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Abstract
1.	 Biologists often seek to geographically provenance organisms using their traits. 

This is typically achieved by defining spatial groups using distinct patterns of trait 
variation.

2.	 Here, we present a new spatial provenancing and trait boundary identification 
methodology, based on correlations between geographic and trait distances that 
require no a priori group assumptions. We apply this to three datasets where 
spatial provenance is sought: morphological rat and vole dentition data (human 
commensal translocation datasets); and birdsong data (cultural transmission data-
set). We also present the results of cross-validation testing.

3.	 Spatial provenancing is possible with differing degrees of accuracy for each 
dataset, with birdsong providing the most accurate geographic origin (identi-
fying an average spatial region of 0.22  km2 as the area of origin with 99.9% 
confidence).

4.	 Our method has a wide range of potential applications to diverse data types—
including phenotypic, genetic and cultural—to identify trait boundaries and 
spatially provenance the origin of unknown or translocated specimens where 
trait differences are geographically structured and correlated with spatial 
separation.
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1  | INTRODUC TION

Tracking changes in the spatial distribution of organisms and their 
traits are a central feature of biogeographical research. Such stud-
ies include exploring human-mediated translocation and/or natural 
dispersal of organisms (e.g. Cucchi, 2008; Cucchi et al., 2014; Frantz 
et al., 2018; Lachlan et al., 2013) and establishing the geographic ori-
gin of human-introduced invasive and commensal species (e.g. Gargan 
et al., 2016; Hooten & Wikle, 2008; Hunt et al., 2018; Jones, Eager, 
Gabriel, Jóhannesdóttir, & Searle, 2013). These studies regularly make 
use of quantifiable character traits, such as genotypes and phenotypes 
(including morphologies and behaviours, e.g. Lachlan et al., 2013) of 
specimens with known geographic provenance. Here, we introduce 
the geoorigins approach and r package, which provide new spatial 
provenancing and trait boundary identification methods that consider 
continuous patterns of variation rather than imposing discrete groups.

Most spatial provenancing methods require separation of refer-
ence material into discrete groups (taxonomic units or populations), 
with little consideration of admixture between groups or a contin-
uum of trait variation across a range. Consequently, these discrete 
groups are often synthetic and of questionable biological validity, 
particularly in the case of populations. Furthermore, summarizing 
geographic location information (i.e. latitude/longitude) for grouped 
individuals results in lost information, as geographic groupings arti-
ficially collapse ranges of varying sizes, which may be bounded by 
different geographic features (e.g. mountains or rivers) that do not 
represent equally strong barriers to gene flow. Therefore, spatial 
provenancing methods that do not require assignment to specified 
groups are needed to avoid information loss of trait and geographical 
data.

A number of methods for group assignment are well-established. 
Posterior probabilities of a specimen belonging to a priori defined 
groups extracted from linear discriminant analyses (LDA) developed 
by Fisher (1936) are among the most common approaches for assign-
ing specimens to a given geographic location (e.g. Evin et al., 2013). 
These methods can be susceptible to overestimation if the number 
of variables is greater than the number of individuals in the small-
est group (Mitteroecker & Bookstein,  2011), although this can be 
assessed using leave-one-out correct cross-validation (CCV) ap-
proaches (Tukey,  1958). This presents a problem for datasets that 
have many variables (e.g. geometric morphometrics), which neces-
sitate dimensionality reduction and therefore loss of information 
(Mitteroecker & Bookstein, 2011 and references therein)—although 
dimensionality reduction can provide other benefits such as the re-
moval of variation stemming from data collection biases, and various 
sources of noise (e.g. Claude, 2013).

Distance-based methods (such as k-nearest neighbour [k-
NN] classification methods) provide a non-parametric alternative 
(Altman,  1992). k-NN methods assign group membership of un-
known specimens using the majority vote of a set number (k) of 
nearest neighbours with known group membership (Ripley, 2007). 
For example, for a dataset with reference specimens representing 
two assumed groups (A and B), with a k of 10, the k-NN approach will 

assign an unknown specimen to group A if >5 of its nearest neigh-
bours are known members of group A (e.g. see R code in Supporting 
Information). However, like LDA, k-NN approaches make similar dis-
crete group assumptions and require user-defined classes for the 
reference data. Furthermore, the user-defined k can dramatically 
affect outcomes (e.g. Baylac & Friess, 2005; Guillaud, Cornette, & 
Béarez, 2016 and references therein), particularly due to different 
sampling densities of trait spaces. Therefore, as they require dis-
crete category approaches, k-NN and LDA remain limited.

