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Abstract

New Respiratory Syncytial Virus (RSV) prophylactics are likely to be licensed in the

next few years. Such prophylactics, including long-acting monoclonal antibodies and new

vaccines, will aim to either replace or supplement the current monoclonal Palivizumab

programme. This thesis explores the implications of these changes to RSV health policy

by developing and using a novel mathematical model for RSV transmission and evaluat-

ing the impact of potential intervention programmes. The model will be combined with

an economic analysis and a cross-sectional survey of RSV burden in England and Wales.

Specifically, this thesis is split into six chapters which outline different topics of RSV re-

search which are used collectively to inform RSV policy decision making in England and

Wales. Chapter 1 provides the background information, giving context for the chapters

that follow, as well as the aims and objectives of the thesis. Chapter 2 outlines a study

that determines the health burden due to RSV in England and Wales through a cross-

sectional survey performed in the winter of 2016/17. Chapter 3 describes a review of

existing transmission models outlining the key epidemiological features that characterise

RSV transmission and determines gaps in the current literature. Chapter 4 then presents

a novel mathematical model for RSV transmission, parametrised and calibrated to seven

years of historical epidemiological data using a Bayesian approach. Impact projections

of the model for different RSV intervention programmes are given in Chapter 5. Finally,

Chapter 6 combines the impact projections with an economic model to showcase the cost-

effectiveness and affordability for a suite of RSV intervention programmes. The results of

the calibrated model suggest that maternal protection of infants is seasonal, with 2-14%

of infants born with protection against RSV. Further, the economic analysis found that to

cost-effectively and affordably replace the current monoclonal antibody Palivizumab pro-

gramme with long-acting monoclonal antibodies, the purchase price per dose would have

to be less than around £4,350 but dropping to £200 for vaccinated heightened risk infants

or £90 for all infants. A seasonal maternal vaccine would have to be priced less than £85

to be cost-effective and affordable. While vaccinating pre-school and school-age children is

likely not cost-effective relative to elderly vaccination programmes, an elderly vaccination

programme is not likely to be affordable. Conversely, vaccinating infants seasonally at

two months of age would be cost-effective and affordable if priced less than £80. In a set-

ting with seasonal RSV epidemiology, maternal protection conferred to newborns is also



seasonal, an assumption not previously incorporated in transmission models of RSV. For

a country with periodic RSV dynamics like England, seasonal programmes rather than

year-round intervention programmes are always optimal.
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Impact statement

There are several specific aspects of the thesis which will have beneficial use both inside

and outside academia. First, this thesis is the first to estimate the health burden of RSV

in terms of Quality Adjusted Life Years lost. As this metric is the standard used for cost-

effectiveness analysis, these values will be used by academics, public health researchers

and policy decision makers in future RSV-related cost-effectiveness analyses. Second, in

the course of this thesis a novel mathematical model for RSV transmission and vaccina-

tion has been designed, parametrised and calibrated to incidence data from England and

Wales and combined with an economic analysis. Furthermore, the numerical code of this

model is readily available as open-source software and this has the potential to be used by

policy decision makers in the future. Therefore our work has the potential, in future, to be

expanded to other intervention scenarios of different countries. Third, from an epidemio-

logical prospective, this thesis shows that maternal protection in infants born in England

changes seasonally, with low protection occurring before the start of the RSV season, and

peak protection occurring just after the RSV season. This observation contrasts the as-

sumption that RSV maternal protection is constant throughout the year as assumed in

previous mathematical models and could be used as evidence to influence the design of

future epidemiological studies. Finally, our work is the first modelling work to estimate

the cost-effective purchasing price per course for RSV intervention programmes by com-

bining an RSV transmission model with an economic analysis informed from the National

Institute of Clinical Excellence guidelines. As such, the model framework presented in this

thesis it remains the most comprehensive transmission model study to inform policy deci-

sion making on the cost-effectiveness of future RSV intervention programmes in England

and Wales to date.

1



Contents

1 Background 4

1.1 Virology and Immunology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Intervention programmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Estimating the health burden due to RSV 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Review of RSV transmission models 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Search criteria for literature review . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Results 1: Capturing RSV transmission dynamics . . . . . . . . . . . . . . . 37

3.4 Results 2: Evaluating potential intervention programmes . . . . . . . . . . . 50

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Development of a model for RSV transmission in England and Wales 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Parametrisation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Calibration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Exemplar results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2



CONTENTS

5 Evaluating the impact of potential intervention programmes 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Adaptation of the model to incorporate intervention programmes . . . . . . 92

5.3 Comparing the impact of different intervention programmes . . . . . . . . . 105

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Cost-effectiveness analysis of intervention programmes 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Calculating the costs and QALY loss . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Cost-effectiveness analysis projections . . . . . . . . . . . . . . . . . . . . . 125

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Summary of thesis and looking forward 131

S1 Supplementary material for Chapter 2: Estimating the health burden

due to RSV 137

S1.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

S1.2 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

S2 Supplementary material for Chapter 4: Development of a model for

RSV transmission in England and Wales 158

S2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

S3 Supplementary material for Chapter 5: Evaluating the impact of poten-

tial intervention programmes 165

S3.1 Equations of the adapted models . . . . . . . . . . . . . . . . . . . . . . . . 165

S4 Supplementary material for Chapter 6: Cost-effectiveness analysis of

intervention programmes 177

S4.1 QALY loss for death per age . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3



Chapter 1

Background

Respiratory Syncytial Virus (RSV), causes acute lower respiratory tract infections (ALRT)

predominately in young children. With a suite of new preventative measures against RSV

disease on the horizon, public health bodies need to decide if the health benefit acquired

from administering these measures warrants the cost of delivery (i.e. are cost-effective).

However, as the health burden and transmission dynamics of RSV are not fully under-

stood, evaluating the cost-effectiveness of potential measures is difficult and speculative

results are highly uncertain. This PhD thesis evaluates the impact of these potential mea-

sures in light of current evidence and determines which are likely to be cost-effective in

England and Wales. To do this, I explore the transmission dynamics of RSV by build-

ing a mathematical model of its transmission in England and Wales and parameterise it

by considering observational epidemiological studies and using Bayesian inference. I also

conduct a cross-sectional survey to determine the health burden associated with RSV in

England and Wales. Finally, using the derived mathematical transmission model and the

estimates of health burden, I evaluate the impact and cost-effectiveness of potential in-

tervention programmes for RSV in England and Wales, giving specific guidelines on the

cost-effective purchasing price per dose.

1.1 Virology and Immunology

RSV is a cytoplasmic enveloped RNA virus which predominately infects humans.1 It

is a member of the family Paramyxoviridae, which includes parainfluenza viruses, mumps

virus and measles virus. The viral envelope of RSV contains two large virally encoded

transmembrane surface proteins: the G attachment protein and the F fusion protein, which

are important for immunity and pathology. Extensive antigen differences observed on the
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CHAPTER 1. BACKGROUND

G protein only has lead to two antigenic subgroups of RSV, A and B, being defined.2 RSV

is spread through either a) close contact with an infected person or b) by direct contact

of contaminated surfaces with nasal or conjunctival mucosa. Once the virus reaches a

mucosal surface, it replicates by infecting epithelial cells using the G attachment protein.

Then, through a processes mediated by its F fusion protein, neighbouring epithelial cells

fuse together, forming multi-nucleated cell masses called syncytia. Replication of RSV in

epithelial cells causes an innate immune response and an adaptive immune response which

helps clear the infection and forms the clinical features of RSV disease. For example,

immune responses to viral replication in the nasopharynx cause excessive production of

mucus, resulting in symptoms such as rhinitis. In addition, inflammatory responses to

viral replication in the bronchioles or alveoli can cause much more severe clinical disease,

including a bronchiolitis and pneumonia.3

Despite the fact that RSV infection creates an effective humoral response, RSV per-

sistently causes symptomatic reinfection, even with the same strain of virus, throughout

life.4 The exact mechanisms which causes this ability to persistently reinfect hosts is not

clear and remains an active area of research. Several identified characteristics of RSV

which could speculatively contribute to lack of long-term immunity include i) the ability

of virally-secreted G proteins to bind to antigen, allowing evasion of antibody-mediated

clearance,5 and ii) RSV-specific viral tropism, which restricts the exposure of viral anti-

gen to the host’s immune system.6 Frequent reinfection with RSV means most individuals

are susceptible to infection each winter, regardless of whether they were infected in the

previous season.7

Young infants are born with maternally-acquired neutralising IgG antibodies against

RSV.8 The immunological effects of maternally-acquired neutralising IgG are poorly un-

derstood, however, high levels of these antibodies in infants results in a reduction of

RSV-associated bronchiolitis and hospitalisation cases when compared to infants with low

levels of RSV neutralising antibodies, suggesting a protective effect for up to 6 months.9–11

Maternally-acquired RSV-neutralising IgG titre in infants has been shown to vary season-

ally, peaking at the end of the RSV season.10,12,13 In addition, birth-cord RSV neutralising

IgG titre levels correlates with that of the mother.14 This suggests that the increased an-

tibody levels in in pregnant women who have recently experienced an RSV infection could

be transferred their new born, providing boosted seasonal protection.
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1.2 Epidemiology

RSV is estimated to annually cause 33.1 million ALRT, in children under 5 years of

age and is the most significant pathogen which causes ALRT in young children globally.15

The most common clinical feature of RSV infection in infants is bronchiolitis—a swelling

in the bronchioles caused by mucosal inflammation which makes it difficult to breathe.3

RSV infections are very closely associated with bronchiolitis, causing between 50-80% of

bronchiolitis cases globally.16 Clinical features of RSV infection in older children and

adults are much milder, including symptoms such as rhinitis and coughing, and are often

asymptomatic.17,18 Risk factors for severe RSV infection include congenital chronic con-

ditions (including lung disease, neuromuscular disease, heart disease, immunodeficiency,

and chromosomal abnormalities) and acquired chronic conditions (including liver disease,

epilepsy).19 Household structure is also a risk factor for severe RSV infections, with in-

creasing risk correlated with an increasing number of siblings sharing a household with

an infant.20 This is because infants have been shown to be the main disseminators of

disease within a household in both high-income and low-income countries.21,22 Though

ubiquitous globally, RSV displays great heterogeneity in its seasonal pattern of incidence,

severity and prevalence across the world.23 These differences in RSV seasonal activity have

been speculated to be part effected by latitude, relative humidity, temperature and social

behaviour, but is likely to be driven by a complex interplay between these location-specific

factors.24

RSV has a high burden in England and Wales, where it has been recently estimated to

be responsible for approximately 46,000 hospitalisations and 900,000 GP consultation each

year.25–27 The majority of the hospitalised cases are due to RSV bronchiolitis, a condition

which, in 2011, accounted for 5% of all hospital admissions in infants (an increase from 3%

in 200428) and is the most common reason for hospital admission for infants in the UK.28

The majority of these cases occur in the winter months in the UK, with a very reliable

peak of RSV activity occurring every December.29 Though there are disease-related risk

factors for RSV infection in the UK, between 85 and 95% of hospitalised infants have no

known predisposing risk factors for RSV infection.30,31 In fact, recent studies suggest that

the month of birth is the most important factor in determining susceptibility to severe

RSV infection,29 with children born just prior to RSV seasonal incidence starting being at

a significantly higher risk of severe infection. In addition to infants, there is also a notable
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RSV burden in the vulnerable elderly population in the UK with an estimated 13,000

hospitalisations and 180,000 GP consultations occurring annually.26 Consequently, RSV

infections in the UK are persistent and increasing, making it a huge public health burden

in infants and the elderly.

1.3 Intervention programmes

Options for prevention and control of RSV are limited. Vaccines against RSV have been

unsuccessful and have an unfortunate history, with a formalin-inactivated vaccine increas-

ing the incidence and severity of RSV infection in clinical trials performed in infants during

the 1960s.32 This unfortunate event highlights the complexity of RSV immunopathogen-

sis, which even today is not fully understood. Further, as RSV can only infect humans,

determining the safety and efficacy of potential vaccines using animal or in vitro models

doesn’t guarantee success in human trials, with many promising candidates eventually fail-

ing in vivo.33 To date, there is no commercial vaccine against RSV. The only RSV-specific

preventative measure available is monoclonal antibodies—Palivizumab. Administration of

monoclonal antibodies introduces immunoglobulin G-1 (IgG-1) monoclonal antibody that

binds to the F-protein of RSV into the host, providing immediate, but short lived pro-

tection from RSV infection.34 The seminal IMPACT study showed that giving monthly

intramuscular injections of Palivizumab to premature infants (<35 weeks) significantly re-

duces both the rate of RSV-related hospitalisation and the number of RSV-related hospital

days.35 However, because monthly injections are needed to maintain a serum antibody

concentration at a protective level,34 administration of Palivizumab is logistically difficult

and expensive (a single course can cost up to £5000). Due to it’s high cost, the eligibility

criteria for Palivizumab in the UK is very specific,36 and includes only infants who;

1. are born at less than 34 weeks gestation age and Bronchopulmonary dysplasia

(BPD)/Congenital Heart Disease (CHD) and who are <9 months at the start of

the RSV season

2. have respiratory diseases who are not necessarily pre-term but who remain in oxygen

at the start of the RSV season

3. have Severe Combined Immunodeficiency Syndrome (SCID)

These guidelines are stricter than other high-income countries,37 leaving the majority

of the population of the UK vulnerable to RSV infection each season. In particular, there
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are a number of infants with congenital conditions such as Cystic Fibrosis and Down’s

Syndrome and infants with acquired conditions such as Epilepsy and liver disease, who

are particularly susceptible to severe RSV infection but are left unprotected.19 Though

the protection due to Palvizimab is effective, it’s lack of availability makes it an inef-

fective product for preventing RSV infection at the population level. However, recent

advancements in monoclonal antibody research has produced promising alternative prod-

ucts to Palvizumab, including MEDI8897, which provides similar levels of protection to

Palivizumab for up to five months (without the need for monthly doses).38 This product

will be easier to administer and cheaper than the Palivizumab course, with the potential

for an augmented eligibility criteria, providing protection to more infants.

Although there are no commercial vaccines against RSV, technological and biological

advancements mean vaccines are close to commercial availability, with over 40 vaccines

and new monoclonal antibodies currently undergoing pre-clinical and clinical trials.39 The

most promising of these includes a vaccine composed of recombinant RSV F nanoparti-

cles, aimed at pregnant women, developed by Novavax called ResVax.40 ResVax targets

pregnant women during their third trimester to boost the concentration of RSV F-protein

IgG antibodies in both the mother’s serum and their newborns serum’s. A boost in similar

RSV-neutralising antibodies titres has been shown to decrease rates of hospitalisation and

bronchiolitis and therefore could protect infants at their most vulnerable. The stage 3

clinical trial for ResVax (called the Prepare Trial) recruited 4,636 maternal – infant pairs

across 3.5 years and 11 countries.40 The results of Prepare Trial suggested the RSV F

vaccine was well-tolerated by pregnant women and safe, with efficient antibody transferral

from pregnant women to new born. The observed efficacy of the vaccine strategy across

all sites was 39.4% against the primary endpoint (medically-significant RSV LRTI), which

did not meet the required threshold of 40.0%, but observed efficacy was greater against

more severe endpoints: including RSV LRTI with hospitalization (44%) and RSV LRTI

with severe hypoxemia (48%).41 However, there was some variation in efficacy observed in

timing of vaccination by gestational age (increased efficacy less than 33 weeks) and huge

variation depending on location (11.6% in USA vs 42.5% South Africa against medically-

significant RSV LRTI). These inconsistencies in efficacy, mean further research is needed

to determine if its eligible for licensure.40 Vaccines aimed at pregnant women also see

low uptakes rates in the UK, with year-round maternal vaccination such as Pertussis see-

ing uptakes of 60%, and seasonal maternal vaccination programmes for Influenza reaching
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about 40%.42 Vaccines aimed at young infants are slower to progress due to the previously

unsuccessful formalin-inactivated vaccine. In addition there are reduced immune responses

to RSV infection early in life, due to immunological immaturity and immunosuppressive

effects of maternal antibodies.43 Consequently, vaccines aimed at young infants require

special consideration to balance the safety and efficacy of vaccinating such a vulnerable age

group. Other possibilities for vaccination include targetting school age children, as they

have been identified as the major disseminators of disease within households.21 With these

vaccines on the horizon, the RSV public health policy landscape will significantly change

and evidence is required to inform public health bodies of the dynamics and feasibility of

implementing a RSV vaccine programme in the UK.

1.4 Outline of PhD

In light of these new potential preventative measures, the research aim of my PhD is to

evaluate the cost-effectiveness of potential intervention strategies against RSV in England

and Wales. To achieve this research aim I outline five main objectives:

1. Objective 1 : Determine the health burden due to RSV infection in England and

Wales

2. Objective 2 : Gain an overview of the current RSV modelling landscape

3. Objective 3 : Develop a new mathematical model of RSV transmission in England

and Wales

4. Objective 4 : Evaluate the impact of potential RSV intervention programmes

5. Objective 5 : Evaluate the cost-effectiveness of potential RSV intervention programmes

Next, I describe these objectives in more detail.

Objective 1: Determine the health burden due to RSV infection in Eng-

land and Wales

Cost-effectiveness analyses require accurate measures for both the cost and health bene-

fit of an intervention programme. The metric used for quantifying health benefit is Quality

Adjusted Life Years (QALYs). QALYs take into account both the morbidity during the

infection, in the form of Health-Related Quality of Life (HR-QoL), and time over which
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this morbidity is experienced. In order to determine the HR-QoL, standardised instru-

ments such as EQ-5D forms are used—providing a mapping from qualitative descriptions

of disease severity into a single quantitative measure of morbidity. No such measures for

HR-QoL loss currently exist for RSV infection. Therefore this objective is an essential

step in ensuring that the cost-effectiveness analysis, which is described later in the thesis,

is accurately evaluating the effects of potential intervention programmes.

Objective 2: Gain an overview of the current RSV modelling landscape

Mathematical models make it possible to understand how infectious diseases spread

throughout a population. To ensure these models are accurate, they should include

disease-specific transmissions characteristics informed from epidemiological studies. To

understand which RSV-specific model structures help improve the accuracy of these math-

ematical models, a systematic review of existing mathematical models of RSV transmis-

sion is performed. This review gives an overview of the current RSV modelling landscape,

including potential intervention programmes which have been evaluated, inspiring the

mathematical model outlined in the next chapter.

Objective 3: Develop a new mathematical model of RSV transmission in

England and Wales

A dynamic transmission model is developed, where the probability of transmission is

proportional to the number of infected persons in a population at any time, to model the

spread of RSV in England and Wales. Using this type of model allows for the indirect

effects (i.e. herd immunity) of an intervention programme to be evaluated, and is therefore

much preferred over other mathematical models. The model is parametrised through a

critical analysis of the epidemiological observation studies of RSV disease and calibrated

to RSV surveillance data specific to England and Wales using Monte Carlo Markov chain

(MCMC) Bayesian inference techniques, to obtain a set of posterior distributions for the

inferred parameters. These posterior distributions are then used together with the math-

ematical model to produce the model-estimated incidence of RSV disease in England and

Wales.

10
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Objective 4: Evaluate the impact of potential RSV intervention pro-

grammes

Using the projected incidence of RSV from the mathematical model of RSV transmis-

sion I evaluate the impact of potential intervention programmes. This is done by adapting

the existing mathematical model to include specific immunological responses associated

with each prophylactic. The impact of these programmes are measured in terms of cases

of RSV-related symptomatic infection, GP consultation, hospital cases, hospital bed days

and deaths averted. As these outcomes can be converted into costs and QALYs, this objec-

tive is an important intermediate stepping stone towards evaluating the cost-effectiveness

analysis.

Objective 5: Evaluate the cost-effectiveness of potential RSV intervention

programmes

Cost-effectiveness analyses (CEA) are an important part of the healthcare decision-

making process. The basic idea behind a CEA is to check that the increased health

benefit from implementing a new intervention programme is enough to warrant any in-

creased costs. The guidelines for how this analysis is performed in England and Wales are

outlined in the National Institute of Clinical Excellence’s (NICE) reference case, which I

follow throughout this thesis. As the price of the potential intervention strategies is not

yet available, this objective provides a list of maximum purchasing costs per course of

treatment for which each intervention programme would remain cost-effective.

This thesis comprises of five further research chapters, each addressing each of the objec-

tives, followed by a chapter about the open source software which was created as a result

of this thesis, and finally a summary chapter. In Chapter 2 Objective 1 is achieved. Here,

I describe the methods and results of a cross-sectional survey, conducted in the winter of

2016-17 to ascertain QALY loss due to acute RSV infection in infants who are hospitalised

and also RSV infections in the household members of these infants. In Chapter 3, Ob-

jective 2 is achieved by presenting a systematic review of the existing transmission models

of RSV and summarises the key model characteristics which are important in capturing

the transmission dynamics of RSV. Objective 3 is achieved in Chapter 4 which outlines

the transmission model of RSV used throughout this thesis and includes a summary of

the studies used to parameterise the model and the MCMC methods used to calibrate the
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epidemiological parameters in the model. Objective 4 is achieved in Chapter 5 where I

outline the promising prophylactics currently in clinical trials that I wish to evaluate. In

addition, I describe the impact of all the relevant intervention programmes associated with

these prophylactics. Finally, Objective 5 is achieved in Chapter 6, where the QALY loss

(from Chapter 2) is paired with both the UK-specific costs from 2018 and the impact

estimated in Chapter 5 to determine the maximum purchasing price per course for these

programmes to remain cost-effective. A summary of how the contents of the chapters in

this thesis are related to each other is contained in Figure 1.1.

This work in this thesis has generated two publications, one based on Chapter 2, and

another based on Chapter 4–6.44,45

Chapter 2: Estimating QALY loss

Chapter 3: Literature review

Chapter 4: Dynamic model

Chapter 5: Intervention model

Chapter 6: Cost-
effectiveness analysis

Figure 1.1: Summary of how the contents of the chapters in this thesis are related to each other
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Chapter 2

Estimating the health burden due

to RSV

2.1 Introduction

To determine the health burden due to RSV infection, I conducted a cross-sectional

survey to measure the morbidity of acute RSV infection in infants and adults during the

winter of 2016 and 2017 for use in a cost-effectiveness analysis. Cost-effectiveness analyses

rely on the existence of measures for morbidity associated with RSV episodes and is

routinely expressed in terms of Quality of Life Year (QALY) loss.46 QALY loss for a single

RSV episode is calculated by integrating the loss of Health-Related Quality of Life (HR-

QoL) over the duration for which the symptoms are experienced. HR-QoL is evaluated

through the use of standardised and validated instruments, such as EuroQol’s EQ-5D that

considers the physical, mental and emotional effects of an illness.47 Despite RSV vaccine

strategy cost-effectiveness analyses being published48,49 validated QALY estimates for

RSV infection in either children or adults do not exist.50–52 Moreover, EQ-5D methods

do not reliably capture the HR-QoL in very young children, in whom severe RSV episodes

predominantly occur.53

In this chapter, I outline the methodology and report the results of a cross-sectional

survey which determines the HR-QoL loss due to an RSV episode in individuals aged five

years and older with suspected RSV using EQ-5D questionnaires.54–56 Using the results

of the cross-sectional survey, I developed a statistical model to predict the HR-QoL loss

as a function of responses from a broader health and healthcare-seeking questionnaire.

The statistical model was able to predict the estimated QALY loss for children and adults

13
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over five years of age. Finally, using the statistical model parameterised with responses

from the broader health and healthcare-seeking questionnaire administered to caregivers

of children aged younger than five with recently confirmed RSV infection, I calculated the

QALY loss per RSV episode for children less than five years of age, for which there are no

standard instruments to measure HR-QoL loss.53

2.2 Methods

2.2.1 Study recruitment

During the 2016-17 RSV season, confirmed cases of RSV in children under the age of 5

years from the previous two weeks were extracted on dates 13th December, 25th December

2016, and 3rd January 2017 from the Public Health England (PHE) Respiratory DataMart

surveillance (RDMS) system.57 For all the confirmed cases for whom name, date of birth

and National Health Service (NHS) number were provided, home addresses were obtained

from the PHE Patient Demographic Service. For all these home addresses, a questionnaire

pack addressed to the parent or guardian of the confirmed case, was sent the day after

its extraction date from the PHE RDMS system. Each questionnaire pack consisted of

three questionnaires, an information sheet, and a stamped addressed return envelope. The

Index Questionnaire requested information about the recent RSV episode in the confirmed

case. The other two questionnaires requested information about suspected RSV episodes

in older household members; those aged 5-14 years (5-14 Questionnaire) and those aged

15 years or older (15+ Questionnaire). Suspected RSV cases were defined as persons who

share a household with the confirmed case and who experienced an onset of RSV-like

symptoms (runny or blocked nose, fever, coughing, and/or a sore throat) between five

days before and five days after the onset of symptoms in the confirmed case (five days

being the average latency period for RSV).58,59

2.2.2 Questionnaire information

The Index Questionnaire was completed by a parent or guardian on behalf of the con-

firmed case, the 5-14 Questionnaire on behalf of or by the child themselves and the 15+

Questionnaire by the adolescent or adult. The Index Questionnaire requested informa-

tion on (i) the age of the child, (ii) the confirmed case’s symptoms (runny/blocked nose,

fever, coughing, sore throat), (iii) the healthcare seeking behaviour (no healthcare sought,

14



CHAPTER 2. ESTIMATING THE HEALTH BURDEN DUE TO RSV

contacted or visited GP, visit to Accident and Emergency department, admission to hospi-

tal), (iv) coughing severity (mild/no coughing, severe coughing) and (v) a Visual Analogue

Scale (VAS) for the worst day of the recent infection and the day of questionnaire com-

pletion. A VAS was presented for health from 0 (worst health) to 100 (best health) for

both days and the difference between the VAS scores was defined as the VAS score loss

due to an RSV episode. In addition to the questions asked in the Index Questionnaire,

the 5-14 and the 15+ Questionnaires also asked (vi) the time taken off school/work due

to symptoms (productivity) and (vii) EuroQol EQ-5D-3L-Y54–56 (for 5–14 year olds)49 or

EQ-5D-3L54,55 (for 15+ year olds) questionnaires to determine Health-related Quality of

Life (HR-QoL) weight at baseline and on the worst day of suspected RSV infection. I

did not ask questions about the health or economic impact of an infant’s infection on (a)

parent(s) as cost-effectiveness guidelines in the UK recommend including the direct effects

of an infection only.60 See Supplementary material S1.2 for full questionnaire packs.

The EuroQol ED-5D-3L-Y54–56 and EQ-5D-3L54,55 questionnaires use a UK-specific

Time Trade-Off scoring tariff to determine the HR-QoL weight according to five dimen-

sions: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. I refer

to this HR-QoL weight on the worst day of infection as the peak HR-QoL weight from the

data and the difference in the HR-QoL weights between the baseline and the worst day of

infection as the peak HR-QoL loss from the data.

2.2.3 Statistical model to estimate HR-QoL

EQ-5D questionnaires are not validated for children under five years of age so it is not

possible to obtain estimates for the peak HR-QoL loss from the data in the confirmed cases.

Therefore, using the responses from the suspected cases, I fitted a regression model to

predict the (model-estimated) peak HR-QoL loss, as a function of questionnaire variables:

age (5–14 years, 15 years and older), coughing severity, healthcare seeking behaviour,

productivity and VAS score loss.

Model selection

To inform the structure of the regression model, I first determined whether the peak HR-

QoL loss sampled from the data was likely drawn from a bimodal or unimodal distribution

using an F-test-based hypothesis test.61 The variance for the bimodal distribution is

calculated by dividing the data with values below and above a fixed value h∗ and finding

15



CHAPTER 2. ESTIMATING THE HEALTH BURDEN DUE TO RSV

the mean of the two variances of the two groups. The degrees of freedom for an estimate

of the variance of the unimodal sample is 72, and the degrees of freedom for an estimate

of the variance of the bimodal sample is 69. Therefore by varying h∗ within the range 0

to 1, I calculated the h∗ that minimised the F-test value with 72 degrees of freedom in the

numerator and 69 degrees of freedom in the denominator.

To parameterise a regression model, I use a mixture-model approach that uses three

sub-models. Specifically, I estimate three response variables (a) the probability that a

disease episode is severe, and the “model-estimated” peak HR-QoL loss for (b) mild (YM )

and (c) severe (YS) disease respectively. Therefore, the full mixture model I develop to

determine the model-estimated peak HR-QoL loss for a symptomatic infection, Y , is given

by

Y = pYS + (1− p)YM (2.1)

Where p, YS , YM are estimated response variables.

Mixture model structure

Probability of severe disease: To estimate the probability (p) of a disease episode being

severe I use a logistic regression analysis because the response variable is binary (severe

or mild).

Model-estimated peak HR-QoL loss for severe and mild disease: I initially fit YS and

YM as linear regression models. However, in the case of YM linear regression resulted

in unrealistic negative values. To overcome this, I used a log-transformed model instead

for YM . For consistency, I then considered both the linear and log-transformed regression

models for YS and chose the better fitting model based on the Akaike Information Criterion

(AIC).

Overall, for our mixture-model approach, I therefore fit three regression models: a

logistic regression model to predict the probability of a disease episode being severe (p),

a log-transformed linear model to predict the model-estimated peak HR-QoL loss when

disease is mild (YM ), and a linear model to predict the model-estimated peak HR-QoL

loss when disease is severe (YS).
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Explanatory variables

I used the following five explanatory variables x = (x1, . . . , x5) and level stratifica-

tion (listed below in curly brackets). I performed the regression analyses for each of the

six combinations of the explanatory variable level stratifications (three stratifications for

coughing severity and two stratifications for age). The number of levels for both variables

were chosen based on the AIC.

Healthcare-seeking behaviour (x1): No healthcare sought, healthcare sought, No health-

care sought, A+E or GP consultation but no hospital admission and admission to hospital,

No healthcare sought, A+E but no hospital admission, GP but no hospital admission, and

admission to hospital.

Coughing severity (x2): None/mild coughing, severe coughing, No coughing, mild cough-

ing, and severe coughing.

Age (x3): 5-14 years, 15+ years.

Productivity (x4): no time off work or school, time off work or school.

VAS score loss (x5): integer value as the difference between score reported on worst day

subtracted from score reported on the day of questionnaire completion.

Backwards stepwise regression

For each model I performed a backwards stepwise regression by estimating all five co-

efficients and intercept and eliminating the explanatory variable with the highest P-value

above 0.05. I continued this process of fitting the regression model and eliminating one

explanatory variable until all the remaining variables have a P-value less than 0.05. A

stringent threshold value of 0.05 was chosen to encourage a simpler model.

Estimating the variance

Using the backward stepwise regression, I estimated the functions E[YS ], E[log(YS)],

and E[p] as a function of the significant explanatory variables. Therefore, for an arbitrary

point x∗ = x1, ..., x5, the uncertainty around the estimates is given by

YS = Ax∗ + ε∗S (2.2)
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log(YM ) = Bx∗ + ε∗M (2.3)

p = σ(Cx∗ + ε∗p) (2.4)

Where ε∗j ∼ N(0, σ∗j ), j ∈ {S,M, p} is the error associated with the prediction at

point and A = {a0, . . . , a5}, B = {b0, . . . , b5}, C = {c0, . . . , c5}. I choose σ∗S and σ∗M

to provide 95% confidence intervals that are consistent with the 95% prediction intervals

from linear model fit and I choose σ∗p to provide 95% confidence intervals that match the

95% confidence interval of the generalised linear model fit output. I take 10,000 samples

from the distributions for YS , YM and p and substitute these values into the equation for Y

10,000 times to get the empirical distributions for Y . The 95% CIs are found by ordering

the data and taking the 250th and 9750th sample.

Data used to fit the mixture model

To fit the three regression models for YS , YM and p I use three datasets derived from the

observation data and consist of a response variable associated with the peak HR-QoL loss

from the data and the explanatory variables, x = (x1, . . . , x5). For the log-transformed

linear regression model, which predicts the model-estimated peak HR-QoL loss for mild

disease, I used observational data for which the peak HR-QoL loss is below and equal to

h∗. Similarly, for the linear regression model which predicts the model-estimated peak

HR-QoL loss for severe disease, I use observational data for which the peak HR-QoL is

above h∗. For the logistic regression model which predicts the probability of an infection

being severe, p, I use all the observation data, and transform the peak HR-QoL loss from

the data into a binary response variable which is 0 when the peak HR-QoL loss is below

h∗ and 1 when the peak HR-QoL loss is above h∗.

All analysis was performed in R (v. 3.3.2) and plotting was performed in Mathematica

(v.10.3.0.0).

2.2.4 Quality-adjusted life year (QALY) loss due to an RSV episode

I estimated each respondent’s QALY loss by multiplying their model-estimated peak

HR-QoL life loss by (i) a pooled duration of coughing distribution and (ii) a fixed scal-

ing factor for disease severity throughout the illness. Multiplying the model-estimated

peak HR-QoL by the duration of coughing only gives an estimated QALY loss which as-

sumes that an individual experiences their worst symptoms everyday of their infection.
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As symptoms of infections usually build to a peak and then subside, this calculation is

likely to overestimate the true QALY loss due to RSV infection. Therefore, I multiply this

value by a fixed scaling factor for disease severity (a value between 0 and 1) to capture

heterogeneity in HR-QoL life loss over the course of an infection.

