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Abstract

Purpose:  The 4th International Workshop on MRI Phase Contrast & QSM (2016, Graz) hosted the first QSM

challenge. A single-orientation GRE acquisition was provided, along with COSMOS and the χ33 STI component

as ground-truths. The submitted solutions differed more than expected depending on the error metric used for

optimization and tended to over-regularization. This raised (unanswered) questions about the ground-truths and

the  metrics  utilized.  Methods:  We  investigated  the  influence  of  background  field  remnants  by  applying

additional  filters.  We  also  estimated  the  anisotropic  contributions  from  the  STI  tensor  to the  apparent

susceptibility, to amend the χ33 ground-truth and to investigate the impact on the reconstructions. Lastly, we used

forward simulations from the COSMOS reconstruction to investigate the impact that has noise on the metrics.

Results: Reconstructions compared against the amended STI ground-truth returned lower errors. We show that

the background field remnants had a minor impact in the errors. In the absence of inconsistencies, all metrics

converged to  the same regularization weights,  whereas  SSIM was more insensitive to such inconsistencies.

Conclusion: There was a mismatch between the provided data and the ground-truths due to the presence of

unaccounted anisotropic susceptibility contributions and noise. Given the lack of reliable ground-truths when

using in vivo acquisitions, simulations are suggested for future QSM challenges.
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Introduction

Quantitative Susceptibility Mapping (QSM) is a relatively new MRI technique, where susceptibility

changes in tissues are conventionally estimated from Gradient Recalled Echo (GRE) acquisitions1,2.

The phase of the GRE signal  is  proportional  to changes  in the local  (macroscopic)  magnetic  field

induced by the underlying distribution of magnetic susceptibility in the tissue3,4. The calculation of the

magnetic susceptibility distribution from a given magnetization field is an ill-conditioned and also ill-

posed inverse problem5,6. One of the reasons for the ill-conditioning of the problem is that the dipole

convolution  kernel,  which  describes  the  susceptibility-to-field  problem,  decays  to  zero  around  a

double-shaped conical surface at the magic angle around the main field direction. A straightforward

inversion implies a division by small numbers, resulting in severe noise-amplification5,7. Reasons for

the ill-posedness of the problem include the limited field of view coverage, signal dropout due to fast

T2* decay (or lack of signal in bone and air regions), and non-Gaussian noise behavior8–10. The majority

of the most recently published QSM techniques rely on solving the inverse problem by minimizing an

objective function that includes a regularization term. Other QSM techniques rely on modifications to

the dipole kernel, or to exploit approaches derived from the Compressed Sensing theory11. All these

techniques try to reduce streaking artifacts  and to prevent noise amplification during the inversion

process12.  Other  methodological  studies  focus  on  preprocessing  steps,  such  as  the  removal  of

background fields (magnetization fields originated from objects outside of the field of view)13,14, phase

unwrapping and multi-echo / multi-coil combination techniques15,16. The integration of those techniques

and the inversion problem into a single process is referred as the so-called single-step algorithms17–23.

In addition to those methodological papers, several clinical studies using QSM have been conducted,

some of them combining well-established relaxometry measures such as T2*/R2* 24–29. Generally, it has

been observed that the quantified susceptibility values vary depending on the employed methodology30.

Given such a variety of methods and associated results, a QSM Challenge was proposed in the context

of the 4th International Workshop on MRI Phase Contrast & QSM (Graz, Austria, September 2016)31.

The challenge aimed at defining a faithful reconstruction of magnetic  susceptibility.  A single head

orientation GRE acquisition (from a multi-orientation set) was released to the contestants to test their

algorithms. The whole multi-orientation set was used to calculate the susceptibility tensor32 (STI) and a

Calculation  Of  Susceptibility  through  Multiple  Orientation  Sampling  (COSMOS)33 reconstruction.