Here, we present geoorigins, a new r package containing func-
tionality required to implement a novel provenancing and bound-
ary finding method. Our correlation-based method provides 
an alternative to discrete group-based methods (e.g. k-NN and 
LDA) and does not require a priori categorization of specimens. 
However, our method can also integrate well with those existing 
discrete group-based methods. We apply our new methods to 
three different datasets that include two shape datasets and one 
birdsong dataset. We empirically test our methods with specimens 
of known origins and propose ways the methods might be inte-
grated into future studies.

2  | MATERIAL S AND METHODS

2.1 | A new biogeographical provenancing method

Our method first requires the calculation of a distance or dissimilar-
ity vector based on one or more quantifiable traits between sam-
ples of known (reference specimens) and unknown (specimen of 
interest) geographic provenance. We avoid specifying a distance 
measure here, as many are available, and should be chosen accord-
ing to the data considered. The trait distance vector can be based 
on continuous and/or discrete character trait data using Euclidian, 
Jaccard, or a range of other means of summarizing difference (here-
after ‘trait distances’) between the known georeferenced samples 
and the test sample. If a similarity score is used (e.g. Jaccard indices 
as might be used in the quantification of similarities among cultures, 
Shennan, Crema, & Kerig, 2015; or birdsong repertoires, e.g. Lachlan 
& Slater, 2003), the corresponding distance must be calculated ac-
cordingly (i.e. low values indicate similarity and high values indi-
cate difference). Under the assumption that there is a correlation 
between trait difference and spatial distance—as expected under a 
wide range of dispersion models including simple isolation by dis-
tance (Nei, 1972; Wright, 1943)—the geographic location where that 
correlation is maximized (when comparing known georeferenced 
samples and test samples) marks the most likely origin location of 
the test sample.

To identify this location, a spatial grid can be defined within 
which all reference specimens are present—including plausible ori-
gin regions for the test sample (Figure 1)—and where the latitude/
longitude position of each reference specimen is noted as (x n, y n), 
where n corresponds to the nth reference specimen. This spatial 
grid is a matrix A, where rows i and columns j represent latitude and 
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longitude values respectively, and should be of sufficient size to gain 
good spatial resolution without making exploration prohibitively ex-
pensive in computational resources. The vectors of i and j are de-
fined as containing at minimum:

For each element of matrix A, a vector g of n geographic distances 
is calculated from the point at Aij to the latitude/longitude position 
of each reference specimen (x n, y n). As these distances are spatial, 
g1, …, g n are estimations of distances across the curved surface of 
the Earth and should be calculated using the haversine formula 
(Robusto, 1957). Elements of this matrix A are populated by calculat-
ing the correlation coefficient (either Spearman's rho or Pearson's r, 
depending on assumptions of linearity; see Section SI.1 in Supporting 
Information) for the correlation between these spatial distances (g) 
and trait distances (d; Figure  1, following the correlation plotting 
method described in Frantz et al., 2018):

This calculation can be made for each reference specimen at that 
specimen's true latitude/longitude location in a CCV approach. The 

resulting distribution of r values can be examined to set the thresh-
old r value required to correctly spatially provenance a specimen of 
interest with a given level of confidence. For example, if the desired 
confidence level for spatial provenancing is 95% then the r value 
that correctly provenances 95% of the reference specimens can 
be extracted. In this way, the method uses an empirical approach 
to spatially provenance specimens and, therefore, estimate trait 
boundaries. We then make the assumption that the correlation of 
trait and geographic distances will be equal to or greater in the re-
gion of the grid covering the unknown specimen's origin. We found 
the results of Pearson's and Spearman's to be approximately the 
same and for brevity we present just the results generated from 
Pearson's r here (results can be compared with those in the vignette 
that uses Spearman's).

