide reliable values of <  a  > , it was necessary to  obtain  

well converged solutions in the  condensed phase. T hus, w ith in  the  condensed 

phase we devoted a considerable am ount of com puter tim e to  obtaining well 

converged solutions. Indeed, w ithout reliable values of <  o  > , the  second order 

n a tu re  of the phase transition  would not have been established.

The num erical calculation was perform ed using a Cray com puter and involved 

considerably m ore C.P.U. tim e th an  those which had  previously been perform ed 

w ith  cubic arrays of skyrm ions. This was because a  whole series of differing 

lattices, generated by varying the aspect ra tio  of the  fee cube, were considered. 

As a result, th is involved obtaining about sixty converged solutions w ithin  each 

phase, about twelve tim es as much d a ta  as was required  by Jackson et al [9] for 

the ir calculation w ith  a rectangular skyrmionic lattice.

M oreover, unlike the previous calculations, we ob tained  reliable ex trapo la­

tion to  zero m esh size for all our d a ta  a t differing values of a. This involved 

establishing how the energy varied as the num ber of lattice points was varied 

and  also required well converged data. Jackson et al on the  o ther hand , only 

perform ed the ex trapolation  for the m inim um  energy condensed configuration a t 

high densities.

Finally, as we shall detail in the next section, we also investigated the effects
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of including a pion mass term , (see (2.1.5)), which explicitly  breaks C hiral Sym­

m etry  and  for which we obtained a considerable num ber of fee (p = 0) converged 

solutions.

3.5 Num erical Results

The solutions show some very general features which hold for all values of the 

aspect ra tio  p so far investigated. Consider first the  fee array, p = 0. At low 

density the skyrm ions are well localised around the ir la ttice  positions (0 , 0 , 0), 

(0 , a / 2 , a / 2), ( a /2 , 0 , a / 2), ( a /2 , a / 2, 0), each w ith a  nearly  spherical surface o  =  

0 separating  the inner half skyrm ion, a  <  0 , from  the  o u te r half, o  > 0 . This 

la tte r region extends to  neighbouring skyrm ions, is connected and fills m ost of 

space. The space average <  o  >  of the  a  field is thus close to  1, while <  7r > =  0 

due to  the  cubic symmetry.

As the density is increased the  energy per skyrm ion drops sm oothly, as does 

<  <7 > . The skyrm ions spread out a little  and the  a = 0 surfaces get more 

cubical. Then a second order phase transition  is reached, the energy still dropping 

smoothly, bu t the  a  =  0 surfaces now becom e perfect cubes of side a / 2, which 

touch along the edges leaving the o  >  0 region divided up into exactly sim ilar 

cubes. The cr =  0 surfaces are orthogonal planes w ith  either x  , y  or z equal to  a /4  

or 3a /4 . The half skyrmions cr <  0 and <r >  0 now have identical 7? d istributions, 

bu t there is no longer a unique way of associating any <j <  0 half skyrm ion w ith
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a corresponding o  >  0 half skyrm ion. If the density were to  be decreased from 

this sym m etrical phase, the  skyrm ion density could either re-concentrate around 

the  original points where a  =  — 1, or alternatively  on the points where a  =  1.

Above the phase transition , a = ac, we find <  a > ~  (a — a c)2, (see Figure 

(3.5.1)). This is the signature  of such a second order phase transition  and  the 

linear p lot of <  a  > 2 against a, also shown in F igure (3.5.1), provides the  m ost 

accurate determ ination  of ac .

The ex tra  sym m etry acquired a t the phase tran sitio n  is th a t  given by equation 

(3.3.3). Exactly the sam e second order phase tran sitio n , w ith  corresponding 

scaling of x, y  and z coordinates, occurs for all values of p in the range —0.35 <  

p <  0.32, and probably  for all p. T he bcc array seems in no way a special case.

A sim ilar second order phase transition  was observed for the  rec tangu lar array 

by Jackson et al [9], who also claim  th a t K lebanov’s cubic arrangem ent undergoes 

a first o rder phase transition .

As the  density of skyrm ions is fu rther increased beyond th e  phase transition  

density the energy continues to  fall until it reaches a  m inim um , which for the  fee 

sym m etry is only 3.8% above the theoretical lower bound, a figure which agrees 

w ith the  result of Kugler and Shtrikm an [12]. It then  rises rapidly. These results 

are illustra ted  in Figure (3.5.2) where the energy is p lo tted  against L  =  p ~1/3, 

where p is the skyrm ion density, for the fee and  bcc array, and  the Klebanov 

array for com parison. The modified cubic of Jackson and V erbaarschot [9] has 

not been p lo tted  as it lies ju s t above the bcc curve and has the  sam e shape. The
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F ig u re  (3 .5 .1 ):  Plots of • <r • n.ml < a  > '2 versus L  with L  =  (d e n s i t y ) i//J.
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uncondensed phase is shown branching sm oothly from  the  condensed phase, for 

b o th  the fee and bcc arrays. In term s of the  param eters used by Klebanov [6], and 

Jackson and  V erbaarschot [9] = 64.5M eV and e =  5.45, the  m inim um  energy is

727.4M eV a t L  =  L q =  1.666Fm and the  fee phase tran sitio n  occurs a t 779.5MeV 

and  L  = L c = 2.45Fm . The m inim a and also the  phase transition  occur a t nearly 

th e  sam e density in the fee, bcc and alternative  cubic [9] arrays. This is clearly 

visible in F igure (3.5.3) where constant energy contours, (solid lines), have been 

p lo tted  in the  (L,p)  plane. Also shown is the  line of critical points, (dashed 

line), and  the line of m inim a in L  a t constan t p, (dot-dashed line). The critical 

points occur a t an  alm ost constant density w ith hard ly  any dependence on p. 

Furtherm ore, near the critical density, the equal energy contours are alm ost 

parallel to the p axis so th a t Skyrme m a tte r  is h a rd  to  decom press b u t very easy 

to  deform , in fact ra th e r like jelly. This feature persists nearly to  the m inim um . 

T he circular contours in Figure (3.5.3) are deceptive, since p =  0.23 corresponds 

to  a factor 1.4 in aspect ratio , while the  sam e contour can be reached by increasing 

L  by 18%.

Near the m inim um  we m ight expect th a t sm all changes in L  and p would 

produce predom inantly, a stretching of the fields in the  appropria te  directions 

w ithou t essentially changing their shape. The two com ponents of energy e2 and 

e4 quadra tic  and quartic in derivatives, would then  scale as:

E q . 2  .. L  E q . .  ?. p  ̂  L  .62 = T ^ +r>zrT«1+p> + ir + ---  ̂ ^
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F ig u r e  (3 .5 .3 ) : C ontour plota of equal energy in the (L,p)  plane where L = 
(dens i t y )”1/'3 and p m easures (.he deviation from  fee sym m etry  (see text). Also 
shown are the curves for minimum energy with respect to L  a t fixed p and of the 
phase transition  points separating  tire condensed half skyrm ion phase from the 
dilute phase.
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= t (̂ +2r2)f  = f ((1+p2)- ? +- )f- (s-5-s)
From  fee sym m etry, b o th  e2 and e4 are separately sta tionary  w ith respect to p at 

p =  0 . The to ta l energy E  is a  m inim um  E 0 when L  =  L 0 and e2 — e4 =  E o / 2.

B ut the num erical solutions do no t support such a sim ple scaling. For p =  0

there  is only a small correction, a b e tte r approxim ation being

Ep=0(L) =  ^ ( ( j -  +  Î ) ( l - t )  +  2t) (S.5.S)

w ith  e = 0.0515. However, the dependence on p is m ore interesting. e4 does

indeed have a m inim um  a t p =  0 , w ith roughly the expected coefficient for 

p 2, though it falls m ore slowly w ith L, b u t e2 has a m axim um  ra ther th an  a 

m inim um , w ith  a negative coefficient for p2 which increases linearly w ith L.  At 

Lo the p2 con tribu tion  of e2 to  E  is negative and  sm aller th a n  th e  positive e4 

con tribu tion , b u t it increases w ith  L  until it gets larger, so th a t the curvature 

of E  in p varies sm oothly from  a positive value a t Lo th rough  zero a t a critical 

density corresponding to  L  — Ld — 2.43Fm , to  negative curvature above this 

second critical point.

There are therefore a t least two independent soft modes which go negative 

a t L c and L^, the m ode which breaks the  half skyrm ion sym m etry bu t keeps 

fee sym m etry  and the  m ode which breaks fee sym m etry  b u t m aintains the  half 

skyrm ion sym m etry. Though L c and Ld are very close, they  appear not to  be 

equal, b u t the  two phase transitions may none the  less be re la ted  and since 

the second is trip ly  degenerate, there  may be a  whole class of modes which go
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negative a t th is critical density, signalling perhaps a solid-liquid phase transition .

The above picture explains the  salient features of Figure (3.5.3), the near 

independence of bo th  the  critical point L c and the energy on p near the  critical 

density. It enables us to  express the energy as a sm ooth function of L , p and 

<  a > such th a t for each L  and p , m inim ising w ith respect to  <  o  >  gives the 

calculated  energies and values of <  a  > . The phase transition  which breaks

the  half skyrm ion sym m etry  then  arises from  E ( L , p , <  o > — 0), changing from

m inim um  to  m axim um  in <  <r >  as L  increases th rough Lc, and sim ilarly fee 

sym m etry  is broken a t Ld as E ( L , p  = 0 , <  o  > ) changes from  a m inim um  to a 

m axim um  in p. From  sym m etry, the energy m ust be an even function of <  o  >  

and for sm all <  o  >  it m ay be param eterised in term s of <  o  > 2 and <  o  > 4 as:

E ( L , p, < o > ) =  E P=0(L)  4- F/o[o:(L)p2 4- /3(L)p3 4- ^ (L )p4 4- 6 (L)p5 4- • • •]

4- E 0[q(L) < a  > 2 +v(L)  < u  > 4] (3 .54)

w here the  coefficients are given by

a(L)  =  0.649 -  0 .487 -^  4- 0.089—
Lo L

P(L)  = 0.300 4- 0.006-^- -  0 .1 1 9 ^
Lo L

l ( L )  =  -1 .6 4  +  0 . 7 8 - ^ + 0 . 7 1 ^
Lo L

6(L) = 0.53 - 0 .5 5 - ^
Lo

q{L) =  (1 -  L ) (o .4 3 0  +  0 .2 4 3 L )
Ljc

v =  0 . 0 2 1 8 ( ^ + 3 .0 0 ^ ) .  (8.5.5)
XJe
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T he first four coefficients are known ra th e r accurately, since they can be cal­

cu lated  from  solutions for the condensed half skyrm ion phase and are chosen 

to fit the p dependence of the energy right th rough  the  region Lo < L  <  2.8 

for —0.35 <  p < 0.35, bu t the last two coefficients describe the s ta r t  of the  dilute 

phase and would be less accurately determ ined from  solutions in the  dilute phase. 

B ut here also one can use the  solutions in the condensed phase to  determ ine q(L) 

and v(L)  below L c, by including a pion mass te rm

Em = (m ^./^)2( l -  < CT > ) L S (3.5.6)

for each skyrm ion, to  drive the solutions away from  <  a  >  =  0 and  half skyrm ion 

sym m etry, th e  pion mass acting like a chemical po ten tia l for <  a  >.  This enables 

us to  determ ine the  coefficients in (3.3.5) much m ore accurately.

The first factor in q(L)  was chosen to  change sign a t the  critical length 

L  = L c =  2.45, a point which is best determ ined from  the  ex trapo lation  of <  cr > 2 

in Figure (3.5.1), and  the m agnitudes and forms of q(L)  and v(L)  are th en  ad­

ju sted  to  fit the  values of <  a  >  as a  function of L, which arise from  including the 

pion term  above, for various values of m These pred ict results consistent w ith 

the values of <  cr >  in Figure (3.5.1) and the difference in energy betw een the 

condensed and d ilu te  phases above L c from  Figure (3.5.2). We have no t included 

p 2 <  a  > 2 term s in E , though there  is a sm all effect, nor have we included the 

slight p dependence of L c in the param eterisa tion . The coefficient a(L)  changes 

sign a t L  = Ld = 2.43 and the coefficient 7 (L) also changes sign a t nearly  the



sam e L.  Thus, for fixed L, L  < Ld and small |p |, the energy has a m inim um  a t 

p =  0 and a m axim um  for p <  0 which merge a t L  — L&, the  m axim um  is a t 

p = —0.175 for L  = 2.25 and a t p = —0.46 for L  =  2.0. For L  ju s t above Ld 

there  is a m axim um  a t p — 0 and a m inim um  a t positive p, a t a d istance from 

p =  0 which depends m ostly on the p3 coefficient P(L)  and which merges w ith 

the  m axim um  at Ld. T here is presum ably ano ther m inim um  a t larger negative 

p for L  > 2 , which is outside the range of the present calculation and  does not 

show up in Figure (3.5.3).

It is hard  to calculate the field d istributions for densities lower th an  those 

shown in Figures (3.5.2) and (3.5.3), or for large |p|, b u t the asym ptotic form of 

the  energy arising from  equation (2.2.4) (see Table 3.2.2) predicts a m axim um  

for fee sym m etry, p =  0, w ith  energy falling continuously for negative p. Due 

to short range repulsion one would expect th a t there would be a m inim um  for 

fixed density a t some negative p, bu t, as shown above, th is is beyond the range of 

our calculations. For positive p, the m inim um  which appears in the  asym ptotic 

form ula s ta rts  a t the  phase transition  Ld a t p =  0, and  moves to  larger p as 

L increases. B ut there is really no good reason to  believe th a t  a t low densities 

the cubic or rectangular struc tu res studied so far should be m inim a. It is w orth 

noting th a t the  ratios Lc/ L 0 = 1.47 and L d/ L 0 = 1.46 are only 4% and 3% above 

the critical ra tio  of y/2 which M anton [5] derived for skyrm ions on S 3 where 

the lower bound can be achieved exactly. Since the energy for the fee in i ?3 is 

only 3.8% above the lower bound, M anton’s argum ent can be modified in an



approxim ate way to  explain why L c differs by only a few percent from  \/2Lo> 

bu t the argum ent for L d lying so close is less clear. We shall present argum ents 

in the  next chapter which explain the closeness of L d and L c, by considering 

deform ations in the  shape of S*h (L).

Finally, as we have already indicated, we expect the energy of the half 

skyrm ion to  be ‘bounded’ from below by the energy per un it baryon num ber 

of a hedgehog-like half skyrm ion. Such a half skyrm ion is contained w ithin a 

sphere of radius r0. M anton and G oldhaber [14] determ ined the  optim al value 

of r0 to be 0.77F m  and this corresponds to  the value of L 0 =  1.571 in our crys­

talline variables. The energy of this half skyrm ion per un it baryon num ber is 

ju s t 1.015% above the  lower bound.

Figure (3.5.2), indicates th a t this value of L 0, for a half skyrm ion, is close to 

those values of Lo a t which the  m inim um  of the  energy is a tta in ed  for all the 

condensed skyrm ion arrays so far considered. Indeed, the values of Lo for the 

Klebanov array of 1.548Fm  and for the fee array of 1.666Fm , are w ithin  a few 

percent of this value.

M anton and G oldhaber observed th a t it is plausible th a t the  distortions of 

a spherical half skyrm ion, required for it to fit in to  a W igner-Seitz cell of a 

half skyrm ion lattice, will raise the energy least if the volumes of the Wigner- 

Seitz cell and of the spherical half skyrm ion are the same. In th is case , this 

will minimise the distortions which are necessary for a spherical half skyrm ion 

to fill the W igner-Seitz cell. Thus, the close proxim ity of these values seems
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to justify  this idea. We note finally, th a t the m inim um  energy of all the lattice 

arrangem ents is indeed bounded by the  ‘half skyrm ion lower b o u n d ’, w ith the  fee 

array ju s t 1.023% above this bound. Thus, presum ably the distortions involved 

in the spherical half skyrm ion filling the  W igner-Seitz cubic cell of the  fee lattice 

are sm all.

3.6. Approxim ate Param eterised Variational Forms

The d istribu tion  of the o  and + fields a t the m inim um  are extrem ely well 

approxim ated by the formulae

a  =  c o s ( £ )  c o s ( t 7) c o s ( ^ )

ttx =  s i n ( £ ) y i -  ^ s in 2(r7) -  ^ s in 2(?) +  i  sin2 (77) sin2 (^) (8.6.1)

and cyclicly for 7ry and nz, where £ =  27trc/a, 77 =  2n y / a  and £ =  27r^/a. This 

form ula is a  three dim ensional analogue of the exact two dim ensional solution 

for the N on-Linear Sigma Model, described in [19] in term s of the Jacobi elliptic 

functions sn  and cn which replace sines and cosines.

This form ula for the a  field clearly indicates, th rough its functional separa­

bility of the  x , y , z  dependencies, th a t there are <j =  0 cubic surfaces w ithin this 

condensed half skyrm ion field configuration. Moreover, this form  has proved use­

ful in p ic tu ring  the sym m etries possessed by the pion fields which we discussed 

in Section 3.3.



An extension of form ula (3.6.2), including variational param eters which m od­

ify the argum ents £, 77, $ by

27rrr
£ i—► £ +  a  sin

a,
. 27r y

77 >-* p +  a s m ------- ,
ay

  27T"j£
? £ +  /? s in ---------, (3.6.2)

dz

and sim ilarly the factors \  and |  can be found to  fit the whole range of densities 

and  deform ations considered here for the half-skyrm ion condensed phase [20].

On S 3hy(L),  we noted in C hapter 2, th a t in the uncondensed phase, a finite 

conform al transform ations of the trivial m ap gives the  correct bifurcation point 

and has a finite energy in the flat space lim it, as L  tends to infinity. However, 

in this lim it the energy of the finite conformal m ap differs from  th a t of the true  

fiat space skyrm ion by a sm all b u t significant am ount. In the next chapter we

construct this m ap explicitly. Weiss et al [21] considered a simple one param eter

generalisation of the finite conformal m ap and were able to  accurately reproduce 

the  energy of the  skyrm ion on Sphy(L) for all values of L.

It was thus suggested [21] th a t a finite conformal m apping of the half skyrm ion 

fields in the condensed phase, m ight provide a reasonable description of the un­

condensed phase solutions and the  bifurcation point. A finite conform al m apping 

of the  a  and n fields is given by,

(A2 -  1) +  (A2 +  l ) a
a =

(A2 +  1)  +  ( A 2 - 1 ) < 7 ’
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For this transform ation, the m atrix  jFftJ (see equation (2.3.2)) becomes,

k ti = ^ K i j .  (9 .6 .4 )
7T

For values of A greater th an  1 and w ith the <r and if fields give by equations 

(3.6.3) and (3.6.4), the skyrmions localises about the a  =  1 points . For values of 

A in the range 0 <  A < 1 the skyrmions tend  to  localise about the a  =  — 1 points, 

corresponding to the lattice sites of the fee crystal. The energies of configurations 

w ith A greater th an  one are related to those w ith 1 >  A > 0 by the transform ation  

A t—► l/A .

The value A =  1 is an extrem um  of the energy and corresponds to  the  fields 

having the half skyrm ion sym m etry of equation (3.3.3). The energy of th is vari­

ational form  was found num erically to be a m inim um  for A =  1 up to  a  value of 

L c =  2.58F m  and beyond this a bifurcation in the energy occurs, w ith the A =  1 

form becoming a m axim um  of energy. These results are in reasonable agreem ent 

w ith the exact num erical results we have presented.

This dem onstrates th a t the modes of instability  which result in the  delo- 

calising phase transition  for the fee array are predom inantly the infinitesim al 

conformal modes which transform  the field variables. A full variational calcu­

lation w ith the param etric forms (3.6.2) and the generalisation including the 

variation param eter A for the uncondensed phase however, still fails to accu­

rately  reproduce the exact results. The m ajor discrepancy once m ore occurs in 

the asym ptotic lim it. By analogy w ith their S 3hy(L) generalisation of the  finite

115



conformal m ap, they extended their variational form  such th a t A becam e a two 

param eter function of position. This modified variation form, w ith  the correct 

asym ptotic inverse cubed dependance of the energy on the  separation  distance, 

they claimed to be completely consistent w ith our num erical results [21].

3.7 Conclusion

There are several ra ther general conclusions to  be drawn from  all these detailed 

calculations. The salient feature is th a t there is a robust phase transition  as 

the density is increased from a system  of isolated skyrm ions w ith  no strongly 

preferred sym m etry, to a regular lattice of half skyrm ions. The transition  is 

in general second order and the condensed system  has lowest energy w ith fee 

sym m etry. The phase transition  and condensed phase look rem arkably similar 

to M anton’s solution [5] on a 3-sphere. The energy m inim um  occurs a t a density 

of 0 .217F m -3 and the phase transition  a t 0 .068Fm -3 . These should not be 

com pared directly to  nuclear m atte r density 0.17jFra-3 . The Klebanov[6] choice 

of param eters sets energy and length scales determ ined by / whi ch is set at 

the unrealistic value of 64.5Mev. Also skyrmionic m a tte r contains both  nucleons 

and A and the la tte r have not been projected out. At high density this may be 

a reasonable approxim ation, bu t not at low densities. Furtherm ore, the present 

calculations contain only poten tial term s and no kinetic energy contributions. 

The effects of including these to one loop order can be crudely estim ated from
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the work of Zahed et al. [22] for a single skyrm ion on R 3 and Generalis and 

Williams [23] for S3. One loop contributions appear to lower the  skyrm ion mass 

by about 20% in the dilute phase or near the phase transition , w ith  m ost of the 

contribution  occurring effectively in the e4 te rm  ra th e r th an  in e2. Even larger 

corrections may occur near the m inim um  energy of the condensed phase. Such 

changes in the relative streng th  of e4 and e2 would increase the  above densities 

by a significant factor, to  bring them  more in line w ith  predictions for nuclear 

m atte r.