Duration of symptoms

Due to a poor response rate for reporting the duration of symptoms in our questionnaire

(67%), calculating the QALY loss only for the responses which provided a duration of

symptoms would lead to a substantial waste of data. Therefore, I pooled the responses

for the duration of symptoms. Thus, to evaluate the QALY loss for each model-estimated

peak HR-QoL loss, I then sampled a duration from this pooled distribution. In estimating

the pooled coughing duration distributions, I excluded responses that did not indicate a

duration of coughing and those that indicated a duration of more than 22 days as this is

longer than the maximum duration of RSV symptoms reported in previous studies.58

To compare using one pooled distribution to multiple distributions, stratified by respon-

dent characteristics, I performed a backwards stepwise linear regression analysis using the

duration of symptoms as the response variable and age group (<5 ,5–4, 15+ years), cough-

ing severity (severe coughing or no/mild coughing), and VAS score loss as independent

variables. I found that VAS score loss was unlikely to account for any of the variance in

duration symptoms (P = 0.53), I pooled responses by age and coughing severity (P = 0.14,

P = 0.08, respectively). Therefore, I calculated six pooled distributions for the duration

of symptoms (Figure 2.4). For each included individual respondent in the analysis, I

then randomly sampled their respective symptom duration from their respective pooled

distribution based on their age group and whether they reported severe coughing.

Scaling factor for disease severity

I estimated the scaling factor for disease severity using daily EQ-5D questionnaires from

individuals participating in the Flu Watch study.62 Flu Watch is a community cohort

study in which householders were asked to prospectively record all respiratory illnesses

and submit a nasal swab for Polymerase Chain Reaction (PCR) based identification of

respiratory viruses over winter seasons. In 2010/11 participants (or adult carers) were also

asked to complete a one-off baseline EQ-5D questionnaire at the start of the study as well

as daily EQ-5D questionnaires throughout any respiratory illness to measure their daily

19



CHAPTER 2. ESTIMATING THE HEALTH BURDEN DUE TO RSV

HR-QoL. Using the daily EQ-5D questionnaires from the Flu Watch study, I calculated

the HR-QoL loss throughout an RSV episode relative to the worst day of infection for five

of the nine confirmed infections. Three people were excluded as they indicated no HR-

QoL loss over their infection; and one person was excluded because their base HR-QoL

was lower than during the RSV episode—leading to negative HR-QoL loss values. The

remaining five patients were aged between 16–45 years.

2.2.5 Ethics approval

In accordance with The Health Service (Control of Patient Information) Regulations

2002 No. 1438 Section 251 Regulation 3, Public Health England may process confidential

patient information with a view to monitoring and managing; outbreaks of communicable

disease; incidents of exposure to communicable disease and the delivery, efficacy and safety

of immunisation programmes.63 All questionnaires that were returned from households

and stored at PHE had no identifying information.

2.3 Results

2.3.1 Questionnaire responses

I sent out 770 questionnaire packs between 15 December 2016 and 4 January 2017 and

received 122 responses by 28 February 2017 (response rate of 16%). I found that, when

stratified by year of age, the age distribution of the confirmed cases who responded was

similar to the age distribution of the contacted confirmed RSV index cases. However, when

stratified by month of age in the first year of life, I oversampled infants aged 3–4 months

old and undersampled infants aged 1–2 months old (Figure 3.1). In the 122 households,

suspected cases were reported in 33 (27.0%) persons aged 5–14 years old and 54 (44.2%)

of persons aged 15 years or older.

After selecting questionnaire responses according to the inclusion criteria, I determined

the model-estimated peak HR-QoL loss for 108/122 (88.5%) of confirmed cases in children

less than five years of age, and for 21/33 (63.6%) and 40/54 (74.1%) of suspected cases

aged 5–14 years and 15 years and older, respectively. Duration of coughing was provided

for 98/122 (80.3%) and 43/87 (49.4%) of confirmed and suspected cases respectively.
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Figure 2.1: Age of confirmed RSV samples in PHE database (N=770, black) and of the returned
questionnaires for analysis (N=122, gray).

In the questionnaire responses from the suspected cases, I found that 21/33 (63.6%) of

children aged 5-14 years old, and 43/54 (79.9%) of persons aged 15 years and older did not

seek healthcare due of their suspected RSV episode (Table 3.1). Further, I found that

17/33 (51.5%) children aged 5–14 years took time off school and 9/54 (16.6%) of persons

aged 15 years and older took time off work or school due to their suspected RSV infection,

both with a median time off of 2 days (range 1–10 days) (Table 3.1). The EQ-5D-Y

questionnaires suggested that for children aged 5-14 years old RSV mostly affected usual

activities (72%), caused pain/discomfort (76%) and anxiety/depression (84%). The EQ-
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5D-3L responses for respondents aged 15 years and older suggested similar results with

RSV affecting respondents’ usual activities (54.2%), causing pain/discomfort (36.0%) and

anxiety and depression (32.0%) (Figure 2.2). Converting these EQ-5D and EQ-5D-3L

responses using the UK TTO scoring tariff, the median peak HR-QoL weight from the data

for children aged 5–14 years old and persons 15 years and older was 0.689 (range -0.170–

1.000) and 0.752 (range -0.166–1.000) respectively. These weights led to a median peak

HR-QoL loss from the data of 0.456 (range 0.0–1.170) and 0.358 (range 0–0.998) for 5-14

and 15 years and older respectively. As there was no significant difference between the peak

HR-QoL loss from the data between 5–14 years old and persons 15 years (Kolmogorov-

Smirnov test, p = 0.291), all HR-QoL and QALY results were pooled for ages 5+ years

for further analysis.

For individuals seeking healthcare, I found that cases in children under the age of five

years were more severe when compared with suspected cases in persons aged five years

and older as evidenced by a higher VAS score loss (median 65 vs 40) and the proportion

of persons with severe coughing (0.76 vs 0.18).
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Figure 2.2: Responses from the EQ-5D-3L-Y and EQ-5D-3L questionnaires on the day of com-
pletion (Base) and the worst day of health during a suspected infection for respondents aged 5-14
years old (top) and 15+ years old (bottom).
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Aged 0–4 years
(n=122) (%)

*Aged 5–14
years (n=33)
(%)

Aged 15 years
and older (n=54)
(%)

Symptoms

Runny/blocked nose 96 (78.7) 28 (84.8) 43 (79.6)

Fever 70 (57.4) 18 (54.5) 22 (40.7)

Coughing 110 (90.2) 27 (81.8) 51 (94.4)

Sore throat 36 (29.5) 17 (51.5) 38 (70.4)

Number of responses 121 (99.1) 33 (100.0) 54 (100.0)

Coughing severity

No effect on daily activities 16 (13.1) 10 (30.3) 8 (14.8)

Mild effect on daily activities 34 (27.9) 15 (45.5) 32 (59.3)

Severe effect on daily activities 93 (76.2) 4 (12.1) 8 (14.8)

Number of responses 116 (95.1) 28 (84.8) 46 (85.2)

Coughing severity duration

No effect on daily activities (median, range) 4 days (1–14) 10 days (10–10) 14.5 days (1–28)

Mild effect on daily activities (median, range) 3.5 days (1–14)) 3 days (1–9) 5.5 days (1–28)

Severe effect on daily activities (median,
range)

6.5 days (1–35) 3 days (1–4) 7 days (3–10)

Number of responses 98 (80.3) 12 (36.6) 31 (57.4)

Health seeking behaviour

Phone/email NHS 111/NHS 24/NHS choices 39 (32.0) 2 (6.1) 2 (3.7)

Phone/email GP—response from the recep-
tionist

20 (16.4) 2 (6.1) 2 (3.7)

Phone/email GP—response from the
nurse/doctor

20 (16.4) 2 (6.1) 2 (3.7)

Visit a GP or nurse 83 (68.0) 10 (30.3) 10 (18.5)

Visit A& E department 71 (58.2) 3 (9.1) 1 (1.9)

Admitted to hospital 103 (84.4) 1 (3.0) 1 (1.9)

None 0 (0.0) 21 (63.6) 43 (79.6)

Number of responses 121 (99.1) 33 (100.0) 54 (100.0)

Productivity

Individuals reporting taking time off work or
school

— 17 (51.5) 9 (16.7)

Duration of time off work or school (median,
range)

— 2 days (1–10) 2 days (1–7)

VAS score loss

Baseline (median, range) 90 (30–100) 95 (10–100) 95 (50–100)

Worse day (median, range) 20 (0–85) 50 (5–85) 50 (0–90)

Loss (median, range) 65 (10–100) 38 (0–90) 35 (10–85)

Number of responses 120 (98.4) 32 (97.0) 54 (100.0)

Number of responses used calculate peak HR-
QoL loss

108 (88.5) 21 (63.6) 40 (74.1)

Table 2.1: Summary of index, 5-14, and 15+ Questionnaire responses· Numbers in parentheses is
the percentage unless otherwise stated. VAS, visual analogue scale. * Conditional on ascertaining
a confirmed case through GP/hospitalisation.
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2.3.2 Model-estimated peak HR-QoL loss

Model selection

The F-test-based hypothesis test value was minimised at h∗ = 0.6 where F73,69 = 4.35

and P<0.001, suggesting that the peak HR-QoL loss from the data were sampled from

two independent distributions. Intuitively, therefore, this result is consistent with RSV

disease being classed as either mild (typically with a peak HR-QoL loss from the data

below the threshold value, h∗ = 0.6) or severe (typically with a peak HR-QoL loss from

the data above the threshold value, h∗ = 0.6) (Figure 2.3).

0.2 0.4 0.6 0.8 1.0 1.2

Peak HR-QoL loss

from the data

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Mild infection

Severe infection

Figure 2.3: Histogram of the peak HR-QoL loss due to RSV from the responses of the 5-14 and
15+ Questionnaire with the threshold value, h∗ (dashed lined), region of mild disease (green) and
region of red disease (red).

Regression analysis

Using a backwards stepwise regression approach, this statistical model found that the

peak HR-QoL loss from the data was parsimoniously predicted by three factors: the

VAS score loss, whether healthcare was sought, and the presence of severe coughing

(Supplementary material S1.1).

This statistical model predicted the model-estimated peak HR-QoL loss in suspected

cases aged five years and older who did and did not seek healthcare as 0.616 (95% CI

0.155–1.371) and 0.405 (95% CI 0.111–1.137) respectively. I found that the questionnaire

data were well predicted by the model, with no evidence to suggest the peak HR-QoL
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loss from the data and the model were different (Kolmogorov-Smirnov test, p = 0.111,

(Figure 2.5)). Applying this statistical model to those under five for whom HR-QoL loss

could not be directly estimated, I found a model-estimated peak HR-QoL loss of 0.820

(95% CI 0.222–1.450). Finally, assuming the ratio of HR-QoL loss for healthcare-seeking

cases to non-health-seeking cases is independent of age, I estimated a model-estimated

peak HR-QoL loss for under fives as 0.539 (95% CI 0.144–0.952, Table 3.1).

2.3.3 Quality-Adjusted Life Years loss

The daily RSV HR-QoL weights from Flu Watch62 suggest that for the first half of

symptom duration, the HR-QoL weight decreases linearly to its minimum before linearly

rebounding to baseline health. There is no reported reduction of HR-QoL weight during

the second half of symptom duration. To account for the changing severity of symptoms

across the entire RSV episode, I calculated the weighted HR-QoL loss by multiplying the

HR-QoL loss by a constant scaling factor of 0.25. Finally, to calculate the estimated

QALY loss per RSV episode, I multiplied the weighted HR-QoL loss per RSV episode

by the duration of symptoms reported in the questionnaire responses . The duration of

symptoms in children aged 5-14 years was shorter (median 3 days, (range 1–10)) than

both the duration of symptoms in children under five years old (median 5 days (range 1–

21)) and in persons aged 15 years and older (median 5 days (range 1–21)) (Figure 2.4).

This calculation led to an estimated QALY loss per healthcare seeking RSV episode in

children less than five years old of 3.823 × 10−3 (95% CI 0.492 × 10−3–12.766 × 10−3,

Tables 2.3)—approximately twice that for persons aged five years and older (1.950×10−3

(95% CI (0.185× 10− 3–9.578× 10−3)). For individuals who did not seek healthcare, the

QALY loss per RSV episode was 3.024× 10−3 (95% CI 0.329−3–10.098× 10−3) for under

fives and 1.543× 10−3 (95% CI 0.136× 10−3–6.406× 10−3) for those five years and older

(Table 2.3).
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Figure 2.4: The distribution of duration of coughing symptoms for all respondents with no severe
coughing (upper panel) and with severe coughing (lower panel). For each sample, the whiskers
(vertical line) indicates the range, the box indicates the interquartile range, and the horizontal line
is the median.
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Figure 2.5: The peak HR-QoL loss from the EQ-5D questionnaires (dark gray) and estimated
using the statistical model (light gray). The dashed line shows the mean, and solid thin lines
indicate the upper and lower 95% confidence interval.

Peak HR-QoL loss from the EQ-
5D questionnaires (Mean and 95%
CrI)

Peak HR-QoL loss from statistical
model (Mean and 95% CrI)

All responses 0.392 (0.034–1.136) 0.332 (0.131–0.955)

5-14 yrs 0.456 (0.035–1.283) 0.327 (0.131–0.990)

15+ yrs 0.358 (0.028–1.020) 0.335 (0.130–0.932)

Mild coughing 0.298 (0.017–1.029) 0.237 (0.129–0.395)

Severe coughing 0.818 (0.214–1.274) 0.766 (0.445–1.110)

No time off 0.322 (0.026–0.964) 0.278 (0.128–0.756)

Time off 0.626 (0.043–1.448) 0.517 (0.135–1.099)

No healthcare sought 0.306 (0.016–0.979) 0.284 (0.129–0.862)

Healthcare sought 0.596 (0.057–1.329) 0.450 (0.122–1.046)

Table 2.2: The peak HR-QoL loss from the EQ-5D questionnaires and estimated using the
statistical model.
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Under five years of age* Five years of age and older

Model-estimated peak HR-QoL loss (Mean and 95% CI)

Coughing severity

None of mild 0.499 (0.148–1.482) 0.382 (0.111–1.113)

Severe 0.878 (0.344–1.443) 0.785 (0.280–1.368)

Health seeking behaviour

None 0.539 (0.144–0.952)** 0.405 (0.111–1.137)

Seek healthcare 0.820 (0.222–1.450) 0.616 (0.155–1.371)

QALD loss (Mean and 95% CI)

Coughing severity

None of mild 0.845 (0.097–3.292) 0.528 (0.050–2.167)

Severe 1.496 (0.221–4.841) 1.103 (0.126–4.149)

Health seeking behaviour

None 1.00 (0.141–3.652)** 0·565 (0.049–2.349)

Seek healthcare 1.391 (0·.79–4.617) 0.866 (0.071–3.508)

QALY loss (Mean and 95% CI)

Coughing severity

None of mild 2.336 ×10−3 (0.269–9.255) 1.448 ×10−3 (0.135–5.928)

Severe 4.098 ×10−3 (0.624–13.141) 2·990 ×10−3 (0·346–11·387)

Health seeking behaviour

None 3·.024 ×10−3 (0.329–10.098)** 1.543 ×10−3 (0.136–6.406)

Seek healthcare 3.823 ×10−3 (0.492–12.766) 1.950 ×10−3 (0.185–9.578)

Table 2.3: HR-QoL, QALD, and QALY loss for the confirmed cases in children less than five
years of age, and in the suspected cases in children five years and older.
*Conditional on ascertaining a confirmed case through GP/hospitalisation.
**Estimated by assuming the proportional reduction in HR-QoL loss and QALY loss between
those who seek healthcare and those who do not is the same as observed in suspected infections in
persons over five years of age.

2.3.4 Healthcare-seeking and total disease burden

The total number of annual GP consultations and hospital admissions due to RSV

in England is 855,000 and 375,000-383,000 for persons aged 5 years and older and less

than 5 years, respectively.48,64 Combining these numbers with our QALY loss estimates

for individuals seeking health care in England resulted in a mean annual QALY loss of

3,120–3,141, 54% of which is attributable to those 5 years and older. Our questionnaire

responses indicated that 25% of individuals aged 5 years and older seek health care during

an RSV episode. Using this proportion, we estimated that there are approximately 2.6

million symptomatic RSV infections in England annually that will not be captured in a

healthcare surveillance system. The mean annual QALY loss associated with these non-

healthcare-seeking episodes for persons 5 years and older is around 4,011, approximately

29% of the QALY loss in this age group.
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2.4 Discussion

In this chapter, I presented the findings of a cross-sectional survey which estimated the

RSV burden in terms of QALY loss per infection. For children over five years old and

adults, my statistical model showed that the QALY loss can be accurately predicted by

whether there was severe coughing, whether healthcare was sought, and Visual Analogue

Scale score loss. The model could evaluate the QALY loss in children under five years

old, in whom the majority of severe RSV episodes occur but for whom QALY loss cannot

be estimated directly. For those who seek healthcare, I found the QALY loss in children

under the age of five years is 3.823 × 10−3 (95% CI 0.492 × 10−3–12.766 × 10−3), double

that for those five years and older (1.950× 10−3 (95% CI 0.185× 10−3–9.578× 10−3).

This cross-sectional survey has some limitations. First, because the confirmed cases

were recruited into the study conditional on them seeking healthcare, I could not directly

estimate the QALY loss in children less than five years old who did not seek healthcare

from the statistical model. To overcome this limitation, I assume that the ratio of QALY

loss for people over five years who do not seek healthcare to those that do is the same

independent of age. However, using this ratio may overestimate the QALY loss of non-

healthcare-seeking cases in children less than 5 years of age, as healthcare-seeking cases in

persons aged five years and older are generally milder than healthcare-seeking confirmed

cases in infants less than five years old (with decreases in VAS score loss, coughing severity,

and the proportion admitted to hospital). To collect data directly on the QALY loss in

children under five who do not seek healthcare would require a much larger and more in-

tensive community-based study with frequent testing throughout an RSV season. Second,

suspected cases may have experienced non-RSV respiratory disease. However, previous

studies have shown that around 50% of households experience a secondary infection in

either siblings or parents during the same time as an infection in the infant, therefore it

is reasonable to assume that the majority of suspected cases are in fact RSV.65 Finally,

completing questionnaires some days after symptoms may be subject to recall bias. The

estimates for the peak HR-QoL life loss for persons aged 15 years and older (0.452 (95%

CI 0.177–1.222)) are larger than the peak HR-QoL loss estimated in the Flu Watch study

(range 0.107–0.309), however this latter estimate may be imprecise due to the small sample

size.
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This study is the first to estimate the QALY loss due to acute RSV infection. Two

previous studies have also estimated the HR-QoL due to RSV infection both of which suffer

from shortcomings. The first study a Time Trade-off study which estimated HR-QoL loss

using responses from participants about a hypothetical illness that they, or their child,

had not experienced.50,51 Unlike this study I calculated the HR-QoL loss for people who

have had, or suspected to have had, a recent RSV infection. The second study estimated

the HR-QoL using EQ-5D questionnaires for children with RSV-associated sequelae.52

Sequelae included chronic conditions such as persistent coughing and/or wheeze so HR-

QoL loss estimates are likely to differ substantially from those associated with acute RSV

symptoms. For accurate evaluations, I recommend that future cost-effectiveness analyses

use directly obtained HR-QoL loss estimates for RSV episodes, such as those presented in

this paper, in addition to HR-QoL loss associated with sequelae.

The RSV-related QALY loss estimate for people aged five years and over is consistent to

the estimates of a prospective study that estimated QALY loss across people of all ages with

non-confirmed Influenza who reported Influenza-like illness (ILI) (mean 2.6× 10−3 (range

−69.2× 10−3–39.7× 10−3).66 Similarly, for the under fives, these estimates are similar to

non-Influenza episodes who suffer ILI who present at a hospital or GP (4.0× 10−3 (range

3.4×10−3–4.6×10−3).67 In contrast, I find that the QALY loss estimates for RSV episodes

in the under fives who seek healthcare are less severe than hospitalised Influenza episodes,

(QALY loss of 6.0 × 10−3 (range 5.1 × 10−3–6.9 × 10−3).67 These comparisons suggest

that, although Influenza has a higher QALY loss per episode, the QALY loss due to an

RSV episode is comparable to previous QALY loss estimates for persons with general ILI.

I estimated that 54% of the QALY loss associated with healthcare seeking episodes was

attributable to individuals aged five years and older. This result suggests that neglecting

QALY loss in older children and working-age adults might substantially underestimate the

impact of a potential RSV vaccine programme. Further, these results are consistent with

previous studies that suggest that RSV is characterised by high levels of household trans-

mission.65,68 Together, these data suggest that integrating transmission models—that

capture both the direct and indirect effects of immunisation—into economic evaluations

will be crucial to accurately estimate the impact of potential vaccine programmes.

From the questionnaires, I am unable to estimate the proportion of healthcare seeking

in children younger than five years with symptomatic RSV. However, I expect this propor-
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tion to be higher than the 25% reported in those aged five years and older for two reasons:

infections in infants are generally more severe, with higher rates of symptomatic infec-

tions,17 and a tendency for increased parental healthcare seeking in infants compared to

older children.69 However, the healthcare seeking behaviour for both children and adults

will likely depend on the country and I suggest caution in translating the total RSV burden

estimates for England presented in this study to other countries.

To summarise, in this chapter I estimated the RSV burden quantified by QALY loss due

to an RSV episode in confirmed cases in children less than five years old and suspected

cases in persons aged five years and older. Despite severe RSV being associated with

infants, I found that RSV infections in individuals aged five years and older account for

54% of the annual QALY loss attributable to healthcare seeking episodes in England.

Consequently, in future chapters, I will use this information to undertake an economic

evaluation of potential vaccine programmes and consider their effect on not only where

the severe disease burden lies, but across the whole population. To evaluate the effect of

potential vaccination programmes across the whole population, it is necessary to develop a

dynamic mathematical model of RSV transmission capable of evaluating each intervention

programme. The motivation for structure of such a mathematical model is outlined in

Chapter 3 and the model structure itself is outlined fully in Chapter 4.
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Chapter 3

Review of RSV transmission

models

3.1 Introduction

Mathematical models are used to help understand how infectious diseases spread in a

population. These models can be either static, where the probability of transmission is

constant, or dynamic, where the probability of transmission is proportional to the number

of infected persons at specified point in time. Dynamic mathematical models are preferred

because they evaluate the impact of an intervention programme against an infectious dis-

ease both on the individuals targeted (the direct effects) and the impact on the remaining

population through intervention-induced changes in transmission (the indirect effects).

To ensure the transmission dynamics are accurately evaluated, the model must capture

the transmission pathways specific to RSV across the population. Therefore, evaluating

and comparing existing frameworks which model RSV transmission can provide a useful

baseline for determining which pathways are important in the transmission of RSV for

England and Wales.

In this chapter I perform a literature review to identify mathematical models of RSV

transmission. The purpose is twofold. First, the identified models can be used to un-

derstand which model characteristics best capture the transmission dynamics of RSV. By

comparing the model structures, I gain insights into the optimal structural characteris-

tics of RSV transmission models and provide a set of guidelines for future transmission

models of RSV which ensure that the dynamics are appropriately captured The second

aim is to synthesise evidence from these models on the impact of potential intervention
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programmes, and outline gaps in epidemiological and prophylactic-related knowledge re-

garding the impact of likely intervention programmes against RSV.

3.2 Search criteria for literature review

I am searching for mathematical models of the transmission of RSV. Therefore, I identify

three different search concepts. The first is RSV, which we search for as either RSV or

Respiratory Syncitial Virus. The second search concept specifies the need for a model,

which I search for using the term model or network. The final search concept specifies

the nature of the model, where I specify that the model should be either mathematical,

capture transmission or be dynamic.

With this search criteria, I searched Web of Science and Pubmed for articles published

up to 30 September 2018 using the search terms:

(RSV[Title] OR "Respiratory Syncytial Virus"[Title]) AND (Model* OR Network)

AND (Transmission OR Mathematic* OR Dynamic*)

The total number of studies found between the two search engines after duplicates were

removed was 88. Then, by screening the studies by title I removed 58 studies which were

either excluded because they were an in-host or bovine-RSV models (56) or excluded be-

cause they were not an original research article (2). Of the 30 remaining articles I removed

7 because the models were not parameterised or calibrated using any epidemiological data

and 1 because it was not in English. (Figure 3.1)

The search returned 22 studies between 2001-2018 that fit our inclusion criteria.70–91

The studies contained mathematical models of RSV transmission which employed similar

basic epidemic compartmental structures, but varied in the study setting, parameterisa-

tion, and model structure (Table 3.1). Regarding the variation in setting, the studies

were calibrated to data from ten different countries of varied geographical location, five of

the countries were from a temperate setting70–79,81,83,86,88,89,91 and five were from a trop-

ical setting70,72,74,80,84,85,90 (Table 3.1). The models were parameterised using either

frequentist70–74,76–80,82–87,90,91 or Bayesian75,81,88,89 approaches to estimate the value or

assess the uncertainty in transmission parameters.
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Figure 3.1: Schematic of paper selection progress based on PRIMSA template
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Study Model structure Region Long-term cumulative immunity Data to calibrate model Calibrated

Weber 200170 MSEIRS Singapore, Gambia, Florida,
and Finland.

Exposure:4. Rel. sus Number of RSV associated hospital
cases. Monthly. All ages.

Point est.

White 200571 SIS*S England/Wales, and Finland None Number of RSV associated hospital
cases .Weekly. All ages.

Point est.

White 200772 SIS Various Number of RSV associated hospital
cases. Monthly-except West Midlands
UK is weekly. All ages.

Point est.

Arenas 200973 SIRS Valencia, Spain. None Number of RSV associated hospital
cases. Monthly. Children ¡4yrs.

Fixed-point est. w. 95% CI
non-Bayesian methods (pa-
rameter variation.)

Capistran 200974 SIRS Gambia, Finland. None Number of RSV hospital admission due
to RSV. Monthly. ¡5yrs.

Point est.

Arenas 201075 SIRS Valencia, Spain. None Number of RSV associated hospital
cases. Monthly. Children ¡4yrs.

Point est. w. 95% CI param-
eter variation via MCMC.

Acedo, Diez 201076 SIRS <1, >1yrs Valencia, Spain. None Number of RSV associated hospital
cases. Monthly. Children ¡4yrs.

Point est.

Acedo 201077 SIRS <1, >1yrs Valencia, Spain. None Number of RSV associated hospital
cases. Monthly. Children ¡1yrs.

Point est.

Acedo 201178 SIRS Valencia, Spain. None Number of RSV associated hospital
cases. Monthly. Children ¡1yrs.

Point est.

Leecaster 201179 SEIR <2, >2yrs Salt Lake County, UT, USA None Number of RSV associated hospital
cases. Daily. Children.

Point est.

Paynter 201480 SEIRS Philippines Exposure:2. Rel. sus. and rel. inf. Number of RSV associated hospital
cases. Children.

Point est.

Corberan-Vallet
201481

SIRS Valencia, Spain. None Number of RSV associated hospital
cases. Weekly. Children ¡2yrs.

Posterior dist., Bayesian in-
ference.

Moore 201482 SEIRS <2, >2yrs Western Australia 2. Rel. Sus. and rel. inf. Number of RSV associated hospital
cases. Weekly. Children ¡1yrs.

Point est.

Pitzer 201583 SIS 0–1, 1–4, 5–9 , 10–19, 20–39, years,
40–59, years, and 60+ years old

United States Exposure:4. Rel. sus., rel. Inf. and
duration of inf.

Number of RSV associated hospital
cases. RSV positive samples from labs.
All ages.

Point est.

Kinyanjui 201584 MSIRS 99. 24 months from birth, 75
years therefore until 77+.

Kilifi, Kenya Exposure: 3. Rel. sus., rel. Inf. and
duration of inf.

Number of RSV associated hospital
cases. Monthly. Children ¡5yrs.

Point est. w. 95% CI non-
Bayesian methods (Hessian)

Poletti 201585 SIRS Kilifi, Kenya Exposure: 2. Rel. sus. None. Posterior dist., Bayesian inference.

Hogan 201686 SEIRS 0-1, 1–2 yrs. Perth, Australia Age: 2. Rel.
Sus. and rel. inf.

Point est.

Yamin 201687 MSIARS 0-0.5, 0.5–5, 5–24, 24–49, and
50yrs

Texas, California, Colorado,
and Pennsylvania

Exposure: 2. rel. Inf. and duration of
inf. Age: 8. rel. sus. and prob of asymp

RSV positive samples from
lab.s Weekly. All ages.
Texas—Prospective study of
RSV. Point est.

Reis 201688 SIR United States None RSV positive samples from labs. Weekly Posterior dist. Bayesian in-
ference.

Jornet-Sanz 201789 SIRS Valencia, Spain. None Number of RSV associated hospital
cases. Weekly. Children <2yrs.

Posterior dist., Bayesian in-
ference.

Pan-Ngum 201790 SAI and MSIRS 99. 24 months from
birth, 75 years therefore until 77+.

Kilifi, Kenya Exposure: 3. rel. inf., rel. sus. and
duration of inf.

Monthly. Children <5yrs. Point est.w. 95% CI non-
Bayesian methods (Hessian)

Pan-Ngum 201790 BWI/SIS 15. 12 monthly from birth, 2-
5yr 6-10yrs, 10-75yrs

Kilifi, Kenya Severity of inf:(asymp,URTI, LRTI,
SLRTI,H) 4. rel. inf., rel. us. and du-
ration of inf.

Number of RSV associated hospital
cases. Monthly. Children <5yrs.

Point est.w. 95% CI non-
Bayesian methods (Hessian)

Hogan 201791 SEIRS. 75. 60 months from birth, five
years thereafter.

Western Australia Age: 2. rel. infectiousness (>10yr) RSV positive samples linked to hospital
records.

Point est.

Table 3.1: Transmission models of RSV grouped by their underlying epidemiological assumptions. Individuals are classified as maternally protected (M),
susceptible (S), infected but not infectious (E), infected and infectious (I), recovered (R), or susceptibility-reduced (S*).
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3.3 Results 1: Capturing RSV transmission dynamics

This section will first outline epidemiological model structures which are common to

many/all infectious disease transmission models and then it will outline model structures

which are specific to capturing RSV infection.

3.3.1 Basic compartmental structure of existing RSV transmission mod-

els

Compartmental models imitate the propagation of RSV by splitting the population into

epidemiological groups associated with different stages of infection and monitoring the

proportion of the population in each group over time. These groups include: those suscep-

tible to becoming infected (S); those infected but not yet infectious (E); those infected and

infectious (I); and those who have recovered and are immune to infection (R). The rate at

which persons who are susceptible to infection become infected is assumed to be propor-

tional to the number of infected persons in the population at a specific point in time. The

time spent in the other compartments is modelled assuming an exponential distribution

with rate, r, which is to be determined by synthesising existing epidemiological evidence,

or through model calibration. An SEIR structure, which is commonly used to model in-

fectious diseases, can be manipulated to better capture transmission dynamics specific to

RSV. For example, there is a period of temporary immunity that is experienced following

an RSV infection because disease-induced heightened RSV-antibody levels eventually start

to wane until they reach similar levels to pre-infection.59,92 To capture this transmission

dynamic in mathematical models, I assume recovered persons (R) experience a period of

temporary immunity, which is lost with rate ω—after which individuals are susceptible

to reinfection (Figure 3.2). Another common method of manipulating SEIR struc-

ture to better capture transmission dynamics is to include more epidemiologically-specific

components. For example, maternally-derived passive antibodies provides neonates with

temporary protection to RSV infection. The duration and magnitude of protection to RSV

from maternal passive immunity is not clear, but is related to RSV-neutralising IgG cord

titre at birth which wane exponentially over time.9,10,12,93,94 RSV transmission models

incorporate protection due to maternal passive immunity by assuming that all neonates

are born with complete but temporary protection to RSV, which is lost at rate ξ—the rate

of loss of maternal passive immunity, after which they are susceptible to infection.70,84,87

There is also evidence to suggest that levels of maternally-derived antibodies in infants
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varies seasonally (so protection varies seasonally) and between infants, however no model

has explored this feature.12 Manipulating SEIR structure to include RSV specific dy-

namics such as the period of maternal protection and waning immunity are examples of

RSV-specific model characteristics that ensures that the transmission dynamics are accu-

rately captured.