2.2 | Mapping trait boundaries

Once the threshold r value is set, we can apply that threshold to 
the reference material to generate a set of intersecting polygons. 
Where the edges of those provenancing regions show substantial 
overlap among individuals, a trait boundary can be defined. This 
can be mapped by taking the vector of all the correlation values 
for every specimen at each grid location and counting how many 
times that grid location is at the boundary of our chosen r threshold  

{
i|ymin…ymax

}
,

{
j|xmin…xmax

}
.

A�� = corr (g, d) .

F I G U R E  1   Cartoon panel of 
GeoOrigins algorithm. Panel (a) First, 
calculate the trait distances from the 
known reference specimens (coloured 
dots) to the unknown specimen (black 
dot) to create vector d. Panels (b)–(g) 
are examples of populating values of 
the spatial grid A. Panels (b, d, f) Second, 
calculate the geographic distance (dotted 
coloured lines) from the centre of each 
grid cell to each reference specimen 
(coloured dots) corresponding to those 
in panel (a) to create vector g. Panels (c, 
e, g) Third, calculate the correlation r 
between d and g. This process is carried 
out for every grid cell to populate the 
matrix A. Panel (b) depicts a grid cell with 
poor correlation, as shown in panel (c), 
and therefore can be assumed to be an 
unlikely origin for the unknown specimen. 
Panel (d) depicts a grid cell with a highly 
negative correlation, as shown in panel (e), 
making this location among the least likely 
to be the origin. Panel (f) depicts a grid 
cell with a highly positive correlation, as 
shown in panel (g), and is among the most 
likely origins for the unknown specimen
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(see Section SI.2 in Supporting Information). The resulting counts 
can be given a grey/colour scale and broad boundaries can then be 
interpreted from the resulting map. Note that the plotted result of 
this approach will show boundaries of varying strength, which can be 
influenced by uneven regional sampling. This is because as the bound-
ary plotting approach is a relative scale, if one region with an associ-
ated trait is more thoroughly sampled than others, the boundary for 
the thoroughly sampled region will be more confidently identified.

2.3 | Assessing method performance

To illustrate the utility of our spatial provenancing methodology, we 
analysed three datasets at different geographic resolutions. To sum-
marize and assess the results, we calculated the area of overlap be-
tween the estimated origin range at 95% confidence and the convex 
hull (i.e. maximum parameter) of the range represented by the distri-
bution of the reference specimens. We consider the convex hull of 
the reference material distribution as a conservative approximation 
of the distribution range of the examined taxa. We then calculated 
the percentage of total reference distribution that was a likely origin 
for unknown specimens. This CCV procedure provides an empirical 
metric of the ability to spatially provenance an unknown specimen. 
Where appropriate and where results of provenancing estimations 
provided high precision (i.e. the Tenerife blue chaffinches Fringilla 
teydea dataset), we expanded the CCV test to assess over-fitting. 
This was carried out by iteratively subsampling 75% of specimens 
and treating that subset as the reference specimens for training the 
spatial provenancing method; the remaining 25% of specimens were 
then treated as those to be spatially provenanced. The percentage 
of specimens of interest correctly provenanced was then calculated 
and the distance from the true point of origin to both the nearest 
edge of the provenancing region and its centroid was calculated to 
assess how the method was performed when the estimated prov-
enancing region does not include the true location.

2.4 | Comparison with nearest neighbour and 
grouping approaches

The new spatial correlation methods described here inherently 
avoid making a priori group assumptions; as such, direct compari-
son with those methods that do so (e.g. LDA and k-NN) is not pos-
sible. However, the trait boundary identification methods presented 
here can inform potential groupings for consideration as evolution-
ary units or for use in subsequent LDA and k-NN classification. 
Therefore, the spatial trait groups identified were compared with the 
CCV% achieved from LDAs and k-NN. For LDA comparisons, we cal-
culate the mean CCV% result from a resampling procedure to equal 
sample size (1,000 times) for each stepwise combination of principal 
components for the shape data (following Evin et al., 2013) and mul-
tidimensional scaling variables (using the vegan package; Oksanen 
et al., 2017) for the birdsong data. We then report the maximum of 

these mean stepwise CCV% values. k-NN methods are applied to the 
Procrustes distances for the shape datasets and are applied directly 
for the birdsong dataset. k-NN analyses are carried out on groups of 
equal sample size (resampled 1,000 times) with the package KnnDist 
(Hulme-Beaman,  2020) and applied with a stepwise increase in k. 
The maximum mean CCV% calculated from the stepwise increase in 
k is reported in the same way as for the results of the stepwise LDA.

