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ABSTRACT

The Skyrme Model is used to investigate dense baryonic matter.

A general review of skyrmionic crystalline arrays thus far investigated, reveals
the existence of a universal delocalising phase transition as the density of baryonic
matter is increased. At low densities the skyrmions localise on the lattice points,
while at high densities they become delocalised and an array of half skyrmions
remains. This phase transition is believed to represent the restoration of chiral
symmetry of high densities.

Numerical solutions of static arrays with fcc, bcc and intermediate symmetries
are considered as a function of density. The fcc array is found at high densities to
be the most stable of all the arrays so far considered. As the density is decreased
the fcc array becomes unstable against deformations to arrays with intermediary
symmetries. This instability occurs at a critical density slightly greater than that
of the delocalising phase transition.

A single skyrmion on a three sphere has an analogous delocalising phase
transition as the volume of the sphere increases. Generalising this simple model
of a skyrmion on a three sphere, to a skyrmion on an elliptical three surface,
we identify that varying the shape of this sphere is analogous to deforming the
fce array. It is shown that the deformation transition occurs at the same critical
volume as the delocalising phase transition. Beyond this density there are a large

number of unstable modes, suggestive of a solid to liquid phase transition. There



also exists a first order phase transition, corresponding to a phase separation.
The relevance of The Chiral Bag Model to dense crystalline skyrmionic matter

is discussed and its possible future application is outlined.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

In this thesis, I will present the results of my investigations involving dense
skyrmionic matter systems, which are believed to pertain to dense baryonic
matter systems. We shall see that there exist a number of differing forms of
skyrmionic matter and that I have employed a variety of differing techniques in
order to establish an understanding of each.

The most direct of these approaches involves the brute force technique, of
numerically obtaining results for dense skyrmionic matter in its crystalline form
and I shall present numerical results for infinite crystalline arrays of skyrmionic
matter. In particular, I consider a fcc array, a bcc array and a series of ar-
rays of intermediate symmetries. The discovery of the existence of these arrays
of skyrmionic matter and their respective numerical results, have already been
reported in reference [1] .

I shall also extend some of the results obtained by Manton [2] for a single
skyrmion on a three sphere, S:’hy. I shall generalise this simple model of dense

skyrmionic matter, to more general shaped physical space. Using an ellipsoidal



shaped space as an example, I demonstrate the significance of the curvature and
the symmetry of physical space in a dense skyrmion environment. This model
is constructed so that its relation to dense crystalline skyrmionic matter can be
revealed.

A final approach to understanding of the nature of skyrmionic matter will be
outlined, in which the Chiral Bag Model is invoked in order to include an explicit
quark content within crystalline skyrmionic matter and to establish the physical
relevance of such dense baryonic matter.

In the remainder of this chapter, we shall briefly outline historically, the
development of the Skyrme Model and finally, the manner in which the rest of
this thesis has been organised.

The Skyrme model was originally proposed by Skyrme [3] in 1961, as a phe-
nomenological description of the nucleon and this model has recently attracted
much interest. The model describes the nucleon as a topological soliton of an
extended version of the Non-Linear Sigma Model. This revolutionary approach
to nuclear physics, attempts to describe the fermionic nature of nucleons in terms
of bosonic pion fields.

Skyrme [3] was able to deduce many of the properties of his model, by as-
suming that a spherical symmetric solution existed within his model. He showed
that such a solution gave a reasonable picture of a nucleon. The spherically sym-
metrical hedgehog solution, he viewed as a classical degenerate combination of

nucleons and deltas. Fixing the mass of the soliton to that of the nucleon led



to an energy distribution, with a r.m.s. of ~ 0.5fm, he also deduced that the
correct asymptotic form for the one-pion exchange potential between nucleons
emerged. He proposed that the topologically conserved winding number of these
hedgehog skyrmions, be identified with the baryon number.

Though Skyrme’s work was generally ignored during the 60’s and 70’s, it
has recently received a revival of interest. Indeed, much of this new interest
stems from the realisation within theoretical physics, that such a topological non-
trivial solution of the non-linear bosonic field theories, can be used to describe
fermionic particles. Indeed, within other simpler models [4], the relationship
between fermion number and topological charge, originally predicted by Skyrme
in 1961, was demonstrated.

Attempts to understand hadronic physics from a Q.C.D. stance, had naturally
led to a series of effective meson models with similarities to the Skyrme model.
Indeed, T’Hooft [5] showed, assuming confinement, that the 1/N, expansion of
Q.C.D. leads to an effective Lagrangian in the low energy sector, containing only
mesons. Witten (6] later argued that baryons then emerge as solitons in the large
N, limit of Q.C.D.. This reasoning naturally led physicists to look for an effective
model for low energy mesonic sectors, which support solitonic solutions. Since
the lowest mass meson is the pion and the Non-Linear Sigma model is known to
describe low energy pionic physics successfully, this model certainly represents
a natural starting point. Hence, Skyrme’s extension of the Non-Linear Sigma

Model, by introducing his Skyrme term, is now viewed as the first and simplest



term in a truncated infinite series of mesonic terms, which extends the Non-
Linear Sigma so as to support non-trivial solitonic solutions. Thus, the Skyrme
Model is now viewed as an effective model for low energy Q.C.D. mesonic physics.
However, no derivation of this exists.

The bag approach to nuclear physics presents an instructive alternative to
such effective low energy Lagrangians. This model directly attempts to under-
stand the relationship between such effective Lagrangians and Q.C.D.. In the
model quarks and gluons are governed by Q.C.D. and placed within a spherical
cavity. In the Chiral Bag Model [7][8], the exterior of the bag’s mesonic degrees
of freedom are governed by the Skyrme or similar low energy effective models.
The quarks are assumed to be confined to the interior of the bag and mesons to
the exterior by the boundary conditions on the bag surface. Imposition of conser-
vation of axial current across the surface of the bag, connects the two dynamical
regions and leads to the so called, chiral boundary conditions. Assuming the
existence of a spherically symmetric mesonic field, leads to a hedgehog form with
a spherical cavity cut out at its centre, in which spherically symmetric, massless
Dirac fermion wave functions, obeying the Dirac Equation, have been obtained
[7][9). This object is then viewed as a baryon with the short distance quark
degrees of freedom explicitly present. Thus, this elegant, effective, low energy
model has developed as a generalisation of the pure skyrmionic description of a
baryon.

Balachandron et-al [10] and Witten {11] in 1982, showed Skyrme’s identifica-

10



tion of baryon number with winding number of the soliton was indeed correct.
In order to make physical predictions for properties, Adkin’s etal[12] developed
a projection procedure to obtain physical N and A states from the classical
hedgehog solution. They showed that such an approach produces a reasonable
description of the N A mass splitting, nucleon magnetic moments, nucleon charge
radii and the coupling constant ratio for TNVN and TN A.

More recently, attempts have been made to understand the interaction be-
tween two skyrmions [13][14]. By considering the interactions between two hedge-
hogs with relative spin-isospin degrees of freedom, they numerically studied the
skyrmion-skyrmion potential at finite separations. Invoking the quark hedgehog
model, they demonstrated that mesons which couple to hedgehogs, are precisely
those which are known to have couplings to nucleons. This model for the two
nucleon system was thus shown to successfully describe the nucleon-nucleon po-
tential.

More recently there have been considerable developments in the extension of
this model to finite baryon number systems and their application to light nuclear
matter systems. Thus, in Chapter 2, having described the Skyrme model and
outlined its success in describing a single baryon, we go on to discuss many of
the recent and fascinating results obtained for the two baryon system and other
finite baryon number systems. These results have shown that the the model
seems versatile enough to model single baryons, the deutron and the two nucleon

potential.
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In Chapter 2 we also briefly introduce Manton’s simple model of baryonic
matter on a three sphere. The results of this model bear a striking similarity
to those which we discuss in Chapter 3 for skyrmionic matter in a crystalline
form. Both models reveal, that as the average baryon density of skyrmionic mat-
ter is increased, it generally undergoes a phase transition from an uncondensed
phase, in which skyrmionic matter’s baryon density is well localised in space, to
a condensed phase in which skyrmionic matter’s baryon density is more evenly
distributed throughout space.

For a skyrmion on a three sphere we see that this phase transition occurs
as we reduce the volume of physical space and in the uncondensed phase the
skyrmion is localised about a point in space, while in the condensed phase it
becomes completely delocalised over the whole of space. For skyrmionic matter
in its crystalline form, as the average baryon density of the crystal is increased,
this phases transition is shown to correspond to an uncondensed array of spherical
skyrmions centred at the points of an infinite lattice, becoming a condensed array
of half skyrmions.

In Chapter 3 we outline the differing lattices and orientations of skyrmions
on these lattices, which have to date been numerically investigated. We also
show the manner in which these lattice arrangements of periodic skyrmions are
deduced from the analytic form of the asymptotic skyrmion-skyrmion poten-
tial. This construction also leads us to discover that there exist other crystalline

arrays of skyrmions which maximise the asymptotic attraction between neigh-
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bouring skyrmions within the lattice, which have date gone unnoticed. We show
that these new simple cubic arrays of skyrmions represent a simple generalisation
of the rectangular array which Jackson et al [15] investigated as an alternative
to Klebanovs [16] original cubic array of skyrmions. We see that this general-
isation of the Jackson et al array, corresponds to a simple continuous relative
isospin-rotation of the skyrmions within successive parallel planes. Comparing
the asymptotic binding energies of this generalised array to the Jackson et al ar-
ray, by summing the net asymptotic potential of an individual skyrmion within
the array over increasingly distant nearest neighbours, reveals that as the relative
isospin-rotation angle of skyrmions within successive planes is varied, the net the
asymptotic attraction of progressively increasing numbers of nearest neighbours
does not change. Hence we appear, at least asymptotically, to have discovered a
genuine zero mode of the Jackson et al array.

We also present in Chapter 3 the arrangements of the fcc array, bec array
and an array of intermediate symmetry. Numerically we show how the binding
energy of these arrays increases as their densities are increased. The manner in
which these calculations were performed is first described and then we show that
their results reveal that a condensed fcc array of skyrmions, corresponding to a
simple cubic array of half skyrmions, has an energy which is just 3.8% above the
energy lower bound and thus, that it represents the most bound crystalline array
of skyrmions so far considered.

We also investigate the effect that bulk deformations have on the fcc array of
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skyrmionic matter by varying the length of the fcc cube in one direction, while
keeping the other lengths fixed. The results reveal that the fcc lattice becomes
unstable with respect to these bulk deformations at a density close to that at
which the phase transition to a condensed array of half skyrmions occurs and
that at high densities the fcc array is stable, while at low densities it is unstable
to bulk deformation.

The striking similarity of the behaviour of skyrmionic matter on a three sphere
and within a crystalline environment, as the average baryon density is increased,
leads one to believe that the curvature of the sphere results in a self interaction
of a skyrmion which closely resembles the interactions experienced by skyrmions
within dense crystalline skyrmionic matter. Thus, in Chapter 4 we attempt to
uncover what might be the simple analogue of bulk deformations of crystalline
skyrmionic matter, for a single skyrmion on a curved physical space. Having
detailed the geometric interpretation of the Skyrme Model’s energy functional
and reviewed Manton’s 2] elegant formalism for considering such general shaped
physical spaces, we consider the effect of an infinitesimal variation in the shape of
the sphere S:,W, by varying its metric. This deformation in the shape of physical
space we argue should provide the correct analogue of bulk deformations of the
fcc array of skyrmions. We are able to prove that with respect to fluctuations of
the metric on the sphere, that the the sphere shape is stable up to volume equal
to that at which the delocalising phase transition occurs. Thus, we are able to

demonstrate that this is the direct analogue the bulk deformations we consider
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in our flat space array calculation.

To illustrate this result and also to enable us to consider finite variations
in the shape of the sphere, we generalise this sphere to an elliptically shaped
three dimension surface. By varying the volume and the eccentricity of this
ellipse, we obtain numerically, the energy of a single hedgehog on a physical space
whose curvature varies locally. In some detail, we the outline the effect that the
curvature has on the skyrmion and show in general, that all our results can be
explained using very simple arguments. These show that skyrmions prefer to sit
on regions of space with the same curvature as that of the target space, the isospin
three sphere. Moreover, if a skyrmion is forced to choose between regions of space
in which the curvature is greater or less than this optimal value, they prefer the
regions of lower curvature. The other effect which determines the regions of
space that skyrmions prefer, is that they particularly dislike being stretched over
large regions of space and thus localise as the volume of physical space increases
substantially. Finally, by considering a hedgehog skyrmion on a more general
shaped closed surface, with radius that is allowed to vary in one dimension from
point to point, we show that the insights gained from the elliptical example
enable us to explain all of the numerical results of the minimisation calculation
we performed. This calculation involved minimising the energy of a variational
ansatz for the map and radius variable at fixed volume and with the curvature
constrained to be negative semi-definite. This latter constraint we deduce to

be necessary, in order to avoid certain pathological problems in minimising the
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energy functional with respect to variations in the shape of physical space.

In Chapter 5, we attempt to extend the crystalline skyrmionic calculations of
Chapter 3 by incorporating explicit quark degrees of freedom within the minimal
energy condensed fcc array. Thus, initially we outline the fundamentals of the
Chiral Bag Model’s description of a baryon. We then propose the manner in
which the Chiral Bag Model’s two phase description of baryonic matter, with
its explicit quark content, can be incorporated consistently within the condensed
fcc half skyrmion array. We demonstrate that there exists the possibility of
cubic bag being cut out of this field in a consistent manner, which is in itself,
a non-trivial result due to the discontinuities at the edges of this cube. Having
established that cubic bags can exist and having argued that these bags are the
most relevant to the condensed fcc array, we the outline a calculation which could
be performed numerically and which would involve solving the Dirac equation
for the ground state up and down quark wave function within the cubic bag. The
results of this calculation would then reveal the particle content within this cubic
bag and suggest the physical interpretation that should be placed on skyrmionic
crystalline matter.

We go on to present an appealing argument, based on analogies with the
spherical bag, to assess the effects that the interior quark vacuum will have on
physical quantities. In particular we concentrate on its contribution to the baryon
number which is required in order that the total baryon number of valence quarks,

exterior mesonic field and quark vacuum give a total baryon number which has
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an integer value, since clearly this is a physical requirement of any reasonable
model of baryonic matter. For the spherical bag, this net contribution to the
baryon number is indeed an integer value [17] and thus we show the manner in
which this cancelation occurs in this case. We then attempt to demonstrate that
a similar cancelation should occur for our cubic bag. These suggestive arguments
“are appealing, though inconclusive.

We also note in this chapter, that since the condensed fcc array is composed of
tetrahedral four skyrmion units, these might represent a particle like structures
within dense skyrmionic matter. This suggestion is further justified by compar-
ing the structures of these tetrahedral units with the true minimal energy four
skyrmion field configuration [18]. Recently it was proposed, that this minimal
energy four skyrmion field configuration should represent the Skyrme Model’s
description of an alpha particle.

Finally, in dha.pter 6 we give a number of concluding remarks concerning the

results outlined in the previous chapters.
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CHAPTER 2

INTRODUCTION TO THE SKYRME MODEL

2.1 The Skyrme Model

It is now believed that Quantum Chromodynamics, (Q.C.D.), provides the fun-
damental description of strong interactions. Thus, in principle the structure of
baryons and mesons should be derivable from this SU(3) colour gauge theory
of quarks and gluons. Due to its non-abelian nature, the Q.C.D. vacuum is
paramagnetic and gives rise to strong infrared forces. At short distances, colour
anti-screening takes place, resulting in an effective coupling constant tending to
zero. In this perturbative phase quarks and gluons are asymptotically free [1][2].
However, at large distances the coupling constant grows and only colour singlet
states exist asymptotically. This non-perturbative regime at low energies, with
colour confinement, is relevant to nuclear physics. Since here perturbative meth-
ods are inappropriate, lattice calculations aimed at numerically solving Q.C.D.
have been developed in an attempt to uncover the nature of this phase. How-
ever, these calculations are far from making physical predictions and contain
many difficulties yet to be resolved.

Thus, phenomenological models of low energy hadronic physics have been
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developed. At low energies the dominant quark degrees of freedom of Q.C.D.
are the lightest quark fields. These are the up and down quarks, with current
quark masses of about 10MeV . Neglecting these masses, massless, two flavour

Q.C.D. is chiral invariant, with the global symmetry
U(Z)L X U(2)R = SU(Z)L X SU(Z)R X U(].)V X U(].)A, (211)

where L and R denote the left the right symmetry groups, V refers to the vector
and A to the axial vector symmetry groups. At the quantum level, it is well
known that the U(1) o symmetry group is explicitly broken by the A-B-J anomaly

[3] [4] leaving the global invariance group
SU(2)L x SU(2)r x U(1)y. (2.1.2)

The Chiral Symmetry group SU(2); x SU(2)g is then spontaneously broken
down to SU(2)v, via the Nambu-Goldstone mechanism. The resulting three
massless pseudo-scalar particles are the pions. Thus, the vacuum carries axial
charge and pions are able to decay to the vacuum. This leads to the Goldberg-
Teimann relation between the axial form factor for the nucleon g, and the pion
decay constant f,. This physically appealing scenario is consistent with the
symmetries of @.C.D.. However, due to the non-perturbative nature of Q.C.D.
at low energies, little information can be deduced from Q.C.D. about g, and f,.

It is clear that Chiral Symmetry is fundamental to low energy strong inter-
actions. Due to the smallness of the pion mass, about 130MeV, as compared to
the mass of the nucleon is about 1GeV, one would also expect Chiral Symmetry
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to hold approximately on physical grounds.

Thus, one is led to believe that the Non-Linear Sigma Model (5], which in-
corporates all the essential features of chiral symmetry breaking, would provide
a good model of the low energy mesonic physics as dominated by pions. More-
over, the expansion of Q.C.D. in the number colours N,, developed by t’Hooft,
suggests that at low energies, assuming confinement, @.C.D. becomes a theory
described by an effective mesonic field [6]. Since at low energies the dominant
chiral degrees of freedom are pionic, the Non-Linear Sigma Model should provide
a first approximation to this effective low energy theory, even though NN, is not
infinite but three.

Thus, Skyrme’s proposal that the Non-Linear Sigma model be used to de-
scribe low energy mesonic interactions [5] has been justified many times over. It
provides a model which describes Chiral Symmetry breaking and is also consis-

tent with soft pion threshold theorems [7]. Its Lagrangian reads

2
Ly = %(auoa“o + 3,7o"7), (2.1.3)

with the non-linear constraint,

F. )

o+ 7 = f} (2.1.4)

where f, is the pion decay constant, 7 is the iso-triplet pion field and o the scalar
sigma field of the [1/2,1/2] representation of SU(2)xSU(2)g. Thus the theory
is manifestly chiral invariant.

In the trivial vacuum the pion fields are not excited and the sigma field
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attains a constant value f, throughout space. The introduction of an explicit
chiral symmetry breaking term, generates masses for the pions which are viewed
as fluctuations of the sigma field along the valley of a ‘mexican hat’ potential.

Such a mass term is
L, = -mflo, (2.1.5)

where m, is the pion mass and the coefficient has been chosen so as to generate
a pion mass term to leading order in the weak pion field limit. The inclusion
of this term also leads to the correct form for the P.C.A.C. [8] relation for the
divergence of the axial current. Not only does this model satisfy the low energy
requirements of Chiral Symmetry, but it has also been found to describe well,
the self interaction and propagation of pions in the exterior of a nucleus [7].

The configuration space of this model possesses a non-trivial topological struc-
ture resulting from its non-linear nature. This observation led Skyrme to propose
that it’s non-trivial field configuration be identified as classical baryons [5].

It is convenient to introduce the quaternionic representation of SU(2), in

order to understand the topology of this configuration space. Thus we write

U, ) = fl(a(t,;;) T iRt 7)), (2.1.6)

with constraint (2.1.4) becoming

U, 2)U(t,7)" =1, (2.1.7)

where U(t, Z) is an SU(2) valued matrix. In terms of this field variable we can
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represent the Non-Linear Sigma Model Lagrangian as:

2

Ly = “*Tr(L,L¥), (2.1.8)

where
L,=U(t2)*o,U(t, ). (2.1.9)

At a fixed time ¢y, the field U(¢o, Z), maps physical space R® into SU(2), whose
group manifold is isomorphic to a three sphere, S°. For a static field configuration

the energy is given by:
€y = —/dstLz. (2110)

On physical grounds it is natural to consider only finite energy fields. Thus, the
derivative of U(Z) must vanish outside some finite region, in order that (2.1.10)
be finite. Hence, we are led to consider static configurations satisfying the natural
boundary condition that U(Z) takes a constant value at spacial infinity, which
on physical grounds, we choose to be its trivial vacuum value. That is, we have

the boundary condition
U(| £ |- oo) = 1. (2.1.11)

This boundary condition compactifies physical space R®, to a three sphere, S°

and so topologically the field U(Z) is a map
U(Z): S 5% (2.1.12)
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It is well known that such mappings are classified topologically into homotopy
classes. The set of mappings (2.1.12), is classified by the third homotopy class

of a three sphere,

1

I;(S%) = Z, (2.1.18)

which is iso-morphic to the additive group of integers Z, the winding number of
the mapping. Thus, if we consider only continuous fields, then the configuration
space is disconnected and the time evolution of a configuration can be view as a
homotopic deformation. Moreover, this disconnected topology of configuration
space, means the winding number of a configuration is a conserved quantity

independent of its dynamics. The winding number of a static field configuration,

U(Z), is defined to be

1 g E0HVP
B=— / d*a"—Tr(LuLyLy). (2.1.14)
At the origin we require the condition
u(z)) =-1 (2.1.15)

be satisfied. This, together with condition (2.1.11), results in a continuous map
U(Z), mapping the whole of physical space onto the whole of the target space
S3, an integer number of times. Thus B, as given by equation (2.1.14), takes
only integer values when U(Z) satisfies boundary conditions (2.1.11) and (2.1.15).

It has been shown that associated with this topological conservation there is a
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current,[18]

ouVp

B° =
2472

Tr(L,L,L,), (2.1.16)

which is conserved independently of the dynamics and the winding number
(2.1.14) and is its corresponding charge.

Skyrme proposed that this current be identified with the baryon current and
hence the baryon number with the winding number of a configuration [5]. Thus,
baryons are described as topological solitons of the sigma and pion fields. Fur-
thermore, he proposed that the fermionic nature of baryons in this soliton picture,
results as a consequence of the skyrmion’s non-trivial topological nature. This
was shown later to be possible by Finkelstein et al [9]. Moreover, much of the
resurgence of interest in the Skyrme Model, stems from Witten’s observation of
the mesonic fields {10], that in an effective mesonic theory of Q.C.D. in the large
N, limit, baryon number should be identified with the winding number.

Finite energy static field configurations of the Non-Linear Sigma Lagrangian
(2.1.8), are however, unstable. This can be seen if we consider rescaling a static
field, U(Z). The energy of this field will be reduced by shrinking it to a point,
since the static energy functional e;, scales with length. Thus, finite energy
configurations afe unstable to rescaling to a point.

To remedy this instability, Skyrme proposed that an additional term be in-
cluded in the Lagrangian, which is fourth order in the derivatives of the fields

[6]. Such a term scales with inverse length and stabilises finite energy field con-
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figurations against rescaling to a point. Thus, Skyrme considered an extended

chiral symmetric model, with Lagrangian given by [11]

where the additional Skyrme Term,

=1

L=
47 32¢2

Tr(L,, L,?, (2.1.18)

has a dimensionless parameter e, characterising the size of the finite energy con-

figurations. The energy of a static field configuration is now given by
E=¢e;+ ey, (2.1.19)
with
€4 = —/dsa:L.,. (2.1.20)

This energy is minimised with respect to scale transformations, when both the
ez term (2.1.10), and the e, terms (2.1.20), are equal.

To this order, the additional fourth order term is the unique term yielding
a positive definite Hamiltonian, that is only second order in time derivatives of
Ult, 7).

A skyrmion is now taken to be a static, non-trivial finite energy field configu-
ration, minimising the energy function (2.1.19). It has a topologically conserved
charge and its winding number is to be identified with its baryon number. As we
shall show later, (see chapter 4), the energy of a static configuration of winding
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number B, is bounded from below by
E > 6%2& | B|. (2.1.21)
e

Thus, finite energy configurations are locally stabilized as a result of thé under-
lying global topology of configuration space.

The detailed structure of these skyrmionic solutions is determined by the
highly non-linear Euler Equation, which results from functional minimisation of
the Skyrme Model’s energy function with respect to the field variables. Except
for fields possessing a high degree of symmetry, finding analytic solutions to this
equation poses a virtually intractable problem.

Skyrme [5] was thus led to consider the spherically symmetric hedgehog

ansatz,

T.Z

|

U(Z) = exp(i-—= f(r)) (2.1.22)

Z|
for the fields. This field configuration, in terms of the sigma and pionic fields,

takes the form

o(r) = frcosf(r),

o

(L) = fr—=7sin f(r). (2.1.23)

8y

The ansatz greatly simplifies the resulting equation of motion, which becomes
an ordinary non-linear equation for the profile function f(r).

The hedgehog ansatz couples the spatial and isospin degrees of freedom. U (%)
commutes with the grand-spin generator K = J + I, (where J = S + L is the
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total angular momentum generator and I is the isospin generator), but not with
J or I separately. This leads one to suspect that K will be a conserved quantum
number for the quantized hedgehog and that it is a scalar in grand-spin space.
Since this configuration has positive parity, it’s quantum numbers are 0*.
Substituting the hedgehog ansatz (2.1.22), into the energy functional (2.1.19),

gives the energy for a hedgehog field

1 sin® f

smf
)t aar Ta

sin® f

_47r/ drr? fz(f2+2 +2/9), (2.1.24)

where we have performed the trivial angular integration and f denotes the deriva-
tive of f(r) with respect to the radial coordinate, r.

Upon functionally minimizing the energy for the hedgehog configuration (2.1.22),
with respect to its profile function f(r), the Euler Equation is given by:

1. ) N S | in® f sin2
(37 +2sin’ f)f + JFf +sin2ff? — Zsin2f — ﬁf;—:ﬂ =0, (2.1.25)

where we have introduced the dimensionless variable ¥ = ef,r, of reference [12].
The hedgehog solutions of this equation are also solutions of the general
Euler Equation, obtained from a general field variation of the energy functional
(2.1.19), subject to the non-linear constraint (2.1.4). This was shown to be the
case [13] for any field configuration possessing a high degree of symmetry, such
as the hedgehog ansatz.
Integer winding number configurations can be obtained by numerically inte-

grating this equation subject to the boundary conditions:



f(oo) =0, (2.1.26)

to give a baryon number B configuration. We note that for a field taking its trivial
vacuum value at spatial infinity, the winding number of such fields is dependent
only on the boundary condition at the origin. The interpolating function between
the two points is determined by the Euler Equation (2.1.25).

For hedgehog configurations, the resulting energy was found to be 864MeV
for B = 1 and 2523MeV for B = 2 [19]. Here we have taken the parameters
of the model to have values f, = 64.5MeV and e = 5.45, as used by Adkins
et al [12]. They were determined by employing a semi-classical quantization
technique, which enables physical baryon states to investigated. The collective
spinning modes of the Skyrme Lagrangian generate classical angular momentum.
Upon quantizing these collective coordinates, states of definite spin and isospin
and hence physical baryon states, can be investigated. The parameters were
subsequently fixed so as to reproduce, independently, the nucleon and delta(1236)
masses. This approach fails to reproduce the NN coupling constant, giving a
value gy y » approximately 30% too small.

For the B = 1 hedgehog, from equation (2.1.16), the baryon density is given

by:

1 sin® f .
BO(T) = —Eﬁ 2 f (2127)

The exact solution yields a r.m.s. baryon number radius of about half a fermi.
Skyrme’s proposal that the B = 1 hedgehog should represent a generalised
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classical baryon, thus leads to a reasonable mass and a r.m.s radius for the
nucleon.

Since this is a model of a baryon, the hedgehog field should be quantized
as a fermion for it to make sense. However, the Skyrme fields are bos;)nic. It
was proposed by Skyrme [5] and later demonstrated by Finkelstein et al [9], that
topological excitations of non-trivial field configurations are capable of carrying
half integer angular momentum. For such an effective theory of @Q.C.D. with an
odd number of colours, Witten [10] further confirmed Skyrme’s pro‘posal, that
a skyrmion field has a fermionic nature. Thus Adkins et al procedure involved
quantizing the B = 1 hedgehog as a fermion.

To study physical baryon states, it is necessary to obtain states of definite
spin and iso-spin from the hedgehog state, a hedgehog state being an admixture
of states of equal spin and iso-spin. Quantizing the spinning modes of the Skyrme
Lagrangian allows these to be isolated. The Skyrme Lagrangian is invariant un-
der a global iso-rotation of the pion fields produced by AU A*, where A = ag+a.7
is a constant SU(2) valued matrix. This also leaves the boundary conditions for
the hedgehog unchanged. The iso-spin degrees of freedom of the hedgehog are
coupled to spatial rotations by the hedgehog ansatz and these rotational modes
generate classical angular momentum. Thus, this iso-spin collective coordinate
is taken to be the dominant effective degrees of freedom of the hedgehog. Thus,
spinning the hedgehog adiabatically and allowing the collective coordinate A to

vary in time, one can semi-classically quantize the zero modes of the skyrmion
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as a fermion. This amounts to quantizing the hedgehog like a rigid rotor, with
the hedgehog being a symmetric top. The resulting hedgehog states are par-
tially characterized by the conserved quantum number K, which takes integer
values from zero upwards. These states have equal half integer values of S and
I, with the nucleon states having S = 1/2 and I = 1/2. The tower of grand-
spin states thus contains the nucleons, deltas and higher resonances. The masses

of the nucleons and deltas, as already stated, are then used to fix the parameter e.

2.2 The B=2 Sector Of The Skyrme Model and Beyond

This elegant picture of a skyrmion as a generalized baryon was further extended
to the B = 2 sector. The physics of this sector are characterised by the nucleon-
nucleon potential and the existence of a B = 2 bound state, the deutron. In the
initial studies a product ansatz, of two B = 1 hedgehogs, Uy (Z), was employed

[5],
U(1, %) = Up(Z1) U (Z,). (2.2.1)

It has been shown [11] that for such a product, the baryon number is additive
and hence, such a configuration has B = 2.
In the limit of large separation between the two hedgehogs this ansatz is

valid, as the overlap of their localised baryon densities is insignificant. However,
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as the skyrmions approach each other at finite separations, this overlap becomes
significant and results in a large distortion of their fields which this ansatz is
not able to describe. Thus, as the hedgehogs approach each other, the product
ansatz becomes an increasingly less valid approximation for the true B = 2
minimal energy configuration. Hence, the product ansatz as been used to describe
asymptotic nucleon-nucleon inter.actions. Indeed, Skyrme [5] himself originally
addressed this problem and deduced an analytic expression for the asymptotic
potential between two hedgehogs by employing this ansatz.

For two hedgehog skyrmions centred at the points Z; and Z;, which are well
separated, the field configuration is described by two undistorted hedgehogs with

a relative isospin rotation of their pion fields, which can be represented as
[’(.’El,fz) == UH(E;")AUH(E2)A+’ (222}

where A = ao + a.7 and Ug(Z) is a B = 1 hedgehog solution. The resulting
potential, defined as the difference between the energy of the B = 2 product

configuration and twice the energy of the B = 1 skyrmion,
V:EB=2—2EB=1, (223}

in the asymptotic limit is given by

(a-710)® — a’ri,

| 712 [°

V() = 20 } (2.24)

where C is a positive constant and 7y, = £; — Z3. This potential represents the
asymptotic one pion exchange potential between the two skyrmions, which in the
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zero pion mass limit considered here, goes with the inverse separation distance
cubed. This is indeed similar to the form of the nucleon-nucleon tensor potential.

Equation (2.2.4) for the potential, shows that the tensor force between two
well separated hedgehogs is optimally attractive when the conditions @ = 1 and
a.r1; = 0 are satisfied. To understand the non-isotropic nature of the poten-
tial, one should note that the product ansatz (2.2.2), represents two hedgehog
skyrmions relatively rotated about the axis @, by an angle 8, with | @ |= sin(8/2).
Thus, the optimal relative isospin orientation condition, corresponds to the two
hedgehogs being relatively rotated about an axis perpendicular to their line of
centre, by an angle 7. The resulting configuration has the 7 fields of the hedgehog
centred on Z; pointing radially outwards, while those of the hedgehog centred
on T, point radially inwards, having been rotated through an angle m, about
an axis perpendicular to Z; — Z;. This configuration of hedgehogs is such that
their respective 7 fields match smoothly along their line of centre and this non-
frustrated arrangement minimises the 7 field gradients and hence optimises the
attraction.