In m ost of the  above calculations we have concentrated on the zero pion mass 

case, using a finite pion mass only to  explore the energy surface as a function 

of <  a  > . This seems a good procedure for several reasons. O ur m ain interest 

is to  explore the effects of the transition  to half skyrm ion sym m etry  and the 

pion term  destroys this sym m etry explicitly. The pion mass is im portan t for well 

separa ted  skyrm ions, because over large regions of space (far from  the  center of 

the skyrm ions), it is the dom inant te rm  in the  action. B ut in our dense system  

this occurs nowhere and so the pion and a  d istributions will not be altered by 

much. There is also the question of w hether it is correct to  use th e  free field values 

of the pion mass and /*- in such dense system s. According to  Forkel et a l.[24], 

the half-skyrm ion transition  corresponds to chiral sym m etry  resto ration  and  they 

argue one should consider th a t the /*- in equation (3.5.6) really corresponds to 

< cr >  and would thus give no contribution in the condensed phase. The mass 

term  in (3.5.6) ensures th a t  skyrm ions will prefer to concentrate around points
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w ith cr =  — 1 ra ther than  a  =  +1. The dom inant effect of the pion m ass on 

the energy is to  introduce a te rm  proportional to the volume occupied by the 

the  skyrmion; this shifts the minim um , decreasing Lo by 2.2% and increasing 

its energy by 42MeV; it also slightly increases the energy difference between the 

bcc and fee m inim a. The pion mass term  always leads to  a non-zero <  cr > .  

For L < L c, <  cr > is small and dom inated by the  balance betw een the  < cr > 

te rm  in E m and the < cr > 2 term  in (3.5.4), it is proportional to  m 2/g(L ) and 

so gets larger as L approaches Lc. At the m inim um  <  cr > =  0.12. Near Lc the 

quartic  term  in < cr >  in (3.5.4) becomes im portan t and this has the  effect of 

sm oothing the ab rup t increase of <  cr > , which occurs a t the phase transition  as 

seen in (3.5.1). Above L c, again the shift in <  cr >  is dom inantly proportional 

to m 2, bu t involves bo th  q(L) and v(L).  Essentially, in view of the smallness of 

the  pion m ass, it merely leads to a  sm ooth transition  from  the  low to the high 

density phase. Of course, <  a  > will never be rigorously equal to  zero and in 

a s tric t sense there will be no phase transition  for non-zero pion mass. Similar 

conclusions hold on 53[25].

Finally, we note th a t Kugler et al [12] proposed th a t for values of L  > L 0, 

crystalline skyrmionic m atte r undergoes a phase separation  ra th e r th an  expand­

ing to  fill the increased size of the lattice. Thus, for L  > Lo, skyrmionic m atte r 

would be composed of a region in which the baryon density was th a t of the 

lattice a t L  =  L 0 and a region of triv ial vacuum  w ith  zero baryon density and 

zero energy density. Thus, beyond L0 the energy of skyrm ionic m atte r would be
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constan t and equal to  the m inim um  value.

However, since no kinetic effects have so far been considered, it seems un­

reasonable a t this stage to  ignore the branch of the curve, which a t low baryon 

densities will correspond to  a well separated  array of B  — 1 hedgehogs. It would 

seem reasonable th a t this branch of the curve may represent some transien t form 

of skyrm ionic m atter.
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C H A P T E R  4

SK YRM IONIC M ATTER ON A CLOSED SURFACE  

OF VARYING CURVATURE  

4.1 A Geom etrical P icture Of Skyrmions

We have seen th a t the properties of flat space arrays of skyrm ions bear a striking 

sim ilarity to those of a single skyrmion on a Syhy(L).  In particu lar, we have 

noted th a t both  systems undergo a phase transition  as the density of skyrmionic 

m a tte r is increased from a localised phase, in which < o  > is close to  one, to 

a delocalised phase, where <  a > is rigorously zero. T he vanishing of <  o  >  

follows trivially on Syhy(L) from the full 0 (4 ) sym m etry of the trivial m ap and 

for flat space arrays is a consequence of the  additional half skyrm ion sym m etry a t 

high densities. Moreover, it has been shown th a t on Syhy(L) th is phase transition  

is of second order and associated w ith the disappearance of zero modes a t high 

densities. The disappearance of these three Goldstone modes and the vanishing 

of < <r > 2 4- < 7 r > 2 at  high densities, has led to the in terpre ta tion  of this phase 

transition  as representing the restoration of chiral sym m etry a t high densities 

[l ] . However, in flat space this in terpreta tion  is less clear, as the additional, 

discrete half skyrm ion sym m etries are not associated w ith the disappearance of
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the Goldstone modes.

Thus, there is a som ew hat non-trivial relation between these two dense skyrmionic 

system s, yet the gross features of bo th  are very sim ilar. This has been in terpreted  

as the curvature of Syhy(L) sim ulating the interaction of the skyrm ions in the 

dense crystalline environm ent.

Hence, we are led to investigate fu rther the role of curvature on Syhy(L),  by 

considering different shapes of physical space which have a locally varying curva­

ture. Moreover, if we restric t ourselves to closed surfaces which are continuously 

deform able into Syhy(L ), we can investigate the role of deform ation in the shape 

of this sphere. It is to be expected th a t this will be related  to  the bulk deforma­

tion of crystalline arrays, num erically studied  for fee crystalline m a tte r [2] and 

th a t it will also have an analogous density beyond which the  triv ial skyrm ion 

on Sphy(L) is unstable w ith respect to  shape deform ation and th a t this density 

will be in close proxim ity to  th a t of L c.

In order to develop such a generalised shape analysis, it is instructive to  un­

derstand  the geometric na tu re  of the Skyrme Model. Such a geom etrical p icture 

is to  be expected, since the skyrm ions stability  is topological. M anton [3] has 

shown th a t such a geometric picture does indeed exist, which we shall review 

briefly.

The existence of such a p icture m ight be expected from  the  outset, since the 

sta tionary  solutions of the Non-Linear Sigma M odel’s energy functional defines 

harm onic m aps and these have a definite differential geometric in terpreta tion .
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The Skyrme M odel’s energy functional can thus be in terpreted  as a na tu ra l ex­

tension of the functional generating harm onic m aps and th is extension has been 

shown to have a firm differential geometric in terpreta tion , as dem onstrated  by 

Loss [4]. Also the Skyrme energy functional, as pointed out by M anton [3], is 

very sim ilar to the models used in certain  non-linear elasticity theories [5].

A skyrm ion on a generalised three dim ensional physical space, Mphy, is a non­

trivial m apping of Mpky onto Sfso. From the ou tset we take physical space to be 

R iem anian, orientatable and connected. Thus, a skyrm ion is a  m apping <f>, such 

th a t

where g and r  are the m etrics on Mphy and Sf90 respectively.

These two m etrics express the local geometric lengths of bo th  spaces. The 

m apping </>, deforms Mphy in to Sf80 and thus changes these lengths. Hence, 

the na tu ra l geometric quan tity  m easuring the extent of this deform ation is con­

s tructed  from the m etrics in expression (4.1.1).

The m apping induces a new m etric on Mphy, which is the  pull back of the 

m etric r ,  w ritten  as

K  = <j)*T, (4.1.2)

which is globally defined on M*hv as a consequence of the m appings non-triviality. 

This sym m etric pull back m etric, in a n a tu ra l, local coordinate system , (rr‘), on
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M ) hll is given by

K n  =  d i f d  i = 1 ,2 ,3  (4.1.3)

where <f>a(a =  1 to 3) are the three local coordinate representatives of the m apping

A m easure of the extent of the deform ation induced by the  m apping, is given 

by com paring the pull back m etric w ith the m etric of physical space. Thus, we 

define the deform ation m atrix  as

D  =  g - l K.  (4.1.4)

This is a three by three m atrix , formed by m ultiplying the inverse m etric w ith 

the pull back m etric in some local coordinate system  on Mphy. However, this 

deform ation m atrix  is not a coordinate independent quantity. Since we are in­

terested  in invariants which express the geometric deform ation induced by the 

skyrm ions, we consider the invariants of D,  which can be constructed  from its 

three eigenvalues which we shall w rite as Af, A2, A3.

We note th a t if these all have a un it value, then the m apping <j> is an isometry 

of Mphy onto Sf80. In this case the m apping produces no deform ation. Also, the 

deviations of these eigenvalues from unity, m easure the extent of the deform ation.

The invariants of D,  (4.1.4), are the perm utation  sym m etric functions of its 

three eigenvalues and the three characteristic invariants are

T r D  =  Aj +  A* +  A | ,
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1/2 { T r D 2 - ( T r D ) 2} = X\X\ +  Â Ag +  AgAg, (4.1.5)

det D = A^AjAg,

where we have taken local coordinate system s on M*hv and S?so, in which D  is 

diagonal, th a t is, norm al coordinate system s on both  spaces.

The Skyrme energy functional is constructed from  the  first two of these in­

variants. The first invariant term  gives

and is sim ply the Non-Linear a-M odel energy functional. Similarly, the second 

invariant gives the Skyrme energy functional;

e4 = f  +  ^1 ^ 3  +  A2A3). (4-1'VJM3.p h y

In this chapter we shall always use M anton’s dimensionless un it [3], defined in 

C hapter 2 .

We can give a geom etrical in terpreta tion  of these two expressions in term s 

of the effect <j) has on a set of orthonorm al frame vectors over M ^hy. The first 

invariant m easures how the sum  of the squared lengths of the orthonorm al frame 

vector on physical space, changes under the  m ap <j).

The second invariant m easures how the  sums of the squared lengths of the 

three cyclicly perm utated  cross-products of pairs of these orthonorm al frame 

vectors on physical space, change under the m apping. Thus, it m easures the 

changes of local areas produced by the m apping.
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The th ird  invariant is not considered here. However, it has been used as an 

alternative to the Skyrme Term  for stabilising solitonic configurations [6], Since 

this te rm  scales like inverse length cubed, it will prevent the  collapse of finite 

energy solutions. The invariant m easures how the squared length of the cross- 

product of the orthonorm al set of frame vectors changes under the  m apping <f). 

It thus m easures how the  m apping changes the local volumes.

Hence, the Skyrme energy functional has a na tu ra l geometric in terpreta tion . 

Moreover, deviations of the energy from the topological bound m easure the de­

viation of the deform ation m atrix  from unity. This is revealed by re-expressing 

the energy functional as

E  = e 2 T e4

~ f  \ / ^ { ( ^ l  ~  ^ 2 ^ 3 )2 +  (^2 — ^ 1 ^ 3 )2 +  (^3 ~  ^ 1 ^ 2 )2}JM3,vhy

+  b [  > /^1^2^3- (4 .1 .8)
Jm 3,p h y

The last term  has a topological in terpretation . It is simply the integral of y / D , 

which is the Jacobian factor of m apping <f> and transform s the m easure on Mphy 

to  th a t on 5t3ao. Since bo th  spaces are orientatable, the square roots of D  and 

of the Jacobian factor can be defined consistently. The value of the  integral will 

sim ply be equal to  the volume of Sfso, which is 27r2 m ultiplied by the m apping’s 

w inding num ber B.  The other term s are m anifestly positive and hence we can
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see the energy is indeed bounded from below by

E  >  12?r2 \ B \ .  (4-1-9)

Moreover, this bound will only be sa tu ra ted  if Ai =  A2 =  A3 =  1. T h a t is, when 

(f> is an isom etry of M yhy to  Sfso, Thus, it can be seen th a t the energy function 

m easures the deviation of the eigenvalues of D  from unity. Clearly the identity 

m ap for Syhy is an isom etry and hence it sa tu rates  the bound.

W hen M yhy is flat physical space, R 3, M anton et al [7] showed th a t the bound 

cannot be sa tu ra ted  since no isom etry exists. The usual B  — 1 hedgehog on 

compactified j R 3 ,  which is a m inim iser of the energy functional, has an energy

1.23 x 127T2. The deviation of its energy from the bound is a reflection of the

differing curvature of R 3 and Sfs0.

M anton, using this eigenvalue form ulation, fu rther showed th a t the stability 

properties of the trivial m ap on Syhy(L) can be deduced by considering the effect 

of varying the m ap. Since we shall generalise this technique to  incorporate shape 

deform ation, we shall only briefly review his techniques and his conclusions here.

For the trivial m ap of Sphy(L) onto 5 t?0(l) the eigenvalues of the deform ation 

m atrix  are given by:

A? =  A’ =  A* =  (4 .1.10)

taking the m etric’s com ponents to  be dimensionful. U nder a sm all change of 

the m ap these eigenvalues change and we express the new eigenvalues as

At =  | ( l  +  <5,), * '= 1 ,2 ,3  (4-1-U)
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where 84 are sm all dimensionless quantities varying over M yhy. The resulting 

energy can be expressed to  second order as:

=  12tt2(L +  —) +  —  J  y/g(l  +  — )A +  - p  /  +  J 2 K 2

+  J l j  V s h -  U-1-1S)

Here, we have for convenience, introduced the infinitesim al functions;

I\  =  81 -f S2 4- 83, (4-1.13)

which is a first order quantity  and

h  =  +  82 +  8$ (4 . I . I 4 )

and

=  8482 T  6183 +  8283, (4.1.15)

which are of second order.

Since the winding num ber of a m ap is a topological invariant, we require th a t 

it rem ain unchanged under variations of the m apping. Thus, to  second order we 

have the constraint th a t the change in baryon num ber be of th ird  order. The 

winding num ber expressed in term s of the  eigenvalues of the deform ation m atrix  

takes the form:

B — ( 2 ^ 2 )  /  (4 .1 .1 6 )

and for the identity m apping gives B  =  1. Thus, substitu ting  the  expression 

(4.1.11), for the deformed eigenvalues (4.1.11), in to (4.1.16), the expression for

130



the baryon num ber, leads to the constraint

/  V s h  =  -  /  + 0(«3). (4-117)

Imposing this constraint, the expression for the energy to second order (4.1.12), 

has the form

=  127r2(L + ± )  + ± J y/g(  1 +  ± ) l t -  2 J  y /gh- (4-1.18)

There is no first order term  in this expression and hence we see th a t the trivial 

map is a s ta tionary  point of the energy functional. Moreover, the second order 

term  is positive definite for L  < a/2 and negative definite for L  > a/2. Thus, the 

identity m ap is a local m inim um  up to L  =  y/2 and beyond it is a local m axim um . 

At the point L  =  a/2, the p a th  of steepest descent is observed to  be achieved when 

<5i =  82 = 63. This corresponds to  an infinitesimal local conformal transform ation. 

Hence the trivial m ap is unstable against such a transform ation  a t values of 

L = y/2 and undergoes a second order phase transition  a t the corresponding 

density.

This observation was fu rther strengthened by the  com plete calculation of the 

mode spectra  [8] w ith the trivial m ap background. The com plete solution of this 

second order variation problem , reveals th a t the infinitesim al conformal modes 

have eigenvalues th a t go from  positive to negative as the value of L  is increased 

beyond a/2.

For large values of L  beyond y/2, M anton [3] considered a finite conformal 

map as an ansatz. This will incorporate the infinitesim al m apping and is the
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analogue of the finite conformal transform ation (3.6.4), considered by Jackson et 

al [10] and discussed in the previous chapter. This takes the  general hedgehog 

form and in the polar coordinate system s, (/j,,0,<f)) on Sphy(L) and (jX,0,<f>) on

S'3i s o  i

0 = 0,

4> = <j>. (4.1.19)

For a = 1 this reduces to the trivial m ap. For a  >  1 the m apping produces a 

localisation of the skyrm ion about the  north  pole fi =  0, while for 0 <  a  < 1 it 

produces localisation centred on the south pole n  =  n. These two configurations 

are related by the transform ation a  1 / a .  M inimising the energy of this 

conform al m ap w ith respect to a,  shows for L  < y/2 there is only one physical 

solution, a  =  1, the triv ial m ap. For L > y/ 2 there are th ree s ta tionary  values of 

a,  two of which have identical energies for values of a  and 1/ a  and are m inim a, 

while the th ird  a = 1 is a m axim a. Thus, we have a phase transition  of the 

s tan d ard  ‘pitchfork’ type. For infinite L  the trivial m ap has infinite energy, as 

seen by equation (2.3.11), while the two others have finite limits w ith energy 

a/2 x 127r2. Thus, in the flat space limit their energy is seen to be close to th a t 

of the flat space hedgehog. The baryon density of the solutions is observed to 

be localised in a region /x ~  1 / L  for large L. The exact solution is very similar 

in the  flat space lim it, having an energy consistent w ith th a t of the flat space
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skyrm ion and of the general hedgehog form w ith the two degenerate solutions 

localised about opposite poles and being related by the transform ation:

f ( n)  7T -  / ( t t  -  / z ) .  (4.1.20)

4 .2  V a ry in g  T h e  M e tr ic  O f Syhy(L)

We shall now consider the effect of allowing bo th  the m ap and shape of physical 

space to vary in order to investigate the stability  of the m inim al energy trivial 

m ap solution on Syhy(L) as a function of its average baryon density. Of course, we 

have in m ind the analogous ‘m inim al’ energy fee a rray ’s instability  w ith respect 

to  bulk deform ation above L d, as described in the previous chapter. Due to  the 

complexity of finding the soft modes of deform ation for this crystal and as the 

conform al instabilities are common to both  system s, we hope to  reveal another 

such ‘universal’ instability.

As the Skyrme energy functional contains no term  directly m easuring the 

shape of physical space, the m inim isation problem  involving variation of the 

shape of physical space may be a pathological one. The inclusion of additional 

geom etrical physical space term s, such as a curvature term , m ight well overcome 

these difficulties. However, we have no physical basis for such an addition and so 

we shall for the m oment consider only small variations about the  sphere which, 

as we shall see, we can make sense of and re tu rn  to the difficulties the more
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general m inim isation problem  poses a t a later date.

We can consider sm all deform ations of the shape of physical space and assume 

these leave the manifold Mphy sm ooth. Such small deform ations can be encoded 

in a corresponding infinitesimal changes of the m etric, g, on M ^ hy. These will then 

lead to corresponding, infinitesim al changes in the eigenvalues of the  deform ation 

m atrix  D  and the yjg factor in the m easure. We can represent these changes in 

the eigenvalues due to such a shape deform ation and those due to  variation of 

the m ap, by their effect on the deform ation m a trix ’s eigenvalues. We express 

these in the form:

A, -► t =  1 ,2 ,3  (4 .2.1)
l-l ~r St)

where e and 6 are small quantities defined on M yhy, corresponding to the shape 

and m ap deform ation respectively.The change in the m easure on M yhy is encoded 

in the change in the yfg factor and we express this as:

V ?  I_> y/g(l +  e l ) ( l  +  e 2 ) ( l  +  £ 3 ) 5  (4.2.2)
Thus, for fluctuations about the identity m ap on S^hy(L ), we express the new

eigenvalues as:

X' = L  (1 +  j ' t =  1 ,2 ,3  (4 .2.S)

On substitu ting  expression (4.2.2) and (4.2.3) into the energy functional (4.1.8)
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and expanding, we have the energy to second order given by:

~^~r4 f  * ~  ^ 2 ~  ~  ^^2 ) 5  (4-^-4)
p h y

where we have used the same infinitesimal expressions as in (1.1.13) to  (1.1.19)

H 2  — <$i£i +  62^2 +  ^3^35 

# 3  — 1̂ (^ 2  + £3 ) + 2̂ (^ 1  +  £3 ) +  3̂ ( ^ 1  + 2̂)- 

On setting  the infinitesim al quantities, (4.2.5), equal to zero, expression (4.2.4)

infinitesim al fluctuations about the trivial m ap, as of course it should.

The winding num ber constraint does not change since this is a topological 

invariant, dependent only on the m apping and hence, we still require expression 

(4.1.17) to  be satisfied by the <S’s. However, we require a second constrain t for our 

purposes, th a t the volume be constrained. This is so as to  elim inate instability 

w ith respect to m etric deform ation which reduces the volume tow ards th a t a t 

which the m inim um  occurs. Hence, we require th a t the volume given by

and in addition have introduced the following infinitesim al functions:

— s l s 2 +  s 1 6 3 +  ^ 2^3 (4.2.5)

reduces to the expression for the energy second to order, (4.1.12), resulting from

(4 .2 .6)
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be fixed. Hence, requiring its variation to be of th ird  order, th is gives us the 

constraint:

L  S l’J l = ~ L  V ^ 3  +  0(63). (4.2.7)
p h y  p h y

Im posing the two constraints (4.1.17) and (4.2.6) gives the energy to  second order 

as:

E  = 6tt2(£  +  1 )  +  j  V 5 (i +  + l \  +  7?)

-   ̂j  V s { l i l 2 + l i l s  +  l2'l3), (4-8.8)

where we have introduced the  new infinitesim al quantities

ŷ* — ® — 15 2 ,3 (4.2.9)

This is exactly analogous to  the expression (4.1.18) and thus we have sim ilar 

conclusions for this class of m ultiple infinitesim al variation.

There is no first order term , hence the trivial m ap and Sphy(L) are s ta tionary  

against these infinitesim al m ultiple variations for all values of L.  Moreover, this 

solution is a local m inim um  up to  a volume corresponding to L  — \ /2  and beyond 

this point it is an unstable extrem um . The p a th  of steepest descent a t L = y/2  

is given by the condition

7l =  72 =  13- (4.2.10)

This is the condition th a t the space, resulting from the infinitesim al deform ation 

of the shape of Sphy(L),  be conformally m apped into Sfso by the infinitesimally
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varied m apping. A finite version of this condition is

k  =  n  2<7, ( i - s . i i )

where H2 is the local conformal factor which varies over Myhy and expresses 

the  change in length of the orthonorm al fram e vectors induced by the m apping. 

This is indeed a direct generalisation of M an ton’s finite conform al m apping for 

a general shaped physical space, (4.1.19).

So we conclude, th a t on Syhy(L) bo th  the shape deform ation and the delocal- 

ising phase transitions are of second order, occurring a t a volum e corresponding 

to L = y/2. We also note th a t these generalised infinitesim al deform ations can 

be expressed in term s of the three infinitesim al quantities 7,- and th is is a con­

sequence of the sim ilarity in the shapes of the  physical and the  ta rg e t spaces. 