2.5 | Test datasets

The three worked examples comprise two different data forms: 
shape and birdsong recording data. All specimens are of known 
origin, with known sampling locations and associated latitude and 
longitude data; therefore, all results presented here are in effect 
CCV exercises. For shape, we used two geometric morphomet-
ric datasets of dental morphology: 48 New Guinea large spiny rat 
Rattus praetor specimens (Hulme-Beaman, Cucchi, Evin, Searle, & 
Dobney,  2018); and 553 common vole Microtus arvalis specimens 
(Cucchi et al., 2014). For these datasets we aligned, processed and 
generated Procrustes distances between shape configurations using 
r and the package shapes (Dryden,  2016). For birdsong, log trans-
formed dynamic timewarping dissimilarities between song type 
and repertoires were generated from recordings of 116 Tenerife 
blue chaffinches using Luscinia v2.16.10.29.01 (Lachlan et al., 2013, 
Lachlan, 2016; http://rflac​hlan.github.io/Lusci​nia/). For packages 
used to plot these maps and those that were used to construct this 
package, see the Supporting Information (Section SI.3). All distance 
matrices, code and functions written for this paper are published 
in the Supporting Information and the corresponding r package  
geoorigins (see Section SI.2 in Supporting Information).

3  | RESULTS

3.1 | Dental morphology: Rattus praetor, a possible 
species complex within Sahulian Rattus

The large spiny rat R. praetor, is distributed across New Guinea and 
the neighbouring islands, including the Bismarck Archipelago and 
the Solomon Islands. Recent shape analyses of their teeth revealed 
geographic structure with a general east–west cline (Hulme-Beaman 
et  al.,  2018). This presents an interesting dataset for future stud-
ies into human migration since R. praetor was introduced to remote 
Oceania by humans (White, Clark, & Bedford, 2000). Applying our 
spatial provenancing method to the dental morphology reveals a sim-
ilar east–west pattern of geographic structure with Pearson's r with 
specimen origins generally identified to approximately either side of 
the 145th meridian east (Figure 2a,b). At the 95% threshold, the true 
location of three specimens (5%) fell outside the provenanced re-
gion. These specimens were located an average of 280 km from their 
true location to the nearest boundary of the estimated provenance 
region. Two of the three specimens, whose true location fell outside 

http://rflachlan.github.io/Luscinia/
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the estimated range, were located within ~150 km of the 95% confi-
dence boundary (Section SI.4.1 in Supporting Information). The third 
specimen's true origin was ~500 km away from the closest prove-
nancing boundary edge (Section SI.4.1 in Supporting Information). 
A further six instances returned a range encompassing almost the 
entirety of the region. The method provided an approximate origin 
with reduced spatial area to an average of 63% of the total range 
represented by the reference material (Figure 2c). With so few speci-
mens being incorrectly provenanced it is difficult to discern a trend, 
but it is notable that the misidentifications are within the central dis-
tribution of the species across the possible west to east morphologi-
cal gradient. Given that six specimens returned the entire range, it 
is likely that the method does not have sufficient numbers or evenly 
distributed reference material to build a more confident model. As a 
result, it is possible that given more sampling of the central region of 
the range, a better definition of the morphological trait boundaries 
and/or gradient would be achieved.

To integrate and compare these results with LDA and k-NN anal-
yses, we created two groups east and west of the 145th meridian as 
identified by the trait boundary identification exercise; each had a 
sample size of 24 specimens. Maximum discrimination was achieved 
at 90% with 11PCs using LDA and 83% with six weighted nearest 
neighbours. For comparison, when the dataset was grouped by spec-
imens from Bougainville Island (to the east) versus those from New 
Guinea, the LDA and k-NN CCV% were improved to 92% and 87%. 
This improved rate of identification to 92% for LDA does not reach 
the heatmap result we achieved with 95% confidence. However, 
when set to 95% confidence, our method returned the entire ex-
amination region for a number of specimens; as the LDA approach 
includes groups of different spatial areas it is in some regards more 
precise, for example, Bougainsville Island is smaller than the ranges 
returned by our method, but less precise in other instances, for 