We shall later see that the detailed non-isotropic structure of this potential
has been used to construct optimally attractive arrangements of hedgehogs [14],
in order to deduce optimal rarified crystaline arrays of skyrmions. Since this is
the starting point from which we shall proceed to study dense crystaline matter,
the subject of the next chapter, we shall at this point note only that the sign of

this potential depends entirely upon relative isospin orientation of the hedgehog
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fields and is thus strongly anisotropic.

Skyrme’s asymptotic result (2.2.4), employing the product ansatz (2.2.2), has
since been extended using numerical techniques to give the potential (2.2.3) at
all separations [15|. These studies revealed the skyrmion-skyrmion potential to
give a reasonably successful description of the phenomenological nucleon-nucleon
potential.

In the small separation limit, the product ansatz (2.2.2) is no longer valid
due to significant field distortion and an alternative description for the B = 2
configuration is certainly required. Thus Verbaarschot et al [16] were led to solve
directly, for the exact minimal energy, B = 2 configurations at all separations,
using a numerical relaxation technique. They found the minimal energy field
configuration occurred at a separation at which the overlap of the hedgehog
fields would be large. It was realised [17] that a finite reflection symmetry of
the pion fields at large separations becomes a continuous axial symmetry of this
minimal energy configuration. The appearance of new symmetries as the density
of skyrmion matter is increased to its optimal configuration over and above that
of the well separated skyrmion configuration, has since been seen to be the rule
rather than the exception. While at large separation for the B = 2 configuration,
an identification of two individual skyrmions is valid, this is not so for the minimal
energy field configuration. Here both skyrmions completely lose there identity
as a consequence of their close proximity and as a result of the substantial field

deformations this involves.
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These additional symmetries are important in themselves, due to the addi-
tional restrictions they place upon collective coordinate semi-classical quantiza-
tion of the zero modes of skyrmions and result in selection rules for their quantum
states. Thus, in the B = 2 case they were shown to result in the appearance of
a non-degenerate ground state with the quantum numbers of the deutron [18].
However, the binding energy of this ground state was found to be unrealistic,
as was expected, due to the naive semi-classical quantization of only the zero
modes of the classical solution, which neglects the important degrees of freedom
describing nuclear break up. In order to overcome the restricted nature of this
quantization procedure, it is necessary to identify the degrees of freedom for
nuclear separation. However, due to the non-renormalisability of the Skyrme
Model, a semi-classical quantization procedure is still required.

Hence Atiyah and Manton [19] have recently developed a technique by which
a non-trivial truncation of a skyrmion field’s infinite number of degrees of freedom
is possible. Their procedure of integrating over time lines for instanton fields in
four dimensional Euclidean space, leads to non-trivial field configurations which
are not minimal energy solutions. However, in both the B = 1 and B = 2 sectors
their parametric forms give good approximations to the true minimal energy
field configurations, possessing all the known symmetries of the true solutions:
Moreover, their parametric B = 2 configuration is capable of representing the
minimal energy configurations at all separations and hence nuclear break up.

Unfortunately, their techniques become highly complex in the higher baryon
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number sectors and their construction was based on the numerically discovered
symmetries of the true field configurations. But it does now seem possible that
a realistic evaluation of the binding energy of the B = 2 ground state will be
possible and that in this sector the true economy of the Skyrme Model description
will be realised, incorporating a description of both the bound state system and
nuclear collisions.

Recently Carson et al [20] found numerical minimal energy B = 3,4,5 and
6 solutions and found these also to have a significant binding energy relative to
isolated skyrmion configurations of the same baryon number. These fields also
possess a high degree of symmetry, as revealed by the baryon density plots given
by Carson et al. One thus expects that these fields may lead to a description of

their corresponding baryon number light nuclei.

2.3 A Simple Model Of Dense Skyrmionic Matter

Given the successes of the Skyrme Model as described here, it is natural to try
and discover what its predictions are for infinite baryonic matter systems. In
particular, regular static crystalline arrays of skyrmions have been investigated
and the results reveal new forms of baryonic matter at high densities. Since
the classical spherical hedgehog skyrmions contain nucleons, deltas and higher

resonances, whose properties are obtained by projecting out the relevant spin and
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isospin content, it is interesting to see what the Skyrme Model predictions are
for dense baryonic matter. Due to economical dual description of both baryonic
structure and baryonic interactions, the model presents a means of describing the
radical changes which occur when the density of baryonic matter is increased.
The subject of Chapter 3 will be to review the results of these calculations and
to present our own result for an fcc arrangement of skyrmionic matter.

An important insight into the nature of dense skyrmionic matter has been
gained with the realisation of a simple alternative and complementary model of
dense baryonic matter to that of the flat space arrays.

The flat space static array calculations we shall later review, require one to
solve numerically for the minimal energy field configuration at a given average
baryon density. For these arrays, a set of twisted periodic boundary conditions
are imposed and the resulting minimal energy fields can be generated by lat-
tice translations from the solution within a representative unit cell. Even so
these calculations are tedious, it being technically difficult to obtain converged
solutions.

The complementary model initiated by Manton[21] of dense baryonic matter,
replaces flat physical three dimensional space by a three sphere . Now a skyrmion
is a mapping of a three sphere of radius L, SJ, (L), onto a three sphere, S32.,
of radius one. Due to the similar shapes of both the domain and target spaces,

mathematical results are simpler to obtain than for flat space arrays and analytic

solutions are even possible. The analogue of the average baryon density variable
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for flat space arrays on S3, (L), is given by B/27*L? for a static solution of
winding number B and thus for a given baryon number we can find solutions
at all average baryon densities by varying the radius L, of this sphere. A single
B = 1 skyrmion on 53, (L) will have a self interaction due to the curvature of
space and this is believed to give a good model of the interactions of skyrmions
within flat space crystalline baryonic matter. This will also be true in the higher
baryon number sector on S5, (L).

The results of calculations within both the B = 1 and B = 2 sectors have
indeed been shown to have remarkable similarities to those obtained numerically
for flat space arrays. Of course, even though analytical results are possible within
the B = 1 sector, direct physical results are not possible with this simpler model
since real physical space is flat not spherical.

For the moment we shall describe the B = 1 sector results on S}, (L) and
leave the drawing of parallels with the physical flat space arrays until we present
results in the next chapter.

The Skyrme Model’s static energy functional on S;;"hy (L) in Manton’s dimen-

sionless units|21] reads,
i 1., .. g
= LI "G _ LV 7R Y 2 5 1. )2
B= [, ) VI8 + )~ @), (2.8.1

where g;; are the components of the metric on Sghw(L), with 7,7 running from 1

to 3 and

Kij = 0:¢°0;¢°, a=1,2,3,4 (2.3.2)
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where the dimensionless fields satisfy the constraint ¢*¢* = 1. In equation (2.3.1)
dV is the measure on S, (L). The dimensionless units of length and energy
can be related to physical units by rescaling the dimensionless energy unit by
fx/2¢ = 5.92MeV and the dimensionless length unit by 1/ef, = 0.561 fermi.

Using the standard extension of polar coordinates for physical space,
0<u<m, 0<0,¢<2nm (2.3.9)
the metric components, g;;, are diagonal with elements,
g = (L%, L*sin® p, L? sin® usin® 6). (2.9.4)

The B =1 field configuration we shall assume to be of the hedgehog form. This

gives,

¢° = cos f(u)
¢! = sin f(u)cosé
#* = sin f(u)sinfcos¢

¢* = sin f(u)sin0sin ¢. (2.8.5)

In order to ensure the hedgehog has winding number one, we have the boundary

conditions for the profile function
f(0) =0, f(r) = m. (2.5.6)
The matrix K;; is now diagonal with elements

K = (fz, sin® f, sin’ f sin’ 9), (2.9.7)
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where f denotes the derivative of f (v) with respect to p and hence the static
energy functional takes the form

sin? f sin® f

) +

Sinzf)}, (2.5.8)

sin” p

E(f):47r/:dusin2,u{L(f2+2 (27 +

sin® u Lsin®p
where we have performed the trivial 8, ¢ integrations. The Euler Equation for
the minimal energy hedgehog field is obtained from a functional variation of E(f)

with respect to f(u) and is

. 9 . . . . 2
sin .- sin2u - sin2f - sin 2 sin

(L + 2—— zf)f+L2 : 2“f+ - ,ffz———_ 2f(L2+ : 2f):.o. (2.9.9)
sin” sin” sin” sin” sin” u

Examination of this Euler Equation, which is an ordinary second order differential

equation, reveals that that there exists a trivial solution

flu) =n (2.9.10)

at all values of L. This solution is the trivial mapping of S}, (L) onto S3,(1).

The energy (2.3.8) of the trivial map is then given by

1
E =6n*(L + E)‘ (2.8.11)

This attains a minimum energy at L = 1, when it is simply the identity mapping,
of two three spheres of radius one, which saturates the lower bound with a value of
the energy 127n%. This completely delocalised solution has the full 0(4) symmetry
of the Skyrme Model and is an isometry of S3.

The baryon density for a hedgehog skyrmion is given by

1 sin®f -

B°(u) = — ——5—f, 2.9.12
(») 272 [3sin? u ( )
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which for the trivial map (2.3.10), reduces to 1/272L3 and is a constant over phys-
ical space. Thus, on a three sphere the trivial skyrmion represents a completely
delocalised baryon over the whole of space.

As the radius of physical space is increased beyond one, the energy of the
trivial solution (2.3.11) grows, becoming linear at large L. At infinite volume
the trivial solution thus has infinite energy. At some intermediary volume, this
solution, which is an absolute minimal energy solution at L = 1, might be ex-
pected to become unstable with respect to another solution which does have a
finite energy in the infinite volume limit and which would correspond to the flat
space hedgehog as the curvature of physical space becomes zero in this limit.

This is indeed the case and it as been demonstrated that the trivial map
becomes unstable to a hedgehog solution of equation (2.3.9), above a volume
corresponding to a critical value of L = L, = v/2. The transition at L = L. is
of second order and instability of the trivial map has been shown to be due to
the existence of infinitesimal conformal modes which are the paths of steepest
descent in energy from the trivial map at L = L.. Thus, up to a volume of
L = /2, the trivial delocalised solution is a local minimum of energy and beyond
this critical radius it is a local maximum. The local conformal modes result

in the minimal energy hedgehog solution beyond L., this becomes increasingly

localised about one of the poles of S3

ony (L) as L increases. Thus, there are two

hedgehog solutions in this region of L corresponding to localisation centred upon

either pole. These two solutions are degenerate in energy and transformed into
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each other by the transformation -

f(w) = 7 = f(r — ). (2.9.13)

In the limit of infinite volume the hedgehog skyrmion is centred on one of the
poles, being well localised and having a finite energy corresponding to that of
the flat space hedgehog [22].

The instability of the trivial map with respect to infinitesimal conformal
modes, for values of L greater than /2, in general produces a localisation of
the skyrmion about any point on S}, (L). However, the hedgehog form (2.3.5)
is only consistent with the skyrmion localising about either pole and hence gives
a two-fold degeneracy of localised solutions.

Manton [21] further demonstrated that the trivial map solution on S3, (L)
is an absolute minimum of energy for volumes of physical space less than or
equal to that of the target three sphere. Beyond these volumes, for an arbitrary
space, this is no longer the case, as we shall demonstrate in Chapter 4 when
we investigate the effect of generalising the shape of this sphere. The global

stability of the trivial map up to the critical volume for the sphere is however,

still a realistic possibility which up until now has not been demonstrated.

These results show that dense baryonic matter undergoes a localising-delocalising

phase transition at some critical baryonic density. The phase transition described
here is of second order and of the standard ‘pitch fork’ type. Here of course, the

term ‘phase transition’ is some what misleading, since we are only considering
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the potential energy surface generated by varying the average baryon density and
have not included kinetic effects. Since all our results are thus at zero kinetic
energy, there is no temperature involved and strictly speaking this is not a phase
transition.

Similar results were also found for the B = 2 [23] sector of this model, with a
second order phase transition occurring a some critical radius and the low density
phase having two spherical skyrmions centred on opposite poles of the sphere.

These phase transitions have been interpreted as representing the restoration
of Chiral Symmetry at high densities [24], in the sense that for both the B =1
and 2 systems the average values of the sigma field < ¢ > and pion field < 7 >,
are zero in the high density phase. This interpretation was further justified
by the observation that for the B = 1 solutions at the transition point, the
formation of the high density phase is associated with the disappearance of the
three Goldstone modes.

This simple model thus provides us with an insight in to the nature of the
different forms of baryonic matter at high densities which the Skyrme Model
predicts. Indeed, for flat space arrays of skyrmions, similar delocalising phase
transitions have been discovered as we shall describe in Chapter 3.

Recently Wirzba et al [25] obtained analytically, the complete mode spec-
tra for the B = 1 trivial background field. Moreover, the classification of the
modes for the localised B = 1 background was given and these modes were cal-

culated numerically. This development enables one to further understand the
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effective degrees of freedom of dense skyrmionic matter and gives the possibility

of performing finite temperature calculations for dense skyrmionic matter.
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CHAPTER 3

DENSE SKYRMIONIC MATTER
IN A CRYSTALLINE FORM

3.1 Multi-Skyrmion Crystals

In Chapter 2 we have seen that the Skyrme Model provides a topological de-
scription of a generalized classical baryon which is both elegant and physically
reasonable, with maximum discrepancies of around 30%. Moreover, the large
N, expansion of Q.C.D., suggests that one loop corrections to these classical
results will be of order 1/N, and with the physical value of N, being 3, these
discrepancies seem reasonable at the classical level.

This description of baryons was also seen to lead to a skyrmion-skyrmion po-
tential, possessing many of the salient features of the phenomenological nucleon-
nucleon potential [1][2]. Moreover, within the B = 2 sector, the existence of a
ground state, with the quantum numbers of the deutron, has also been demon-
strated [3], though the stability of this bound state has yet to be conclusively
established. It has even been suggested by Carson et al [4], that the model offers
the possibility of describing the B = 4,5 and 6 light nuclear systems, the classical

skyrmion solutions having already been calculated numerically.
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These successful developments in the application of the Skyrme Model to
light nuclear systems have been mirrored by progress within the realm of infinite
baryonic matter systems. Indeed, it is natural to believe, that within this sphere
the model may provide an economical description of infinite baryonic matter and
that it may provide a description of heavy nuclei or neutron star matter.

The economy of the description offered by the Skyrme Model for such systems,
follows from the manner in which both the structure and interactions of baryons
are placed on a similar footing from the outset. For infinite baryonic matter, this
provides the opportunity of describing the radically different forms of baryonic
matter expected to exist at high and low densities.

In Chapter 2 we also discussed Manton’s (5] results for a skyrmion on S5, (L)
and this revealed two distinct forms of skyrmionic matter that exist at high and
low average baryon density. At low densities the skyrmion’s baryon density is
well localised about a point in space, while at high densities it is completely de-
localised over the whole of space. The economy provided by the Skyrme Model’s
description of baryonic matter, results here in a single description of both phases
of matter. This would not have been the case had two differing models been
required to describe these two differing phases.

The insight gained from the understanding of the simple Sf,w (L) model, has
provided a further insight, by which many of the features of the numerically
obtained flat space array results have been interpreted. It thus appears, that

there exist ‘universal’ features of dense skyrmionic matter which are common to
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both the crystalline and S3,, (L) environments.

The beauty of the S;?hy(L) model of skyrmionic matter is its simplicity, en-
abling one to obtain analytical results which have subsequently revealed the
existence of a second order phase transition and this is due to the presence of a
local conformal instability. An analogous conformal instability in flat space has
also been proposed, in order to explain the existence of an analogous transition
from a condensed to an uncondensed array of skyrmions and we shall see later
that this proposal would seem to have been numerically justified.

Klebanov (6] pioneered the attempts to construct infinite arrays of skyrmionic
matter and recently this field has attracted increased attention. His model was
based on the belief, that a classical array of crystalline skyrmions might describe
the dense neutron matter which exists at the core of a neutron star.

The idea that dense neutron matter has a crystalline form was proposed by
Smith et al [7]. They investigated a pion condensate model of a neutron star and
suggested that at short distances the dominant forces of interaction within dense
neutron matter are the tensor force and hard core repulsions between neutrons.
This tensor force is strongly anisotropic and for an optimal spin configuration is
attractive. Thus, a crystalline array of neutrons, with an optimally arranged spin
configuration, will enhance the size of the tensor attraction. However, within a
disordered system, the tensor force experienced by a neutron will be averaged
out to zero. Thus, the tensor force strongly prefers an ordered configuration of

neutrons to a disordered neutron superfluid, while hard core repulsion cannot
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distinguish between the two. However, the high quantum zero point energy,
associated with a crystalline array of localised neutrons, will work against the

formation of such crystalline matter. -

Klebanov was thus led to consider an infinite cubic crystalline array of skyrmions,

based in part on the cubic array of neutrons proposed by Smith et al. It is
not however possible within this model, to estimate the effect of the zero point
motions of skyrmionic matter, due to the non-renormalisability of the Skyrme
Model.

The asymptotic form of the tensor potential between two skyrmions is highly
anisotropic and their topological nature enforces strong repulsive forces at high
densities. Hence we see, that the two dominant nucleon-nucleon interactions in
neutron matter have analogies within the Skyrme Model at the classical level.

The argument that led Klebanov to deduce the structural form that an in-
finite array of skyrmions should take, was based upon the insights which had
previously been gained from the understanding of the interaction between two
B = 1 hedgehogs at large separations.

As we have already mentioned, Skyrme [8] deduced the analytic form of
the asymptotic tensor potential between two B = 1 hedgehogs. Klebanov re-
expressed this in the form given in Chapter 2, (2.2.4). This expression reveals
the anisotropic nature of the tensor potential. The resulting optimal arrange-
ment of two hedgehogs is one in which their respective pion fields are relatively

iso-rotated about an axis lying in a plane perpendicular to their line of centre by
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an angle .

Thus, in order to picture this arrangement, we imagine that both B = 1
hedgehogs are situated on the z axis and located at £ = +o0o. Presuming that the
one at £ = —oo is unrotated and thus has its pion field pointing radially outwards
from its centre, the optimal field configuration has the pion fields of the hedgehog
located at £ = +o00, iso-rotated about an axis lying in the (z,y) plane through an
angle 7. Without loss of generality, we can choose this axis to be the z axis, then
the hedgehog at £ = +oo has its pion field in the (z,y) plane pointing radially
inwards, while along the line parallel to the z axis, which passes through its
centre, its pion field points outwards. Thus, on transversing the z-axis from the
centre of the hedgehog located at £ = —oo, to the centre of the hedgehog located
at £ = 400, the pion field on this axis flows in the positive =z direction. Thus,
this optimal arrangement has the pion fields of these two hedgehogs relatively
non-frustrated. All other non-frustrated optimal arrangements of two hedgehogs
are related to this configuration by a combination of constant global space and
iso-space rotations. These rotations leave the Skyrme Lagrangian invariant and
are thus symmetry transformations of a skyrmion field.

Klebanov realised that it was reasonable to assume that at low densities
Skyrmionic matter is composed of well separated spherical hedgehogs. This be-
ing the case, an optimal orientation arrangement of these hedgehogs will give
an asymptotic tensor interaction which is attractive and will thus result in the

skyrmion array having significant binding.
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In order to construct optimal arrays of skyrmions, it is useful to imagine
placing hedgehogs at the points of an infinite lattice. In this way, Klebanov
deduced that in order to maximise this binding, one should demand that nearest
neighbouring hedgehogs be optimally orientated. The pion fields of neighbouring
hedgehogs will run smoothly in to each other and neighbouring hedgehogs will
have their pion fields relatively non-frustrated.

To illustrate this, let us first consider a simple cubic array of skyrmions. We
choose a particular lattice point to define our origin and the lattice spacing to be
a. At each point on the lattice there is situated a hedgehog, which at the origin
we choose to be unrotated so that its pion field points radially outwards. We
shall now consider those hedgehog skyrmions located on points within the plane
z = 0. If we move to the hedgehog located at the point (a, 0,0), we should require
that the pion field of this hedgehog be iso-rotated about an axis lying in the (y, 2)
plane by an angle 7, in order to produce a non-frustrated pion field arrangement
along the = axis. Without loss of generality, we choose at this point that the
hedgehog be rotated about the z axis by an angle 7. On moving along the line
T = a, from the point (a,0,0) towards the point (a, a,0), the pion field will flow
in the negative y direction. Thus, the hedgehog located at the point (a,a,0)
should have its pion field either iso-rotated about the y axis or be unrotated. In
either instance, its pion field along the line £ = a will flow outwards from its
centre at the point (a, a,0) in the y direction and the resulting pion fields of the

hedgehogs at (a,0,0) and (a, a,0) will be relatively non-frustrated.
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Thus, we see that there are two choices of rotation axis at the point (a,a,0)
which result in a relatively non-frustrated arrangement of the pion field of the
hedgehogs located at the points (a,0,0) and (a,a,0). If we choose the axis
of rotation to be the y axis, then on moving along the line y = @, from the
point (a, a,0) towards the lattice point (0, a,0), the pion field of the hedgehog at
(a,a,0) will flow inwards along the line y = a and thus the hedgehog at (0, a,0)
should have its pion fields pointing outwards along this line. However, on moving
from the unrotated hedgehog at the origin to the point (0, a,0), the pion field
flows in the positive y direction and hence, at the point (0, a,0) they should flow
inwards. Thus, the hedgehog at (0, a,0) should have its pion field on the line
y = a pointing outwards, while on the y-axis they should be pointing inwards.
Hence, at the point (0, a,0), the hedgehog pion fields must be iso-rotated about
the z-axis by an angle 7, in order that its pion field be non-frustrated relative to
the pion fields of the other hedgehogs at the origin and the point (e, a,0).

In Figure (3.1.1a) this arrangement has been depicted and we have indicated
the direction of the axis at each of the lattice points for this square plaquette
in the positive (z,y) plane at z = 0, about which the hedgehog at that point is
iso-rotated by an angle 7. We have indicated, that the pion fields of the hedgehog
located at the origin are unrotated and point radially outwards, by drawing a
circle at the origin. This figure shows clearly for an optimal arrangement, that
moving to a neighbouring lattice point involves an iso-rotation about an axis

perpendicular to the direction we move in by an angle .
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Figures (3.1.1a) and (3..L.4h): Non-lrustraled arrangement of four hedgehogs
in the z == 0 plane, on the verticen of a square plagquette. Arrows indicating the
rotation axis about which the pion liclds of the hedgehogs are iso-rotated by an
angle .



The alternative choice for an unrotated hedgehog at the point (a,a,0), re-
quires that the hedgehog located at the point (0, a,0) have its pion field flowing
inwards along the line £ = a and inwards along the y-axis. Hence, the hedgehog
at the point (0, a,0) will have its pion fields iso-rotated about the 2z axis by an
angle 7. This arrangement is indicated on Figure (3.1.1b).

These two arrangements, of four hedgehogs around a square plaquette, with
neighbouring hedgehogs having their pion fields relatively non-frustrated, are
essentially unique. Other optimal arrangements will be related to these two
arrangements by global spatial and iso-spatial rotations.

To simplify matters, we assume that the relative pion field arrangement that
we choose within a plaquette, is repeated in all successive plaquettes in the (z,y)
plane and that no mixing of these two arrangements occurs. In this manner,
we see that a neighbouring plaquette will be related to the original by a global
rotation, in such a way that they are the same on the line on which they meet.
Hence, on translating the plaquette of Figure (3.1.1a), by a lattice spacing a in
the z direction, we require that the pion field within the plaquette be iso-rotated
about the z axis by an angle 7, while a translational along the y axis involves an
iso-rotation about the z axis by an angle .

For the plaquette arrangement in Figure (3.1.1b), a lattice translation of a
distance a, in the z or y directions, will involve an iso-rotation about the z axis
through an angle .

 We now consider the lattice point (a, 0, a). For both of our plaquette arrange-
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ments in the (z,y) plane, we have to choose, for a hedgehog located at the point
(a,0,a), to iso-rotate about an axis lying in the (z,y) plane by an angle . We
have also to make the similar choice at the point (0,0,a) and these two axes
should be chosen such that they are perpendicular to each other.

For plaquette (3.1.1a) however, for the hedgehog located at the point (a, a, a),
we have to choose either not to iso-rotate its pion field or, to iso-rotate its pion
field about the z-axis by an angle 7 and similarly at the point (0, a,a). Choosing
to iso-rotate the pion field about the z-axis, at the point (a, a, a), requires that at
the point (0, @, a), we choose an unrotated hedgehog in order to avoid frustration
of the respective hedgehog’s pion fields. But at the point (0,0, a), we must make
the choice of the z-axis to iso-rotate about and finally, at the point (a,0,a), we
must choose to iso-rotate about the y-axis. In this way, this arrangement ensures
that all pion fields are non-frustrated as we move along the edge of the cube and
this arrangement is illustrated in Figure (3.1.2a)

The alternative choice at the point (a,a,a) of an unrotated hedgehog, also
results in a unique arrangement in a similar manner and is shown in Figure
(3.1.2b)

The first of these cubes, Figure(3.1.2a), has on the face lying in the z =0
plane, a pion field arrangement which is similar to that indicated in Figure
(3.1.1b) in the z = 0 plane. Thus, this arrangement is related by global spa-
tial and iso-spatial relations, to the arrangements which result from this choice

of base plaquette in the (z,y) plane.
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Figures (3.1.2a), (3.02b) and (312¢): Non-frustrated arrangement of cight
hedgehogs al the vertices of a cube. (a) and (¢) correspound to the Jackson et al
arrangement and (b) correaponds to the Klcbanov arrangement.
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The second of the arrangements, indicated in Figure (3.1.2b), corresponds
to the cubic cell arrangement considered by Klebanov, if we assume translation
symmetry in the z-direction. Thus, a translation of a in the z-direction will
involve an iso-rotation about the y axis by an angle 7.

For the second choice of the z,y base plaquette, Figure (3.1.1b), we have
an infinite variety of possible options for orientation of pion fields within the
plaquette in the z = a plane, all of which would be relatively non-frustrated. The
Jackson [9] choice is shown in Figure (3.1.2c). This generalisation of the Jackson
arrangement, can be generated from Jackson’s arrangement, by performing a
global iso-rotation on the pion fields about the z axis by an angle @, for all those
hedgehogs within the plaquette lying in the z = a plane.

To see this, consider the relation between the two neighbouring layers parallel
to the (z,y) plane. This relation is such that the pion fields along the edges of
the cube, parallel to the z-axis, point upwards. Thus, within the (z,y) planes at
z = 0 and z = a, we are free to ‘globally’ iso-rotate the hedgehogs within these
planes about the z-axis, without breaking the condition of non-frustration of the
pion fields along lines of centre. These other lattice arrangements appear to have
gone unnoticed and thus, have so far not been investigated.

Having fixed the relative field orientation within one cubic cell, for simplicity
we choose to demand the whole lattice be generated from successive repetitions of
these representative cells by lattice translation and corresponding iso-rotations.

This translation symmetry, coupled to iso-rotations, can be expressed as a set
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of twisted boundary conditions which relate the pion fields within neighbouring
cells. These conditions shall be given in the next section.

As an alternative to a cubic array, an fcc array, with its increased number
of nearest neighbours to twelve, has been investigated. Once more we can con-
struct this arrangement in a similar manner. We shall prove that there is only
one unique arrangement which satisfies Klebanov’s condition of relative non-
frustration of the pion field of nearest neighbouring hedgehogs.

We choose our hedgehog at the origin to be unrotated and so its nearest
neighbours in the positive octant are located at the points ry = (a/2,a/2,0),
rs = (a/2,0,a/2) and r3 = (0,a/2,a/2). Initially we shall consider just this
octant. The pion fields of the hedgehogs, located at the point r;(z = 1,2, 3), will
be iso-rotated by an angle 7, about an axis (%,‘(7: = 1,2, 3), chosen such that it
satisfies the non-frustration condition a;.7; = 0, where 7; is the position vector of
the point r;.

Thus, the pion fields of the hedgehog at the origin are relatively non-frustrated
to the pion fields of its nearest neighbours at the points r;. However, all these
nearest neighbours of the hedgehog at the origin, are also nearest neighbours to
each other. Thus, we require that the pion fields of these three hedgehogs are a,lso‘
relatively non-frustrated to each other. In order to establish the generalisation of
Klebanov’s non-frustration condition, for the pion fields of two skyrmions which
are both iso-rotated, we must unrotate the pion fields of one of the hedgehogs,

while keeping their relative orientations fixed. Thus, we perform a global rotation
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on all four of these hedgehogs, such that the hedgehog at r; becomes unrotated.
That is to say, we performed an iso-rotation about the axis (:z',-, through an angle
7, on the pion fields of all four hedgehogs. To deduce the new direction of the
iso-rotation axis, after performing this global iso-rotation of the hedgehog located
at r,, we need to observe that under a global rotation, about an axis a by an

angle @, a skyrmion field U is transformed to
(cos8/2 + 1a.7sin 8/2)U (cos 0/2 — 1d.7sin 8/2). (8.1.1)

Hence, if § = m we have that,

Bp

TUT.

ap

U~ (8.1.2)

Since before we perform the global rotation, the hedgehog at the point r; has its

pion fields iso-rotated about the axis &2, we should consider the expression,
(&17_!)(&,-‘27_") = (31.&2) + 7/((—;:1 X (372).7—", (3.1.3}

in order to deduce its new axis of iso-rotation. We then see that we have two
possibilities. Since the hedgehog at r, must now be non-frustrated relative to the
unrotated hedgehog at r,, it must be iso-rotated about some axis by an angle
7. Therefore, from (3.1.2) and (3.1.3), we deduce that @;.d; = 0 and that the
pion fields of the hedgehog located at r; are now rotated about the axis fil X d@g.
We can similarly deduce that the non-frustration condition, for the pion fields of
the hedgehog located at the point r3, relative to the pion field of the unrotated
hedgehog located at the point r;, leads to the condition (ﬁil.fi:, = 0 and that the

62




axis of iso-rotation of the pion field of the hedgehog located at rj, is @ X .
Since the unrotated hedgehog at the origin is now rotated about the axis 21'1, we
again have the relative non-frustration condition @7 = 0, for the pion field of
the hedgehog located at the origin and at the point ;.

These conditions imply that the vectors c:il,fiz and 373 form a mutually or-
thogonal set of unit vectors. We require one further subsidiary condition. After
performing the global iso-rotation, the pion field of the hedgehog located at r;
is iso-rotated about the axis 3‘1 X 3?2 and the pion field of the hedgehog at ry is
unrotated. Therefore, in order for the pion fields of these two hedgehogs to be

relatively non-frustrated, the following condition must be satisfied,

+2)=0. (8.1.4)

@

(fil X 3:2)(172 — ’Fl) = (%3.(7—“2 — ’I—"l = &‘3.(—

However, before we performed this global iso-rotation, we deduced that iAi,-.F’,- =0

(for © = 1,2,3), from which we have, that

Xy
Il
Q

+ (8.1.5)

§°
—_
N~k

Thus, from equations (3.1.4) and (3.1.5), we deduce that ds = %. Similarly we
can demonstrate that &'2 = g:} and &'l =z

Hence, we have proven that there exists one unique arrangement of four neigh-
bouring hedgehogs which satisfies Klebanov’s non-frustration condition for the
pion fields of all four neighbouring hedgehogs and this arrangement is indicated

in Figure (3.1.3a).
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Figures (3.1.3a) and (3.L.3Db): (a)-Non-lrustrated arrangement of four skyrmions
in a representatlive cell ol the fee lattice. (b)- Non-{rustrated arrangement of
hedgehogs within the bee array. The ligure shows cight adjacent bee cubes.
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From this unique arrangement of four hedgehogs we can generate the full fcc
lattice. A lattice translation by a, along the (z,y or 2) axes, will not involve an
iso-rotation and thus, this fcc cube generates the full fcc array by a trivial lattice
translation along the lines parallel to the coordinate axes. This four skyrmion
arrangement within a representative cubic cell, shown in Figure (3.1.3a), forms
an octant quadrant of the full fcc cube. This arrangement was proposed both by
us [10] and independently [11][12].

Finally it was discovered that a bcc array of optimally orientated hedgehogs
could be constructed [10] and this arrangement is indicated in Figure (3.1.3b).
Here we have indicated the orientations of the hedgehogs located at the points of
the eight neighbouring bcc cubes. Focusing on the unrotated hedgehog, located
at the point (3a/2,a/2,3a/2) at the centre of a bcc cube and where a is the
length of the bce cube, we see that its eight nearest neighbours at the vertices
of this cube, are alternately iso-rotated about the (Z + §)+/2 and (% — yj')\/ﬁ axes
by an angle m. Thus, the pion field of the hedgehog at the centre of this cube,
which points radially outwards from its centre, matches smoothly those of the
eight rotated hedgehogs at the vertices. The neighbourihg bee cube, in the z or
y direction, will have the same relative orientation of hedgehogs. However, this
lattice translafion involves an overall iso-rotation about the z a.xis, by an angle
.