Thus, to  second order in the energy, we find th a t variations of the m ap and the 

m etric are able to com pensate each other and presum ably are responsible for the 

observation th a t L j  = L c. For flat space arrays this suggests th a t infinitesim al 

m ap fluctuations are unable to  completely com pensate for bulk deform ations and 

hence the two phase transitions occur a t different densities. However, the ir close 

proxim ity may be a m easure of their ability to  com pensate for each other.
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4.3 A H edgehog On An Elliptical Three Surface

In order to  illustra te  the observations of the previous section, we shall now con­

sider a specific exam ple, generalising the shape of the sphere, S*hy{2y  The sim ­

plest such model would be to  replace S*hy(L) by a space whose shape varied 

through a one param eter family of m etrics, w ith one specific value correspond­

ing to a Sphy(L ). An obvious candidate  space is an ellipsoid. There are two 

such ellipse spaces and these can be represented as em bedded surfaces w ithin 

jR4, satisfying

W 2 X 2 l /2 Z 2
* + ^  +  £  +  ^  =  1, U . s . 1)

or

w 2 x 2 y 2 z 2
c2"+ c 2 + d2 +  r f 2= 1 ,  (4-3.2)

where (w, x, y, z) are C artesian  coordinates w ith  jR 4 and a,b  and c,d  are real 

constants, defining the length and w idth in R 4 of these elliptical surfaces. These 

both  result in a one param eter family of m etrics on M yhy for varying length to 

w idth  ratios. Clearly the m agnitudes of these param eters are related  only to  the 

volume, while their ratios determ ine the curvature of the ellipse.

In the flat space calculations we considered bulk deform ations of a cube to 

a rectangle. Thus, as the cubic shape was changed, either in com pression or

expansion in the direction of one of its sides, this resulted  in an asym m etry
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about the cubic shape. For the second of these elliptical spaces, (4.3.2), the 

transform ation  c i—> d and d ► c, produces an identically shaped space and thus, 

the sphere condition (c = d) is a unique sym m etry point of this transform ation. 

Thus, for a skyrm ion on this ellipse, the result of deform ation in the shape of 

space for c > d or c < d, should be sym m etric about Syhy(L), (c = d).

However, we do not expect this to be the case for the first of these ellipses,

(4.3.1). The space which results for a < b is of an oblate type, w ith an axis 

of sym m etry about its m inor axis. The ellipse which results when a > b is of 

the pro late  type, w ith an axis of sym m etry about its m ajor axis. Thus, the 

transform ation  a \-+ b and 6 *-+ a does not produce a space which is isomorphic 

to  the original. Hence, we cannot expect for these elliptical deform ations, of 

the ellipse (4.3.1), th a t the sphere will, in general, be unique. Thus we see, 

th a t the  shape deform ations of Sphy(L) to  the elliptic space (4.3.1), is in direct 

analogy to those shapes produced by our bulk deform ations of the fee lattice. 

These changed the shape of the fee cubic cell in to a square based prism oidal 

cell. Thus, the results of our num erical calculations, w ith  respect to the effects 

of these bulk deform ations of the fee lattice, (see C hapter 3), were in general 

found to  be asym m etric about this cubic sym m etry for varying aspect ratios of 

the  cell.

Since the space (4.3.1) has a ro ta tion  sym m etry abou t its m ajor axis (a > 6), 

or its m inor axis (a < 6), which passes through its poles, these two poles are 

identified as unique points of symmetry. Since the hedgehog ansatz also involves
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a sim ilar unique identification of the poles and ro ta tion  sym m etry, we see th a t 

on this space the hedgehog ansatz is a sensible one, on grounds of symmetry. 

Thus, in the rem ainder of this section we shall investigate the effects, on a B  = 1 

hedgehog skyrm ion, of changing the shape of physical space constrained to  satisfy

(4.3.1).

The shape of this ellipse is related to the ra tio  of the  lengths a and  b. For larger 

values of the ra tio  a / 6, the ellipse becomes needle like and of p ro late  sym m etry, 

while for small values it becomes disc like and of oblate sym m etry. We choose 

the coordinates for this ellipse to be the ‘s ta n d a rd ’ po lar angles 0 < 0, <j> < tt and 

an angle 0 < fi <  7r, which are related to the C artesian coordinates of R A by

w = a cos /x, 

x  — b sin (x cos 0 , 

y  =  6 sin fi sin 0 cos <f>,

z  =  bs'm/j, sin# sin<£, (4.3-3)

and thus, we see constrain t (4.3.1) is satisfied. In this polar coordinate system  

the m etric on M yhy is diagonal, w ith elements:

{62(1 — esin 2 //), 62 sin2 n, b2 sin2 /i-sin2 0}, (4-$-4)

where we have retained  the dim ensioned length 6 and introduced the dimension- 

less eccentricity

c =  (1 — a 2/ 62) 1/2 (4.3.5)
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which governs the  shape of the ellipse. Thus we have our desired one param eter 

m etric, (ignoring the length variable 6), w ith the eccentricity param eter express­

ing changes in shape. For e — — oo we have the needle, for e =  1 the  disc and  for 

e =  0 the sphere.

For num erical representation of the da ta , the eccentricity param eter will be 

replaced by the new param eter y which takes values from plus infinity to  minus 

infinity and corresponds to the sphere a t y =  0 . Such a sym m etric variable is

a2 b2 .
V = U - s -6)

and is related to  e by

(2 -  e) ,
y =  - e j r — j.  (4.S.7)

The needle corresponds to y — +oo and the disc to y = —oo. This is analogous 

to replacing the aspect ra tio  r 3, by the p for the flat space arrays of in terpolating 

sym m etry, studied in C hapter 3.

The volume element on physical space is given by

63A sin 2 ixsm9diid0d(f>, (4-3.8)

where

A =  (1 -  e sin 2 fx)1/2. (4.3.9)

In order to simplify the num erical complexities of our calculation, we choose to

employ the hedgehog ansatz for the skyrm ion m ap. This seems a sensible ansatz
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due to its high degree of sym m etry and its consistency w ith the sym m etries of 

this physical space. Moreover, for e =  0 this will incorporate b o th  the trivial 

m ap and the s tandard  hedgehog form previously employed on a 'Sp\„ ( £ ) .  This 

hedgehog m apping is given by

<t =  cos/(/x ),

7rx =  s in /(/a) cos 0,

7ry =  s in / ( / L i )  sin 0  cos </>,

7rz  =  s in / ( / L i )  sin 0 sin (f>. (4-3.10)

Since we wish to consider only B  = 1 solutions we shall impose the boundary 

conditions

/ ( 0 ) = 0 ,  / ( 7 t ) = 7 T ,  (4.3.11)

on the profile function, this ensures th a t the hedgehog has un it winding num ­

ber B.  The resulting deform ation m atrix  for the hedgehog is diagonal and has

eigenvalues:

h
a* = b2A 2'

b2 sin"1 /u

Thus, the hedgehog’s energy functional is given by:

.. f w f , 2 * n t f 2 sin2 f  \ l s i n 2 / .  f 2 sin2 / , w
E( f )  =4 w  d n sin jtA {6(—^ +  2 ^ - j —) +  7 -7- 2- ( 2T i  +  ~ r T - ) } U - 3 .1 S )  

Jo sin /Li osm  /u sin /Li

where we have perform ed the trivial 0,(f> integrations.

The Euler Equation following from the functional variation of (4.3.13),
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w ith respect to f (fx) is:

fL2 , n s 'm 2 f \ r  , fLi f .  , sinV ,  , sin2 /  sin 2 .̂ (b + 2-7- 3— /  + { 6  (1 +  e—— -  + e — — f  
sin fj, A J sin

.'o sin2 / .  A 9s in 2/
+  s in 2 / / 2 -  (6 +  - ^ V - J A 2- ^ ^ -  =  0 . (4-3.14)

sin n  sin fx

This is an ordinary, second order, non-linear differential equation for f(/x) and 

s tan d ard  integration techniques can be applied to  it to  ob tain  a solution.

However, it should be noted th a t for e =  0 , the  triv ial m ap f(/x) = /x, is a 

solution, the equation reducing to th a t for Sphy(L) given in C hapter 2 , (2.3.9).

Before describing the num erical solution of this equation it is instructive to 

consider a power series solution, in power of the eccentricity. Thus we choose to 

take the eccentricity to  be sm all and consider only solutions which are sym m etric 

abou t the equator.

Since e =  0, the trivial m ap is the solution of (4.3.14) and we were led to 

solve this equation order by order in power of e about the  trivial solution. To 

second order in e we found the following sym m etric solution,

f(fx) — fi +  a ie s in 2 ^  +  e2(a2 cos2 fx +  <13 sin2 fi) sin2/x +  0(e3), (4-3.15)

w ith the  constants given by

4 +  3 b2 
8 (3 +  62) ’
( -1 0  -  1562 -  5b4 +  224a! -  408a2 +  146ai&2 +  20ax64 -  64a*62 +  40a\b4)

8(33 +  26b2 +  5&4) ’
( -1 6  -  23b2 -  7b4 +  200a! -  72a\ +  126ai&2 +  16ai&4 +  24aj64) , ,  „

0/3 ~  8(33 +  26b2 +  5b4) ‘

a 1
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This solution has the sym m etry

/V) =  7T -  / ( tt -  / * ) ,  (4.3.17)

characterising the sym m etric phase. We can now calculate this so lu tion’s energy 

in power of e, as a function of b and on substitu tion  in (4.3.13), expanding and 

integrating we have:

O nr 2 Q p

=  —— [3(62 +  1) +  — (—f>2 +  1) (4 .S .I 8 )
b 8

e2
+  — {62(5 -  96ai 4- 128a*) +  25 -  128a! +  384a*}] +  0(e3).

64

This energy does not depend on the param eters a2 and a3, in expression (4.3.15) 

for /  ( / i ) ,  since first order fluctuations in the eigenvalues of the deform ation m atrix  

com pletely account for the second order variation of the energy for a solution to 

the Euler Equation (4.3.14).

In order to com pare like w ith like, we need to elim inate the variable 6 in 

favour of the variable L  m easuring the volume of space and hence the average 

baryonic density. Thus, we introduce the new variable

where the volume, V ,  of physical space is given by;

V = 4trb3 I*  d^s 'm2 / j lA (4.3.20)
Jo

and hence L  will be a function of bo th  b and e. Expanding the right hand side

of expression (4.3.19) in powers of e, gives to  second order the result,

 ̂= H1 - 1 - +  °(e3)}. u.s.ei)
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Using this relation we elim inate b in favour of L, in expression (4.3.18), for the 

energy and obtain to second order in the eccentricity e,

E™ =  2jr»[3 (L  +  i )  + ~ e 2{ (2 + 0(e3)]. U.S.Ot)

Thus, as expected, we see L =  a/2? since the second order te rm  is observed to 

change from being positive to negative on increasing the value of L  beyond y/2. 

Hence, the Sphy(L) shape (e =  0), is stable against these elliptical deform ations 

up to a value of L = y/2, beyond this value it is unstable to the  deform ations. 

However, we have not revealed the expected asym m etry for positive and negative 

values of e as this will be a higher order effect. We shall here continue this 

expansion to reveal this asym m etric behaviour and our num erical results will 

clearly dem onstrate this.

Finally we have shown, again as expected, th a t a t L = y/2 the  steepest p a th  

of descent corresponds to a local infinitesimal conformal transform ation. To 

reveal this we shall construct a generalisation of M anton’s finite conformal m ap 

on SphviL )i (4.1.19).

For a finite local conformal m ap we have the condition (4.2.11), which tran s­

lates here to the condition th a t,

X\ =  \ \  =  Aj (4 .S.SS)

and leads to the  following first order differential equation for /(/u):

P  A 2
• 2  r  • 2sin j  sin /jl
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This can be trivially integrated to  give the following solution,

. . , A — cos a . , /-. A 4  /c cos/x. ,
f ( n )  = 2 ta n  { a (——------- 1/2 -r 7-----   ‘ /2>, {4-3.25

A 4  cos /u A — k cos /u

where k = y/e is pure im aginary for e negative and a  an integration constant. 

It is easy to  show th a t f ( n ) is a real valued function for e <  0, by re-expressing 

(4.3.25) as,

f ( f i )  = 2 ta n ~ 1[ a ( ^  COSM) 1/2e x p { - \ / ^ t a n ~ 1( ^ :::^ :OS/X)}]. (4.3.26)
A  +  COS ILL A

This solution, f ( f i )  to  (4.3.24), satisfies the boundary  conditions (4.3.11). Here 

a  is simply the conformal param eter and for a sphere e = 0, expressions (4.3.25) 

and (4.3.26) reduce to M anton’s expression (4.1.19). For values of a  ^  1 the 

sym m etry

f ( v )  =  7T -  / ( t t  -  /x), (4.3.27)

is broken. Thus for a  =  1, f ( f i )  has the sym m etry of equation (4.3.27) and is 

observed to  be a particu lar generalisation of the trivial m ap on the three sphere 

to  an ellipse

For a  =  1, expanding this solution to  second order in e we obtain

/ ( ill)  =  H  +  ~  sin2 f i  +  e 2 ( “  c° s 2 M 4  ~  sin2 fj,) - f  0(e3). ( 4 - 3 . 2 8 )

We can now com pare this to  the exact second order solution, (4.3.15), which a t 

the value of L  — y/2  gives:

f ( l i )  = n  4- -  sin2 2/z +  e2s in 2 /u (-^ -c o s2/x +  ^  sin2 fi) 4  0(e3). (4.3.29)
4 Zoi) ZLK)
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Thus, we see these expressions agree to  first order and th a t a t L  = y/2  the true 

solution is conformal to  first order. However, to second order there is a slight 

discrepancy, reflecting the non-exactness of the finite conformal m ap ansatz. For 

a  not to equal one, the energy of this conformal m apping is degenerate w ith 

respect to  a  and 1 /a ,  corresponding to  the skyrm ion localising on either pole of 

the ellipse. Thus, this is indeed the analogue of the Syhy(L) conformal m apping.

4.4 Num erical Results For A Hedgehog On An Ellipsoid

We obtain  num erical solutions to the Euler Equation (4.3.13), w ithin a range 

of volumes corresponding to values of L  in the range 0.8 and 1.6 and eccentricities 

in the range 0.9 to —0.9. These values e, have corresponding values of y about 

— 10 to  10 respectively, which appears to  be the m ost interesting region of values 

of y.

The profile function for a B  =  1 solution to the Euler Equation, will have at 

the end points the behaviour,

f  ~  a/u, / i ~ 0

f  ~  7T -  (3(n -  fi), r (4-4-1)

where a  and (3 are positive constants, dependent on e and L  and determ ining the 

slope of /  a t the respective end points. The Euler Equation can be integrated 

inwards from 0 to 7t/2 and from n to 7r/2 and by varying a  and /?, the m atching
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conditions for /  and /  a t 7 t / 2  can be satisfied to  give sm ooth num erical solutions. 

In general a  and (3 can have different values, however, in the sym m etric phase 

the solutions have the sym m etry of equation (4.3.27) and a  and (3 are trivially 

equal. In arranging a  and (3 to  satisfy the m atching condition a t 7r/2, a s tandard  

N ew ton-Raphson m inim isation technique was used. For this local m inim isation 

technique a 2 x 2 m atrix , formed from calculating the derivatives of the miss- 

m atch  in /  and f  a t 7t/2 w ith respect to a  and /?, m ust be inverted. In the 

sym m etric phase there is only one solution, while in the non-sym m etric phase 

three solutions exist. Thus, as one m ight expect, the determ inant of this 2 x 2  

m atrix  is zero a t the phase transition  density. Thus, determ ining the variation 

in the value of this determ inant as e and L  vary, enables us to determ ine simply 

and accurately the phase transition  points Lc, for given eccentricities.

Sym m etric phase solutions can also be obtained by integrating the Euler 

Equation from only one end point to  7r/2, where the  condition f ( n / 2) — 7r/2 

m ust be m et as a trivial consequence of the so lu tion’s sym m etry, (4.3.27). This 

sym m etry was often imposed in order to  increase the  efficiency of our integration 

techniques in the sym m etric phase.

In general, for increasing values of the  m agnitude of the eccentricity, the dif­

ficulty in obtain ing solutions over the full region 0 to  n increases. Since a t large 

eccentricities the curvature of physical space is high in certain  regions and low 

in o ther regions, the profile function varies rapidly in response to  these local 

variations in curvature. In the case where e is bo th  large and negative, th a t is,
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where the curvature of the ‘needle’ is sharpest a t the end points, these difficulties 

are accentuated, since the  m atching difference is highly sensitive to  the  values 

of a  and (3. These difficulties underm ine the N ewton-Raphson technique of m in­

im isation, though it is unlikely th a t overcoming these difficulties would require 

a greater refinement of our integration technique, if a w ider range of values of e 

were of interest.

The Euler Equation (4.3.14), explicitly involves 6, which we elim inate in 

favour of L  th rough the relation (4.3.19), in which the value of the volume, 

V , of physical space, is evaluated trivially by num erically integrating a t different 

values of e. Thus, in obtaining solutions to  the Euler Equation, we choose to  fix 

the values of L  and e and subsequently to elim inate the corresponding value of 6 

from  this equation, by using the relation (4.3.19).

The sym m etric phase results reveal th a t a trivial m ap on S^hy(L ) becomes 

unstable to  elliptical pertu rba tion  of the  m etric of physical space, coupled to 

sym m etric pertu rba tion  of the m ap, a t a value of L  = =  y/2 . This is in

agreem ent w ith the general second order deform ation calculation of the previous 

section. This is clearly depicted in the contour plot Figure (4.4.1), of constant 

energy contours for varying values of y and L  (note th a t in Figure (4.4.1) the 

energies are quoted in fractions of the lower bound, 127r2 ).

For L  less th an  a/ 2  and near L — 1, these contours have a positive curva­

tu re  w ith respect to  y about y = 0, S^hy(L). As L  is increased the contours 

flatten and the curvature about the line y =  0 changes sign beyond a value of
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F ig u r e  (4 .4 .1 ) : Contour plots of (('.iieryy)/12n 2 =  E / l 'Z n 2 hi the (L ,y ) plane 
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L = Ld =  y/2. Thus, the sphere is locally stable for values of L  up to  y/2 and 

unstable for values beyond. For sm all values of | y  |, the contours are approx­

im ately sym m etric about the line y = 0 since infinitesim al deform ations of the 

shape of the sphere do not differentiate the ‘disc’ and the ‘needle’ type shape 

deform ations. This is consistent w ith our second order small eccentricity expan­

sion of the  energy (4.3.22) for a sym m etric solution. For larger values of j j/ | the 

contours become asym m etric as higher order effect becomes significant and the 

‘needle’ type deform ations of Sphy(L) are energetically preferable.

The dashed line on this p lot shows how the density of the  sym m etry breaking 

phase transition  varies w ith  y. This transition  is found to  be second order a t all 

values of y investigated. For values of y between 3 and —2, the value of L c varies 

rapidly from about L  =  1.23 to  L  = 1.58, passing th rough L  = y/ 2  a t the value 

of y = 0 corresponding to  the sphere. Thus, we see as predicted , L c = Ld — y/2  

for a skyrm ion on Syhy(L). For y less th an  —2, the  value of L c varies less rapidly, 

becoming seemingly independent of y a t large negative values corresponding to 

a disc, w ith a value of L c ~  1.6. For y greater th an  3, the dependence of L c on 

y also lessens as y  increases, becoming approxim ately independent of y beyond 

values of y greater th an  4.5, w ith the value of L c abou t 1.18. In general we 

see th a t the density a t which the sym m etry breaking phase transition  occurs, 

decreases as y increases and thus sym m etric skyrmionic m a tte r will persist to 

lower densities on a disc-like space th an  on a needle-like space.

The dot-dashed line of Figure (4.4.1) indicates the value of L mtri corresponding
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to  the m inim um  of the energy for varying values of y. The absolute m inim um  

energy is a tta ined  a t the point L  =  1, y = 0 corresponding to  the identity 

m apping on 5 ^ ( 1 ) .  The values of L mtn for large negative values of y are sm aller 

th an  their corresponding positive values and the dependence of Tmm on y appears 

to be fairly linear as y increases or decreases from y — 0. At a value of y ~  10, we 

have th a t ~  1.16 and also th a t the Lmtn contour approaches the L c contour, 

presum ably m erging for large values of y corresponding to  the ‘needle’.

For L  <  1, M anton [3] has shown the trivial m apping on S*h (L) has an 

absolute m inim um  of the  energy. Thus, in this region the sphere y =  0, at 

fixed L, is seen to be a m inim um  of the energy com pared to  all o ther values of 

y. This behaviour persists up to a value of L ~  1.25 for the sym m etric phase. 

This contour plot is deceptive a t the m inim um , a change of y  by about 2 has a 

correspondingly equal effect on the energy, as would a change of L  by 0.1 and thus 

of the  volume by 0.001. Hence, we see th a t dense Skyrme M atter on an ellipse 

has a  jelly-like behaviour, being relatively easily deformed though resistant to 

expansion or compression.

For values of L  greater th an  1.25 and values of y  less than  about —4, the 

energy becomes seemingly independent of y and the energy contours close on 

them selves as L  increases. Thus, in this region, as dense Skyrme m a tte r is ex­

panded, it offers no resistance to deform ation, a  characteristic of our dense crys­

talline m a tte r under bulk deform ation. This behaviour persists up to a volume 

of 1.6, beyond which the sym m etric Skyrme m a tte r undergoes a second order
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phase transition  to a non-sym m etric phase of m atter.

For values of L  greater than  about 1.3, sym m etric Skyrme m atte r is seen 

to  prefer to  sit on a space w ith y large and positive. However, in this region 

non-sym m etric m atte r is energetically preferred.

Thus, the plot (4.4.1) has many of the features observed in the analogous 

contour plot Figure (3.5.3) for crystalline sym m etric dense skyrmionic m a tte r on 

flat space. Both have a jelly-like behaviour near the m inim um  energy density. 