3.3.2 Region-specific transmission dynamics

RSV epidemiology varies significantly across the globe. Some countries experience dis-

tinct annual outbreaks (usually in temperate places), and other countries experiencing ir-

regular outbreaks (usually in tropical settings).23 The mechanisms causing country-specific

seasonal RSV outbreaks patterns is not known but is likely to be a combination of region

specific social and climatic factors.24 As the transmission of infectious diseases is related

to social contact structure within a population, some models used region-specific contact

surveys to determine the average number of contacts made between two different sub-

populations and estimate the probability of infection per infectious contact (q).83–87,90,91

Models which use these contact patterns find that the transmission patterns are highly

dependent on the contact structure used, even when fitted to the same data. Climatic

factors are difficult to incorporate because there is no clear consensus on which factors

significantly influence outbreak patterns.23 In modelling, it is best to incorporate an ab-

solute forcing parameters which oscillates throughout the year or use climatic factors to

determine a relative variation in transmission capacity over time. All parameters in the

model associated with social and climatic factors should be parameterised to region-specific

datasets so that the region-specific transmission dynamics are captured.

3.3.3 Different model structures for capturing RSV transmission dy-

namics

In this section, I outline the model structures identified in the review models which cap-

ture the RSV transmission dynamics. Model structures arise to capture the heterogeneity

in the transmission dynamics which occur due to factors such as variability in symptomatic

expression of disease; the duration of infection; the quantity of virus shed; social behaviour

(number of contacts made) and susceptibility to infection of RSV. I identify four different

model structures from the review models that capture the observed heterogeneity in trans-

missive capacity for RSV; symptomatic dependent, age dependent, exposure dependent,

and strain dependent models (Figure 3.2–3.6).

38



CHAPTER 3. REVIEW OF RSV TRANSMISSION MODELS

M S E I R
µB ξ λ(t) σ γ

ω
(A) No dependencies

Figure 3.2

M S E

Ia

Ib

Ic

Id

R

µB ξ λ(t)

σ

σ

σ

σ

γa

γb

γc

γd
(B) Symptomatic dependency

Figure 3.3

M S1 E1 I1 R1

S2 E2 I2 R2

µB ξ λ1(t) σ1 γ1

ω1

λ2(t) σ2 γ2

η1 η1 η1 η1

ω2

(C) Age dependency

Figure 3.4

M S0 E0 I0 R0

S1 E1 I1 R1

µB ξ λ0(t) σ0 γ0

ω0

λ1(t) σ1 γ1

ω1

(D) Exposure dependency

Figure 3.5
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Symptomatic dependent model

Studies which evaluate the infection characteristics of asymptomatic infection suggest

that up to 80% of RSV infections can be asymptomatic in adults (or as low at 5% in

infants less than one year of age), and asymptomatic infections have a decrease in the

duration of infection and viral load when compared to symptomatic infection.17,18 This

evidence suggests that asymptomatic infections are less infectious than symptomatic infec-

tions. One model incorporates this difference in infectiousness by including two infection-

epidemiological states A: asymptomatic infection and I: symptomatic infection with the

former associated with a scalar reducing the infectiousness.87 Symptomatic expression

of RSV disease ranges from mild rhinitis to hospitalised Bronchiolitis requiring intensive-

care treatment, (which can lead to death), and is dependent on age and exposure.95

However, it is not clear if the severity of infection changes the transmissive capacity of

an individual. On one hand, severe infections might last longer and have a higher viral

shedding—increasing the transmissive capacity of a host, on the other hand, social factors

such as social withdrawal may decrease the transmission capacity. One model consid-

ered the effect of symptom severity on transmission by splitting the infectious category,

I, into distinct categories of severity, allowing parameters such as duration of infections

and infectiousness to be symptom-specific (Figure 3.3).90 This model finds, through

model calibration, that milder infections (Upper Respiratory Tract Infections) are less

transmissive compared with more severe infection (Lower Respiratory Tract Infections).

Understanding the difference in transmission capacity between mild infections and se-

vere infections is particularly important in the evaluation of herd immunity as models

which assume that homogenous transmission capacity between all infected persons, par-
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ticularly between asymptomatic and symptomatic infections, may overestimate the role of

transmission in milder infections, leading to inaccurate quantification of the transmission

dynamics.

Exposure dependency model

It has been shown from prospective cohort studies that the duration of infection, and

susceptibility to infection decreases with repeated exposure, leading to changes in host

transmission capacity. This is because a boost of levels of pre-existing RSV-neutralising

antibodies acquired from previous RSV infections results in an increased immunological

response to RSV decreasing the severity of subsequent infections. Models incorporate

these observed changes in RSV severity by compartmentalising the population into the

number of times they have been infected with RSV (exposure) allowing the rate of loss of

infection, γi and susceptibility to infection relative to primary infection δi to be dependent

on the number of previous infections, i (Figure 3.4). Understanding the relationship

between exposure and transmission capacity is important when evaluating intervention

programmes. For example, intervention programmes which provide passive protection

will only delay onset of primary infection and thus will not change the infectiousness of an

infection if exposure dependency models are considered on their own. Consequently when

evaluating such intervention programmes, age-dependent contacts or additional model

structures should supplement the exposure model.

Age-dependent models

Age physiological factors, such as underdeveloped lung composition and näıve immune

system infants, and decreased T-cell response in the elderly, contribute to an increase in

the severity of symptomatic expression of RSV.96 Therefore, age can indirectly influence

the transmission dynamics of RSV through changes in symptomatic expression of disease.

Despite this observation, some models have transmission parameters dependent on age

which are not associated with disease severity, including the rate of loss of infection, γi

and susceptibility to infection relative to primary infection δi to be dependent on the

number of previous infections, i (Figure 3.5). This is likely because many epidemiologi-

cal studies do not account for both exposure and age, and therefore stratify their results

usually by age only, meaning it is not possible to find information to best estimate for the

exposure specific parameters despite this being the most immunological feasible way to

parameterise the model. Understanding the complex relationship between age-related fac-

41



CHAPTER 3. REVIEW OF RSV TRANSMISSION MODELS

tors that affect disease severity; the resulting effect on transmission;, and exposure effects

on transmission, remains a big challenge in understanding RSV epidemiology. Many of

the above model characteristics mentioned above can be combined to give rise to complex

mathematical structures. For example, Yamin’s study87 uses age, exposure and symp-

tomatic stratification to model RSV transmission, and Kinyanjui’s study84 uses exposure

and age.

Strain-dependent models

Studies looking at strain-specific severity of RSV infections suggests that two main

RSV stains co-circulate (RSV-A and RSV-B) with the dominant strain alternating over

time. One model, which has included strain-dependent factors, including strain-specific

susceptibility and transmission rates, found that RSV-A appears more frequently and is

more transmissive than RSV-B.71 (Figure 3.6) Understanding strain-strain interactions

and co-circulations dynamics could be useful in understanding region-specific transmission

dynamics, however, current prophylactic candidates are likely to work equally well for both

strains so it is unclear if including strain-strain interactions are necessary to evaluate the

impact of intervention programmes.

3.3.4 Parameter estimation in identified transmission models

Parameter estimation from epidemiological evidence

The values of the epidemiological parameters of the RSV transmission model can be

estimated from three different types of epidemiological RSV studies: prospective cohort

studies, retrospective cohort studies and experimental challenge studies. Prospective co-

hort studies are useful for estimating parameters which depend on exposure, such as

susceptibility and duration of infection, as the number of previous infections for each in-

dividual can be monitored. However, these studies are logistically difficult and expensive

to implement and so the few studies that do exist only cover a specific subpopulation.

Retrospective cohort studies recruit a patient when they present symptoms at either a GP

clinic or a hospital, therefore it is not possible to know the number of previous RSV in-

fections they have experienced. Consequently, retrospective cohort studies are only useful

for estimating age-dependent parameters. In addition, careful attention must be given to

bias that may arise from the recruitment process. Experimental reinfection studies gives

accurate, controlled estimates for individual specific infections factors, allowing variables
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such as duration of shedding, latency period, viral load to be estimated. However, such

experiments can only be conducted in adults, and, because experimental reinfection is

likely to be more aggressive than natural infections, some bias can be introduced towards

more severe infections. A summary of the parameter estimates for each RSV transmission

model, the papers they reference, and the type of study they are is given in Table 3.2.
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Model Dur.of latency (1/σ) Dur. of mat. pro. (1/ξ) Dur. of immunity (1/ω) Dur. of infection (1/γ = γ̃) Relative susceptibility (δ) Relative infectiousness (α)

Val. Source Val. Source Val. Source Par. Val. Source Par. Val. Source Par. Val. Source

70 4 59,97 28 94 93 200 98 γ̃ 10 99 δ1 0.5, 92,98,100 —

δ2 0.35 92,98,100 —

δ3 0.25 92,98,100 —
71 — — — γ̃ 9 70 δhom 0.35 BF α1 0.41 BF

δhet 0.84 BF —
72 — — — γ̃0 9 70 δ1 0.68 BF α1 0.60 BF

— — — γ̃1 2.25 BF
74 4 70 — 200 70 γ̃ 10 70 δ1 0.5 70 —

— δ2 0.35 —

— δ3 0.25 —
73 — — 200 70 γ̃ 10 70 — —
75 — — 200 70 γ̃ 10 70 — —
76,77 — — 200 70 γ̃ 10 70 — —
79 5 101 — — γ̃ 10 70 99 — —
78 — — 200 70,76 γ̃ 10 102 — —
82 — — 164.5 BF γ̃0−2yrs 10 70,76,7999 δ2+yrs 0.65 92,102 α2+yrs 0.65 None

— — γ̃2+yrs 10 70,76,79,99

81 — — 200 76 γ̃ 10 76 — —
80 4–6 58,59,98,100 — 62.5 (42–

83)

98 γ̃0 5–6 9895,103 δ1 0.68–
0.84

59,92,94,100,104–106 α1 0.5-
0.8

98,99,107

γ̃1 4 58,95,99,100,107

83 — 112 10 — γ̃0 10 95,99 δ1 0.76 92,94,99,108 α1 0.75 92,94

— — γ̃1 7 95,99 δ2 0.6 α2 0.51 BF

— — γ̃2 5 95,99 δ3 0.4
85 — 112 10 200 PM γ̃ 11 18 δ1 0.88 BF —
84 — 70 BF 181 4,109 γ̃0 9 ,99,110 δ1 0.75 92 α1 0.5

— 123 BF γ̃1 3.9 95,99 δ2 0.65 92 α2 0.25

— γ̃2 3.9 95,99

86 4 70 — 230 BF γ̃0−1yrs 9 70,76,79 δ1−2yrs 0.23 BF —

— γ̃1−2yrs 9 70,76,79 —
88 — — — γ̃ 6.4 PM — —
87 — 112 10 200 70 γ̃0 26 99 δ

0−2yrs
1 3.1-

3.9,
BF α1,S Varies* 58111

— γ̃1 13 58 δ
2−4yrs
1 0.5-

1.0
BF α1,A

99

— δ
5−49yrs
1 0.01-

0.09
BF

— δ
50+yrs
1 0.1-

0.3
BF

89 — — 200 76 γ̃ 10 76 — —
112 — — 200 70 γ̃ 10 70 — —
90 — 60 182.5 4,106,109 γ̃0 9 95,99,110 δ1 0.75 α1 0.5

— γ̃1 4 99,11095 δ2 0.65 α2 0.25

— γ̃2 4 99,11095

90 — 9 BF 730 BF γ̃SLRTI 9 99,11095 δ1 0.54 BF αLRTI 0.7 BF

— γ̃LRTI 4 95,99,110 αURTI 0.45 BF

— γ̃URTI 4 95,99,110 αa 0.45, BF

— γ̃A 4 95,99,110

Table 3.2: Table summarising numerical estimates for the epidemiological parameters used in the given mathematical transmission models of RSV. Boldface
represents a value which is determined by model fitting and non-bold face is a parameter estimated from previous papers, given by references in superscript.
BF: best fit,PM: posterior mean.
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Model calibration

Model calibration is the process of determining values of the model parameters so the

output of the model matches a specified dataset. The benefits of this are twofold. First,

the model output is closer to the observed data, meaning the model can reproduce the data

better, and second, parameters for which there is no prior knowledge of their value can

be inferred from the model structure. Such parameters include the duration of maternal

protection and duration of protection which, because they vary from region to region and

in time, are difficult to estimate from epidemiological studies.

There are two types of datasets used to fit the review models: prospective surveillance

data and hospital admission data. Prospective surveillance data gives an accurate rep-

resentation of the burden of RSV, however, due to the difficulty and expense of these

studies, they are not available in the majority of settings. Hospital admission data as-

sesses the number of persons who are admitted to hospital or the number of positive

RSV samples collected in a surveillance region. This data is often available from national

surveillance programmes of disease, but it has severe limitations. They are often subject

to bias as only severe infections are included, also heterogeneous healthcare seeking be-

haviour across a population may lead to bias burden estimates. Further, local differences

in admission thresholds for RSV disease may introduce further bias. To overcome the

limitations in using hospital admission data to calibrate the models, a non-constant re-

porting fraction—which is a constant which multiplies the model-predicted number of new

infections to fit the reported observational data—is used. Two models estimate exposure-

and age -dependent reporting fractions, to allow account for bias in reporting rates across

the population.84,90 Techniques such as this give a fuller appreciation of the change in

both disease severity through symptomatic expression and healthcare-seeking behaviour

and appreciate inaccuracies in using bias surveillance data.

In calibrating parameters to observational data, identified transmission models have

used both frequentist and Bayesian approaches. The frequentist approach uses a derived

maximum likelihood to establish best-fit point-estimates and 95% confidence intervals for

transmission parameters. Similarly, Bayesian approaches also used a derived likelihood to

estimate the transmission parameters but with two distinct advantages. The first advan-

tage, is the use of prior distributions associated with parameters to influence the likelihood

of posterior estimates. This allows models to incorporate uncertainty in prior knowledge
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about a parameter value, derived by synthesising all available epidemiological evidence,

into the model predictions. The second advantage is the establishment of posterior dis-

tributions for the parameters, which give the reader the direct probability of an estimate

equating the true value, and can be summarised by posteriors means and 95% credible in-

tervals, which give a more intuitive interpretation of the estimates of the true value of the

parameters than point estimates and 95% confidence intervals from frequentist likelihood

estimates. Consequently, I suggest that future models use a Bayesian inference framework

to allow for the uncertainty of parameter estimations to be taken into account.

The majority of the models found in the review provide a visual representation of the

model fit by comparing the model-predicted incidence and the surveillance data. The

models all appear to capture seasonal RSV incidence. Unfortunately, as no single study

fits a model using both a frequentist and a Bayesian calibration technique, it is not possible

to determine if one technique is better at fitting to the data than another.

3.3.5 Summary

After evaluating the evidence from all existing models of RSV transmission, I provide a

list of desirable model structures that future RSV transmission models should include to

ensure they accurately capture the transmission dynamics of RSV Table 3.3

In this section, I analysed the key structural characteristic of the models which help to

accurately capture the transmission dynamics of RSV. I found the basic compartmental

structure of these models best captured observed RSV epidemiology by allowing hosts to

become reinfected after a temporary period of immunity (an SIRS model) and also in-

corporating protection resulting from maternally derived immunity. In addition, models

include complex methods for capturing the observed heterogeneity in host transmission

capacity of RSV, including dependencies on the number of exposures, age of hosts, symp-

tomatic expression of disease, and RSV strains. In particular, I highlight the importance

of using regional specific data sources to capture regional specific seasonality, particularly

social contact structures and estimate probability of transmission per daily contact. In

addition, I give an overview of parameter estimation in the models and describe how to

overcome limitations in current observation data used to calibrate such models, includ-

ing the use of Bayesian inference to appreciate uncertainty in specific parameters such

as duration of short-term immunity; duration of maternally-derived immunity; reporting
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Model structure Evidence Incorporation in the model

Waning post-
infection immunity

RSV infected individuals can become
reinfected with RSV, even within the
same season with the same strain.4,98

Individuals in the recovered epidemi-
ological compartment, R, wane expo-
nentially with rate omega to the sus-
ceptible group, S.

Waning maternal-
immunity in
neonates which
varies seasonally.

Heightened levels of RSV neutralis-
ing cord-titre reduces risk of hospital-
isation.9,10,12 The peak age for RSV
incidence in England and Wales is 2
months of age.29 RSV-neutralising
cord titre varies seasonally.12

A proportion of neonates, which
varies with the season, are born into
a protective category, M, which they
leave exponentially with rate ξ into a
susceptible group, S.

Decreased transmis-
sive capacity after
primary infection

A boost of levels of pre-existing RSV-
neutralising antibodies acquired from
previous RSV infections results in an
increased immunological response to
RSV.3

Stratify population into the number
of times they have acquired infection
and allow parameters such as dura-
tion of infection, and susceptibility to
infection decrease to be dependent on
the number of times they have been
infected.

Regional specific het-
erogeneous contact
structure

Previous studies have linked contact
structure to transmission pathways
for infectious disease18,113

Into the force of infection by allowing
probability of transmission to be ca,b∗
q where ca,b is the number of contacts
between made by age group a with
age group b and q is the probability
of transmission.

Regional specific in-
cidence data for cal-
ibration

RSV epidemiological varies globally
so each model should calibrate pa-
rameter values specific to each re-
gion.23

Compare model predicted incidence
with RSV incidence data from a spe-
cific region and link through the ob-
servational model.

Bayesian inference
methods

Allows to for the uncertainty in spe-
cific parameters to be properly ap-
preciated. Also can incorporate prior
knowledge into the uncertainty of es-
timation.

Derive posterior distributions for
each parameter though MCMC sam-
pling methods

Table 3.3: Set of guidelines for future models to help capture RSV-specific transmission dynamics.
.
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fraction; relative infectiousness. Ensuring that mathematical models accurately capture

the transmission dynamics of RSV and give a full appreciation to the uncertainty in the

regional-specific data used to calibrate the models and ensures that total impact of inter-

vention programmes is correctly quantified.
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3.4 Results 2: Evaluating potential intervention programmes

In this section, after providing motivation for the potential RSV intervention delivery

strategies, I first consolidated evidence from the transmission model which have evaluated

the impact of RSV interventions programmes and then discussed what I can infer from their

results the impact of the aforementioned potential RSV intervention delivery strategies.

3.4.1 Potential prophylactic strategies

I identified four prophylactic strategies for reducing the disease burden of RSV; active

direct protection; passive direct protection; indirect untargeted protection and indirect

targeted (or cocooning) Table 3.5. These prophylactic strategies reduce the disease bur-

den of RSV by reducing incidence in either adults aged 65 years and over (as in active

direct protection) or children less than one year of age (as in active direct protection,

passive direct protection, and indirect untargeted protection and cocooning) through ei-

ther direct protection or altering transmission pathways to reduce overall burden (indirect

protection). For each of the prophylactic strategies, I provide motivation for their poten-

tial effectiveness at curtailing RSV infection and give examples of potential vaccination

programmes.
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Prophylactic
strategy

Example subpop-
ulations

Prophylactic ex-
ample

Motivation Importance of dynamic transmission
model

Active direct protec-
tion

Infants <1yrs rBCG-N-hRSV
(Pontifica Unversi-
dad Catolica Chile)
and ChAd155-RSV
(GSK)

These subpopulations have the highest ob-
served disease burden.

Importance is unclear. Studies have shown
that vaccination of infants less 1 years
of age confers substantial herd protection,
but this is highly dependent on social con-
tact structure.84

Elderly MVA-BnN RSV
(Bavarian Nordic)

Passive direct protec-
tion

Pregnant women RSV F nanoparticles
(Novavax)

Elevated RSV MatAB cord-titres at birth
decreases the risk of incidence of RSV in
neonates during the first year of life29–34.
Therefore, vaccination of pregnant women
during the third trimester could boost cord
titres and confer protection in neonates,
transplacentally through cord blood (an-
tepartum protection) or through breast
milk (postpartum protection). Simi-
lar programmes that vaccinate pregnant
women against pertussis have been effec-
tive in the US..

Importance depends on the efficacy of ma-
ternally derived protection. High efficacy
means that the neonate confers a large de-
gree of protection, and so indirection pro-
tection from cocooning is negligible. Simi-
larly low efficacy implies that the neonate
confers a little protection, and so indirec-
tion protection from cocooning is more im-
portant.

Neonates MEDI8897 (MedIm-
mune)

Infants in the first few months of like are
the most at risk of severe complications
(Bronchiolitis) due to RSV infection.

Importance is unclear. Studies have shown
that vaccination of infants less 1 years
of age confers substantial herd protection,
but this is highly dependent on social con-
tact structure.84

Indirect untargeted
protection

School-age children None School children are the main disseminators
of respiratory disease such as flu; likely to
be a similar case for RSV. Cohort stud-
ies of RSV transmission suggest that a sig-
nificant proportion of infants acquire their
infection from household-sharing older sib-
lings.

Important. Highly dependent on evaluat-
ing contact-dependent transmission so the
effect of herd immunity can be assessed.

Indirect targeted
protection (cocoon-
ing)

Family members of
vulnerable infants

None Cohort studies of RSV transmission sug-
gest that a significant proportion of infants
acquire the infection from household fam-
ily members, specifically older siblings.21

Targeting these household members could
reduce incidence infants.

Important. Highly dependent on evaluat-
ing contact-dependent transmission so the
effect of herd immunity can be assessed.

Table 3.4: Summary of potential prevention strategies against RSV.

51



CHAPTER 3. REVIEW OF RSV TRANSMISSION MODELS

Active direct protection

Active direct protection refers to intervention programmes which aim to vaccinate in-

dividuals which have the highest disease burden. For RSV, these individuals are children

under the age of one year (infants), and adults aged 65 years and older (elderly). For ac-

tive direct protection to be effective in infants, vaccines must be administered as early as

possible to prevent infections during peak incidence during 1-4 months of age. Vaccinating

infants in the first few months of life causes additional challenges in vaccine production

compared to older age groups as initiating an effective immunological response in näıve

immune systems in infants is difficult. For active direct protection to be effective in the

elderly, programmes are likely to be either universal, as in the case of Influenza, or targeted

at high-risk persons. To evaluate the effect of active direct protection vaccination strate-

gies, static mathematical transmission models suffice as the small number of contacts that

infants and the elderly have means there is likely to be significant degree of herd immunity

acquired from vaccination.

Passive direct protection

Passive direct protection refers to intervention programmes which aim to provide pas-

sive immunity to individuals which have the highest observed disease burden. I outline

two mechanisms through which passive immunity is administered to infants. The first

mechanism aims to augment the period of maternally acquired immunity in neonates

by vaccinating pregnant women in their third trimester. Though the exact mechanism by

which protection is conveyed through passive immunity is not known, it has been observed

that neonates with high levels of maternal-derived antibodies to RSV in cord titre are less

likely to be hospitalised due to RSV in the first year of life than neonates with lower levels

of maternal-derived antibodies to RSV in cord titre.106 Therefore, vaccines could boost

RSV antibodies levels in pregnant women with the expectation that it will result in higher

levels of protection in neonates. There are difficulties associated with the implementation

of maternal vaccination however, with low coverage levels observed for Influenza in the UK,

which may render maternal programmes less effective.42 The second mechanism through

which passive immunity is administered to infants is by directly giving a passive immune

agent to the neonate at birth. This strategy provides extra protection to infants during

the first few months of life as it increases the concentration of RSV antibodies, causing

primary infections to occur later in life, which leads to lower rates of severe infection and
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of hospitalisation. Dynamic mathematical models are required to accurately evaluate the

effects of passive direct protection strategies in the case of pregnant women. Specifically,

there is an element of herd immunity acquired from vaccinating pregnant women as they

have a high number of daily contacts with their neonate (cocooning).

Untargeted indirect protection

Indirect protection refers to vaccination programmes which aim to vaccinate individuals

who are likely to be the main drivers of disease transmission, reducing the transmission of

RSV to vulnerable populations through herd immunity. Herd immunity can be an effec-

tive strategy as curtailing the transmission of infectious diseases, as has been shown with

vaccination of school-age children to reduce the incidence of influenza in the elderly.114,115

Though no vaccine candidate in clinical trials has the specific aim to target individuals

such as school-age children, most of the vaccines which are aimed at vulnerable popula-

tions have been tested on, (during intermediate phases trails) healthier adults beforehand.

Therefore, if there is evidence to suggest that vaccination of school-age children is a cost-

effective strategy at curtailing RSV infection, vaccine candidates could easily alter their

trial trajectory accordingly to test for efficacy and safety in healthy school-age children.

Targeted Indirect protection

Indirect targeted protection, or cocooning, are vaccination programmes which aim to

vaccinate specific members of the population who have a close relationship with persons

who are vulnerable to RSV infection. For example, vaccinating household members of

neonates could be effective at reducing incidence owing to the observation that 50% of

infections in infants come from household members.68 Similar to untargeted indirect pro-

tection, no vaccine candidates have strategy in mind, however, overwhelming evidence

which suggests that this is a cost-effective vaccine could alter clinical trial testing tra-

jectory. For both targeted and untargeted indirect protection, mathematical models are

very important in their evaluation because transmission is highly dependent on contact

structures within a population. Therefore models which evaluate indirect protection vac-

cination scenarios should include heterogeneous contact structure specific to the modelled

region to accurately evaluate the effect of acquired herd immunity.
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3.4.2 Overview of mathematical models of RSV vaccination

I identified seven models which evaluate the effectiveness of potential vaccination pro-

gramme (Table 3.5). All seven models include a SIRS structure, allowing short-term

immunity to occur and consider the effect of seasonality through seasonal forcing. Four of

these models also include heterogeneity in disease severity, contact structure,87,90 and two

of these include altered transmission dynamics due to asymptomatic infection.85,87,90,91

Maternally derived immunity is considered in three of the models.87,90,91 Models are all

calibrated to the number of RSV hospitalisations due to RSV,76,84,85,87,89,91 with Poletti

et al.85 being additionally calibrated to RSV infections rates from a prospective cohort

study of RSV in infants. Three of the vaccination models estimate point values for fit-

ted parameters,76,84,87,90,91 and two models85,89 use Bayesian inference to derive models

posterior distributions for fitted parameters.
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Outline of vaccination strategies

Acedo 201076 3 7 7 7 7 7 Vaccine effect : complete immunity. Target : Neonates.Coverage: 85%. Uptake: In-
stantaneous at birth. Efficacy : 100% Duration of protection: Same as normal infec-
tion

Kinyanjui
201584

3 7 7 7 7 7 Vaccine effect : complete immunity. Target : Different ages: monthly 0-24, yearly to
9 years. Coverage and efficacy : 0% - 90%. Uptake: Continuous moved when they
reach specific age. Duration of protection: Same as normal infection

Poletti 201585 3 7 3 7 3 3 Vaccine effect : complete immunity. i) Target : Routine vaccination at 3 months
w./w.o catch up (3mo - 15yrs). Coverage and efficacy : 60, 80, 100%. Duration of
protection: 4, 6 12, months. Uptake: At 3 months of age instantaneous

ii) Target : Routine at school enrolment, w/w.o catch up. Also all primary school
children each year and all new students cohabiting with infants. Coverage and effi-
cacy : 60, 80, 100%. Duration of protection: 4, 6 12, months Uptake: 1st January
instantaneous

iii) Target : Pregnant women. Coverage and efficacy : 60, 80, 100%. Duration of
protection: 1, 2 4, months further protection from 4 months). Uptake: At birth

Yamin 201687 3 3 7 7 3 7 Vaccine effect : complete immunity. Target : 0.5-5yrs, 5-24yrs, 25-49yrs, 50yrs+.
Coverage: Same as observed for influenza in US (60-70%). Uptake: Daily rate same
as influenza. Efficacy : 40%

Jornet-Sanz
201789

3 7 7 7 7 7 Vaccine effect : complete immunity. Target : Neonate.Coverage: 20% 80%. Uptake:
At birth. Efficacy : 100%. Duration of protection: i)Permanent, ii) same as natural
immunity

Pan-Ngum
201790

3 3 7 7 7 7 Vaccine effect : reduction in i) risk of primary inf; ii) duration of infection; iii) infec-
tiousness; iv) Risk of LRTI, URTI, SLTRI.

i) Target : Neonates. Coverage: 50, 70, 90%.Uptake: 2 or 3 doses <6 mo.Efficacy :
90/100%. Duration of protection: Waning vaccine effect, 1 or 2 years, considers
interaction with natural immunity

ii) Target : Pregnant women. Coverage: 50, 70, 90%. Efficacy : 90/100%. Duration
of protection: 3 or 6 months, considers interaction with natural immunity.

Hogan 201791 3 7 3 7 7 7 Vaccine effect : Reduce susceptibility to infection. Target : Pregnant women. Cov-
erage: 30-70%. Uptake: Continuous over year. Duration of protection: Maximum
duration 6 months (4 and 3).

Table 3.5: Summary of potential vaccine strategies .
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Active direct protection

Active direct protection can be used to lower RSV burden by targeting the infants

and/or the elderly. There are six transmission models that consider the impact of infant

vaccination on either the overall incidence of RSV85,87 or the number of RSV-associated

hospitalisations.76,84,89,90 Poletti et al.’s study85 shows that vaccinating infants at three

months of age results in a 40% decrease in overall RSV incidence in children less than

one year old (assuming 100% coverage). Yamin et al’s study87 shows that vaccinating all

children less than 5 years old, results in 70-80% decrease in incidence in this age group (as-

suming a coverage of 80% coverage). Pan-Ngum et al.’s90 study suggest vaccination infants

at 2 and 4 months of age reduces incidence in children under 5 years by 60% (assuming

90% coverage) and Kinyanjui et al.’s84 study suggests that vaccinating infants at 6 month

of age provides a 63% reduction in the overall of RSV incidence across all ages (assuming

a 90% coverage). Overall, these models suggest that vaccination programmes which tar-

get infants are effective at reducing RSV incidence providing they are highly efficacious

(>90%) and are able to maintain a high level of coverage (>90-100%.) Though high cov-

erage levels are feasible in this age group (as observed with MMR); high efficacy may be

difficult to achieve given the complex and poorly understand immunopathogenesis of RSV,

which has caused a troubled history of vaccine development. In evaluating the impact of

active direct protection in the elderly, Yamin et al.’s study87 shows that vaccinating the

elderly results in a 20-30% decrease in overall incidence (with 80% coverage)—three times

less than the overall proportional reduction if children less than five were vaccinated. This

suggests that vaccination strategies which target infants are more effective at preventing

population-level incidence of RSV than vaccination strategies targeting the elderly.

Passive direct protection

Passive direct protection can be conveyed to infants through two mechanisms; vaccina-

tion of pregnant women and passive immunity directly given to neonates. There are three

models which consider the effect of vaccinating pregnant women.85,90,91 Poletti et al’s

study85 suggests that vaccinating pregnant women results in a proportional reduction in

incidence of 31.5% (95% CI 30.7-37.5%), (under the assumption that maternally acquired

immunity is complete and vaccination extends it from 4 months to 8 months at 100%

coverage). Pan-Ngum et al.’s90 study suggests vaccinating pregnant women reduces the

number of hospitalisations in infants by 7-14% (under the assumption that maternally
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acquired immunity is complete and vaccination extends it from 2 months to 3 months at

50% coverage). Hogan et al.’s91 study suggest vaccination of pregnant women results in

a 26% reduction in hospitalisation for infants aged 0-2 months old and a 40% reduction

in hospitalisation for infants aged 3-5 months old (under the assumption that maternally

acquired immunity is partial and vaccination extends it from 3 months to 6 months at

50% coverage). Poletti et al’s study85 additionally shows that the effect of herd immunity

acquired from vaccinating pregnant women on preventing infections in infants is negligible

(i.e. vaccinating pregnant women with no increase in maternally derived immunity has

no effect on incidence of RSV in infants). These models cumulatively suggest that large

increases in the duration of maternally derived immunity results in an effective vaccination

scenario for reducing RSV burden in infants. Therefore, this evidence suggests that mater-

nal vaccination is likely to be effective, providing that it can provide a boost in immunity

in neonates. There is no study that evaluates the effect of passive immunity through direct

injection of neonates with monoclonal antibodies, except existing Palivizumab studies.

Untargeted indirect protection

Untargeted indirect protection is likely to be effective through vaccination of school-age

children. Three models84,85,87 evaluate the indirect effect of vaccinating school-age chil-

dren on incidence in infants and the elderly. Yamin et al.’s87 study shows that vaccinating

children between the ages of 6 months and 5 years reduces RSV incidence in the elderly by

70-80%—twice as effective at reducing incidence in the elderly than vaccination of persons

aged 5–24 yrs (assuming 80% coverage). Vaccination of persons aged between 5-24 yrs

is less effective at reducing incidence in children less than 5 years old, with around 20%

reduction in incidence (assuming 80% coverage). Poletti et al’s study85 suggests that vacci-

nation of 5-14 years offers a 35.6% (95% CI 13.7–89.4%) proportion reduction in infections

in infants (assuming 100% coverage). Kinyanjui et al’s study84 suggests that vaccination

of infants aged between 5-10 months is the most effective method at reducing incidence

in infants less than 6 months, and the majority of this protection is from herd immunity.

These results imply that vaccination of school-age children may be an effective measure at

reducing disease burden in the elderly and in infants, however a finer stratification of age

groups when considering vaccination programmes might provide a clearer understanding

of the transmission pathways which are being targeted.
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Targeted indirect protection (cocooning)

Poletti et al’s study85 is the only identified model which considers the effect of cocooning

in reducing transmission of RSV, finding that vaccinating siblings or mothers (at the

birth of neonate) cohabiting with vulnerable infants, showed no proportional reduction in

incidence in infants under the age of one year.