example, the area of the entirety of New Guinea is much greater 
than the area returned by our identification method. The discrep-
ancies between methods likely result from the presence of poorly 
sampled population(s) in central and eastern New Guinea. The trait 
boundary found here is likely to be largely influenced by the ex-
tensive sampling at both ends of the range. This is likely a common 
problem for museum specimens, particularly for human commensal 
species, where many specimens might be collected from one loca-
tion and, as a result, have a single latitude/longitude value. However, 
our method highlights this, since specimens in central regions prove 
to be more difficult to correctly provenance, for example, the central 
New Guinea specimens, and if a trait is poorly represented in the 
reference dataset the method returns the entire region.

3.2 | Dental morphology: Common voles Microtus 
arvalis and Orkney voles M. a. orcandensis

Microtus arvalis orcandensis colonized the Orkney Islands around 
5  Kya, likely arriving with Neolithic farmers (Cucchi et  al.,  2014). 
These island populations have since rapidly diverged in both size 
and shape from each other, as well as from their ancestral European 
counterparts (Cucchi et al., 2014). This dataset provides an example 
of how this method can be used to assess: (a) if a trait boundary is 
formed by the divergence of island and mainland dental morpholo-
gies; (b) if geographic structuring of continental populations exists; 
(c) whether future studies of ancient mainland European common 
voles would be informative if assessed for similarities to Orkney 
populations. We applied the method at two different spatial resolu-
tions: across the entire species range, and within the distribution of 
each respective subspecies (i.e. continental European and Orkney 
populations).

F I G U R E  2   Spatial identification by distance of Rattus praetor. (a) Example output of result—the polygon encompasses the region of 
correlation values at the 95% r threshold. (b) Boundary finder output demonstrating identification gradient and boundaries around the 145th 
meridian. (c) Histogram showing the percentage of the species range returned by the provenancing method at a 95% confidence level
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When considered as percentages of the total species distribu-
tion, the CCV results of our method are strongly bimodal at the spe-
cies-wide resolution. This is unsurprising given the highly localized 

and morphologically distinct populations of M. a. orcandensis when 
compared with the much more widely distributed populations of 
continental European M. arvalis (Figure 3a). This pattern is consistent 

F I G U R E  3   Microtus arvalis results at three different geographic scales: (a–c) Combined European and Orkney archipelago range; (d–f) 
Orkney archipelago; (g–h) Mainland Europe. The results of the boundary finder method are presented in (a) and (d). Example identification 
outputs are presented in (b), (e) and (g). Histogram showing the percentage of the species range returned by the provenancing method at a 
95% confidence level in (c), (f) and (h)
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with the findings of previous morphological and genetic analyses 
(Martínková et  al.,  2013). Splitting the dataset into Orkney versus 
European voles found the maximum CCV% from LDA was 98% with 
27PCs, and 96% from k-NN classification with 17 weighted nearest 
neighbours.

Subsetting the data to examine the 131 M. a. orcandensis speci-
mens increased provenance resolution within the Orkney archipel-
ago, and narrowed provenance down to an average of 51% of the 
total Orkney Island distribution (Figure  3b). Splitting the Orkney 
dataset into northern versus southern islands along 59.1° latitude 
found the maximum CCV% from LDA was 97% with 18PCs and 96% 
from k-NN classification with 15 weighted nearest neighbours; this 
compares with 92% LDA CCV% and 86% k-NN CCV% when individ-
ual islands are used as grouping categories. This demonstrates that 
our method can be used to inform group assignment exercises (e.g. 
those using LDA or k-NN) and although those methods continue to 
perform less well compared with our method at 95% confidence, the 
trait boundary output of our method can be used to merge groups 
and, therefore, improve confidence in classification by those other 
methods, if required.