Also, the asym m etry of the energy contours about the line y = 0 of 

sim ilar to th a t observed about the line p =  0 of the fee array. We also see th a t the 

preferred needle-like deform ations of Syhy(L) are the analogue of the preferred 

p lanar deform ations of the fee Crystal, while the less favourable disc-like defor­

m ations of Syhy(L) are analogous to the less favourable chain-like deform ations 

of fee m atte r. However, the large gains of energy observed for the needle-like 

shape a t volumes above 1.3 appear to be a feature of the local curvature of this 

shape, not present in our flat space crystalline m atte r results. However, this 

com parison of the plots is deceptive. The range of p values considered in the 

array calculation corresponds to values of y between 2.6 and —4.8. It is here 

th a t the sim ilarity of the  two plots is m ost striking, the large gains of energy for 

needle-like deform ation lying ju s t outside this region. Indeed, in this region, the 

value of L c varies fairly linearly as is also the case for the crystalline m atte r plot.

In Figure (4.4.2), we show how the energy of the sym m etric solutions varies 

w ith L  at various fixed values of y. This plot shows clearly th a t for a given value
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of y there is a definite m inim um  energy at some value of L  = L min. This plot 

also shows th a t this m inim um  of the energy occurs a t a value of L  = L min which 

increases as the value of y changes from zero, corresponding to  the sphere. As y 

increases, the  y =  4.278 and 9.9 plots show th a t beyond L mfn the  energy flattens 

out as y becomes increasingly positive. We have also indicated the values of 

L  =  L c a t which the second order phase transition  occurs by a solid dot. Its 

second order na tu re  is clear from the m anner in which non-sym m etric energy 

curves, (dashed lines), sm oothly merge w ith their corresponding sym m etrical 

energy curves a t Lc, (solid lines). The value of L c is also clearly seen to approach 

L min as y increases, as was indicated by the contour plot (4.4.1) and moreover, 

this suggests th a t for large values of y these points will coincide, so th a t the  energy 

will a tta in  its m inim um  value for all volumes beyond this point and become 

independent of L. For negative values of y and values of L  g reater th an  about 

1.25, the  energy plots lie on top of each other, as suggested by the y — 0 and 

y =  —2.1 curves. This is a reflection of the  independence of the energy to  changes 

in y for negative values of y, as was indicated in plot (4.4.1).

An alternative and revealing representation of the sym m etric phase d a ta  of 

plot (4.4.1) is shown in Figure (4.4.3). Here contours of constant L  are depicted 

as y is varied and corresponding values of the energy atta ined . The results of 

our num erical calculation for both  the sym m etric and non-sym m etric phase have 

bo th  been included on this plot. The sym m etric da ta , (solid lines), for a range 

of values of L  between 0.8 and 1.6 and the non-sym m etric d a ta , (dashed lines),
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for a range of values of L  between 1.2 to 1.6 are indicated,as are bo th , over the 

entire range of values of y th a t we numerically investigated.

The local sym m etry of the sym m etric phase d a ta  w ith respect to  the line 

y = 0, corresponding to  the sphere, can be clearly seen on this plot. In the 

sym m etric phase, this clearly dem onstrates th a t the hedgehog on a sphere cannot 

distinguish between positive and negative changes in the value of y about zero 

and thus between the prolate and oblate type elliptical shaped spaces. Moreover, 

we see th a t about the line y — 0, corresponding to the sphere, the curvature of 

the sym m etric phase contours decrease in value as L  increases from Lmtn =  1 

to  L = 1.6. At a value of L = 1.4, the curvature of the contour is seen to be 

alm ost zero a t y = 0, though still positive. This indicates th a t the value of L  at 

which the sphere becomes unstable to  shape deform ations will be slightly greater 

th an  the value of L  = 1.4 and as we have already sta ted  this occurs a t a value 

of L =  Ld — y/2.

For the sym m etric phase, w ith respect to non-local changes in the value of y 

from y =  0, this plot also reveals th a t for values of L  ~  1.25, the sphere y = 0 

is no longer stable to prolate type deform ation of the shape of space. This is 

indicated by the L = 1.3 contour having m inim um  energy a t a  large positive 

value of y which occurs outside the range of our da ta , and sim ilarly for values of 

L beyond this value. However, for the L = 1.2 contour and for values of L below 

this, the m inim al value of the energy occurs a t y =  0.

Thus, the contour plot clearly indicates the m anner in which the region of
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local stability  of the sphere, w ith respect to shape deform ations in the  sym m etric 

phase, shrinks as L  is increased from Lmm =  1 to  L c = y/2. For positive y 

values, the oblate deform ations of the sphere, the constant L  contours flatten 

as L  increases from Lmtn =  1, until a t L  =  L c =  y/2, the  sphere y = 0, is also 

unstable w ith respect to these types of deform ation. However, there is no local 

instability  of the sphere w ith respect to oblate deform ations and even beyond the 

value of L  =  L c = y/2, the constant L  contours rem ain flattish. This indicates 

th a t no great gains in energy are possible for oblate type deform ations of the 

sphere.

The constant L  contours of the non-sym m etric d a ta  indicated on th is plot, are 

clearly seen to merge sm oothly w ith the sym m etric contours a t steeply increasing 

values of y as L  increases. This sm oothness clearly indicates the second order 

na tu re  of the sym m etry breaking phase transition . For values of L  less th an  

1.0, sym m etric contours are shown, indicating th a t in this region of L  only the 

sym m etric phase exists. However, at a value of L  ~  1.25, bo th  phases exist 

and hence, all contours beyond a value of L  =  1, have the non-sym m etric phase 

contour breaking away at some value of y. For the L — 1.2 contours, the non- 

sym m etric contour lies alm ost on top of the sym m etric contour for values of y 

g reater than  about 4. This indicates th a t for values of L  ~  1.2 and y greater 

th an  about 4, bo th  phases might exist w ith very sim ilar energies. As the value 

of L  increases, the contours of both  phases become separable and the  gain in the 

energy of the non-sym m etric to the sym m etric phase becomes significant, w ith
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the value of y a t which the sym m etry breaking transition  occurs decreasing. 

Thus, for the L  =  1.4 contour, the break away point is seen to  occur a t a value 

of y which is close to zero b u t still positive. This indicates th a t the value of L c 

for the sphere y = 0, is close to L  — 1.4 and as was already indicated, actually 

has a value L  =  L c =  y/2. At a value of L  = 1.6, the phase transition  occurs a t 

a value of y  5, when space has oblate symmetry.

For values of y beyond about 2 and values of L  g reater th an  about 1.3, the 

energy of both  phases decreases sharply as y  increases. The ra th e r large gain 

in energy, for non-sym m etric solutions over sym m etric ones in this region, is a 

consequence of the local curvature of these needle-like shapes. As y is further 

increased, the constant volume contours of bo th  phases converge to an energy of 

about 1.03 x 127T2. For L  =  1.3, both phases have contours which vary slowly 

for values of y greater than  about 8 and seemingly will converge at very large y. 

This behaviour is a consequence of the closeness of the values of L c and L m{n a t 

large values of y, indicated in Figures (4.3.1) and (4.3.2).

In order to gain a deeper understanding of these observations it is useful 

to s tudy  the functional dependence of the profile function /(m ) a t a variety of 

eccentricities and densities. M any of the observations concerning the energy plots 

can in fact be explained as local curvature effects. Thus, to this end we introduce 

the local curvature of this manifold. Thus, we have for the m etric g on physical 

space, w ith the diagonal com ponents given in (4.3.4), th a t the Ricci curvature
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tensor is diagonal w ith elements

(4-4-e)

where the coordinates are labelled (1 ,2 ,3 ) respectively. The local cur-

convention for the sign of the curvature. For e =  1 (y =  — oo), the curvature of

rim  where the curvature is — oo. Setting e =  — oo (y =  -foo), space becomes 

needle-like, w ith the curvature being negative infinity a t the poles and small a t 

fj, =  7r/2, though finite.

A nother useful quantity  we shall now introduce for representing the skyrm ion 

is its baryon density. This is given by

vature  scalar R , obtained by contracting the Ricci tensor w ith the inverse m etric

gi3, is thus given by

(4-4-S)

from  which we see the  local scalar curvature is a function of [j, only. Setting e =  0 

gives the scalar curvature of a Sphy(L) to  be — 6 /L 2, which is negative w ith our

the ellipse is seen to  be zero a t all values of fx except zr/2, where it is negative

infinity. Thus, in this lim it, space is indeed disc-like, being flat except a t its

U - U )
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which can be trivially in tegrated  over physical space M yhy, to  give one for f ( f i ), 

satisfying bounding conditions (4.3.11). This quantity  also depends on fi only.

Since the identity m apping on S '^ f l )  sa tu rates  the lower bound, we expect 

th a t a skyrm ion would prefer to sit on a region of space of constant scalar curva­

tu re  —6. Thus, on a space w ith a local curvature which is not constant, we might 

predict th a t a skyrm ion will try  and sit on regions of space where the curvature 

is —6. Moreover, the energy of the trivial m ap on Syhy(L),  as L  is decreased from 

L  = 1, increases rapidly, while as L  is increased it increases less rapidly. Thus, 

we expect a skyrm ion would prefer to sit on regions of space where the curvature 

has its optim al value of —6 and w ith curvature less th an , ra th e r th an  higher than  

this value. Finally, we know as the volume of space is increased past L  =  y/2 and 

the curvature of space becomes small, the skyrm ion on Syhy(L) prefers to localise 

abou t some point ra ther th an  be stretched over a large volume of space. Thus, 

it is to  be expected the skyrm ions will try  to avoid being stretched  excessively.

To illustra te  this, consider the plot depicted in Figure (4.4.4) showing the 

variation of baryon density w ith fi in equation (4.4.4) for a variety of sym m etric 

solutions a t a value of L  =  1 and for values of y between 9.9 and —9.9. The 

baryon density of y  =  0 is constant a t 1/27T2, showing the  com plete delocalisation 

of the identity m apping on (1). As y increases, the skyrm ion’s baryon density 

begins to localise about /x =  7r/2. At y =  9.9 it is heavily peaked about /ll =  7r/2 

and confined to the region 7r/4 <  M <  37r/4. Thus, on the needle-like space 

w ith L  =  1, the skyrm ion prefers to sit on the flattest region of space w ith zero
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baryon density a t its poles. As the value of y decreases, the curvature a t the poles 

becomes less negative and the skyrm ion density increases in th is region, though 

still being peaked at the fla ttest (x = n f  2 value for y > 0. As y continues to 

decrease to  negative values, the baryon density continues to  increase a t the poles 

and to decrease a t fx =  7r/2. At y = —9.9 the skyrm ion is localised abou t bo th  

poles symmetrically, though this localisation is less pronounced th an  th a t about 

ix =  7r/2 a t y = 9.9. Thus, on a disc-like shape a t L  =  1, the skyrm ion prefers to 

sit on the flattish poles, while on the high curved rim  it has a reduced b u t finite 

baryon density. This is a consequence of the sym m etric relation (4.3.17), which 

results in the boundary condition,

/ (  t t / 2 ) =  t t / 2 , (4 .4 .5 )

and prevents a complete depletion of the baryon density on the rim  a t /x = 7 r / 2 .  

Thus, in conclusion it is as we expected, at a volume of space corresponding to 

L  =  1, the skyrm ions response to local variations in the curvature is m arked. 

Also as we expected, it prefers to localise on the flattish  region of space and 

avoids as far as possible the highly curved regions of space.

Figure (4.4.5) shows the local variation of the scalar curvature, i2, a t L  =  1 

for values of y corresponding to those in Figure (4.4.4). C om paring the two 

does indeed reveal th a t the baryon density, on regions of space w ith  curvature 

less th an  the optim al —6, is greater than  th a t on the less favourable, highly 

curved regions of space. Hence, for y =  9.9, this flattish region of space which
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occurs in the range 1.1 <  /x < 2, is seen to correspond to  the region of space in 

which the baryon density resides, while outside this region the  baryon density 

was indeed found to be zero. At y — —9.9, the  optim al values of the curvature 

occur a t /x ~  1.21 and fi ~  1.93 and the skyrm ion is expected to  sit on the two 

disconnected regions 0 <  /x <  1.21 and 1.93 <  /x <  7r, where the  curvature is 

greater than  or equal to —6. Indeed, a high proportion of its density is contained 

w ithin these segments b u t not all, as a consequence of the boundary  condition 

(4.4.5).

In Figure (4.4.6), we show the baryon density, (solid lines), a t L  = 1.2 a t 

the values of y =  9.9, 4.278 and 0. For a  direct com parison we also include on 

the sam e plot a local curvature (dashed lines) for these shapes. The second, 

y = 4.278 curve, (dot-dashed line), shows the baryon density of a non-sym m etric 

solution.

Once again, in the sym m etric phase for positive values of y , the  baryon density 

is localised about the flattest /x =  7t/2 points. At this volume, b o th  the y =  4.278 

and y =  9.9 curves show the baryon density to be alm ost com pletely localised 

in a region of space where the curvature is greater th an  —6. The increased 

localisation as L  increases to  1.2, in the optim al R  >  —6 regions of space, reflects 

the increased volume of space. At a volume of 1.0 the skyrm ion density for 

y = 9.9 experiences compression, being forced to  sit on regions of space where the 

curvature was less th an  —6. At L = 1.2, this com pression has been dissipated and 

this is reflected in its energy being close to its m inim um  value a t this volume and
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hence, the value of L  being close to L min ~  1.17 a t this value of y. The y =  4.278 

non-sym m etric density is seen to  have moved towards a  pole, as expected, in th is 

case the /x =  n pole, there of course being a corresponding solution which moves 

towards the fj, = 0 pole. However, for L  = 1.2, the  ex ten t of pole localisation 

is sm all, the phase transition  density for this value of y occurring at a value of 

L  — L c — 1.18. Moreover, we see th a t the localisation a t the  pole has been 

suppressed by the large negative curvature in these regions. Thus, the non- 

sym m etric skyrm ion has transla ted  the bulk of its baryon density tow ards a 

R  =  —6 point, allowing a small bu t finite am ount a t the ji =  ir pole.

It should be clear by now th a t the localising-delocalising description of the  

phase transition , so obvious for the Syhy(L), is m isleading for spaces w ith  highly 

varying local curvature, the sym m etric phase solution also having a high degree of 

localisation. Thus, we choose to characterise the phase transition  from  sym m etric 

to non-sym m etric solutions in term s of the sym m etry expression in equation 

(4.3.27) and w hether or not a solution has this sym m etry.

In Figure (4.4.7), we show the baryon density (solid lines) and curvature 

(dashed lines) in the non-sym m etric phase a t values of y between 9.9 and 0.975 

and a t a value of L = 1.4. The completely delocalised solution on Syhy(L), 

y = 0, is also indicated on the plot. For com parison, in Figure (4.4.8) we show 

the baryon density for the sym m etric phase for values of y  between —9.9 and 

9.9. At the value of L  = 1.4 the curvature has been reduced substantially. 

For a non-sym m etric skyrm ion, as y increases, its density a t w pole is seen to
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deplete as the curvature decreases. Thus, at a value of y =  0.975 the curvature 

of space never reaches the optim al —6 value and the density is a m axim um  at 

the pole, where the curvature is closest to  this value and well spread over the 

flattish lower hem isphere of space. The corresponding sym m etric solution has a 

fairly delocalised skyrm ion w ith a finite density over the whole of space peaked 

at fi = 7r/2. The gain in energy in the non-sym m etric phase is sm all, about 

0.002 x 127r2. The baryon density of the non-sym m etric phase solution becomes 

increasingly localised at y — 4.278, about a point w ith R  =  —2.4, near the 7r 

pole. The density a t the 7r pole is now reduced, bu t still high, w ith the optim al 

curvature point a t /z = 2.61 close to the pole. Com parison w ith  Figure (4.4.6) 

shows the density has now transla ted  towards the pole a t this increased volume. 

At y =  —9.9, the curvature is high a t the poles and the skyrm ion centres on a 

/z ~  2.1 point, a t which R  =  —1.18 and has a finite density a t the R  = —6 point. 

Its highly peaked na tu re  allows more of the skyrm ion to  sit on a region of space 

w ith curvature closer to the optim al —6, as opposed to  the  sym m etric skyrm ion 

(4.4.8), which sits entirely w ithin the R  =  —6 points which enclose a flattish 

hem ispherical region of space. The larger gain in energy, of about 0.009 x 127T2, 

of the sym m etric skyrm ion, is a reflection of the sym m etric skyrm ion’s inability 

to  stre tch  from the /z =  7r/2 to  the optim al fi ~  0.55 and /z =  2.59 points a t this 

large volume. This stretching was not necessary a t L  =  1.2 when both  phases 

had sim ilar energies. The y = —9.9 sym m etric density p lot shows the skyrm ion 

density peaked at the poles and the R  = —6 points indicated on this curve,
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showing th a t the skyrm ion tries to deplete its density on the highly curved rim  

as far as possible.

The form of the sym m etric profile function /(/z) (solid lines) is indicated in 

Figure (4.4.9) a t y values of 9.9, 0.0 and —9.9 for L  =  1.4. A t y — 9.9 we have 

included the non-sym m etric solution, (dashed line). We see th a t the  slope of the 

profile varies considerably in response to rap id  changes in curvature as /z varies 

a t the 9.9 and —9.9 values of y. At y = 9.9 the slope of the sym m etric solution 

is small at bo th  poles and  thus, the baryon density is very sm all in this highly 

curved region. A bout fi — 7 t /2  it has a large slope and hence its baryon density is 

localised in this region about /z =  7r/2, as was seen in Figure (4.4.8). At —9.9 the 

reverse effect is observed, w ith a large slope a t the poles and a reduced slope at 

the 7r/2 on the highly curved rim  and hence the baryon density of Figure (4.4.8) 

results. At 9.9 the non-sym m etric profile has a negligible slope from  (i = 0 to 

about n  =  1.0 and hence its baryon density is alm ost zero on this highly curved 

region of space. The slope is now large and fairly constant in the /z — 2.1 region 

and thus the baryon density is heavily peaked in this region of space. At the 

7r pole the slope is sm all b u t finite and hence, so is the baryon density. This 

was seen to be the case in Figure (4.4.7). The two y = 9.9 curves appear to  be 

parallel in the /  ~  7 r / 2  regions and this non-trivial effect seems to  be related to 

the m anner in which the baryon density translates in bulk from the sym m etric 

to the  non-sym m etric solutions on the needle-like shape.

In Figure (4.4.10), we show plots of the non-sym m etric profiles /(/z), for values
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F ig u re  (4 .4 .9 ):  Plots of the proli)<' function / (p ) ,  versus n  (see text) at L  — 1.4 
for various values of y .  I.lofli 1.1 symmetric phase’s, (solid lines) and the non- 
symmetric phase’s, (dashed lines), profile functions are plotted-
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F ig u re  (4 .4 .10):  Plots of the profile function /(/./,) in the non-symmetric phase, 
versus /./, at L  -  M  for various 1 :s of y .  The line /(/</,) is also included, 
corresponding to the trivial mapping of S f thy , (see text).
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of y — —9.9, 4.278 and 0.975, at a value of L  — 1.4. Here we see clearly, th a t as y 

increases the profile ‘buckles’ at the 7r pole in order to  reduce its slope there and 

hence its baryon density decreases as the curvature a t th is pole becomes large.

As L  is increased beyond 1.4, local curvature effects becomes less significant 

as space flattens out. At large volumes the unfavourable response of a  skyrm ion 

to  stretching becomes im portan t. In the sym m etric phase a skyrm ion will need 

to  stre tch  significantly in order to  reach any regions of optim al curvature which 

exist. Thus, we found this phase to  be significantly unfavourable for values of y 

greater th an  —4.8 a t L =  1.6, as can be seen clearly in Figure (4.4.3),

In Figure (4.4.11) we show the non-sym m etric phase (solid lines) baryon den­

sities and curvature (dashed lines) for y values of —1.067, 0.0 and 0.975. These 

are heavily localised at the 7r pole to avoid stretching over a large region of space. 

For y = 0.975 the curvature is closest to the optim al —6 value a t the poles, while 

a t y =  —1.067, a t the poles it is fu rthest form its optim al value. This is reflected 

in the  energy of the y = 0.975 solution, having an energy 0.017 x  127r2 less th an  

th a t a t y  =  —1.067.

For values of y  less th an  zero, the curvature of space is highest on the rim  

a t fi — 7r/2. At this volume, the curvature a t this point is sm aller in m agnitude 

than  —6. Thus, we would expect the density to peak about the  n  = 7r/2 point. 

However, this rim  has a  large d iam eter and would require the skyrm ion to  stre tch  

significantly in order to  sit there and is thus unfavourable. This resistance to  

stretching would however be overcome if the skyrm ion were to  localise about

174



-10  o

<s>c
o
cQ

-200

0*0

0*0 V O20

F ig u re  ( 4 .4 .IX): Plots of both 7J° v 2/r2, (solid lines), and the scalar curvature 
./t, (dashed line), versus /i (see text) in the nun-symmetric phase at L  — 1.0 for 
various values of y .



a point on this rim. However, by employing the hedgehog ansatz we have not 

allowed it to. Thus, the unfavour ability of the  disc-like shapes, as com pared to 

the  needle-like shapes may be a consequence of our constrained hedgehog form 

which only allows the skyrm ion to localise about a pole in the  non-sym m etric 

phase.

Thus in conclusion, we see th a t the local curvature effect leads to  many 

interesting features of dense baryonic m atte r on the  ellipse. Indeed, in term s of 

the local curvature and response of a skyrm ion to com pression and expansion, 

we have been able to understand  the reason for these effects.

The local curvature enhances the localisation of the skyrm ion, enabling it to 

sit on regions of space where the curvature is closest to the optim al value —6, al­

though avoiding unfavourable regions w ith curvature less th an  th is optim al value. 

O ur needle-type deform ation of Sphy(L ), w ith the hedgehog form , is seen to en­

hance these effects, whereas for disc-like deform ations the boundary conditions of 

the sym m etric phase prevent complete depletion from the unfavourable regions 

occurring on its hem isphere, the rim . In the non-sym m etric phase, the  hedgehog 

form and  also the unfavourable stretching of this hedgehog a t high volumes, pre­

vents the skyrm ion from sitting  on this rim  when it would be favourable. Thus, 

the hedgehog on a ‘disc’ has its sym m etric - non-sym m etric phase transition  sup­

pressed to higher volume as large energy gains are not possible. The large gains 

in energy, for large positive values of y as the sym m etry is broken, are reduced 

as y becomes very large and as the points at which the optim al curvature of —6
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occur, they progressively move towards the fi =  7r/2 points. At large enough 

volumes no such R  = —6 optim al points exist, space being flatter and skyrm ions 

localise about a pole for all values of y.