3.4.3 Summary of results of existing intervention models

In this section, I outlined four RSV vaccine strategies which are likely to be effective

at reducing RSV burden (active direct protection, passive direct protection, and indirect

untargeted protection and cocooning). To ascertain the impact of these strategies I con-

solidated the results of seven existing mathematical models which evaluated the effect of

various RSV vaccination programmes. I found that active direct protection strategies are

likely to be an effective strategy at preventing RSV infection providing the vaccines are

highly efficacious and are able to reach a high level of coverage. Further, passive direct

protection acquired through vaccination of pregnant women is likely to be highly effective

providing the acquired maternal protection in infants is increased twofold. Finally, untar-

geted indirect protection administered through vaccination of school-age children is likely

to provide some protection to both the elderly and to infants. It is not clear whether

passive direct protection acquired through vaccination of neonates, or if untargeted in-

direct protection are effective strategies. The former has not been evaluated in existing

modelling papers, and the latter has only been evaluated in one study. Further work is

certainly needed to evaluate these intervention programmes.

3.5 Conclusions

In this chapter I ascertained what I can infer from existing mathematical models of RSV

transmission about how to construct a model of RSV transmission which both accurately

captures RSV transmission patterns and accurately evaluates the impact of relevant po-

tential vaccination scenarios. To achieve this I performed a review of mathematical models

of RSV transmission, and found 22 models which varied in setting and structure. By crit-

ically analysing these models I found specific ways to capture the transmission dynamics

of RSV and discovered the large variety in parameter estimation means that Bayesian in-

ference methods are important to allow full uncertainty in their values to be appreciated.

Further, by synthesising evidence from models which evaluate the impact of potential
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vaccination programmes, I gained a clearer understanding of the effectiveness of vaccine

delivery strategies. Finding the conditions under which direct protection and maternal

vaccination are likely to be effective, and highlighting the need for more models which are

evaluating passive immunity and cocooning effects. Using all this evidence I provided a

set of guidelines for models to follow which ensure that future studies evaluate the impact

of potential intervention programmes effectively and accurately. In the next chapter I use

this knowledge and outline a mathematical model for the transmission of RSV in England

and Wales .
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Chapter 4

Development of a model for RSV

transmission in England and Wales

4.1 Introduction

The previous chapter suggests that more mathematical models are required which cap-

ture RSV-specific transmission characteristics. These transmission characteristics include

waning post-infection and maternal immunity, decreasing transmission capacity after pri-

mary infection and regional-specific contact patterns. In this chapter a mathematical

model of RSV transmission is developed which includes these transmission characteristics.

There are three steps to building this model. First, I describe the mathematical model

which includes the important transmission characteristic and the associated fitted param-

eters. Second, I describe the data sources used to determine the prior distributions for

the fitted parameters in the mathematical model. Finally, I outline the Bayesian infer-

ence methods used to calibrate the model and determine the posterior distributions which

capture the dynamics of RSV given the Respiratory DataMart System surveillance data.

The mathematical model outlined in this chapter is a compartmental-type deterministic

model. The large size of the population considered (approximately 55 million people in

England and Wales) means this type of model is less computationally intensive than an

agent-based model, where each person’s transmission dynamics must be specified and

tracked individually. In order to capture the heterogeneity in transmissive capacity across

the population, the model stratifies the population into age groups. Similar to other

mathematical models of disease transmission, the transmissive capacity of each age group

is dependent on i) the number of infected people in other age groups, iii) the number
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of contacts they make with other age groups and ii) the severity of the infection in the

individual. Using Bayesian inference methods outlined in this chapter is preferable over

non-Bayesian methods as it allows for the uncertainty in all the parameters estimates to

be fully incorporated, leading to more realistic predictions about the impact of potential

programmes.

4.2 Description of the model

The model tracks the number of individuals in six different epidemiological states (M ,

S, E, I, A and R). When a susceptible individual (S) acquires infection, they move to an

exposed but not infectious state (E) for an average of 1/σ days, after which they become

infectious with either symptomatic (I) or asymptomatic (A) infection. After an infec-

tious period of 1/γ days, individuals move to a protected state (R) for a period of 1/ω

days, after which they become susceptible to reinfection (S). A proportion of new-borns

are assumed to be born with high levels of RSV neutralising antibodies, pR, granting

maternally-derived protection (M) for a period of 1/ξ after birth (See Section 4.2.2 for

the two different parameterisations). The number of individuals that have experienced

zero, one, and two or more previous infections (denoted by the subscripts 0, 1, 2, 3) are

also tracked. Consistent with empirical data, I assume that the proportion of individu-

als who experienced asymptomatic infection is dependent on age17 and the duration of

infection and susceptibility to infection are dependent on the number of previous RSV

infections.92,95 A summary of the model variables that show different epidemiological

states are contained in Table 4.1 and a schematic of the epidemiological model is shown

in Figure 4.1. The parameters of the model are contained in Table 4.2 and the full

system of model equations of are shown in Equation 4.1.

61



CHAPTER 4. DEVELOPMENT OF A MODEL FOR RSV TRANSMISSION IN
ENGLAND AND WALES

Maternal immunity E
xp
os
ur
e
le
ve
l0

E
xp
os
ur
e
le
ve
l1

E
xp
os
ur
e
le
ve
l2

E
xp
os
ur
e
le
ve
l3

pRμ ξM

(1-pR)μ

ω

ω

ω

ω

S0 E0

A0

I0

R0
λ0(t)

(1-pa)σ

paσ

γ0

γ0

S1 E1

A1

I1

R1
λ1(t)

(1-pa)σ

paσ

γ1

γ1

S2 E2

A2

I2

R2
λ2(t)

(1-pa)σ

paσ

γ2

γ2

S3 E3

A3

I3

R3
λ3(t)

(1-pa)σ

paσ

γ3

γ3

Figure 4.1: The relationship between the mathematical model state variables (M : protected
due to maternal antibodies, S: susceptible, E: exposed but not infectious, I: infectious and
symptomatic, A: infectious and asymptomatic, R: recovered and protected) for each of the four
exposure levels (subscript i = 0, 1, 2, 3). For maternal immunity, the parameters are µ the daily
birth rate, pR the proportion of neonates born with protection and ξ the rate of loss maternal
immunity. For each exposure level i, λi is the force of infection, σ is the rate of loss exposure to
infection, pa is the probability that an RSV infection is asymptomatic in age group a, γi is the
rate of loss of infectiousness, and ω is the rate of loss of post-infection immunity.
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State Description

M(t) Number of individuals at time t who are completely protected from infection due to
maternally-derived antibodies.

Si(t) Number of individuals at time t who are susceptible to acquiring an RSV infection, who
have experienced i previous infections.

Ei(t) Number of individuals at time t who are infected with RSV but are not yet infectious (i.e.
exposed),who have experienced i previous infections.

Ai(t) Number of individuals at time t who are infected with RSV, infectious and have no symp-
toms of RSV-related respiratory disease, who have experienced i previous infections (not
including the current infection).

Ii(t) Number of individuals at time t who are both infected with RSV, infectious and have
symptoms of RSV-related respiratory illness, who have experienced i previous infections
(not including the current infection).

Ri(t) Number of individuals at time t who are completely protected from infection due to im-
munity acquired from natural-infection, who have experienced i infections (not including
the one just experienced).

Z(t) Cumulative number of new RSV infections at time t

Table 4.1: Description of the epidemiological state variables of the RSV model, where i ∈
{0, 1, 2, 3}.
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Parameter Value Source

Duration of immunity

1/ξ Maternally-derived (days) U(14, 180) 10,93,94

1/ω Post-infection (days) U(60, 200) 4,98

Duration of symptomatic infection

1/σ Exposure (days) Gamma(7.111, 0.563) 58

1/γ0 Primary infection (days) W (4.137, 8.303) 95

g1 Proportional decrease between secondary and pri-
mary infection

W (34.224, 0.879) 95

g2 Proportional decrease between tertiary and secondary
infection

LN (−0.561, 0.163)

Susceptibility

δ1 Relative susceptibility to secondary infection, relative
to primary infection

B(35.583, 11.417) 92

δ2 Relative susceptibility to tertiary infection, relative
to secondary infection

B(22.8293.171) 92

δ3 Relative susceptibility to subsequent infections after
third infection, relative to tertiary infection

B(6.117, 12.882) 92

Asymptomatic infection

p<1 Proportion asymptomatic (<1 years) B(3.003, 29.997) 17

p1−4 Proportion asymptomatic (1–4 years) B(8.996, 43.004) 17

p5−14 Proportion asymptomatic (5–14 years) B(38.033, 34.967) 17

p>15 Proportion asymptomatic (15+ years) B(35.955, 11.045) 17

α Reduction in infectiousness U(0, 1) —

Transmission parameters

qp Probability of transmission of RSV per physical con-
tact.

U(0, 1) —

qs Reduction in transmission due to conversational con-
tact

U(0, 1) —

b1 Relative amplitude U(0, 1) —

φ Seasonal offset U(0, 1) —

ψ Width of seasonal peak U(0, 1) —

Initial parameters (at t = 0, age group a)

l1 Initial proportion infected U(0, 1) —

l2 Initial proportion of non-infected individuals who are
protected

U(0, 1) —

Table 4.2: Prior distributions of the parameters in the mathematical model. Subscript i indicates
exposure level and superscript a indicates age group.

The ODEs of the mathematical model for RSV transmission for age group a are:
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Ṁa =

Transmission terms︷ ︸︸ ︷
pRµ11(a)− ξMa

Ageing terms︷ ︸︸ ︷
−ηaMa + ηa−1Ma−1

Ṡa0 = (1− pR)µ11(a) + ξMa − λa0(t)Sa0 −ηaSa0 + ηa−1Sa−1
0

Ėa0 = λa0(t)Sa,s0 − σEa0 −ηaEa0 + ηa−1Ea−1
0

Ȧa0 = paσEa0 − γ0A
a
0 −ηaAa0 + ηa−1Aa−1

0

İa0 = (1− pa)σEa0 − γ0I
a
0 −ηaIa0 + ηa−1Ia−1

0

Ṙa0 = γ0A
a
0 + γ0I

a
0 − ωRa0 −ηaRa0 + ηa−1Ra−1

0

Ṡa1 = ωRa0 − λa1(t)Sa1 −ηaSa1 + ηa−1Sa−1
1

Ėa1 = λa1(t)Sa1 − σEa1 −ηaEa1 + ηa−1Ea−1
1

Ȧa1 = paσEa1 − γ1A
a
1 −ηaAa1 + ηa−1Aa−1

1

İa1 = (1− pa)σEa1 − γ1I
a
1 −ηaIa1 + ηa−1Aa−1

1

Ṙa1 = γ1A
a
1 + γ1I

a
1 − ωRa1 −ηaRa1 + ηa−1Ra−1

1

Ṡa2 = ωRa1 − λa2(t)Sa2 −ηaSa2 + ηa−1Sa−1
2

Ėa2 = λa2(t)Sa2 − σEa2 −ηaEa2 + ηa−1Ea−1
2

Ȧa2 = paσEa2 − γ2A
a
2 −ηaAa2 + ηa−1Aa−1

2

İa2 = (1− pa)σEa2 − γ2I
a
2 −ηaIa2 + ηa−1Ia−1

2

Ṙa2 = γ2A
a
2 + γ2I

a
2 − ωRa2 −ηaRa2 + ηa−1Ra−1

2

Ṡa3 = ωRa2 + ωRa3 − λa3(t)Sa2 −ηaSa3 + ηa−1Sa−1
3

Ėa3 = λa3(t)Sa2 − σEa3 −ηaEa3 + ηa−1Ea−1
3

Ȧa3 = paσEa3 − γ3A
a
3 −ηaAa3 + ηa−1Aa−1

3

İa3 = (1− pa)σEa3 − γ3I
a
3 −ηaIa3 + ηa−1Ia−1

3

Ṙa3 = γ3A
a
3 + γ3I

a
3 − ωRa3 −ηaRa3 + ηa−1Ra−1

3

Ża = σ(Ea0 + Ea1 + Ea2 + Ea3 )

(4.1)

where an overdot refers to differentiation with respect to t, 11(a) is the indicator

function (non-zero at a = 1). The value of pR depends on the maternal protection model

(see Section 4.2.2) and λai (t) is the force of infection for age group a (see Section 4.2.4).

4.2.1 Age stratification

In order to capture the heterogeneity in transmissive capacity across the population, I

stratified the model into age groups (indicated by the superscript a). 25 age groups were

considered, allowing for the dynamics of RSV incidence in infants to be closely monitored

(age groups: <1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 months, and 1, 2, 3, 4, 5–9, 10–14, 15–24,

25–34, 35–44, 45–54, 55-64, 65–74, 75+ years). The number of individuals, Na, in each

age group age, a, is calculated by multiplying the daily birth rate in 2018 for England

and Wales, µ = 1863 live birth per day, by the number of days spent in each age group

(da). Individuals in an epidemic compartment move to the next age group (Xa → Xa+1)

65



CHAPTER 4. DEVELOPMENT OF A MODEL FOR RSV TRANSMISSION IN
ENGLAND AND WALES

at rate ηa = 1/(365 da).
116

4.2.2 Maternal protection model

I considered two different model structures to capture the dynamics of maternal pro-

tection. The first, static immunity model, M1, assumes that all neonates are born with

protection, (pR = 1). The second, dynamic immunity modelM2, assumes that the propor-

tion of infants born with protection is equal to the proportion of women of child bearing age

(15-44 years) who are in epidemiological state, R (i.e. recently experienced RSV) at time

t, pR(t) =
∑21

a=19R
a(t)/

∑21
a=19N

a. The dynamic immunity model was chosen due to the

observation that i) RSV neutralising cord titre correlates with maternal RSV neutralising

antibodies levels, and ii) RSV neutralising cord titre changes seasonally (Figure 4.2).11

Static immunity (ℳ1) Dynamic immunity (ℳ2)

μ ξ
M S0

pR(t)μ ξ

(1-pR(t))μ

M S0

Figure 4.2: Two models of maternal protection where µ is the daily birth rate, ξ is the rate of
loss of maternal-derived immunity, and pR(t) is the proportion of infants born with protection at
time t.

4.2.3 Contact matrices

I assume that the contact rate between two age groups is proportional to the mean

number of daily physical and conversational contacts made between those age groups .

To estimate the number of contacts between age group a and b, I combined the results of

two contact surveys. The first study (Study A), was conducted as part of the EU funded

POLYMOD study from 2008—a large pan-European survey with 7,290 participants who

recorded 97,904 contacts across all age groups.113 The second study (Study B), is a smaller

study in the United Kingdom in 2013 with 122 number of participants (all under the age

of one year) who recorded 758 contacts.117 Both studies provided estimates for the num-

ber of daily household/non-household contacts and daily physical/conversational contacts

made between each age group. Therefore, to estimate the total number of daily physi-

cal/conversational contacts made between age group a and b, (pa,b and ca,b respectively), I
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used Study A for participants less than 1 years of age, and Study B for older participants.

To ensure this symmetry occurs in the contact matrices, I calculated the weighted mean

number of contacts made between age a to age group b for conversational contacts (same

formula for physical contacts) as:

ca,b ← 1

Na +N b

(
ca,bNa + cb,aN b

)
where Na is the population size for age group a. The resulting symmetric contact

matrices for pa,b, ca,b are plotted in Figure 4.3.
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Figure 4.3: Top: Number of daily physical contacts made between age group a and age group
b. Bottom: Number of daily conversational contacts made between age group a and age group
b. White squares indicate no reported contacts between age groups. In these surveys, this means
there were no reported physical contacts within infants less than 1 years old, and between infants
ages 1-4 years and the elderly (65 years and older).
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4.2.4 Force of infection

The probability of transmission for a contact made between two age groups is qp if

the contact is physical and qpqc if the contact is conversational, where 0 < qc < 1 is the

reduction in infectiousness of conversation contacts relative to physical contacts. Further,

due to climatic factors, I assumed that the probability of transmission is seasonally forced

according to a normal distribution, with peak transmission occurring at φ, mean b1 and

standard deviation ψ. Finally, because asymptomatic infections are shorter and have a

lower viral load then symptomatic infection, I assume the infectiousness of asymptomatic

infections is reduced by a factor of 0 < α < 1. The equation for the force of infection is

therefore:

λai (t) = qp(1 + b1 exp((t− φ)2/(2ψ2))
i∏

i′=0

δi′
25∑
b=1

(pa,b + qcc
a,b)

N b

(
Abiα+ Ibi

)
(4.2)

4.2.5 Initial conditions

For each age group a, I estimated i) the initial proportion of persons who still have ma-

ternally derived immunity, paξ , (by assuming loss of immunity is exponentially distributed

with rate ξ) and ii) the initial proportion of persons who have experienced k number of

previous infections pak (assuming acquisition of infection is Poisson distributed with rate

1 year). The initial proportion of persons in each exposure level who are not infected is

therefore given by (1− l1), and of this proportion, l2 are in epidemiological group Ri, with

the rest in epidemiological group Si. Of the infected proportion, l1, the initial proportion

in state E, is the average amount of time within that epidemic group (σ/(σ+γi)). Follow-

ing a similar argument, the formulae for the initial proportion of the infected persons who

are in the asymptomatic and symptomatic state is σ/(σ + γi)p
a and σ/(σ + γi)(1 − pa)

respectively (Figure 4.4).
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a

Figure 4.4: The formulae for calculating the initial conditions of the epidemic state variables using
the parameters, paξ , the initial proportion of persons in a age group with maternal protection, and
pai the initial proportion of persons in an age group in exposure group i. (see Equations 4.4–4.5
for formulae).

The equations for the initial conditions are:

Ma(0) = Npaξ

Sa0 (0) =
[
N(1− paξ )pa0

]
(1− l1)(1− l2) Ea0 (0) =

[
N(1− paξ )pa0

] (
σ

γ0+σ

)
l1

Aa0(0) =
[
N(1− paξ )pa0

] (
γ0

γ0+σ

)
(pa)l1 Ia0 (0) =

[
N(1− paξ )pa0

] (
γ0

γ0+σ

)
(1− pa)l1

Ra0(0) =
[
N(1− paξ )pa0

]
(1− l1)l2

Sa1 (0) =
[
N(1− paξ )pa1

]
(1− δ1l1)(1− l2) Ea1 (0) =

[
N(1− paξ )pa1

] (
σ

γ1+σ

)
δ1l1

Aa1(0) =
[
N(1− paξ )pa1

] (
γ1

γ1+σ

)
(pa)δ1l1 Ia1 (0) =

[
N(1− paξ )pa1

] (
γ1

γ1+σ

)
(1− pa)δ1l1

Ra1(0) =
[
N(1− paξ )pa1

]
(1− δ1l1)l2

Sa2 (0) =
[
N(1− paξ )pa2

]
(1− δ2l1)(1− l2) Ea2 (0) =

[
N(1− paξ )pa2

] (
σ

γ2+σ

)
δ2l1

Aa2(0) =
[
N(1− paξ )pa2

] (
γ2

γ2+σ

)
(pa)δ2l1 Ia2 (0) =

[
N(1− paξ )pa2

] (
γ2

γ2+σ

)
(1− pa)δ2l1

Ra2(0) =
[
N(1− paξ )pa2

]
(1− δ2l1)l2

Sa3 (0) =
[
N(1− paξ )pa3

]
(1− δ3l1)(1− l2) Ea3 (0) =

[
N(1− paξ )pa3

] (
σ

γ3+σ

)
δ3l1

Aa3(0) =
[
N1− paξ )pa3

] (
γ3

γ3+σ

)
(pa)δ3l1 Ia3 (0) =

[
N(1− paξ )pa3

] (
γ3

γ3+σ

)
(1− pa)δ3l1

Ra3(0) =
[
N(1− paξ )pa3

]
(1− δ3l1)l2 Za(0) = 0

(4.3)

where N = Na; the equation for paξ , the initial proportion of persons in age group, a

(age range, [na−1, na], na−1 < na) who still have maternal protection given a rate of loss

of maternal protection parameter, ξ, is:

paξ =
1

(na − na−1)

∫ na

na−1

exp(−365ξx) dx (4.4)

and the equations for pak, the initial proportion of persons in age group a who have

experienced k number of previous infections assuming no cumulative protection follows a
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Poisson distribution, is:

pak = 1
(na−na−1)

∫ na
na−1

(x)k exp(−x)
k! dx, k = 0, 1, 2

pa3 = 1− (pj0 + pj1 + pj2)

(4.5)

4.2.6 Number of new infections

The output of the mathematical model is the number of new infections ZM
m,a

wt in age

group a, maternal model m, per week wt and the formula is:

ZM
m,a

wt =
ZM

m,a(t)

dt

∣∣∣∣t=wk
t=wk−1

(4.6)

where ZM
m,a(t) is the cumulative number of new infections at time t under maternal

immunity model m.
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4.3 Parametrisation of the model

This section outlines the studies used to derive the prior distributions for the fitted

parameters in the mathematical model.

4.3.1 Duration of immunity

It is unclear what the period of naturally-acquired immunity is for RSV, however, ob-

servational cohort studies suggest that reinfection is possible after 60 days and it is also

reasonable to assume that some hosts are susceptible again at the start of an RSV season

(on average 200 days later).4,98 Therefore, I assumed the prior distribution for the du-

ration of protection of N (130, 35) so that the 95% CI corresponds with 60 and 200 days.

For duration of maternal protection, it has been shown that higher titres of RSV IgG

neutralising antibodies in cord at birth causes i) a significant decrease in disease incidence

during in the first 6 months of life10,93,94 and ii) a decrease in risk of hospital admission.11

Therefore, the duration of maternal protection is assumed to be no shorter than 14 days

and no longer than 6 months, giving a prior of U(14, 180).

4.3.2 Duration of symptomatic infection

For the prior for the duration of the latency period (1/σ), an experimental challenge

study was used58 to estimate the mean and standard deviation as 4.0 and 1.5 days respec-

tively. Using the formula

Gamma

(
µ2

s2
,
s2

µ

)
(4.7)

where µ is the mean and s2 is the variance, the fitted distribution for 1/σ is Gamma(7.111, 0.563).

To ensure that the duration of infection decreased with repeated exposure, I found prior

distributions for the duration of primary infection, 1/γ0, and the decrease in duration of

infection relative to the previous infection, gi such that γ1 ≡ γ0(g1)−1, γ2 ≡ γ0(g1g2)−1,

and γ3 ≡ γ0(g1g2g3)−1. The mean and 95% confidence interval for primary and subse-

quent infection from a prospective cohort study were the convolution distributions:95 5.1

(95% CI 4.2–6.2) + U(0, 7) and 4.0 (95% CI 3.3–4.9) + U(0, 7) respectively where the

uniform distribution arises to account for left-censoring in weekly collection protocol. The

empirical sample for the prior distributions for 1/γ0 is found by sampling from 5.1 (95%

CI 4.2–6.2) + U(0, 7) and fitting the sample to a probability distribution. The method of
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fitting an empirical sample to a probability distribution, I refer to as Fitting procedure

1:

Fitting procedure 1 To fit an empirical distribution to a probability distribution the

maximum likelihood method was used to estimate the parameters of the i) Gamma(k, θ),

ii) LN (µ, σ), and iii) W (λ, k), and choose the probability distribution with the highest

likelihood.

Fitting procedure 1 gives a probability distribution of W (4.137, 8.303) for 1/γ0. For

g1 I divided the samples from 5.1 (95% CI 4.2–6.2) + U(0, 7) by the samples from 4.0

(95% CI 3.3–4.9) + U(0, 7) and used Fitting Procedure 1 on the resulting sample to

get a probability distribution of W (34.224, 0.879) for g1. For g2, I used an experimental

reinfection study58 to find a mean and standard deviation for γ2 of 3.6 and 1.1 days

respectively (Gamma(10.71, 0.34) from Equation 4.7). Dividing ordered samples from

this distribution by the ordered empirical sample for γ0 multiplied by (g1)−1 gives an

empirical sample for the prior distribution for g2 which, from Fitting procedure 1,

has a probability distribution LN (−0.561, 0.163). As there is no evidence to suggest the

duration of infection decreases further after tertiary infection, g3 = 1.

4.3.3 Susceptibility to infection

The prior distribution for the reduction in susceptibility to infection, δi, assuming i num-

ber of previous infections, is determined using two prospective cohort studies92,105 which

estimated the average proportion of individuals who become infected when challenged with

RSV for secondary, tertiary and subequent infections, relative to their previous infection,

as 0.757, 0.878 and 0.322 respectively (with sample sizes of 47, 26 and 19). Using the

formula

B(µn, (1− µ)n) (4.8)

where µ is the mean, and n is the sample size, I estimated the probability distributions for

these observations as B(35.583, 11.417), B(22.8293.171) and B(6.117, 12.882) for suscepti-

bility to secondary and tertiary and subsequent infection, relative to previous infection.

Asymptomatic infection

The proportion of infections which are asymptomatic is estimated from a prospective co-

hort study17 which showed, for ages <1, 1-4, 5-14, and 15 years and over, the mean prob-
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ability of asymptomatic infection is 0.091, 0.173, 0.521, and 0.765, for the sample sizes is

33, 52, 73, and 47 respectively (giving B(3.003, 29.997), B(8.996, 43.004), B(38.033, 34.967)

and B(35.955, 11.045) from the formula Equation 4.8). Though exiting studies have es-

timated the difference in viral load and the duration of shedding between asymptomatic

and symptomatic infection, it is unclear how these differences alter the infectiousness of a

host.17 Therefore, as there is no strong evidence otherwise, I assumed the prior distribu-

tions for α of U(0, 1).

4.3.4 Transmission and initial parameters

Finally, as they cannot be estimated from epidemiological data, the prior distributions

for the transmission probability per contact physical contact qp, relative reduction in

transmission due to conversational contact qc, the relative seasonal amplitude b1, the

offset φ and the width of heightened transmissive season ψ all have prior distributions

of U(0, 1). A summary of all the prior distributions described above associated with the

mathematical model is given in Table 4.2.
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4.4 Calibration of the model

This section outlines the Metropolis-Hasting algorithm and the virological surveillance

data used to calibrate the mathematical model.

4.4.1 Detection model

The virological surveillance data used to calibrate the mathematical model is the Res-

piratory DataMart System (RDMS). RDMS is a laboratory-based virological sentinel

surveillance system, which systematically collects data on the number of RSV positive

and negative clinical respiratory samples from 14 Public Health England (PHE) and Na-

tional Health Service (NHS) laboratories in England and reports them weekly.57 These

laboratories represent all 9 regions of England, however it does not have samples from

Wales and it is not possible to determine the proportion of the population these samples

cover. Though there are areas which these laboratories do not cover, I assume that these

reported samples are representative of all of England and Wales. For the majority of

laboratories, the source data is not available, and for those where it is, the majority of

the samples are from hospital inpatients. From RDMS, I extracted the total number of

weekly laboratory-confirmed cases of RSV from July 2010 and up until June 2017 for each

age group. The number of positive samples for age group a and week number wt is given

by dawt ∈ D, where D is the set of all samples.

Only a small proportion of the total RSV infections will be detected by the RDMS.

This is because RSV infections which are included are only those in which the infected

individual:

1. acquired infection in a region which is covered by the surveillance system

2. consulted healthcare at some clinical interface

3. the health care profession offering a test

4. the test is accurate in detecting the RSV virus

As severity of RSV infection depends on age, points 2) and 3) imply that the proportion

of total RSV infections which are present in the RDMS is likely to be dependent on age.

Therefore, I assumed that the per-infection detection probability by the RDMS surveillance

system, εa, could be depende/textbfnt on age (note that Zawtε
a ≈ dawt).
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Due to lack of direct information for estimates of the detection probability I had to

make several assumptions. First, I estimated an approximate value, ε̄a by dividing the

proportion of the population which are reported in the dataset pa+ by an estimate for the

attack rate in age group, ra (Figure 4.5). The estimate for the attack rate is found from

a prospective cohort study118 for children less than 5 years, and for individuals greater

than 5 years I used the attack rate from the aforementioned prospective cohort study for

the first year, under the assumption all infants are fully susceptibility, and multiplied it

by the prior distribution for the relative reduction in susceptibility δi. The approximate

values for the detection probability, ε̄a = pa+/r
a, are plotted in Figure 4.5. By defining

the total number of positive samples for age group a per year from RDMS as Da, the

weighted proportion of samples for each age group is given by wa = Da/ΣaDa.
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Figure 4.5: Top: Schematic showing the multiplicative relationship in age group a between the
estimated attack rate ra, the detection probability εa, and the proportion of the population caught
in the RDMS surveillance dataset, pa+. Bottom: For each age group a, this plot shows the estimated
value for the detection probability ε̄a, and the number of positive RSV samples from the RDMS
dataset Da which is proportional with the radius of the point marker.

Assuming that each age group has a unique detection probability could over fit the

model, however, using too few detection probabilities lead to a poorly fitted model. I
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chose the optimal number of age dependent detection rates by performing a formal model

comparison using Akaike Information Criteria (AIC) to choose between 5 models which

vary in the number of detection probabilities used between ages 0-4 years. The first age

structure (E1) assumed the same detection probability value for all 0–4 year olds. The

second, third and fourth structures (E2, E3 and E4) assumed that the 0–4 age groups is

parameterised by 2, 3 and 4 different detection probabilities. To find the optimal age

stratification for each of these three structures, I fitted the values of ε̄j to a discrete-valued

function using a weighted least squares method (using the weights wj) for all possible

stratifications of this age group and then chose the age stratification with the smallest

corresponding AIC. This method gave the optimal age stratifications of {0–2mo,3mo–

4yrs}, {0–2mo, 3–7mo, 8mo–4yrs} and {0–2mo, 3–5mo, 6–11mo,1–4yrs} for the three

structures respectively. For the fifth structure, I assumed that the values of detection

probability are parameterised according to an exponential decay exp(ax+ b), where a and

b are parameters be estimated.

For detection models Ej , j = {1, 2, 3, 4}, the prior distribution for each of the detection

probabilities εj , were found by calculating the weighted mean and standard deviation of

the estimated detection probabilities values ε̄j contained within the age range of the strati-

fication and then fitting these moments (through Equation 4.7) to a Gamma distribution.

For E5, the detection probability for age group j, is given by fitting a non-linear weighted

least squares with the exponential function of the form exp(ax+b) to the estimated detec-

tion probabilities values between 0 and 4 years. The mean and standard deviations of the

parameters of the fitted exponential (a and b) are then then assumed to follow a normal

distribution. A summary of all the age stratifications and prior distributions for all five

of the model structures are given in Table 4.3.
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Parameter Prior distribution Source

Detection model structure 1, E1 = {ε1S1
, ε2S1

, ε3S1
}

ε1S1
0–4yrs Gamma(1.4278, 0.0050) εa

Detection model structure 2, E2 = {ε1S2
, ε2S2

, ε3S2
, ε4S2
}

ε1S2
0–2mo Gamma(10.9978, 0.0013) εa

ε2S2
3mo–4yrs Gamma(1.7757, 0.0018) εa

Detection model structure 3, E3 = {ε1S3
, ε2S3

, ε3S3
, ε4S3

, ε5S3
}

ε1S3
0–2mo Gamma(10.9978, 0.0013) εa

ε2S3
3–8mo Gamma(11.9721, 0.00045) εa

ε3S3
9mo–4yrs Gamma(2.16447, 0.00063) εa

Detection model structure 4, E4 = {ε1S4
, ε2S4

, ε3S4
, ε4S4

, ε5S4
, ε6S4
}

ε1S4
0–2mo Gamma(10.9978, 0.0013) εa

ε1S4
3–6mo Gamma(27.1392, 0.00024) εa

ε3S4
7–11mo Gamma(19.8873, 0.00018) εa

ε4S4
1–4yrs Gamma(7.64267, 0.00012) εa

Detection model structure 5, E5 = {ε1S5
, ε2S5

, . . . ε17
S5
, ε18
S5
}, εjS5

= exp(a+ b ∗ j)

a 0–4yrs N (−3.9885, 0.1357) εa

b N (−0.1794, 0.0413) εa

Common to all model structures, |Ek| = Ak

ε
Ak−1

Sk
5–54yrs Gamma(35.0678, 2.61628× 10−6) εa

ε
Ak
Sk

55+ yrs Gamma(59.2461, 2.28079× 10−6) εa

Table 4.3: Prior distributions for the parameters in the five detection models.