Compared with the Orkney analysis, the same level of spa-
tial provenancing was not possible for most of the 387 mainland 
European M. arvalis specimens, where 26% of specimens could not 
be provenanced to any location beyond a convex hull of the en-
tire distribution of the reference samples. Of the remaining spec-
imens, the provenancing method returned between 60% and 90% 
of the total distribution (Figure 3c and Section SI.5 in Supporting 
Information). This illustrates the tendency for our approach to 
identify origin location to different degrees when different geo-
graphic scales are considered. At higher geographic resolutions, 
the method still performs well if geographic structure persists at 
that level and if sufficiently detailed latitude/longitude data are 
available. However, not all island populations are equally similar/
dissimilar, with the strongest difference between northern and 
southern populations (Figure  3d). Again, as with much of the R. 
praetor location data, precise latitude/longitude data for voles 
within the Orkney archipelago were not available, and this ham-
pered fine resolution analyses. As a result, it is difficult to assess 
whether more precise data would assist in refining spatial identifi-
cations and thus trait boundaries. In this case study, the complex 
life-history of M. arvalis has likely rendered poor geographic struc-
turing (and thus resolution) within mainland Europe and the better 
resolution of its insular forms may instead represent a ‘snap-shot’ 
in time of their past continental diversity (Martínková et al., 2013). 
Applying our method on different scales does, therefore, provide 
different levels of information.

3.3 | Birdsong: Tenerife blue chaffinch 
Fringilla teydea

Fringilla teydea colonized Tenerife approximately 2  Mya (Lifjeld 
et al., 2016). Males learn songs through imitation of neighbours and 

errors in imitation result in localized innovations in song structure. 
Characterizing structural change across a landscape is highly desir-
able for understanding cultural evolution of song and also dispersal 
ecology. This dataset illustrates the application of our method on 
a culturally transmitted trait, as opposed to genetically inherited 
ones. We applied the method at three resolutions: (a) low resolution 
across the entire island (to form sensu lato isoglosses); (b) medium 
resolution within regional variants identified from the low resolution 
analyses; and (c) at a high resolution looking at densely sampled sub-
regions of wider isoglosses to identify each bird's most likely tutor 
location. Origin ranges generated from the CCV procedure varied 
widely (Figure  4). Three main regions were identifiable as having 
accumulated sufficient song variants to make them distinguishable 
from each other. As the specimens from central Tenerife did not ap-
pear to fall into a clear group, possibly due to low sampling, these 
were removed for comparison with LDA and k-NN methods. The k-
NN and LDA CCV%s for the three spatial groups were 80% with two 
weighted nearest neighbours and 100% with two multidimensional 
scaling axes.

At the highest resolution, it was possible to correctly prove-
nance a bird's song to an average of 0.22 km2 by log transforming 
the dissimilarity matrix. This extremely high degree of accuracy 
was tested for over-fitting by training the method on a randomly 
selected subset of 75% of specimens and testing with the remaining 
25%. This procedure was run 600 times on both the north-eastern 
subpopulations and southern subpopulations; the north-western 
subpopulation was too sparsely sampled to examine in this way. 
This meant that in each iteration of the resampling procedure, the 
number of specimens being treated as of unknown origin in the 
north-eastern subpopulation was seven and in the southern pop-
ulation was 11. As a result, the over-fitting resampling procedure 
made a total of 5,400 spatial provenancing identifications. The 
method continued to perform well, and accurately provenanced 
the location of 83% of specimens considered unknown. Of the 
17% that were not successfully provenanced, the true origin of 
5% of those specimens was not found (i.e. no region met the r 
threshold for provenancing) and 12% were incorrect (i.e. the true 
origin was outside the provenancing boundary). However, in the 
cases of incorrect provenancing results, the distance between the 
true origin and the provenancing area was often shorter than the 
diameter of a bird's territory (~92–112 m; Carrascal, 1987; García 
del Rey & Cresswell, 2005). Considering the precision of learning 
exhibited in these birds, although the provenancing is incorrect in 
some cases, the likelihood of a bird being in the identified prov-
enancing location having a near identical song is extremely high. 
This demonstrates the possible predictive power of this method 
where trait and geography are highly correlated. Comparison be-
tween our method and other discrete group-based methods was 
not possible or appropriate at this high resolution.