In the limit y »-> — oo, ie. the disc, there are two com peting skyrm ion ar­

rangem ents. In the sym m etric phase two half skyrm ions exist in this lim it, each 

of which is on the flat regions of space, centred about the poles. On the  rim  of 

this disc, the sym m etric boundary condition f ( n / 2) =  7r/2, m ust be satisfied. In 

the non-sym m etric phase a localised skyrm ion sits on one of these flattish  regions 

about a pole, while on the opposite flat region, a value of f(( i)  = 0 or tt results. 

Thus, in this region of space the skyrm ion has its trivial vacuum  value and  the 

energy density is zero. Hence, in th is lim it f ( f i)  will satisfy the additional bound­

ary condition / ( tt/2 ) =  0 or 7r, on the discs infinitely curved rim . In the infinite 

volume of I  m  oo, only the non-sym m etric phase solution will exist, since the 

sym m etric phase solution has an infinite energy. This is due to  the  sym m etric 

boundary  condition / ( 7r/2) =  7r/2, which results in the skyrm ion having a small 

bu t finite energy density on the rim  of this disc and since this rim  has an infinite 

radius in this limit it has an infinite energy.

Thus, in this lim it only the  non-sym m etric phase solution will exist and this 

corresponds to the usual skyrm ion on flat space, R 3, w ith the  physical vacuum  

boundary  condition on the rim  of this disc. On the o ther side of th is disc there 

will be a region of trivial vacuum  field. This is analogous to  the infinite volume 

lim it of Sphy(L ) corresponding to the usual flat space hedgehog.
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However, as the volume of space is decreased, while still in the lim it y > oo, 

the radius of the rim  will reduce to a finite value. Thus, a t some finite value 

of L, the sym m etric phase lim it should also exist and for values of L  up to  

1.6, we num erically found only sym m etric solutions to  exist. These sym m etric 

solutions correspond to  two half skyrm ions, each separately  w ith in  a spherical 

surface whose radius is equal to  the radius of the  disc’s rim . This being the case, 

we can see th a t this lim it has already been described by G oldhaber and M anton 

[9] as half skyrm ions in flat space.

He found there  to be an optim al radius, r0, of this spherical boundary  surface 

which corresponds to a value of L 0 = 1.037 and gives an energy E 0 =  1.015 x 127T2, 

for two such half skyrm ions. Employing our approxim ate conform al ansatz, 

(4.3.25), we can take this lim it of our ellipse numerically. We find, for a value of 

the rim  radius r0, w ith Lo =  1.037, the value of E q to be equal to  M an ton ’s value, 

to the  sam e num ber of significant figures were quoted by him. Thus, we see th a t 

in this lim it our conformal ansatz provides a  good approxim ation to  the true  

solution. Moreover, this result certainly suggests th a t  since the half skyrm ion 

concept is im portan t in understanding  flat space arrays, th a t the skyrm ion on 

a disc offers an even b e tte r m odel than  the Syhy(L) m odel of dense skyrmionic 

m atte r.

In the y w  oo lim it, our results suggest th a t only the sym m etric phase will 

persist, as the high curvature a t the pole forces the non-sym m etric skyrm ion to 

the fjb =  7r/2 points. O ur contour plots, Figures (4.4.1) and (4.4.3), suggest the
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energy of this skyrm ion, which sits on a cylindrical region of space, will be about 

1.03 x 127r2 and this value will be insensitive to the value of L.  However, one 

m ust be careful in taking th is lim it, as for large enough values of L, the  skyrm ion 

will clearly localise about a pole. In the y  oo lim it the curvature behaves like:

v1/3
R ~ - j T -  (4-4.6)

Thus, in the infinite volume lim it, when y  increases faster th an  L6, the resulting 

curvature is infinite a t all points of space. W hen y  increases slower th an  this, 

the curvature will tend to zero over the whole of space (except a t the poles) and 

the usual flat space skyrm ion will result. However, in the  lim it when y increases 

as L6, a finite curvature of space will result (again except at the poles). Thus, in 

this lim it we expect bo th  phases to coincide. This lim it should correspond to a 

skyrm ion on a cylinder.

Concluding, we see th a t the local curvature acts as an effective non-isotropic 

com pressor on dense skyrmionic m atte r, where the isotropic com pression is pro­

duced by the volume. Thus we see, th a t the effect of isotropic bulk compression 

and expansion of skyrmionic m atte r, does indeed have an analogue in the ellip­

tical deform ations of Sphy(L),  ju s t as changing the volume of physical space is 

analogous for isotropic compression and expansion.

As we have already noted, a t the delocalising phase transition  point, L = L c = y/2 

for the trivial m ap on Syhy(L ), an infinitesim al conformal transform ation of the 

fields will be the mode of steepest descent. Moreover, as we have also seen in

179



Section 4.1, a finite version of this conformal m ap, (4.1.19), gives a good approx­

im ation to  the true  solutions energy for all values of L  above y/2. We also noted 

th a t such a generalised finite conformal m apping exists on the  ellipse (4.3.25) 

and th a t a t the  L  =  L c = y/2 point, the infinitesimal version of this m apping 

gives the softest mode for elliptical space deform ation. Thus, it is of interest to 

com pare this finite form w ith the true  solution for varying values of y.

Figure (4.4.12) shows the sym m etric (a  =  1) version of this ansatz, (solid 

line), and the exact solution, (dashed line), a t a value of L  = 1.4 and for values 

of y in the range 9.9 to —9.9 from fi =  0 to 7t/2. Since the ansatz is exact a t the 

end point and the point fi = 7t / 2 ,  the m axim al discrepancy occurs in the region 

fi ~  7r/4 (and n  ~  37r/4). At y = 0, this ansatz reduces to the  exact solution. 

At y — —9.9 it is also indistinguishable from the exact solution, agreeing w ith 

our suggestion th a t as y »—► — oo it becomes exact. This is analogous to the 

fact, th a t in flat space the usual discrepancy in a conformal-like ansatz occurs in 

the skyrm ion tail, bu t for this half skyrm ion on flat space, the <7 =  0 boundary 

condition does not require such a tail behaviour and indeed, as y >-» — oo, the 

flat space half skyrm ion results.

For small values of y the ansatz is also indistinguishable a t values of 0.975 

and —1.067. As y increases however, a large discrepancy develops, so th a t a t 

a value of y — 9.9 the ansatz is significantly different from  the  true  solution 

near \x — 7t/4. This is because the ansatz does not com pensate correctly for 

the large local curvature effect present on such a needle-like surface. Hence, in
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Irig u re  (4 .4 .1 2 ) : Plots of I.Ims prulile function f ( f i )  in the sym m etric phase, 
a t L = L.4 lor various values ol' //. The solid lines correspond to the approxi­
m ate  finite conformal annul//; ftiven In expression (4.3.25),while the dashed lines 
correspond to exact numerical solutions.
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conclusion, we suspect this ansatz or an extended version as Jackson et al [10] 

considered, might be able to  reproduce much of the d a ta  presented here. M ore­

over, as argued by Jackson et al in the case of their Syhy{L) ansatz, such forms 

give clues to the type of ansatz required to reproduce flat space array  results.

4.5 A Skyrmion On A M ore General Closed Surface

Having found there to be m any interesting features of dense skyrm ionic m atte r 

on an ellipse and some justification for the belief th a t local curvature effects mock 

the flat space array environm ent, we shall now finally consider a skyrm ion on a 

m ore general shaped closed surface.

We have in m ind to allow the shape of physical space to  vary as well as the 

m apping, so as to minimise the energy. As we have already m entioned, such 

a general calculation will have pathological elements, since there are no term s 

in the Skyrme energy functional for a static  field, (4.1.8), which determ ine the 

shape of space. O ur num erical calculations will reveal this problem  and we will 

present some consequences and a possible resolution to  this problem .

We shall consider a 5  =  l  hedgehog on a closed surface, param eterised as:

r 2 =  x 2 +  y2 +  z 2 +  w 2, {4-5.1)

w ith  r, the radius of this three dim ensional surface, em bedded in R 4 which can 

vary from point to point. ( x , y , z , w )  are C artesian coordinates of R 4.

To simplify our num erical calculations, we choose to constrain  th is three
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surface such th a t in polar coordinates ( ) ,  its radius function r depends

only on //. This allows us to evoke the hedgehog ansatz as a  sensible m apping.

Thus, the polar coordinates and the C artesian coordinates in R 4 of this surface 

are related by:

w = r(/z)cos/x, 

x = r(fi) s'm/x cos 0, 

y = r{/i) sin /usin#cos

z =  r(/i) sin/xsin0sin<£, (4-5.2)

where r is a function of (i alone.

In order to fix the centre of this surface we choose to  impose the condition 

on r (/x), th a t

r(0) =  r(n). (4.5.8)

M oreover, since we are natu rally  only interested in sm ooth manifolds, we are 

interested in surfaces satisfying the sm oothness boundary conditions

r ~ L Q + (3ii2 n  ~  0 (4-5.4)

and

r ~  L 0 +  ^ ( n  -  /u)2, n  ~  7r (4.5.5)

where 2L0 is the length of the shape along the w-axis and the constants /?,q 

determ ine the quadratic behaviour a t the poles of the three surface.
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As s ta ted , we can now sensibly consider a skyrm ion in the s tan d ard  hedgehog 

form  given by,

<7 =  cos / ,

7rx  =  s in /c o s  0,

7Ty =  sin /  sin 0 cos 0,

7tz =  sin /  sin 0 sin 0, (4-5.6)

where the profile function of /  is taken to  be a function of fi only. Here, B  = 1

boundary  conditions are identical to  those given in equation (4.3.11) and the  end

point behaviour of the profile is also assum ed to be of the form  given in equation 

(4.4.1) for the profile function of the ellipse.

The m etric on physical space is now observed to be diagonal w ith elements,

(r2 +  r 2, r 2 sin2 /x, r 2 sin2 n  sin2 <f>) (J .5 .7)

and the m easure given by,

r 2(r2 +  r 2) 1//2 sin2 ndfxd9d(j). (4-5.8)

The deform ation m atrix  is also diagonal w ith eigenvalues:



where /  and f denote derivatives w ith respect to fx. Thus, the Skyrme M odel’s 

sta tic  energy functional, given in equation (4.1.8), takes the form:

tp a f*  j  t 2 * 2  / '2 i 2\ i / 2( f 2 , 2sin  f  ^E  =  4tt / duL sin>  r  +  r  ' ( - ----------1—  -----5— )
Jo v '  V +  r 2 r 2 sin /u

/’7r , o 9x1/? sin2 /  . 2 / 2 sin2 /  .
+4 tt / d ^ L  sin ( r2 +  r  ) 1 2 ( ~ ----- - +  a ), (4-5.11)

/o r^sin  /I t -|- t* r s i n  /u

here we have also perform ed the trivial 0,<£ integrations.

Since we require the functional forms of /  and r, which minim ise this energy 

functional, the resulting Euler Equations will be a coupled set of two equations 

which will both  be ordinary second order differential equations. However, such 

a m inim isation procedure results in a pathological problem . The resulting equa­

tions and the boundary conditions for /  and r, give more m atching param eters 

th an  m atching conditions. Even after including a Lagrange m ultiplier, m ultiply­

ing a volume term  to fix the volume of physical space, the problem  is not resolved. 

This of course reflects our failure to  have extended the m odel to  include a term  

which will d ictate  the shape of physical space.

Thus, we choose to find approxim ate m inim al energy ‘so lu tions’ for r and 

/  by choosing variational forms for these functions and m inim ising the energy 

w ith respect to the param eters w ithin these forms. Clearly this represents a 

reasonably well defined problem . However, we m ust expect th a t  the pathology 

may once more rear its head. This technique however, will reveal the na tu re  of 

this pathology and leads us to fu rther insight in to the n a tu re  of the Skyrme 

functional.

185



We thus choose the convenient, four param eter Fourier type forms for r and 

/  given by:

r(/x) =  L0{1 +  sin/u(cisin/x +  disin2/u +  C2sin3^x +  d2sin4/x)},

f(fx) =  /x +  ai sin/x +  sin 2/x +  a 2 sin 3/x +  62 sin 4/x. (4-5.12)

These forms autom atically satisfy our boundary conditions. Moreover, we can 

control the sym m etry of space about the equator /.x =  tt/2 , by the c coefficients 

in r(/x) and the non-sym m etric phase by the a coefficients.

We fu rther require to minimise r and /  for fixed volumes of physical space. 

Thus, the volume

v  =  /  V ti  (4-5.13)

is chosen initially and then by calculating the integral (4.5.13), we can then 

choose L0, such th a t the space has the required volume.

The resulting num erical param eter m inim isation was perform ed using the 

Minew Cern m inim isation package. For direct com parison w ith the ellipse we 

shall employ the variable L  given in equation (4.3.19).

For the values of L  up to  and equal to 1, the triv ial m apping of Syhy(L) 

is known to be an absolute minimum of the energy a t a given volume in this 

range. Thus, the eight param eters were found to be zero a t these values of L  

w ith L — L q. Beyond L  — 1 the shape of space changes significantly and the 

pathology rears its head once more.
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Since we know th a t skyrmions prefer to sit on a sphere of radius L  = 1, 

th a t is on regions of space w ith curvature —6, as we increase L  beyond this 

value this is exactly the behaviour we find. Thus, as we increase the volume, 

two regions of space develop. One region being taken up by a triv ial vacuum 

and the other is spherical w ith radius of 1 and on which the skyrm ion takes 

the  identity m apping form. Moreover, the shape of the region of space w ith the 

triv ial vacuum  is completely undeterm ined by the Skyrme energy functional and 

there is an infinite degeneracy of shape ‘solutions’ here. This behaviour is sim ilar 

to a  balloon w ith a weak point, which when blown up expands only a t its weak 

point, though in this case in an arb itra ry  fashion. This is of course our pathology 

a t work. The energy of such a s truc tu re  will be equal to  the lower bound for 

all values of L  equal and above 1 and thus the volume becomes ineffective in 

expanding the skyrmion.

Thus, a t a value of L — 1.3, our variational m inim isation gives the shape and 

m apping depicted in Figure (4.5.1). Here we have chosen to  represent the shape 

on the C artesian axis. Choosing the 0 = 0  cross-section, we plot the value of w 

against x =  (x2 +  y2 +  z 2)1/ 2. As the angle /x varies, the value of /(/x) a t the 

corresponding point on the cross-section varies over a un it circle and the points 

on these circles are represented by the lines p ro truding  from  the sm ooth curve. 

Thus, it leads to  a revealing pictorial representation of the  d a ta  for a hedgehog 

solution.

Exam ination of Figure (4.5.1) shows the upper and lower halves of space are
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F ig u re  (4 .5 .1 ):  Plot, of the 0 — 0 cross ,seel,ion through physical space in the 
(w;,:r) plane of R ‘\  (see equation. 'I.'I.'I), a t b -  1.3. The spines indicate the 
hedgehog skyrm ion’s ‘profile angle’ /(//.), relative to the w axis a t a point of 
physical space and a t a corresponding value of //,. The angle p,, defining a point 
in space a t 0 — 0, is m easured about the origin from the w axis.
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both  approxim ately spherical, w ith radius ~  1 and joined a t fi =  7r/2 by a sharp  

‘p inch’. On the lower half of space the hedgehog is ‘rad ia l’ and  hence approxi­

m ately takes the identity m ap form. On the lower half of space /  is approxim ately 

zero and the trivial vacuum  w ith zero baryon density exists. The sm oothness and 

n a tu re  of the upper half of space is a consequence of our param etric  form and 

no t a consequence of the model. As we expected, this s tru c tu re  gives an energy 

very close to the lower bound w ith value 1.003 x 127T2.

This phenom ena is thus the analogue of the phase separation  phenom enon 

of dense crystalline m atte r as its average baryon density is increased, discussed 

by Kugler et al [11]. As we apply a piston to expand dense baryonic m atter, 

there are two regions of space th a t exist, one w ith a skyrm ion and one w ith 

the trivial vacuum . Thus it would appear, th a t a skyrm ion is rigid against such 

an expansion. However, as already pointed out, since we have not incorporated 

kinetic effects and the skyrm ions are heavily localised, we expect zero point 

m otions and quantum  corrections to  be im portan t. Hence, the  branch of the 

energy curve which connects the rarified and dense forms of skyrm ionic m atte r 

may well be im portan t as a transitive phase of m atte r.

In Section 4.2, we previously dem onstrated , th a t as the  volume of space in­

creases, the sphere w ith triv ial skyrm ion m apping is stable to  pertu rba tion  in 

bo th  the m ap and shape of space up to  L  — y/2. Thus, th is phase separation  is 

no t in contradiction w ith our previous results, since here the type of deform ations 

occurring are not sm ooth and this phase transition  is first order and beyond the
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region of our pertu rbative, second order analysis. Moreover, our elliptical space 

calculation also shows a first order phase transition  a t a value of L  ~  1.2, for the 

needle-like shape, if we do not constrain the size and hence locality of the  m etric 

p e rtu rb a tio n  of Sphy(L).

We thus have a ra ther negative result from these observations and can see th a t 

our calculation does not reveal a w ealth of interesting shapes of physical space, 

as global volume effects are not able to  overcome the  effect of the optim al local 

curvature. Also, we have not achieved our n a tu ra l requirem ent of considering 

only sm ooth physical spaces, since we will always have a pinch region.

In order to  resolve this difficulty we could imagine adding various term s to  the 

energy, such as the square of the Ricci tensor or its derivative squared, to stop 

pinching and thus, regions of high curvature. However, this would significantly 

change the model and has little physical justification. Thus, we choose to  try  

and sim ply constrain the local curvature such th a t it is always negative.

The Ricci tensor is diagonal for this m etric, w ith two of its elem ents less than  

or equal to  the th ird . Thus, we choose to  dem and th a t this th ird  elem ent, the 

R n  com ponent, be less th an  or equal to zero, so th a t all three elem ents of the 

Ricci tensor will be less th an  or equal to zero. Thus the resulting space will have 

definite negative curvature. We also note th a t the regions of space where R n  is 

zero, will be cylindrical.
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Thus, we choose to  include the following term  in the energy,

AI  v ? ( | R n  | + R u ) 2- (4-5.14)

This integral is positive semi-definite and vanishes for R n  less th an  or equal to 

zero. The Lagrange m ultiplier is then increased to large values, typically 10,000, 

in order to  force R n  to  be less than  or equal to zero and hence the local curvature 

scalar to be negative definite.

The resulting m inim isation problem  is well defined, however in practice, it 

is some w hat unstable. This constraint is very active as L  is increased, w ith 

large regions of space developing w ith R n  =  0, as we m ight have expected. In 

effect, we have erected a steep wall across an energy surface in a region of steep 

descent towards an infinite degeneracy of m inim um  energy shapes, which are 

undeterm ined by the energy functional. Thus, across the wall we expect a whole 

variety of shapes to  still persist, each lying on a local p a th  of steepest descent.

Presum ably our variational forms sm ooth this effect out and we find th a t there 

appear to be three predom inant sym m etries in the shape th a t space prefers, w ith 

the constrain t of equation (4.5.14) imposed. Figures (4.5.2) to (4.5.7) show these 

structu res a t values of L =  1.3 and 1.5.

In the first case, Figures (4.5.2) and (4.5.3), physical space can be considered 

to  be divided by the m apping in three distinct regions. At the  fi  =  0 end (or 

the n = 7r end) of space, we have a hem ispherical three surface of radius of 

abou t 1, w ith optim al curvature R  — —6, on which the hedgehog is seen to be
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F ig u r e  (4 .5 .2 ) : Flo I; of (.he 0 — 0 cross section through, a noil-sym m etrical 
physical space in the (w, x) plane of , a t L ^  1.5. Here the constrain t Ryj <  0 
was imposed. The angle /(/t)> a t a , .’ ' of physical space is m easured relative 
to the w axis and is indicated by tin' spines.
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F ig u r e  (4 .5 .3 ) : Plol. of the 0 0 cross section through a lion-sym rnetrical
physical space in the plain' ol ft4, a t L  — 1.3. Here the constrain t R n  <  0
was imposed. The angle f ( /i) , a t a point of physical space is m easured relative 
to the w axis and is indicated by the spines.
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F ig u r e  (4 .5 .4 ) : Flo!, of I,he 0 0 cross section through a ‘buckled’ non-
sym m etrical physical space (see text) in the ( w, z )  plane of R 4, a t L  = 1.5. Here 
the constraint ./in <  0 was imposed. The angle / (/x), a t a point of physical space 
is m easured relative to the w axis and is indicated by the spines.
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w

F ig u re  (4 .5 .5 ) : Flu I, of I. lu; 0 0 cross section through a ‘buckled’ non-
sy mine trie a.) physical space (see text) in the (\u,x)  plane of R 4, a t L -  1.3. Here 
the constrain t R n  <  0 was imposed. The angle f(f-t), a t a point of physical space 
is m easured relative to the w axis and is indicated by the spines.
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F ig u r e  (4 .5 .0 ) : P lot of the 0 — 0 cross section through a sym m etrical physical 
space in the (w ,x )  plane of .ft4, a t L — 1.5. Here the constrain t R n  <  0 was 
ijnposcd. The angle /(//■), a t a t . ‘ 1 of physical space is m easured relative to the 
w axis and is indicated by the spincn.
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F ig u r e  (4 .5 .7 ) : P lo t of 1,1k: 0 =  0 cross section through a sym m etrical physical 
space in the («;,&) plane of R 4, a t L — 1.3. Here the constrain t R n  <  0 was 
imposed. The angle / ( / a) ,  at a ,. of physical space is m easured relative to the 
w axis and is indicated by the spineti.
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rad ial, corresponding to  the identity m apping in this region. There is thus a half 

skyrm ion in this region. On the adjacent ‘bucket’ region, w ith R n  = 0, the other 

half of the skyrm ion exists w ith its baryon density depleting as ft, increases. This 

can be seen by noting th a t as the angle fi varies, the  angle /(/x) on this surface 

reduces towards its trivial vacuum  value. Finally, on the  o ther end we have a 

second hem isphere, whose radius depends on the am ount of volume it is required 

to  take up, in order to avoid excessive stretching of the skyrm ion and on which 

no baryon density exists and the field takes its triv ial vacuum  value of /  =  7r,  

(or /  =  0). Note th a t this struc tu re  is a non-sym m etric skyrm ion. Indeed, since 

space is non-sym m etrical, it makes little sense to  consider a sym m etric phase 

skyrm ion.