While the χ33 term of the susceptibility tensor was used as ground-truth, the COSMOS reconstruction

was  also  provided.  Anisotropic  elements  of  the  susceptibility  tensor  (χ13 and  χ23)  were  discarded,



assuming that their contributions were negligible in an acquisition with an orientation parallel to the

main field. Since most of the algorithms depend on one or more parameters that must be fine-tuned, the

ground  truth  was  provided  to  allow  for  optimization  of  the  parameters,  ensuring  that  submitted

susceptibility maps represent the best results that can be achieved with a certain algorithm. Totally 27

reconstructed QSM images were submitted by 15 teams, and 4 metrics were evaluated (Root Mean

Square Error -  RMSE, High Frequency Error Norm - HFEN, Structural  Similarity  Index Metric  -

SSIM, and error in anatomical ROIs) in separate categories. Henceforth, teams optimized their results

to minimize (or maximize in the case of SSIM) a certain quality metric. It turned out that most of

numerically  well  performing  approaches  produced  (visually)  over-regularized  susceptibility  maps

either blurry or piece-wise smooth.  Reconstructions (and the optimal parameter  values) also varied

upon the  employed  quality  metric.  Furthermore,  many  approaches  performed  well  according  to  a

particular  metric,  but  poorly  according  to  others.  Subsequent  discussions  and  analyses  pointed  at

several possible sources of inconsistency that might have degraded the given phase data and therefore

its  correspondence  to  the  provided  ground  truth  susceptibility.  These  effects  include  incomplete

background field removal, noise, anisotropic susceptibility and microstructure contributions, flow and

motion artifacts, and co-registration (i.e. misalignment of the multiple orientation acquisitions) errors.

In addition, questions were raised about the behavior of the selected quality metrics, mainly whether or

not they could provide the same optimal parameters. 

In this paper, we investigated the viability of the provided χ33 susceptibility map as ground truth for

single orientation acquisitions and compared it with the COSMOS reconstruction and an STI derived

scalar  projection.  We also investigated  the  impact  of  noise and the  influence  of  background field

residuals in the reconstructions.

Methods

MRI data

The 2016 QSM Reconstruction Challenge dataset (available at http://  qsm.neuroimaging.at  ) included rf-

spoiled 3D-GRE scans acquired on a 3T system (Siemens Tim Trio) using a 32-channel head-coil. Data

were  acquired  with  1.06-mm  isotropic  voxels,  15-fold  Wave-CAIPI34 acceleration,  240×196×120

matrix  size,  echo  time  (TE)/repetition  time  (TR)=25/35ms,  and  flip  angle=15°.  Twelve  head

orientations were used for COSMOS and STI calculations. Challenge participants were provided with a

single  transverse-oriented  acquisition  (from  the  multi-orientation  dataset),  the  raw  phase  and  a

http://qsm.neuroimaging.at/
http://qsm.neuroimaging.at/


background filtered phase, additionally containing the anatomical MPRAGE35 data31. Unwrapping was

performed  using  a  Laplacian  algorithm36,  while  background  removal  was  performed  using  the

Laplacian Boundary Value (LBV)37 approach.  Since this method is not able  to completely remove

transmit/receiver coil contributions, a polynomial fit was also used to remove these components31,38. In

the analyses presented here, we worked on the same data set as the one provided by the challenge

organizers. We also used the same error metrics (RMSE, HFEN and SSIM) and parameters, as those

available  in31  (http://www.neuroimaging.at/pages/qsm.php).  Please  note  that  RMSE  values  are

normalized  by  the  L2-norm of  the  given  ground  truth,  as  percentages.  The  HFEN metric  is  also

normalized, by the L2-norm of the high frequency coefficients of the ground truth. The SSIM is not

normalized.

Experiment design

1. Background field remnants.

Background  field  removal  is  one  part  of  the  QSM pipeline  where  results  may  vary  substantially

depending on the algorithm used. The QSM challenge data was processed using LBV and polynomial

fit steps. To evaluate the quality of the provided local phase, and how background field remnants could

impact in the error metrics, we included two additional methods to reduce the remaining background

fields. The first method is the recently proposed Weak-harmonics QSM (WH-QSM) reconstruction19,

where an estimate  of  the background field is  jointly  reconstructed  with the  susceptibility  map,  by

imposing  a  weak-harmonics  regularization  to  decouple  terms.  The  second  method  is  the  popular

Projection  onto  Dipole  Fields39 (PDF)  algorithm,  followed  by  a  TV-FANSI  reconstruction10 (300

iterations, and μ = 100*α, μ is an internal Lagrangian weight and α is the regularization weight). Both

methods were chosen to avoid further ROI reduction and to minimize over-filtration. We optimized the

metric scores by an exhaustive search, for different regularization weights (α), with multiplicative steps

of 100.2. We compared these results with reconstructions performed using TV-FANSI and no additional

background removal step. Error metrics were evaluated using χ33 and COSMOS as ground truth.