4.4.2 Calibration outline

I performed inference on the parameter set:

θm,e =Mm ∪ Ee

where m ∈ {1, 2} and e ∈ {1, 2, 3, 4, 5} are the possible maternal protection and de-

tection model structures. For each model structure, the mathematical model estimated

the number of new infections per week Zawt and the detection model estimated the age-

dependent probability of being reported in the RDMS dataset, εa. I assume that year-to-

year changes in the number of RSV positive samples are due to i) changes in sampling

protocol, ii) hospital admission thresholds being lowered (particularly in the younger in-

fants) and/or iii) failure to manage these acute illnesses in the community care setting.27

Therefore, to account for these year-to-year changes I normalise the number of RSV pos-

itive samples in age group a during year y relative to year 7 (2016–17) so that each year
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has the same total number of positive samples in age group a. Mathematically, for the

number of positive samples dawt for age group a during week number wt, I define

Da
y =

52+52×6(y−1)∑
t=1+52×6(y−1)

dawt (4.9)

Then, the normalised data d̄awt during year y, is given by

d̄awt =
dawtD

a
7

Da
y

(4.10)

By treating each infection in age group a as a Bernoulli trial, which has probability of

success (being detected in the normalised RDMS dataset D) of εa, the likelihood function

for the parameter set (θm,e) for week, wt and age group a is given by the binomial distri-

bution d̄awt ∼ Bin(ZM
m,a

tw , εa). Fitting the output for each age group over to seven years of

weekly incidence data, the full likelihood is the product of each age and weekly binomial

likelihood function:

L(D|θm,c) = L(D|Mm, Ec) =

25∏
a=1

7∗52∏
t=1

Bin(ZM
ma

wt , εa)

Using this likelihood and the prior distributions, the posterior distributions for the

parameters in the model are determined using an adaptive parallel tempering Metropolis

Hastings algorithm with a temperature ladder consisting of 12 chains and an adaptive

covariance matrix.119 The proposal distribution was a multivariate truncated normal

distribution (T N ), with the boundaries of the distributions equal to the support for each

parameter. Thus, for each of the 12 chains, given a Markov chain of length, i, {θt}it=0 the

equation of the acceptance probability of a new position, θ′ ∼ T N (θi,Σi) is

a(θi, θ
′) =

L(D|θ′)p(θ′)
L(D|θi)p(θi)

T N (θi|θ′,Σi)

T N (θ′|θi,Σi)
(4.11)

Further details of the Metropolis Hastings algorithm are outlined in Supplementary

material S2.1.

Model choice

To determine which of the model structures (maternal protection model m and detec-

tion model e) best estimates the incidence of RSV given the RDMS data, I calculated a

Deviance Information Criterion (DIC) given by
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DICm,c = −2(2(L(D|θm,c)− L(D|θ̄m,c)) (4.12)

where L(D|θ̄)) is the likelihood of the mean of the posterior samples and L(D|θ) is the

mean of the likelihood of the posteriors samples.

Posterior distributions

Each of the 12 Markov chains ran for 50,000 steps, where the first 25,000 steps were the

burn-in and the final 25,000 steps were the empirical samples for the posterior distributions

for each of the parameters. The final posterior samples were thinned every 20 steps, given

a empirical sample of 1,250 values for the joint posterior distribution.

Implementation

The mathematical model ODEs were solved using the Euler method in Ascent package in

C++, using a time step of 1 day over a 8 year period, (1 year to reach a steady state and

7 years to calculate the likelihood).

The binomial likelihood function leads to computationally unmanageable values, there-

fore I consider the log likelihood. The equation for the log likelihood function is therefore:

logL(D|θ) ≈


∑25

a=1

∑52×7
t=1 −Zawtε

a, when d̄at = 0∑25
a=1

∑52×7
t=1 d̄at log(Zawtε

j)− nZa,θwt εj −
∑d̄at

k=1 log(k), when d̄at > 0

(4.13)

and the acceptance probability can be calculated:

a(θi, θ
′) = exp(logL(D|θ′)+log(p(θ′))−logL(D|θi)−log(p(θi))+

Correction constant︷ ︸︸ ︷
log(T N (θi|θ′,Σi)− T N (θ′|θi,Σi)))

(4.14)

Evaluating the correction constant is computationally difficult as it involves evalu-

ating two points from multivariate truncated normal distributions in a high number of

dimensions. Therefore, to evaluate a this term, I implemented a novel approach using an

expected propagation method outlined in Cunningham et al.120
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4.5 Exemplar results

4.5.1 Model choice

Model comparison analyses (via DIC calculation) suggested that maternally-derived immu-

nity in neonates was conferred seasonality according to the prevalence of recently infected

pregnant women (Figure 4.6) with around 3% of neonates born into the maternally-

derived protection group M , (i.e. are born with high levels of RSV neutralising antibodies)

just prior to an epidemic in November, and 15% being born into the maternally-derived

protection group M at the end of an epidemic in March. Furthermore, I found that there

is a likely exponential decrease in the reporting rates between the ages of 0–4 years, and

fixed reporting rates for 5–54 years and 55 years and over. This is consistent with the

assumption that it is rate of consulting healthcare due to RSV at clinical interface is likely

to decrease with increasing age due the reduction in the severity of infection and changes

in parental concern. The corresponding values for pR and the detection probabilities are

given in (Figure 4.8). The results which follow this section all refer to this model choice.

ℰ1 ℰ2 ℰ3 ℰ4 ℰ5
Detection model

20000

40000

60000

80000

DIC

Maternal model
Static (ℳ1)

Dynamic (ℳ2)

Figure 4.6: DIC for the 5 detection model structures, and the 2 maternal immunity model
structures. Best fitting model is the exponential detection model (E5) with the dynamic maternal
immunity model (M2).
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Figure 4.7: Top: The proportion of infants born with protection (pR) over an epidemic season for
the dynamic maternal immunity model. Bottom: A comparison of the posterior distributions for
the detection model, E5, where black points indicates the mean values and the red points indicated
the lower and upper credible intervals

4.5.2 Model fit

The calibrated model is able to reproduce the age and seasonal distribution of RSV in-

cidence in England and Wales. A comparison between the model-predicted number of

detected samples (Zjwte
j) and the annual number of positive samples from RDMS (djwt)

for each age group is shown (Figure 4.8-4.9). It is worth noting that there is not an even

number of samples in each age groups, and although age groups 10 month, 11 months,

and 2 years seem to fit poorly, they only amount to 5% of the total samples.
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Figure 4.8: A comparison between the model-predicted number of detected samples during week
t, (Zawt

εa, red line), estimated from averaging 1,000 samples from the posterior distribution during
the third year of simulation, and the annual number of positive samples from RDMS (dawt

, black
dots) for age group a.
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Figure 4.9: The mean annual incidence of RSV per 100,000 persons (black line) with 95%Cr I
(red region). The average number of contacts made per day for each age group shown in gray bars.

As the force of infection is dependent on the number of infected persons in each age

group, I can monitor its value over a season and determine what percentage of its value is

attributable to each age group (Figure 4.10). This analysis finds that adults aged 15-64

years are the major source of infection for each age group, ranging from 37% in 5-14 year-

olds and 71% in 15–44 year-olds. Infections which are attributable to parental contacts is

commensurate to the proportion of parents, except in <1-year-olds where parents account

for 65% of the infections acquired from 15-44 year olds. In addition, for children aged

5-14, other children of the same age account for the majority of infection (52%) suggesting

a large amount of transmission occurs from within this age group.
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Figure 4.10: Top: the source of the infection for each age group in the analysis. Bottom: The
magnitude of the force of infection relative to age group 1. The force of infection for both Figures
was estimated using the third year of simulation

4.5.3 Posterior distributions

Using the calibration method, I was able to estimate parameters that have been diffi-

cult to evaluate directly from epidemiological studies. I estimated the average duration

of maternal immunity and post-infection immunity as 134 days (95% CrI 120–146) and

359 days (95% CI 351–365), respectively and that asymptomatic infections are 63% (95%

CrI 54%–72%) as infectious as symptomatic infections Figure 4.11–4.12. The dura-

tion of infections, duration of latency period and the relative susceptibility to infection

corresponding with literature and are similar to the proposed prior distribution.
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Figure 4.11: Smooth histogram plots comparing the prior (gray) and the posterior (red) distri-
butions for each of the inferred parameters.
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4.5.4 Estimated burden

The model predicts that between 68-81% of infants experience an RSV infection in their

first year of life, with subsequent infection risk generally decreasing with age (Figure 4.13).

Deviations away from this decreasing trend occur in age groups which have the highest

number of daily contacts.
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Figure 4.13: The mean annual incidence of RSV per 100,000 persons (black line) with 95%Cr
I (red region). The average number of contacts made per day for each age group shown in gray
bars.
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4.6 Discussion

This chapter outlines the design, parametrisation, and fitting to available RSV data of a

novel mathematical model for RSV transmission. The novelty of this mathematical model

is the exploration of the hypothesis that maternal protection to new-borns is seasonal,

contrary to the routine assumption in previous models in which all babies are born with

protection to RSV. Epidemiological evidence for seasonal changes in maternal protection

has also been provided in studies looking at seasonal changes in RSV-specific antibody

level from cord titres at birth.11 As cord titre influences the rate of severe infections in

the first year of life,10 seasonal changes could indicate temporal vulnerability in the infant

population. The model also tested the hypothesis that detection of positive samples in

infants less than 5 years of age is lost exponentially, contrary to the assumption that

detection rates are fixed across age groups. The DIC analysis suggests that age-dependent

factors which make up the detection probability decrease exponentially with age, which

could be possibly due to the significant increase in disease severity in these age groups and

parental concern for ill new-borns.

The posteriors distribution for the immunity parameters suggest that the average du-

ration of maternal immunity is 132 days (95% CrI 118–146) or around four months. This

duration is similar to observations from epidemiological studies, which show that height-

ened maternally-derived RSV neutralising IgG levels in infants can provide protection

from infection for between four to six months.10,13,14 The posterior distribution for the

average duration of naturally acquired protection is longer than suggested in experimental

reinfection studies at 361 days (95% CrI 350–365) (implying around 40% of persons at the

start of the season still have protection to RSV).This implies than 15%, 40% and 64% of

person are susceptible after 2 months, 6 months and 12 months respectively. The discrep-

ancy between the model estimated value and the experimental reinfection studies,98 which

suggest frequent reinfection is common around 6 months, could be due to the increase in

the probability of successful infection that comes from virological challenge in comparison

to natural exposure to RSV. The estimated burden is also higher than suggested in a

Kenyan study which looks at serological prevalence of RSV infection over a number of

years.106 However, these difference could be explained by a number of factors. First, there

is a difference in the epidemiology of RSV in Kenya and England and Wales, (e.g. Kenya

has irregular and aperiodic epidemic peaks, primary infection occurs later) which makes it
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difficult to compare incidence rates.121 Second, the study design of the Kenya study was

very small, and it only tested for RSV strain A, and not RSV strain B, which are known

to co-circulate in Kenya, therefore perhaps under reporting the true burden.4

There are limitations in the epidemiological studies used to estimate the contact matrices

and the attack rate. First, the POLYMOD survey,113 which was used to estimate the

average number of daily contacts for persons over 1 years of age in the UK, is over ten

years old, and there is emerging evidence which suggests that social contact patterns have

changed in this time.122 These studies are still too small to fit large epidemic models

such as the one presented in this chapter, but refitting the model to more recent contact

matrices in the future may more accurately capture the current transmission dynamics

of RSV. The epidemiological study used to estimate the attack rate, which was used to

estimate the prior distribution rate for the detection probability, is also very old (over

40 years). The significant difference between the prior and posterior distributions for

the detection probability suggests that the observations in this old epidemiological do

not translate to recent times. More recent UK-specific prospective cohort studies would

provide better estimates for the attack rate and improve the accuracy of prior distributions

for the detection probability.

In the next chapter I will adapt the model to estimate the impact of potential inter-

vention programmes. I will do this by comparing the projections of incidence from the

yet-to-be described adapted model to the model projections in this chapter. By using this

mathematical model of RSV transmission to evaluate the impact of potential intervention

programmes, the direct and indirect effects of potential vaccination programmes can be

properly quantified.
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Chapter 5

Evaluating the impact of potential

intervention programmes

5.1 Introduction

In the previous chapter I outlined the mathematical model for RSV transmissions and

fitted it to historic RSV incidence data in England and Wales. In this chapter I adapt

the model to evaluate the impact of potential intervention programmes at reducing RSV

burden. I evaluated interventions programmes based on the RSV vaccines and mono-

clonal antibodies that are currently under development as outlined in Chapter 3. These

intervention programmes are evaluated by modifying the existing transmission model in

various ways. First, including stratification by clinical-risk group for infants less than one

years of age, allowing intervention programmes which are aimed at different risk groups

to be evaluated. Second, to properly evaluate the indirect protection which occurs from

maternal vaccination, I consider stratification by family structure. Finally, I include ad-

ditional compartments in order to model the immune dynamics associated with vaccines

and monoclonal antibodies. By making these modifications and evaluating the model dy-

namically, I determine the number of cases averted per age and clinical-risk group for each

intervention programme.

The impact is measured in terms of clinical outcomes associated with RSV disease,

including symptomatic cases, hospital admission, deaths, GP consultations and number

of hospital bed days averted across the whole population. These outcomes were chosen

outcomes because both the age and risk-group specific QALY loss an the cost (in GBP) can

be readily obtained. In addition, they also allow for a deeper understanding of intervention-
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induced changes in transmission dynamics and the consequential direct and indirect effects

on alleviating health-care outcomes across the population.

5.2 Adaptation of the model to incorporate intervention

programmes

A summary of the adaptations made to the mathematical model to evaluate the inter-

vention strategies is given in Table 5.2, the parameters associated with the intervention

programmes are given in Table 5.1 and the equations of the adapted mathematical model

are given in Supplementary material S3.1.

Parameter Value Fitted distribu-
tion

Source

Palivizumab

Delay between administration
and protection (days)

Immediate (fixed) — 123

Average period of protection
(days)

150 (fixed) — 123

Efficacy on VHR infants (%) 33.8 (95% CI 0.0–66.6) Gamma(3.7623, 0.08983)123

Long-lasting mABs

Delay between administration
and protection (days)

Immediate (fixed) — —

Average period of protection
(days)

250 (fixed) — 38

Efficacy against symptomatic
infection (%)

70.1 (95% CI 52.3–81.0) W(11.898, 0.732) 124

Efficacy hospitalised case 78.4% (95% CI 51.9—90.3) W(11.611, 0.819) 124

Infant/childhood/elderly vaccine

Delay between administration
and protection (days)

11.4 days (95% CI 2.8–22.1) W(2.42, 12.87) 125

Period of protection (days) Same as post-infection immu-
nity (1/ω)

See posterior 125

Efficacy agaisnt all infections
(%)

83.0 (95% CI 75.0–88.0) W(31.464, 0.845) 125

Novavax vaccine

Average Period of protection
(days)

Same as protected neonates
(1/ξ)

See posterior 40

Efficacy against symptomatic
infection (%)

41.4 (95% CI 4.1–64.2) W(3.327, 0.461) 40

Efficacy against hospitalisations
(%)

53.5 (95% CI 23.0–71.9) W(5.354, 0.58) 40

Table 5.1: Description of the parameters associated with the prophylactics used in the intervention
model.

92



C
H

A
P

T
E

R
5
.

E
V

A
L

U
A

T
IN

G
T

H
E

IM
P

A
C

T
O

F
P

O
T

E
N

T
IA

L
IN

T
E

R
V

E
N

T
IO

N
P

R
O

G
R

A
M

M
E

S

Intervention strategy Further stratification Additional compartments Immunity

Current programme
(Palivizumab)

0-8 month olds according to whether they are
eligible for Palivizumab or not

VP , protected due to Palivizumab S → VP instantly. VP → S at rate
ωpal

Long-acting monoclonal
antibodies

i) 0-8 month olds according to whether they are
eligible for Palivuzumab. ii) 0-11 month olds
according to whether they are are high-risk or
not high-risk

VM , protected due to long-acting
monoclonal antibodies

S → VM instantly. VM → S at rate
ωmab

Infant, childhood and el-
derly vaccination

None. None. S → R takes on average 11.4 days.
R→ S at rate ω

Maternal vaccination 15-44 year olds by parental status (not a par-
ent n or parent p) and infants and parents by
whether they in programme c.

None. Immunity from vaccination of preg-
nant women is same as immunity
from vaccination of the elderly. Im-
munity in neonates assume all in c are
born with protection (in group M).

Table 5.2: Summary of the adaptations made to the mathematical model to evaluate the intervention programmes
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5.2.1 Current intervention programme (Palivizumab)

In order to evaluate to the impact of the Palivizumab programme I stratified the infants

aged between 0-8 months according to whether they are Palivizumab eligible (VHR) or not

(indicated by the superscript, r). To estimate the proportion of infants who are eligible for

Palivizumab in age group a (pa,VHR), I first estimated the number of infants who receive

Palivizumab per season in England from the number of Palivizumab units sold.126 I

assumed this value is equal to the prevalence of infants who are eligible for Palivizumab in

England and Wales. As the eligibility criteria for Palivizumab depends on age group a the

start of the RSV season and on gestational age, I determined the proportion of infants, per

gestational age, born with Chronic Lung Disease (CLD) and Chronic Heart Disease (CHD)

using data from USA..127,12836 This gives an estimate for the proportion of Palivizumab

eligible persons of 0.00348, 0.00227 for infants aged < 1 and 1 month of age, 0.00066

for infants aged 2-5 months, 0.00002 for infants aged 5-8 months and zero otherwise. For

these VHR infants, I assumed that 90% receive Palivizumab during the months of October

of February inclusive (totalling 2128 courses), with 33.8% of these acquiring immediate

protection which lasts for an average of 1/ωpal = 150 days, after which these individuals

return to the primary susceptible compartment (S0, Figure 5.1).123 I compare this status

quo to the following three alternative intervention strategies.
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Palivizumab
At birth: Age group a:

μϕP,pal
a,r

μ(1-ϕP,pal
a,r )pR

μ(1-ϕP,pal
a,r )(1-pR)

ηaϕP,pal
a,r

ηa(1-ϕP,pal
a,r )

S0

VP

M

ξ

ωpal

S0

VP

ωpal

Figure 5.1: The relationship between the state variables (VP : protected due to Palivizumab
antibodies) used in the Palivizumab intervention model. For Palivizumab the parameters are µ,
the birth rate, pR the proportion of infants born with protection due to maternal immunity, and
φa,rP,pal the proportion of infants in age group a, clinical risk group r who are newly protected by
Palivizumab at time t. The left schematic shows the rate of change between epidemiological groups
when Palivizumab is administered at birth. The right schematic shows the rate of change between
epidemiological groups when Palivizumab is given other age group. The rate of loss of immunity
is given by ωpal and shown by the dashed line. Rate of loss of maternal protection occurs at rate
ξ and is shown by a solid line.

5.2.2 Intervention strategy 1: Long-acting monoclonal antibodies

The first intervention strategy I consider is long-acting monoclonal antibodies. To eval-

uate this intervention strategy, I tracked the number of infants protected by long-acting

monoclonal antibodies, VM , who remain protected after birth for an average of 1/ωmab =

250 days after which they return to S0 (Figure 5.2). However, I relaxed this assumption

in an uncertainty analysis. In order to evaluate to the impact of long-acting monoclonal

antibodies intervention programmes aimed at infants in different clinical risk groups, I

stratified the infant population into demographic groups according to their clinical-risk

status i) Palivizumab-eligible (VHR), ii) high-risk (HR), and neither (NR) (indicated by

the superscript r). To estimate the proportion of infants who are high-risk, I assume the

prevalence is 3.8% across each monthly age group up to 11 months.114 I evaluated three

seasonal programmes that administer a single dose of long-acting monoclonal antibodies

at birth i) to those who are currently eligible for Palivizumab (MAB-VHR-S), ii) to both

VHR infants and HR infants (MAB-HR-S), iii) to all infants regardless of risk (MAB-

ALL-S). I evaluated two additional seasonal programmes that extend administration (iv)

to all VHR and HR infants under six months (MAB-HR-S+) and v) to all infants under
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six months (MAB-ALL-S+) throughout October only33 I assume that these programmes

would replace the existing Palivizumab programme; that they all achieve the same cov-

erage as Palivizumab and that the efficacy per course is 70.1% (95% Confidence Interval

(CI) 52.3–81.0%).38,124 The monoclonal antibody programmes considered are summarised

in Table 5.3.
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Intervention
programme
name

Prophylactic(s) Eligible population Window of admin-
istration

Coverage Annual number of
courses

Comparator

MAB-VHR La-mAB VHR infants October-February 90% 11,679 Palivizumab

MAB-HR-S La-mAB VHR infants October-February 90% MAB-VHR

La-mAB HR neonates October-February 90%

MAB-HR-S+ La-mAB VHR infants October-February 90% 22,907 MAB-VHR

La-mAB HR neonates October-February 90%

La-mAB HR 1-5 months September-October 90%

MAB-ALL-S La-mAB VHR infants October-February 90% 252,581 MAB-HR-S+

La-mAB HR and HR neonates October-February 90%

MAB-ALL-S+ La-mAB VHR infants October-February 90% 547,818 MAB-ALL-S

La-mAB HR and HR neonates October-February 90%

La-mAB HR and HR 1-5 months September-October 90%

Table 5.3: Summary of the characteristics of the intervention programmes which use long-acting monoclonal antibodies. La-mAB: Long-acting monoclonal
antibodies
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Long-acting monoclonal antibodies
At birth: Age group a:

μϕP,mab
a,r

μ(1-ϕP,mab
a,r )pR

μ(1-ϕP,mab
a,r )(1-pR)

ηaϕP,mab
a,r

ηa(1-ϕP,mab
a,r )

S0

VM

M

ξ

ωmab

S0

VM

ωmab

Figure 5.2: The relationship between the state variables (VM : protected due to long-acting
monoclonal antibodies) used in the long-acting monoclonal antibodies intervention model. For
long-acting monoclonal antibodies the parameters are µ, the birth rate, pR the proportion of
infants born with protection due to maternal immunity, and φa,rP,mab the proportion of infants in
age group a, clinical risk group r who are newly protected by long-acting monoclonal antibodies
at time t. The left schematic shows the rate of change between epidemiological groups when
monoclonal antibodies are administered at birth. The right schematic shows the rate of change
between epidemiological groups when long-acting monoclonal antibodies are given other age group.
The rate of loss of immunity is given by ωmab and shown by the dashed line. Rate of loss of maternal
protection occurs at rate ξ and is shown by a solid line.

5.2.3 Intervention strategy 2: Infant, childhood and elderly vaccination

The second intervention strategy I consider is vaccination. To evaluate this intervention

strategy, I assumed that a single dose of a vaccine conferred the same protection as that of

a natural infection, such that 83.0% (95% CI 75.0–88.0%) of vaccinated individuals in the

ith previous infection group who are susceptible (Si) are moved to respective recovered

group (Ri) after a delay reflect the build up of antibody immunity (Figure 5.3).125 I con-

sidered two vaccination programmes aimed at infants aged 2 months old; one administered

seasonally (VAC-INF-S) and one year-round (VAC-INF-A), both achieving a coverage of

90%, consistent with the DTaP/IPV/Hib/HepB/PCV/Rota primary series vaccination

coverage in England. I also considered two seasonal vaccination programmes aimed at el-

derly persons: one for those aged 75 years and older (VAC-75-S) and one for those aged 65

years and older (VAC-65-S), both achieving a coverage of 70%, consistent with vaccination

coverage for the elderly influenza vaccine programme.129,130 Finally, I considered three

seasonal programmes aimed at preschool children (aged 2–4 years, VAC-2-4-S) and school-

age children (aged 5–9 years, VAC-5-9-S, and aged 5–14 years, VAC-5-14-S), that achieve
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a coverage of 45% and 60% respectively, consistent with the live attenuated influenza vac-

cination programme in England.130 I assumed that all these vaccine programmes would be

administered in addition to the existing Palivizumab programme in the UK. The infant,

childhood, and elderly intervention programmes considered are given in Table 5.4.
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Intervention
programme
name

Prophylactic(s) Eligible population Window of admin-
istration

Coverage of eligible
population

Annual number of
courses

Comparator

VAC-INF-S Palivizumab VHR infants October-February 90% 2,128 Palivizumab

Vaccine 2-month-olds September-January 90% 251,162

VAC-INF-A Palivizumab VHR infants October-February 90% 2,128 VAC-INF-S

Vaccine 2-month-olds Year-round 90% 617,724

VAC-2–4 Palivizumab VHR infants October-February 90% 2,128 VAC-INF-A

Vaccine 2–4 year olds October-February 45% 917,008

VAC-5–9 Palivizumab VHR infants October-February 90% 2,128 VAC-2–4

Vaccine 5–9 year olds October-February 60% 2,046,820

VAC-5–14 Palivizumab VHR infants October-February 90% 2,128 VAC-5–9

Vaccine 5–14 year olds August-December 60% 4,093,640

VAC-75+ Palivizumab VHR infants October-February 90% 2,128 VAC-5–14

Vaccine 75+ year olds November-March 70% 5,495,680

VAC-65+ Palivizumab VHR infants October-February 90% 2,128 VAC-75+

Vaccine 65+ year olds November-March 70% 10,281,800

Table 5.4: Summary of the characteristics of the intervention programmes which use vaccines.
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Vaccination

ϕP,vac
a,r

Si Ei

Ai

Ii

Ri

λi(t)

(1-pA
j )σ

pA
j σ

γi

γi

Figure 5.3: The relationship between state variables for vaccination in children or the elderly.
Here φa,rP,vac is the proportion of individuals in age group a, clinical risk group r who are newly
protected by vaccination at time t. Solid lines refer to natural disease progression and dashed lines
refer to immune progression due to vaccination.

5.2.4 Intervention strategy 3: Maternal vaccine programmes

The third intervention strategy I consider is vaccination of pregnant women. To evaluate

the indirect effects of maternal vaccination while maintaining computational tractability

and epidemiological realism, I used a previously published method for evaluating the

impact of parental vaccination.131 In brief, this method tracks the number of mothers of

infants less than one year of age, and the number of these women who are participating in a

maternal vaccination programme (Figure 5.4). The proportion of persons in age group a

who are mothers with an infant less than 1 years of age, ua, was calculated by multiplying

the total number of infants less than 1 by the age-specific proportion of births by parental

age uap (uap is non-zero for a = 19, 20 and 21 only).132 This gives proportions of 0.0175,

0.0601, and 0.0233 for 15–24, 25–34, and 35–44 years respectively.132The proportion of

mothers who are in the programme is given by φc = 0.6. I define, ua,p = ua(1 − φc),

ua,c = uaφc and ua,n = (1− ua).
Superscript Description

n Infants less than 1 years of age and who are not participating in the maternal vaccination
programmes and adults who are not mothers who have given birth in the last year

p Mothers who have given birth in the last year who are not in the maternal vaccine programme

c Mothers who have given birth in the last year and are in the maternal vaccine programme and
the newly born infant.

Table 5.5: Summary of the maternal vaccine-related states.

The contact rate between mothers and their children is explicitly modelled using the

number of household and non-household contacts, as reported by the Great Britain arm
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of the POLYMOD study.113 Accordingly, the force of infection between mothers and

their infants is updated to reflect the vaccination status of the mother. I assume that

the vaccinated mothers are themselves temporarily protected from infection consistent

with the protection afforded by the childhood/elderly vaccination assumptions above. To

evaluate the direct effect on infants of vaccinating pregnant women, I used the results of the

previously mentioned Novavax’s maternal vaccine Prepare Trial which found 41.4% (95%

CI 4.1–64.2) of infants born to these mothers are protected against hospitalisation for the

first 3 months of life.40 Consistent with the trial, I assume pregnant women are vaccinated

at any point between 28 and 32 weeks gestation . I considered two maternal vaccination

programmes (Table 5.6), which are given in combination with the existing Palivizumab

programme: a seasonal programme (MAT-S), and one administered year-round, (MAT-A)

with a coverage of 60% as observed for prepartum Tdap vaccination in England.40,130 I

chose to use the vaccination coverage for prepartum Tdap, instead of Influenza maternally

vaccine which is lower (around 40% coverage), as the primary motivation behind both

the prepartum Tdap vaccination programme and the RSV vaccination programme is to

protect the unborn child from severe disease.130 For Influenza, the perception of pregnant

women is that the primary motivation for Influenza vaccine is to protect the health of

the mother rather than the unborn child.133 It has been hypothesised that the differences

in perception between the primary motivation for Influenza and Pertussis is one of the

reasons for the observed differences in coverage levels.134
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Intervention
programme
name

Prophylactic(s) Eligible population Window of admin-
istration

Coverage of eligible
population

Annual number of
courses

Comparator

MAT-S Palivizumab VHR infants August-December 90% 2,128 Palivizumab

Maternal vac-
cine

Pregnant women 28-32
weeks gestational age

October-February 60% 165,257

MAT-A Palivizumab VHR infants October-February 90% 2,128 MAT-S

Maternal vac-
cine

Pregnant women 28-32
weeks gestational age

Year-round 60% 406,442

Table 5.6: Summary of the characteristics of the intervention programmes which use maternal-vaccines
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Figure 5.4: The relationship between maternal vaccine groups in the maternal vaccine intervention model. The parameters are the birth rate, µ, and the
proportion of women who are newly mothers included in the programme φc. The model ensure that all infants born to vaccinated women are protection (all
into group M), otherwise they are born according to the dynamic maternal immunity assumption.
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5.2.5 Optimising seasonal administration

To allow an unbiased comparison of the seasonal programmes, our framework assumes

the programmes are given continuously for five months. For programmes that adminis-

ter Palivizumab and long-acting monoclonal antibodies, I assume administration occurs

during the Palivizumab-recommended time period of October to February. To determine

the period of administration for the remaining intervention programmes, I chose the five-

month period that resulted in the largest QALY gain relative to status quo (see Chaper 6

for details on calculation of the QALY gain).

5.2.6 Clinical outcomes

For each intervention programme the impact will be quantified by the reduction in five

different clinical outcomes; symptomatic infection, GP consultations, hospital bed days,

symptomatic infections, hospitalisations and deaths. To achieve this, I estimate a age

and clinical-risk group specific probability of each outcome occurring per infection, by

dividing the estimated annual incidence for each RSV-related outcome by the estimated

annual incidence of RSV infection. The number of symptomatic cases averted is estimated

directly from the transmission model for Palivizumab (i.e. the posteriors for pa). The

annual incidence for each RSV-related outcome is estimated by synthesis of all existing

epidemiological evidence on RSV burden in England and Wales.

5.3 Comparing the impact of different intervention programmes

5.3.1 Estimating annual incidence of outcomes

I estimated the annual incidence of five different RSV-related outcomes (symptomatic

infection, GP consultations, hospital bed days, symptomatic infections, hospitalisations

and deaths) under the existing Palivizumab programme by synthesising recent incidence

estimates for RSV outcomes in England. The number of symptomatic cases averted is

estimated directly from the transmission model for Palivizumab (i.e. the posteriors for

pa). The incidence of GP consultations and deaths are age-dependent and estimated from

three sources for each age category: 0–4 years of age,48 5–54 years26 and for 55 years and

over.25 For hospital admissions and number of bed days, the incidence was dependent

on age and clinical risk status. Reeves et al.31 gives the estimated number of hospital

bed days and hospital admissions for high-risk (HR) and not-at-risk (NR) infants up to
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11 months of age. For the individuals aged 1-4 years and 5-14 years (which are NR),

the number of hospital admissions is estimated from Reeves et al. 2017,27 and Taylor et

al25 and the number of bed days per hospitalisation is 2 days.135 For persons aged 15-64

years and 65+ years, I used Fleming et al.26 and data from PHE and assuming the average

number of bed days per hospitalisations is 3 days.136 For all the studies highlighted above,

the mean µ and 95% CI (cl, cu) are given, therefore, I fit a probability distribution using

Fitting procedure 2:

Fitting procedure 2 If CI are symmetric: (|(cu − µ)| = |(cl − µ)|): The fitted distri-

bution is N (µ, (cu−µ)/2). If CI are non-symmetric: |(cu−µ)| 6= |(cl−µ)|: By choosing

the parametric distributions, X = {Gamma(α, µ/α), LN (log(u), σ), Weibull(a, µ(Γ(1 +

1/a))−1)}, (chosen such that ∀X ∈ X , E[X] = µ), the fitted parameters are found by

solving the non-linear equation ∀θ ∈ Θ = {α, µ, a}

∫ cu

cl

pθ(x)dx− 0.95 = 0 (5.1)

to find the fitted values Θ̃. I choose the uncertainty according to the distribution whose

fitted parameter, θ̃ minimising the cost function

λ(θ̃) = (Pθ̃(cl)− 0.025)2 + (Pθ̃(cu)− 0.975)2 (5.2)

A summary of age-specific annual incidence rates for GP consultations, hospital ad-

missions, number of bed days and deaths is given in Figure 5.5 and Figure 5.6 .