The second case, Figures (4.5.4) and (4.5.5), is sim ilar, except now the 

‘bucket’ region, w ith R n  =  0, grows in w idth towards the /x =  7r pole, bu t it 

still has half a skyrm ion stretch  over it. The vacuum  hem isphere now has a 

larger radius th an  the trivial L = 1 region. Thus, the struc tu re  involves less 

stretching of the skyrmion than  the previous case and has an energy which is 

slightly less than  those of Figures (4.5.2) and (4.5.3) at corresponding values of 

L.

The final situation , Figures (4.5.6) and (4.5.7), consists of the case where both  

the vacuum  and identity regions have identical radii and a cylindrical R n  = 0 

region, w ith a half skyrm ion between them . Only in this case is the space sym­

m etrical and hence a sym m etrical m apping sensible. However, the large gains
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of the non-sym m etrical m apping struc tu re  a t the n pole w ith optim al curvature, 

avoids this possibility.

The energies of these three structu res are p lo tted  against varying values of 

L  shown in Figure (4.5.8). The energy of the  trivial m ap of the sphere is also 

included, (solid line). As observed, the second type space, (dot-dashed line), is 

m ore favourable th an  the first, (dashed line), a t all volumes due to the reduced 

stre tch  of the skyrm ions th a t result. The sym m etric th ird  option, (dot-dot- 

dashed line), is seen to  be the m ost stable of the three for values of L  of below 

abou t 1.5. Above this value, the increasing volume of space and  the resistance 

of the half skyrm ion to  stretching over the cylindrical region, results in its being 

preferable for space to buckle in to  the second type of shape depicted in Figures 

(4.5.4) and (4.5.5). A round a value of L — 1.25, all three options become indis­

tinguishable and all three undergo a first order phase transition  to the identity 

m apping of Syhy(L ), as indicated by the plot. This occurs a t an energy of about 

1.03 x 127r2. The volume and the energy a t the phase transition  point and its first 

order na tu re , are all consistent w ith the result for the sphere, subject to  our less 

general elliptical deform ations. The reason for the linearity of the  non-sym m etric 

phase plot, is however unclear.

In conclusion, our results suggest th a t three very sim ilar structures exist in 

the non-sym m etric phase and th a t these are sim ilar to  the needle-type elliptical 

s tru c tu re  in bo th  energies, critical points and shape. Thus, the  much sim pler 

elliptical calculation seems to  have m ost of the features of the  more general
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F ig u r e  (4 .5 .8 ) : Plots ol' (energy)/ 127t2 =  E/YZir2 versus L  of a. hedgehog solu­
tion on various shaped spaces. The solid line indicates the trivial m ap skyrm ion 
on the sphere. The non-sym m etric spaces, w ith the skyrm ion localised about the 
narrow est region, (dashed line) ami the sym m etric, (dot-dashed line), shapes are 
depicted merging a.t the common first order phase transition  point.
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skyrm ions on negatively curved closed surfaces. However, in th is instance we 

see th a t skyrmions split in to halves as a direct consequence of the  R n  <  0 

constrain t, w ith half a skyrm ion on a fZn =  0 ‘bucket’ three surface and  half on 

a R  =  —6 hem isphere.

Finally we should note, th a t by allowing general unconstrained deform ation of 

this sphere to a negative curved three surface, we have not observed the  Syhy{L) 

local stability  up to y/2 we predicted. This can be rectified by sim ply controlling 

the  size of the space deform ation as in the elliptical case. To achieve this the 

param eters of r(/u), (4.5.12), are re-expressed in term s of a new set of param eters, 

(a , /? ,7 , 6),

Cj =  a  cos (3,

d\ = a  sin/? cos 6,

c2 =  a. sin/? sin <5 cos -y,

<f2 =  a  sin/? sin 6 sin 7- {4-5-15)

Fixing the value of the param eter, a , and hence the m axim um  m agnitude of 

r(/z), the three rem aining param eters lie w ithin a three dim ensional spherical 

surface of radius a , em bedded w ithin a four dim ensional param eter space. We

can now increase the value of a  form zero ( Syhy(L) ) and vary the rem aining

independent param eters /?,<$,O' and the four param eters in /(/x), (4.5.12), to 

ob tain  m inim al energy configurations. In Figures (4.5.9) and (4.5.10), we plot 

the m inim um  energy obtained as the m agnitude of a  is increased from  zero a t
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F ig u r e  (4 .5 .9 ) : P lo t of (energy)/  \ 2>\7 <>(' the hedgehog versus the param eter 
a , (see equation (4.5.15)), a t L  =• 1.25, with the curvature of physical space 
u neons trained.
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F ig u r e  (4 .5 .1 0 ): P lo t of (energy)/ \ . 2 t v 2 of the hedgehog versus the param eter 
a,  (see equation (4.5.15)), a t L  =. 1.45, with the solid line corresponding to the 
curvature of physical space unconstrained, while the dashed line corresponds to 
the constrain t R )j < 0  being imposed.



L = 1.25 and 1.45 (note differing scale sizes in these two figures). In Figure

(4.5.9), a t L — 1.25, we see th a t the sphere is indeed stable as a  is increased 

up to 0.3. Beyond this value, the energy falls steeply tow ards the lower bound 

as a  approaches a value of 1. Here we have dropped the curvature constrain t 

of (4.5.2), and the a  ~  1 surface will look sim ilar to  th a t in Figure (4.5.1). In 

F igure (4.5.10), we see th a t a t a volume of L = 1.45, the sphere is completely 

unstable as a  moves from zero, which is a local m axim um . Indeed, we see our 

results confirmed the sphere’s stability  to  a value of L  =  Ld = y/2. On this 

plot we have included a second branch, (dashed line), which has a higher energy 

and corresponds to the turn ing  on of the curvature constraint of (4.5.14). Thus, 

in the  region of a  <  0.06 the constraint has no effect and the deform ation size 

is insufficient to produce positive curvature. Beyond this point the two curves 

branch smoothly, the curve w ith no constraint falling more sharply. Thus, as 

we expected, the constrain t cuts through a region of steep descent in param eter 

space and is therefore very active.
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C H A P T E R  5

CHIRAL B A G S W IT H IN  

D E N S E  SK Y R M IO N IC  M A T T E R

5.1 Introduction

In C hapter 3 we reviewed the current status of the Skyrme M odel’s predictions 

for dense baryonic m atter. This showed th a t the model can be used to describe 

baryonic m atte r in a  static  crystalline form, which consists of a periodic skyrm ion 

array. A variety of crystalline arrays have thus far been investigated, all of which 

have been found to have sim ilar general characteristics. In particu lar, all have 

been shown to give considerable gains in binding energy at high densities over 

th a t of an array of isolated iso-rotated hedgehogs. Their m inim al energy field 

configurations all occur a t densities which are considerably higher than  those at 

which ‘norm al’ nuclear m atter exists. At these high densities, these skyrm ion 

crystals have been shown to condense to  half skyrm ions arrays.

O ur num erical investigation involving the fee array of skyrm ions, dem on­

s tra ted  th a t the m ost likely candidate for the classical ground s ta te  configuration 

of crystalline skyrmionic m atte r, is the  condensed fee array, which corresponds 

to  a simple cubic array of half skyrmions. Its m inim al energy field configura­
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tion, has an energy per unit baryon, which is 3.8% above the lower bound. As 

M anton et al [1] dem onstrated , in flat space this bound cannot be sa tu ra ted  and 

thus, the close vicinity of this cubic half skyrm ion a rray ’s energy to  the bound, 

leads us to  believe th a t this may well represent the absolute m inim al energy, 

sta tic  crystalline field configuration. The corresponding high density of this field 

configuration, as we have already argued, may well be decreased when 1-loop 

quantum  corrections are included and its density may well approach realistic 

nuclear m atte r densities.

In this chapter, we wish to  propose fu rther possible investigations involving 

this m inim al energy crystal of Skyrme m atte r, which would reveal the particu lar 

n a tu re  of this crystal and lead to  a be tte r understanding  of the physical inter­

preta tions th a t should be attached to its existence. As we outlined in C hapter 

3, Klebanov [2] proposed th a t such arrays should represent neutron  m atte r and 

he dem onstrated  how this could be achieved using naive semi-classical quantiza­

tion techniques for quantizing the crysta l’s isospin-rotational modes. However, 

we have in m ind the possibility of the crystal representing dense nuclear m atter, 

which contains bo th  neutrons and protons, as well as higher resonance states. We 

shall not tackle the question of electrom agnetic interactions, which as Klebanov 

noted, would lead to divergent electrostatic contributions to  the energy of the 

crystal per particle.

We believe th a t the possibility of the crystal being composed of a-partic le  

like struc tures is an appealing one and would moreover, be of great interest.
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Such an a-partic le  p icture of nuclear m atter, for cubic half skyrm ion crystals, is 

however, a t this tim e based only on intuition and a belief th a t the Skyrme Model 

m ight give a ground sta te  w ithin the B  — 4 sector, w ith quantum  num bers of 

the a-particle. This belief does have some basis however. Firstly, we know th a t 

in the B  — 2 sector, the model gives a ground s ta te  configuration, which as a 

consequence of the particu lar axial sym m etry present in the field configuration, 

has the quantum  num bers of the deutron [3]. Secondly, this configuration was 

arrived a t num erically [4] by considering the field deform ation which occurs as 

two optim ally orientated  hedgehogs are brought together. Since hedgehogs rep­

resent generalised baryons containing both nucleons and deltas, it is seen th a t 

the resulting deutron bound sta te  a t high densities can be considered as being 

com posed of all the dom inant particles known to determ ine a d eu tron ’s physical 

properties.

As we have already pointed out, the B  — 4 m inim al energy configuration 

has also been obtained by Carson et al [5] and has also been found to possess a 

high degree of symmetry. Of further relevance here, is their observation, firstly, 

th a t w ithin the Skyrme Model this may represent an a-partic le  and secondly, 

th a t the cubic point group sym m etry this field configuration possesses is also 

present w ith our half skyrm ion cubic field configuration [5]. Therefore, there 

exists the possibility of this half skyrm ion crystal being composed of the B  — 4 

un its , which may represent the generalised classical a-partic le  of the Skyrme 

Model. However, this consistency of sym m etry is not easily transform ed in to
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the actual field configuration we have numerically discovered. In particu lar, it 

is not obvious how C arson’s (et al) B  = 4 field configuration, w ith the physical 

U(x) =  1 boundary condition at spatial infinity, might be related to a crystalline 

field configuration w ith its tw isted periodic boundary conditions, (3.2.13) and 

(3.3.3). It is true however, th a t the baryon density plots for this m inim al energy 

crystalline fee field given by Kugler et al [6] and the Carson et al [5] m inim al 

energy B  =  4 configuration, are similar. In particu lar, bo th  are cubical and have 

sim ilar numbers of regions of depleted baryon density. Given th a t the relation 

between these two fields rem ains to be more precisely established and th a t the 

actual pion field configuration of the B  =  4 configuration, has not yet been 

presented by Carson et al, the question of the relation between the two field 

configurations rem ains an open one which we shall not consider here.

Nevertheless, we can still construct argum ents which can be expected to hold 

independently of C arson’s (et al) actual field arrangem ent and w ithout an explicit 

relation between the two systems.

As we have seen in C hapter 3, our fee crysta l’s low densities can be pictured 

as being composed of four types of iso-rotated spherical hedgehog skyrmions 

centred on the points of an fee lattice, such th a t neighbouring skyrmions have 

their pion fields relatively iso-rotated about their line of centre by an angle 7r.

Specifically, we can describe the uncondensed phase fee array in term s of the 

fee cube. If the eight hedgehogs a t the vertices of this cube are taken to  be 

un ro ta ted , then those on the faces are iso-rotated about an axis perpendicular
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to the face on which they lie, by an angle 7r. A representative cell of the fee 

crystal is thus an octan t of this fee cube and is itself a cubic cell, w ith the  four 

different types of skyrm ion centred on four of its vertices forming a te trahedron , 

(see Figure (3.1.3a)). Periodic repetitions of these te trahed ra l units generate the 

full fee lattice arrangem ent.

Since the Skyrme Model Lagrangian is invariant under a constant global 

isospin ro ta tion  of a field configuration, there exists an infinite degeneracy of 

equivalent crystalline field configurations. By perform ing a global iso-rotation 

of our fee lattice arrangem ent, we can obtain an equivalent crystal in which the 

te trahed ra l sym m etry of these representative units is explicit. Specifically, a 

global iso-rotation of the fee arrangem ent by an angle 27r/3, about an axis x = 

y =  z  passing through the centre of this te trahedron  and the vertex on which the 

u n ro ta ted  hedgehog sits, results in an arrangem ent in which the hedgehogs w ithin 

the  cell are iso-rotated by an angle 2n/3  and each characterised by the direction of 

the  axis about which it is iso-rotated. The resulting arrangem ent has each of the 

four skyrm ions, which together form a te trahedral un it w ithin this representative 

cell, iso-rotated about an axis passing from the centre of the te trahedron  to  the 

vertex point on which it sits, by an angle 2n/3.  Thus, the resulting pion field 

arrangem ent is explicitly seen to possess te trahedral sym m etry. It is im portan t to 

note, th a t these iso-rotations do not affect the a-field. The arrangem ent, though 

equivalent to  th a t which we considered before, reveals much about the m anner in 

which the pion field direction distorts as one increases the density of the crystal.



W ith this picture, we see th a t as the density of the crystal is increased, 

by decreasing the lattice space a of the fee cube, the hedgehogs forming the 

te trahed ral unit w ithin the representative cell, approach each other along the axis 

abou t which they are respectively iso-rotated. Since along these axes the pion 

fields rem ain unro ta ted  and point outwards from the hedgehogs a t the centre, we 

clearly see the m anner in which the B  — 4 hedgehog units approach each other 

as the lattice spacing is decreased.

An identical te trahedral arrangem ent of four hedgehogs in the low density 

lim it of the B  — 4 sector, will clearly also be an optim um  field arrangem ent. 

However, in this sector, a product of the m inim al energy B  — 2 fields a t large 

separations, would be more bound than  this te trahed ral field a t correspondingly 

low densities. However, this te trahedral arrangem ent should still be a local ex­

trem um  of the energy of the B  =  4 configurations a t all densities. At high 

densities, bringing these spherical hedgehogs together along the respective axes 

of ro ta tion , will result in large field deform ations as the hedgehog fields over­

lap and should result in the true B  =  4 configuration of Carson et al, which 

they suggested m ight represent an a-particle. Thus, in this m anner, we suggest 

th a t our m inim al energy, cubic half skyrm ion crystal represents an array of a- 

particles a t high densities. However, this crysta l’s periodic boundary conditions 

make establishing its association w ith the B  =  4 solution non-trivial.

This p icture also suggests, th a t at a density below th a t a t which the minimal 

energy cubic half skyrm ion field configuration exists, the cubic half skyrm ion a r­
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ray will be less bound than  a crystal composed of optim ally separated , te trahedral 

B  — 4 units, separated  by regions of trivial vacuum. The tensor interaction of 

these B  =  4 units should of course be weak, if they do indeed represent physical 

a-particles. Thus, a t a fixed baryon density below th a t of the m inim al density, 

allowing the crystalline field to break the periodic fee boundary  condition, we 

m ight expect th a t a simple cubic arrangem ent of a-partic le  like structures would 

condense out, separated by regions of trivial vacuum. However, the m anner in 

which this condensation would occur is not clear, as the  relation between the 

c rysta l’s tw isted boundary condition and the B  =  4 physical boundary condition 

is not yet established.

It is clear though, th a t the B  = 4 te trahedral units w ithin the crystal would 

slide along the four axes of the tetrahedron  which pass through its centre and 

its four vertices. Thus, we can picture this condensation as being due to the 

fact th a t a te trahedral unit has a definite density a t which it prefers to be and 

when the baryon density of the crystal is decreased, these units rem ain rigid. In 

order to decrease the density, they slide along the four axes of sym m etry of the 

te trahedron  and the exteriors of these te trahedral B  — 4 units are surrounded by 

regions of space in which the baryon density is zero. In this m anner the baryon 

density of the whole cube is reduced. However, the tw isted boundary condition 

of the condensed fee crystal will no longer hold. Presum ably, as the density 

is decreased, the fields a t the edges of the B  =  4 te trahed ra l units sm ooth out, 

becoming spherical in order to  m atch sm oothly w ith the regions of trivial vacuum



at their exterior. Hence we suspect, th a t as the baryon density of the crystal 

decreases, these B  = 4 units w ithin the condensed fee array would correspond to 

th a t of the B  = 4 configuration discovered by Carson et al [5].

Given the belief th a t fee skyrmionic m atte r may be composed of a-partic le  

like structures, we wish in this chapter to present an alternative m ethod by 

which the particle content of this crystal m ight be deduced. We wish here to 

consider the possibility of explicitly including quark degrees of freedom, which 

we expect to be relevant a t short distances w ithin a baryon. Thus, w ithin dense 

baryonic m atte r we m ight expect this to be a necessary step in the development 

of a realistic physical model of dense baryonic m atte r. The inclusion of quark 

degrees of freedom can be achieved by invoking the Chiral Bag Model, which 

provides an elegant two phase description of a baryon.

In the Chiral Bag Model a baryon is described in term s of quarks a t short 

distances w ithin its core and these are assumed to be confined w ithin a spherical 

bag. At the exterior of this bag a meson cloud exists. These two phases are 

coupled a t the bag surface by the requirem ent th a t the axial current be contin­

uous. Thus, the resulting model is chiral invariant. In the interior, pertu rbative  

Q.C.D. governs the dynamics of the quarks, which in teract via gluons, though 

these gluonic effects are usually ignored. In the exterior region, the desire to 

incorporate the P.C .A .C. hypothesis correctly w ithin this model and hence its 

resulting successful low energy pion theorem s, leads one to incorporate the dom ­

inant low energy pion degrees of freedom, realised as the Goldstone modes of
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broken Chiral Symmetry. Thus, a t the exterior of the bag the mesons dynam ics 

are taken to be governed by the Non-Linear Sigma Model. To stabilise the bag 

at the tree level, against collapsing to a point in a chiral sym m etric m anner, 

it has been both  custom ary and of interest to generalise this effective mesonic 

Lagrangian by including Skyrm e’s fourth order term .

In the next section we shall present the details of this model and briefly review 

some of the recent results.

The inclusion of explicit quark degrees of freedom w ithin crystalline skyrmionic 

m atte r, through the Chiral Bag Model, has already been considered by some 

authors [7] [8] [9]. The inclusion of quarks should partia lly  cure the low en­

ergy restriction of the Skyrm e’s effective Lagrangian w ith its lim ited num ber 

of mesons. These a ttem pts to extend the description of Skyrme m atte r, em­

ployed the W igner-Seitz approxim ation. W urst et al [9] considered cu tting  spher­

ical holes out of a crystalline skyrmionic field, which satisfied Klebanov’s cubic 

boundary  condition. They considered placing free massless Dirac fermions, the 

quarks, inside spherical bags and ignored gluonic interactions. This approach is 

only valid if the spacing between neighbouring skyrm ions is large, because only 

then  is the array composed of approxim ately spherical skyrmions. The impo­

sition of spherical bag sym m etry places strong constraints on the deform ation 

of the  crystalline configuration. As a result, their W igner-Seitz approach was 

unable to  describe high density baryonic m atte r, since spherical sym m etry of the 

bag was inconsistent w ith th a t of the simple cubic lattice arrangem ent. This



resulted in the W igner-Seitz lattice having an energy which was always greater 

th an  th a t of the corresponding free skyrm ion field configuration and thus there 

was no binding. Thus, their im position of spherical sym m etry, which was a mere 

calculational convenience, prevents their lattice calculation from  giving insights 

in to the relevance of quark degrees of freedom a t high densities.

Clearly w hat is relevant here, is to allow the shapes of the bag surfaces to 

deform as the density of the crystal increases. Thus, for our fee crystal a t low 

densities the spherical shaped bag would be relevant, b u t a t high densities, the 

shape of this bag would be expected to m irror the sym m etry of the mesonic field 

configuration, which has cubic symmetry. However, a calculation in which the 

shape of the bag is allowed to  deform sm oothly and continuously, is certainly 

beyond the realms of realistic possibility. Yet w hat we are m ost interested in 

here, is not understanding the m anner in which these bags deform as the density 

increases, bu t the natu re  of the m inim al energy half skyrm ion arrangem ent a t 

high densities.

We therefore wish to consider cubic, or more generally, square based prisms 

cut out of our m inim al energy cubic crystals of half skyrm ions, as we shall later 

show. These have an advantage over spherical bags in th a t they can be placed 

together to fill the whole space, whereas a sphere would require a tortuous bag 

shape deform ation in order for the bags to fill space. The details of the consistent 

shape th a t can be cut of the m inim al energy field configuration will be presented 

in Section 5.3. We note here simply, th a t given such an inclusion of explicit
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quarks via the Chiral Bag Model, will not only reveal the particu lar na tu re  of this 

m atte r, bu t m ight also provide us w ith an understanding of quark deconfinement 

a t high densities.

We might thus envisage a Chiral Bag Model description of nuclear m atter, 

com posed of nucleons interacting through pions and w ith the  acknowledged quark 

substructu re  of nucleons explicitly included. A second advantage of extending 

our model to  include quarks through the Chiral Bag M odel, is th a t we can expect 

th a t since it interpolates between the two extrem e lim its of the Skyrme Model 

and the M .I.T . Bag Model, it will incorporate the successes of them  both . The 

m anner in which this is achieved will be seen in the next section.