2. Ensuring the validity of the QSM physical model

2.1 Forward phase estimates with anisotropic components.

One way to compare the validity of the provided ground-truths is to estimate the differences between



the calculated magnetization field generated by such susceptibility maps with the single-orientation

acquired phase. To account for anisotropic components, we calculated the whole susceptibility tensor

from the in  vivo dataset  using all  12 orientations,  provided by the challenge  organizers,  and then

applied  the  full  forward  STI  model  to  synthesize  the  phase  of  a  single  acquisition in  the  same

orientation as the main field32:
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This simulated phase was compared with the acquired single orientation phase, as well as the simulated

fields  from the  χ33 and  COSMOS ground-truths  (obtained  by convolution  with  the  dipole  kernel).

RMSE calculation was repeated for each case.

2.2 Solving the inverse-problem with anisotropic components.

The  susceptibility  distribution  calculated  by  QSM  methods  is  an  apparent  susceptibility  that

incorporates  both  isotropic  and anisotropic  components.  The  latter  is  the  result  of  micro-structure

effects and the tensor nature of the susceptibilities of certain tissues. Whereas some studies40-42 have

described how micro-structure affects phase contrast and its impact on both QSM and STI, we are

interested  in  providing  a  scalar  apparent  susceptibility  ground-truth  from  STI.  For  this  effect,  a

projection of the STI data onto a scalar value is  required.  To assess the impact  of the anisotropic

components on the QSM estimations, and how it compares with the χ33 component, a new ground-truth

must be derived. A direct division of the synthetic STI-derived phase (Eq. 1) by the dipole kernel

yielded:

χ STI=χ33+F
−1(

−k z
k2−3k z

2 )(k x Fχ13+k yFχ 23),  Eq. 2

This may be interpreted as: 

χ STI= χ33+ χ corr, Eq. 3

where χcorr is a correction term that incorporates projections of the anisotropic components. However,

χcorr cannot be analytically  derived since it  involves division by zero-valued coefficients within the

“magic cone”. Approximations to this correction term were computed using TKD5 (threshold = 0.17)



and Tikhonov6 (λ = 6E-2) regularization methods, to obtain two new proposed ground-truths:  χSTI-TKD

and χSTI-L2. We chose the L2 and TKD algorithms for these correction terms to avoid giving TV-FANSI

an unfair advantage if variational penalties were also applied as regularization in this step. Algorithms´

parameters were chosen for the apparent well-behavior when working with the single acquisition data

and were directly applied for this correction factor estimation. QSM reconstructions were performed

using TV-FANSI10 (maximum 50 iterations), with an exhaustive search of the optimal regularization

weight using multiplicative 100.1 steps from 10-6 to 10-2. Metric scores were evaluated using χSTI-TKD, χSTI-

L2, χ33 and COSMOS as ground truth, respectively.

Alternatively, from Eq. 1, we may instead use the anisotropic χ13 and χ23 terms to forward simulate a

phase  correction  term  for  the  acquired  data.  This  amended  phase  corresponds  to  Φ33,  the  scalar

magnetization  of  a  susceptibility  distribution  χ33 (i.e.  convolving  by  the  dipole  kernel).  Then,  it

becomes  possible  to  compare  QSM reconstructions  using  χ33 as  ground  truth  by  using  either  the

acquired phase or the amended phase as input data for the algorithm (Eq. 4).
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To  see  if  background  field  remnants  had  still  an  effect  in  the  reconstructions  when  anisotropic

components are taken into consideration (the cumulative effect), we repeated the background removal

analysis  described  earlier  (section  1)  for  the  best  scoring  (lowest  RMSE/HFEN and larger  SSIM)

phase/ground-truth set.

3. Impact of SNR to metrics and ground-truth solutions.

Data provided for the challenge corresponded to a single-orientation acquired using Wave-CAIPI with

a high acceleration factor, thus enabling relatively short acquisition times (all 12 head orientations were

acquired within one hour). In turn, this high acceleration factor produced low SNR data. Statistical

analysis  of  the  real  and  imaginary  components  in  the  signal-void  background  gave  a  peak  SNR

between 40 to 60. In order to assess the influence of noise in the reconstruction quality (measured by

the metrics used in the challenge) and the correlation between the predicted optimal parameters by each

metric, we designed an analytic simulation experiment. We used COSMOS-based forward simulations,

where  the  phase  data  were  simulated  by convolving with the  dipole  kernel.  In  these experiments,

susceptibility values outside the brain were set to zero (the mean susceptibility value). We used the



calculated phase and the provided magnitude data (normalized between 0 and 1) to create real and

imaginary images. Gaussian noise was added to each channel in the complex image domain, with SNR

settings from 2 to 128 in a dyadic sequence. Noise-corrupted phase images were used directly as input

for TV-FANSI reconstructions. Because only local phases were simulated, objects outside the region of

interest were not included and consequently, unwrapping or background field removal methods were

not required. Individual optimal reconstruction parameters were found for each error metric and SNR

level.