This bcc arrangement is related to the fcc arrangement shown in Figure

(3.1.3a) by an expansion of v/2 of the bcc lattice along one of its coordinate
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axes. To see that this is indeed the case, the Figure (3.1.4a) indicates the ori-
entations of the twelve nearest neighbours of an unrotated hedgehog within the
fcc array. Here, the coordinate axes are those we chose to describe the fcc ar-
rangement. Now consider the unrotated hedgehog at the point (3a/2,a/2,3a/2)
within the bcc lattice, Figure (3.1.3b). In Figure (3.1.4b) we have depicted this
hedgehog’s eight nearest neighbours lying in the z = y and £ = —y planes in
the bcc coordinates. We have also indicated the positions and orientations of the
four next nearest neighbours lying within the plane parallel to the (z,y) plane
located at z = 3a/2, each of which is iso-rotated about the 2z axis by an angle
7. On expanding this bcc arrangement by a factor /2 along the z axis and
performing a trivial global spatial rotation about the z axis through an angle
7 /4, we find that the resulting arrangement is identical to the fcc arrangement
depicted in Figure (3.1.4a).

In this discussion of the various lattice arrangements of skyrmions, we have
denoted each lattice arrangement, according to the name given to the array
of points at which the skyrmions are located. Taking the primitive cell of this
particular array, we can generate the whole skyrmion crystal by combining lattice
translations with iso-rotations. However, alternatively, we can construct the true
primitive spatial lattice for each of these crystals, for which a simple lattice
translation would not involve an iso-rotation.

These spatial lattices simply correspond to the elementary cells of the crystal,

which when repeated will produce the full lattice and not require iso-rotations.
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Figures (3.4.4a) and (3.L.40): (a)-Twelve nearest neighbours of an unrotated
hedgehog within the fee array. (b) lBight nearcst neighbours and the four next
nearest neighbours within the (2, y) plane, of an unrotated hedgehog within the
bhee array.



Hence, it is simple to deduce, that for Klebanov’s arrangement, the primitive
space lattice vectors are a(Z + § — ), a(Z — § + ) and a(—Z + § + Z). Hence,
the true primitive cell of the Klebanov simple cubic arrangement corresponds to
that of a bcc crystal.

For the Jackson cubic lattice, with its rectangular symmetry, the spatial
skyrmionic structure gives the primitive lattice vectors to be a(:?:' + ;(j'), a(.% — 3:])
and 2aZ and these correspond to the primitive cell of a distorted cubic crystal.

For the fcc lattice, the spatial structure of skyrmionic matter gives the prim-
itive lattice vectors to be aa:c', afi and a2 and this corresponds to a cubic lattice.

Finally, the bcc lattice has a spatial skyrmionic structure for which the prim-
itive lattice vectors are a(Z + §), a(Z — §) and aZ and which corresponds to the
primitive cell of a distorted cubic crystal.

In the following sections, we shall describe the numerical investigations that
have so far been undertaken for a lattice of skyrmions corresponding to these four
arrangements. For all these lattices, the requirement of nearest neighbour non-
frustration results in a smooth pionic field arrangement of the full crystalline field
configuration. These numerical studies have investigated the effects of reducing
the lattice spacing a.

At low densities a crystalline array of skyrmions will consist of an infinite
product of spherically symmetric skyrmions, centred on well separated points and
with their pion fields mutually iso-rotated. Klebanov’s choice of a simple cubic

array of skyrmions, was guided mainly by symmetry and optimising asymptotic
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nearest neighbour attraction between the neighbouring skyrmions.

We shall now outline, historically, the developments that have taken place
within this field. As we have seen, Klebanov proposed that the classical ground
state configuration should possess cubic symmetry and in the asymptotic separa-
tion limit, have neighbouring spherical skyrmions relatively iso-rotated, so as to
maximise their tensor force of attraction. In the low density limit, the configu-
ration will be well described as a product of spherical hedgehogs, with a periodic
relative iso-rotation of the pion fields of neighbouring hedgehogs. This periodic-
ity, results in a set of twisted boundary conditions describing the full symmetry
of Klebanov’s simple cubic array. These boundary conditions were imposed in
order to allow exact numerical minimal energy configurations to be found over a
wide range of densities.

A further numerical study of this cubic arrangement, by Wurst et al [13],
revealed that as the baryon density was increased, there was a phase transition
from a phase of isolated skyrmions, to a condensed phase in which the energy
density was more uniformly distributed. It was later realised [9] that this phase
was characterised by the mean value of the ¢ field, < ¢ >, rigorously vanishing.
These two phases of skyrmionic matter were subsequently seen to be analogous
to the two forms of matter which exist in the simple S3, (L) model and to a
realisation of the nature of this delocalising phase transition.

Goldhaber et al [14] identified that the phase transition and the vanishing of

< 0 > observed in the flat space arrays in the condensed phase, were accompanied
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by the appearance of an additional symmetry in the crystalline field configura-
tion. Moreover, they deduced that in the condensed phases the skyrmion array
can be described as an array of half skyrmions, a half skyrmion being a skyrmion
field configuration which has a baryon number of a half. This follows as a direct
consequence of the additional translation symmetry, which the condensed field
configuration possesses at high densities. In Section 3.3, we shall describe in de-
tail the nature of the twisted boundary conditions which describe this additional
symmetry and the manner in which it is realised within crystalline skyrmionic
matter at high densities.

The analogue of the alternate spin-isospin symmetry of dense neutron matter
proposed by Smith et al and resulting from the long range tensor force of attrac-
tion between neutrons, was not completely realised in Klebanov’s cubic arrange-
ment. The analogue of this symmetry for skyrmions, was subsequently proposed
by Jackson et al [9] for the classical ground state configuration of crystalline
skyrmion matter. Their investigations indicated that the rectangular arrange-
ment depicted in Figure (3.1.2c), was indeed preferable to Klebanov’s choice over
almost the entire density range. Moreover, they found a phase transition to exist
and also that the condensed phase was again characterized by < ¢ >= 0 and the
appearance of an additional half skyrmion symmetry in the field.

Though long range forces clearly dictate the optimal array at low densities,
the strong repulsion between skyrmions would indicate that a close packed array

could be energetically favoured at high densities. In particular, our fcc arrange-
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ment in Figure (3.1.3a), would enable the long range forces to be effective and at
the same time avoid too close an approach. We shall see later, that the results of
our numerical investigations of the fcc lattice [10], reveal that this is indeed the
case. At high densities the fcc array, which also undergoes a phase transition to
a condensed phase of half skyrmions, has a minimum energy which is just 3.8%
above the lower bound. Thus, this arrangement has been shown to be the most
likely candidate for the classical ground configuration of crystalline skyrmionic
matter. Cook et al [15] have even proposed an fcc lattice arrangement as a
candidate for a nuclei. Kugler et al [12] performed variational calculations for
this fcc array, of the minimal energy configuration, composed of an array of half
skyrmions.

In the remainder of this chapter we shall review the results obtained for the
various arrays which have been investigated and compare these to the results for
the fcc and the bec arrays and a series of arrays with interpolating symmetries
that we also have investigated. We shall also present the results of our numerical
calculations for these lattice arrangements and draw our conclusions, mentioning

the most interesting, recent developments which have since taken place.

3.2 Skyrmion Arrays At Low Densities

At low densities a skyrmion crystal will be composed of isolated, distinct, well

separated spherical skyrmions centred on the points of a lattice. Thus, at low
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densities the static skyrmion field can be approximately represented as an infinite

product of hedgehogs, Un(Z) (2.1.22), of the form,
U(Z) = [[ AiUx(Z — B)A}, (8.2.1)

with A; determining the orientation of the skyrmion centred at the lattice site
R;. This ansatz will be valid in the large separation limit

—

| R; — Rj |> 1/efr. (3.2.2)

At the points of the lattice, the field U(Z) will have the value —1, though through-
out most of space, the field in the low density limit will have a value close to its
trivial vacuum value of 1. These regions within the crystal, where the skyrmion
field U(Z) is close to its trivial vacuum value, separate those regions containing
localised baryon density and thus, at low densities these regions fill most of space.
Hence, this uncondensed phase of skyrmionic matter will be characterised by the
< o > being close to unity.

Asymptotically, the optimal lattice and relative orientation of the skyrmions
within the lattice, will be determined by the tensor potential between neighbour-
ing skyrmions as given in equation (2.2.4). In the zero pion mass limit, this
potential has a 1/ | R; - flj [* asymptotic behaviour and is maximally attractive
for a non-frustrated arrangement of the hedgehog skyrmion’s pion fields. Thus,
in order to optimize the asymptotic binding energy at low density, we require
nearest neighbours to be relatively iso-rotated about an axis perpendicular to
their line of centre by angle by m. However, as we have seen in the previous
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section, there exist many differing lattices, with various relative orientations of
skyrmions, which satisfy this requirement. To differentiate these structures, there
are other factors which we expect to be important in determining the optimal ar-
rangement. Thus, the number of nearest neighbours and the interactions between
more distant neighbours, should be important and as the density is increased, the
effectiveness of the packing arrangement will also become increasingly significant
in determining the optimal skyrmion array.

The skyrmionic arrays so for considered, are such that the skyrmionic field
configuration within neighbouring representative ceus,‘satisﬁes a set of twisted
boundary conditions. Thus, fields within all cells of the crystal, are related to
the field within a representative cell by the lattice translation expressed as a
set of twisted boundary conditions. Each of these cells is mapped by the field
onto SU(2) once and thus contributes 1 to the baryon number of the skyrmionic
crystal.

The boundary conditions which determine the fields within a representative
cell and hence the lattice translations relating the fields within different cells,
are deduced from the picture of an array of localised spherical hedgehogs at
low densities described in the previous section. These boundary conditions are
enforced as the density of the crystalline matter is increased.

To compare these lattices, we can evaluate the asymptotic binding energy by
summing the tensor potential (2.2.4), of a single representative skyrmion, over a

large number of neighbouring skyrmions and for differing lattices compare them
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at the same baryon density.

For each infinite array of skyrmionic matter so far investigated, we shall now
present, in detail, the boundary condition which follows from the picture of a low
density array of relatively rotated B = 1 hedgehogs described in the previous

section.

1. The Klebanov [6] cubic lattice depicted in Figure (3.1.2b), asymptotically
has spherical skyrmions centred on the point of a simple cubic lattice. A
translation by a lattice spacing a, in the z direction, involves iso-rotation
about the z axis cyclicly and by an angle 7. The resulting twisted boundary

conditions are best expressed in terms of the unitary matrix fields

U= (0+ 7 7)/fr (3.2.8)

Klebanov’s twisted boundary conditions are then given by

Ulx+a,y,2) = r,U(z,y,2)r,,
Ulz,y +a,2z) = 7.U(z,y,2)7,

U(z,y,z+a) = 7,U(z,y,2)7, (8.2.4)

on the points of the lattice U(Z) = —1 and these points correspond to the
centres of the spherical skyrmions. It follows from expression (3.2.4) and
from the fact that the points at the body centres of the cubic lattices are
the points which are furthest from the regions of localised baryon density,
that U(Z) = 1 at the body centres of the cubic lattice. Hence, these +1
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points form two intersecting cubic lattices and taken together, form a bcc
lattice. There exists an alternative lattice arrangement, which is degenerate
in energy with this lattice and this corresponds to the other possible cyclic

ordering in equation (3.2.4).

The lattice arrangement (3.2.4) results in no nearest neighbour frustration.
A representative skyrmion has it’s six nearest neighbours maximally at-
tractive. However, its twelve second nearest neighbours are repulsive at
large separations. Its third and fourth neighbours interactions give zero

attraction, as these are unrotated relative to a representative skyrmion.

. The Jackson and Verbaarschot [9] cubic lattice, depicted in Figure (3.1.2c),
consists of alternate layers parallel to the (z,y) planes, one layer with
skyrmions alternately unrotated and iso-rotated about the z axis by an
angle 7, and the next layer with skyrmions 'a‘ltérnat'elly iso-rotated about

the £ and y axes by an angle . This leads to the boundary conditions

Uz + a,y,2) =U(z,y + a,2) = 1,U(z,y, 2)7,,

U(:E, Y,z + (l) = TyU(Z, Y, Z)Ty.' (325)

For this rectangular arrangement of skyrmions on a cubic lattice within
the (z,y) plane, the U(Z) = —1 points form a pattern of squares. It is
natural to require that U(Z) = +1, at the centres of these squares and
at the centres of the squares in the successive planes parallel to the (z,y)
plane.
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The corresponding asymptotic arrangement of localised spherical skyrmions
has a two-fold advantage over Klebanov’s rather arbitrary choice of lattice
arrangement. These are;

(a) For a given representative skyrmion all six nearest neighbours are still
maximally attractive in the asymptotic limit. However, the twelve next
nearest neighbours in the (z,y),(z,2) and (y, 2) planes, give differing ten-
sor interactions, with an overall net attraction. The third and fourth next
nearest neighbours interactions are once more both zero. This rectangular
symmetry gives a net gain in asymptotic attraction over Klebanov’s full

cubic symmetry arrangement.

(b)Although a skyrmion is a classical baryon and as such spin is not a
relevant quantum number, Klebanov was able to show how the average
value of the spin and isospin changes in moving from cell to cell within a
skyrmion crystal. For Klebanov’s lattice, a representative cell is cubic and
can be chosen such that it has a skyrmion at its centre and U(Z) = +1 at

its six vertices.

To ensure electrical neutrality, a skyrmion crystal should, upon quantiza-
tion, have its iso-spin exited so as to correspond to an array of neutrons.
In order to achieve this, Klebanov employed a semi-classical quantization
technique, quantizing the single collective iso-rotational zero mode of the

crystal. This collective coordinate rotates the whole crystal globally in iso-
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space. ‘It is inappropriate to collectively quantize the individual iso-spin
rotational modes of the skyrmions in the array in this manner, even at
low densities, since these skyrmions are stuck together and these rotations
are not zero modes. Promoting this overall iso-spin rotational collective

coordinate to a dynamical variable we have,

U(t,7) = A(t)U.(F)A* (1), (3.2.6)

where U,(Z) is the static crystalline minimal energy skyrmion field. For
a general skyrmion field, U(Z), the iso-spin is given by the integral of the

iso-vector current density,
I* = i M5U)Tr(AA*T)), | (3.2.7)

where A\¥ (U) is the tensor of inertia of iso-space, which for both Klebanov’s
cubic [6] and the rectangular array of Jackson et al [16], has been shown to
be a multiple of the identity. A denotes the derivative of A(t) with respect

to time.

Similarly, the angular momentum is given by
Jk = /d%s"jkTo,' = iIMFTr(A+ A7), (8.2.8)

where T, is the energy momentum tensor and /\gj(U) is the tensor of
inertia in real space, which has also been shown to be proportional to the

identity for both of these simple cubic lattices.
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Klebanov was thus able to deduce from (3.2.7) and (3.2.8) that
il-7 ~ AAY,
iS 7 ~ A*A. (8.2.9)

Thus, on moving from one cell to the next, the field conﬁguration (3.2.6)

changes by,
U+ BUBT, or equivalently  A(t) — A(t)B, (8.2.10)

where B = i7;. Hence we see, that on moving from one cell to the next we

have,

AAT — AAT,

A*A — BYtAYAB, (8.2.11)
and that I remains the same in all cells, while S flips. Choosing S = :'sz,

we have that for Klebanov’s arrangement, as defined by equation (3.2.4),
s, changes sign as we move from cell to cell in the y and z directions
and remains the same as we move in the z direction. The resulting spin
configuration does not correspond to that discovered by Smith et al [7].
The rectangular arrangement of Jackson et al defined by equation (3.2.5),
does however have the additional merit, that the average spin arrangement
within the cells does correspond to the spin arrangement of Smith et al, with
alternate (z,y) planes having spins in the +2z and —z directions. For the
rectangular arrangement, a lattice displacement of a in the z or y directions,
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leaves s, unchanged, while a displacement in the z-direction changes its
sign. Thus, the arrangement of Jackson et al is in closer analogy to the

arrangement predicted, by Smith et al, to exist in dense neutron matter.

We noted in the previous section, that there exists an infinite number of
lattices which generalise the Jackson et al rectangular arrangement. These
arrangements correspond to hedgehogs within the alternate layers parallel
to the (z,y) plane, iso-rotating about the z axis by an angle @, relative to

those hedgehogs within the intermediate planes.

This would correspond to generalising the Jackson et al boundary con-
dition, (3.2.5), by making the replacement, 7, — (7,sin8/2 + 7, cos8/2).
This generalised lattice arrangement satisfies the condition of nearest neigh-
bours, being non-frustrated for all values of 6. However, this generalisation
has to date not been investigated and its appearance seems not to have

been noticed by Jackson et al.

It would be of particular relevance here, to compare numerically, the en-
ergy of the field configuration satisfying this generalised twisted boundary
condition. We can also compare these lattices asymptotically, by consid-
ering the tenéor interaction of a rei)resentative hedgehog skyfmion with
neighbouring skyrmions. We ﬁn'd that the net contribution to the tensor
potential, of all successive numbers of nearest neighbours, is independent

of the angle #. This startling result suggests that this ‘global planar’ iso-
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rotation through an angle 4, is a true zero mode of the Jackson crystalline

arrangement.

However, this asymptotic result may not hold at finite separations. Here,
we would have to perform a numerical calculation in order to see whether
or not this is a true zero mode. However, the existence of a zero mode
would provide us with an alternative collective coordinate, which could
be semi-classically quantized. Presumably, this would lead to different
possible interpretations to Klebanov’s interpretation of a skyrmion crystal
corresponding to a neutron crystal. Finally, it would be expected that at
high densities, this generalised symmetry would be present in the condensed

phase of skyrmionic matter.

. The fcc array depicted in Figure (3.1.3a), for which we shall later present
numerical results, will have a more efficient close packed structure and
thus would be expected to lead to a greater binding energy than these
cubic lattices at high densities, when the localised spherical skyrmion fields
are increasingly forced to distort. The fcc array has the skyrmions at the
corners of the fcc cube unrotated and those on the faces iso-rotated about
the normal to the corresponding face by an angle = and this leads to the

following set of twisted boundary conditions,
Ulz+a/2,y+a/2,2) = 1,U(=z,y,2),
Uls+a/2,u,2+a/2) = 7,U(5,y,2)7
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U(z,y +a/2,z+a/2) = 7,U(z,y,2)r. (8.2.12)

This arrangement has all twelve nearest neighbours asymptotically max-
imally attractive, but the six next nearest have zero attraction. Thus, a

significant asymptotic binding energy results.

A particularly representative cell was depicted in Figure (3.1.3a) of the
fcc crystal and is a cubic octant of the full fcc cube.l The points where
U(Z) = —1, lie at four of the vertices of this representative céll and taken
together form the vertices of a tetrahedron inscribed within the cell. At the
remaining four vertices the skyrmion field has a value 1 and these vertices
also lie at the vertices of a similar tetrahedron. The field U(Z) maps this

cell onto SU(2) and hence, within a representative cell, the field contributes

B =1 to the crystalline skyrmions field’s total winding number B.

. The becc array that we shall consider is dépicted in Figure (3.1.3b) and
can be obtained from the fcc lattice described above, by contracting the
z axis by a factor v/2, the fcc nearest neighbours in the (z,y) plane now
becoming the corners of the bce cube and the skyrmions on the centres of
the (z,z) and (y, 2) faces becoming the ones at the centre of the bcc cube‘.
Alternatively, expressed in terms of the bcc variables wé have the twisted

boundary conditions;

U(zta,y,2) =U(z,y*ta,z)=7U(z,y,2)7, (9.2.13)

Uz % 0/2,y+a/2,2 + 0/2) = (1, F 72)U(z,y,2)(r, F 72) /2.
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The eight nearest and four of the six next nearest neighbours are maxi-
mally attractive, and the remaining two neighbours produce no long range
attraction. Hence this arrangement also leads to high asymptotic binding

energy.

We can take a representative cell of this bcc array to be that cell which
results when the cubic fcc representative cell is contracted along the z-axis

by a factor of \/5. This representative bcc cell is thus a square based prism.

Quantitatively we can compare the binding energies of these lattices by
summing the asymptotic tensor interaction, (2.2.4), of a representative
skyrmion, with its nearest and next nearest neighbours, as well as over
a large number of neighbours at the same baryon density. The resulting

asymptotic potentials are given in Table (3.2.1).

Table 3.2.1

L® x (Potential) Klebanov Jackson fcc  bec
near neighbours -949 -1640 -2075 -1995
many neighbours -931 -1485 -1593 -1634

The asymptotic potentials from equation (2.2.4) for a single skyrmion divided by the
skyrmion density. Near neighbours includes nearest neighbours and next nearest and many
neighbours include about 160 for Klebanov (6] and Jackson [9] arrays and all neighbours

within a distance «f 20a for fcc and bcc type arrays. L = (skyrmion density)_l/3

The contributim of distant skyrmions, is of course only meaningful in the
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zero pion mass limit, which is the case considered here. Table (3.2.1) shows
that the bcc array is most bound, while the fcc and Jackson and Ver-
baarschot arrangements are next and about equal. As expected Klebanov’s

array is the least bound array asymptotically.

. Since the fcc and bee arrays, (3.2.12) and (3.2.13), are smoothly related

by a simple contraction in the z direction by factor /2, it is both natural
and of interest to consider the rectangular interpolating lattices which are
formed as the contraction factor is smoothly varied. Hence, we consider a
regular array which interpolates between fcc and bec, by changing the unit
aspect ratio of the fcc cube of side a into a rectangular region of aspect

3 with lattice displacements in the z and y directions of ra and

ratio r
lattice displacements in the z directions of a/r?. Otherwise, the boundary

conditions of equation (3.2.12) are unaltered.

We define p = 7 — 1/r to measure the deviation from fcc symmetry (p = 0).
Hence, p = 0.23 (r® = v/2) describes a bcc array. p > 1 describes sep-
arate one dimensional columns of closely packed and relatively unrotated
skyrmions, while p < —1 describes separate planes of square arrays of
skyrmions, within which first, third and successively odd numbered near-
est neighbours are maximally attractive and the remaining even numbered

nearest neighbours are relatively unrotated, with zero attraction.

Performing the sums of the asymptotic interaction in (2.2.4), over nearest and
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next nearest neighbours as well as over a large number of neighbours at varying

values of p, gives the binding energies shown in Table (3.2.2).

Table 3.2.2

L?x (Potential) ‘
P -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.6 2.0
many -1776 -1663 -1614 -1593 -1604 -1614 -1651 -1697 -1619

The asymptotic potentials from equation (2.2.4) for a single skyrmion divided by the skyrmion
density. Many neighbours, is all the neighbours within a distance of 20a, fcc corresponds to

(p = 0.0), bee to (p = 0.23). L = (skyrmion density)~1/2

The dependence on p, of this asymptotic formula, indicates that the fcc
binding energy is a local maximum, dropping aWay indefinitely for negative p
since the separated planes contain éltefnating unrotated and 6ptimally orien-
tated skyrmions. For large positive values of b, the limit of separate columns
of skyrmions which are non-interacting, the potential is zero and so there is a
minimum in the asymptotic enérgy near p = 1.3. But thése argumeﬁts'faii aé
soon as the short range repulsion comes into play.

Since the fcc array is close packed, it is quite likely to have a lower energy than
the others at high density. Furthermore, the limits p — *o00, of the asymptotic

formula at fixed deunsity, are unphysical, since at some value of p the effect of
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the repulsive cores of the nearby skyrmions can no longer be neglected. This
indicates the existence of another minimum at negative p and a major change in
the minimum at positive p.

Thus, we see that by varying the value of p we are able to investigate the
behaviour of the fcc array at high densities to bulk deformations, which may be

useful in the study of heavy ion collisions.

3.3 The High Density Phase Of Skyrmionic Matter

While at low densities a skyrmion crystal can be pictured as being composed
of weakly interacting individual spherical skyrmions, centred on the points of a
lattice, this will not be a reasonable picture at high densities. At high densities
the fields of the individual skyrmions will undergo considerable deformation and
can no longer be said to be weakly interacting.

This is in direct analogy with the situation which arises for the B = 2
skyrmion configuration [17]. At large separations, the configuration consists of
two distinct, spherical skyrmions, weakly interacting and orientated relatively
so as to optimize their tensor attraction. At small separations the individual
skyrmions completely loose their identity. A particular discrete reflection sym-
metry of the field configuration at large separation, becomes, at small separations,
a continuous axial symmetry [18].

For a crystal at low densities, with large regions of trivial vacuum surrounding
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the localised skyrmions, < o > is close to 1. As the density increases, this value
decreases to zero as the size of the trivial vacuum region is reduced. For all
the arrays described in the previous section this behaviour of < o > has been
demonstrated numerically [13][9] [10] and beyond some critical density it as been
found that a condensed phase, characterized by its value being rigorously zero,
is energetically preferred. Thus, the value of < ¢ > has been used as an order
parameter to identify the differing phases and the exact c;'itica.l density beyond
which the condensed phase of skyrmionic matter is energetically preferred. The
vanishing of < ¢ > and hence the formation of the condensed phase, is associated
with the field configuration attaining an additional exact half skyrmion symmetry
at high densities and we shall describe this symmetry in this section.

There is an analogous behaviour for a skyrmion on 5%, (L) [5], with a second
order phase transition at a value of L = v/2 from the low density phase, consisting
of a hedgehog localised at a pole with < o > close to unity, to the high density
delocalised phase, consisting of a trivial map skyrmion with < o >= 0. Here the
vanishing of < o > is a trivial consequence of the restoration of O(4) symmetry
at high densities.

Goldhaber and Manton [14] proposed that at high densities, the condensed
phase of a crystalline array of skyrmions could be pictured as being composed of
an array of half skyrmions centred on the U(Z) = +1 points of the original low
density array.

A simple picture of a half skyrmion is provided by considering a spherically
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symmetric hedgehog field in flat space, with its profile function f(r) satisfy-
ing the boundary conditions f(r = 0) = 7 at the centre of the hedgehog, and
f(r = r9) = m/2 on a spherical surface of radius ro. The field is taken to be un-
defined outside of this spherical boundary. This half skyrmion has B = 1/2 and
its energy is bounded from below by 6w%f,/2e. Goldhaber and Manton found
that a half skyrmion has an energy of 1.015 X (672 f,/2¢) at an optimal value of
the radius rg = 2.09Fm. The profile function of this solution was observed to be
approximately linear.

The closeness of a half skyrmion’s energy to the energy bound and the lin-
earity of the profile function are consequences of the half skyrmion boundary
condition at r = rqo. Since this half skyrmion resides within a finite volume,
47r3/3, it is not required to stretch over the whole of space and hence it does
not have the usual tail behaviour, required for the physical B = 1 skyrmion in
order for it to have a finite energy. A second type of half skyrmion, degenerate in
energy and with the same value of ry, can be obtained by a trivial modification
of the half skyrmion boundary conditions corresponding to the transformation
f(r) — f(r) — m/2 and this also has B = 1/2. At the centre of the first type of
half skyrmion U(Z) = —1, while at the centre of the second type, the field as a
value 1 and on the spherical boundary surface the o field vanishes for both. The
first type of half skyrmion has its pion field pointing radially outwards, while
the second type has its pion field pointing radially inwards. The skyrmion field

is not defined outside of the spherical boundary at r, and these half skyrmions
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exist within a ‘physical space’ of finite volume.

In order to understand the reasoning behind this proposed half skyrmion
picture of dense skyrmionic matter, it is instructive to consider the effect that an
increase of the baryon density of a skyrmion array has on its field configuration,
U(z).

At low baryon densities, the field’s baryon density is localised in spherical
regions of space about the lattice points with U(Z) = —1. These points are well
separated at low densities and in the intermediate regions of space, the field U(Z)
has a value close to unity and thus < ¢ > also has a value close to unity. As
the average baryon density of the array is increased, the size of these U(Z) ~ 1
regions decrease and hence, so does < o >. However, since the winding number
of the skyrmion field will be conserved at all densities, the number of connected
regions of space in which U(Z) = —1 and U(Z) = +1 must be conserved and
also, there must be the same number of U + 1 regions. Thus, as the density is
increased, the regions of U(Z) ~ +1 will reduce to points, with U(Z) = +1. In
response to a reduction in the size of the U(Z) ~ +1 regions of space, the field
U(Z), within the regions of space with localised baryon density, will deform in a
manner which is consistent with the particular symmetry of the array. At some
critical density the skyrmion array undergoes a delocalising phase transition, to
a condensed phase of skyrmionic matter. This phase of skyrmionic matter has
the field’s baryon density about the U(Z) = +1 points, identical and < o >= 0.

The delocalising nature of this phase transition corresponds to the fact that there
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are now no regions of zero baryon density separating the U(Z) = —1 points and
thus, the field’s overall baryon density is spread more evenly over the whole of
space.

The additional symmetry of the baryon density and the vanishing of < ¢ > in
the condensed phase, is due to the field U(Z) attaining an additional translational
symmetry, which relates to the fields about the U(Z) = %1 points. That is to
say, a representative cell of the array in the uncondensed phase, can be taken
to contain a U(Z) = +1, or a U(Z) = —1 point and moreover, that within
one of these cells the field’s baryon number is 1/2. Thus we see, that within a
condensed array of skyrmionic matter, representative cells exist which contain
half skyrmions.

We have seen that as the density of an array is increased beyond the phase
transition density, the identification of individual skyrmions on the lattice points,
possible in the uncondensed phase, is no longer possible in the condensed phase
of half skyrmions. Its is also not possible to identify which were the neighbouring
half skyrmions which formed the original skyrmions in the uncondensed phase.

Within the condensed half skyrmion array, there exist continuous multiply
connected < ¢ >= 0 surfaces which divide the field into two disconnected re-
gions. Thus, the regions with ¢ < 0 will contain iso-rotated half skyrmions,
which are distorted versions of the spherical half skyrmions which have their
pion fields pointing radially outwards and the region with ¢ > 0 will contain

iso-rotated, distorted versions of the second type of half skyrmion. These distor-
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tions occur because the 0 = 0 boundary surfaces are not spherical and the half
skyrmion boundary conditions cannot be completely attained within a crystal,
since touching balls will not fill space. Moreover, since the regions with ¢ = 0,
which would exist if spherical half skyrmions formed the full lattice, have a finite
energy density, unlike trivial vacuum regions, these half skyrmions must distort
to fill all of space.

A reasonable picture of the half skyrmion lattice arrangement, is however,
obtained by placing spherical half skyrmions centred on the U(Z) = %1 points
within the Wigner-Seitz cells of the lattice, so that neighbouring half skyrmions
are non-frustrated. The true crystalline array will then be obtained by distorting
the shapes of the spherical ¢ = 0 surfaces, of neighbouring half skyrmions, so
that they meet smoothly and fill the whole of space. The distortion of the
half skyrmion boundary conditions, will require both a radial distortion and an
internal twist of the half skyrmion field. One expects the distortion will however,
not be too large and will produce little change of the half skyrmion field near its
centre. This picture suggest that a condensed skyrmion array will have an energy
per unit baryon, which is bounded from below and which is a factor 1.015 above
the lower bound (1.1.21). With this picture it also seems reasonable to predict
that the minimal energy configuration would be attained when the volume of the
half skyrmion lattices Wigner-Seitz cell is equal to 47r8/3, so as to reduce the
extent of the field deformations required for the half skyrmions to fill space.

For all of the lattice arrangements described is Section 2, the existence of a
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phase transition to a condensed phase of half skyrmions possessing an additional
half skyrmion symmetry at high densities, has been numerically - demonstrated.

We shall now describe these additional symmetries.

1. For Klebanov’s cubic arrangement the U(Z) = —1 points lie on the points of
a simple cubic lattice, while the U(Z) = +1 points are at the body centres
of this cubic lattice. Thus, these two sets of points form two intersecting
simple éubic ‘lé.ttices and taken together form a bcc airay. Hence, the
condensed phase, which exists at high densities, consists of a bcc array
of half skyrmions. The additional half skyrmion symmetry of this ariay,

which relates the U(Z) = 1 and U(Z) = —1 points, is expressed as
o(z,y,2) = —o(a/2—é,%z/2—y,a/2—x),
n(z,y,2) = my(a/2 —2,a/2 -y,a/2 —x),
Ty (Z,y,2) = 7 (a/2-2,0/2 —y,a/2 —x),

7.(2,y,2) = m,(a/2 -2,0/2 —y,a/2 — x), (8.8.1)

and cyclicly. The boundary conditions express the effect of a lattice transla-
tion and relate the fields of both types of half skyrmion within neighbouring

cells.