5.2 The Chiral Bag M odel

In recent years the Chiral Bag Model [10] has emerged to provide an elegant, 

two phase description of a nucleon, in which the nucleons central quark core is 

coupled to  an external meson field through continuity of the axial vector current. 

This model has been shown to provide the exciting possibility of understanding 

the relationship between the two distinct extrem es of the bag and soliton models 

of baryons.

Originally the M .I.T . Bag Model [11] set out to describe hadrons solely in 

term s of their quark substructure. This model of hadronic substructures was de­

veloped in a m anner which incorporated many of the phenomenological features
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of high energy hadronic physics. A baryon is described as an extended object, a 

bag, in to which three valence quarks are placed.

The results of deep inelastic scattering experim ents have revealed th a t w ithin 

a hadron, quarks or partons move freely over short distances. However, no free 

quarks exist in the physical particle spectrum . Thus, the M .I.T. Bag Model 

describes a baryon as composed of three quarks, bound inside a confining closed 

surface. O utside of this bag the quarks a tta in  an infinite mass and are thus 

prevented from existing in this, the exterior region.

The physical basis of the confining m echanism  which prevents quarks from 

being observed in asym ptotic channels, is not understood. However, since w ithin 

a hadron  quarks interact through the eight gauge bosons of Q .C .D., the gluons 

presum ably provide the ‘glue’ which binds them  w ithin the hadron. In this way, 

the Bag Model imposes quark confinement by fiat. In so doing, it is supposed 

th a t non-perturbative effects of Q.C.D. result in a two phase structu re . The bag 

represents a bubble w ithin which quarks and gluons in teract perturbatively, in 

a m anner governed by Q.C.D.. These bubbles exist w ithin the ‘norm al’ phase, 

which has a non-perturbative vacuum  structure  and in to which colour electric 

fields cannot penetrate .

The original M .I.T . Bag Model only attem pted  to describe the pertu rbative  

phase and imposed colour confinement by dem anding th a t the (colour) vector 

current across the bag surface vanishes.

\b o u n d a r y =  0 -  {5.2.1)
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Here ip is taken to be an iso-scalar, th a t is, a four com ponent Dirac spinor, 

describing the quark field and is the outw ard un it norm al to  the bag surface. 

The linearised version of this boundary condition,

—in -^ ip ( x )  \b o u n d a r y =  i p ( x )  \b o u n d a r y , (5.2.2)

uniquely solves boundary condition (5.2.1), the usual M .I.T . boundary condition. 

The bag is usually taken to  be a sphere of radius R , w ith  the boundary given by 

r = R.  W ith the linearised boundary condition, the quarks w ithin the bag are 

prevented from escaping from it. It is a trivial consequence of G auss’ theorem , 

th a t w ithin the bag only colour singlet contributions of quarks and gluons can 

exist.

The pertu rbative  phase is believed to have a higher vacuum  energy density 

th an  the norm al phase and thus, bubbles will not expand to  fill all of the space. 

Therefore, a constant m easuring of the excess energy density of the hadronic 

phase is usually introduced. This results in the bag size becoming a physical 

quantity , relevant to the distance scales a t which quarks confine. However, this 

in terpre ta tion  of the bag radius, R , being a physical quantity, is not taken over 

in the Chiral Bag Model generalisation, as we shall see later.

The dynamics of the quarks and gluons w ithin the spherical cavity are de­

term ined  by pertu rbative  Q .C .D., subject to the confining boundary condition

(5.2.2). Initially the gluon effects, as well as the quark masses, are neglected. 

The dynamics of the free massless quarks are then determ ined by the massless
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Dirac Equation. It is then  possible to  obtain  a com plete analytic solution to  the 

Dirac Equation, subject to boundary condition (5.2.2), for a spherical bag. By 

including quark masses and gluonic interactions, the resulting model has been 

shown to give a good fit to  the low lying hadronic spectra  [12]. In particu lar it 

gives the correct ordering of the spectra.

The M .I.T. Bag Model of a hadron however, has some short comings, partic ­

ularly  w ith respect to  its description of low energy nuclear physics. For exam ple, 

since all the  nucleon’s physical properties are confined by boundary  condition

(5.2.2), in order to  study the interaction of nucleons it was necessary to  consider 

the complex process of bag fission and fusion [13]. Moreover, since quarks are 

confined their currents are discontinuous a t the bag surface. Thus, the quarks 

vector axial current is not conserved. Hence, the M .I.T. Bag Model is not chiral 

sym m etric and makes no a ttem p t to  incorporate the success of the low energy 

phenom enology of Chiral Symmetry. As a result, the M .I.T . Bag Model is only 

relevant and successful in describing hadronic substructu re  and thus, strong  in­

teraction  processes a t short distances.

The Chiral Bag Model thus emerged, to  overcome the  short comings of the 

M .I.T . Bag Model. The form er provides a model of a nucleon w ith not only 

an explicit quark substructure, bu t also an exterior pionic cloud through which 

nucleons interact. The C hiral Bag M odel, as developed by Vento et al[10], was 

based on the P.C .A .C. hypothesis. Thus, the Chiral Bag Model has an exte­

rior pionic field which, by dem anding axial current conservation across the bag
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boundary, is consistently unified w ith the quark fields on the boundary of the 

cavity.

The Chiral Bag M odel’s generalisation of the confining linear boundary con­

dition (5.2.2) reads,

—in - ^frp(x) {bo und ary  = e tfn0 T1&̂ ( x )  \b o u n d a r y , (5.S.S)

where 'ijj(x) is now taken to  be an iso-scalar composed of up and down quarks. 

Here, 0(x) is the external pion field which is excluded from penetrating  the bag. 

The boundary condition is SU (2 )L x SU (2 )R chiral invariant. It couples the 

internal up and down quark fields to the iso-triplet vector pion fields a t the bag 

surface, via a 75 vertex. On physical grounds one expects th a t the external 

pionic fields should be the Goldstone Bosons of Chiral Symm etry, as realised 

in the Goldstone mode. Thus, in the initial version of the Chiral Bag M odel, 

the  external pion dynamics were taken to  be governed by the Non-Linear Sigma 

Model. We can thus in terpret the un itary  m atrix  U = e*̂ 5r*'r'76, appearing in the 

boundary  condition (5.2.3), as the result of a Yukawa coupling of the quarks to 

the pion fields of the Non-Linear Sigma Model.

Inside the bag, neglecting gluonic interaction, quarks obey the massive Dirac 

equation,

(n^d/z -  rn)ip(x) = 0. (5.2.4)

Now, differing choices of 6 a t the boundary, give different boundary conditions,

(5.2.3), on the bag surface. Thus, differing choices of the pionic field streng th  a t

221



the bag surface, result in different solutions to the Dirac equation and hence to 

theories w ith different physical content.

Deviations from Chiral Sym m etry are trea ted  perturbatively, based on the 

observation th a t both  the pions and the quark current masses are small. Thus, 

the masses of the free quark field in the Dirac equation, (5.2.4), are usually 

neglected, to be included later as perturbative effects.

As we have already noted, in addition to  the linear boundary condition (5.2.3) 

on the bag surface, in order to m aintain Chiral Symm etry, the Chiral Bag Model 

imposes the condition th a t the vector axial current be continuous across the 

boundary  surface. This condition reads,

n • A a[ip] \b o u n d a r y — n  * A a [ < 7 , 7 r ]  \b o u n d a r y  • (5.2.5)

The vector axial current of the iso-scalar quark field is given by:

A I W  = (5.2.6)

The form of the axial current for the u  and 7f fields, depends on the explicit 

Chiral Sym m etric Model we employ to govern the dynam ics of the external pion 

degrees of freedom. Here we wish to consider a version of the Chiral Bag Model, 

in which the bag is stable a t the tree level against collapse of the bag to a point 

and also to incorporate the pure Skyrme Model description of a baryon as a 

soliton. Thus, we shall employ the Skyrme Lagrangian to govern the external 

pion dynam ics. The axial current for the <7,7? fields can be represented in term s
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of the 2 x 2  un itary  field U and this has the form:

4 1 ^ ]  =  -  i - ^ T r ( T i{V ,d „ U +})T r (L ' 'L „)

+ i ^ T r { T i{U<dliU +}\Tr[L„L‘'}. {5.2.7)

The Chiral Bag Model we have outlined, determ ined by equations (5.2.3),

(5.2.4), (5.2.5) and the Skyrme Lagrangian, is explicitly SU (2 ) r x S U (2 ) l chirally 

sym m etric and since it incorporates the Non-Linear Sigma M odel’s pions in the 

Goldstone mode, it is seen to  unify the success of low energy soft pion theorems 

w ith the  success of the M .I.T . Bag Model in describing a hadronic substructure.

Having discussed and justified the dynamics and relevant boundary conditions 

of the C hiral Bag M odel, we shall briefly indicate the types of exact solution 

which have been obtained for a spherical confining bag of radius R.  However, 

before doing so it is interesting to  note th a t this model does indeed interpolate 

between the M .I.T. Bag and the pure Skyrme Models. This observation is based 

on the fact th a t as we vary the size of the bag radius, the pionic field strength  

6 , a t the surface, varies smoothly. Thus, in the lim it when | 0(R)  |=  0, the 

two flavour Chiral Bag boundary condition, (5.2.3), reduces to one flavour. The 

M .I.T . condition (5.2.2) and the M .I.T . Bag Model results. In the lim it of zero 

bag size, we have pionic degrees of freedom throughout the whole of space and 

the model reduces to  the Skyrme Model.

For a spherical bag, complete analytic solutions to the Dirac Equation for the 

massless quark fields are available when the external Skyrme field is assum ed to
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be of the hedgehog form:

U(x) = (5.2.8)

which describes a single baryon in the pure Skyrme Model lim it. At the spherical 

bag surface, r = R ,  the iso-vector pion field streng th , 0, is norm al to  the surface 

and has a constant m agnitude.

It is now obvious th a t the M .I.T . Bag lim it will correspond to  the m agnitude 

of the  iso-vector field streng th , being zero on the bag surface when the bag has 

an infinite radius. The pure skyrm ion lim it, resulting when the bag has zero size, 

will correspond to the lim it of | 0 |=  n a t the bag surface.

On substitu ting  the hedgehog ansatz for the external pion field (5.2.8), in to 

the  linear boundary condition, we obtain;

- i n  • ^ ( x )  \r=R = (sin 0(r) -  r • r cos 0(r)^/B)xp(x) \r=R . (5.2.9)

This condition is such th a t it does not com m ute w ith J  =  L  +  S  or T  separately, 

b u t w ith  them  taken together to form the grand-spin generator:

K  = L  + T  + S .  (5.2.10)

The chiral boundary condition, (5.2.9), which is sphere sym m etric, thus couples 

the  isospin directions to spatial directions and results in the grand-spin generator,

(5.2.10), being a good quantum  num ber. Thus, spinor solutions to the Dirac 

Equation  (5.2.4), will be partially  characterised by ( K , k z).
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An analytic general solution to the massless Dirac Equation, in spherical co­

ordinates, which satisfies the chiral boundary conditions, can easily be obtained.

The lowest energy solution is given by:

N
0j>) =  ^  v  (5.2.11)

where the spin-isospin state ,

V =  7 ^ ( “  | T  r f  >  +  f l  «  > ) ,  (5.8.12)

satisfies

(S + 1) | v  > = 0  (5.2.13)

and has the quantum  num ber 0+ .

Since parity  commutes w ith the Dirac H am iltonian, there are two opposite 

parity  states, j  ±1  for a fixed value of j .  Thus, for K  = 0, there is another sta te , 

w ith the quantum  num bers 0_ , which has higher energy.

The hedgehog ansatz, (5.2.8), enables us to take the non-linearity of the  ex­

terior Skyrme Lagrangian in to account. The resulting equation of m otion which 

determ ines the <r, 7r fields is the non-linear second order differential equation, 

(1.1.25), for the profile function, w ith f ( r )  replaced by 0(r). The boundary con­

dition at spatial infinity, (1.1.15), taken w ith the equation of m otion, implies 

th a t | 7r | tends to  zero as a / r 2 asym ptotically. This coefficient, a, determ ines, 

th rough the equations of m otion, the values of B(r) and 0(r) a t the bag bound­

ary, r =  R.  The linear boundary condition (5.2.9), subsequently determ ines the
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Dirac spinor solution to the Dirac Equation. The conservation of axial current 

condition, (5.2.5), a t the bag boundary, then determ ines the coefficient a. Note 

th a t since the value of a  determ ines the pion field a t spatial infinity, its value 

should be related to g^NN and its subsequent determ ination through the conti­

nuity of axial current a t the bag surface, is the m echanism  by which a  is chosen, 

so th a t the Goldberg-Treim an relation holds for the hedgehog field.

Initially Vento et al [10] considered pu tting  three valence quarks in to the 

0+ ground sta te , (5.2.11), w ith the Non-Linear Sigma Model determ ining the 

exterior o and 7r fields. However, as we have already pointed out, there are 

d istinct advantages to  be gained by employing the Skyrme Lagrangian in the 

exterior regions, as this leads to  a bag which is stable against collapsing to a 

point a t the tree level, which their version does not. Vento et al found th a t the 

to ta l energy of the system , the bag plus the exterior pion clouds, is close to  th a t 

of the nucleon mass for a wide range of bag radii from 1.5Fm  down to 0.5F m .

In order to complete the construction of the Chiral Bag Model it is necessary 

to include quark vacuum  effects. Indeed, a consistent construction of the Chiral 

Bag Model necessarily requires these 1-loop effects to be included in the quark 

sector [14]. The model suffers many defects when these effects are ignored. The 

m ost serious of these is th a t the baryon num ber takes unphysical, non-integer 

values, as noted by Rho et al [15]. The vacuum  correction to  the valence quark 

contributions have been shown to correct this defect.

To understand  this difficulty we note th a t the exterior <7, 7? fields, should have
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associated to them , the usual baryon num ber, B,  given by the field’s winding 

num ber. However, since we have a bag cut out of this field, its contribution to 

the baryon num ber will be less th an  unity and is given by;

B  =  - ( 8  -  l /2 s in 2 0 ) , (5.2.14)
7T

for a hedgehog field where 0 is the value of the chiral angle a t the bag surface. 

W hen this is added to the three valence quarks contribution of unity to  the 

baryon num ber, we see th a t this model gives a baryon num ber which is greater 

than  unity and not an integer. The resolution of this lies in the presence of the 

mesonic fields exterior to  the bag, which modify the bag boundary  condition for 

the  quarks in the negative energy sea, as well as for the valence quarks. This 

leads to a vacuum  quark contribution to the baryon num ber which is precisely 

equal and opposite to th a t from the mesons. This result has been dem onstrated 

numerically, by evaluating mode sums of the quark vacuum  contributions [14].

The m echanism  by which this cancellation occurs can be understood by con­

sidering the effect of increasing the value of chiral angle 9(r) a t the bag surface. In 

the M .I.T. Bag Model lim it, 0 = 0, the solution to the Dirac Equation produces 

an energy mode spectrum  which takes bo th  positive and negative values. In this 

lim it its spectrum  is sym m etric about zero energy. As the streng th  of the pion 

field a t the bag surface grows, the lowest positive energy valence quark states 

drop in energy and eventually cross zero energy and become negative; the other 

modes oscillate in energy bu t do not change sign. It is this spectral flow which
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provides the mechanism for the fractional cancellation of the baryon num ber of 

the vacuum  and of the exterior meson field.

A nother case in which the need to include vacuum  contributions is essential, 

is seen when one considers the Ham iltonian. W ithout the quark vacuum ’s con­

tribu tions, the H am iltonian is not bounded from below. To see th is, we note 

th a t the energy scales w ith the inverse bag radius and thus by decreasing the 

size of the bag we can make the energy arb itrarily  large and negative w ith Sigma 

M odel exterior pion field. This is resolved by considering the Casimer energy, 

which trea ts  the ‘fallen’ negative energy valence states in a unified fashion w ith 

the rest of the Dirac negative energy sea and thereby restores the positivity of 

the H am iltonian.

It has been shown th a t on incorporating these vacuum  effects w ith the Skyrmion 

exterior field, a successful ‘Cheshire C a t’ picture emerges for the Chiral Bag 

Model. T h a t is, the low energy physical observable becomes independent of the 

bag radius. This has been found to be the case for the m odel’s predictions of the 

baryonic mass, r.m .s. baryon radius, ga and the N  — A mass splitting.

This independence of the physical observables from  the bag radius, has long 

been known to be exactly satisfied for various (1 +  l)-dim ensional models [16] 

in which explicit bosonization of fermionic fields is possible and the physical 

equivalence of both  phase descriptions can be dem onstrated . However, in (1 +  3) 

dimensions we expect such a phenom enon will only approxim ately exist, since 

the Skyrme Model is believed only to represent a tru n ca ted  version of the ‘tru e ’
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mesonic Lagrangian believed to correspond to Q.C.D. a t low energies.

Thus, the Chiral Bag Model provides an instructive and consistent model 

of a nucleon which interpolates between the Skyrme and M .I.T. Bag Models. 

However, the necessity to include quark vacuum  effects explicitly, for consistency, 

requires one to evaluate mode sum s of the negative energy sea. U nfortunately, 

such sums in general have u ltra  violet divergences and the low energy nature  of 

this model results in its not giving a guidance as to how these divergences should 

be removed, or even a unique prescription for isolating finite pieces. However, 

Jackson and Yepstas [17] have shown th a t a m inim al type sub traction  scheme, 

based on physical argum ents, results in a consistent Chiral Bag Model in which 

all physical quantities are explicitly finite. Thus, the Chiral Bag Model has 

m atu red  in to a consistent physical model of a baryon.

5.3 Chiral Bags W ithin A Dense Skyrmionic Crystal

We have seen in the previous section, th a t it is n a tu ra l to a ttem p t to extend 

the Skyrme Model by including explicit quark degrees of freedom in a chirally 

sym m etric m anner and th a t this can be achieved by employing the Chiral Bag 

Model. Thus, in this section we shall a ttem p t to extend the Skyrme M odel’s 

description of dense crystalline baryonic m atte r presented in C hapter 3, by in­

cluding quarks through the Chiral Bag Model. The resulting two phase model 

of baryonic m atte r, will have the sam e baryonic interaction, via the tensor force,
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at the exterior of the bags th a t we investigated for a pure skyrmionic crystal. 

Due to the presence of interior quark degrees of freedom, we expect results in 

significant hard  core repulsions between baryons as they approach each other in 

dense baryonic m atter.

It is clear from the outset, such a generalisation will increase the complexity 

of the calculational procedure which would be required to  obtain  exact num eri­

cal results, since here we have a two phase model which is governed by different 

dynam ical equations. In order to simplify our argum ent, which will be of a 

suggestive nature , we shall confine our consideration to  the fee condensed half 

skyrm ion crystal a t high densities. The tw isted boundary conditions determ ining 

the sym m etries of this field configuration were given in C hapter 3, in equations 

(3.2.13) and (3.3.3). Since this configuration has the lowest energy of all the crys­

talline Skyrme fields so far considered, it is clear th a t this is the m ost interesting 

candidate array th a t we can study.

Since for this field configuration we have to hand the accurate analytic forms,

(3.6.1), for the true m inim al energy field configuration, we shall make use of 

these. This ansatz is not a true solution to the Skyrme M odel’s Euler Equation, 

thus, this configuration’s vector axial current is not exactly conserved. However, 

this ansatz does possess all of the sym m etries of the tru e  m inim al energy field 

configuration and gives a very accurate estim ate of its m inim um  value of energy. 

Hence, we believe th a t it is reasonable for us to make use of this analytic form 

and moreover, to assume th a t w ith the introduction of quarks the field distortions
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are insignificant.

Thus, from the outset we shall assume th a t the exterior pionic fields are fixed 

and given by equation (3.6.1) and th a t we can introduce quarks by cutting  holes 

in to  this field and th a t employing the Chiral Bag boundary condition on the 

surfaces of these bags has little effect on these exterior fields. The la tte r assum p­

tion seems reasonable, since we expect the exterior fields to a t least m aintain  the 

sym m etry of the true  soliton field. As we noted, conservation of axial current will 

not now be achieved when we employ this ansatz, however, its deviation from 

being conserved, we also expect to be of secondary im portance.

In order to place quarks wdthin this crystalline mesonic field, we have first to 

decide the shapes and positions a t which we wish to cut holes in to the skyrmion 

field. Clearly in this m atter, the sym m etry of the field configuration is our guiding 

principle.

Since our fee half skyrmion crystalline field configuration corresponds to a 

sim ple cubic crystalline array of half skyrmions, it seems na tu ra l to make these 

cuts a t the cubic Weigner-Seitz cells of this lattice. This belief is further streng th­

ened by noting th a t these surfaces are those on which the value of the sigma field 

vanishes identically for this ansatz. Thus, on these surfaces 0 would have a con­

s tan t m agnitude of 7t/2. This is sim ilar to the spherical bag, w ith an exterior 

hedgehog field, for which the chiral angle has a constant value on the bag sur­

face. These cubical bags however, have an advantage, they possess the desirable 

property  th a t they join together sm oothly to fill the whole of space. Thus, at

231



high densities, as the density of baryonic m atte r varies, these cubical bags meet 

sm oothly and we could avoid considering deform ation in the shape of the bag 

surface.

Thus, we see th a t on grounds of sym m etry it seems both  n a tu ra l and desirable 

to  cut cubic cavities out of our simple cubic fee crystalline skyrm ion field along 

the  planes on which the a  field zero vanishes. For the ansatz (3.6.1), we see these 

m utually orthogonal planes are given by x  =  y =  j  and z  =  J ,  where l , m  

and n take odd integer values.

As has already been implied, we might also consider expanding and decreasing 

the size of these cubes so th a t on the bag surface the value of the sigm a field 

will no longer be zero and also the m agnitude of the chiral angle, 0, for ansatz

(3.6.1), will vary over the bag surface. However, care m ust be taken in choosing 

such surfaces, which are only piece-wise continuous. In general such surfaces will 

lead, for a fixed background mesonic field, to inconsistency w ith the Chiral Bag 

boundary conditions.