For incorrectly provenanced specimens, the distance from the 
true location to the region identified by the method as the most 
likely area of provenance can be estimated in two ways: (a) The 
shortest distance to the boundary; (b) The distance to the centroid 
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of the suggested region of provenance. As such small regions were 
returned at this high resolution, the difference between the dis-
tance to closest boundary and the centroid of the area was very 
small (Figure SI.6.1 in Supporting Information); the median dis-
tance to the nearest edge was 35.8  m, whereas the median dis-
tance to the centroid was 37.0 m. The maximum incorrect distance 
from the true location to the centroid of the proposed location 

was 217.0  m, which is a shorter distance than 91% of distances 
among locations of birds in each respective subpopulation dataset.

This indicates that given good sampling and high geographic 
structure, this method should be useful for identifying likely tutors, 
possible long-distance dispersers and understanding differences in 
localized adaptation of birdsong. Not all specimens conform to the 
geographic distribution, thus violating the monotonic assumption, so 

F I G U R E  4   Fringilla teydea provenancing and boundary finding at different geographic scales. (a–c) The results from island-wide analyses 
on the raw dissimilarity data; (d–e) The results from the Northern sub-region; (f–g) The results from most densely sampled NE area. At the 
highest resolution (f–g) the results of all the individual cross-validation identifications are superimposed as polygons around the specimen's 
true location (note that almost all points fall within a spatial provenancing polygon). The proportion of reference distribution identified 
is calculated at each resolution level separately and as a result the analyses run on subsets of the data are not the proportion of the total 
species range
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could either not be identified or the entire investigation grid was 
returned as a likely origin (see Section 4 for hypothetical scenario 
of assumption violations). These specimens could result from fac-
tors such as convergence, innovation or otherwise unrecognized 
long-distance dispersal.

4  | DISCUSSION

4.1 | Assumptions of monotonicity

The blue chaffinch song dataset provided the most accurate and 
precise results because of the extremely strong monotonic spatial 
distance correlation with song similarity. Results were improved 
with log transformation to below 500 m2 in some cases. The high 
level of monotonicity in these data in the boundary finding exercise 
proved to be problematic because in some instances, particularly at 
the small regional scale, the spatial grid had to be sampled to such a 
high level that the amount of computational time required to locate 
the boundaries became prohibitive. Therefore, if (as in the blue chaf-
finch song case) the signal is so strong that a very precise region is 
identifiable, then the results can provide such specific origin loca-
tions that general boundary trends become unidentifiable (i.e. each 
reference specimen exists within its own trait unique boundary). 
This effect is also more likely to be seen where the assumption of 
linearity is not required, and the correlation method uses Spearman's 
r. In some cases where this occurs, origin identification can also be 
missed because the high level of accuracy and precision means the 
predicted origin region can be smaller than the grid square. In such a 
case, the provenancing threshold may not be reached at the nearest 
sampled grid square.

Application of our spatial provenancing approach to the main-
land European voles provides an example of the method's response 
to breaking the assumption of monotonicity. There is little to no 
consistent geographic structure in the mainland European vole pop-
ulations and, as a result, spatial provenancing is often not possible 
with useful levels of confidence. This can be observed by plotting 
trait distances versus their corresponding geographic distances at 
the true location of a specimen being treated as unknown (Figure 
SI.5.1 in Supporting Information). Each dataset had different lev-
els of isolation by distance characteristics. Of the case studies, the 
mainland European vole example had the poorest ability to reduce 
the species range to a likely area of provenance (Figure SI.5.1a in 
Supporting Information). In contrast, the inclusion of Orkney Island 
voles to the dataset creates a clear pattern of isolation by distance 
with a largely monotonic relationship at the place of origin (e.g. see 
Figure SI.5.1b in Supporting Information). Of the case studies, the 
blue chaffinch song dataset has the clearest isolation by distance 
pattern with the strongest monotonic relationship between trait 
and geographic distance (Figure SI.5.1c in Supporting Information). 
The provenancing output for mainland European specimens tends to 
return large proportions of the region being examined (e.g. Figure 
SI.5.2 in Supporting Information). This demonstrates that with 

varying degrees of monotonicity and geographic structure to traits, 
the method will respond differently. However, when provenancing 
is not possible, the method returns most if not all the region, making 
erroneous provenancing or identification less likely.