106



CHAPTER 5. EVALUATING THE IMPACT OF POTENTIAL INTERVENTION
PROGRAMMES

GP consultations (all risk groups)
<
1m
o

1m
o

2m
o

3m
o

4m
o

5m
o

6m
o

7m
o

8m
o

9m
o

10
m
o

11
m
o

1y
rs

2y
rs

3y
rs

4y
rs

5-
9y
rs

10
-
14
yr
s

15
-
24
yr
s

25
-
34
yr
s

35
-
44
yr
s

45
-
54
yr
s

55
-
64
yr
s

65
-
74
yr
s

75
+
yr
s0

1000

2000

3000

4000

5000
A
nn
ua
li
nc
id
en
ce
of
G
P
co
ns
ul
ta
tio
n

pe
r
10
0,
00
0

Deaths (all risk groups)

<
1m
o

1m
o

2m
o

3m
o

4m
o

5m
o

6m
o

7m
o

8m
o

9m
o

10
m
o

11
m
o

1y
rs

2y
rs

3y
rs

4y
rs

5-
9y
rs

10
-
14
yr
s

15
-
24
yr
s

25
-
34
yr
s

35
-
44
yr
s

45
-
54
yr
s

55
-
64
yr
s

65
-
74
yr
s

75
+
yr
s0

10

20

30

40

50

60

70

A
nn
ua
li
nc
id
en
ce
of
de
at
h
pe
r
10
0,
00
0

Hospital admissions (NR)

Hospital admissions (HR)

<
1m
o

1m
o

2m
o

3m
o

4m
o

5m
o

6m
o

7m
o

8m
o

9m
o

10
m
o

11
m
o

1y
rs

2y
rs

3y
rs

4y
rs

5-
9y
rs

10
-
14
yr
s

15
-
24
yr
s

25
-
34
yr
s

35
-
44
yr
s

45
-
54
yr
s

55
-
64
yr
s

65
-
74
yr
s

75
+
yr
s0

2000

4000

6000

8000

10000

A
nn
ua
li
nc
id
en
ce
of
ho
sp
ita
l

ad
m
is
si
on
s
pe
r
10
0,
00
0

Bed days (NR)

Bed days (HR)

<
1m
o

1m
o

2m
o

3m
o

4m
o

5m
o

6m
o

7m
o

8m
o

9m
o

10
m
o

11
m
o

1y
rs

2y
rs

3y
rs

4y
rs

5-
9y
rs

10
-
14
yr
s

15
-
24
yr
s

25
-
34
yr
s

35
-
44
yr
s

45
-
54
yr
s

55
-
64
yr
s

65
-
74
yr
s

75
+
yr
s0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
nn
ua
ln
um
be
r
of
ho
sp
ita
lb
ed
da
ys

pe
r
pe
rs
on

Figure 5.5: Estimated annual incidence of GP consultations (top left), deaths (top right), hospital
admission (bottom left) and number of bed days (bottom right) per 100,000 persons in each age
group (x-axis) and clinical risk group.
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Figure 5.6: Estimate annual incidence for each of the outcomes by age group.

5.3.2 Per-infection probability of each outcome

The results of dividing the estimated annual incidence of each outcome by the estimated

annual incidence of RSV is given in Figure 5.7. The average probability of consulting a

GP due to RSV infection is highest in children less than 5 years of age (0.006–0.065) and

adults 65 years and older (0.103–0.132). The average probability of death per-infection
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is highest in adults over 75 years (0.002) and rare in children and other adults in the

remaining age groups (less than 3 in every 100,000 infections). The average probability

of hospitalisation is highest in infants below 1 year of age (0.010–0.097), with peak risk

occurring at 1 month of age, and lowest risk in persons aged 5-45 years of age (less than one

in every 10,000 infections). HR and VHR infants have an increased risk of hospitalisation

of 0.0138–0.129– and 0.14–0.37 respectively, compared with other infants (0.010–0.097).

Similarly, the average number of bed days experienced per hospitalisation is greatest in

infants less than 1 year of age (1–5) with the longest stays occurring at 1 month of age,

and HR and VHR infants seeing an increase in the number of bed days of 5–7 and 8–25

respectively.
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Figure 5.7: Estimated per-infection probability of GP consultations (top left), deaths (top right),
hospital admission (bottom left) and number of bed days (bottom right) in each age group (x-axis)
and clinical risk group.

5.3.3 Determining start date of administration for seasonal programmes

As the incidence of RSV is seasonal in England and Wales, and the protection afforded

by the prophylactics is temporary, then the effectiveness of the intervention programmes

depends on the timing of administration. For example, vaccination programmes which

start in March will afford protection to individuals during a period when RSV is not cir-

culating, and may lose their protection by time the peak incidence occurs in December.

In contrast, vaccination programmes given in October will afford the protection to indi-

viduals when the incidence of RSV is highest, making them more effective. To quantify
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impact of timing on the effectiveness of seasonal intervention programmes, I measured

the impact, in terms of discounted QALY loss, of starting each the seasonal intervention

programmes at various start dates. The results of this analysis, and the optimal timings

for the seasonal programmes (i.e. the lowest QALY loss) are summarised in Figure 5.8.
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Figure 5.8: The total discount QALY loss over ten years when a seasonal programme starts
administration on the month given on the x-axis.

5.3.4 Impact of intervention programmes

Long-acting monoclonal antibodies

The seasonal programmes aimed at VHR infants or VHR and HR infants (MAB-VHR-S

and MAB-HR-S, respectively) are the most efficient long-acting monoclonal antibodies
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programmes at preventing RSV hospitalisations, preventing 51 (95% CrI 43–55) and 36

(95% CrI 30–39) hospital cases per 1,000 administered courses and also RSV-related bed

days preventing 162 (95% CrI 133–162) and 225 (95% CrI 211–243) hospital bed days

cases per 1,000 administered courses. For GP consultations, these programmes prevent 34

(95% CrI 30–37) and 47 (95% CrI 44–50) consultations per 1,000 courses given, a similar

amount to hospitalised cases. These intervention programmes are not effective in raising

the median age of primary infection or at preventing deaths (Figure 5.11).

Childhood/elderly vaccination

I found that to maximise the health benefit of the seasonal vaccination programmes, the

optimal period of administration is between November and March for elderly programmes,

October to February for the VAC-2-4-S and VAC-5-9-S programmes, and August to De-

cember for the VAC-5-14-S programme. Vaccinating individuals 65 years and over is the

most effective programme at preventing the total number of GP consultations, hospitals,

bed days and deaths (23%, 25%, 26% and 49% reductions respectively) (Figure 5.9).

However, the large size of the target group means this programme is inefficient, pre-

venting 19.03, 1.63, 4.34, and 0.25 cases of GP consultations, hospitals, bed days and

deaths respectively per 1,000 vaccine courses. The most effective school-age programme

is the 5–14 year old programme, preventing 4.5% (95% CrI 3.9–5.4) of hospitalised cases,

4.9% (95% CrI 4.2–5.7) of bed days and 9.2% (95% CrI 8.4—10.9) of GP consultations.

School-age programmes confer considerable herd protection, with 91.5% of the 5-9 year

old programme and 94.9% of 5-14 year old programme of averted hospitalised cases due

to indirect protection.

Maternal vaccination

Our results suggest that, to maximise the health benefit for a seasonal third trimester

maternal programme, the optimal period of administration is from August until Decem-

ber (Figure 5.8). Such a programme prevents 8.5 (95% CrI 7.4–10.3) hospitalised cases

and 29 (95% CrI 22–37) bed days per 1,000 vaccine courses administered, with 22-30% of

the hospitalised cases prevented in infants less than 1 year of age attributable to indirect

protection from vaccinated mothers. Though the seasonal maternal programme is more

efficient than its year-round counterpart, it is less efficient at preventing hospitalised cases

than any of the long-acting monoclonal antibodies programmes (Figure 5.10). For GP

consultations the seasonal maternal programmes prevents 37 (95% CrI 31–41) consulta-
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tions per 1,000 courses given; more efficient than the year-round maternal programme (28

(95% CrI 26–31) per 1,000 courses given). Neither of the maternal vaccination programmes

are effective at preventing deaths.
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Figure 5.9: Impact of the intervention programmes at preventing RSV-related outcomes. Crosses
refer to the mean value and the line is the 95% credible interval
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Figure 5.10: Impact of the intervention programmes at preventing RSV-related outcomes.
Crosses refer to the mean value and the line is the 95% credible interval
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Figure 5.11: Average age of primary infection under different intervention programmes

5.3.5 Indirect effects

The influence of indirect effects at preventing healthcare and cost-related outcomes of

vary in magnitude across all intervention programmes. In all the programmes, indirect

protection is acquired mainly from protection of infants <1 years age group and the elderly.
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The programme for which indirect protection accounts for the largest proportion of total

protection is all school age children (5-14 years), with indirect protection of the elderly

and infants accounting for 77.4% and 78.4% of the total protection for hospital cases and

number of bed days averted (Figure 5.12).

For the remaining programmes which are aimed at preventing infections in infants by

direct protection, the proportion total protection which is from indirect protection is small.

For example, indirect protection of infants aged <1 years of age accounts for 12.9% and

2.4% of the total number of hospital cases averted in the all-year maternal programmes and

the mABs programme respectively. Further, indirect protection of the elderly is accounts

for only 10.3% of the total number of hospital cases averted in the elderly programmes

(Figure 5.12).
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Figure 5.12: Impact of direct and indirect protection for each of the programmes for RSV-related
outcomes, hospital admissions (top left), deaths (top right), GP consultations (bottom left) and
bed days (bottom right)
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5.4 Discussion

This chapter outlines the first model to use a dynamic transmission model to evaluate

how Palivizumab, monoclonal antibodies, and maternal vaccines impact the incidence of

RSV-related healthcare outcomes within a single framework. Consequently, this chapter

gives a comprehensive overview of the impact of all currently proposed RSV programmes

in terms of RSV-related outcomes (symptomatic infections, hospitalised cases, deaths,

GP consultations and hospital bed days) averted. The majority of the healthcare burden

associated with RSV is concentrated in the infants (particularly for hospital admission

and bed days) and the elderly (particularly for deaths). Further, only the number of bed

days averted has a notable burden in the high-risk and very-high-risk infants, with the

majority of burden seen in low-risk persons for all other outcomes. There are a number of

potential healthcare outcomes which were not included in this analysis, including A and

E attendances and (P)ICU admissions. Unfortunately, it was difficult to find age- and

risk-specific costs and QALY losses for these outcomes in England and Wales. Further

research into determining QALY loss and costs due to severe bronchiolitis and RSV-related

pneumonia for patients in emergency care would make it easier to augment the model in

the future.

The estimated impact of the prevention programmes suggest that the elderly and mABs

programmes are the most effective at reducing RSV-related outcomes. The elderly pro-

gramme aimed at persons aged 65 years and older and the year-round mABs programme

aimed at infants prevent a similar magnitude of hospitalised cases and bed days, with the

elderly programme additionally preventing a significant number of deaths. The maternal

and infant vaccination programmes are also effective at reducing outcomes, preventing

between 8–14% of the total number of hospital cases depending on the intervention pro-

gramme. Further, indirect protection accounts for a small proportion of the total protec-

tion of the intervention programmes aimed at infants and elderly, which is consistent with

the observation that infants and the elderly have a low number of daily contacts compared

to the rest of the population.113,117

There are some limitations in the parameter estimates in the Palivizumab model. For

the efficacy, I assume a value of 33% (95% CI 0.0–66.6) as observed in infants with Chronic

Lung Disease aged <12 months at the start of the RSV season.123 I chose this study as
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it is most recent clinical trial performed; has a large cohort comparable with all previous

studies; and gives efficacy values for specific underlying congenital conditions. Further,

the uncertainty estimate for Chronic Lung Disease is large, and spans values from the

previous studies, such as an efficacy of 55% from the IMPACT trial and 45% from another

clinical trial.35,137 A larger confidence interval for the efficacy is preferred in the modelling

as Palivizumab efficacy depends on many factors, including gestational age, birth day, and

underlying health conditions.123 Efficacy estimates for conditions specifically associated

with the eligibility criteria for Palivizumab in England and Wales would help improve the

accuracy of future models. The proportion of infants per age group who are eligible for

Palivizuamb (in the VHR group) is calculated using the number of Palivizumab doses sold

per year in England and Wales, and I assume that 90% of these receive a course. There

are two problems with this assumption. First, assuming that 90% of Palivizumab courses

bought are administered (coverage of purchased courses) is probably an over-estimation

due the logistical difficulty in administering a monthly dosing schedule to very sick in-

fants. Performing more clinical surveys to determine the coverage of purchased courses

of Pavlizumab would help modellers make better informed estimates for this parameter.

Second, is it likely that there are infants in hospitals who are eligible for Palivizumab

who do not get Palivizumab courses purchased for them (purchasing coverage). The only

way to determine the purchasing coverage is to calculate the prevalence of infants who are

eligible for Palivizumab (which is likely to be very difficult given the complexity in the

eligibility criteria for Palivizumb in England and Wales). As this model assumes a 90%

coverage of purchased courses and 100% purchasing coverage of Palivizumab, it is likely

to overestimate the impact of the Palivizumab programme (due to high coverage of pur-

chased courses), and under estimate the impact of the monoclonal antibodies programmes

(due to high purchasing coverage).

The maternal vaccine in this model is based on Novavax ‘s RSV F-nanoparticle formula-

tion. Recent stage III trial results for this product failed to meet its primary end point of

40% efficacy against RSV lower respiratory tract infections (LRTI) during the first three

months of life across all trial sites. However, variations in efficacy were observed depending

on region and gestation age at administration. Regional variation in efficacy saw South

Africa with promising efficacy estimates of 57% (95% CI 33%–73%) against RSV LRTI,

whereas the US site saw no evidence of efficacy.40 Although in this analysis I assume the

efficacy of the maternal vaccine is as estimated across all sites, I acknowledge that care
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should be taken when these results are projected onto the UK, which experiences seasonal

RSV similar to the US trial site. Efficacy was also found to vary with gestational age at

administration, with vaccination at the start of the third trimester (28–32 weeks) experi-

encing an efficacy of 54% (95% CI 23%–72%) against RSV-associated hospitalisation and

showing superior antibody transfer when compared to administration later in the third

trimester (efficacy of 26% (95% CI -23–56). In this chapter, I have chosen the efficacy

given at 28-32 weeks gestation as the health care delivery system in England is such that

specific uptake periods are feasible in GP clinics if individuals are notified at the relevant

time. However, uptake during this specific window may be less feasible in countries with

differing healthcare policy and thus lower coverage rates may be observed than used in

this study.

I assume that infants who are at high-risk of developing complications for Influenza are

the same infants at high-risk of developing complications for RSV (3.8% of infants under 1

year old). It is unclear if this is true, as no single study has compared clinical risk-factors

for both Influenza and RSV in infants in the UK. However, separate studies have both

identified prematurity, immunodeficiency, chronic lung disease, congenital heart diseases

as the risk factors due to Influenza and RSV independently.30,138 However, prematurity is

a stronger risk factor in RSV than Influenza, so assuming that children who are at high-

risk at developing complications for Influenza are the same as those for RSV is probably

an underestimation of the number of high-risk infants for RSV and can be see as a lower

bound (3.8%). It is worth noting that the number of high-risk infants cannot be equal

to or greater than 5%, as 5% of hospitalised RSV cases in England are due to high-risk

infants. The intervention programmes evaluated in this study are therefore a conservative

estimate for the impact and affordability of the monoclonal antibodies programmes aimed

at high-risk infants. Finally, some of the burden estimates for bed days may longer due

to recruitment bias for more severe infections.135 This implies that cost of RSV burden

in adults may be over-estimated, reducing the effectiveness of intervention programmes.

With the impact of the intervention programmes evaluated in terms of RSV-related

outcomes averted, in the next chapter I present a cost-effectiveness analysis for these

programmes, using the National Institute of Clinical Excellence (NICE) reference case.

Combining impact with costs from an NHS perspective allows for the calculation of the

Incremental Cost-Effectiveness Ratio (ICER) which can be used to inform policy makers
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of the efficiency and affordability of the potential intervention programmes.
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Chapter 6

Cost-effectiveness analysis of

intervention programmes

6.1 Introduction

In addition to evaluating the effectiveness of an intervention programme, public health

bodies require estimates for the resource burden associated with implementing an inter-

vention programme. The formal method which public health bodies use to evaluate if the

health benefits acquired from implementing a programme outweigh the additional costs is

cost-effectiveness analyses (CEA). CEAs use pre-defined metrics to measure the cost and

health benefits of an intervention programme which then enables the calculation of the

relative efficiency of such programmes to better allocate healthcare budgets. Using CEA

helps public health bodies to identify ways to redirect resources to maximise the health of

the population; a process which is increasingly important in healthcare systems as demand

for healthcare increases from a finite pool of national resources.

The National Institute of Clinical Excellence (NICE) produces UK-specific guidance

of best practice on the methods of CEA of potential intervention programmes.60 These

guidelines include specific methodological advice on the perspective from which the cost

and benefits of an intervention programme should be assessed; the methods and units

used for measuring health effects and resource use costs; and the time horizon for analysis

and discounting rates. The NICE guidelines on the perspective taken suggest that only

the cost and health benefits of a health intervention programme which directly impact

the NHS resource burden should be included (an NHS perspective). The suggested units

used for measuring the health effects are QALYs, and for costs, GBP and the time hori-
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zon used should be long enough to reflect all important difference in costs of outcomes

being compared at an annual discounting rate of 3.5%. In addition to cost-effectiveness

of programmes, the affordability of programmes should also be considered, as this has

an increasing impact on the feasibility of a programme being implemented.60 Guidelines

for best practice of evaluation of cost-effectiveness, such as those specified by NICE, en-

sure fairness and consistency in the evaluation of a whole suite of differing new health

technologies.

The aims of this chapter are to estimate the costs and health burden (in terms of QALY

loss) of each of the intervention programmes outlined in Chapter 5 and then calculate the

cost-effectiveness by applying the NICE guidelines for best practice for cost-effectiveness

analysis.
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6.2 Calculating the costs and QALY loss

A summary of the parameters used in this chapter are given in Table 6.1.

Parameter Mean value (95% CI where applicable) Reference

T Time horizon 10 years

r Discount rate 3.5% 60

Costs

Per GP visit

ΦGP All ages £36.00 (fixed) 139,140

Hospital bed day

ΦaH Paediatric (<5 years) £725.29 (718.13–733.99) 141

ΦaH Adults (≥ 5 years) £425.24 (415.16–435.70) 141

Administration of prophylactics (per course)

∆pal Palivizumab £57.50 139

∆mab La-mABs £11.00 139

∆mat Maternal vaccine £9.00 139

∆vac Vaccine £9.00 139

Purchasing prices (per course)

ρpal Palivizumab £4035.50 (Fixed) 141

ρX La-mABs, Maternal vaccine and
vaccine

Not known

QALY loss

Symptomatic infection

QaS Paediatric (<5 years) 2.336× 10−3(0.269× 10− 3–9.255× 10−3)

QaS Adults (≥ 5 years) 1.448× 10−3(0.135× 10−3–5.928× 10−3)

Hospital admissions

QaH Paediatric (<5 years) 4.098× 10−3(0.624× 10−3–13.141× 10−3) 44

QaH Adults (≥ 5 years) 2.990× 10−3(0.346× 10−3–11.387× 10−3) 44

Deaths

Life expectancy 81.0 years 143

QD Age-specific QALY loss See Supplementary material S4.1

Table 6.1: Health and economic parameters used in the cost-effectiveness analysis.

Costs were calculated in 2018 GBP, from the perspective of the NHS. The cost per GP

consultation was calculated by assuming an average GP consultation time of 9 minutes

at a cost of £4.00 a minute (£36.00).139,140 The cost per hospital bed day for children

less than five years of age was calculated using the non-elective costs for paediatric Bron-

chiolitis (Health Resource group (HRG) PD15A–D)—the main cause of RSV-associated

hospitalisations.30,141 The cost per hospital bed day for children five years and older was

determined using the non-elective costs for unspecified Acute Lower Respiratory Infection

(HRG DZ22K–Q).141 I assumed maternal, infant and elderly vaccines take 15 minutes to

administer in a GP clinic at a cost of £9 per course (assuming one dose per course).139

Similarly, I assumed long-acting monoclonal antibodies and Palivizumab, take 15 min-

utes to administer in hospital by a nurse at a cost of £11.50 per course for long-acting
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monoclonal antibodies and £57.50 per course (5 doses) for Palivizumab.139 A course of

Palivizumab costs £4035 (5 doses at £807 each).141

In line with our previously estimated quality-adjusted life year (QALY) loss estimates

per RSV episode for England,44 (Chatper 2) I assume that each GP consultation or

hospitalisation resulted in a QALY loss of 4.098 × 10−3 (95% CI 0.624 × 10−3–13.141 ×

10−3) and 2.990 × 10−3 (95% CI 0.346 × 10−3–11.387 × 10−3) for under fives and over

fives respectively, while other symptomatic non-healthcare seeking infections resulted in a

QALY loss of 2.336 × 10−3 (95% CI 0.269 × 10−3–9.255 × 10−3) and 1.448 × 10−3 (95%

CI 0.135 × 10−3–5.928 × 10−3).44 QALY loss due to death was commensurate with the

remaining number of expected healthy years of life remaining in the individual.

QALY loss due to death was commensurate with the remaining number of expected

healthy years of life remaining in the individual (Supplementary material S4.1). As-

suming an average life expectancy per person of 81.0 years,143 then using SF-6D population

norms with annual weighting of xa per year,144 the quality adjusted life expectancy is given

by
∑81

a=0 xa = 65.94. Given death occurs at year of life ai, then the QALY loss, assuming

a discounting rate of r = 0.035, is given by

E[QaiD ] =

81∑
a=ai

xa exp(−0.035(a− ai)) (6.1)

I assume that the standard deviation of the life expectancy at age ai is 10% of the

current life expectancy (QaiD ∼ N (E[QaiD ], 0.1(E[QaiD ])).

6.2.1 Outline of the economic model

I conducted three separate cost-effectiveness analyses. First, I calculated the incremen-

tal cost-effectiveness ratio (ICER) of replacing the Palivizumab with any of the long-

acting monoclonal programmes (MAB-VHR-S, MAB-HR-S, MAB-HR-S+, MAB-ALL-S,

and MAB-ALL-S+). Second, I calculated the ICERs of supplementing the Palvizumab

programme with the childhood or elderly vaccine programmes (VAC-INF-S, VAC-INF-A,

VAC-2-4-S, VAC-5-9-S, VAC-5-14-S, VAC-75-S, VAC-65-S). Third, I calculated the ICER

of supplementing the Palivizumab programme with the maternal vaccine programmes

(MAT-S, MAT-A). A strategy is said to be dominated if it is either a) strongly domi-

nated (both less effective and more costly than the next most effective strategy) or b)

weakly dominated (when it’s ICER is higher than that of next most effective strategy).
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For each of these three cost-effective analyses, using the non-dominated programmes only

(programmes which are not dominated by another programme), I calculated the maximum

price per course that would make each strategy cost-effective, assuming a cost-effectiveness

threshold of £20,000/QALY. All costs and effects were discounted at a rate of 3.5% over

a 10-year time horizon.60 For each intervention strategy, I calculated the confidence in-

tervals using 1,000 Monte Carlo samples. For each Monte Carlo sample, I first estimated

the number of RSV cases averted over the time horizon per outcome for an intervention

strategy by sampling from the joint posterior distribution and running the intervention

model for 10 years (Chapter 4). Then, by sampling from the per-infection probability

of each outcome occurring, I converted the number of RSV cases averted to the number

of outcomes averted (Chapter 5). Finally, I combined sampled values from the cost dis-

tributions with the number of each clinical outcome averted to calculate the distribution

of the maximum price per prophylactic course. The formula for the maximum price per

dose to implement programme P in an existing programme C to remain cost-effective at

an 20,000£/QALY threshold is given by:

ρ(P,C) =
20000(QC −QP )− (ΘP −ΘC)− (∆P −∆C)∑52∗T

w=1 D
a,r
P,tw

e−rw/52 −
∑52∗T

w=1 D
a,r
C,tw

e−rw/52
(6.2)

where, assuming that X is the prophylactic associated with intervention programme

P , the cost of treatment (ΘP ), cost of administration (∆P ) cost of purchasing (BP ) and

the total QALY loss (QP ) associated with each treatment over the time horizon is given

by:

ΘP =
52∗T∑
w=1

Za,rP,tw(raGΘGP + ra,rB Θa
H)e−rw/52 (6.3)

∆P = ∆X

52∗T∑
w=1

Da,r
P,tw

e−rw/52 (6.4)

BP = ρX

52∗T∑
w=1

Da,r
P,tw

e−rw/52 (6.5)

QP =
52∗T∑
w=1

Za,rP,tw(raSQG + ra,rH QaH + ra,rD QaD)e−rw/52 (6.6)
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6.2.2 Affordability

As per NICE guidelines, an intervention strategy is considered affordable if it costs less

than £20 million annually during the first three years of implementation.145 Using this

definition, I calculated the affordable purchasing price per course for each non-dominated

programme, by subtracting the total, undiscounted cost of administering the intervention

strategy for the first three years from £60 million (3 years at £20 million each) and dividing

by the total number of courses given during this period.145
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6.3 Cost-effectiveness analysis projections

This section first outlines the maximum purchasing price per course for each of the in-

tervention strategies to remain cost-effective (calculated using Equation 6.2). Then the

affordability of the intervention programmes is discussed.

6.3.1 Maximum purchasing price per dose

Long-acting monoclonal antibodies: The maximum purchasing price per course for the

long-acting monoclonal antibodies programme to be cost-effective when administered sea-

sonally to only the VHR infants is £4,342.97 (95% CrI £4,126.31–4,462.25) (Figure 6.1).

For this seasonal programme to remain cost-effective after extending to HR neonates

(MAB-HR-S), and then to all HR infants less than 6 months at the start of season (MAB-

HR-S+), requires substantially lower maximum purchasing prices per course of £201.15

(95% CrI £149.61–243.42) and £87.03 (95% CrI £64.80–116.99) respectively (Figure 6.1).

Maternal vaccination: The year-round maternal vaccination programme was domi-

nated by the seasonal strategy. The maximum purchasing price per course for the seasonal

maternal vaccination to be cost-effective is £85.27 (95% CrI £77.79–93.80) (Figure 6.1).

Childhood/elderly vaccination: The year-round vaccine programme aimed at infants

2 months of age is dominated by its seasonal counterpart, while the 65 years and over

programme is dominated by the 75 years and older programme. Further, the pre-school,

and school-age programmes are subject to extended dominance by the 75 years and older

programme. For the seasonal vaccine programme aimed at infants aged 2 months of age,

the maximum purchasing price per course to remain cost-effective is £94.76 (95% CrI

89.09–99.24). Targeting those aged 75 years and older requires a lower purchasing price

per course of £20.71 (95% CrI 10.32–34.64) ((Figure 6.1).
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Figure 6.1: Probability of cost-effectiveness for each of the non-dominated programmes over a
range of purchasing prices.

If the duration of protection varies between 150 and 365 days, the maximum purchasing

price for the MAT-HR-S programme would also vary between £185.79-215.02, respectively

(Figure 6.2).
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Figure 6.2: Sensitivity analysis on the duration of protection for the monoclonal antibodies and
its effect on the maximum purchasing price per course.

6.3.2 Affordability

The long-acting monoclonal antibodies programmes: MAB-VHR-S, MAB-HR-S, and MAB-

HR-S+ and the seasonal maternal programme (MAT-S) are affordable if implemented for a

cost-effective purchasing price per course (affordable thresholds are £9,395.75, £1,712.46,
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£873.08, and £121.02 respectively). The seasonal infant programme aimed at 2-month-

olds and the 75 years and older programme are affordable if implemented for £79.62 and

£3.63 respectively—81% and 16% of the estimated mean maximum purchasing price per

course.
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6.4 Discussion

This chapter outlined the process of integrating the results of the intervention model into

a cost-effectiveness framework and evaluated the likely maximum dose prices of the new

generation of RSV preventive pharmaceuticals to make them cost-effective and affordable

in England. The CEA analysis found that replacing the existing seasonally administered

Palivizumab programme with long-acting monoclonal antibodies would be cost-effective

and affordable at a maximum course price of £4403 (95% CrI 4338–4511). Extending the

programme to heightened risk or all infants would remain cost-effective and affordable at

approximately £200 and £90, respectively. A seasonal maternal vaccination programme

would be cost-effective and affordable with a maximum purchasing price per course of £85

(95% CrI 79–91).

This work in this chapter is also the first to directly link the impact of potential pro-

grammes from a dynamic transmission model to a CEA according to the NICE reference

case—the gold standard approach for CEA in England and Wales, and the first to use

EQ-5D-based QALY estimates for RSV. The CEA accounts for both the direct and in-

direct effects of intervention strategies. This approach is of particular importance when

comparing the health benefits of vaccinating school-age children where the majority of

hospitalised cases averted occur through indirect protection.

The total cost of each intervention programmes is estimated using NHS Improvement

Reference Costs 2018141 which quote the average unit cost to the NHS of providing a

service to NHS patients in England during 2018. These costs are appropriate for use in

CEAs as they give a recent and comprehensive picture of the cost of delivering healthcare

services directly from the perspective of the NHS. The Reference Costs state that the

cost of purchasing Palivizumab was £807 per dose. However, the size of the dose of

Palivizumab given (the 50mg dose or the more expensive 100mg dose) depends on body

weight of the infant when Palivizumab is administered.36 Assuming the £807 quoted

is the weighted mean of the two sizes of dose given, then using the value in the cost-

effectiveness analysis is approximately correct. However, if this quoted price is the cost of

purchasing the small or large dose only, then the cost-effectiveness analysis will under- or

over-estimate (respectively) the cost-effective purchasing price per dose of replacing the

Palivizumab programme with a long-acting monoclonal antibodies programmes.
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As RSV-specific case codes are not included in the NHS Improvement Reference Costs,

prices for unit costs of all-case respiratory disease-related outcome are used in leiu, and it

is not clear if this is a accurate representation of the unit cost of RSV-specific disease. In

estimating the total costs and QALY loss of each programme, some potentially important

health care outcomes were excluded, such of ICU infection. ICU admission was omitted

due to lack of information about the QALY loss due to RSV-specific (P)ICU admission in

England and Wales. Excluding (P)ICU admissions, which have a high expense and QALY

loss, means that the CEA presented in this chapter will give a conservative estimate for the

effectiveness of the mABs programmes, and consequently, will underestimate the maximum

purchasing price per dose. There are other outcomes omitted from the model which

could be important in estimating resource burden from the perspective of the NHS (e.g.

prescription rates, A+E rate, sequelae etc.) however the model is limited in the number

of outcomes it can predict, as there must be enough epidemiological evidence to produce

age- and clinical-risk group specific per-infection risks for each outcome considered.

Though the results of this analysis suggest that the long-acting monoclonal antibodies

and maternal programmes are cost-effective, implementation of these programmes will

present clinical and logistical challenges that this analysis has not considered. For ex-

ample, I assume the same administration price per dose for all the monoclonal antibody

programmes. However, administration of monoclonal antibodies to those under 6 months,

rather than just new-borns, will likely be more expensive and achieve lower rates of up-

takes, all else equal, as they will need to make a separate appointment at a GP or hospital

setting for dose administration. Consequently our results may overestimate the impact

and cost-effectiveness of these programmes. Further, in estimating the per-infection risk

for RSV-related outcomes, there were no clinical-risk-specific estimates for death and for

GP consultations available in the literature, meaning the probability of these outcomes

occurring may be underestimated in VHR or HR infants, implying costs and QALY bur-

den of some of the intervention strategies may be conservative. Further studies which help

estimate the burden of specific outcomes in England would help reduce uncertainty and

increase the accuracy of the model predictions.

From Chapters 4–6, I have outlined the dynamic transmission model, intervention

model and cost-effectiveness analysis to determine which of the RSV intervention pro-

grammes are likely to be implemented assuming cost-effectiveness threshold of 20,000£/QALY.
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In the final chapters I discuss the open-source code which reproduces the work in the pre-

vious chapters, the significance of this work, its implications on future immunisations

strategies, and future developments of this work.
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Chapter 7

Summary of thesis and looking

forward

In this thesis I have achieved the five aims and objectives outlined in Chapter 1. First,

I have performed a cross-section survey to measure the health burden, in terms of QALY

loss, of mild and severe RSV infection for both infants and adults in England. This is

the first study to estimate the QALY loss due to acute RSV infection using standardised

instruments such as EQ-5D questionnaires. As these are the gold standard for evaluating

QALY loss according to NICE, the estimates from this study will be useful for all future

cost-effectiveness analysis of RSV infection both in England and in other countries. Sec-

ond, I performed a review of existing mathematical models of RSV transmission. This is

the first time a review of RSV-specific models has been performed and the results will be of

interest to mathematical modellers who require an oversight of the current RSV modelling

landscape. Third, I developed and parameterised a novel mathematical model of RSV

transmission for England and Wales which takes into account the important aspects of

RSV transmission not currently modelled, as identified in the review in the previous chap-

ter. The model is calibrated to historic incidence data specific to England and Wales and

reproduces the observed incidence of RSV. Fourth, I evaluated the impact of different in-

tervention programmes using the calibrated mathematical model. Finally, I evaluated the

cost-effectiveness of the different intervention programmes by combining the mathematical

model with an economic analysis and the QALY estimates for RSV infection. The results

in this thesis suggest that regardless of the intervention strategy, seasonal administration

is the optimal intervention compared to year-round administration. Moreover, there is

little evidence that strategies aimed at children 2 years and older and those targeted at
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the elderly would be cost-effective or affordable, respectively. In contrast, long-acting

monoclonal antibodies and maternal vaccines may be a cost-effective replacement or addi-

tion to the existing Palivizumab programme, respectively. The scope of the intervention

programme however will depend on the purchasing price when these pharmaceuticals are

made available.