In particu lar, the Chiral Bag Model boundary condition (5.2.5), expressing 

the conservation of axial current across the bag surface, cannot in general be 

satisfied for such shapes. This difficulty arises because we have fixed the back­

ground mesonic field and we have not allowed it to respond when the quarks are 

included within the cavities which are cut out of it.

To see th a t this is the case, we note th a t a t the discontinuous points of a piece- 

wise continuous surface, the norm al to the surface is undefined. These points
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will form lines which are the edges of our cubes. Since the conservation of axial 

current boundary condition (5.2.5), explicitly involves the norm al a t all points 

on the surface of the bag, a t these discontinuous points the norm al com ponent to 

the surface of the axial current m ust vanish for consistency. The norm al to  the 

surface also occurs in the confining boundary condition (5.2.3) and consistency 

here will require th a t the quark field t/>(x), vanish a t these discontinuous points. 

This implies th a t all the components of the axial current of the quark field vanish 

a t these points. Thus we see, th a t for the fixed mesonic fields, in order for the 

axial current boundary condition to be satisfied, the norm al com ponent to  the 

surface of the axial current m ust vanish a t any discontinuous points on the bag 

surface.

Hence, we are not free to cut a rb itrary  shaped cavities out of the fixed back­

ground mesonic field. Moreover, if we choose our half skyrm ion cubes as the 

cavities, the axial current norm al to the surface m ust vanish on the discontinu­

ous edges of the cubes.

Thus, before we can fix the shapes and locations of the cavities, we m ust first 

establish a t which points of space the com ponents of the axial currents for the 

mesonic field m ust vanish. We shall therefore consider the nine com ponents of 

the axial vector current, (5.2.7), of the mesonic fields. For this purpose we employ 

the ansatz given in equation (3.6.1). To simplify m atters considerably, we can 

note th a t for our purposes, we only require the points a t which the components 

of the axial current A '^ x ) ,  vanish. Here /i is the spatial index and i the isospin
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index. From  this it is simple to deduce th a t the only term s which vanish in the 

axial cu rren t’s com ponents come from components of the quantity

+ * )  =  ' - T r ^ U + d ^ U )  = - ( 7T*<V -  a d „*<) (5.3.1)

and also th a t

A ^ x )  ~  V ,(x ) .  (5.3.2)

Thus, employing our crystalline ansatz (3.6.1), we can deduce the zeros of the 

nine com ponents A '^ x ) ,  by noting th a t they behave as

A\ ~  cos T) cos £ A\  ~  £ sin 2rj cos £ A \  ~  sin £ cos rj sin 2£,

A l  ~  sin 2£ sin 77 cos £ Ag — cos^cos^  A \  ~  cos £ sin rj sin 2^,

A \  ~  sin 2£ cos 77 sin £ A \  ~  cos £ sin 2rj sin £ Ag ~  cos £ cos 77, (5.3.3)

where £ =  2'k x / gl,  rj  =  2 7 r y / a  and £  =  2 i r z / a  and where a / 2  is the size of the half 

skyrm ion cube, or alternatively a  is the lattice spacing of the fee lattice.

Let us concentrate on a representative half skyrm ion cube, centred a t the 

origin and defined by;

(5.3.4)

On the surface of this cube, the value of the o  field is zero and w ithin this cube 

there is a half skyrm ion w ith B  =  1/2.

Exam ining the form of the axial cu rren t’s com ponents A la(x ), it is simple to 

deduce th a t the scalar product a.Al (x ), where a is some spatial vector, vanishes
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only at the points which the three functions cos £ cos is, cos £ cos £ and cos is cos f, 

sim ultaneously vanish, th a t is to say, on the edges of the half skyrm ion cubes. 

Hence, for the fixed half skyrmion background field (3.6.1), these lines define the 

only points at which discontinuities in the bag surface can occur.

Hence, we have found th a t the half skyrm ion cubes, which naturally  exist 

w ithin the fee condensed field configuration, represent the  sim plest ‘elem entary’ 

cavities which can be cut out of the field and th a t they are consistent w ith both  

the Chiral Bag boundary conditions and w ith the sym m etry of the skyrmionic 

field.

For a spherical bag of radius R  and an exterior spherical hedgehog field, 

we have seen in the previous section th a t the bag radius can be continuously 

varied w ithout deforming the shape of the bag. However, for our cubical bag of 

length a /2 , w ith the meson field fixed as we decrease the cubic bag’s volume, 

on the edges of the cube the axial current of the mesonic field through the bag 

surface will no longer vanish and hence we can no longer satisfy the Chiral Bag 

boundary consistently. A resolution of this problem , w ith fixed background field

(3.6.1), is provided by sm oothly deforming the cube a t its edges so th a t there 

are no discontinuous points on the bag surface. Indeed, sym m etry suggests th a t 

in doing so, one should choose bag surfaces which have the same shape as the 

surfaces on which the value of the o  field is constant. However, here we do 

not wish to consider the complex process of deforming the shape of our cubic 

bag. A lternatively, we could simply dem and th a t the pion fields on the bag

235



surface rem ain fixed as we increase the volume of our cube. However, this would 

correspond to decreasing the baryon density of the crystal and will not give the 

expected independence of the physical quantities on the bag size and hence would 

not lead to results consistent w ith the ‘Cheshire C a t’ philosophy.

However, there does exist an alternative m ethod of changing the bag size 

while keeping the background field fixed and also m aintaining consistency w ith 

the Chiral Bag boundary conditions. This can be seen by noting th a t n . A l (x), 

where n is the outw ard norm al to  the bag surface, vanishes in general on the 

edges of our cube. Hence, if we increase the length of this cube in one direction, 

while keeping the other two lengths fixed, this scalar p roduct will vanish on the 

edges of this square based prism. Thus, we can expand the size of our cube in 

one direction only, bu t we have of course, three degenerate choices of direction. 

Thus, we expect the analogue of the bag radius, R , of a spherical bag, to be the 

length of this square based prism oidal bag w ithin the condensed fee crystal.

Summ arising, we have discovered th a t rectangular bags can exist w ithin our 

condensed half skyrmion fee array and th a t their existence is non-trivial. More­

over, we expect the length of this rectangular bag to  provide the analogue of the 

bag radius R  of a spherical bag.

Thus, we can imagine fixing one of the faces of this cubic bag at x  =  —a / 4 

and sliding the opposite face along the x axis for example. As the length of the 

bag increases successively by a /2 , the value of the cr field on the surface will 

become zero, while on the other fixed surfaces it will rem ain fixed a t zero. The
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pure skyrmion limit will be obtained when the length of th is rectangular bag is 

reduced to zero. Moreover, we can even allow two opposite sides of this bag to 

sim ultaneously slide. If we were to keep the length of the bag fixed and allow the 

bag to  slide, then this would correspond to allowing our bag to  translate  through 

crystalline skyrmionic m atter.

Thus, it seems natu ra l a t this point to propose a well defined calculation 

in which we solve the free massless Dirac Equation for the interior quark wave 

function of lowest positive energy, subject to the Chiral Bag boundary conditions 

on the surface of this cubical bag. To simplify the calculation it should be 

reasonable to employ the ansatz (3.6.1), to give the pionic field strength  on the 

bag surface. We expect the error induced by this approxim ation, of freezing the 

exterior pionic field, to be of secondary im portance. The solutions to the Dirac 

E quation will be dependent on the length of our rectangular bag.

Given the cubic sym m etry of the pionic field a t the exterior of this rectangu­

lar bag, one might expect th a t an approxim ate separable solution to the Dirac 

Equation exists, a t least in the case where the value of a  on all the bag surface is 

constant and zero. This corresponds to the situation  when whole half skyrmion 

cubes have been cut out of the half skyrmion field. In this case the linear bound­

ary condition, (5.1.2), takes its sim plest form. For the spherical bag, the ground 

s ta te  quark wave function when a = 0 on the bag surface, has a constant upper 

com ponent and a vanishing lower component and has zero energy.

However, for a rectangular bag, a separable solution to the Dirac Equation
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will not, unfortunately, exist. This follows from the observation, th a t a t the 

corners of the rectangular bag, the quark wave function not only has to vanish, 

but m ust also have double zeros. This being the case, there seems no hope of 

finding simple solutions to the Dirac Equation w ithin these rectangular bags by 

analytic means and hence num erical techniques will be required a t this point.

The solution to this Dirac Equation, should however, enable us to determ ine 

the ground sta te  wave function of the quarks. Placing three valence quarks in 

to this ground sta te  should enable us to determ ine the particle content of the 

cubic bag. This would indeed provide an interesting insight in to the n a tu re  of 

the m inim um  energy fee half skyrmion lattice.

We noted in the previous section, th a t the Chiral Bag Model provides a 

consistent model of a baryon only when quark vacuum  effects are included. This 

observation will clearly apply to  our chiral bag w ithin crystalline skyrmionic 

m atter. For example, if we imagine placing three valence quarks w ithin the 

chiral bag defined in equation (5.3.1), then this would correspond to removing 

half a baryon from the mesonic field, bu t replacing it w ith three valence quarks 

whose baryon num ber is unity. Thus, naively, the crystal’s baryon num ber rises 

by B  =  1/2. Moreover, as we vary the length of the rectangular bag, the mesonic 

contribution to the baryon num ber would sm oothly vary, while the contribution 

to the baryon num ber of the three valence quarks would rem ain fixed a t unity. 

Thus, again naively, the baryon num ber which is clearly a  physical observable 

would sm oothly depend on the length of our rectangular bag. The resolution to



this paradox for a spherical bag, was th a t the negative energy sea w ithin the bag 

also carries baryon num ber charge. The baryon num ber carried by the negative 

energy sea is negative and was found to be exactly equal in m agnitude to  th a t 

of the exterior pion field.

For our rectangular bag, we thus require th a t a sim ilar mechanism exist by 

which the baryon num ber of the valence quarks, the exterior mesonic field and 

the interior quark vacuum  rem ain fixed on an integer value. Thus, in order to 

see whether this cancellation occurs, it is sensible a t this stage to  reproduce the 

argum ents which led to the m iraculous baryon num ber cancellation and see if 

they apply to  our rectangular bag.

The sim plest m anner in which this can be achieved is to consider the  half 

skyrmion bag defined in equation (5.3.1). Here we shall keep the size of the 

cubic bag fixed. The directions of the pionic fields on the surface of the bag are 

now fixed and given by our ansatz or for th a t m atte r, the true  m inim al energy 

configuration. We ignore all o ther regions of space where the exterior pionic 

fields should exist and now vary the chiral angle, 0. T h a t is to say, the mesonic 

field on the surface is given by

Ue = cos 0 +  7r.rsin0, (5.3.5)

A t

where n is the unit vector pion field on the bag surface, given by ansatz (3.6.1) 

and 0 is the chiral angle which has a constant value on the bag surface and which 

we vary between 0 and n. Clearly, we m ust still dem and th a t on the edges of the
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cube, the value n .A l (x) vanishes, in order to m aintain consistency. This can be 

achieved by setting the value of f t . V O  at the edges of the surface to zero. Thus, 

we should also vary on the surface the value of ft.VO as we vary the value 0, while 

always keeping its value at the edges fixed a t zero.

This vanishing of the axial current at the corners is clearly seen by considering 

f o r  exam ple, on the surface £ =  7 r / 2 ,  the quantity

i . v ( u e) = r e j  + (s .s .e )
2

where L la is given by equation (5.3.1). At the edges of this face it is trivial to  

dem onstrate from (3.6.1), th a t d xnl vanishes and hence we require dx0 vanish 

a t the edges and similarly for other faces. This then leads to the axial current 

norm al to the faces of the cube vanishing at the edges of the cube. In the case 

of 0 , given by cos-1 a , where o  is given in equation (3.6.1), we see the condition 

n.VO was trivially satisfied.

Having established the m anner in which we can vary the chiral angle, 0, a t 

the surface, while keeping it constant over the whole of the surface, we now have 

the analogue of the usual spherical bag.

In the case of a spherical bag, when 0 = 0 on the bag surface, the M .I.T. 

boundary condition results and formally the model reduces to the M .I.T. Bag 

Model, while in the case of 0 = 7v we have a pure skyrm ion field surrouding a 

cubic bag w ith zero baryon num ber.

Thus, the value of the chiral angle a t the surface of the bag should determ ine
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the Dirac spinor solutions to  the Dirac Equation. Moreover, these solutions will 

have energies which vary sm oothly with 9. Thus, we characterise the solution 

and energy by the value of 9 on the bag surface. Therefore, if we say ipe(x) is 

a solution to the Dirac Equation, satisfying the Chiral Bag boundary conditions 

at a specific value of 6 on the surface, then this Dirac spinor has the form

x/jJ = (<)> x ) ^ -  (5.S.7)

This solution will have associated w ith it a set of quantum  num bers which serve 

to characterise this state. These quantum  num bers will typically be analogues of 

angular m om entum  quantum  numbers and ‘rad ia l’ quantum  num bers which de­

term ine the num ber of nodes the solution has. A cubic shaped bag does not have 

good angular m om entum  quantum  numbrers and so in this case, the analogue of 

angular m om entum  quantum  operators will be non-local.

In the case of a spherical bag w ith an external hedgehog field, the angular 

m om entum  quantum  numbers are (K, kz) and its purity  (—1)L. For each value of 

these quantum  numbers there is a countable infinity of sta te  w ith radial quantum  

numbers.

For the spherical bag, for 9 = 0, the M .I.T. Bag solutions have an energy 

spectrum  for a given angular m om entum  quantum  num ber, which is sym m etric 

about zero energy. However, for non-zero values of 9 on the surface, the spectrum  

is no longer symmetric. Thus, as we already observed, as 9 varies on the surface 

there is a spectral flow of the energy spectrum . As 9 increases from zero, the
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energy of the lowest positive energy states, w ith a given set of angular m om entum  

quantum  num bers, reduces, until at 9 = 7r/2 it becomes zero. As 9 continues to 

increase it then sinks in to the negative energy sea, until a t a value of 9 = tt its 

energy is equal and opposite to  its value at 9 =  0. The energies of the higher 

radial modes sink down to the energy of the next lowest s ta te  as 9 increases from 

0 to 7r. Thus, as 9 varies from 0 to 7r the num ber of modes is conserved and 

moreover, the mode spectrum  is invariant for the spherical bag, w ith respect to 

the transform ation 0 n — 0.

It is this spectral flow which is responsible for the baryon num ber of the 

negative energy sea exactly cancelling the baryon num ber of the  exterior mesonic 

field. To see this we m ust carefully define the baryon num ber of the interior quark 

vacuum. To calculate the vacuum  contribution we have to  perform  a regulated 

mode sum , defined by;

B (e) =  s i9n \e . (5.S.8)

For the spherical bag, we see th a t this spectral flow, as 9 is increased from 

zero, results in B(9)  becoming increasingly negative and  in this m anner the 

vacuum  contribution cancels the increasing mesonic field contribution to the 

baryon num ber, leaving the three valence quarks w ith unit baryon number, to 

wholly account for the baryon number. This mode sum  has been explicitly 

perform ed by Goldstone and Jaffe [18], who confirm the result



which we see is the exact result required for the complete cancellation of the 

contribution of the exterior mesonic field, (5.2.4).

At 8 =  7r/2, the lowest energy mode has zero energy and in this case, the 

contribution of the negative energy sea to the baryon num ber is exactly minus 

one half. Thus, we see th a t the existence of a zero mode a t 6 = 7r/2 is an 

im portan t characteristic of the spectral flow.

Thus, for our cubic bag, we imagine th a t there will also be a zero mode when 

9 =  7r/2. We wish here, to examine the conditions under which this zero mode 

m ight exist at 9 =  7r/2 for our cubic bag. Firstly, we can expect th a t as the value 

of 9 on the bag surface is varied, no modes w ith the same angular like quantum  

num bers will cross. Given th a t t (5.3.4), is a solution satisfying the Chiral Bag 

boundary conditions, it is simple to deduce th a t

xp-e =  (-X  P W ™ ’1 (5.8.10)

will also be a solution. Note th a t the energy of this solution is of equal but

opposite sign to th a t of ipe- Similarly, in the massless quark lim it there will also

be a solution,

V£+, =  (X (5 .S .U)

This solution has the same energy as ip#. We see from this, th a t if we can identify 

these two solutions as having the same angular quantum  num bers, then we have 

proven th a t the energy spectrum  is invariant under the transform ation 0 t—► 0 +  n 

and this is indeed the case for a spherical bag.

243



If this were also true  for a cubical bag, we see th a t we would only need to 

dem onstrate th a t as 0 increases from 0 to ir, all modes spiral down in energy, 

in order to obtain  the result th a t there exists a zero mode at some value of 0 

between 0 and 7r. Hence, given th a t xp$ is a solution, then in the massless limit 

so is

</£-« =  (<f> -  X ) e ^ \  (5.3.12)

which has an energy which is equal and opposite to  th a t of the x p e state. Thus, 

we see th a t if we can establish th a t the transform ation 6 »—► 7r — 0 does not change 

the lowest energy m ode’s quantum  numbers, then we could identify this solution 

with xpQ. This would then imply

V>J/2 =  (</> 0), (5.3.13)

with uv/2 =  0. This is indeed the case for the spherical bag.

Thus, if we could identify these two solutions as having the same quantum  

numbers, we could reproduce the argum ents which resulted in the baryon number 

cancellation by the negative energy sea. These argum ents are most appealing and 

certainly identify the necessary requirem ent for such a cubic bag model to  give 

a sensible value for the baryon num ber. However, the argum ents required to 

establish w hether or not a sta te  can be identified w ith the state  obtained by the

transform ation x po i-» f p r - $ ,  will depend on the natu re  and characteristics of the

solution to the Dirac Equation w ithin the cubic bag.

Thus, to  sum m arise, we have presented appealing argum ents which certainly
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present a mechanism by which these cubic bags w ithin skyrmionic m atte r could 

be included consistently. Moreover, although mode sum  would be required to 

evaluate vacuum  contributions to physical quantities, we feel th a t if we could 

establish the existence of a zero mode, when 9 = 7r/2 on the surface, then this 

would be sufficient evidence for one to believe these argum ents. This model would 

then enable us to establish the particle content of these skyrmionic crystals and 

give us a real physical in terpretation as to w hat its existence corresponds to.
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C H A PT E R  6

CO NCLUSIO N

6.1 General Conclusions

In the previous chapters, we have detailed at great length the many interesting 

features of Skyrmionic m atter. In particular we have concentrated on describing 

and understanding the nature  of infinite crystalline arrays of skyrmionic m at­

ter and the dense skyrmionic m atter on a physical space with locally varying 

curvature.

At this stage we shall only briefly summarise the many conclusions which we 

have already drawn within this thesis.

We have seen th a t in its crystalline form, skyrmionic m atter has some gen­

eral features which are independent of the specific form of array on which the 

skyrmions are located. The most significant feature appears to be the existence 

of a phase transition  as the density of skyrmionic m atte r is increased, which is in 

general of second order. This phase transition  corresponds to skyrmionic m at­

ter, which at low densities is localised about the points of a lattice, becoming 

an array of half skyrmions at high densities which has an increased delocalising 

nature . Moreover, dense crystalline skyrmionic m atte r has a ‘jelly like’ charac­
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ter, being relatively incompressible though easily deformed. We have also seen 

th a t the most stable form of crystalline skyrmionic m atter so far discovered is a 

condensed, simple cubic array of half skyrmions.

Considering a single skyrmion on a closed surface and varying the volume of 

the surface, we can vary the average baryon density of the skyrmion. The simple 

three sphere model dem onstrates th a t this effective m anner of increasing or de­

creasing the volume of the skyrmion at high densities, causes the energy of the 

skyrm ion to rise sharply as a result of its resistance to either isotropic compres­

sion or expansion. Thus, as we continue to increase to volume of physical space, 

there comes a point a t which it is preferable for the skyrmion to localise about a 

point ra ther than  continue to stretch itself over the whole of space. Beyond this 

point, increasing the volume of the sphere becomes ineffective in stretching the 

skyrm ion and the skyrmion chooses to remain unstretched as the volume further 

increased, by localising about a point. This simple characteristic of skyrmionic 

m atte r accounts for the observed, striking sim ilarities of the delocalising phase 

transitions which occur in both  crystalline arrays of skyrmions and for a skyrmion 

on a three sphere.

However, the observation th a t dense crystalline skyrmionic m atter is easily 

deformed has no analogue for a skyrmion on a three sphere, since in this case 

there is no m ethod by which we can effectively and simply exert non-isotropic de­

form ations on the skyrmion. To resolve this difficulty, we show th a t the relevant 

variable which can perform such non-isotropic deformations of skyrmion m atter
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is the local curvature of space and by simply placing the skyrmion on a space 

with varying local curvature, we can generate these deformations in an effective 

m anner. Thus, we soon discovered th a t on a surface of varying curvature, the 

skyrmion very much prefers to sit on a region of space w ith the curvature of 

a three sphere of radius 1 and if forced to choose between regions of space of 

higher and lower curvature, it chooses the regions of low curvature. Thus, the 

gross features of our results for a skyrmion on an elliptically shaped three sur­

face, revealed th a t if the shape of the sphere is changed to a space in which the 

curvature is lower in one region than  the other, then the skyrmion responds by 

localising itself on th a t region of space and this process does not cost an undue 

am ount of much energy. Thus we see once more, th a t this generalised model of a 

skyrmion on a three sphere provides a simple analogue to  crystalline skyrmionic 

m atte r in th a t skyrmionic m atter on an ellipse is resistant to  expansion though 

easily deformable and as w ith crystalline skyrmionic m atter has a ‘jelly like’ 

character.

This brief review of the many detailed argum ents and results for the varying 

forms of dense skyrmionic m atter th a t we have considered, dem onstrates clearly 

the m anner in which a simple geometrical picture of a the topological skyrmion 

can be used in order to understand the many complex results which we have 

presented and thus leads one to  conclude th a t such a simple geometric picture of 

a skyrm ion is bo th  natura l and im portant in this understanding of the relevance 

of skyrmions to baryonic m atter.
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