4.2 | Hypothetical problematic trait scenarios

The provenancing and boundary identification method presented 
here will struggle when trait distance does not have a monotonic re-
lationship with geographic distance. This is because the method will 
only return one likely origin region and so if there are multiple and 
spatially distant regions that an unknown specimen appears similar 
to in trait comparisons, then all regions will be returned in a single 
large polygon. Here, we expand on this and provide a hypothetical 
example of where trait boundaries may exist but are unlikely to be 
detected by this method. A likely scenario is where a trait is the re-
sult of local climatic adaptation. In such a scenario, it may be the case 
that where climatic conditions are matched in distant geographical 
regions, the same trait will occur in both populations. As a result, any 
provenancing approach using this method will be unable to distin-
guish between the two spatially distant locations and, as a result, the 
trait distance distribution will not be monotonic.

A hypothetical example scenario is as follows: a species distribu-
tion is bounded by mountain ranges at the opposite extremes of the 
species' distribution. The trait of interest is associated with cold and 
high elevation adaptations, for example, coat characteristics. The far 
eastern and western mountain range populations will share similar 
traits and therefore have short trait distances. The methods pre-
sented here will be unlikely to distinguish between reference spec-
imens occupying these two very spatially distant locations. There 
may in fact be a trait boundary at a certain elevation, but because 
this trait is shared by two spatially distant populations, this will blur 
the trait boundary and the method will likely fail to identify the ele-
vational trait boundary.

4.3 | Method performance and integration with 
existing methods

Our method performed well in comparison to conventional classifi-
cation methods (k-NN and LDA). The methods are very different in 
their approach, thus direct comparison is not possible. Inherently, 
our method is better suited to identification of a handful or few indi-
viduals, since provenancing is achieved empirically using a heat map. 
As such, the area returned for provenancing an individual will vary 
in size depending on the strength of signal. In contrast, a discrete 
group based classification method can be both more precise in some 
instances (where groups occupy small patches of a region) but also 
less precise (where some groups may represent large regions), for 
example, in the R. praetor case study. As our method can have a set 
confidence level (which can be set to 1), the area returned has the 
potential to ensure maximum confidence in classification and will 
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provide an empirically derived, though potentially large, region of 
likely origin.

Integration of our method may prove most useful when prove-
nancing many unknown individuals at once, or when identification 
of evolutionary units is desirable. In cases where multiple specimens 
are to be provenanced either the mean or median values for the sam-
ple of unknowns could be analysed. However, a likely more robust 
and efficient approach is to use the trait boundary finding method 
to define discrete spatial trait groups in the reference data and then 
use these trait boundary defined groups in methods such as LDA and 
k-NN for classification of multiple specimens at once.

Where traits are shared among spatial populations but at differ-
ent frequencies, it might be desirable to assess the different trait 
frequencies spatially by carrying out the trait boundary finding exer-
cise, but lowering the required correlation value to the required con-
fidence. Here, we have set the required confidence to 95%, which 
means boundaries returned in the case studies here require trait fre-
quencies between populations to be different by 95% or higher be-
fore a boundary will be plotted. However, if traits are shared among 
populations at a lower frequency, and this is of interest to the user, 
the confidence level can be adjusted; this requires further investi-
gation and exploration as such questions were not relevant to the 
datasets we examined here. In this way, the methods we present 
should integrate well with existing frameworks, particularly where 
geographic divisions are desired, but would otherwise need to be 
constructed arbitrarily or subjectively.

5  | CONCLUSIONS

Our method provides a useful and robust geographic provenanc-
ing tool that takes into consideration the confidence with which a 
given specimen of unknown origin can be spatially located. As it 
can be applied to any set of distances constructed between any set 
of traits, our method has a wide range of potential uses in multiple 
different fields where spatial provenancing is desired. This goes be-
yond applications in ecology and evolution and, as demonstrated in 
the instance of birdsong, can also be applied to spatially provenance 
organisms based on cultural traits and characteristics (e.g. human 
material culture) given sufficient reference data. Furthermore, our 
method provides insights into the geographic structuring of traits, 
with the possibility of identifying particularly distinct and geo-
graphically well-bounded populations, thus offering the possibility 
of integration with existing methods based on discrete group cat-
egorization. Our method should, therefore, prove valuable to future 
geographic studies across multiple fields of research.
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