There are limitations with the mathematical model regarding assumptions about immu-

nity and the parametrisation of the Palivizumab programme. For the immunity, I assumed

that individuals experience a temporary period of complete protection from reinfection.

The rationale for this assumption is from the heightened neutralising antibody levels which

follow post-infection. However, the presence of neutralising antibody alone does not en-

sure protection from RSV infection, therefore assuming complete immunity post-infection

is probably an overestimation of the acquired post-infection protective effects. Expanding

the modelling to include the possibility of non-complete immunity post-infection could

help elucidate information about the immunopathology of RSV infection. Further, some

of the parameter estimates for the Palivizumab programme could be improved. For ex-

ample, the model assumes a 90% coverage of Palivizumab, as is observed for other infant

vaccination programmes, but this is likely to be an overestimation due to the logistical

difficulties associated with administration. In addition, the model assumption of a 100%

purchasing coverage (all persons who need Paliviumab have it purchased for them) is

certainly an overestimation, however there is no data available which could be used to

easily estimate this parameter. The overestimation of these two parameters means the

model is likely to underestimate the burden of RSV in very-high-risk groups, therefore

the purchasing price per dose for programmes which replace the Palivizumab programme

(i.e. long-acting monoclonal antibodies) are underestimated in the model. However, these

inaccuracies in the parameterisation of the Palivizumab programme will not greatly im-

pact the incremental cost-effectiveness analysis of programmes which are supplementary

to the Palivizumab programme. More epidemiology evidence is needed on the clinical

attitudes towards Palivizumab administration to gain clearer estimates for these values

for use in mathematical models. An important aspect of this work is the care in ensuring

the uncertainty associated with each stage of the modelling has been properly quantified.

Uncertainty in decision-making is particularly important as it provides evidence on the

probability of an intervention programme being cost-effective and identifies specific areas

which influence this probability. Funding epidemiological studies which would allow for
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better estimates for these parameters to be derived would provide more certainty in future

cost-effectiveness analysis and consequently give more confidence to decision makers about

future policy.

The mathematical modelling in Chapters 4–6 was performed using C++ in a code

written by the author and the figures were made using Mathematica version 11. The

C++ code is available at the author’s Github account (https://github.com/dchodge/

rsv_trans_model).146 The main file of the code (main.cpp) has five main functions which

perform all the work needed to recreate the results in this thesis. The first function

calibrates the RSV model and the outputs are the posterior distributions for each of

the fitted parameters and intermediary results which elucidate information about the

calibration process including the temperature ladder, covariance matrix and acceptance

ratio. The second function gives the exemplar results from Chapter 4 using the posterior

distributions from the first function. The third function determines the optimal week

for each of the seasonal programme to begin administration by calculating the QALY

loss for each possible starting week (Figure 5.8). The fourth function determines the

impact of each of the possible intervention programmes with outputs including the number

of cases averted, the number of each outcome averted, the discounted QALY loss and

cost for each programme. The final function produces the same output as the fourth

function but varies parameters according to the sensitivity analysis. The transmission

model is built such that persons with adequate knowledge of C++ could evaluate their

own intervention programmes, provided a timetable for uptake across various age-groups

is provided. However, ongoing work is turning the intervention part of this model into

an R package, which would allow users with basic knowledge of R to evaluate the impact

of custom intervention programmes related to specific policy requests, including multi-

prophylactic approaches. This flexibility and transparency will be useful looking forward

when decisions need to be made about which programmes are to be tested and prophylactic

products have been approved for licensure. These decisions are often made by evaluating

a specific suite of programmes according to the manufacturers proposed use, meaning the

many different programmes may need to be evaluated in a short space of time. The model

and future R package could be used to evaluate these different programmes quickly, and

thus respond to the ever-changing landscape of viable products for RSV prevention.
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The parallel tempering MCMC used in the model has been converted to a general-

purpose R Package (see https://github.com/dchodge/ptmc).147 The R package allows the

user to define the fitted parameters, likelihood, prior distributions and initial values for

any statistical model (not just infectious disease transmission models). Once set up, it

will sample from the posterior distributions of the fitted parameters for a user-defined

number of iterations. It has various customising options for the temperature ladder,

thinning, and run length and it allows for the option of adaptive covariance matrices. Its

use is very similar to the popular BayesianTools Package in R which allows the user to

use a suite of MCMC samples to obtain posterior distributions for a user-defined model.

Preliminary analysis comparing the efficiency of the BayesianTools package and the self-

written parallel-tempering MCMC package at fitting SIR-type epidemic models suggests

that the latter has the most convincing convergence in a shorter space of time.148 Using

purpose built R packages, such as one the described, will assuage concerns surrounding

convergence of epidemic models, allowing more time for analysis of issues more relevant

to policy makers (i.e. impact of intervention programmes or cost-effectiveness analysis).

As outlined in the impact statement, there are several specific aspects of the thesis

which will have a beneficial use both inside and outside academia. This thesis is the first

to estimate the health burden of RSV in terms of Quality Adjusted Life Years lost. As this

metric is the standard metric used for cost-effectiveness analysis, these values will be used

by both academic, public health research and policy decision makers in future RSV-related

cost-effectiveness analyses. Hopefully this small cross-sectional study will encourage larger

and more sophisticated cohort studies on RSV-specific burden to be carried out. The

transmission model presented in this thesis has been numerically solved and presented as

an open-source software and therefore provides a framework which can be build upon in

the future to evaluate different intervention programmes across different settings. From an

epidemiological prospective, this thesis also shows that maternal protection in infants born

in England alters with seasonality, with low protection occurring before the start of the

RSV season, and peak protection occurring just after the RSV season. This observation

contradicts the assumption that maternal protection is constant throughout the year as

previous mathematical models have assumed. This could be used as evidence to inspire

future clinical trials which try to find further epidemiology evidence to support the claims

regarding maternal protection from this study. Finally, the cost-effective purchasing price

per course for these intervention programmes are the first to be estimated from a dynamic
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transmission model (which takes into account herd immunity) and also the first to be

estimated using an economic analysis informed from the National Institute of Clinical

Excellence guidelines. There is already some developments with expanding this project

in the future, including the building of a website where all the details of the RSV model,

the C++ code, and a platform for interface will be available to policy makers and other

public health workers.

To conclude, this thesis presents a novel mathematical model for RSV transmissions used

to give a comprehensive overview of the cost-effectiveness of all feasible RSV prevention

strategies at the time of writing for England and Wales. It describes the first dynamic

transmission model for RSV in England and Wales, and it is also the first model to link

the impact of Palivuzumab, long-acting monoclonal antibodies and maternal vaccines to

a cost-effectiveness analysis. In addition the model is easily adaptable to include other

strategies and other settings. Consequently, this work will be an essential tool to policy-

makers when making decisions on the future of RSV intervention strategies in England

and Wales.
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Supplementary material for Chapter 2: Es-

timating the health burden due to RSV

S1.1 Statistical Analysis

S1.1.1 Linear regression model for severe disease

From this linear regression I find that the single explanatory variable healthcare-seeking

behaviour (stratified by 2 levels) most parsimoniously predicts the observational data for

when the peak HR-QoL loss from the data is above 0.6 (Figure S1.1). The best-fit

model is therefore given by E[YS ] = 0.7824 + 0.2436x1 (t-value = 4.111 and P = 0.0012,

AIC = -18.6) where x1 = 0 when no healthcare is sought and 1 otherwise. The model-

estimated peak HR-QoL loss for severe disease, stratified by healthcare-seeking behaviour

can then be calculated ( Figure S1.1–S1.2). Log-transforming the response variable

reduces the likelihood (AIC = -9.7, results not shown), therefore I used an untransformed

linear regression model.
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Figure S1.1: Backwards stepwise regression analysis results for the five explanatory variables for
the linear regression model for severe disease episodes. The P-value for each explanatory variable
for each step in the backwards regression is shown, with an X indicating the variable was removed
from the regression because it was the highest P-value above the threshold value of 0.05 (indicated
by the pink region). The AIC value is the model-fit at the end of the regression with the remaining
explanatory variables.

S1.1.2 Log-transformed linear regression model for mild disease

From this log-transformed linear regression I find that the single explanatory variable, VAS

score loss, most parsimoniously predicts the observational data when the peak HR-QoL

loss from the data is below 0.6. The best-fit model is therefore given by log(E[YM ]] =

−1.7885 + 0.0102x5 (t-value = 4.0674, P = 0.000231 and AIC = 17.29) where x5 is the

VAS score loss. The model-estimated peak HR-QoL loss for mild disease, for VAS score

loss values between 0 and 100, can then be calculated ( Figure S1.3–S1.4).
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Figure S1.2: The distribution for the model-estimated peak HR-QoL loss for severe disease. The
solid black line indicates the mean of the distribution, the dotted lines indicate lower and upper
95% CI.

S1.1.3 Logistic regression model for classification of disease severity

From this logistic regression model, I find that coughing severity (stratified by two levels)

most parsimoniously predicts the observation data when the peak HR-QoL loss is trans-

formed to a binary response variable; 0 when less than 0.6 and 1 when greater than 0.6. The

best-fit model is therefore given by E[p] = σ(−1.9924+3.4965x2) (Z = 3.908, P = 9.31e-05,

AIC = 46.35) where x2 is 0 with no/mild coughing and 1 otherwise (Figure S1.5–S1.6).
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Figure S1.3: Backwards stepwise regression analysis results for the log-transformed linear re-
gression model for mild disease episodes. The P-value for each explanatory variable for each step
in the backwards regression is shown, with an X indicating the variable was removed from the
regression because it was the highest P-value above the threshold value of 0.05 (indicated by the
pink region.) The AIC value is the model-fit at the end of the regression with the remaining
explanatory variables.

S1.1.4 Summary of results

I have used the mixture-model approach to calculate the model-estimated peak HR-QoL

loss for a symptomatic RSV infection. I parameterized the model using questionnaire

responses from respondents over five years of age with suspected RSV infection for whom I

could estimate the peak HR-QoL loss derived from the EQ-5D questionnaires. I therefore

determined the model-estimated peak HR-QoL loss as a function of healthcare seeking

behaviour, productivity loss, age, VAS score loss, coughing severity all of which I knew

from the questionnaire respondents.

Our results suggest that the model-estimated peak HR-QoL loss due to an RSV dis-

ease episode can be predicted by clinical information independent of a validated HR-QoL

questionnaire. Specifically, the model-estimated peak HR-QoL loss can be estimated using

only the VAS score loss, whether healthcare was sought, and whether severe coughing was
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Figure S1.4: The distribution for the model-estimated peak HR-QoL loss for mild disease as VAS
loss increases. The solid black line indicates the mean of the distribution, the dotted lines indicate
lower and upper 95% CI bands.

experienced (Figure S8).
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Figure S1.7: The distribution of the model-estimated peak HR-QoL for coughing severity,
healthcare-seeking behaviour and VAS loss. The solid red line indicates the mean of the dis-
tribution, the black lines indicate lower and upper 95% CI bands.
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Figure S1.5: Backwards stepwise regression analysis results for the five explanatory variables
for the logistic regression model. The P-value for each explanatory variable for each step in the
backwards regression is shown, with an X indicating the variable was removed from the regression
because it was the highest P-value above the threshold value of 0.05 (indicated by the pink region.)
The AIC value is the model-fit at the end of the regression with the remaining explanatory variables.

S1.1.5 Additional Tables

HR-QoL weight for the explanatory variables

Model-estimated peak HR-QoL loss and QALY loss for the explanatory vari-

ables
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Figure S1.6: The distribution for the probability of severe disease, p. The solid black line
indicates the mean of the distributions, the dotted lines indicate lower and upper 95% CI.

HR-QoL weight (Median and range)

Age (years)

5–14 0.689 (-0.170–1.000)

15+ 0.752 (-0.166–1.000)

Coughing severity

None or mild 0.760 (-0.126–1.000)

Severe -0.008 (-0.170–0.691)

Healthcare-seeking behaviour

None 0.743 (-0.077–1.000)

Seek healthcare 0.300 (-0.170–1.000)

Productivity

Time taken off 0.760 (-0.166–1.000)

No time taken off 0.439 (-0.170–0.812)

VAS score loss

Below median (40) 0.796 (-0.170–1.000)

Above median (40) 0.552 (-0.166–0.812)

Table S1.1: HR-QoL weight for each explanatory variable for suspected cases in persons aged
five years and older.

143



Model-estimated
peak HR-QoL loss
(Mean and 95%
CI)

QALD loss (Mean
and 95% CI)

QALY loss (Mean
and 95% CI)

Age (years)

0-5 0.798 (0.208–1.462) 1.356 (0.161–4.643) 3.731 ×10−3 (0.456–
12.710)

6-11 0.840 (0.235–1.438) 1.429 (0.187–4.731) 3.935 ×10−3 (0.505–
12.889)

12-23 0.861 (0.301–1.446) 1.464 (0.219–4.765) 4.043 ×10−3 (0.585–
13.325)

24-59 0.836 (0.244–1.419) 1.421 (0.199–4.626) 3.871 ×10−3 (0.521–
12.727)

Coughing severity

None or mild 0.499 (0.148–1.482) 0.845 (0.097–3.292) 2.336 ×10−3 (0.269–
9.255)

Severe 0.878 (0.344–1.443) 1.496 (0.227–4.841) 4.098 ×10−3 (0.624–
13.141)

Healthcare-seeking behaviour

None No response No response No response

Seek healthcare 0.820 (0.222–1.450) 1.391 (0.179–4.617) 3.823 ×10−3 (0.492–
12.766)

VAS loss

Below median (65) 0.784 (0.200–1.393) 1.339 (0.166–4.488) 3.676 ×10−3 (0.453–
12.250)

Above median (65) 0.860 (0.259–1.498) 1.462 (0.202–4.865) 3.989 ×10−3 (0.525–
13.212)

Table S1.2: HR-QoL, QALD and QALY loss for each explanatory variable for confirmed cases
in children under the age of five. *Conditional on ascertaining a confirmed
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Model-estimated
peak HR-QoL loss
(Mean and 95%
CI)

QALD loss (Mean
and 95% CI)

QALY loss (Mean
and 95% CI)

Age (years)

5–14 0.462 (0.118–1.308) 0.637 (0.054–2.609) 1.740 ×10−3 (0.144–
7.277)

15+ 0.452 (0.117–1.222) 0.625 (0.052–2.607) 1.717 ×10−3 (0.144–
7.078)

Coughing severity

None or mild 0.382 (0.111–1.113) 0.528 (0.050–2.167) 1.448 ×10−3 (0.135–
5.928)

Severe 0.785 (0.280–1.368) 1.103 (0.126–4.149) 2.990 ×10−3 (0.346–
11.387)

Healthcare-seeking behaviour

None 0.405 (0.111–1.137) 0.565 (0.049–2.349) 1.543 ×10−3 (0.136–
6.406)

Seek healthcare 0.616 (0.155–1.371)
—

0.866 (0.071–3.508) 1.950 ×10−3 (0.185–
9.578)

Productivity

Time taken off 0.404 (0.111–1.176) 0.558 (0.048–2.342) 1.539 ×10−3 (0.137–
6.382)

No time taken off 0.579 (0.139–1.369) 0.788 (0.06–3.184) 2.170 ×10−3 (0.173–
8.818)

VAS loss

Below median (40) 0.373 (0.107–1.081) 0.524 (0.047–2.190) 1.417 ×10−3 (0.131–
5.749)

Above median (40) 0.562 (0.141–1.382) 0.790 (0.068–3.246) 2.163 ×10−3 (0.182–
8.945)

Table S1.3: HR-QoL, QALD and QALY loss for each explanatory variable for suspected cases in
persons aged five years and older.
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S1.2 Questionnaires

WHITE — Your child’s recent RSV infection

This section should be filled in by the parent/guardian of the child in your
household who has recently been infected by the respiratory disease, RSV.

1. How old is your child, who was recently infected with RSV?
(If your child is less than 1 years of age, please give their age in months)

years months

2. What is the date today? (Day/Month/Year)

/ /

3. What symptoms did your child have because of their infection?

Please tick if your child experienced the following during their infection.

� Runny or blocked nose

� Coughing

� Fever

� Sore throat

If your child experienced difficulty breathing (e.g. shortness of breath,
wheezing) during his/her infection: please tick the relevant box(es) which
best describe its effect on your child’s day-to-day activities (e.g. feeding,
playing, moving if appropriate) and the duration it was experienced.

� No noticeable effect on his/her day-to-day activities days

� Mildly affected his/her day-to-day activities days

� Significantly affected his/her day-to-day activities days

4. On what date did your child first experience the symptoms
described in Q3? (Day/Month/Year)

/ /

5. Did you seek medical care for your child during these symp-
toms?(please tick all that apply and indicate the number of times)

� a. Phone/email NHS 111 / NHS 24 / NHS Choices times

� b. Phone/email GP — response from the receptionist times

� c. Phone/email GP — response from the doctor or
nurse

times

� d. Visit (face-to-face) a GP or nurse times

� e. Visit A&E department (including out of hours ser-
vice)

times

� f. Admitted to hospital (as an inpatient) times

� g. Other medical services, please specify:

6. Below are two line scales numbered from 0 to 100. 100 means
the best health state you can imagine and 0 means the worst
health state you can imagine.
- In box A, please draw a line from the box to a point on the scale which
shows how good or bad your child’s health was on the WORST DAY of
infection.
- In box B, please draw a line from the box to a point on the scale which
shows how good or bad your child’s health is TODAY.
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There are no questions on this page.
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BLUE - Infections in persons 5 – 14 years old

If another child who is aged 5–14 in your household fits the following criteria,
then it is likely that he/she was infected with RSV. Please complete the rest
of this questionnaire on their behalf about their illness. If no one aged 5–14
in your household fulfils the criteria below, please leave this section blank and
move to the YELLOW section.

• He/she experienced symptoms of respiratory illness (as listed in Q3) be-
tween 5 days before the start of your other child’s RSV infection, and 5
days after the end of your other child’s RSV infection.

If there are multiple persons in your household who fit the criteria, then
please complete this section on behalf of the oldest.

7. How old is he/she?

� 5 – 9 years old � 10 – 14 years old

8. What is their sex?

� Male � Female � Other

9. What symptoms did he/she have because of their infection?

Please tick if he/she experienced the following at any point during their
infection.

� Runny or blocked nose

� Coughing

� Fever

� Sore throat

If your child experienced difficulty breathing (e.g. shortness of breath,
wheezing) during his/her infection: please tick the relevant box(es) which
best describe its effect on your child’s day-to-day activities (e.g. feeding,
playing, walking) and the duration it was experienced.

� No noticeable effect on his/her day-to-day activities days

� Mildly affected his/her day-to-day activities days

� Significantly affected his/her day-to-day activities days

10. On what date did he/she first experience the symptoms de-
scribed in Q3? (Day/Month/Year)

/ /

11. On what date did he/she stop experiencing the symptoms de-
scribed in Q3? (Day/Month/Year)

/ /

12a. Did he/she have to take time off school due to their recent
infection?

� Yes � No

5b. If YES how many days?

days

13. Did you seek medical care for your child during these symp-
toms? (please tick all that apply and indicate the number of times)

� a. Phone/email NHS 111 / NHS 24 / NHS Choices times

� b. Phone/email GP — response from the receptionist times

� c. Phone/email GP — response from the doctor or
nurse

times

� d. Visit (face-to-face) a GP or nurse times

� e. Visit A&E department (including out of hours ser-
vice)

times

� f. Admitted to hospital (as an inpatient) times

(If you ticked 6f. please answer i.)

i. How many nights did he/she spend in hospital all together?

days

� g. None

� h. Other medical services, please
specify
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A — Your child’s health on the worst day (5–14 years old)

By placing a tick in one box in each group below, please indicate which
statements best describes you child’s health state on the WORST DAY of
their infection.

Mobility (walking about)

He/she had no problems walking about �

He/she had some problems walking about �

He/she had a lot of problems walking about �

Looking after themselves

He/she had no problems washing or dressing themselves �

He/she had some problems washing or dressing themselves �

He/she had a lot of problems washing or dressing themselves �

Doing usual activities (for example, going to school, hobbies

sports, playing, doing things with family or friends)

He/she had no problems doing their usual activities �

He/she had some problems doing their usual activities �

He/she had a lot problems doing their usual activities �

Having pain or discomfort

He/she had no pain or discomfort �

He/she had some pain or discomfort �

He/she had a lot of pain or discomfort �

Feeling worried, sad or unhappy

He/she were not worried, sad or unhappy �

He/she were a bit worried, sad or unhappy �

He/she were very worried, sad or unhappy �

To help people say how good or bad your
child’s health state was on the WORST DAY,
we have drawn a scale (rather like a thermome-
ter) on which the best state you can imagine
marked 100 and the worst state you can imag-
ine is marked 0.

We would like you to indicate on this scale
how good or bad your child’s health was on
the WORST DAY of their infection, in your
opinion. Please do this by drawing a line from
the box below to whichever point on the scale
indicates how good or bad your child’s health
state was on their WORST DAY.
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B — Your child’s health today (5–14 years old)

By placing a tick in one box in each group below, please indicate which
statements best describes your child’s health state TODAY.

Mobility (walking about)

He/she has no problems walking about �

He/she has some problems walking about �

He/she has a lot of problems walking about �

Looking after themselves

He/she has no problems washing or dressing themselves �

He/she has some problems washing or dressing themselves �

He/she has a lot of problems washing or dressing themselves �

Doing usual activities (for example, going to school, hobbies

sports, playing, doing things with family or friends)

He/she has no problems doing their usual activities �

He/she has some problems doing their usual activities �

He/she has a lot problems doing their usual activities �

Having pain or discomfort

He/she has no pain or discomfort �

He/she has some pain or discomfort �

He/she has a lot of pain or discomfort �

Feeling worried, sad or unhappy

He/she is not worried, sad or unhappy �

He/she is a bit worried, sad or unhappy �

He/she is very worried, sad or unhappy �

To help people say how good or bad your
child’s health state is TODAY, we have drawn
a scale (rather like a thermometer) on which
the best state you can imagine marked 100 and
the worst state you can imagine is marked 0.

We would like you to indicate on this scale
how good or bad your child’s health is TO-
DAY of their infection, in your opinion. Please
do this by drawing a line from the box below
to whichever point on the scale indicates how
good or bad your child’s health state is TO-
DAY.
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There are no questions on this page.
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There are no questions on this page.
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YELLOW - Infections in persons 15 years or
older

If a young person or adult who is aged 15 or over in your household fits the
following criteria, then it is likely that they were infected with RSV. Please
ask them to complete the rest of this questionnaire about their illness. If no
one aged 15 or over in your household fulfils the criteria below, please leave
this section blank and RETURN ALL the forms.

• You experienced symptoms of respiratory illness (as listed in Q3) be-
tween 5 days before the start of your child’s RSV infection, and 5 days
after the end of this child’s RSV infection.

If there are multiple persons in your household who fit the criteria, then
the oldest should complete this section.

14. How old are you?

� 15 – 24 years old � 25 – 44 years old

� 45 – 64 years old � 65 years old or older

15. What is your sex?

� Male � Female � Other

16. What symptoms did you have because of your infection?

Please tick if you experienced the following at any point during your
infection.

� Runny or blocked nose

� Coughing

� Fever

� Sore throat

If you experienced difficulty breathing (e.g. shortness of breath, wheez-
ing) during your infection: please tick the relevant box(es) which best
describe its effect on your day-to-day activities (e.g. walking, house-
work) and the duration it was experienced.

� No noticeable effect on my day-to-day activities days

� Mildly affected my day-to-day activities days

� Significantly affected my day-to-day activities days

17. On what date did you first experience the symptoms described
in Q3? (Day/Month/Year)

/ /

18. On what date did he/she stop experiencing the symptoms de-
scribed in Q3? (Day/Month/Year)

/ /

19a. Did you have to take time off school or work due to your recent
infection?

� Yes � No

5b. If YES how many days?

days

20. Did you seek medical care during these symptoms?(please tick
all that apply and indicate the number of times)

� a. Phone/email NHS 111 / NHS 24 / NHS Choices times

� b. Phone/email GP — response from the receptionist times

� c. Phone/email GP — response from the doctor or
nurse

times

� d. Visit (face-to-face) a GP or nurse times

� e. Visit A&E department (including out of hours ser-
vice)

times

� f. Admitted to hospital (as an inpatient) times

(If you ticked 6f. please answer i.)

i. How many nights did he/she spend in hospital all together?

days

� g. None

� h. Other medical services, please
specify
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A — Your health on the worst day (15 years or older)

By placing a tick in one box in each group below, please indicate which
statements best describe your own health state on the WORST DAY of your
infection.

Mobility

I had no problems in walking about �

I had some problems in walking about �

I was confined to bed �

Self-Care

I had no problems with self-care �

I had some problems washing or dressing myself �

I was unable to wash or dress myself �

Usual Activities (e.g. work, study, housework,

family or leisure activities)

I had no problems with performing my usual activities �

I had some problems with performing my usual activities �

I was unable to perform my usual activities �

Pain / Discomfort

I had no pain or discomfort �

I had moderate pain or discomfort �

I had extreme pain or discomfort �

Anxiety / Depression

I was not anxious or depressed �

I was moderately anxious or depressed �

I was extremely anxious or depressed �

To help people say how good or bad a health
state was on the WORST DAY, we have drawn
a scale (rather like a thermometer) on which
the best state you can imagine marked 100 and
the worst state you can imagine is marked 0.

We would like you to indicate on this scale how
good or bad your own health is on the WORST
DAY of your infection, in your opinion. Please
do this by drawing a line from the box be-
low to whichever point on the scale indicates
how good or bad your health state is on your
WORST DAY.

Your health on
the WORST DAY

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Best imaginable

health state

Worst imaginable

health state

— Please turn over —

155



B — Your health today (15 years or older)

By placing a tick in one box in each group below, please indicate which
statements best describe your own health state TODAY.

Mobility

I have no problems in walking about �

I have some problems in walking about �

I am confined to bed �

Self-Care

I have no problems with self-care �

I have some problems washing or dressing myself �

I am unable to wash or dress myself �

Usual Activities (e.g. work, study, housework,

family or leisure activities)

I have no problems with performing my usual activities �

I have some problems with performing my usual activities �

I am unable to perform my usual activities �

Pain / Discomfort

I have no pain or discomfort �

I have moderate pain or discomfort �

I am in extreme pain or discomfort �

Anxiety / Depression

I am not anxious or depressed �

I am moderately anxious or depressed �

I am extremely anxious or depressed �

To help people say how good or bad a health
state is TODAY, we have drawn a scale (rather
like a thermometer) on which the best state
you can imagine marked 100 and the worst
state you can imagine is marked 0.

We would like you to indicate on this scale how
good or bad your own health is TODAY, in
your opinion. Please do this by drawing a line
from the box below to whichever point on the
scale indicates how good or bad your health
state is TODAY

Your health
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Supplementary material for Chapter 4: De-

velopment of a model for RSV transmis-

sion in England and Wales

S2.1 Calibration

S2.1.1 Probability distributions

Notation Distribution, X Parameters, θ PDF, fX(θ)

U(a, b) Uniform a, lower limit 1/(b− a) for a ≤ x ≤ b, and 0
otherwiseb, upper limit

N (µ, σ) Normal µ, mean
1

σ
√

2π
exp− (x−µ)2

2σ2

σ, standard deviation

LN (µ, σ) Log-normal µ, mean
1

xσ
√

2π
exp− (ln(x)−µ)2

2σ2 , x > 0
σ, standard deviation

N (µ,Σ) Multivariate normal
(k-dim)

µ, mean vector exp (− 1
2

(x−µ)T Σ−1(x−µ))√
(2π)k|Σ|Σ, covariance matrix

T N (µ,Σ,S) Multivariate-
truncated-normal

µ, mean vector exp (− 1
2

(x−µ)T Σ−1(x−µ))∫
S exp (− 1

2
(x−µ)T Σ−1(x−µ))

, x ∈ S
Σ, covariance matrix

S, support

β(a, b) Beta a, shape 1
B(a,b)

xa−1(1− x)b−1, 0 < x < 1
b, shape

Gamma(α, β)Gamma α, shape
exp(−x/b)b−axa−1

Γ(α)
, x > 0

β, rate

Weibull(λ, k) Weibull λ, shape
k
λ

(
x
λ

)k−1
exp

(
−(x/λ)k

)
, x > 0

k, scale

Table S2.1: Summary of the notation for the probability distributions used in this chapter, where
Γ is the gamma function and B is the beta function.
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S2.1.2 MCMC parameters

The values for all the parameters used in the MCMC model is given in Table S2.2.

Parameter Description Value

Initial values

θk0 Initial value of the parameters for chain k Sample from p(θ)

µ0 Initial mean of the parameters for chain k θk0

ζ Scaling factor for initial covariance matrix 0.00001

Is Initial covariance matrix based on support S See text

Γ0 Initial mean of the parameters for chain k Is

λk0 Initial value of non-adaptive the scaling factor for chain
number k.

0

Mk
0 Initial value of the adaptive scaling factor for chain number

k.
0

T k0 The initial temperature ladder for chain k 107 k−1
K−1

Sk0 The initial distance function for the temperature ladder for
chain k

log(T k+1 − T k)

Fixed value parameters

Tinit The number of steps used before the covariance matrix Σkn
is used

100

Tburn The number of steps in the simulation until convergence is
observed

6000

Tend The number of steps used in the whole simulation 10000

k1 Thinning used throughout the whole simulation (for mon-
itoring purposes.)

100

k2 Thinning used for when t > Tburn (for determining poste-
rior distributions.)

2

β Probability of using non-adaptive part covariance matrix 0.05

Gain factors

γ1(t) Gain factor for Mk
t 1/(1 + t)0.5

γ2(t) Gain factor for µkt 1/(1 + t)0.5

γ3(t) Gain factor for Γkt 1/(1 + t)

γ4(t) Gain factor for λkt 1/(1 + t)

γ5(t) Gain factor for T kt 1/(1 + t)0.5

Table S2.2: Summary of the parameters used to describe the algorithms of the MCMC model

Due to the non-linear nature of the likelihood and the intractable nature of the integrals

that arise from the normalising factor, it is not possible to find a close analytic form for

the posterior distribution. However, it is possible to sample points from the unnormalised

posterior distribution
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p(θ|D) ∝ L(D|θ)p(θ) (S2.1)

through a sampling algorithm called Monte Carlo Markov Chain (MCMC.) Here, p(θ)

are the prior distributions, p(θ|D) is the posterior distribution, given data D. L((D|θ) is

the likelihood which tells us the probability of generating the particular sample of data if

the parameters in the statistical model are θ.

S2.1.3 Likelihood function

Given the data from RDMS, D, I wish to infer the parameters of the dynamical system,

θ = {Mm, Ec}, for the five detection models c = {1, 2, 3, 4, 5} and two maternal models,

m = {1, 2}. Assuming that the number of positive samples for an age group j, week wt is

a random variable from a binomial distribution with sample size ZT ,m,jwt , and probability

of success given by Ec, the likelihood function is given by:

L(D|θ) = L(D|Mm, Ec) =
25∏
j=1

52∗7∏
t=1

(
ZM

m,j
wt

djwt

)
(εj)d

j
wt (1− εj)Z

Mm,j
wt −djwt (S2.2)

S2.1.4 Adaptive Metropolis Hasting algorithm with parallel tempering

To generate samples from the posterior distribution, I use the random walk metropolis

algorithm. This algorithm produces a Markov chain, θ which has a stationary distribution

which converges to the desired posterior distribution. The algorithm works by sampling

a value from a proposal distribution θ∗ ∼ q(θ), and then probabilistically accepting this

value into the Markov chain according to the following probability given by

a(θt, θ
∗) = min

(
1,
L(θ∗)p(θ∗)q(θt|θ∗)
L(θt)p(θt)q(θ∗|θt)

)
(S2.3)

In our analysis, the proposal distribution distribution, q(·|θ), is a multivariate normal

distribution, truncated at points relative to the support of the sample, S.

Adaptive Metropolis Hastings

I use an advanced random walk Metropolis Hastings method called adaptive paral-

lel tempering with adaptive temperature ladder to optimise run times. The adaptive

metropolis hasting algorithm provides systematic method for modifying the shape of the
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proposal distribution based on the accepted steps of the current markov chain, allowing for

more efficient mixing of chains. Consequently, in order to provide a reasonable estimate

for the covariance matrix, the Markov chain runs for a initial number of steps (Tinit) from

a truncated normal proposal distribution with a covariance matrix, Is which is calculated

using the upper and lower bounds of the support [sk0, s
k
1] ∈ S, through ik,k = (sk1 − sk0)/ζ

and ii,j = 0 otherwise, where ζ is a scaling factor.