At the U(Z) = +1 points, at the body centre of the cubic representati‘ve
cell, there sits a half skyrmion of the type which has its pion field pointing
radiélly inwards. Manton and Goldhaber [14] showed that these boundary
conditioﬁs resﬁlt in the half skyrmion at the body centre being iso-rotat:ed
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about the line passing through the points (a/2,a/4,0) and (0,a/4,a/2), by
an angle 7. Examination of Figure (3.1.2b), shows that the resulting pion
field arrangement of this half skyrmion to its eight nearest neighbours at the
vertices of the cube, is relatively non-frustrated. Thus, at high densities,
the bcc array of this half skyrmion, has neighbouring half skyrmion pion

fields meeting smoothly.

. The Jackson and Verbaarschot array has the field’s U(Z) = —1 points
centered on the points of the simple cubic lattice. The U(Z) = +1 points
are located within the planes parallel to the (x,y) planes at the centres of
the squares formed by the U(Z) = —1 points. Thus, in the condensed phase
one type of half skyrmion will be centred on the original cubic lattice points
and the other type of half skyrmion will be centred on a cubic lattice which

is related to the original lattice by a lattice translation (a/2,a/2,0).

The additional half skyrmion symmetry is given by,

o(z,y,2) = oly,z,2),
0'(.'12, Y, z) = —0’((1,/2 -, a/2 - Y z),
(z,y,2) = 7(a/2 —=z,a/2 —y,2), (3.3.2)

and cyclicly. Jackson et al [9] noted that the reflection symmetry of the
sigma field, about the plane z = y, was not present in the pion fields.
These symmetries, (3.3.2), show that at the point (e¢/2,a/2,0), (see Fig-
ure (3.1.1c)), there is a U(Z) = +1 type half skyrmion, which has been
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iso-rotated about a line parallel to the line x = y, 2 = 0 by an angle 7, in
order to attain a non-frustrated pion field arrangement within a square pla-
quette. However, the absence of the reflection symmetry about the z = y
plane, seems to be due to the particular choice of the twisted boundary
condition Jackson et al imposed in their numerical investigations. Had
they considered instead, the boundary condition (3.2.5), that is , the gen-
eralised boundary condition in which 7, is replaced by 7,sinf + 7, cos ¥,
then presumably, for § = m /4, their numerical results would have revealed
that the pionic fields were reflection symmetric about the £ = y plane.
This expectation can easily be understood, by noting that when ¢ = 7 /4,
the low density arrangement of the pion field is such that the plane z = y
is either parallel or perpendicular to all of the axes about which the pion

fields of the hedgehogs are iso-rotated, by an angle .

. The fcc array has U(Z) = —1 at the lattice points and these and the

U(Z) = 1 points, form two intersecting fcc lattices. When taken together
these form a simple cubic lattice of U(Z) £ 1 and so in the condensed phase
there exists a simple cubic array of half skyrmions. The additional half

skyrmion symmetry at high densities can be expressed as;

o(z,y,2) = —o(z+a/2,y,2),

7'r'(:1;,y,z) = ——7?(:1:+a/2,y,z), (333}

and cyclicly. This symmetry of the condensed half skyrmion array can also
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be pictured in terms of the condensed array being composed of alternating

U(Z) = £1 half skyrmions.

In order to clarify matters we shall briefly describe the effect that increas-
ing the density has on this fcc array. At low densities the skyrmions are
localised about four of the vertices of the representative cube of the fcc
array, as indicated in Figure (3.1.3c). Each skyrmion has a spherical o =0
surface separating its inner half skyrmion, o < 0, from its outer half o > 0.
The ¢ < 0 regions fill most of space and connect neighbouring skyrmions.
As the density increases, the inner half skyrmions increasingly fill more of
space and in response, the field deforms such that the ¢ = 0 surface becomes
more cubical. Beyond the phase transition in the half skyrmion condensed
phase, the o = 0 surfaces become perfect cubes, with sides a/ 2 which touch
along the edges, leaving the ¢ > 0 regions divided up in to exactly sim-
ilar cubes. This half skyrmion arrangement is depicted in Figure (3.3.1).
Here we have indicated the axis of rotation about which the pion fields of
the half skyrmions are rotated through an angle n. The inward pointing
arrows signify that the half skyrmion has U(Z) = +1 at the lattice point
and its pion field arrangement is obtained from a spherical half skyrmion,
with its pion field pointing radially inwards by an iso-rotation of angle =,
about the axis indicated. The open and solid circles indicate an unrotated
half skyrmion of the U(Z) = —1 and U(Z) = +1 types respectively. The

o = 0 surfaces are the orthogonal planes, with either z,y or z equal to a/2
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Figure (3.3.1): A non-frustrated nrrangement ol eight hall skyrimions at the
vertices of a representative lce cube. The inward pointing array indicales a
U(&) = 41 type half skyrmion which is iso-rotated about the direction of the
arrow by an angle 7 and the [ull circle denotes an unrotated U(£) = 41 half
skyriuion.



or 3a/4. For this arrangement all neighbouring half skyrmions have pion
fields which are relatively non-frustrated, as is indicated in Figure (3.3.2).
This shows the flow of the pion field within the (z,y) plane at z = 0 of the

fcc representative cell.

The figure clearly shows, that in the condensed phase the pion fields of
either type of half skyrmion are identical and also the manner in which
these fields meet smoothly on the 0 = 0 surfaces. The dashed line indicates
the positions of these 0 = 0 surfaces within the representative cell and each
square represents a cross-section at z = 0, through the octant of one of the

cubes which contains half a skyrmion.

This symmetry also enables us to perform our numerical calculations in
the condensed half skyrmion phase, within a octant of the representative
cell of the fcc array, Figure (3.3.1), since the pion fields within each ¢ <0
and o > O cube are related by expression (3.3.3). We shall later detail the

manner in which these numerical studies were performed.

Both the bce and the interpolating lattices, which result as p varies, possess
the same symmetry as fcc, with a trivial change in the lattice spacings in
one direction as compared to the others. Thus, the variation of p generalises
the cubic array of half skyrmions at p = 0, to a rectangular array of half

skyrmions.
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Figure (3.3.2): The iso-vector pion ficld arrangements in the z = 0 plane,
withiv the balf skyrmion cube depicted in Figure (3.3.1).



3.4 Numerical Calculations

In this section we shall outline the numerical procedure we adopted for the study
of the fcc, bee and interpolating lattice. This procedure was the same as the one
employed by Jackson et al [9] and has the advantage over Klebanov’s procedure
of increasing the rate of convergence by a factor of two.

Numerical calculations of the minimum energy of the Skyrme Lagrangian, as
a function of a, have been carried out for the fcc and bee configurations and for
a range of crystal arrays interpolating between them with —0.35 < p < 0.32.

The calculation procedure employed, involved solving a discretised form of

Hamilton’s Equations. Introducing the canonical momentum

oL

M= o

(3.4.1)

where L is given by equation (2.1.17) and the field ¢, satisfies the constraint

#*¢* = fZ, the Hamiltonian Equations read

¢ = Ag'L,

I, = 8.(Budidr) + A\, (3.4.2)
where,

Aa = (/44 {0:¢n}’)0u — Bidedidr,
Bl = (1/4+{0,0m}*)bu — 0,010, ¢1. (3.4.9)
The Roman indices run from 1 to 3 (spatial coordinates) and the Greek indices

run from 0 to 3 (space-time coordinates). The Lagrange multiplier, A, has been
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introduced to enforce the field constraint. Here we have introduced the dimen-
sionless units via the transformation z, — z,/2ef,.

In order to obtain static, minimal energy configurations we treat the time
variable as a ‘pseudo time’ variable and use a field relaxation technique that
ensures as we advance in ‘pseudo time’ steps At, we always move down hill in
ener.gy. We perform the minimisation of the énergy in a single octant of the face
centered cube for the dilute phase and in an octant of the half skyrmion cube in
the condensed phase. That is, an octant of the fcc representative cell depicted in
Figure (3.3.1). Eiactly the same procedure was used for .the bcc a;nd iﬁtermédiate
cases, by trivially changing the aspéct ratio of the cube into a rectangular region,
with lattice displacements in the z and y or = airections becoming ra or a/r?
respectively, but otherwise keeping the same boundary conditions.

As an initial field configuration we employed hedgehog fields smoothed at the
boundaries of the cell. We assume that across the plane connecting the centres
of the skyrmion, the pion fields are reflection symmetric.

The mesh size was typically 18% mesh points to the octant of the cube in
the dilute phase and the same number, or fewer points in the octant of the half
skyrmion cube in the condensed phase, providing substantially greater accuracy.
Convergence was assumed, when the extrapolated energy did not vary signif-
icantly over several hundred iterations, during which the baryon number was
stable to 0.01%. Converged non-condensed phase solutions always had a baryon

density greater than 0.96 and condensed phase solutions a baryon density greater
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than 0.99.

The results so obtained for the field energies and values of < o > were extrap-
olated to an infinite number of iterations, as in [9], where this error was shown to
be exponential. Then the energies were extrapolated to zero mesh size. This was
easy in the condensed phase, where the energy and baryon density are spread
fairly uniformly in space so that the energy varies linearly with 1/n?, where n® is
the number of mesh points; but in the dilute phase the number of points covering
each skyrmion reduces as the size of the cube increases and the extrapolation is
less clean. The baryon density also reflects this feature, so the deviation of the
numerical calculation of the baryon number B from 1, is also a measure of errors
due to finite mesh size and this provided an alternative extrapolation procedure.
The value of 1 — B is proportional to 1/n? for large n in the condensed phase,
but the slope varies with a. The extrapolations to zero mesh size was therefore
performed by linear extrapolation of the energy with respect to 1 — B, the slope
determined by varying n for some typical cases.

This procedure is very accurate for the condensed phase, leading to errors of
a fraction of an MeV, but in the dilute phase typical errors are two MeV. To
ensure continuity at the second order phase transition points the energies in the
dilute phase were adjusted (within their errors) to agree with the more accurate
values determined with the condensed phase boundary conditions.

The rate of convergence of the energy, as in [9], was observed to be about

two times as fast as that for < ¢ >. In order to determine the location of the
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phase transition point accurately, much use was made of the value of the order
parameter < ¢ >. By following the variation of < o > as the lattice spacing
was reduced, we accurately determined lattice spacing at which < ¢ > vanishes.
However, in order to provide reliable values of < ¢ >, it was necessary to obtain
well converged solutions in the condensed phase. Thus, within the condensed
phase we devoted a considerable amount of computer time to obtaining well
converged solutions. Indeed, without reliable values of < ¢ >, the second order
nature of the phase transition would not have been established.

The numerical calculation was performed using a Cray computer and involved
considerably more C.P.U. time than those which had previously been performed
with cubic arrays of skyrmions. This was because a whole series of differing
lattices, generated by varying the aspect ratio of the fcc cube, were considered.
As a result, this involved obtaining about sixty converged solutions within each
phase, about twelve times as much data as was required by Jackson et al [9] for
their calculation with a rectangular skyrmionic lattice.

Moreover, unlike the previous calculations, we obtained reliable extrapola-
tion to zero mesh size for all our data at differing values of a. This involved
establishing how the energy varied as the number of lattice points was varied
and also required well converged data. Jackson et al on the other hand, only
performed the extrapolation for the minimum energy condensed configuration at
high densities.

Finally, as we shall detail in the next section, we also investigated the effects
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of including a pion mass term, (see (2.1.5)), which explicitly breaks Chiral Sym-
metry and for which we obtained a considerable number of fcc (p = 0) converged

solutions.

3.5 Numerical Results

The solutions show some very general features which hold for all values of the
aspect ratio p so far investigated. Consider first the fcc array, p = 0. At low
density the skyrmions are well localised around their lattice positions (0,0,0),
(0,a/2,a/2), (a/2,0,a/2), (a/2,a/2,0), each with a nearly spherical surface o =
0 separating the inner half skyrmion, o < 0, from the outer half, ¢ > 0. This
latter region extends to neighbouring skyrmions, is connected and fills most of
space. The space average < o > of the o field is thus close to 1, while < # >=0
due to the cubic symmetry.

As the density is increased the energy per skyrmion drops smoothly, as does
< o >. The skyrmions spread out a little and the ¢ = 0 surfaces get more
cubical. Then a second order phase transition is reached, the energy still dropping
smoothly, but the o = 0 surfaces now become perfect cubes of side /2, which
touch along the edges leaving the ¢ > 0 region divided up into exactly similar
cubes. The ¢ = 0 surfaces are orthogonal planes with either z , y or z equal to a/4
or 3a/4. The half skyrmions ¢ < 0 and ¢ > 0 now have identical 7 distributions,

but there is no longer a unique way of associating any ¢ < 0 half skyrmion with
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a corresponding ¢ > 0 half skyrmion. If the density were to be decreased from
this symmetrical phase, the skyrmion density could either re-concentrate around
the original points where 0 = —1, or alternatively on the points where o = 1.

Above the phase transition, a = a,, we find < 0 >~ (e — a,)?, (see Figure
(3.5.1)). This is the signature of such a second order phase transition and the
linear plot of < o >?* against a, also shown in Figure (3.5.1), provides the most
accurate determination of a. .

The extra symmetry acquired at the phase transition is that given by equation
(3.3.3). Exactly the same second order phase transition, with corresponding
scaling of z, y and z coordinates, occurs for all values of p in the range —0.35 <
p < 0.32, and probably for all p. The bcc array seems in no way a special case.

A similar second order phase transition was observed for the rectangular array
by Jackson et al [9], who also claim that Klebanov’s cubic arrangement undergoes
a first order phase transition.

As the density of skyrmions is further increased beyond the phase transition
density the energy continues to fall until it reaches a minimum, which for the fcc
symmetry is only 3.8% above the theoretical lower bound, a figure which agrees
with the result of Kugler and Shtrikman [12]. It then rises rapidly. These results
are illustrated in Figure (3.5.2) where the energy is plotted against L = p/3,
where p is the skyrmion density, for the fcc and bcc array, and the Klebanov
array for comparison. The modified cubic of Jackson and Verbaarschot [9] has

not been plotted as it lies just above the bce curve and has the same shape. The

103



0.4

0.3

Figure (3.5.1): Plotn of - o

L (Fm)

2

~and < g >* versus I with L = (density)

104

~1/3




SO

Klebanov

-50 —

Binding Energy (MeV)

-100 —

-150 L L I I
1.0 2.0 3.0

L (Fpy)

Figure (3.5.2): Plows of energy versus L = (density)™/%; fcc array, bee array
and Klebanov’s cubic array. I'he curve for the Jackson cubic array has not
been plotted as it lies just above the bee array. Solid lines have half skyrmion
symmclry and dashed do not.
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uncondensed phase is shown branching smoothly from the condensed phase, for
both the fcc and bec arrays. In terms of the parameters used by Klebanov 6], and
Jackson and Verbaarschot [9] fr = 64.5MeV and e = 5.45, the minimum energy is
727.4MeV at L = Ly = 1.666Fm and the fcc phase transition occurs at 779.56MeV
and L = L, = 2.45Fm. The minima and also the phase transition occur at nearly
the same density in the fcc, bee and alternative cubic [9] arrays. This is clearly
visible in Figure (3.5.3) where constant energy contours, (solid lines), have been
plotted in the (L,p) plane. Also shown is the line of critical points, (dashed
line), and the line of minima in L at constant p, (dot-dashed line). The critical
points occur at an almost constant density with hardly any dependence on p.
Furthermore, near the critical density, the equal energy contours are almost
parallel to the p axis so that Skyrme matter is hard to decompress but very easy
to deform, in fact rather like jelly. This feature persists nearly to the minimum.
The circular contours in Figure (3.5.3) are deceptive, since p = 0.23 corresponds
to a factor 1.4 in aspect ratio, while the same contour can be reached by increasing
L by 18%.

Near the minimum we might expect that small changes in L and p would
produce predominantly, a stretching of the fields in the appropriate directions
without essentially changing their shape. The two components of energy e, and

€4 quadratic and quartic in derivatives, would then scale as:

. EQ 2 4 L —Eo 2 p3 L
e = gt =5+ +5+) (8.5.1)
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Figure (3.5.3): Contour plols of oqual encergy in the (L, p) plane where L =
(density)~Y® and p meosures the deviation from fcc symmetry (see text). Also
shown are the curves for minimum cnergy with respect to L at fixed p and of the
phase transition points separaling the condensed hall skyrmion phase from the
dilute phasec.
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3 (3.5.2)
From fcc symmetry, both e; and e4 are separately stationary with respect to p at
p = 0. The total energy E is a minimum FEy when L = Lo and e; = ¢4 = Ey/2.
But the numerical solutions do not support such a simple scaling. For p = 0

there is only a small correction, a better approximation being

E, L Lo
5 ((L—0 + f)(l — €) + 2¢) (3.5.3)

Ep=o (L) =

with ¢ = 0.0515. However, the dependence on p is more interesting. e, does
indeed have a minimum at p = 0, with roughly the expected coefficient for
p?, though it falls more slowly with L, but e, has a maximum rather than a
minimum, with a negative coefficient for p? which increases linearly with L. At
Lo the p? contribution of e; to E is negative and smaller than the positive e4
contribution, but it increases with L until it gets larger, so that the curvature
of E in p varies smoothly from a positive value at Ly through zero at a critical
density corresponding to L = Ly = 2.43Fm, to negative curvature above this
second critical point.

There are therefore at least two independent soft modes which go negative
at L, and L4, the mode which breaks the half skyrmion symmetry but keeps
fcc symmetry and the mode which breaks fcc symmetry but maintains the half
skyrmion symmetry. Though L, and L, are very close, they appear not to be
equal, but the two phase transitions may none the less be related and since
the second is triply degenerate, there may be a whole class of modes which go
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negative at this critical density, signalling perhaps a solid-liquid phase transition.

>The above picture explains the salient features of Figure (3.5.3), the near
independence of both the critical point L, and the energy on p near the critical
density. It enables us to express the energy as a smooth function of L, p and
< o > such that for each L and p, minimising with respect to < ¢ > gives the
calculated energies and values of < ¢ >. The phase transition which breaks
the half skyrmion symmetry then arises from E(L,p, < ¢ >= 0), changing from
minimum to maximum in < ¢ > as L increases through L., and similarly fcc
symmetry is broken at Ly as E(L,p = 0,< o >) changes from a minimum to a
maximum in p. From symmetry, the energy must be an even function of < ¢ >

and for small < ¢ > it may be parameterised in terms of < ¢ >? and < o >* as:
E(L,p,< 0 >) = E,=(L) + Ele(L)p* + B(L)p* +~(L)p* + 6(L)p® + -+
+ Eylg(L) < o > +v(L) < 0 > (8.5.4)

where the coefficients are given by

L
a(L) = 0.649 — 0.487— + 0.089ﬂ

Lo L
L Ly
L) = 0.300 + 0.006— — 0.119—
B(L) +0.006 7 ;
L Lo
L) = —1.64+0.718— +0.71=—
v(L) +0I8 - +0.717
L
§(L) = 0.53 —0.55—
Lo
L L
L) = (1 - 3-)(0.430 + 0.243=
d(b) = (1-7)04s0+0243)
L L,
= 0.0218(— + 3.00—). 5.5
v (7 +3:00F) (3.5.5)
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The first four coefficients are known rather accurately, since they can be cal-
culated from solutions for the condensed half skyrmion phase and are chosen
to fit the p dependence of the energy right through the region Ly < L < 2.8
for —0.35 < p < 0.35, but the last two coefficients describe the start of the dilute
phase and would be less accurately determined from solutions in the dilute phase.
But here also one can use the solutions in the condensed phase to determine ¢(L)

and v(L) below L., by including a pion mass term
Em = (mefr)’(1- < 0 >)L3 (3.5.6)

for each skyrmion, to drive the solutions away from < ¢ >= 0 and half skyrmion
symmetry, the pion mass acting like a chemical potential for < o >. This enables
us to determine the coefficients in (3.3.5) much more accurately.

The first factor in ¢(L) was chosen to change sign at the critical length
L = L, = 2.45, a point which is best determined from the extrapolation of < o >Z
in Figure (3.5.1), and the magnitudes and forms of ¢(L) and v(L) are then ad-
justed to fit the values of < ¢ > as a function of L, which arise from including the
pion term above, for various values of m,. These predict results consistent with
the values of < o > in Figure (3.5.1) and the difference in energy between the
condensed and dilute phases above L. from Figure (3.5.2). We have not included
p? < o >? terms in E, though there is a small effect, nor have we included the
slight p dependence of L. in the parameterisation. The coefficient a(L) changes

sign at I = Lq = 2.43 and the coefficient v(L) also changes sign at nearly the
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same L. Thus, for fixed L, L < L, and small |p|, the energy has a minimum at
p = 0 and a maximum for p < O which merge at L = L4, the maximum is at
p = —0.175 for L = 2.25 and at p = —0.46 for L = 2.0. For L just above L4
there is a maximum at p = 0 and a minimum at positive p, at a distance from
p = 0 which depends mostly on the p® coefficient §(L) and which merges with-
the maximum at L;. There is presumably another minimum at larger negative
p for L > 2, which is outside the range of the present calculation and does not
show up in Figure (3.5.3).

It is hard to calculate the field distributions for densities lower than those
shown in Figures (3.5.2) and (3.5.3), or for large |p|, but the asymptotic form of
the energy arising from equation (2.2.4) (see Table 3.2.2) predicts a maximum
for fcc symmetry, p = 0, with energy falling continuously for negative p. Due
to short range repulsion one would expect that there would be a minimum for
fixed density at some negative p, but, as shown above, this is beyond the range of
our calculations. For positive p, the minimum which appears in the asymptotic
formula starts at the phase transition Ly at p = 0, and moves to larger p as
L increases. But there is really no good reason to believe that at low densities
the cubic or rectangular structures studied so far should be minima. It is worth
noting that the ratios L./Lo = 1.47 and L;/ Lo = 1.46 are only 4% and 3% above
the critical ratio of v/2 which Manton [5] derived for skyrmions on Ss; where
the lower bound can be achieved exactly. Since the energy for the fcc in R is

only 3.8% above the lower bound, Manton’s argument can be modified in an

111



approximate way to explain why L, differs by only a few percent from V2L,
but the argument for Ly lying so close is less clear. We shall present arguments
in the next chapter which explain the closeness of L; and L., by considering

deformations in the shape of S5,

(L).

Finally, as we have already indicated, we expect the energy of the half
skyrmion to be ‘bounded’ from below by the energy per unit baryon number
of a hedgehog-like half skyrmion. Such a half skyrmion is contained within a
sphere of radius ro. Manton and Goldhaber [14] determined the optimal value
of ry to be 0.77TFm and this corresponds to the value of Ly = 1.571 in our crys-
talline variables. The energy of this half skyrmion per unit baryon number is
just 1.015% above the lower bound.

Figure (3.5.2), indicates that this value of Lo, for a half skyrmion, is close to
those values of Ly at which the minimum of the energy is attained for all the
condensed skyrmion arrays so far considered. Indeed, the values of Ly for the
Klebanov array of 1.548Fm and for the fcc array of 1.666F'm, are within a few
percent of this value.

Manton and Goldhaber observed that it is plausible that the distortions of
a spherical half skyrmion, required for it to fit in to a Wigner-Seitz cell of a
half skyrmion lattice, will raise the energy least if the volumes of the Wigner-
Seitz cell and of the spherical half skyrmion are the same. In this case , this
will minimise the distortions which are necessary for a spherical half skyrmion

to fill the Wigner-Seitz cell. Thus, the close proximity of these values seems
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to justify this idea. We note finally, that the minimum energy of all the lattice
arrangements is indeed bounded by the ‘half skyrmion lower bound’, with the fcc
array just 1.023% above this bound. Thus, presumably the distortions involved
in the spherical half skyrmion filling the Wigner-Seitz cubic cell of the fcc lattice

are small.

3.6. Approximate Parameterised Variational Forms

The distribution of the ¢ and 7 fields at the minimum are extremely well

approximated by the formulae

o = cos(£)cos(n)cos(s)

Ty = sin(f)\/l — %sinz(n) — %sinz(g) + %sinz(n) sin’(5)  (3.6.1)

and cyclicly for n, and #,, where £ = 27z /a, n = 27y/a and ¢ = 272/a. This
formula is a three dimensional analogue of the exact two dimensional solution
for the Non-Linear Sigma Model, described in [19] in terms of the Jacobi elliptic
functions sn and cn which replace sines and cosines.

This formula for the o field clearly indicates, through its functional separa-
bility of the z,y, z dependencies, that there are 0 = 0 cubic surfaces within this
condensed half skyrmion field conﬁgufation. Moreover, this form has proved use-
ful in picturing the symmetries possessed by the pion fields which we discussed

in Section 3.3.
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An extension of formula (3.6.2), including variational parameters which mod-

ify the arguments &, n, ¢ by

. 27z
£ — ¢+ asin ,
a’Z

_ . 2my
n — n+4+asmm—,
ay
~ . 27wz
¢ +— ¢+ fsin , (8.6.2)

4

and similarly the factors % and % can be found to fit the whole range of densities
and deformations considered here for the half-skyrmion condensed phase [20].

On 83, (L), we noted in Chapter 2, that in the uncondensed phase, a finite
conformal transformations of the trivial map gives the correct bifurcation point
and has a finite energy in the flat space limit, as L tends to infinity. However,
in this limit the energy of the finite conformal map differs from that of the true
flat space skyrmion by a small but significant amount. In the next chapter we
construct this map explicitly. Weiss et al [21] considered a simple one parameter
generalisation of the finite conformal map and were able to accurately reproduce
the energy of the skyrmion on Sg'hv(L) for all values of L.

It was thus suggested [21] that a finite conformal mapping of the half skyrmion
fields in the condensed phase, might provide a reasonable description of the un-

condensed phase solutions and the bifurcation point. A finite conformal mapping

of the 0 and 7 fields is given by,

. (=1 + (A +1)0
T ryF (-0
2A7T,'

N P E CE P (8.6.5)
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For this transformation, the matrix K;; (see equation (2.3.2)) becomes,
(8.6.4)

K,'j = -7_r72'
For values of A greater than 1 and with the ¢ and 7 fields give by equations
(3.6.3) and (3.6.4), the skyrmions localises about the o = 1 points . For values of

A in the range 0 < A < 1 the skyrmions tend to localise about the 0 = —1 points,

corresponding to the lattice sites of the fcc crystal. The energies of configurations

with A greater than one are related to those with 1 > A > 0 by the transformation

A 1/
The value A = 1 is an extremum of the energy and corresponds to the fields

having the half skyrmion symmetry of equation (3.3.3). The energy of this vari-
ational form was found numerically to be a minimum for A = 1 up to a value of
L, = 2.58Fm and beyond this a bifurcation in the energy occurs, with the A =1
form becoming a maximum of energy. These results are in reasonable agreement
with the exact numerical results we have presented.

This demonstrates that the modes of instability which result in the delo-
calising phase transition for the fcc array are predominantly the infinitesimal
conformal modes which transform the field variables. A full variational calcu-

lation with the parametric forms (3.6.2) and the generalisation including the
variation parameter A for the uncondensed phase however, still fails to accu-
rately reproduce the exact results. The major discrepancy once more occurs in

the asymptotic limit. By analogy with their thy(L) generalisation of the finite
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conformal map, they extended their variational form such that A became a two
parameter function of position. This modified variation form, with the correct
asymptotic inverse cubed dependance of the energy on the separation distance,

they claimed to be completely consistent with our numerical results [21].

3.7 Conclusion

There are several rather general conclusions to be drawn from all these detailed
calculations. The salient feature is that there is a robust phase transition as
the density is increased from a system of isolated skyrmions with no strongly
preferred symmetry, to a regular lattice of half skyrmions. The transition is
in general second order and the condensed system has lowest energy with fcc
symmetry. The phase transition and condensed phase look remarkably similar
to Manton’s solution [5] on a 3-sphere. The energy minimum occurs at a density
of 0.217Fm~% and the phase transition at 0.068Fm=3. These should not be
compared directly to nuclear matter density 0.17Fm™3. The Klebanov[6] choice
of parameters sets energy and length scales determined by f,, which is set at
the unrealistic value of 64.5Mev. Also skyrmionic matter contains both nucleons
and A and the latter have not been projected out. At high density this may be
a reasonable approximation, but not at low densities. Furthermbre, the present
calculations contain only potential terms and no kinetic energy contributions.

The effects of iﬁcluding these to one loop order can be crud.ely estimated from
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the work of Zahed et al. [22] for a single skyrmion on R; and Generalis and
Williams [23] for S5. One loop contributions appear to lower the skyrmion mass
by about 20% in the dilute phase or near the phase transition, with most of the
contribution occurring effectively in the es term rather than in e;. Even larger
corrections may occur near the minimum energy of the condensed phase. Such
changes in the relative strength of e, and e, would increase the above densities
by a significant factor, to bring them more in line with predictions for nuclear
matter.

In most of the above calculations we have concentrated on the zero pion mass
case, using a finite pion mass only to explore the energy surface as a function
of < ¢ >. This seems a good procedure for several reasons. Our main interest
is to explore the effects of the transition to half skyrmion symmetry and the
pion term destroys this symmetry explicitly. The pion mass is important for well
separated skyrmions, because over large regions of space (far from the center of
the skyrmions), it is the dominant term in the action. But in our dense system
this occurs nowhere and so the pion and o distributions will not be altered by
much. There is also the question of whether it is correct to use the free field values
of the pion mass and f, in such dense systems. According to Forkel et al.[24],
the half-skyrmion transition corresponds to chiral symmetry restoration and they
argue one should consider that the f, in equation (3.5.6) really corresponds to
< ¢ > and would thus give no contribution in the condénsed phase. The mass

term in (3.5.6) ensures that skyrmions will prefer to concentrate around points

117



with ¢ = —1 rather than ¢ = +1. The dominant effect of the pion mass on
the energy is to introduce a term proportional to the volume occupied by the
the skyrmion; this shifts the minimum, decreasing Lo by 2.2% and increasing
its energy by 42MeV; it also slightly increases the energy difference between the
bcc and fcc minima. The pion mass term always leads to a non-zero < o >.
For L < L., < 0 > is small and dominated by the balance between the < o >
term in E,, and the < o >? term in (3.5.4), it is proportional to m2/q(L) and
so gets larger as L approaches L,. At the minimum < ¢ >= 0.12. Near L, the
quartic term in < o > in (3.5.4) becomes important and this has the effect of
smoothing the abrupt increase of < o >, which occurs at the phase transition as
seen in (3.5.1). Above L., again the shift in < ¢ > is dominantly proportional
to m2, but involves both ¢(L) and v(L). Essentially, in view of the smallness of
the pion mass, it merely leads to a smooth transition from the low to the high
density phase. Of course, < ¢ > will never be rigorously equal to zero and in
a strict sense there will be no phase transition for non-zero pion mass. Similar
conclusions hold on S;[25].

Finally, we note that Kugler et al [12] proposed that for values of L > Ly,
crystalline skyrmionic matter undergoes a phase separation rather than expand-
ing to fill the increased size of the lattice. Thus, for L > Lo, skyrmionic matter
would be composed of a region in which the baryon density was that of the
lattice at L = Ly and a region of trivial vacuum with zero baryon density and

zero energy density. Thus, beyond Ly the energy of skyrmionic matter would be
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constant and equal to the minimum value.

However, since no kinetic effects have so far been considered, it seems un-
reasonable at this stage to ignore the branch of the curve, which at low baryon
densities will correspond to a well separated array of B = 1 hedgehogs. It would
seem reasonable that this branch of the curve may represent some transient form

of skyrmionic matter.
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CHAPTER 4

SKYRMIONIC MATTER ON A CLOSED SURFACE

OF VARYING CURVATURE

4.1 A Geometrical Picture Of Skyrmions

We have seen that the properties of flat space arrays of skyrmions bear a striking
similarity to those of a single skyrmion on a S:hy(L). In particular, we have
noted that both systems undergo a phase transition as the density of skyrmionic
matter is increased from a localised phase, in which < ¢ > is close to one, to
a delocalised phase, where < ¢ > is rigorously zero. The vanishing of < o >
follows trivially on S2, (L) from the full O(4) symmetry of the trivial map and
for flat space arrays is a consequence of the additional half skyrmion symmetry at
high densities. Moreover, it has been shown that on S5, (L) this phase transition
is of second order and associated with the disappearance of zero modes at high
densities. The disappearance of these three Goldstone modes and the vanishing
of < o >? + < m >? at high densities, has led to the interpretation of this phase
transition as representing the restoration of chiral symmetry at high densities

[1]. However, in flat space this interpretation is less clear, as the additional,

discrete half skyrmion symmetries are not associated with the disappearance of
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the Goldstone modes.

Thus, there is a somewhat non-trivial relation between these two dense skyrmionic
systems, yet the gross features of both are very similar. This has been interpreted
as the curvature of S (L) simulating the interaction of the skyrmions in the
dense crystalline environment.

Hence, we are led to investigate further the role of curvature on S;?hu(L)’ by
considering different shapes of physical space which have a locally varying curva-
ture. Moreover, if we restrict ourselves to closed surfaces which are continuously
deformable into S3,, (L), we can investigate the role of deformation in the shape
of this sphere. It is to be expected that this will be related to the bulk deforma-
tion of crystalline arrays, numerically studied for fcc crystalline matter [2] and
that it will also have an analogous density L4, beyond which the trivial skyrmion
on S,?hy(L) is unstable with respect to shape deformation and that this density
will be in close proximity to that of L..

In order to develop such a generalised shape analysis, it is instructive to un-
derstand the geometric nature of the Skyrme Model. Such a geometrical picture
is to be expected, since the skyrmions stability is topological. Manton [3] has
shown that such a geometric picture does indeed exist, which we shall review
briefly.

The existence of such a picture might be expected from the outset, since the

stationary solutions of the Non-Linear Sigma Model’s energy functional defines

harmonic maps and these have a definite differential geometric interpretation.
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The Skyrme Model’s energy functional can thus be interpreted as a natural ex-
tension of the functional generating harmonic maps and this extension has been
shown to have a firm differential geometric interpretation, as demonstrated by
Loss [4]. Also the Skyrme energy functional, as pointed out by Manton [3], is
very similar to the models used in certain non-linear elasticity theories [5].

A skyrmion on a generalised three dimensional physical space, thy, is a non-
trivial mapping of M3, onto S2,. From the outset we take physical space to be

Riemanian, orientatable and connected. Thus, a skyrmion is a mapping ¢, such

that

¢ : (M2, 9) — (55,7), (4.1.1)

where g and 7 are the metrics on M3, and S3_ respectively.

phy ig0
These two metrics express the local geometric lengths of both spaces. The

mapping ¢, deforms M, 3hy in to S? and thus changes these lengths. Hence,

p ts0
the natural geometric quantity measuring the extent of this deformation is con-
structed from the metrics in expression (4.1.1).

The mapping induces a new metric on Mx?hu’ which is the pull back of the

metric 7, written as
K =¢'r, (4.1.2)

which is globally defined on Mpa,w as a consequence of the mappings non-triviality.

This symmetric pull back metric, in a natural, local coordinate system, ('), on
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M}, is given by

Kij = 0:¢°0:¢ T, 1=1,2,3 (4.1.9)

where ¢*(a = 1 to 3) are the three local coordinate representatives of the mapping
o.

A measure of the extent of the deformation induced by the mapping, is given
by comparing the pull back metric with the metric of physical space. Thus, we

define the deformation matrix as
D =g 'K. (4.1.4)

This is a three by three matrix, formed by multiplying the inverse metric with
the pull back metric in some local coordinate system on M,fhv. However, this
deformation matrix is not a coordinate independent quantity. Since we are in-
terested in invariants which express the geometric deformation induced by the
skyrmions, we consider the invariants of D, which can be constructed from its
three eigenvalues which we shall write as A%, A%, A2.

We note that if these all have a unit value, then the mapping ¢ is an isometry

of M3, onto S},

t80°

In this case the mapping produces no deformation. Also, the
deviations of these eigenvalues from unity, measure the extent of the deformation.
The invariants of D, (4.1.4), are the permutation symmetric functions of its

three eigenvalues and the three characteristic invariants are

TrD = A+ A+ )},
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1/2{TrD* — (TrD)*} = X+ AIAZ+ A%, (4.1.5)

detD = AAZA

where we have taken local coordinate systems on M?,, and S}, in which D is
diagonal, that is, normal coordinate systems on both spaces.

The Skyrme energy functional is constructed from the first two of these in-

variants. The first invariant term gives

€, = /M;‘h,, VIAZ + A2 4+ 22 (4.1.6)

and is simply the Non-Linear 0-Model energy functional. Similarly, the second

invariant gives the Skyrme energy functional;
ey = fMa VEAIAZ 4 A2A2 4 AZAZ). (4.1.7)
vhy

In this chapter we shall always use Manton’s dimensionless unit [3], defined in
Chapter 2.

We can give a geometrical interpretation of these two expressions in terms
of the effect ¢ has on a set of orthonormal frame vectors over M:’hy. The first
invariant measures how the sum of the squared lengths of the orthonormal frame
vector on physical space, changes under the map ¢.

The second invariant measures how the sums of the squared lengths of the
three cyclicly permutated cross-products of pairs of these orthonormal frame
vectors on physical space, change under the mapping. Thus, it measures the
changes of local areas produced by the mapping.
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The third invariant is not considered here. However, it has been used as an
alternative to the Skyrme Term for stabilising solitonic configurations [6]. Since
this term scales like inverse length cubed, it will prevent the collapse of finite
energy solutions. The invariant measures how the squared length of the cross-
product of the orthonormal set of frame vectors changes under the mapping ¢.
It thus measures how the mapping changes the local volumes.

Hence, the Skyrme energy functional has a natural geometric interpretation.
Moreover, deviations of the energy from the topological bound measure the de-
viation of the deformation matrix from unity. This is revealed by re-expressing

the energy functional as

E:ez + ey

- /Ms \/—é{(’\l - )\2)\3)2 + (A2 — >‘1)‘3)2 + ("‘3 - ’\1'\2)2}

rhy

+ 6/M3 VA Az s, (4.1.8)

rhy
The last term has a topological interpretation. It is simply the integral of /D,

which is the Jacobian factor of mapping ¢ and transforms the measure on Mghy

to that on S?

o+ Since both spaces are orientatable, the square roots of D and

of the Jacobian factor can be defined consistently. The value of the integral will
which is 27? multiplied by the mapping’s

simply be equal to the volume of S? ,

winding number B. The other terms are manifestly positive and hence we can
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see the energy is indeed bounded from below by
E >127* | B]. (4.1.9)

Moreover, this bound will only be saturated if A\; = As = A3 = 1. That is, when

¢ is an isometry of MZ, to S2,. Thus, it can be seen that the energy function
measures the deviation of the eigenvalues of D from unity. Clearly the identity
map for S, is an isometry and hence it saturates the bound.

When M3, is flat physical space, R®, Manton et al [7] showed that the bound
cannot be saturated since no isometry exists. The usual B = 1 hedgehog on
compactified R3, which is a minimiser of the energy functional, has an energy
1.23 x 12#%. The deviation of its energy from the bound is a reflection of the
differing curvature of R and S? .

Manton, using this eigenvalue formulation, further showed that the stability
properties of the trivial map on S:hy(L) can be deduced by considering the effect
of varying the map. Since we shall generalise this technique to incorporate shape
deformation, we shall only briefly review his techniques and his conclusions here.

For the trivial map of S3,, (L) onto S2,(1) the eigenvalues of the deformation

matrix are given by:

1
AN=X=X=15 (4.1.10)

taking the metric’s components g;; to be dimensionful. Under a small change of

the map these eigenvalues change and we express the new eigenvalues as
1 :
)\,‘ = Z(l—f‘&,), = 1,2,3 (4111)
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where 6; are small dimensionless quantities varying over M3 The resulting

phy-

energy can be expressed to second order as:

1 2 2 1 2
E® =127%(L + )t ﬁ/\/&(l +h+ / VIl + 30

v = [ Vb (4.1.12)
Here, we have for convenience, introduced the infinitesimal functions;
Iy = 6 + 8 + &, (4.1.13)
which is a first order quantity and
I = 6] + 68 + 62 (4.1.14)
and
I3 = 8,69 + 6163 + 6403, (4.1.15)

which are of second order.

Since the winding number of a map is a topological invariant, we require that
it remain unchanged under variations of the mapping. Thus, to second order we
have the constraint that the change in baryon number be of third order. The
winding number expressed in terms of the eigenvalues of the deformation matrix
takes the form:

1

U= )

/\/5/\1/\2)\3, (4.1.16)

and for the identity mapping gives B = 1. Thus, substituting the expression
(4.1.11), for the deformed eigenvalues (4.1.11), in to (4.1.16), the expression for
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the baryon number, leads to the constraint

[ van =- [ var +o(&). (4.1.17)

Imposing this constraint, the expression for the energy to second order (4.1.12),

has the form

E® = 1277 (L+ /f L+ 25) b - 2/\/‘13 (4.1.18)

There is no first order term in this expression and hence we see that the trivial
map is a stationary point of the energy functional. Moreover, the second order
term is positive definite for L < /2 and negative definite for L > /2. Thus, the
identity map is a local minimum up to L = v/2 and beyond it is a local maximum.
At the point L = v/2, the path of steepest descent is observed to be achieved when
61 = 63 = 63. This corresponds to an infinitesimal local conformal transformation.
Hence the trivial map is unstable against such a transformation at values of
L = /2 and undergoes a second order phase transition at the corresponding
density.

This observation was further strengthened by the complete calculation of the
mode spectra 8] with the trivial map background. The complete solution of this
second order variation problem, reveals that the infinitesimal conformal modes
have eigenvalues that go from positive to negative as the value of L is increased
beyond /2.

For large values of L beyond v/2, Manton [3] considered a finite conformal
map as an ansatz. This will incorporate the infinitesimal mapping and is the
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analogue of the finite conformal transformation (3.6.4), considered by Jackson et
al [10] and discussed in the previous chapter. This takes the general hedgehog

form and in the polar coordinate systems, (u,f,¢) on Ss,w(L) and (ﬁ,é, %) on

S? .,
o o= Ztan—l(atan%),
8 = o,
¢ = ¢ (4.1.19)

For o = 1 this reduces to the trivial map. For a > 1 the mapping produces a
localisation of the skyrmion about the north pole u = 0, while for 0 < o < 1 it
produces localisation centred on the south pole 4 = n. These two configurations
are related by the transformation a — 1/a. Minimising the energy of this
conformal map with respect to a, shows for L < V2 there is only one physical
solution, a = 1, the trivial map. For L > +/2 there are three stationary values of
a, two of which have identical energies for values of a and 1/« and are minima,
while the third a« = 1 is a maxima. Thus, we have a phase transition of the
standard ‘pitchfork’ type. For infinite L the trivial map has infinite energy, as
seen by equation (2.3.11), while the two others have finite limits with energy
v/2 x 1272, Thus, in the flat space limit their energy is seen to be close to that
of the flat space hedgehog. The baryon density of the solutions is observed to
be localised in a region u ~ 1/L for large L. The exact solution is very similar

in the flat space limit, having an energy consistent with that of the flat space
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skyrmion and of the general hedgehog form with the two degenerate solutions

localised about opposite poles and being related by the transformation:

f(w) = 7 — f(r — ). o (4.1.20)

4.2 Varying The Metric Of S, (L)

We shall now consider the effect of allowing both the map and shape of physical
space to vary in order to investigate the stability of the minimal energy trivial
map solution on SJ,, (L) as a function of its average baryon density. Of course, we
have in mind the analogous ‘minimal’ energy fcc array’s instability with respect
to bulk deformation above L4, as described in the previous chapter. Due to the
complexity of finding the soft modes of deformation for this crystal and as the
conformal instabilities are common to both systems, we hope to reveal another
such ‘universal’ instability.

As the Skyrme energy functional contains no term directly measuring the
shape of physical space, the minimisation problem involving variation of the
shape of physical space may be a pathological one. The inclusion of additional
geometrical physical space terms, such as a curvature term, might well overcome
these difficulties. However, we have no physical basis for such an addition and so
we shall for the moment consider only small variations about the sphere which,

as we shall see, we can make sense of and return to the difficulties the more
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general minimisation problem poses at a later date.

We can consider small deformations of the shape of physical space and assume
these leave the manifold M}, smooth. Such small deformations can be encoded
in a corresponding infinitesimal changes of the metric, g, on thy. These will then
lead to corresponding, infinitesimal changes in the eigenvalues of the deformation
matrix D and the ,/g factor in the measure. We can represent these changes in
the eigenvalues due to such a shape deformation and those due to variation of
the map, by their effect on the deformation matrix’s eigenvalues. We express

these in the form:

(1+6)
(1+&)

A,’ = )\,’ 1= 1,2,3 (42.1)

where € and 6 are small quantities defined on thy, corresponding to the shape
and map deformation respectively.The change in the measure on M:hy is encoded

in the change in the ,/g factor and we express this as:

V3 = /91 + &) (1 + e2) (1 + €3), (4.2.2)

Thus, for fluctuations about the identity map on S3, (L), we express the new

eigenvalues as:

11+ &)

P L(1+€,)

i=1,2,3 (4.2.9)

On substituting expression (4.2.2) and (4.2.3) into the energy functional (4.1.8)
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and expanding, we have the energy to second order given by:

1 1
E(2) = 127r2(L + Z) + 'ﬁ /M3 (2.[1 + J1 + Ig + Jz - J3 - 2H2 + 2H3)

phy

1 1
+—i1: /M3 \/6'52(4]1 - J1 + 2.[2 + 2J2 +4Ig - J3 — 4H2), (424)

phy

where we have used the same infinitesimal expressions as in (1.1.13) to (1.1.19)

and in addition have introduced the following infinitesimal functions:

Jy = e +etes,

J2 = el tel4él

J3 = €160+ €165 + £9€3, (4.2.5)
Hy, = 6beq + 6265 + b33,

H3 = 61(€2+63)+62(€1+63)+63(€1+62).

On setting the infinitesimal quantities, (4.2.5), equal to zero, expression (4.2.4)
reduces to the expression for the energy second to order, (4.1.12), resulting from
infinitesimal fluctuations about the trivial map, as of course it should.

The winding number constraint does not change since this is a topological
invariant, dependent only on the mapping and hence, we still require expression
(4.1.17) to be satisfied by the §’s. However, we require a second constraint for our
purposes, that the volume be constrained. This is so as to eliminate instability
with respect to metric deformation which reduces the volume towards that at

which the minimum occurs. Hence, we require that the volume given by

V= /Mx?lzy V9, (4.2.6)
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be fixed. Hence, requiring its variation to be of third order, this gives us the

constraint:

/h JiJy = /Ma VaJs +0(8%). (4.2.7)

vhy
Imposing the two constraints (4.1.17) and (4.2.6) gives the energy to second order

as:

E:67r(L+ Lz/\f1+_(’71+’72+’73)

- 2/ V(e + M1y + 1278), (4.2.8)

where we have introduced the new infinitesimal quantities
Vi :6i — &;. t= 1,2,3 (4-2.9)

This is exactly analogous to the expression (4.1.18) and thus we have similar
conclusions for this class of multiple infinitesimal variation.

There is no first order term, hence the trivial map and S3, (L) are stationary
against these infinitesimal multiple variations for all values of L. Moreover, this
solution is a local minimum up to a volume corresponding to L = v/2 and beyond
this point it is an unstable extremum. The path of steepest descent at I = /2

is given by the condition

Y1 =72 = V3- (4.2.10)

This is the condition that the space, resulting from the infinitesimal deformation
of the shape of S (L) be conformally mapped into S3 by the infinitesimally
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varied mapping. A finite version of this condition is
K = 0%g, (4.2.11)

where 1% is the local conformal factor which varies over M2, and expresses
ph

v
the change in length of the orthonormal frame vectors induced by the mapping.
This is indeed a direct generalisation of Manton’s finite conformal mapping for
a general shaped physical space, (4.1.19).

So we conclude, that on 53, (L) both the shape deformation and the delocal-
ising phase transitions are of second order, occurring at a volume corresponding
to L = v/2. We also note that these generalised infinitesimal deformations can
be expressed in terms of the three infinitesimal quantities «; and this is a con-
sequence of the similarity in the shapes of the physical and the target spaces.
Thus, to second order in the energy, we find that variations of the map and the
metric are able to compensate each other and presumably are responsible for the
observation that Ly = L,. For flat space arrays this suggests that infinitesimal
map fluctuations are unable to completely compensate for bulk deformations and

hence the two phase transitions occur at different densities. However, their close

proximity may be a measure of their ability to compensate for each other.
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4.3 A Hedgehog On An Elliptical Three Surface

In order to illustrate the observations of the previous section, we shall now con-
sider a specific example, generalising the shape of the sphere, Spshy(Z)' The sim-

plest such model would be to replace S2, (L) by a space whose shape varied

phy
through a one parameter family of metrics, with one specific value correspond-
ing to a 53, (L). An obvious candidate space is an ellipsoid. There are two

such ellipse spaces and these can be represented as embedded surfaces within

R*, satisfying

w? ¥ oy oz

;2‘+—b7+§+g§=1, (4.3.1}
or

w2 ‘,EZ y2 22

—(:?-!-C—Z‘-f—gi-l-'d—z:l, (4.3.2}

where (w,z,y,2) are Cartesian coordinates with R* and a,b and c,d are real
constants, defining the length and width in R* of these elliptical surfaces. These
both result in a one parameter family of metrics on M;’hy for varying length to
width ratios. Clearly the magnitudes of these parameters are related only to the
volume, while their ratios determine the curvature of the ellipse.

In the flat space calculations we considered bulk deformations of a cube to
a rectangle. Thus, as the cubic shape was changed, either in compression or

expansion in the direction of one of its sides, this resulted in an asymmetry
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about the cubic shape. For the second of these elliptical spaces, (4.3.2), the
transformation ¢ — d and d — ¢, produces an identically shaped space and thus,
the sphere condition (¢ = d) is a unique symmetry point of this transformation.
Thus, for a skyrmion on this ellipse, the result of deformation in the shape of
space for ¢ > d or ¢ < d, should be symmetric about S3, (L), (c = d).

However, we do not expect this to be the case for the first of these ellipses,
(4.3.1). The space which results for a < b is of an oblate type, with an axis
of symmetry about its minor axis. The ellipse which results when a > b is of
the prolate type, with an axis of symmetry about its major axis. Thus, the
transformation a — b and b — a does not produce a space which is isomorphic
to the original. Hence, we cannot expect for these elliptical deformations, of
the ellipse (4.3.1), that the sphere will, in general, be unique. Thus we see,
that the shape deformations of 53, (L) to the elliptic space (4.3.1), is in direct
analogy to those shapes produced by our bulk deformations of the fcc lattice.
These changed the shape of the fcc cubic cell in to a square based prismoidal
cell. Thus, the results of our numerical calculations, with respect to the effects
of these bulk deformations of the fcc lattice, (see Chapter 3), were in general
found to be asymmetric about this cubic symmetry for varying aspect ratios of
the cell.

Since the space (4.3.1) has a rotation symmetry about its major axis (a > b),
or its minor axis (e < b), which passes through its poles, these two poles are

identified as unique points of symmetry. Since the hedgehog ansatz also involves
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a similar unique identification of the poles and rotation symmetry, we see that
on this space the hedgehog ansatz is a sensible one, on grounds of symmetry.
Thus, in the remainder of this section we shall investigate the effects,ona B =1
hedgehog skyrmion, of changing the shape of physical space constrained to satisfy
(4.3.1).

The shape of this ellipse is related to the ratio of the lengths a and 4. For larger
values of the ratio a/b, the ellipse becomes needle like and of prolate symmetry,
while for small values it becomes disc like and of oblate symmetry. We choose
the coordinates for this ellipse to be the ‘standard’ polar angles 0 < 6, ¢ < 7 and

an angle 0 < p < m, which are related to the Cartesian coordinates of R* by

w = acospu,

z = bsinucosh,

y = bsinusinf cos ¢,

z = bsinpsinfsing, (4.9.3)

and thus, we see constraint (4.3.1) is satisfied. In this polar coordinate system

the metric on M}, is diagonal, with elements:
{b*(1 — esin® i), b* sin” u, b sin® w sin’ 0}, | (4.3-4)

where we have retained the dimensioned length b and introduced the dimension-

less eccentricity

e=(1—a’/b")'/? (4.9.5)
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which governs the shape of the ellipse. Thus we have our desired one parameter
metric, (ignoring the length variable b), with the eccentricity parameter express-
ing changes in shape. For e = —oo we have the needle, for ¢ = 1 the disc and for
e = 0 the sphere.

For numerical representation of the data, the eccentricity parameter will be
replaced by the new parameter y which takes values from plus infinity to minus

infinity and corresponds to the sphere at y = 0. Such a symmetric variable is

=15~ = (4.8.6)

and is related to e by

(4..7)

The needle corresponds to y = 400 and the disc to y = —oo. This is analogous
to replacing the aspect ratio r3, by the p for the flat space arrays of interpolating
symmetry, studied in Chapter 3.

The volume element on physical space is given by
b% A sin® usin @dudfde, (4.3.8)
where
A = (1 — esin® u)/2. (4.8.9)

In order to simplify the numerical complexities of our calculation, we choose to
employ the hedgehog ansatz for the skyrmion map. This seems a sensible ansatz
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due to its high degree of symmetry and its consistency with the symmetries of
this physical space. Moreover, for ¢ = 0 this will incorporate both the trivial
map and the standard hedgehog form previously employed on a S:hy(L). This

hedgehog mapping is given by

o = cos f(u),

7, = sin f(u)cosé,
7, = sin f(u)sinfcos ¢,
7, = sin f(u)sin@sin ¢. (4.8.10)

Since we wish to consider only B = 1 solutions we shall impose the boundary

conditions
f(0) =0, f(m) =m, (4.8.11)

on the profile function, this ensures that the hedgehog has unit winding num-

ber B. The resulting deformation matrix for the hedgehog is diagonal and has

eigenvalues:
i L
A= A= %ﬁzfp (4.9.12)
Thus, the hedgehog’s energy functional is given by:
BU) = r [ dwsint s Ly 42Ty I B STy

where we have performed the trivial 4, ¢ integrations.

The Euler Equation following from the functional variation of (4.3.13),
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with respect to f(u) is:

2 . 2 . 2 .
sin® f - sin” u sin” f . sin2u .
b* +2 b*(1
( + Sinzll«)f +{ ( +e A2 ) € Az }Sinzll/
. .2 in?2
Fsin2ffr— (2 4 ST )a2sin20 (4.8.14)
sin” u sin®

This is an ordinary, second order, non-linear differential equation for f(x) and
standard integration techniques can be applied to it to obtain a solution.

However, it should be noted that for e = 0, the trivial map f(u) = p, is a
solution, the equation reducing to that for 53, (L) given in Chapter 2, (2.3.9).

Before describing the numerical solution of this equation it is instructive to
consider a power series solution, in power of the eccentricity. Thus we choose to
take the eccentricity to be small and consider only solutions which are symmetric
about the equator.

Since e = 0, the trivial map is the solution of (4.3.14) and we were led to
solve this equation order by order in power of e about the trivial solution. To

second order in e we found the following symmetric solution,
f(n) = p+ aresin2u + e*(az cos® u + agsin® u) sin2u + 0(e®),  (4.9.15)

with the constants given by

44 3b°
Ay = vy
! 8(3 + b?)
(—10 — 15b6% — 5b* + 224a, — 408a? + 146a,b* + 20a,b* — 64a2b? + 40ab?)
az = ’

8(33 + 2602 + 5b4)

o (~16 — 23b% — 7b* + 200a; — 72af + 126a,b% + 16a,b* + 24‘131’4) (4.8.16)
3 8(33 + 2667 + 5b%) -
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This solution has the symmetry

flu) =m— f(m— w), (4.8.17)

characterising the symmetric phase. We can now calculate this solution’s energy
in power of e, as a function of b and on substitution in (4.3.13), expanding and

integrating we have:
2m? 3
E® = —:—[3(1;2 +1)+ g(—b2 +1) (4.8.18)
2
e
+ a{bz(s — 964, + 128a%) + 25 — 128a, + 384a}] + 0(€?).

This energy does not depend on the parameters a; and as, in expression (4.3.15)
for f(u), since first order fluctuations in the eigenvalues of the deformation matrix
completely account for the second order variation of the energy for a solution to
the Euler Equation (4.3.14).

In order to compare like with like, we need to eliminate the variable & in
favour of the variable L measuring the volume of space and hence the average

baryonic density. Thus, we introduce the new variable

L= (—V—)‘/?’, (4.8.19)

2m?
where the volume, V', of physical space is given by;
V = 47rb3/ dusin® pA (4.3.20)
0

and hence L will be a function of both b and e. Expanding the right hand side

of expression (4.3.19) in powers of e, gives to second order the result,

L=0b{1-- - +0(}. (4.3.21)



Using this relation we eliminate b in favour of L, in expression (4.3.18), for the

energy and obtain to second order in the eccentricity e,

5 2
i

(2—-L*H(L*+1)
(L? + 3)

E® = 27%(3(L + l) +

I } + 0(€%)]. (4.9.22)

Thus, as expected, we see Ly = /2, since the second order term is observed to
change from being positive to negative on increasing the value of L beyond /2.
Hence, the 53, (L) shape (e = 0), is stable against these elliptical deformations
up to a value of L = 1/2, beyond this value it is unstable to the deformations.
However, we have not revealed the expected asymmetry for positive and negative
values of e as this will be a higher order effect. We shall here continue this
expansion to reveal this asymmetric behaviour and our numerical results will
clearly demonstrate this.

Finally we have shown, again as expected, that at L = v/2 the steepest path
of descent corresponds to a local infinitesimal conformal transformation. To

reveal this we shall construct a generalisation of Manton’s finite conformal map

on 5%, (L), (4.1.19).
For a finite local conformal map we have the condition (4.2.11), which trans-

lates here to the condition that,
M =22=2)2 (4.3.23)

and leads to the following first order differential equation for f(u):

2o A
. 2 7 . 32 -*
sin f  sin®pu

(4.5.24)
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This can be trivially integrated to give the following solution,
A — cosu)l/z(A + kcos u

k/2 .9.25
A+ cosp A—kcosu) b (4 )

7(4) = 2tan™{a

where k = /e is pure imaginary for e negative and o an integration constant.
It is easy to show that f(u) is a real valued function for e < 0, by re-expressing

(4.3.25) as,

flu) = 2tan‘1[a(i;—zzzllﬁ)l/2 exp{—v/—e tan—l(@)}]. (4.5.26)

This solution, f(u) to (4.3.24), satisfies the boundary conditions (4.3.11). Here
o is simply the conformal parameter and for a sphere e = 0, expressions (4.3.25)
and (4.3.26) reduce to Manton’s expression (4.1.19). For values of a # 1 the

symmetry

flg) =m— f(r—u), (4-8.27)

is broken. Thus for o = 1, f(u) has the symmetry of equation (4.3.27) and is
observed to be a particular generalisation of the trivial map on the three sphere
to an ellipse

For a = 1, expanding this solution to second order in ¢ we obtain

e . 5 3 .
f(w) = u+ 3 sin® u + eZ(Zé cos® pu + 8 sin® 1) + 0(¢€®). (4.8.28)

We can now compare this to the exact second order solution, (4.3.15), which at
the value of L = v/2 gives:

17 19
f(n)=p+ 2 sin® 2u + e?sin 2u(—2—§6 cos® u + 210 sin® 1) +0(e®). (4.9.29)
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Thus, we see these expressions agree to first order and that at L = 1/2 the true
solution is conformal to first order. However, to second order there is a slight
discrepancy, reflecting the non-exactness of the finite conformal map ansatz. For
o not to equal one, the energy of this conformal mapping is degenerate with
respect to a and 1 / a, corresponding to the skyrmion localising én either pole of

the ellipse. Thus, this is indeed the analogue of the S% (L) conformal mapping.

4.4 Numerical Results For A Hedgehog On An Ellipsoid

We obtain numerical solutions to the Euler Equation (4.3.13), within a range
of volumes corresponding to values of L in the range 0.8 and 1.6 and eccentricities
in the range 0.9 to —0.9. These values e, have corresponding values of y about
—10 to 10 respectively, which appears to be the most interesting region of values
of y.

The profile function for a B = 1 solution to the Euler Equation, will have at

the end points the behaviour,

[~ au, u~0
fr~m—B(r—u), po~ (4.4.1)
where a and  are positive constants, dependent on e and L and determining the

slope of f at the respective end points. The Euler Equation can be integrated

inwards from O to 7/2 and from 7 to /2 and by varying o and f§, the matching
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conditions for f and fatm /2 can be satisfied to give smooth numerical solutions.
In general a and § can have different values, however, in the symmetric phase
the solutions have the symmetry of equation (4.3.27) and a and f are trivially
equal. In arranging a and 3 to satisfy the matching condition at 7 /2, a standard
Newton-Raphson minimisation technique was used. For this local minimisation
technique a 2 X 2 matrix, formed from calculating the derivatives of the miss-
match in f and f at m/2 with respect to o and §, must be inverted. In the
symmetric phase there is only one solution, while in the non-symmetric phase
three solutions exist. Thus, as one might expect, the determinant of this 2 x 2
matrix is zero at the phase transition density. Thus, determining the variation
in the value of this determinant as e and L vary, enables us to determine simply
and accurately the phase transition points L., for given eccentricities.

Symmetric phase solutions can also be obtained by integrating the Euler
Equation from only one end point to /2, where the condition f(7/2) = 7/2
must be met as a trivial consequence of the solution’s symmetry, (4.3.27). This
symmetry was often imposed in order to increase the efficiency of our integration
techniques in the symmetric phase.

In general, for increasing values of the magnitude of the eccentricity, the dif-
ficulty in obtaining solutions over the full region 0 to 7 increases. Since at large
eccentricities the curvature of physical space is high in certain regions and low
in other regions, the profile function varies rapidly in response to these local

variations in curvature. In the case where e is both large and negative, that is,
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where the curvature of the ‘needle’ is sharpest at the end points, these difficulties
are accentuated, since the matching difference is highly sensitive to the values
of o and . These difficulties undermine the Newton-Raphson technique of min-
imisation, though it is unlikely that overcoming these difficulties would require
a greater refinement of our integration technique, if a wider range of values of e
were of interest.

The Euler Equation (4.3.14), explicitly involves b, which we eliminate in
favour of L through the relation (4.3.19), in which the value of the volume,
V', of physical space, is evaluated trivially by numerically integrating at different
values of e. Thus, in obtaining solutions to the Euler Equation, we choose to fix
the values of L and e and subsequently to eliminate the corresponding value of b
from this equation, by using the relation (4.3.19).

The symmetric phase results reveal that a trivial map on S,fhy(L) becomes
unstable to elliptical perturbation of the metric of physical space, coupled to
symmetric perturbation of the map, at a value of L = L; = v/2. This is in
agreement with the general second order deformation calculation of the previous
section. This is clearly depicted in the contour plot Figure (4.4.1), of constant
energy contours for varying values of y and L (note that in Figure (4.4.1) the
energies are quoted in fractions of the lower bound, 1272 ).

For L less than v/2 and near L = 1, these contours have a positive curva-
ture with respect to y about y = 0, S}, (L). As L is increased the contours

flatten and the curvature about the line y = 0 changes sign beyond a value of
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L =1L, =42 Thus, the sphere is locally stable for values of L up to V2 and
unstable for values beyond. For small values of | y |, the contours are approx-
imately symmetric about the line y = 0 since infinitesimal deformations of the
shape of the sphere do not differentiate the ‘disc’ and the ‘needle’ type shape
deformations. This is consistent with our second order small eccentricity expan-
sion of the energy (4.3.22) for a symmetric solution. For larger values of | y | the
contours become asymmetric as higher order effect becomes significant and the
‘needle’ type deformations of 53, (L) are energetically preferable.

The dashed line on this plot shows how the density of the symmetry breaking
phase transition varies with y. This transition is found to be second order at all
values of y investigated. For values of y between 3 and —2, the value of L, varies
rapidly from about L = 1.23 to L = 1.58, passing through L = /2 at the value
of y = 0 corresponding to the sphere. Thus, we see as predicted, L, = Ly = /2
for a skyrmion on Spshy(L). For y less than —2, the value of L. varies less rapidly,
becoming seemingly independent of y at large negative values corresponding to
a disc, with a value of L, ~ 1.6. For y greater than 3, the dependence of L, on
y also lessens as y increases, becoming approximately independent of y beyond
values of y greater than 4.5, with the value of L, about 1.18. In general we
see that the density at which the symmetry breaking phase transition occurs,
decreases as y increases and thus symmetric skyrmionic matter will persist to
lower densities on a disc-like space than on a needle-like space.

The dot-dashed line of Figure (4.4.1) indicates the value of L, corresponding

151



to the minimum of the energy for varying values of y. The absolute minimum
energy is attained at the point L = 1, y = 0 corresponding to the identity
mapping on thy(l). The values of L,,;, for large negative values of y are smaller
than their corresponding positive values and the dependence of L,,;, on y appears
to be fairly linear as y increases or decreases from y = 0. At a value of y ~ 10, we
have that L,;, ~ 1.16 and also that the L., contour approaches the L. contour,
presumably merging for large values of y corresponding to the ‘needle’.

For L < 1, Manton [3] has shown the trivial mapping on SJ, (L) has an
absolute minimum of the energy. Thus, in this region the sphere y = 0, at
fixed L, is seen to be a minimum of the energy compared to all other values of
y. This behaviour persists up to a value of L ~ 1.25 for the symmetric phase.
This contour plot is deceptive at the minimum, a change of y by about 2 has a
correspondingly equal effect on the energy, as would a change of L by 0.1 and thus
of the volume by 0.001. Hence, we see that dense Skyrme Matter on an ellipse
has a jelly-like behaviour, being relatively easily deformed though resistant to
expansion or compression.