Problematically, the proposal distribution using the covariance matrix, Σ, is no longer

memoryless, and thefore chain may no longer converge to the correct stationary distri-

bution. To overcome this problem, the proposal distribution must also sample from a

non-adaptive Gaussian distribution modified to ensure that changes to the covariance ma-

trix diminish over time. Further, to improve chain mixing and to optimise convergence

rates, I include adaptive scaling factors, λt and Mt for the initial non-adaptive and adap-

tive proposals respectively, who’s magnitude diminish with the number of steps in the

chain. The adaptive scaling factor for the non-adaptive proposal distributions stops once

the model starts sampling from the adaptive proposal distributions. Overall, the combined

non-adaptive and adaptive proposal distributions for the adaptive Metropolis Hastings is

given by

t t ≤ Tinit t > Tinit

q(·|θt) T N (θt, exp(λt)Is;S)
T N (θt,Σt;S) with probability β,

T N (θt, exp(λtinit)Is;S) with probability 1− β
(S2.4)

where Σt = exp(Mt)Γt and Mt, λt and Γt are updated iteratively through the stochastic

approximation algorithm:

Mt+1 = Mt + γ1(t)(a(θt, θ
∗)− 0.234)

µt+1 = µt + γ2(t)(µt − θt)

Γt+1 = Γt + γ3(t)[(θt − µt+1))(θt − µt+1)T − Γt]

λt+1 = λt + γ4(t)(a(θt, θ
∗)− 0.234)

where γ(t)i are gain factors. A pseudo code outlining the algorithm for this procedure

is by Algorithm 1.
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Initialise θ0,M0, λ0, µ0,Σ0;

t = 1;

for t < Tend do

b ∼ U(0, 1)

if t < Tinit OR b <β then

θ∗ ∼ T N (θt, exp(λt)Γinit;S)

else

θ∗ ∼ T N (θt,Σt+1;S)

end

u ∼ U(0, 1)

if a(θt, θ
∗) > u then

θt+1 = θt

else

θt+1 = θ∗t

end

t = t+ 1

if t < Tinit then

Update λt+1

end

Update Mt+1, µt+1,Γt+1

end

Algorithm 1: Psudo-code for adaptive Metropolis Hastings algorithm

Parallel Tempering

In order to prevent local-trap problem and overcome multimodal likelihood spaces, I

used a parallel tempering algorithm. In this algorithm I consider the augmented space

(θ, T ), where T is a scalar (temperature) and define the posterior distribution as

p(θ, T |D) ∝ [L(D|θ)p(θ)]1/T

where, at higher temperatures (i.e. larger T value), the Markov chain more likely

to accept proposal values and thus more free to explore the parameter space. In the

algorithm, I run K chains simultaneously, (θk, T k) with TK > · · · > T 1 > T 0 = 1, and

at each time step, t, I allow two adjacent chains (θkt , T
k
t ) and (θk+1

t , T k+1
t ) to swap their

current positions θkt and θk+1
t according to the swap probability
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αs(θ
k
t , T

k
t ; θk+1

t , T k+1
t ) = min

1,

[
L(D|θk+1

t )p(θk+1
t )

L(D|θkt )p(θkt )

]( 1

Tkt

− 1

Tk+1
t

)
By allowing adjacent chains to swap positions, if one of the hotter chains (chains with

a large T value) finds a local maximum, the position will be passed down the temperature

ladder to the coldest chain (T 1 = 1) . Therefore, by only monitoring the coldest few

chains, an overview of the explorations of all the chains can be assessed.

To optimise exploration of the parameter space, the chains must swap at an acceptance

rate of 0.234. Therefore, I update the values of the temperature at each step through an

stochastic approximation to ensure the acceptance rate is optimal through the iterative

updates:

Sk+1
t = Skt + γ5(t)(αs(θ

k
t , T

k
t ; θk+1

t , T k+1
t )− 0.234)

T k+1
t = T kt + exp(Sk+1

t )

The algorithm for parallel tempering with adaptive temperature update is given Al-

gorithm 2.
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Initialise (θk0 , T
k
0 ) for 1 ≤ k ≤ K;

t = 1;

for t < Tend do

for 1 ≤ k ≤ K do

Update θkt → θkt+1 as in Algorithm 1

end

for 1 ≤ k ≤ K do

k ∼ Ud(1,K − 1);

b ∼ U(0, 1);

if a(θkt , T
k
t ; θk+1

t , T k+1
t ) > u then

(θkt , T
k
t )→ (θk+1

t , T kt );

(θk+1
t , T k+1

t )→ (θkt , T
k+1
t )

else

end

Update Sk+1
t

end

for 1 ≤ k ≤ K do

Update T k+1
t

end

end

Algorithm 2: Psudo-code for parallel tempering algorithm
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Supplementary material for Chapter 5: Evaluating the impact of

potential intervention programmes

S3.1 Equations of the adapted models

S3.1.1 Status quo (Palivizumab)

The ODEs of the Palivizumab programme for age group a and clinical-risk group r are:
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˙Ma,r =

Transmission terms︷ ︸︸ ︷
pRµp

a,r
11(a)(1− φa,rP,pal)− ξM

a,r

Ageing terms︷ ︸︸ ︷
−ηaMa,r + ηa−1Ma−1pa,r(1− φa,rP,pal)

˙Sa,r0 = (1− pR)µpa,r11(a)(1− φa,rP,pal) + ξMa,s − λa,r0 (t)Sa,r0 −ηaSa,r0 + ηa−1Sa−1
0 pa,r(1− φa,rP,pal)

Palivizumab terms︷ ︸︸ ︷
+ ˙V a,rP ωpal

˙Ea,r0 = λa,r0 (t)Sa,s0 − σEa,r0 −ηaEa,r0 + ηa−1Ea−1
0 pa,r(1− φa,rP,pal)

˙Aa,r0 = paσEa,r0 − γ0A
a,r
0 ρ −ηaAa,r0 + ηa−1Aa−1

0 pa,r(1− φa,rP,pal
˙Ia,r0 = (1− pa)σEa,r0 − γ0I

a,r
0 −ηaIa,r0 + ηa−1Ia−1

0 pa,r(1− φa,rP,pal)
˙Ra,r0 = ργ0A

a,r
0 + γ0I

a,r
0 − ωRa,r0 −ηaRa,r0 + ηa−1Ra−1

0 pa,r(1− φa,rP,pal)
˙Sa,r1 = ωRa,r0 − λa,r1 (t)Sa,r1 −ηaSa,r1 + ηa−1Sa−1

1 pa,r(1− φa,rP,pal)
˙Ea,r1 = λa,r1 (t)Sa,r1 − σEa,r1 −ηaEa,r1 + ηa−1Ea−1

1 pa,r(1− φa,rP,pal)
˙Aa,r1 = paσEa,r1 − γ1A

a,r
1 ρ −ηaAa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,pal)
˙Ia,r1 = (1− pa)σEa,r1 − γ1I

a,r
1 −ηaIa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,pal)
˙Ra,r1 = ργ1A

a,r
1 + γ1I

a,r
1 − ωRa,r1 −ηaRa,r1 + ηa−1Ra−1

1 pa,r(1− φa,rP,pal)
˙Sa,r2 = ωRa,r1 − λa,r2 (t)Sa,r2 −ηaSa,r2 + ηa−1Sa−1

2 pa,r(1− φa,rP,pal)
˙Ea,r2 = λa,r2 (t)Sa,r2 − σEa,r2 −ηaEa,r2 + ηa−1Ea−1

2 pa,r(1− φa,rP,pal)
˙Aa,r2 = paσEa,r2 − γ2A

a,r
2 ρ −ηaAa,r2 + ηa−1Aa−1

2 pa,r(1− φa,rP,pal)
˙Ia,r2 = (1− pa)σEa,r2 − γ2I

a,r
2 −ηaIa,r2 + ηa−1Ia−1

2 pa,r(1− φa,rP,pal)
˙Ra,r2 = ργ2A

a,r
2 + γ2I

a,r
2 − ωRa,r2 −ηaRa,r2 + ηa−1Ra−1

2 pa,r(1− φa,rP,pal)
˙Sa,r3 = ωRa,r2 + ωRa,r3 − λa,r3 (t)Sa,r2 −ηaSa,r3 + ηa−1Sa−1

3 pa,r(1− φa,rP,pal)
˙Ea,r3 = λa,r3 (t)Sa,r2 − σEa,r3 −ηaEa,r3 + ηa−1Ea−1

3 pa,r(1− φa,rP,pal)
˙Aa,r3 = paσEa,r3 − γ3A

a,r
3 ρ −ηaAa,r3 + ηa−1Aa−1

3 pa,r(1− φa,rP,pal)
˙Ia,r3 = (1− pa)σEa,r3 − γ3I

a,r
3 −ηaIa,r3 + ηa−1Ia−1

3 pa,r(1− φa,rP,pal)
˙Ra,r3 = ργ3A

a,r
3 + γ3I

a,r
3 − ωRa,r3 −ηaRa,r3 + ηa−1Ra−1

3 pa,r(1− φa,rP,pal)
˙V a,rP = µpa,r11(a)φa,rP,pal + (Na,r − V a,rP )φa,rP,pal −ηaV a,rP + ηa−1V a−1

P pa,r − ˙V a,rP ωpal

˙Za,r = σ(Ea,r0 + Ea,r1 + Ea,r2 + Ea,r3 )

(S3.1)
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where an overdot refers to differentiation with respect to t, 11(a) is the indicator function (non-zero at a = 1), and the equation for the force

of infection is:

λa,ri (t) = qpfi(t)
25∑
b=1

(pa,b + qcc
a,b)

N b

∑
r, i

Ab,ri α+ Ib,ri


where

∑
r, i is the sum over all the Palivizumab eligible and non-Palivizumab eligible clinical-risk groups, and exposure groups i = {0, 1, 2, 3}

and fi(t) = qp(1 + b1 exp((t − φ)2/(2ψ2))
∏i
i′=0 δi′ . Further, φa,rP,pal is the number of persons who are protected by Palivizumab in age group a

and clinical-risk group r. The initial conditions for this set of ODEs are given in Chapter 4 with N = Na,r and V a,r
P = 0.

S3.1.2 Long-acting monoclonal-antibodies

The ODEs of the RSV intervention model for the long-acting monoclonal antibodies programmes, for age group a and clinical-risk group r are:
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˙Ma,r =

Transmission terms︷ ︸︸ ︷
pRµp

a,r
11(a)(1− φa,rP,mab)− ξM

a,r

Ageing terms︷ ︸︸ ︷
−ηaMa,r + ηa−1Ma−1pa,r(1− φa,rP,mab)

˙Sa,r0 = (1− pR)µpa,r11(a)(1− φa,rP,mab) + ξMa,s − λa,r0 (t)Sa,r0 −ηaSa,r0 + ηa−1Sa−1
0 pa,r(1− φa,rP,mab)

Monoclonal antibodies terms︷ ︸︸ ︷
+ ˙V a,rM ωmab

˙Ea,r0 = λa,r0 (t)Sa,s0 − σEa,r0 −ηaEa,r0 + ηa−1Ea−1
0 pa,r(1− φa,rP,mab)

˙Aa,r0 = paσEa,r0 − γ0A
a,r
0 ρ −ηaAa,r0 + ηa−1Aa−1

0 pa,r(1− φa,rP,mab)
˙Ia,r0 = (1− pa)σEa,r0 − γ0I

a,r
0 −ηaIa,r0 + ηa−1Ia−1

0 pa,r(1− φa,rP,mab)
˙Ra,r0 = ργ0A

a,r
0 + γ0I

a,r
0 − ωRa,r0 −ηaRa,r0 + ηa−1Ra−1

0 pa,r(1− φa,rP,mab)
˙Sa,r1 = ωRa,r0 − λa,r1 (t)Sa,r1 −ηaSa,r1 + ηa−1Sa−1

1 pa,r(1− φa,rP,mab)
˙Ea,r1 = λa,r1 (t)Sa,r1 − σEa,r1 −ηaEa,r1 + ηa−1Ea−1

1 pa,r(1− φa,rP,mab)
˙Aa,r1 = paσEa,r1 − γ1A

a,r
1 ρ −ηaAa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,mab)
˙Ia,r1 = (1− pa)σEa,r1 − γ1I

a,r
1 −ηaIa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,mab)
˙Ra,r1 = ργ1A

a,r
1 + γ1I

a,r
1 − ωRa,r1 −ηaRa,r1 + ηa−1Ra−1

1 pa,r(1− φa,rP,mab)
˙Sa,r2 = ωRa,r1 − λa,r2 (t)Sa,r2 −ηaSa,r2 + ηa−1Sa−1

2 pa,r(1− φa,rP,mab)
˙Ea,r2 = λa,r2 (t)Sa,r2 − σEa,r2 −ηaEa,r2 + ηa−1Ea−1

2 pa,r(1− φa,rP,mab)
˙Aa,r2 = paσEa,r2 − γ2A

a,r
2 ρ −ηaAa,r2 + ηa−1Aa−1

2 pa,r(1− φa,rP,mab)
˙Ia,r2 = (1− pa)σEa,r2 − γ2I

a,r
2 −ηaIa,r2 + ηa−1Ia−1

2 pa,r(1− φa,rP,mab)
˙Ra,r2 = ργ2A

a,r
2 + γ2I

a,r
2 − ωRa,r2 −ηaRa,r2 + ηa−1Ra−1

2 pa,r(1− φa,rP,mab)
˙Sa,r3 = ωRa,r2 + ωRa,r3 − λa,r3 (t)Sa,r2 −ηaSa,r3 + ηa−1Sa−1

3 pa,r(1− φa,rP,mab)
˙Ea,r3 = λa,r3 (t)Sa,r2 − σEa,r3 −ηaEa,r3 + ηa−1Ea−1

3 pa,r(1− φa,rP,mab)
˙Aa,r3 = paσEa,r3 − γ3A

a,r
3 ρ −ηaAa,r3 + ηa−1Aa−1

3 pa,r(1− φa,rP,mab)
˙Ia,r3 = (1− pa)σEa,r3 − γ3I

a,r
3 −ηaIa,r3 + ηa−1Ia−1

3 pa,r(1− φa,rP,mab)
˙Ra,r3 = ργ3A

a,r
3 + γ3I

a,r
3 − ωRa,r3 −ηaRa,r3 + ηa−1Ra−1

3 pa,r(1− φa,rP,mab)
˙V a,rM = µpa,r11(a)φa,rP,mab + (Na,r − V a,rP )φa,rP,mab −ηaV a,rM + ηa−1V a−1

M pa,r − ˙V a,rM ωmab

˙Za,r = σ(Ea,r0 + Ea,r1 + Ea,r2 + Ea,r3 )

(S3.2)
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where an overdot refers to differentiation with respect to t, 11(a) is the indicator function (non-zero at a = 1), and the equations for the force

of infection is:

λa,ri (t) = qpfi(t)
25∑
b=1

(pa,b + qcc
a,b)

N b

∑
r, i

Ab,ri α+ Ib,ri


where

∑
r, i is the sum over all risk groups R = {NR,HR, VHR} and exposure groups i = {0, 1, 2, 3} and fi(t) = qp(1 + b1 exp((t −

φ)2/(2ψ2))
∏i
i′=0 δi′ . Further, φa,rP,mab is the number of persons who are protected by monoclonal antibodies in age group a and clinical risk group

r. The initial conditions for this set of ODEs are given in Chapter 4 with N = Na,r and V a,r
M = 0.

S3.1.3 Childhood/elderly vaccination programmes

The ODEs of the RSV intervention model for the above childhood and elderly programmes, for age group a and clinical-risk group r are:
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˙Ma,r =

Transmission terms︷ ︸︸ ︷
pRµp

a,r
11(a)(1− φa,rP,pal)− ξM

a,r

Ageing terms︷ ︸︸ ︷
−ηaMa,r + ηa−1Ma−1pa,r(1− φa,rP,pal)

˙Sa,r0 = (1− pR)µpa,r11(a)(1− φa,rP,pal) + ξMa,s − λa,r0 (t)Sa,r0 −ηaSa,r0 + ηa−1Sa−1
0 pa,r(1− φa,rP,pal)

Palivizumab terms︷ ︸︸ ︷
+ ˙V a,rP ωpal

Vaccination terms︷ ︸︸ ︷
−S̄a,r0 φa,rP,vac

˙Ea,r0 = λa,r0 (t)Sa,s0 − σEa,r0 −ηaEa,r0 + ηa−1Ea−1
0 pa,r(1− φa,rP,pal)

˙Aa,r0 = paσEa,r0 − γ0A
a,r
0 ρ −ηaAa,r0 + ηa−1Aa−1

0 pa,r(1− φa,rP,pal
˙Ia,r0 = (1− pa)σEa,r0 − γ0I

a,r
0 −ηaIa,r0 + ηa−1Ia−1

0 pa,r(1− φa,rP,pal)
˙Ra,r0 = ργ0A

a,r
0 + γ0I

a,r
0 − ωRa,r0 −ηaRa,r0 + ηa−1Ra−1

0 pa,r(1− φa,rP,pal) +S̄a,r0 φa,rP,vac

˙Sa,r1 = ωRa,r0 − λa,r1 (t)Sa,r1 −ηaSa,r1 + ηa−1Sa−1
1 pa,r(1− φa,rP,pal) −S̄a,r1 φa,rP,vac

˙Ea,r1 = λa,r1 (t)Sa,r1 − σEa,r1 −ηaEa,r1 + ηa−1Ea−1
1 pa,r(1− φa,rP,pal)

˙Aa,r1 = paσEa,r1 − γ1A
a,r
1 ρ −ηaAa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,pal)
˙Ia,r1 = (1− pa)σEa,r1 − γ1I

a,r
1 −ηaIa,r1 + ηa−1Aa−1

1 pa,r(1− φa,rP,pal)
˙Ra,r1 = ργ1A

a,r
1 + γ1I

a,r
1 − ωRa,r1 −ηaRa,r1 + ηa−1Ra−1

1 pa,r(1− φa,rP,pal) +S̄a,r1 φa,rP,vac

˙Sa,r2 = ωRa,r1 − λa,r2 (t)Sa,r2 −ηaSa,r2 + ηa−1Sa−1
2 pa,r(1− φa,rP,pal) −S̄a,r2 φa,rP,vac

˙Ea,r2 = λa,r2 (t)Sa,r2 − σEa,r2 −ηaEa,r2 + ηa−1Ea−1
2 pa,r(1− φa,rP,pal)

˙Aa,r2 = paσEa,r2 − γ2A
a,r
2 ρ −ηaAa,r2 + ηa−1Aa−1

2 pa,r(1− φa,rP,pal)
˙Ia,r2 = (1− pa)σEa,r2 − γ2I

a,r
2 −ηaIa,r2 + ηa−1Ia−1

2 pa,r(1− φa,rP,pal)
˙Ra,r2 = ργ2A

a,r
2 + γ2I

a,r
2 − ωRa,r2 −ηaRa,r2 + ηa−1Ra−1

2 pa,r(1− φa,rP,pal) +S̄a,r2 φa,rP,vac

˙Sa,r3 = ωRa,r2 + ωRa,r3 − λa,r3 (t)Sa,r2 −ηaSa,r3 + ηa−1Sa−1
3 pa,r(1− φa,rP,pal) −S̄a,r3 φa,rP,vac

˙Ea,r3 = λa,r3 (t)Sa,r2 − σEa,r3 −ηaEa,r3 + ηa−1Ea−1
3 pa,r(1− φa,rP,pal)

˙Aa,r3 = paσEa,r3 − γ3A
a,r
3 ρ −ηaAa,r3 + ηa−1Aa−1

3 pa,r(1− φa,rP,pal)
˙Ia,r3 = (1− pa)σEa,r3 − γ3I

a,r
3 −ηaIa,r3 + ηa−1Ia−1

3 pa,r(1− φa,rP,pal)
˙Ra,r3 = ργ3A

a,r
3 + γ3I

a,r
3 − ωRa,r3 −ηaRa,r3 + ηa−1Ra−1

3 pa,r(1− φa,rP,pal) +S̄a,r3 φa,rP,vac

˙V a,rP = µpa,r11(a)φa,rP,pal + (Na,r − V a,rP )φa,rP,pal −ηaV a,rP + ηa−1V a−1
P pa,r − ˙V a,rP ωpal

˙Za,r = σ(Ea,r0 + Ea,r1 + Ea,r2 + Ea,r3 )

(S3.3)
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where an overdot refers to differentiation with respect to t, 11(a) is the indicator function (non-zero at a = 1), and the equation for the force

of infection is:

λa,ri (t) = qpfi(t)
25∑
b=1

(pa,b + qcc
a,b)

N b

∑
r, i

Ab,ri α+ Ib,ri


where

∑
r, i is the sum over all risk groups R = {NR,HR, VHR} and exposure groups i = {0, 1, 2, 3} and fi(t) = qp(1 + b1 exp((t −

φ)2/(2ψ2))
∏i
i′=0 δi′ . Further, φa,rP,pal is the number of persons who are protected by Palivizumab in age group a and clinical risk group r, and

φa,rP,vac is the number of persons protected by vaccination in age group a and clinical risk group a at time t. The initial conditions for this set of

ODEs are given in Chapter 4 with N = Na,r and V a,r
P = 0.

Uptake rate for Influenza (qt)

The rate at which the coverage is reached for some of the programmes is estimated using data on seasonal influenza uptake. The cumulative

uptake of LAV over the seasonal, given by qt is summarised in Figure S3.1 for various age groups.
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Figure S3.1: Uptake rate for various age groups for the 2018/19 Influenza season.
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S3.1.4 Maternal vaccination

˙Ma,r,s =

Transmission terms︷ ︸︸ ︷
pRµp

a,r,sua,s11(a)(1− φa,r,sP,pal)(1− φ
a,r,s
P,mat) + φa,r,sP,matµp

a,r,sua,s11(a)− ξMa,r,s

Ageing terms︷ ︸︸ ︷
−ηaMa,r,s + ηa−1Ma−1pa,r,suaφc(1− φa,r,sP,pal)

˙Sa,r,s0 = (1− pR)µpa,r,sua,s11(a)(1− φa,r,sP,pal) + ξMa,s − λa,r,s0 (t)Sa,r,s0 −ηaSa,r,s0 + ηa−1Sa−1
0 pa,r,sua,s(1− φa,r,sP,pal)

Palivizumab terms︷ ︸︸ ︷
+ ˙V a,r,sP ωpal

Vaccination terms︷ ︸︸ ︷
−S̄a,r,s0 φa,r,sP,mat

˙Ea,r,s0 = λa,r,s0 (t)Sa,s0 − σEa,r,s0 −ηaEa,r,s0 + ηa−1Ea−1
0 pa,r,sua,s(1− φa,r,sP,pal)

˙Aa,r,s0 = paσEa,r,s0 − γ0A
a,r,s
0 ρ −ηaAa,r,s0 + ηa−1Aa−1

0 pa,r,sua,s(1− φa,r,sP,pal

˙Ia,r,s0 = (1− pa)σEa,r,s0 − γ0I
a,r,s
0 −ηaIa,r,s0 + ηa−1Ia−1

0 pa,r,sua,s(1− φa,r,sP,pal)

˙Ra,r,s0 = ργ0A
a,r,s
0 + γ0I

a,r,s
0 − ωRa,r,s0 −ηaRa,r,s0 + ηa−1Ra−1

0 pa,r,sua,s(1− φa,r,sP,pal) +S̄a,r,s0 φa,r,sP,mat

˙Sa,r,s1 = ωRa,r,s0 − λa,r,s1 (t)Sa,r,s1 −ηaSa,r,s1 + ηa−1Sa−1
1 pa,r,sua,s(1− φa,r,sP,pal) −S̄a,r,s1 φa,r,sP,mat

˙Ea,r,s1 = λa,r,s1 (t)Sa,r,s1 − σEa,r,s1 −ηaEa,r,s1 + ηa−1Ea−1
1 pa,r,sua,s(1− φa,r,sP,pal)

˙Aa,r,s1 = paσEa,r,s1 − γ1A
a,r,s
1 ρ −ηaAa,r,s1 + ηa−1Aa−1

1 pa,r,sua,s(1− φa,r,sP,pal)

˙Ia,r,s1 = (1− pa)σEa,r,s1 − γ1I
a,r,s
1 −ηaIa,r,s1 + ηa−1Aa−1

1 pa,r,sua,s(1− φa,r,sP,pal)

˙Ra,r,s1 = ργ1A
a,r,s
1 + γ1I

a,r,s
1 − ωRa,r,s1 −ηaRa,r,s1 + ηa−1Ra−1

1 pa,r,sua,s(1− φa,r,sP,pal) +S̄a,r,s1 φa,r,sP,mat

˙Sa,r,s2 = ωRa,r,s1 − λa,r,s2 (t)Sa,r,s2 −ηaSa,r,s2 + ηa−1Sa−1
2 pa,r,sua,s(1− φa,r,sP,pal) −S̄a,r,s2 φa,r,sP,mat

˙Ea,r,s2 = λa,r,s2 (t)Sa,r,s2 − σEa,r,s2 −ηaEa,r,s2 + ηa−1Ea−1
2 pa,r,sua,s(1− φa,r,sP,pal)

˙Aa,r,s2 = paσEa,r,s2 − γ2A
a,r,s
2 ρ −ηaAa,r,s2 + ηa−1Aa−1

2 pa,r,sua,s(1− φa,r,sP,pal)

˙Ia,r,s2 = (1− pa)σEa,r,s2 − γ2I
a,r,s
2 −ηaIa,r,s2 + ηa−1Ia−1

2 pa,r,sua,s(1− φa,r,sP,pal)

˙Ra,r,s2 = ργ2A
a,r,s
2 + γ2I

a,r,s
2 − ωRa,r,s2 −ηaRa,r,s2 + ηa−1Ra−1

2 pa,r,sua,s(1− φa,r,sP,pal) +S̄a,r,s2 φa,r,sP,mat

˙Sa,r,s3 = ωRa,r,s2 + ωRa,r,s3 − λa,r,s3 (t)Sa,r,s2 −ηaSa,r,s3 + ηa−1Sa−1
3 pa,r,sua,s(1− φa,r,sP,pal) −S̄a,r,s3 φa,r,sP,mat

˙Ea,r,s3 = λa,r,s3 (t)Sa,r,s2 − σEa,r,s3 −ηaEa,r,s3 + ηa−1Ea−1
3 pa,r,sua,s(1− φa,r,sP,pal)

˙Aa,r,s3 = paσEa,r,s3 − γ3A
a,r,s
3 ρ −ηaAa,r,s3 + ηa−1Aa−1

3 pa,r,sua,s(1− φa,r,sP,pal)

˙Ia,r,s3 = (1− pa)σEa,r,s3 − γ3I
a,r,s
3 −ηaIa,r,s3 + ηa−1Ia−1

3 pa,r,sua,s(1− φa,r,sP,pal)

˙Ra,r,s3 = ργ3A
a,r,s
3 + γ3I

a,r,s
3 − ωRa,r,s3 −ηaRa,r,s3 + ηa−1Ra−1

3 pa,r,sua,s(1− φa,r,sP,pal) +S̄a,r,s3 φa,r,sP,mat

˙V a,r,sP = µpa,r,sua,s11(a)φa,r,sP,pal + (Na,r,s − V a,r,sP )φa,r,sP,pal −ηaV a,r,sP + ηa−1V a−1
P pa,rua,s − ˙V a,r,sP ωpal

˙Za,r,s = σ(Ea,r,s0 + Ea,r,s1 + Ea,r,s2 + Ea,r,s3 )

(S3.4)
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where the force of infection is given by defining Ib,s =
∑

i,r A
b,r,s
i α + Ib,r,si for maternal vaccine groups, s = {n, p, c}, then the equations for

the force of infection for the three maternal vaccine states are:

λa,r,ni (t) = qpfi(t)

25∑
b=1

[
(pa(n),b(n) + qcc

a(n),b(n))

N b,n
Ib,n +

pa(n),b(p) + qcc
a(n),b(p)

N b,p
Ib,p +

pa(n),b(c) + qcc
a(n),b(c)

N b,c
Ib,c
]

(S3.5)

λa,r,pi (t) = qpfi(t)

25∑
b=1

[
(pa(p),b(n) + qcc

a(p),b(n))

N b,n
Ib,n +

pa(p),b(p) + qcc
a(p),b(p)

N b,p
Ib,p +

pa(p),b(c) + qcc
a(p),b(c)

N b,c
Ib,c
]

(S3.6)

λa,r,ci (t) = qpfi(t)
25∑
b=1

[
(pa(c),b(n) + qcc

a(c),b(n))

N b,n
Ib,n +

pa(c),b(p) + qcc
a(c),b(p)

N b,p
Ib,p +

pa(c),b(c) + qcc
a(c),b(c)

N b,c
Ib,c
]

(S3.7)

where the contact matrices are defined in Table S3.1. These contact matrices are modified versions of the matrices outlined in the

mathematical model used to evaluate the impact of maternal Pertussis vaccines.149
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Contact, Age group (a), Maternal-vaccine group (s2)

Participant <1yrs 15–44yrs 1-14,45+

Age
group (a)
(yrs)

Maternal-
vaccine
group (s1)

n c n c p n

<1 n pa,b(1− φc) pa,bφc
pa,b
H

2 +(pa,b−pa,bH )(1−ub) (pa,b − pa,bH )ubφc
pa,b
H

2 + (pa,b− pa,bH )ub(1−
φc)

pa,b

c pa,b(1− φc) pa,bφc
pa,b
H

2 +(pa,b−pa,bH )(1−ub) pa,b
H

2 + (pa,b − pa,bH )ubφc (pa,b − pa,bH )ub(1− φc) pa,b

15–44 n pa,b(1− φc) pa,bφc pa,b(1− ub) pa,bubφc pa,bub(1− φc) pa,b

c (pa,b − pa,bH )(1 −
φc)

pa,bH + (pa,b −
pa,bH )φc

pa,b(1− ub) pa,bubφc pa,bub(1− φc) pa,b

p (pa,b − pa,bH )(1 −
φc)

pa,bH + (pa,b −
pa,bH )φc

pa,b(1− ub) pa,bubφc pa,bub(1− φc) pa,b

1–14,
45+

n pa,b(1− φc) pa,bφc pa,b(1− ub) pa,bubφc pa,bub(1− φc) pa,b

Table S3.1: Formulae for synthesing the contact matrices with maternal-vaccine stratification.

Symbol Definition Source

pa,bH Number of daily household physical contacts only made by age group a with age group b 113,117

pa(s1),b(s2) Total number of daily household physical contacts made by age group a and maternal vaccine
group s1 with age group b and maternal vaccine group s2. (si = {n, p, c})

Generated by Table S3.1

ca,bH Number of daily household conversational contacts only made by age group a with age group b 113,117

ca(s1),b(s2) Total number of daily conversational contacts made by age group a and maternal vaccine group
s1 with age group b and maternal vaccine group s2. (si = {n, p, c})

Generated by Table S3.1

Further, φa,rP,pal is the number of persons who are protected by monoclonal antibodies in age group a and clinical risk group r and φa,rP,vac is
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the number of persons protected by vaccination in age group a and clinical risk group a at time t. The initial conditions for this set of ODEs are

given in Chapter 4 with N = Na,r,s and V a,r,s
P = 0.
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Supplementary material for Chapter 6: Cost-

effectiveness analysis of intervention pro-

grammes

S4.1 QALY loss for death per age

Age Life ex-
pectancy

Mean QALY loss for
death (at 3.5% discount-
ing rate)

Uncertainty for QALY loss for death

<1mo 81.240 26.0456 Weibull(37.631, 26.224)

1 81.183 26.0425 Weibull(38.327, 26.235)

2 81.127 26.0395 Weibull(37.224, 26.211)

3 81.070 26.0334 Weibull(37.086, 26.208)

4 81.013 26.0302 Weibull(37.232, 26.219)

5 80.957 26.0271 Weibull(37.479, 26.211)

6 80.900 26.0239 Weibull(37.347, 26.211)

7 80.843 26.0208 Weibull(37.817, 26.210)

8 80.787 26.0176 Weibull(37.195, 26.198)

9 80.730 26.0144 Weibull(37.348, 26.195)

10 80.673 26.0113 Weibull(36.975, 26.120)

11 80.617 26.0081 Weibull(37.435, 26.187)

1yr 80.560 25.9526 Weibull(36.955, 26.193)

2 79.500 25.8944 Weibull(36.282, 26.136)

3 78.500 25.8342 Weibull(35.037, 26.080)

4 77.600 25.6393 Weibull(34.188, 26.036)

5–9 74.615 25.5943 Weibull(31.925, 25.872)

10–14 69.643 25.2649 Weibull(28.079, 25.532)

15–24 62.230 24.5678 Weibull(23.614, 24.880)

25–34 52.445 23.3148 Weibull(18.632, 23.757)

35–44 42.795 21.5683 Weibull(14.88,0 22.085)

44–54 33.415 19.1862 Weibull(11.927, 19.818)

55–64 24.493 16.0485 Weibull(9.8262, 16.698)

65–74 16.339 12.1644 Weibull(8.3342, 12.793)

75+ 8.0987 6.90928 Weibull(7.113, 7.344)

Table S4.1: Summary of the life expectancy (ONS 2018 estimate143) and QALY loss for each age
group assuming a 3.5% discount rate.
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