For values of L greater than 1.25 and values of y less than about —4, the
energy becomes seemingly independent of y and the energy contours close on
themselves as L increases. Thus, in this region, as dense Skyrme matter is ex-
panded, it offers no resistance to deformation, a characteristic of our dense crys-
talline matter under bulk deformation. This behaviour persists up to a volume |

of 1.6, beyond which the symmetric Skyrme matter undergoes a second order
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phase transition to a non-symmetric phase of matter.

For values of L greater than about 1.3, symmetric Skyrme matter is seen
to prefer to sit on a space with y large and positive. However, in this region
non-symmetric matter is energetically preferred.

Thus, the plot (4.4.1) has many of the features observed in the analogous
contour plot Figure (3.5.3) for crystalline symmetric dense skyrmionic matter on
flat space. Both have a jelly-like behaviour near the minimum energy density.
Also, the asymmetry of the energy contours about the line y = 0 of Spshy(L), is

similar to that observed about the line p = 0 of the fcc array. We also see that the

preferred needle-like deformations of S2, (L) are the analogue of the preferred

phy
planar deformations of the fcc crystal, while the less favourable disc-like defor-
mations of S3,, (L) are analogous to the less favourable chain-like deformations
of fcc matter. However, the large gains of energy observed for the needle-like
shape at volumes above 1.3 appear to be a feature of the local curvature of this
shape, not present in our flat space crystalline matter results. However, this
comparison of the plots is deceptive. The range of p values considered in the
array calculation corresponds to values of y between 2.6 and —4.8. It is here
that the similarity of the two plots is most striking, the large gains of energy for
needle-like deformation lying just outside this region. Indeed, in this region, the
value of L, varies fairly linearly as is also the case for the crystalline matter plot.

In Figure (4.4.2), we show how the energy of the symmetric solutions varies

with L at various fixed values of y. This plot shows clearly that for a given value
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of y there is a definite minimum energy at some value of L = L,,;,. This plot
also shows that this minimum of the energy occurs at a value of L = L,,;, which
increases as the value of y changes from zero, corresponding to the sphere. As y
increases, the y = 4.278 and 9.9 plots show that beyond L,,;, the energy flattens
out as y becomes increasingly positive. We have also indicated the values of
L = L. at which the second order phase transition occurs by a solid dot. Its
second order nature is clear from the manner in which non-symmetric energy
curves, (dashed lines), smoothly merge with their corresponding symmetrical
energy curves at L., (solid lines). The value of L. is also clearly seen to approach
Lmin as y increases, as was indicated by the contour plot (4.4.1) and moreover,
this suggests that for large values of y these points will coincide, so that the energy
will attain its minimum value for all volumes beyond this point and become
independent of L. For negative values of y and values of L greater than about
1.25, the energy plots lie on top of each other, as suggested by the y = 0 and
y = —2.1 curves. This is a reflection of the independence of the energy to changes
in y for negative values of y, as was indicated in plot (4.4.1).

An alternative and revealing representation of the symmetric phase data of
plot (4.4.1) is shown in Figure (4.4.3). Here contours of constant L are depicted
as y is varied and corresponding values of the energy attained. The results of
our numerical calculation for both the symmetric and non-symmetric phase have
both been included on this plot. The symmetric data, (solid lines), for a range

of values of L between 0.8 and 1.6 and the non-symmetric data, (dashed lines),
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for a range of values of L between 1.2 to 1.6 are indicated,as are both, over the
entire range of values of y that we numerically investigated.

The local symmetry of the symmetric phase data with respect to the line
y = 0, corresponding to the sphere, can be clearly seen on this plot. In the
symmetric phase, this clearly demonstrates that the hedgehog on a sphere cannot
distinguish between positive and negative changes in the value of y about zero
and thus between the prolate and oblate type elliptical shaped spaces. Moreover,
we see that about the line y = 0, corresponding to the sphere, the curvature of
the symmetric phase contours decrease in value as L increases from L,;, = 1
to L = 1.6. At a value of L = 1.4, the curvature of the contour is seen to be
almost zero at y = 0, though still positive. This indicates that the value of L at
which the sphere becomes unstable to shape deformations will be slightly greater
than the value of L = 1.4 and as we have already stated this occurs at a value
of L = L; = /2.

For the symmetric phase, with respect to non-local changes in the value of y
from y = 0, this plot also reveals that for values of L ~ 1.25, the sphere y = 0
is no longer stable to prolate type deformation of the shape of space. This is
indicated by the L = 1.3 contour having minimum energy at a large positive
value of y which occurs outside the range of our data, and similarly for values of
L beyond this value. However, for the L = 1.2 contour and for values of L below
this, the minimal value of the energy occurs at y = 0.

Thus, the contour plot clearly indicates the manner in which the region of
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local stability of the sphere, with respect to shape deformations in the symmetric
phase, shrinks as L is increased from L,;, = 1 to L, = \/5 For positive y
values, the oblate deformations of the sphere, the constant L contours flatten
as L increases from L, = 1, until at L = L, = 1/2, the sphere y = 0, is also
unstable with respect to these types of deformation. However, there is no local
instability of the sphere with respect to oblate deformations and even beyond the
valueof L = L, = \/f, the constant L contours remain flattish. This indicates
that no great gains in energy are possible for oblate type deformations of the
sphere.

The constant L contours of the non-symmetric data indicated on this plot, are
clearly seen to merge smoothly with the symmetric contours at steeply increasing
values of y as L increases. This smoothness clearly indicates the second order
nature of the symmetry breaking phase transition. For values of L less than
1.0, symmetric contours are shown, indicating that in this region of L only the
symmetric phase exists. However, at a value of L ~ 1.25, both phases exist
and hence, all contours beyond a value of L. = 1, have the non-symmetric phase
contour breaking away at some value of y. For the L = 1.2 contours, the non-
symmetric contour lies almost on top of the symmetric contour for values of y
greater than about 4. This indicates that for values of L ~ 1.2 and y greater
than about 4, both phases might exist with very similar energies. As the value
of L increases, the contours of both phases become separable and the gain in the

energy of the non-symmetric to the symmetric phase becomes significant, with
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the value of y at which the symmetry breaking transition occurs decreasing.
Thus, for the L = 1.4 contour, the break away point is seen to occur at a value
of y which is close to zero but still positive. This indicates that the value of L,
for the sphere y = 0, is close to L = 1.4 and as was already indicated, actually
has a value I = L, = v/2. At a value of L = 1.6, the phase transition occurs at
a value of y ~ —5, when space has oblate symmetry.

For values of y beyond about 2 and values of L greater than about 1.3, the
energy of both phases decreases sharply as y increases. The rather large gain
in energy, for non-symmetric solutions over symmetric ones in this region, is a
consequence of the local curvature of these needle-like shapes. As y is further
increased, the constant volume contours of both phases converge to an energy of
about 1.03 x 1272, For L = 1.3, both phases have contours which vary slowly
for values of y greater than about 8 and seemingly will converge at very large y.
This behaviour is a consequence of the closeness of the values of L, and L,,;, at
large values of y, indicated in Figures (4.3.1) and (4.3.2).

In order to gain a deeper understanding of these observations it is useful
to study the functional dependence of the profile function f(u) at a variety of
eccentricities and densities. Many of the observations concerning the energy plots
can in fact be explained as local curvature effects. Thus, to this end we introduce
the local curvature of this manifold. Thus, we have for the metric g on physical

space, with the diagonal components given in (4.3.4), that the Ricci curvature
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tensor is diagonal with elements

(1—e)

Ry = -2 A7
.2
_ sin” u e . 4
Ry = —2(1—¢) A (1A~Esm K,
sin? p sin? 0 e .
R33 = —2(1—6)T(1—§Slnzu), (442}

where the (u,8,9) coordinates are labelled (1, 2,3) respectively. The local cur-
vature scalar R, obtained by contracting the Ricci tensor with the inverse metric

gi;, is thus given by

1 — €)(3 — esin® u)

_ ol '
R(/”) =-2 b2AA ’ (443)

from which we see the local scalar curvature is a function of u only. Setting e =0
gives the scalar curvature of a 53, (L) to be —6/L?, which is negative with our
convention for the sign of the curvature. For e = 1 (y = —o00), the curvature of
the ellipse is seen to be zero at all values of u except 7/2, where it is negative
infinity. Thus, in this limit, space is indeed disc-like, being flat except at its
rim where the curvature is —co. Setting e = —oo (y = +00), space becomes
needle-like, with the curvature being negative infinity at the poles and small at
p = m/2, though finite.

Another useful quantity we shall now introduce for representing the skyrmion

is its baryon density. This is given by

1 sin®f

0 - 7 J_
B(k) = 212 b3 Asin’ (4-4-4)
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which can be trivially integrated over physical space Mpshv’ to give one for f(u),
satisfying bounding conditions (4.3.11). This quantity also depends on u only.
Since the identity mapping on S,fhy(l) saturates the lower bound, we expect
that a skyrmion would prefer to sit on a region of space of constant scalar curva-
ture —6. Thus, on a space with a local curvature which is not constant, we might
predict that a skyrmion will try and sit on regions of space where the curvature
is —6. Moreover, the energy of the trivial map on S5, (L), as L is decreased from
L = 1, increases rapidly, while as L is increased it increases less rapidly. Thus,
we expect a skyrmion would prefer to sit on regions of space where the curvature
has its optimal value of —6 and with curvature less than, rather than higher than
this value. Finally, we know as the volume of space is increased past L = v/2 and
the curvature of space becomes small, the skyrmion on S3, (L) prefers to localise
about some point rather than be stretched over a large volume of space. Thus,
it is to be expected the skyrmions will try to avoid being stretched excessively.
To illustrate this, consider the plot depicted in Figure (4.4.4) showing the
variation of baryon density with y in equation (4.4.4) for a variety of symmetric
solutions at a value of L = 1 and for values of y between 9.9 and —9.9. The
baryon density of y = 0 is constant at 1/27%, showing the complete delocalisation
of the identity mapping on thy(l). As y increases, the skyrmion’s baryon density
begins to localise about u = 7/2. At y = 9.9 it is heavily peaked about p = /2

and confined to the region m/4 < u < 37/4. Thus, on the needle-like space

with L = 1, the skyrmion prefers to sit on the flattest region of space with zero
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Box 27.[1

Figure (4.4.4): Plots of (haryondensity) x 2x% = BY x 2% versus u (see text)
at [, = 1.0 and varying valucs ol .
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baryon density at its poles. As the value of y decreases, the curvature at the poles
becomes less negative and the skyrmion density increases in this region, though
still being peaked at the flattest 4 = /2 value for y > 0. As y continues to
decrease to negative values, the baryon density continues to increase at the poles
and to decrease at u = m/2. At y = —9.9 the skyrmion is localised about both
poles symmetrically, though this localisation is less pronounced than that about
p=m/2aty=9.9. Thus, on a disc-like shape at L = 1, the skyrmion prefers to
sit on the flattish poles, while on the high curved rim it has a reduced but finite
baryon density. This is a consequence of the symmetric relation (4.3.17), which

results in the boundary condition,

f(n/2) = /2, (4.4.5)

and prevents a complete depletion of the baryon density on the rim at p = 7/2.
Thus, in conclusion it is as we expected, at a volume of space corresponding to
L = 1, the skyrmions response to local variations in the curvature is marked.
Also as we expected, it prefers to localise on the flattish region of space and
avoids as far as possible the highly curved regions of space.

Figure (4.4.5) shows the local variation of the scalar curvature, R, at L = 1
for values of y corresponding to those in Figure (4.4.4). Comparing the two
does indeed reveal that the baryon density, on regions of space with curvature
less than the optimal —6, is greater than that on the less favourable, highly

curved regions of space. Hence, for y = 9.9, this flattish region of space which
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occurs in the range 1.1 < p < 2, is seen to correspond to the region of space in
which the baryon density resides, while outside this region the baryon density
was indeed found to be zero. At y = —9.9, the optimal values of the curvature
occur at 4 ~ 1.21 and ¢ ~ 1.93 and the skyrmion is expected to sit on the two
disconnected regions 0 < p < 1.21 and 1.93 < u < w, where the curvature is
greater than or equal to —6. Indeed, a high proportion of its density is contained
within these segments but not all, as a consequence of the boundary condition
(4.4.5).

In Figure (4.4.6), we show the baryon density, (solid lines), at L = 1.2 at
the values of y = 9.9, 4.278 and 0. For a direct comparison we also include on
the same plot a local curvature (dashed lines) for these shapes. The second,
y = 4.278 curve, (dot-dashed line), shows the baryon density of a non-symmetric
solution.

Once again, in the symmetric phase for positive values of y, the baryon density
is localised about the flattest 4 = 7/2 points. At this volume, both the y = 4.278
and y = 9.9 curves show the baryon density to be almost completely localised
in a region of space where the curvature is greater than —6. The increased
localisation as L increases to 1.2, in the optimal K > —6 regions of space, reflects
the increased volume of space. At a volume of 1.0 the skyrmion density for
y = 9.9 experiences compression, being forced to sit on regions of space where the
curvature was less than —6. At L = 1.2, this compression has been dissipated and

this is reflected in its energy being close to its minimum value at this volume and
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hence, the value of L being close to L, ~ 1.17 at this value of y. The y = 4.278
non-symmetric density is seen to have moved towards a pole, as expected, in this
case the u = 7 pole, there of course being a corresponding solution which moves
towards the u = 0 pole. However, for L = 1.2, the extent of pole localisation
is small, the phase transition density for this value of y occurring at a value of
L = L, = 1.18. Moreover, we see that the localisation at the pole has been
suppressed by the large negative curvature in these regions. Thus, the non-
symmetric skyrmion has translated the bulk of its baryon density towards a
R = —6 point, allowing a small but finite amount at the u = 7 pole.

It should be clear by now that the localising-delocalising description of the
phase transition, so obvious for the S2,, (L), is misleading for spaces with highly
varying local curvature, the symmetric phase solution also having a high degree of
localisation. Thus, we choose to characterise the phase transition from symmetric
to non-symmetric solutions in terms of the symmetry expression in equation
(4.3.27) and whether or not a solution has this symmetry.

In Figure (4.4.7), we show the baryon density (solid lines) and curvature
(dashed lines) in the non-symmetric phase at values of y between 9.9 and 0.975
and at a value of L = 1.4. The completely delocalised solution on thy(L),
y = 0, is also indicated on the plot. For comparison, in Figure (4.4.8) we show
the baryon density for the symmetric phase for values of y between —9.9 and
9.9. At the value of L = 1.4 the curvature has been reduced substantially:

For a non-symmetric skyrmion, as y increases, its density at = pole is seen to
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deplete as the curvature decreases. Thus, at a value of y = 0.975 the curvature
of space never reaches the optimal —6 value and the density is a maximum at
the pole, where the curvature is closest to this value and well spread over the
flattish lower hemisphere of space. The corresponding symmetric solution has a
fairly delocalised skyrmion with a finite density over the whole of space peaked
at u = m/2. The gain in energy in the non-symmetric phase is small, about
0.002 x 1272, The baryon density of the non-symmetric phase solution becomes
increasingly localised at y = 4.278, about a point with R = —2.4, near the 7
pole. The density at the m pole is now reduced, but still high, with the optimal
curvature point at u = 2.61 close to the pole. Comparison with Figure (4.4.6)
shows the density has now translated towards the pole at this increased volume.
At y = —9.9, the curvature is high at the poles and the skyrmion centres on a
u ~ 2.1 point, at which R = —1.18 and has a finite density at the R = —6 point.
Its highly peaked nature allows more of the skyrmion to sit on a region of space
with curvature closer to the optimal —6, as opposed to the symmetric skyrmion
(4.4.8), which sits entirely within the B = —6 points which enclose a flattish
hemispherical region of space. The larger gain in energy, of about 0.009 x 1272,
of the symmetric skyrmion, is a reflection of the symmetric skyrmion’s inability
to stretch from the p = 7/2 to the optimal x4 ~ 0.55 and p = 2.59 points at this
large volume. This stretching was not necessary at L = 1.2 when both phases
had similar energies. The y = —9.9 symmetric density plot shows the skyrmion

density peaked at the poles and the R = —6 points indicated on this curve,
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showing that the skyrmion tries to deplete its density on the highly curved rim
as far as possible.

The form of the symmetric profile function f(u) (solid lines) is indicated in
Figure (4.4.9) at y values of 9.9, 0.0 and —9.9 for L = 1.4. At y = 9.9 we have
included the non-symmetric solution, (dashed line). We see that the slope of the
profile varies considerably in response to rapid changes in curvature as p varies
at the 9.9 and —9.9 values of y. At y = 9.9 the slope of the symmetric solution
is small at both poles and thus, the baryon density is very small in this highly
curved region. About u = m/2 it has a large slope and hence its baryon density is
localised in this region about u = 7/2, as was seen in Figure (4.4.8). At —9.9 the
reverse effect is observed, with a large siope at the poles and a reduced slope at
the m/2 on the highly curved rim and hence the baryon density of Figure (4.4.8)
results. At 9.9 the non-symmetric profile has a negligible slope from ¢ = 0 to
about 1 = 1.0 and hence its baryon density is almost zero on this highly curved
region of space. The slope is now large and fairly constant in the u ~ 2.1 region
and thus the baryon density is heavily peaked in this region of space. At the
7 pole the slope is small but finite and hence, so is the baryon density. This
was seen to be the case in Figure (4.4.7). The two y = 9.9 curves appear to be
parallel in the f ~ 7/2 regions and this non-trivial effect seems to be related to
the manner in which the baryon density translates in bulk from the symmetric
to the non-symmetric solutions on the needle-like shape.

In Figure (4.4.10), we show plots of the non-symmetric profiles f(u), for values
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of y = —9.9,4.278 and 0.975, at a value of L. = 1.4. Here we see clearly, that as y
increases the profile ‘buckles’ at the & pole in order to reduce its slope there and
hence its baryon density decreases as the curvature at this pole becomes large.

As L is increased beyond 1.4, local curvature effects becomes less significant
as space flattens out. At large volumes the unfavourable response of a skyrmion
to stretching becomes important. In the symmetric phase a skyrmion will need
to stretch significantly in order to reach any regions of optimal curvature which
exist. Thus, we found this phase to be significantly unfavourable for values of y
greater than —4.8 at L = 1.6, as can be seen clearly in Figure (4.4.3).

In Figure (4.4.11) we show the non-symmetric phase (solid lines) baryon den-
sities and curvature (dashed lines) for y values of —1.067, 0.0 and 0.975. These
are heavily localised at the m pole to avoid stretching over a large region of space.
For y = 0.975 the curvature is closest to the optimal —6 value at the poles, while
at y = —1.067, at the poles it is furthest form its optimal value. This is reflected
in the energy of the y = 0.975 solution, having an energy 0.017 x 1272 less than
that at y = —1.067.

For values of y less than zero, the curvature of space is highest on the rim
at u = m/2. At this volume, the curvature at this point is smaller in magnitude
than —6. Thus, we would expect the density to peak about the u = m/2 point.
However, this rim has a large diameter and would require the skyrmion to stretch
significantly in order to sit there and is thus unfavourable. This resistance to

stretching would however be overcome if the skyrmion were to localise about
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a point on this rim. However, by employing the hedgehog ansatz we have not
allowed it to. Thus, the unfavourability of the disc-like shapes, as compared to
the needle-like shapes may be a consequence of our constrained hedgehog form
which only allows the skyrmion to localise about a pole in the non-symmetric
phase.

Thus in conclusion, we see that the local curvature effect leads to many
interesting features of dense baryonic matter on the ellipse. Indeed, in terms of
the local curvature and response of a skyrmion to compression and expansion,
we have been able to understand the reason for these effects.

The local curvature enhances the localisation of the skyrmion, enabling it to
sit on regions of space where the curvature is closest to the optimal value —6, al-
though avoiding unfavourable regions with curvature less than this optimal value.
Our needle-type deformation of S,f’hy(L), with the hedgehog form, is seen to en-
hance these effects, whereas for disc-like deformations the boundary conditions of
the symmetric phase prevent complete depletion from the unfavourable regions
occurring on its hemisphere, the rim. In the non-symmetric phase, the hedgehog
form and also the unfavourable stretching of this hedgehog at high volumes, pre-
vents the skyrmion from sitting on this rim when it would be favourable. Thus,
the hedgehog on a ‘disc’ has its symmetric - non-symmetric phase transition sup-
pressed to higher volume as large energy gains are not possible. The large gains
in energy, for large positive values of y as the symmetry is broken, are reduced

as y becomes very large and as the points at which the optimal curvature of —6
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occur, they progressively move towards the u = 7/2 points. At large enough
volumes no such R = —6 optimal points exist, space being flatter and skyrmions
localise about a pole for all values of y.

In the limit y — —oo, ie. the disc, there are two competing skyrmion ar-
rangements. In the symmetric phase two half skyrmions exist in this limit, each
of which is on the flat regions of space, centred about the poles. On the rim of
this disc, the symmetric boundary condition f(7/2) = 7 /2, must be satisfied. In
the non-symmetric phase a localised skyrmion sits on one of these flattish regions
about a pole, while on the opposite flat region, a value of f(x) = 0 or 7 results.
Thus, in this region of space the skyrmion has its trivial vacuum value and the
energy density is zero. Hence, in this limit f(u) will satisfy the additional bound-
ary condition f(m/2) = 0 or 7, on the discs infinitely curved rim. In the infinite
volume of L — oo, only the non-symmetric phase solution will exist, since the
symmetric phase solution has an infinite energy. This is due to the symmetric
boundary condition f(n/2) = 7/2, which results in the skyrmion having a small
but finite energy density on the rim of this disc and since this rim has an infinite
radius in this limit it has an infinite energy.

Thus, in this limit only the non-symmetric phase solution will exist and this
corresponds to the usual skyrmion on flat space, R3, with the physical vacuum
boundary condition on the rim of this disc. On the other side of this disc there
will be a region of trivial vacuum field. This is analogous to the infinite volume

limit of S5, (L) corresponding to the usual flat space hedgehog.
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However, as the volume of space is decreased, while still in the limit y — oo,
the radius of the rim will reduce to a finite value. Thus, at some finite value
of L, the symmetric phase limit should also exist and for values of L up to
1.6, we numerically found only symmetric solutions to exist. These symmetric
solutions correspond to two half skyrmions, each separately within a spherical
surface whose radius is equal to the radius of the disc’s rim. This being the case,
we can see that this limit has already been described by Goldhaber and Manton
[9] as half skyrmions in flat space.

He found there to be an optimal radius, 7o, of this spherical boundary surface
which corresponds to a value of Ly = 1.037 and gives an energy Fy = 1.015 x 127%,
for two such half skyrmions. Employing our approximate conformal ansatz,
(4.3.25), we can take this limit of our ellipse numerically. We find, for a value of
the rim radius ro, with Lo = 1.037, the value of Ey to be equal to Manton’s value,
to the same number of significant figures were quoted by him. Thus, we see that
in this limit our conformal ansatz provides a good approximation to the true
solution. Moreover, this result certainly suggests that since the half skyrmion
concept is important in understanding flat space arrays, that the skyrmion on
a disc offers an even better model than the S3 (L) model of dense skyrmionic
matter.

In the y — oo limit, our results suggest that only the symmetric phase will

persist, as the high curvature at the pole forces the non-symmetric skyrmion to

the u = 7/2 points. Our contour plots, Figures (4.4.1) and (4.4.3), suggest the
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energy of this skyrmion, which sits on a cylindrical region of space, will be about
1.03 x 1272 and this value will be insensitive to the value of L. However, one
must be careful in taking this limit, as for large enough values of L, the skyrmion

will clearly localise about a pole. In the y +— oo limit the curvature behaves like:

y1/3

R~ (4.4.6)

Thus, in the infinite volume limit, when y increases faster than L%, the resulting
curvature is infinite at all points of space. When y increases slower than this,
the curvature will tend to zero over the whole of space (except at the poles) and
the usual flat space skyrmion will result. However, in the limit when y increases
as L°, a finite curvature of space will result (again except at the poles). Thus, in
this limit we expect both phases to coincide. This limit should correspond to a
skyrmion on a cylinder.

Concluding, we see that the local curvature acts as an effective non-isotropic
compressor on dense skyrmionic matter, where the isotropic compression is pro-
duced by the volume. Thus we see, that the effect of isotropic bulk compression
and expansion of skyrmionic matter, does indeed have an analogue in the ellip-
tical deformations of S;’hy(L), just as changing the volume of physical space is
analogous for isotropic compression and expansion.

As we have already noted, at the delocalising phase transition point, L = L., =
for the trivial map on S, (L), an infinitesimal conformal transformation of the

fields will be the mode of steepest descent. Moreover, as we have also seen in
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Section 4.1, a finite version of this conformal map, (4.1.19), gives a good approx-
imation to the true solutions energy for all values of L above v/2. We also noted
that such a generalised finite conformal mapping exists on the ellipse (4.3.25)
and that at the L = L, = /2 point, the infinitesimal version of this mapping
gives the softest mode for elliptical space deformation. Thus, it is of interest to
compare this finite form with the true solution for varying values of y.

Figure (4.4.12) shows the symmetric (o = 1) version of this ansatz, (solid
line), and the exact solution, (dashed line), at a value of L = 1.4 and for values
of y in the range 9.9 to —9.9 from x = 0 to 7/2. Since the ansatz is exact at the
end point and the point 1 = 7/2, the maximal discrepancy occurs in the region
u ~ m/4 (and p ~ 3m/4). At y = 0O, this ansatz reduces to the exact solution.
At y = —9.9 it is also indistinguishable from the exact solution, agreeing with
our suggestion that as y — —oo it becomes exact. This is analogous to the
fact, that in flat space the usual discrepancy in a conformal-like ansatz occurs in
the skyrmion tail, but for this half skyrmion on flat space, the ¢ = 0 boundary
condition does not require such a tail behaviour and indeed, as y — —oo, the
flat space half skyrmion results.

For small values of y the ansatz is also indistinguishable at values of 0.975
and —1.067. As y increases however, a large discrepancy develops, so that at
a value of y = 9.9 the ansatz is significantly different from the true solution
near u = w/4. This is because the ansatz does not compensate correctly for

the large local curvature effect present on such a needle-like surface. Hence, in
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conclusion, we suspect this ansatz or an extended version as Jackson et al [10]
considered, might be able to reproduce much of the data presented here. More-
over, as argued by Jackson et al in the case of their S3, (L) ansatz, such forms
give clues to the type of ansatz required to reproduce flat space array results.

4.5 A Skyrmion On A More General Closed Surface

Having found there to be many interesting features of dense skyrmionic matter
on an ellipse and some justification for the belief that local curvature effects mock
the flat space array environment, we shall now finally consider a skyrmion on a
more general shaped closed surface.

We have in mind to allow the shape of physical space to vary as well as the
mapping, so as to minimise the energy. As we have already mentioned, such
a general calculation will have pathological elements, since there are no terms
in the Skyrme energy functional for a static field, (4.1.8), which determine the
shape of space. Our numerical calculations will reveal this problem and we will
present some consequences and a possible resolution to this problem.

We shall consider a B = 1 hedgehog on a closed surface, parameterised as:
r? =2+ y? + 22 4+ w?, (4.5.1)

with 7, the radius of this three dimensional surface, embedded in R* which can
vary from point to point. (z,y,z,w) are Cartesian coordinates of R*.

To simplify our numerical calculations, we choose to constrain this three
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surface such that in polar coordinates (u,d,¢), its radius function r depends
only on u. This allows us to evoke the hedgehog ansatz as a sensible mapping.
Thus, the polar coordinates and the Cartesian coordinates in R* of this surface

are related by:

w = r(u)cosp,

z = r(u)sinpcosd,

y = r(u)sinusind cos @,

z = r(u)sinyusinfsing, (4.5.2)

where r is a function of u alone.
In order to fix the centre of this surface we choose to impose the condition

on r(u), that
r(0) = r(n). (4.5.9)

Moreover, since we are naturally only interested in smooth manifolds, we are

interested in surfaces satisfying the smoothness boundary conditions
r~ Lo+ Bu’ #~0 (4.5.4)
and
r~ Lo+ y(m—p)?, uo~m (4.5.5)

where 2L, is the length of the shape along the w-axis and the constants 3,~
determine the quadratic behaviour at the poles of the three surface.
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As stated, we can now sensibly consider a skyrmion in the standard hedgehog

form given by,

o = cosf,
M, = sin fcosé,
7, = sin fsinfcosd,
m, = sin fsin@sing, (4.5.6)

where the profile function of f is taken to be a function of ¢ only. Here, B =1
boundary conditions are identical to those given in equation (4.3.11) and the end
point behaviour of the profile is also assumed to be of the form given in equation
(4.4.1) for the profile function of the ellipse.

The metric on physical space is now observed to be diagonal with elements,

(r'2 + 72, r?sin® u,r? sin® p sin’® ¢) (4.5.7)

and the measure given by,
r2(r? + r?)Y?sin® pduddde. (4.5.8)

The deformation matrix is also diagonal with eigenvalues:

A=< I (4.5.9)
r2 4 p2
and
« 2
A== T 5.10
2 87 g2 sinzu (4 )



where f and # denote derivatives with respect to x. Thus, the Skyrme Model’s

static energy functional, given in equation (4.1.8), takes the form:

f2 2sin? f
42 risintp
12 sin® f 2f2 sin® f

rlsinu r2 4,2 rZsin’p

E = 4r /1rci,¢1,L2 sin? u(r? 4 r2)Y¥(
0

+4m / " duL? sin®(r? +r?) ), (4.5.11)
0

here we have also performed the trivial 6, ¢ integrations.

Since we require the functional forms of f and r, which minimise this energy
functional, the resulting Euler Equations will be a coupled set of two equations
which will both be ordinary second order differential equations. However, such
a minimisation procedure results in a pathological problem. The resulting equa-
tions and the boundary conditions for f and r, give more matching parameters
than matching conditions. Even after including a Lagrange multiplier, multiply-
ing a volume term to fix the volume of physical space, the problem is not resolved.
This of course reflects our failure to have extended the model to include a term
which will dictate the shape of physical space.

Thus, we choose to find approximate minimal energy ‘solutions’ for r and
f by choosing variational forms for these functions and minimising the energy
with respect to the parameters within these forms. Clearly this represents a
reasonably well defined problem. However, we must expect that the pathology
may once more rear its head. This technique however, will reveal the nature of
this pathology and leads us to further insight in to the nature of the Skyrme

functional.
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We thus choose the convenient, four parameter Fourier type forms for r and

f given by:
r(n) = Lo{l+sinpu(crsinp + dysin2u + czsin3u + dysindpu)},
f(p) = p+aysinp + bysin2u + azsin3u + by sin 4. (4.5.12)

These forms automatically satisfy our boundary conditions. Moreover, we can
control the symmetry of space about the equator u = m/2, by the ¢ coefficients
in r(u) and the non-symmetric phase by the a coeflicients.

We further require to minimise r and f for fixed volumes of physical space.

Thus, the volume

14 :/Vfgj (4.5.13)

is chosen initially and then by calculating the integral (4.5.13), we can then
choose Ly, such that the space has the required volume.

The resulting numerical parameter minimisation was performed using the
Minew Cern minimisation package. For direct comparison with the ellipse we
shall employ the variable L given in equation (4.3.19).

For the values of L up to and equal to 1, the trivial mapping of S}, (L)
is known to be an absolute minimum of the energy at a given volume in this
range. Thus, the eight parameters were found to be zero at these values of L
with L = Lo. Beyond L = 1 the shape of space changes significantly and the

pathology rears its head once more.
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Since we know that skyrmions prefer to sit on a sphere of radius L = 1,
that is on regions of space with curvature —6, as we increase L beyond this
value this is exactly the behaviour we find. Thus, as we increase the volume,
two regions of space develop. One region being taken up by a trivial vacuum
and the other is spherical with radius of 1 and on which the skyrmion takes
the identity mapping form. Moreover, the shape of the region of space with the
trivial vacuum is completely undetermined by the Skyrme energy functional and
there is an infinite degeneracy of shape ‘solutions’ here. This behaviour is similar
to a balloon with a weak point, which when blown up expands only at its weak
point, though in this case in an arbitrary fashion. This is of course our pathology
at work. The energy of such a structure will be equal to the lower bound for
all values of L equal and above 1 and thus the volume becomes ineffective in
expanding the skyrmion.

Thus, at a value of L = 1.3, our variational minimisation gives the shape and
mapping depicted in Figure (4.5.1). Here we have chosen to represent the shape
on the Cartesian axis. Choosing the # = 0 cross-section, we plot the value of w
against = = (2° + y? + 2%)Y/2. As the angle u varies, the value of f(u) at the
corresponding point on the cross-section varies over a unit circle and the points
on these circles are represented by the lines protruding from the smooth curve.
Thus, it leads to a revealing pictorial representation of the data for a hedgehog
solution.

Examination of Figure (4.5.1) shows the upper and lower halves of space are

187



e

8 _
Al L=13
G I
2
AL/, —

8 |- '\/’ \\\‘/' /..c.“‘ S e
‘ > SO
4| \/Qt )

b= — 1 0 | Z

Figure (4.5.1): Plot of the # = 0 cross scction through physical space in the
(w,x) plane of It*, (see equation 4.3.3), al I, = 1.3. The spines indicate the
hedgehog skyrmion’s ‘profile angle’ [(;t), relative to the w axis at a point of
physical space and at a correspouding value of jr. The angle u, delining a point
in space ab 0 = 0, is measured aboul Lhe oripin from the w axis. ‘
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both approximately spherical, with radius ~ 1 and joined at 4 = 7/2 by a sharp
‘pinch’. On the lower half of space the hedgehog is ‘radial’ and hence approxi-
mately takes the identity map form. On the lower half of space f is approximately
zero and the trivial vacuum with zero baryon density exists. The smoothness and
nature of the upper half of space is a consequence of our parametric form and
not a consequence of the model. As we expected, this structure gives an energy
very close to the lower bound with value 1.003 x 127%.

This phenomena is thus the analogue of the phase separation phenomenon
of dense crystalline matter as its average baryon density is increased, discussed
by Kugler et al [11]. As we apply a piston to expand dense baryonic matter,
there are two regions of space that exist, one with a skyrmion and one with
the trivial vacuum. Thus it would appear, that a skyrmion is rigid against such
an expansion. However, as already pointed out, since we have not incorporated
kinetic effects and the skyrmions are heavily localised, we expect zero point
motions and quantum corrections to be important. Hence, the branch of the
energy curve which connects the rarified and dense forms of skyrmionic matter
may well be important as a transitive phase of matter.

In Section 4.2, we previously demonstrated, that as the volume of space in-
creases, the sphere with trivial skyrmion mapping is stable to perturbation in
both the map and shape of space up to L = v/2. Thus, this phase separation is
not in contradiction with our previous results, since here the type of deformations

occurring are not smooth and this phase transition is first order and beyond the
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region of our perturbative, second order analysis. Moreover, our elliptical space
calculation also shows a first order phase transition at a value of L ~ 1.2, for the
needle-like shape, if we do not constrain the size and hence locality of the metric
perturbation of S5, (L).

We thus have a rather negative result from these observations and can see that
our calculation does not reveal a wealth of interesting shapes of physical space,
as global volume effects are not able to overcome the effect of the optimal local
curvature. Also, we have not achieved our natural requirement of considering
only smooth physical spaces, since we will always have a pinch region.

In order to resolve this difficulty we could imagine adding various terms to the
energy, such as the square of the Ricci tensor or its derivative squared, to stop
pinching and thus, regions of high curvature. However, this would significantly
change the model and has little physical justification. Thus, we choose to try
and simply constrain the local curvature such that it is always negative.

The Ricci tensor is diagonal for this metric, with two of its elements less than
or equal to the third. Thus, we choose to demand that this third element, the
R,; component, be less than or equal to zero, so that all three elements of the
Ricci tensor will be less than or equal to zero. Thus the resulting space will have

definite negative curvature. We also note that the regions of space where R, is

zero, will be cylindrical.
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Thus, we choose to include the following term in the energy,

’\/ \/g(l Ry | +Ru)’ - (4.5.14)

This integral is positive semi-definite and vanishes for R;; less than or equal to
zero. The Lagrange multiplier is then increased to large values, typically 10,000,
in order to force Rj; to be less than or equal to zero and hence the local curvature
scalar to be negative definite.

The resulting minimisation problem is well defined, however in practice, it
is some what unstable. This constraint is very active as L is increased, with
large regions of space developing with R;; = 0, as we might have expected. In
effect, we have erected a steep wall across an energy surface in a region of steep
descent towards an infinite degeneracy of minimum energy shapes, which are
undetermined by the energy functional. Thus, across the wall we expect a whole
variety of shapes to still persist, each lying on a local path of steepest descent.

Presumably our variational forms smooth this effect out and we find that there
appear to be three predominant symmetries in the shape that space prefers, with
the constraint of equation (4.5.14) imposed. Figures (4.5.2) to (4.5.7) show these
structures at values of L = 1.3 and 1.5.

In the first case, Figures (4.5.2) and (4.5.3), physical space can be considered
to be divided by the mapping in three distinct regions. At the u = 0 end (or
the 4 = 7 end) of space, we have a hemispherical three surface of radius of

about 1, with optimal curvature K = —6, on which the hedgehog is seen to be
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Figure (4.5.2): Plot of the # = 0 cross scction through a non-symmetrical
physical space in the (w,z) plane of RYat L =1.5. Here the constraint 12, <0
was imposed. The angle (1), at a point of physical space is measured relative
Lo the w axis and is indicated by the spines.
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Figure (4.5.3): Plol of the 0 - 1) cross section through a non-symmetrical
physical space in the (w,x) planc of % at L = 1.3. Here the constraint By <0
was imposed. The angle f(@), at n point of physical space is measured relative
to the w axis and is indicated by the spines.
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Figure (4.5.4): Plot of the ¢ - 0 cross seclion through a ‘buckled’ non-

symmetrical physical space (sec text) in the (w, ) plane of 12, at L = 1.5. Here
the constraint Jey << 0 was imposed. The angle f(u), at a point of physical space
is measured relative to the w axis and is indicated by the spines.
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Figure (4.5.5): Plot of the ¢ 0 cross section through a ‘buckled’ non-
symiuuetrical physical space (see text) in the (w, ) plane of 2%, at L = 1.3. Here
the constraint I£y; < 0 was imposed. The angle f(u), at a point of physical space
is mcasured relative to the w axis and is indicated by the spines.
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Figure (4.5.6): Plot of the ¢ = 0 cross section through a symunetrical physical
space in the (w,z) plane of I¢*, at L = 1.5. llere the constraint fZ;; < 0 was
iniposed. The angle f(st), al a poinl of physical space is measured relative to the
w axis and is indicated by the spinen.

196



2.8F
2.4

1.6
1.2k et RSN PR EQ\\\\_\L\\\ L

Figure (4.5.7): Plot of the @ = 0 cross secltion through a symmetrical physical
space in the (w,x) plane of It*, al L — 1.3, IHere the constraint I¢;; < 0 was
imposed. The angle f(st), al a point of physical space is measured relative to the
w axis and is indicated by the spinon.
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radial, corresponding to the identity mapping in this region. There is thus a half
skyrmion in this region. On the adjacent ‘bucket’ region, with Ry; = 0, the other
half of the skyrmion exists with its baryon density depleting as u increases. This
can be seen by noting that as the angle p varies, the angle f(x) on this surface
reduces towards its trivial vacuum value. Finally, on the other end we have a
second hemisphere, whose radius depends on the amount of volume it is required
to take up, in order to avoid excessive stretching of the skyrmion and on which
no baryon density exists and the field takes its trivial vacuum value of f = m,
(or f =0). Note that this structure is a non-symmetric skyrmion. Indeed, since
space is non-symmetrical, it makes little sense to consider a symmetric phase
skyrmion.

The second case, Figures (4.5.4) and (4.5.5), is similar, except now the
‘bucket’ region, with R;; = 0, grows in width towards the u = m pole, but it
still has half a skyrmion stretch over it. The vacuum hemisphere now has a
larger radius than the trivial L = 1 region. Thus, the structure involves less
stretching of the skyrmion than the previous case and has an energy which is
slightly less than those of Figures (4.5.2) and (4.5.3) at corresponding values of
L.

The final situation, Figures (4.5.6) and (4.5.7), consists of the case where both
the vacuum and identity regions have identical radii and a cylindrical B;; =0
region, with a half skyrmion between them. Only in this case is the space sym-

metrical and hence a symmetrical mapping sensible. However, the large gains
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of the non-symmetrical mapping structure at the 7 pole with optimal curvature,
avoids this possibility.

The energies of these three structures are plotted against varying values of
L shown in Figure (4.5.8). The energy of the trivial map of the sphere is also
included, (solid line). As observed, the second type space, (dot-dashed line), is
more favourable than the first, (dashed line), at all volumes due to the reduced
stretch of the skyrmions that result. The symmetric third option, (dot-dot-
dashed line), is seen to be the most stable of the three for values of L of below
about 1.5. Above this value, the increasing volume of space and the resistance
of the half skyrmion to stretching over the cylindrical region, results in its being
preferable for space to buckle in to the second type of shape depicted in Figures
(4.5.4) and (4.5.5). Around a value of L = 1.25, all three options become indis-
tinguishable and all three undergo a first order phase transition to the identity

mapping of S3,, (L), as indicated by the plot. This occurs at an energy of about

phy
1.03 x 127%. The volume and the energy at the phase transition point and its first
order nature, are all consistent with the result for the sphere, subject to our less
general elliptical deformations. The reason for the linearity of the non-symmetric
phase plot, is however unclear.

In conclusion, our results suggest that three very similar structures exist in
the non-symmetric phase and that these are similar to the needle-type elliptical

structure in both energies, critical points and shape. Thus, the much simpler

elliptical calculation seems to have most of the features of the more general
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Figure (4.5.8): Plots of (encrgy)/12n% = /5 /127% versus L of a hedgehog solu-
tion on various shaped spaces. I'he nolid line indicates the trivial map skyrmion
on the sphere. The non-sypmuncetric spaces, with the skyrmion localised about the
narrowest region, (dashed line) and the symmetric, (dot-dashed line), shapes are
depicted merging at the common first order phase transition point.
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skyrmions on negatively curved closed surfaces. However, in this instance we
see that skyrmions split in to halves as a direct consequence of the R;; < 0
constraint, with half a skyrmion on a H;; = 0 ‘bucket’ three surface and half on
a R = —6 hemisphere.

Finally we should note, that by allowing general unconstrained deformation of
this sphere to a negative curved three surface, we have not observed the Sghy(L)
local stability up to v/2 we predicted. This can be rectified by simply controlling
the size of the space deformation as in the elliptical case. To achieve this the

parameters of r(u), (4.5.12), are re-expressed in terms of a new set of parameters,

(e, 8,7, 6),
¢ = acosf,
di = asinfcosd,
¢, = asinfsindcosy,
d; = asinfsindsin~y. (4.5.15)

Fixing the value of the parameter, o, and hence the maximum magnitude of
r(u), the three remaining parameters lie within a three dimensional spherical
surface of radius «, embedded within a four dimensional parameter space. We

3

can now increase the value of a form zero ( Sy, (L) ) and vary the remaining

P
independent parameters §,6,7 and the four parameters in f(u), (4.5.12), to

obtain minimal energy configurations. In Figures (4.5.9) and (4.5.10), we plot

the minimum energy obtained as the magnitude of « is increased from zero at
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Figure (4.5.9): Plot of (energy)/12a% of the hedgehog versus the parameter

@, (see equation (4.5.15)), at L = 1.25, with the curvature of physical space
unconstrained.
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Figure (4.5.10): Plot of (energy)/127% of the hedgehog versus the parameter
a, (see equation (4.5.15)), at L = 1.45, with the solid line corresponding to the
curvature of physical xpace unconstrained, while the dashed line corresponds to
the constraint Ity; <0 being imposed.



L = 1.25 and 1.45 (note differing scale sizes in these two figures). In Figure
(4.5.9), at L = 1.25, we see that the sphere is indeed stable as a is increased
up to 0.3. Beyond this value, the energy falls steeply towards the lower bound
as « approaches a value of 1. Here we have dropped the curvature constraint
of (4.5.2), and the a ~ 1 surface will look similar to that in Figure (4.5.1). In
Figure (4.5.10), we see that at a volume of L = 1.45, the sphere is completely
unstable as o moves from zero, which is a local maximum. Indeed, we see our
results confirmed the sphere’s stability to a value of L = Ly = ﬁ On this
plot we have included a second branch, (dashed line), which has a higher energy
and corresponds to the turning on of the curvature constraint of (4.5.14). Thus,
in the region of a < 0.06 the constraint has no effect and the deformation size
is insufficient to produce positive curvature. Beyond this point the two curves
branch smoothly, the curve with no constraint falling more sharply. Thus, as
we expected, the constraint cuts through a region of steep descent in parameter

space and is therefore very active.
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CHAPTER 5

CHIRAL BAGS WITHIN
DENSE SKYRMIONIC MATTER

5.1 Introduction

In Chapter 3 we reviewed the current status of the Skyrme Model’s predictions
for dense baryonic matter. This showed that the model can be used to describe
baryonic matter in a static crystalline form, which consists of a periodic skyrmion
array. A variety of crystalline arrays have thus far been investigated, all of which
have been found to have similar general characteristics. In particular, all have
been shown to give considerable gains in binding energy at high densities over
that of an array of isolated iso-rotated hedgehogs. Their minimal energy field
configurations all occur at densities which are considerably higher than those at
which ‘normal’ nuclear matter exists. At these high densities, these skyrmion
crystals have been shown to condense to half skyrmions arrays.

Our numerical investigation involving the fcc array of skyrmions, demon-
strated that the most likely candidate for the classical ground state configuration
of crystalline skyrmionic matter, is the condensed fcc array, which corresponds

to a simple cubic array of half skyrmions. Its minimal energy field configura-
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tion, has an energy per unit baryon, which is 3.8% above the lower bound. As
Manton et al [1] demonstrated, in flat space this bound cannot be saturated and
thus, the close vicinity of this cubic half skyrmion array’s energy to the bound,
leads us to believe that this may well represent the absolute minimal energy,
static crystalline field configuration. The corresponding high density of this field
configuration, as we have already argued, may well be decreased when 1-loop
quantum corrections are included and its density may well approach realistic
nuclear matter densities.

In this chapter, we wish to propose further possible investigations involving
this minimal energy crystal of Skyrme matter, which would reveal the particular
nature of this crystal and lead to a better understanding of the physical inter-
pretations that should be attached to its existence. As we outlined in Chapter
3, Klebanov [2]| proposed that such arrays should represent neutron matter and
he demonstrated how this could be achieved using naive semi-classical quantiza-
tion techniques for quantizing the crystal’s isospin-rotational modes. However,
we have in mind the possibility of the crystal representing dense nuclear matter,
which contains both neutrons and protons, as well as higher resonance states. We
shall not tackle the question of electromagnetic interactions, which as Klebanov
noted, would lead to divergent electrostatic contributions to the energy of the
crystal per particle.

We believe that the possibility of the crystal being composed of a-particle

like structures is an appealing one and would moreover, be of great interest.
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Such an a-particle picture of nuclear matter, for cubic half skyrmion crystals, is
however, at this time based only on intuition and a belief that the Skyrme Model
might give a ground state within the B = 4 sector, with quantum numbers of
the a-particle. This belief does have some basis however. Firstly, we know that
in the B = 2 sector, the model gives a ground state configuration, which as a
consequence of the particular axial symmetry present in the field configuration,
has the quantum numbers of the deutron [3]. Secondly, this configuration was
arrived at numerically [4] by considering the field deformation which occurs as
two optimally orientated hedgehogs are brought together. Since hedgehogs rep-
resent generalised baryons containing both nucleons and deltas, it is seen that
the resulting deutron bound state at high densities can be considered as being
composed of all the dominant particles known to determine a deutron’s physical
properties.

As we have already pointed out, the B = 4 minimal energy configuration
has also been obtained by Carson et al [5] and has also been found to possess a
high degree of symmetry. Of further relevance here, is their observation, firstly,
that within the Skyrme Model this may represent an a-particle and secondly,
that the cubic point group symmetry this field configuration possesses is also
present with our half skyrmion cubic field configuration [5]. Therefore, there
exists the possibility of this half skyrmion crystal being composed of the B = 4
units, which may represent the generalised classical a-particle of the Skyrme

Model. However, this consistency of symmetry is not easily transformed in to
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the actual field configuration we have numerically discovered. In particular, it
is not obvious how Carson’s (et al} B = 4 field configuration, with the physical
U(Z) = 1 boundary condition at spatial infinity, might be related to a crystalline
field configuration with its twisted periodic boundary conditions, (3.2.13) and
(3.3.3). It is true however, that the baryon density plots for this minimal energy
crystalline fcc field given by Kugler et al [6] and the Carson et al [5] minimal
energy B = 4 configuration, are similar. In particular, both are cubical and have
similar numbers of regions of depleted baryon density. Given that the relation
between these two fields remains to be more precisely established and that the
actual pion field configuration of the B = 4 configuration, has not yet been
presented by Carson et al, the question of the relation between the two field
configurations remains an open one which we shall not consider here.

Nevertheless, we can still construct arguments which can be expected to hold
independently of Carson’s (et al) actual field arrangement and without an explicit
relation between the two systems.

As we have seen in Chapter 3, our fcc crystal’s low densities can be pictured
as being composed of four types of iso-rotated spherical hedgehog skyrmions
centred on the points of an fcc lattice, such that neighbouring skyrmions have
their pion fields relatively iso-rotated about their line of centre by an angle .

Specifically, we can describe the uncondensed phase fcc array in terms of the
fcc cube. If the eight hedgehogs at the vertices of this cube are taken to be

unrotated, then those on the faces are iso-rotated about an axis perpendicular
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to the face on which they lie, by an angle m. A representative cell of the fcc
crystal is thus an octant of this fcc cube and is itself a cubic cell, with the four
different types of skyrmion centred on four of its vertices forming a tetrahedron,
(see Figure (3.1.3a)). Periodic repetitions of these tetrahedral units generate the
full fcc lattice arrangement.

Since the Skyrme Model Lagrangian is invariant under a constant global
isospin rotation of a field configuration, there exists an infinite degeneracy of
equivalent crystalline field configurations. By performing a global iso-rotation
of our fcc lattice arrangement, we can obtain an equivalent crystal in which the
tetrahedral symmetry of these representative units is explicit. Specifically, a
global iso-rotation of the fcc arrangement by an angle 27 /3, about an axis z =
vy = z passing through the centre of this tetrahedron and the vertex on which the
unrotated hedgehog sits, results in an arrangement in which the hedgehogs within
the cell are iso-rotated by an angle 27 /3 and each characterised by the direction of
the axis about which it is iso-rotated. The resulting arrangement has each of the
four skyrmions, which together form a tetrahedral unit within this representative
cell, iso-rotated about an axis passing from the centre of the tetrahedron to the
vertex point on which it sits, by an angle 2w /3. Thus, the resulting pion field
arrangement is explicitly seen to possess tetrahedral symmetry. It is important to
note, that these iso-rotations do not affect the o-field. The arrangement, though
equivalent to that which we considered before, reveals much about the manner in

which the pion field direction distorts as one increases the density of the crystal.
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With this picture, we see that as the density of the crystal is increased,
by decreasing the lattice space a of the fcc cube, the hedgehogs forming the
tetrahedral unit within the representative cell, approach each other along the axis
about which they are respectively iso-rotated. Since along these axes the pion
fields remain unrotated and point outwards from the hedgehogs at the centre, we
clearly see the manner in which the B = 4 hedgehog units approach each other
as the lattice spacing is decreased.

An identical tetrahedral arrangement of four hedgehogs in the low density
limit of the B = 4 sector, will clearly also be an optimum field arrangement.
However, in this sector, a product of the minimal energy B = 2 fields at large
separations, would be more bound than this tetrahedral field at correspondingly
low densities. However, this tetrahedral arrangement should still be a local ex-
tremum of the energy of the B = 4 configurations at all densities. At high
densities, bringing these spherical hedgehogs together along the respective axes
of rotation, will result in large field deformations as the hedgehog fields over-
lap and should result in the true B = 4 configuration of Carson et al, which
they suggested might represent an a-particle. Thus, in this manner, we suggest
that our minimal energy, cubic half skyrmion crystal represents an array of a-
particles at high densities. However, this crystal’s periodic boundary conditions
make establishing its association with the B = 4 solution non-trivial.

This picture also suggests, that at a density below that at which the minimal

energy cubic half skyrmion field configuration exists, the cubic half skyrmion ar-
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ray will be less bound than a crystal composed of optimally separated, tetrahedral
B = 4 units, separated by regions of trivial vacuum. The tensor interaction of
these B = 4 units should of course be weak, if they do indeed represe/nt physical
a-particles. Thus, at a fixed baryon density below that of the minimal density,
allowing the crystalline field to break the periodic fcc boundary condition, we
might expect that a simple cubic arrangement of a-particle like structures would
condense out, separated by regions of trivial vacuum. However, the manner in
which this condensation would occur is not clear, as the relation between the
crystal’s twisted boundary condition and the B = 4 physical boundary condition
is not yet established.

It is clear though, that the B = 4 tetrahedral units within the crystal would
slide along the four axes of the tetrahedron which pass through its centre and
its four vertices. Thus, we can picture this condensation as being due to the
fact that a tetrahedral unit has a definite density at which it prefers to be and
when the baryon density of the crystal is decreased, these units remain rigid. In
order to decrease the density, they slide along the four axes of symmetry of the
tetrahedron and the exteriors of these tetrahedral B = 4 units are surrounded by
regions of space in which the baryon density is zero. In this manner the baryon
density of the whole cube is reduced. However, the twisted boundary condition
of the condensed fcc crystal will no longer hold. Presumably, as the density
is decreased, the fields at the edges of the B = 4 tetrahedral units smooth out,

becoming spherical in order to match smoothly with the regions of trivial vacuum
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at their exterior. Hence we suspect, that as the baryon density of the crystal
decreases, these B = 4 units within the condensed fcc array would correspond to
that of the B = 4 configuration discovered by Carson et al [5].

Given the belief that fcc skyrmionic matter may be composed of a-particle
like structures, we wish in this chapter to present an alternative method by
which the particle content of this crystal might be deduced. We wish here to
consider the possibility of explicitly including quark degrees of freedom, which
we expect to be relevant at short distances within a baryon. Thus, within dense
baryonic matter we might expect this to be a necessary step in the development
of a realistic physical model of dense baryonic matter. The inclusion of quark
degrees of freedom can be achieved by invoking the Chiral Bag Model, which
provides an elegant two phase description of a baryon.

In the Chiral Bag Model a baryon is described in terms of quarks at short
distances within its core and these are assumed to be confined within a spherical
bag. At the exterior of this bag a meson cloud exists. These two phases are
coupled at the bag surface by the requirement that the axial current be contin-
uous. Thus, the resulting model is chiral invariant. In the interior, perturbative
Q.C.D. governs the dynamics of the quarks, which interact via gluons, though
these gluonic effects are usually ignored. In the exterior region, the desire to
incorporate the P.C.A.C. hypothesis correctly within this model and hence its
resulting successful low energy pion theorems, leads one to incorporate the dom-

inant low energy pion degrees of freedom, realised as the Goldstone modes of
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broken Chiral Symmetry. Thus, at the exterior of the bag the mesons dynamics
are taken to be governed by the Non-Linear Sigma Model. To stabilise the bag
at the tree level, against collapsing to a point in a chiral symmetric manner,
it has been both customary and of interest to generalise this effective mesonic
Lagrangian by including Skyrme’s fourth order term.

In the next section we shall present the details of this model and briefly review
some of the recent results.

The inclusion of explicit quark degrees of freedom within crystalline skyrmionic
matter, through the Chiral Bag Model, has already been considered by some
authors [7][8][9]. The inclusion of quarks should partially cure the low en-
ergy restriction of the Skyrme’s effective Lagrangian with its limited number
of mesons. These attempts to extend the description of Skyrme matter, em-
ployed the Wigner-Seitz approximation. Wurst et al [9] considered cutting spher-
ical holes out of a crystalline skyrmionic field, which satisfied Klebanov’s cubic
boundary condition. They considered placing free massless Dirac fermions, the
quarks, inside spherical bags and ignored gluonic interactions. This approach is
only valid if the spacing between neighbouring skyrmions is large, because only
then is the array composed of approximately spherical skyrmions. The impo-
sition of spherical bag symmetry places strong constraints on the deformation
of the crystalline configuration. As a result, their Wigner-Seitz approach was
unable to describe high density baryonic matter, since spherical symmetry of the

bag was inconsistent with that of the simple cubic lattice arrangement. This
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resulted in the Wigner-Seitz lattice having an energy which was always greater
than that of the corresponding free skyrmion field configuration and thus there
was no binding. Thus, their imposition of spherical symmetry, which was a mere
calculational convenience, prevents their lattice calculation from giving ihsights
in to the relevance of quark degrees of freedom at high densities.

Clearly what is relevant here, is to allow the shapes of the bag surfaces to
deform as the density of the crystal increases. Thus, for our fcc crystal at low
densities the spherical shaped bag would be relevant, but at high densities, the
shape of this bag would be expected to mirror the symmetry of the mesonic field
configuration, which has cubic symmetry. However, a calculation in which the
shape of the bag is allowed to deform smoothly and continuously, is certainly
beyond the realms of realistic possibility. Yet what we are most interested in
here, is not understanding the manner in which these bags deform as the density
increases, but the nature of the minimal energy half skyrmion arrangement at
high densities.

We therefore wish to consider cubic, or more generally, square based prisms
cut out of our minimal energy cubic crystals of half skyrmions, as we shall later
show. These have an advantage over spherical bags in that they can be placed
together to fill the whole space, whereas a sphere would require a tortuous bag
shape deformation in order for the bags to fill space. The details of the consistent
shape that can be cut of the minimal energy field configuration will be presented

in Section 5.3. We note here simply, that given such an inclusion of explicit
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quarks via the Chiral Bag Model, will not only reveal the particular nature of this
matter, but might also provide us with an understanding of quark deconfinement
at high densities.

We might thus envisage a Chiral Bag Model description of nuclear matter,
composed of nucleons interacting through pions and with the acknowledged quark
substructure of nucleons explicitly included. A second advantage of extending
our model to include quarks through the Chiral Bag Model, is that we can expect
that since it interpolates between the two extreme limits of the Skyrme Model
and the M.I.T. Bag Model, it will incorporate the successes of them both. The

manner in which this is achieved will be seen in the next section.

5.2 The Chiral Bag Model

In recent years the Chiral Bag Model [10] has emerged to provide an elegant,
two phase description of a nucleon, in which the nucleons central quark core is
coupled to an external meson field through continuity of the axial vector current.
This model has been shown to provide the exciting possibility of understanding
the relationship between the two distinct extremes of the bag and soliton models
of baryons.

Originally the M.I.T. Bag Model [11] set out to describe hadrons solely in
terms of their quark substructure. This model of hadronic substructures was de-

veloped in a manner which incorporated many of the phenomenological features
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of high energy hadronic physics. A baryon is described as an extended object, a
bag, in to which three valence quarks are placed.

The results of deep inelastic scattering experiments have revealed that within
a hadron, quarks or partons move freely over short distances. However, no free
quarks exist in the physical particle spectrum. Thus, the M.I.T. Bag Model
describes a baryon as composed of three quarks, bound inside a confining closed
surface. Outside of this bag the quarks attain an infinite mass and are thus
prevented from existing in this, the exterior region.

The physical basis of the confining mechanism which prevents quarks from
being observed in asymptotic channels, is not understood. However, since within
a hadron quarks interact through the eight gauge bosons of Q.C.D., the gluons
presumably provide the ‘glue’ which binds them within the hadron. In this way,
the Bag Model imposes quark confinement by fiat. In so doing, it is supposed
that non-perturbative effects of Q.C.D. result in a two phase structure. The bag
represents a bubble within which quarks and gluons interact perturbatively, in
a manner governed by Q.C.D.. These bubbles exist within the ‘normal’ phase,
which has a non-perturbative vacuum structure and in to which colour electric
fields cannot penetrate.

The original M.I.T. Bag Model only attempted to describe the perturbative
phase and imposed colour confinement by demanding that the (colour) vector

current across the bag surface vanishes.

n,¥y"Y |Bounpary= 0. (5.2.1)
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Here 1) is taken to be an iso-scalar, that is, a four component Dirac spinor,
describing the quark field and n, is the outward unit normal to the bag surface.

The linearised version of this boundary condition,

—57%"7¢(-’5) |BouNDARY = ¥(Z) |BOUNDARY , (5.2.2)

uniquely solves boundary condition (5.2.1), the usual M.I.T. boundary condition.
The bag is usually taken to be a sphere of radius R, with the boundary given by
r = R. With the linearised boundary condition, the quarks within the bag are
prevented from escaping from it. It is a trivial consequence of Gauss’ theorem,
that within the bag only colour singlet contributions of quarks and gluons can
exist.

The perturbative phase is believed to have a higher vacuum energy density
than the normal phase and thus, bubbles will not expand to fill all of the space.
Therefore, a constant measuring of the excess energy density of the hadronic
phase is usually introduced. This results in the bag size becoming a physical
quantity, relevant to the distance scales at which quarks confine. However, this
interpretation of the bag radius, R, being a physical quantity, is not taken over
in the Chiral Bag Model generalisation, as we shall see later.

The dynamics of the quarks and gluons within the spherical cavity are de-
termined by perturbative Q.C.D., subject to the confining boundary condition
(5.2.2). Initially the gluon effects, as well as the quark masses, are neglected.

The dynamics of the free massless quarks are then determined by the massless
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Dirac Equation. It is then possible to obtain a complete analytic solution to the
Dirac Equation, subject to boundary condition (5.2.2), for a spherical bag. By
including quark masses and gluonic interactions, the resulting model has been
shown to give a good fit to the low lying hadronic spectra [12]. In particular it
gives the correct ordering of the spectra.

The M.I.T. Bag Model of a hadron however, has some short comings, partic-
ularly with respect to its description of low energy nuclear thsiCs. For example,
since all the nucleon’s physical properties are confined by boundary condition
(5.2.2), in order to study the interaction of nucleons it was necessary to consider
the complex process of bag fission and fusion [13]. Moreover, since quarks are
confined their currents are discontinuous at the bag surface. Thus, the quarks
vector axial current is not conserved. Hence, the M.I.T. Bag Model is not chiral
symmetric and makes no attempt to incorporate the success of the low energy
phenomenology of Chiral Symmetry. As a result, the M.I.T. Bag Model is only
relevant and successful in describing hadronic substructure and thus, strong in-
teraction processes at short distances.

The Chiral Bag Model thus emerged, to overcome the short comings of the
M.I.T. Bag Model. The former provides a model of a nucleon with not only
an explicit quark substructure, but also an exterior pionic cloud through which
nucleons interact. The Chiral Bag Model, as developed by Vento et al[10], was
based on the P.C.A.C. hypothesis. Thus, the Chiral Bag Model has an exte-

rior pionic field which, by demanding axial current conservation across the bag
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boundary, is consistently unified with the quark fields on the boundary of the
cavity.
The Chiral Bag Model’s generalisation of the confining linear boundary con-

dition (5.2.2) reads,

- YY(z) |povnpary= € "7 (z) |pouNDARY, (5.2.3)

30

—1

where 1(z) is now taken to be an iso-scalar composed of up and down quarks.
Here, ﬁ(x) is the external pion field which is excluded from penetrating the bag.
The boundary condition is SU(2), x SU(2)g chiral invariant. It couples the
internal up and down quark fields to the iso-triplet vector pion fields at the bag
surface, via a 5 vertex. On physical grounds one expects that the external
pionic fields should be the Goldstone Bosons of Chiral Symmetry, as realised
in the Goldstone mode. Thus, in the initial version of the Chiral Bag Model,
the external pion dynamics were taken to be governed by the Non-Linear Sigma
Model. We can thus interpret the unitary matrix U = €'/ ’”7"_"5, appearing in the
boundary condition (5.2.3), as the result of a Yukawa coupling of the quarks to
the pion fields of the Non-Linear Sigma Model.

Inside the bag, neglecting gluonic interaction, quarks obey the massive Dirac

equation,
(t4*3, — m)y(z) = 0. (5.2.4)

Now, differing choices of d at the boundary, give different boundary conditions,
(5.2.3), on the bag surface. Thus, differing choices of the pionic field strength at
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the bag surface, result in different solutions to the Dirac equation and hence to
theories with different physical content.

Deviations from Chiral Symmetry are treated perturbatively, based on the
observation that both the pions and the quark current masses are small. Thus,
the masses of the free quark field in the Dirac equation, (5.2.4), are usually
neglected, to be included later as perturbative effects.

As we have already noted, in addition to the linear boundary condition (5.2.3)
on the bag surface, in order to maintain Chiral Symmetry, the Chiral Bag Model
imposes the condition that the vector axial current be continuous across the

boundary surface. This condition reads,
7 - A2(4] |pounpary= 7t - A%0, 7] |BounDARY - (5.2.5)

The vector axial current of the iso-scalar quark field is given by:

7% _

AslY) = Py’ 5 P. (5.2.6)

The form of the axial current for the o and 7 fields, depends on the explicit
Chiral Symmetric Model we employ to govern the dynamics of the external pion
degrees of freedom. Here we wish to consider a version of the Chiral Bag Model,
in which the bag is stable at the tree level against collapse of the bag to a point
and also to incorporate the pure Skyrme Model description of a baryon as a
soliton. Thus, we shall employ the Skyrme Lagrangian to govern the external

pion dynamics. The axial current for the o,7 fields can be represented in terms
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of the 2 x 2 unitary field U and this has the form:

; S 1
AU = z—4—Tr(T {U,8,U"}) — oy

Tr(r*{U,8,U*})Tr(L"L,)

1

39?2 Tr(r*{U,8,U*}|Tr|L,L"]). (5.2.7)

+1

The Chiral Bag Model we have outlined, determined by equations (5.2.3),
(5.2.4), (5.2.5) and the Skyrme Lagrangian, is explicitly SU(2)g x SU(2), chirally
symmetric and since it incorporates the Non-Linear Sigma Model’s pions in the
Goldstone mode, it is seen to unify the success of low energy soft pion theorems
with the success of the M.I.T. Bag Model in describing a hadronic substructure.

Having discussed and justified the dynamics and relevant boundary conditions
of the Chiral Bag Model, we shall briefly indicate the types of exact solution
which have been obtained for a spherical confining bag of radius B. However,
before doing so it is interesting to note that this model does indeed interpolate
between the M.I.T. Bag and the pure Skyrme Models. This observation is based
on the fact that as we vary the size of the bag radius, the pionic field strength
9, at the surface, varies smoothly. Thus, in the limit when | E(R) |= 0, the
two flavour Chiral Bag boundary condition, (5.2.3), reduces to one flavour. The
M.LT. condition (5.2.2) and the M.L.T. Bag Model results. In the limit of zero
bag size, we have pionic degrees of freedom throughout the whole of space and
the model reduces to the Skyrme Model.

For a spherical bag, complete analytic solutions to the Dirac Equation for the

massless quark fields are available when the external Skyrme field is assumed to
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be of the hedgehog form:
U(&) = 700, | (5.2.8)

which describes a single baryon in the pure Skyrme Model limit. At the spherical
bag surface, r = R, the iso-vector pion field strength, 5, is normal to the surface
and has a constant magnitude.

It is now obvious that the M.I.T. Bag limit will correspond to the magnitude
of the iso-vector field strength, being zero on the bag surface when the bag has
an infinite radius. The pure skyrmion limit, resulting when the bag has zero size,
will correspond to the limit of | § |= 7 at the bag surface.

On substituting the hedgehog ansatz for the external pion field (5.2.8), in to

the linear boundary condition, we obtain;
—ifi - Jp(x) |r=r= (sinO(r) — 7 - 7cos 0(r)vs) ¥ (z) |r=r - (5.2.9)

This condition is such that it does not commute with J = L+ S or T separately,

but with them taken together to form the grand-spin generator:

—

K=L+T+5. (5.2.10)

The chiral boundary condition, (5.2.9), which is sphere symmetric, thus couples
the isospin directions to spatial directions and results in the grand-spin generator,
(5.2.10), being a good quantum number. Thus, spinor solutions to the Dirac

Equation (5.2.4), will be partially characterised by (K, k.).
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An analytic general solution to the massless Dirac Equation, in spherical co-
ordinates, which satisfies the chiral boundary conditions, can easily be obtained.

The lowest energy solution is given by:

N .. . >
Vi = _\/‘G(Uo(w’) G- Fri(wr)) ve ™, (5.2.11)
where the spin-isospin state,

(ITd>+1lu>), (5.2.12)

<
Il
Si-

satisfies
(S+1) | v>=20 (5.2.138)

and has the quantum number 0%,

Since parity commutes with the Dirac Hamiltonian, there are two opposite
parity states, 7 +={ for a fixed value of . Thus, for K = 0, there is another state,
with the quantum numbers 0™, which has higher energy.

The hedgehog ansatz, (5.2.8), enables us to take the non-linearity of the ex-
terior Skyrme Lagrangian in to account. The resulting equation of motion which
determines the o,7 fields is the non-linear second order differential equation,
(1.1.25), for the profile function, with f(r) replaced by 6(r). The boundary con-
dition at spatial infinity, (1.1.15), taken with the equation of motion, implies
that | 7 | tends to zero as a/r? asymptotically. This coefficient, «, determines,
through the equations of motion, the values of 8(r) and 0(r) at the bag bound-
ary, r = R. The linear boundary condition (5.2.9), subsequently determines the
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Dirac spinor solution to the Dirac Equation. The conservation of axial current
condition, (5.2.5), at the bag boundary, then determines the coefficient a. Note
that since the value of a determines the pion field at spatial infinity, its value
should be related to g,nny and its subsequent determination through the conti-
nuity of axial current at the bag surface, is the mechanism by which « is chosen,
so that the Goldberg-Treiman relation holds for the hedgehog field.

Initially Vento et al [10] considered putting three valence quarks in to the
0* ground state, (5.2.11), with the Non-Linear Sigma Model determining the
exterior ¢ and 7 fields. However, as we have already pointed out, there are
distinct advantages to be gained by employing the Skyrme Lagrangian in the
exterior regions, as this leads to a bag which is stable against collapsing to a
point at the tree level, which their version does not. Vento et al found that the
total energy of the system, the bag plus the exterior pion clouds, is close to that
of the nucleon mass for a wide range of bag radii from 1.5Fm down to 0.5Fm.

In order to complete the construction of the Chiral Bag Model it is necessary
to include quark vacuum effects. Indeed, a consistent construction of the Chiral
Bag Model necessarily requires these 1-loop effects to be included in the quark
sector [14]. The model suffers many defects when these effects are ignored. The
most serious of these is that the baryon number takes unphysical, non-integer
values, as noted by Rho et al [15]. The vacuum correction to the valence quark
contributions have been shown to correct this defect.

To understand this difficulty we note that the exterior o, 7 fields, should have
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associated to them, the usual baryon number, B, given by the field’s winding
number. However, since we have a bag cut out of this field, its contribution to

the baryon number will be less than unity and is given by;
1 .
B = —(0 — 1/2sin 26), (5.2.14)
s

for a hedgehog field where 8 is the value of the chiral angle at the bag surface.
When this is added to the three valence quarks contribution of unity to the
baryon number, we see that this model gives a baryon number which is greater
than unity and not an integer. The resolution of this lies in the presence of the
mesonic fields exterior to the bag, which modify the bag boundary condition for
the quarks in the negative energy sea, as well as for the valence quarks. This
leads to a vacuum quark contribution to the baryon number which is precisely
equal and opposite to that from the mesons. This result has been demonstrated
numerically, by evaluating mode sums of the quark vacuum contributions [14].
The mechanism by which this cancellation occurs can be understood by con-
sidering the effect of increasing the value of chiral angle #(r) at the bag surface. In
the M.1.T. Bag Model limit, § = 0, the solution to the Dirac Equation produces
an energy mode spectrum which takes both positive and negative values. In this
limit its spectrum is symmetric about zero energy. As the strength of the pion
field at the bag surface grows, the lowest positive energy valence quark states
drop in energy and eventually cross zero energy and become negative; the other

modes oscillate in energy but do not change sign. It is this spectral flow which
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provides the mechanism for the fractional cancellation of the baryon number of
the vacuum and of the exterior meson field.

Another case in which the need to include vacuum contributions is essential,
is seen when one considers the Hamiltonian. Without the quark vacuum’s con-
tributions, the Hamiltonian is not bounded from below. To see this, we note
that the energy scales with the inverse bag radius and thus by decreasing the
size of the bag we can make the energy arbitrarily large and negative with Sigma
Model exterior pion field. This is resolved by considering the Casimer energy,
which treats the ‘fallen’ negative energy valence states in a unified fashion with
the rest of the Dirac negative energy sea and thereby restores the positivity of
the Hamiltonian.

It has been shown that on incorporating these vacuum effects with the Skyrmion
exterior field, a successful ‘Cheshire Cat’ picture emerges for the Chiral Bag
Model. That is, the low energy physical observable becomes independent of the
bag radius. This has been found to be the case for the model’s predictions of the
baryonic mass, r.m.s. baryon radius, g, and the N — A mass splitting.

This independence of the physical observables from the bag radius, has long
been known to be exactly satisfied for various (1 + 1)-dimensional models [16]
in which explicit bosonization of fermionic fields is possible and the physical
equivalence of both phase descriptions can be demonstrated. However, in (1 + 3)
dimensions we expect such a phenomenon will only approximately exist, since

the Skyrme Model is believed only to represent a truncated version of the ‘true’
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mesonic Lagrangian believed to correspond to Q.C.D. at low energies.

Thus, the Chiral Bag Model provides an instructive and consistent model
of a nucleon which interpolates between the Skyrme and M.L.T. Bag Models.
However, the necessity to include quark vacuum effects explicitly, for consistency,
requires one to evaluate mode sums of the negative energy sea. Unfortunately,
such sums in general have ultra violet divergences and the low energy nature of
this model results in its not giving a guidance as to how these divergences should
be removed, or even a unique prescription for isolating finite pieces. However,
Jackson and Vepstas [17| have shown that a minimal type subtraction scheme,
based on physical arguments, results in a consistent Chiral Bag Model in which
all physical quantities are explicitly finite. Thus, the Chiral Bag Model has

matured in to a consistent physical model of a baryon.

5.3 Chiral Bags Within A Dense Skyrmionic Crystal

We have seen in the previous section, that it is natural to attempt to extend
the Skyrme Model by including explicit quark degrees of freedom in a chirally
symmetric manner and that this can be achieved by employing the Chiral Bag
Model. Thus, in this section we shall attempt to extend the Skyrme Model’s
description of dense crystalline baryonic matter presented in Chapter 3, by in-
cluding quarks through the Chiral Bag Model. The resulting two phase model

of baryonic matter, will have the saine baryonic interaction, via the tensor force,
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at the exterior of the bags that we investigated for a pure skyrmionic crystal.
Due to the presence of interior quark degrees of freedom, we expect results in
significant hard core repulsions between baryons as they approach each other in
dense baryonic matter.

It is clear from the outset, such a generalisation will increase the complexity
of the calculational procedure which would be required to obtain exact numeri-
cal results, since here we have a two phase model which is governed by different
dynamical equations. In order to simplify our argument, which will be of a
suggestive nature, we shall confine our consideration to the fcc condensed half
skyrmion crystal at high densities. The twisted boundary conditions determining
the symmetries of this field configuration were given in Chapter 3, in equations
(3.2.13) and (3.3.3). Since this configuration has the lowest energy of all the crys-
talline Skyrme fields so far considered, it is clear that this is the most interesting
candidate array that we can study.

Since for this field configuration we have to hand the accurate analytic forms,
(3.6.1), for the true minimal energy field configuration, we shall make use of
these. This ansatz is not a true solution to the Skyrme Model’s Euler Equation,
thus, this configuration’s vector axial current is not exactly conserved. However,
this ansatz does possess all of the symmetries of the true minimal energy field
configuration and gives a very accurate estimate of its minimum value of energy.
Hence, we believe that it is reasonable for us to make use of this analytic form

and moreover, to assume that with the introduction of quarks the field distortions
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are insignificant.

Thus, from the outset we shall assume that the exterior pionic fields are fixed
and given by equation (3.6.1) and that we can introduce quarks by cutting holes
in to this field and that employing the Chiral Bag boundary condition on the
surfaces of these bags has little effect on these exterior fields. The latter assump-
tion seems reasonable, since we expect the exterior fields to at least maintain the
symmetry of the true soliton field. As we noted, conservation of axial current will
not now be achieved when we employ this ansatz, however, its deviation from
being conserved, we also expect to be of secondary importance.

In order to place quarks within this crystalline mesonic field, we have first to
decide the shapes and positions at which we wish to cut holes in to the skyrmion
field. Clearly in this matter, the symmetry of the field configuration is our guiding
principle.

Since our fcc half skyrmion crystalline field configuration corresponds to a
simple cubic crystalline array of half skyrmions, it seems natural to make these
cuts at the cubic Weigner-Seitz cells of this lattice. This belief is further strength-
ened by noting that these surfaces are those on which the value of the sigma field
vanishes identically for this ansatz. Thus, on these surfaces g would have a con-
stant magnitude of /2. This is similar to the spherical bag, with an exterior
hedgehog field, for which the chiral angle has a constant value on the bag sur-
face. These cubical bags however, have an advantage, they possess the desirable

property that they join together smoothly to fill the whole of space. Thus, at
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high densities, as the density of baryonic matter varies, these cubical bags meet
smoothly and we could avoid considering deformation in the shape of the bag
surface.

Thus, we see that on grounds of symmetry it seems both natural and desirable
to cut cubic cavities out of our simple cubic fcc crystalline skyrmion field along
the planes on which the o field zero vanishes. For the ansatz (3.6.1), we see these

mutually orthogonal planes are given by =z = i, y =

Sk

and z = %, where [,m
and n take odd integer values.

As has already been implied, we might also consider expanding and decreasing
the size of these cubes so that on the bag surface the value of the sigma field
will no longer be zero and also the magnitude of the chiral angle, 6, for ansatz
(3.6.1), will vary over the bag surface. However, care must be taken in choosing
such surfaces, which are only piece-wise continuous. In general such surfaces will
lead, for a fixed background mesonic field, to inconsistency with the Chiral Bag
boundary conditions.

In particular, the Chiral Bag Model boundary condition (5.2.5), expressing
the conservation of axial current across the bag surface, cannot in general be
satisfied for such shapes. This difficulty arises because we have fixed the back-
ground mesonic field and we have not allowed it to respond when the quarks are
included within the cavities which are cut out of it.

To see that this is the case, we note that at the discontinuous points of a piece-

wise continuous surface, the normal to the surface is undefined. These points
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will form lines which are the edges of our cubes. Since the conservation of axial
current boundary condition (5.2.5), explicitly involves the normal at all points
on the surface of the bag, at these discontinuous points the normal component to
the surface of the axial current must vanish for consistency. The normal to the
surface also occurs in the confining boundary condition (5.2:3) and consistency
here will require that the quark field ¥(z), vanish at these discontinuous points.
This implies that all the components of the axial current of the quark field vanish
at these points. Thus we see, that for the fixed mesonic fields, in order for the
axial current boundary condition to be satisfied, the normal component to the
surface of the axial current must vanish at any discontinuous points on the bag
surface.

Hence, we are not free to cut arbitrary shaped cavities out of the fixed back-
ground mesonic field. Moreover, if we choose our half skyrmion cubes as the
cavities, the axial current normal to the surface must vanish on the discontinu-
ous edges of the cubes.

Thus, before we can fix the shapes and locations of the cavities, we must first
establish at which points of space the components of the axial currents for the
mesonic field must vanish. We shall therefore consider the nine components of
the axial vector current, (5.2.7), of the mesonic fields. For this purpose we employ
the ansatz given in equation (3.6.1). To simplify matters considerably, we can
note that for our purposes, we only require the points at which the components

of the axial current AL(:’E’), vanish. Here u is the spatial index and ¢ the isospin
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index. From this it is simple to deduce that the only terms which vanish in the

axial current’s components come from components of the quantity
Li(%) = %Tr(r'U*B,,U) = (79,0 — 0d,7") (5.3.1)
and also that
Al (%) ~ L, (%). (5.8.2)

Thus, employing our crystalline ansatz (3.6.1), we can deduce the zeros of the

nine components A;"(i:'), by noting that they behave as

Ai ~ COS 7] COS ¢ A% ~ ¢sin2ncos¢ A? ~ sin € cos 7 sin 2¢,
Al ~ sin2¢sinncos¢ A% ~ cos €cos¢ Ag ~ cos ¢ sin 7 sin 2¢,
Al ~sin2€cosnsin¢ A} ~ cos€sin2nsin¢ A} ~ cos € cosn, (5.3.3)

where ¢ = 27z /a,n = 2ny/a and ¢ = 27z/a and where a/2 is the size of the half
skyrmion cube, or alternatively a is the lattice spacing of the fcc lattice.
Let us concentrate on a representative half skyrmion cube, centred at the

origin and defined by;

i — 7T
T > T 3.
5 2 6me >~ (5.9.4)

On the surface of this cube, the value of the ¢ field is zero and within this cube
there is a half skyrmion with B = 1/2.
Examining the form of the axial current’s components A‘(Z), it is simple to

deduce that the scalar product 6.2‘(1’:’), where @ is some spatial vector, vanishes
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only at the points which the three functions cos £ cos v, cos £ cos ¢ and cos v cos ¢,
simultaneously vanish, that is to say, on the edges of the half skyrmion cubes.
Hence, for the fixed half skyrmion background field (3.6.1), these lines define the
only points at which discontinuities in the bag surface can occur.

Hence, we have found that the half skyrmion cubes, which naturally exist
within the fcc condensed field configuration, represent the simplest ‘elementary’
cavities which can be cut out of the field and that they are consistent with both
the Chiral Bag boundary conditions and with the symmetry of the skyrmionic
field.

For a spherical bag of radius B and an exterior spherical hedgehog field,
we have seen in the previous section that the bag radius can be continuously
varied without deforming the shape of the bag. However, for our cubical bag of
length a/2, with the meson field fixed as we decrease the cubic bag’s volume,
on the edges of the cube the axial current of the mesonic field through the bag
surface will no longer vanish and hence we can no longer satisfy the Chiral Bag
boundary consistently. A resolution of this problem, with fixed background field
(3.6.1), is provided by smoothly deforming the cube at its edges so that there
are no discontinuous points on the bag surface. Indeed, symmetry suggests that
in doing so, one should choose bag surfaces which have the same shape as the
surfaces on which the value of the ¢ field is constant. However, here we do
not wish to consider the complex process of deforming the shape of our cubic

bag. Alternatively, we could simply demand that the pion fields on the bag
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surface remain fixed as we increase the volume of our cube. However, this would
correspond to decreasing the baryon density of the crystal and will not give the
expected independence of the physical quantities on the bag size and hence would
not lead to results consistent with the ‘Cheshire Cat’ philosophy.

However, there does exist an alternative method of changing the bag size
while keeping the background field fixed and also maintaining consistency with
the Chiral Bag boundary conditions. This can be seen by noting that r:i}{'(:?:),
where 7 is the outward normal to the bag surface, vanishes in general on the
edges of our cube. Hence, if we increase the length of this cube in one direction,
while keeping the other two lengths fixed, this scalar product will vanish on the
edges of this square based prism. Thus, we can expand the size of our cube in
one direction only, but we have of course, three degenerate choices of direction.
Thus, we expect the analogue of the bag radius, R, of a’'spherical bag, to be the
length of this square based prismoidal bag within the condensed fcc crystal.

Summarising, we have discovered that rectangular bags can exist within our
condensed half skyrmion fcc array and that their existence is non-trivial. More-
over, we expect the length of this rectangular bag to provide the analogue of the
bag radius R of a spherical bag.

Thus, we can imagine fixing one of the faces of this cubic bag at z = —a/4
and sliding the opposite face along the z axis for example. As the length of the
bag increases successively by a/2, the value of the o field on the surface will

become zero, while on the other fixed surfaces it will remain fixed at zero. The
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pure skyrmion limit will be obtained when the length of this rectangular bag is
reduced to zero. Moreover, we can even allow two opposite sides of this bag to
simultaneously slide. If we were to keep the length of the bag fixed and allow the
bag to slide, then this would correspond to allowing our bag to translate through
crystalline skyrmionic matter.

Thus, it seems natural at this point to propose a well defined calculation
in which we solve the free massless Dirac Equation for the interior quark wave
function of lowest positive energy, subject to the Chiral Bag boundary conditions
on the surface of this cubical bag. To simplify the calculation it should be
reasonable to employ the ansatz (3.6.1), to give the pionic field strength on the
bag surface. We expect the error induced by this approximation, of freezing the
exterior pionic field, to be of secondary importance. The solutions to the Dirac
Equation will be dependent on the length of our rectangular bag.

Given the cubic symmetry of the pionic field at the exterior of this rectangu-
lar bag, one might expect that an approximate separable solution to the Dirac
Equation exists, at least in the case where the value of o on all the bag surface is
constant and zero. This corresponds to the situation when whole half skyrmion
cubes have been cut out of the half skyrmion field. In this case the linear bound-
ary condition, (5.1.2), takes its simplest form. For the spherical bag, the ground
state quark wave function when o = 0 on the bag surface, has a constant upper
component and a vanishing lower component and has zero energy.

However, for a rectangular bag, a separable solution to the Dirac Equation
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will not, unfortunately, exist. This follows from the observation, that at the
corners of the rectangular bag, the quark wave function not only has to vanish,
but must also have double zeros. This being the case, there seems no hope of
finding simple solutions to the Dirac Equation within these rectangular bags by
analytic means and hence numerical techniques will be required at this point.

The solution to this Dirac Equation, should however, enable us to determine
the ground state wave function of the quarks. Placing three valence quarks in
to this ground state should enable us to determine the particle content of the
cubic bag. This would indeed provide an interesting insight in to the nature of
the minimum energy fcc half skyrmion lattice.

We noted in the previous section, that the Chiral Bag Model provides a
consistent model of a baryon only when quark vacuum effects are included. This
observation will clearly apply to our chiral bag within crystalline skyrmionic
matter. For example, if we imagine placing three valence quarks within the
chiral bag defined in equation (5.3.1), then this would correspond to removing
half a baryon from the mesonic field, but replacing it with three valence quarks
whose baryon number is unity. Thus, naively, the crystal’s baryon number rises
by B = 1/2. Moreover, as we vary the length of the rectangular bag, the mesonic
contribution to the baryon number would smoothly vary, while the contribution
to the baryon number of the three valence quarks would remain fixed at unity.
Thus, again naively, the baryon number which is clearly a physical observable

would smoothly depend on the length of our rectangular bag. The resolution to
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this paradox for a spherical bag, was that the negative energy sea within the bag
also carries baryon number charge. The baryon number carried by the negative
energy sea is negative and was found to be exactly equal in magnitude to that
of the exterior pion field.

For our rectangular bag, we thus require that a similar mechanism exist by
which the baryon number of the valence quarks, the exterior mesonic field and
the interior quark vacuum remain fixed on an integer value. Thus, in order to
see whether this cancellation occurs, it is sensible at this stage to reproduce the
arguments which led to the miraculous baryon number cancellation and see if
they apply to our rectangular bag.

The simplest manner in which this can be achieved is to consider the half
skyrmion bag defined in equation (5.3.1). Here we shall keep the size of the
cubic bag fixed. The directions of the pionic fields on the surface of the bag are
now fixed and given by our ansatz or for that matter, the true minimal energy
configuration. We ignore all other regions of space where the exterior pionic
fields should exist and now vary the chiral angle, §. That is to say, the mesonic

field on the surface is given by
Uy = cosf + 7.7sin¥, (5.3.5)

where 7 is the unit vector pion field on the bag surface, given by ansatz (3.6.1)
and @ is the chiral angle which has a constant value on the bag surface and which

we vary between 0 and w. Clearly, we must still demand that on the edges of the
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cube, the value 7.A?(Z) vanishes, in order to maintain consistency. This can be
achieved by setting the value of 7.9 at the edges of the surface to zero. Thus,
we should also vary on the surface the value of 7.V 0 as we vary the value 6, while
always keeping its value at the edges fixed at zero.

This vanishing of the axial current at the corners is clearly seen by considering

for example, on the surface £ = n/2, the quantity

\ ‘ in 20
BIHUe) = 79,0 + 22

3,7, (5.3.6)

where L! is given by equation (5.3.1). At the edges of this face it is trivial to
demonstrate from (3.6.1), that d,#' vanishes and hence we require 3,0 vanish
at the edges and similarly for other faces. This then leads to the axial current
normal to the faces of the cube vanishing at the edges of the cube. In the case
of @, given by cos™! o, where ¢ is given in equation (3.6.1), we see the condition
7.V was trivially satisfied.

Having established the manner in which we can vary the chiral angle, 4, at
the surface, while keeping it constant over the whole of the surface, we now have
the analogue of the usual spherical bag.

In the case of a spherical bag, when § = 0 on the bag surface, the M.L.T.
boundary condition results and formally the model reduces to the M.I.T. Bag
Model, while in the case of # = m we have a pure skyrmion field surrouding a
cubic bag with zero baryon number.

Thus, the value of the chiral angle at the surface of the bag should determine
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the Dirac spinor solutions to the Dirac Equation. Moreover, these solutions will
have energies which vary smoothly with §. Thus, we characterise the solution
and energy by the value of # on the bag surface. Therefore, if we say (%) is
a solution to the Dirac Equation, satisfying the Chiral Bag boundary conditions

at a specific value of @ on the surface, then this Dirac spinor has the form

vi = (¢ x)e™". (5.8.7)

This solution will have associated with it a set of quantum numbers which serve
to characterise this state. These quantum numbers will typically be analogues of
angular momentum quantum numbers and ‘radial’ quantum numbers which de-
termine the number of nodes the solution has. A cubic shaped bag does not have
good angular momentum quantum numbrers and so in this case, the analogue of
angular momentum quantum operators will be non-local.

In the case of a spherical bag with an external hedgehog field, the angular
momentum quantum numbers are (K, k,) and its purity (—1)%. For each value of
these quantum numbers there is a countable infinity of state with radial quantum
numbers.

For the spherical bag, for § = 0, the M.I.T. Bag solutions have an energy
spectrum for a given angular momentum quantum number, which is symmetric
about zero energy. However, for non-zero values of 6 on the surface, the spectrum
is no longer symmetric. Thus, as we already observed, as 6 varies on the surface

there is a spectral flow of the energy spectrum. As @ increases from zero, the
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energy of the lowest positive energy states, with a given set of angular momentum
quantum numbers, reduces, until at § = 7/2 it becomes zero. As @ continues to
increase it then sinks in to the negative energy sea, until at a value of § = 7 its
energy is equal and opposite to its value at § = 0. The energies of the higher
radial modes sink down to the energy of the next lowest state as 6 increases from
0 to . Thus, as @ varies from 0 to m the number of modes is conserved and
moreover, the mode spectrum is invariant for the spherical bag, with respect to
the transformation ¢ — 7 — 6.

It is this spectral flow which is responsible for the baryon number of the
negative energy sea exactly cancelling the baryon number of the exterior mesonic
field. To see this we must carefully define the baryon number of the interior quark
vacuum. To calculate the vacuum contribution we have to perform a regulated

mode sum, defined by;
B(8) = —% limao Tn sign (wn)e B! |, . (5.9.8)

For the spherical bag, we see that this spectral flow, as @ is increased from
zero, results in B(f) becoming increasingly negative and in this manner the
vacuum contribution cancels the increasing mesonic field contribution to the
baryon number, leaving the three valence quarks with unit baryon number, to
wholly account for the baryon number. This mode sum has been explicitly

performed by Goldstone and Jaffe [18], who confirm the result

B(a):_(0~1/2sin20), (5.9.9)

v
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which we see is the exact result required for the complete cancellation of the
contribution of the exterior mesonic field, (5.2.4).

At 8 = 7/2, the lowest energy mode has zero energy and in this case, the
contribution of the negative energy sea to the baryon number is exactly minus
one half. Thus, we see that the existence of a zero mode at § = 7/2 is an
important characteristic of the spectral flow.

Thus, for our cubic bag, we imagine that there will also be a zero mode when
¢ = m/2. We wish here, to examine the conditions under which this zero mode
might exist at # = /2 for our cubic bag. Firstly, we can expect that as the value
of @ on the bag surface is varied, no modes with the same angular like quantum
numbers will cross. Given that ¥y, (5.3.4), is a solution satisfying the Chiral Bag

boundary conditions, it is simple to deduce that

Pl = (—x @)t (5.8.10)

will also be a solution. Note that the energy of this solution is of equal but
opposite sign to that of ¥,. Similarly, in the massless quark limit there will also

be a solution,
T — —twyt
e = (X @)e ™. (5.8.11)

This solution has the same energy as 1,. We see from this, that if we can identify
these two solutions as having the same angular quantum numbers, then we have
proven that the energy spectrum is invariant under the transformation 8§ — ¢+
and this is indeed the case for a spherical bag.
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If this were also true for a cubical bag, we see that we would only need to
demonstrate that as # increases from 0 to m, all modes spiral down in energy,
in order to obtain the result that there exists a zero mode at some value of 6
between 0 and 7. Hence, given that iy is a solution, then in the massless limit

so is
o = (¢ —x)e, (5.9.12)

which has an energy which is equal and opposite to that of the ¢, state. Thus,
we see that if we can establish that the transformation § — 7 — @ does not change
the lowest energy mode’s quantum numbers, then we could identify this solution

with ¢,. This would then imply
Va2 = (4 0), (5.9.18)

with w,/; = 0. This is indeed the case for the spherical bag.

Thus, if we could identify these two solutions as having the same quantum
numbers, we could reproduce the arguments which resulted in the baryon number
cancellation by the negative energy sea. These arguments are most appealing and
certainly identify the necessary requirement for such a cubic bag model to give
a sensible value for the baryon number. However, the arguments required to
establish whether or not a state can be identified with the state obtained by the
transformation 1y — 1,_g, will depend on the nature and characteristics of the
solution to the Dirac Equation within the cubic bag.

Thus, to summarise, we have presented appealing arguments which certainly
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present a mechanism by which these cubic bags within skyrmionic matter could
be included consistently. Moreover, although mode sum would be required to
evaluate vacuum contributions to physical quantities, we feel that if we could
establish the existence of a zero mode, when 6§ = 7/2 on the surface, then this
would be sufficient evidence for one to believe these arguments. This model would
then enable us to establish the particle content of these skyrmionic crystals and

give us a real physical interpretation as to what its existence corresponds to.
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CHAPTER 6

CONCLUSION

6.1 General Conclusions

In the previous chapters, we have detailed at great length the many interesting
features of Skyrmionic matter. In particular we have concentrated on describing
and understanding the nature of infinite crystalline arrays of skyrmionic mat-
ter and the dense skyrmionic matter on a physical space with locally varying
curvature.

At this stage we shall only briefly summarise the many conclusions which we
have already drawn within this thesis.

We have seen that in its crystalline form, skyrmionic matter has some gen-
eral features which are independent of the specific form of array on which the
skyrmions are located. The most significant feature appears to be the existence
of a phase transition as the density of skyrmionic matter is increased, which is in
general of second order. This phase transition corresponds to skyrmionic mat-
ter, which at low densities is localised about the points of a lattice, becoming
an array of half skyrmions at high densities which has an increased delocalising

nature. Moreover, dense crystalline skyrmionic matter has a ‘jelly like’ charac-
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ter, being relatively incompressible though easily deformed. We have also seen
that the most stable form of crystalline skyrmionic matter so far discovered is a
condensed, simple cubic array of half skyrmions.

Considering a single skyrmion on a closed surface and varying the volume of
the surface, we can vary the average baryon density of the skyrmion. The simple
three sphere model demonstrates that this effective manner of increasing or de-
creasing the volume of the skyrmion at high densities, causes the energy of the
skyrmion to rise sharply as a result of its resistance to either isotropic compres-
sion or expansion. Thus, as we continue to increase to volume of physical space,
there comes a point at which it is preferable for the skyrmion to localise about a
point rather than continue to stretch itself over the whole of space. Beyond this
point, increasing the volume of the sphere becomes ineffective in stretching the
skyrmion and the skyrmion chooses to remain unstretched as the volume further
increased, by localising about a point. This simple characteristic of skyrmionic
matter accounts for the observed, striking similarities of the delocalising phase
transitions which occur in both crystalline arrays of skyrmions and for a skyrmion
on a three sphere.

However, the observation that dense crystalline skyrmionic matter is easily
deformed has no analogue for a skyrmion on a three sphere, since in this case
there is no method by which we can effectively and simply exert non-isotropic de-
formations on the skyrmion. To resolve this difficulty, we show that the relevant

variable which can perform such non-isotropic deformations of skyrmion matter
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is the local curvature of space and by simply placing the skyrmion on a space
with varying local curvature, we can generate these deformations in an effective
manner. Thus, we soon discovered that on a surface of varying curvature, the
skyrmion very much prefers to sit on a region of space with the curvature of
a three sphere of radius 1 and if forced to choose between regions of space of
higher and lower curvature, it chooses the regions of low curvature. Thus, the
gross features of our results for a skyrmion on an elliptically shaped three sur-
face, revealed that if the shape of the sphere is changed to a space in which the
curvature is lower in one region than the other, then the skyrmion responds by
localising itself on that region of space and this process does not cost an undue
amount of much energy. Thus we see once more, that this generalised model of a
skyrmion on a three sphere provides a simple analogue to crystalline skyrmionic
matter in that skyrmionic matter on an ellipse is resistant to expansion though
easily deformable and as with crystalline skyrmionic matter has a ‘jelly like’
character.

This brief review of the many detailed arguments and results for the varying
forms of dense skyrmionic matter that we have considered, demonstrates clearly
the manner in which a simple geometrical picture of a the topological skyrmion
can be used in order to understand the many complex results which we have
presented and thus leads one to conclude that such a simple geometric picture of
a skyrmion is both natural and important in this understanding of the relevance

of skyrmions to baryonic matter.
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