The influence of background remnants and anisotropic components was also studied, on two phases

forward simulated at SNR = 32 and SNR = 64, in concordance to our estimated SNR range for the in

vivo acquisition. We included the remnants found by the PDF method, and the phase derived from the

anisotropic tensor elements, χ13 and χ23 (Eq. 1) in this analysis. Metric scores were evaluated using TV-

FANSI reconstructions and compared with the in vivo metric scores (obtained from the experiments

described in previous sections). 

In all the presented experiments, QSM reconstructions were evaluated with RMSE, HFEN and SSIM

(with K = [0.01, 0.03] and L = 255 parameters43, as used by the organizers of the challenge), with

respect to each ground-truth.  To provide further insights about quality metrics,  we also include the

analysis  of  metrics  not  used  in  the  challenge,  such  as  the  correlation  coefficient  (CC),  mutual

information44 (MI), root mean squared error of the gradient of susceptibilities (GXE), mean absolute

deviation (MAD) and the mean absolute deviation of the gradient of susceptibilities (MADGX). GXE,

MAD and MADGX errors are normalized by the L2-norm and L1-norm of the gradients of the ground

truth, and the L1-norm of the ground truth, as correspond for each metric. Source code to evaluate all

the  described  metrics  is  available  at  the  FANSI-Toolbox  site:  http://gitlab.com/cmilovic/FANSI-

Toolbox

Results

1. Background field remnants.

Estimations of the background field remnants using PDF and WH-QSM are presented in Figure 1.

Visually, both methods yield similar remnants near the boundaries of the ROI, especially at lower and

upper regions. Smooth remnants seem to be also present in deep brain areas. In both cases, remnant

background phase information seems to be smaller in magnitude than the local phase data, revealing a



minor contribution.

Susceptibility calculations were performed using the provided local phase, and the local phase further

filtered by PDF using TV-FANSI. The supplied phase was also used as input for WH-QSM, which

jointly estimated the background and performed the susceptibility calculation. Error scores for these

results are presented in Table 1.

*** Table 1 near here ***

Both background filtering methods show small improvements (lower than 5,5%) for all three metrics

(except for HFEN, using PDF+TV-FANSI and COSMOS as ground truth which scored a 1,4% higher

error).  Optimal  regularization  weights  (Table  2)  were  similar  between  methods  (with  WH-QSM

obtaining  slightly  smaller  optimal  regularization  weights  for  most  metrics),  and  results  were  still

visually over-regularized (Supplementary Figure S1). RMSE seems to be more sensible to background

remnant errors than HFEN and SSIM.

*** Table 2 near here ***

2. Ensuring the validity of the QSM physical model

2.1 Forward phase estimates with anisotropic components.

The simulated field (i.e. the phase data) estimated from the STI equation (Eq. 1) returned lower RMSE

values (relative to the phase from the single acquisition) than forward simulations using χ33 (-20.8%)

and COSMOS (-9.4%), as seen in Figure 2.  Phase differences  are  also reported in  Supplementary

Figure  S2 with  higher  contrast.  Notably,  the  STI-based phase  error  map  (Figure  2D)  contains  no

medium or  large-scale  anatomical  features.  Differences  are  more prominent  in  the  venous system,

which seem to be independent on the orientation of the vessels.

2.2 Solving the inverse-problem with anisotropic components.



Estimated χcorr-L2 and χcorr-STI correction images are shown in Figure 3. These corrections are incorporated

into the χ33 ground-truth (χSTI maps), for optimization of the reconstructions with the single orientation

acquisition.  The  χSTI maps  returned  better  quality  metric  scores  than  χ33,  and  at  least  similar  to

COSMOS (Table 3). This indicates that the proposed χSTI  solutions constitute more consistent ground

truths for single orientation QSM. Even so, the amended Φ33 phase with anisotropic components turned

χ33 into the best ground truth in this comparison. Notably, optimal regularization parameters for QSM

reconstructions (for a given target metric)  were smaller  using the STI-based ground-truths and the

amended  Φ33 phase,  thus  achieving  less  over-regularized  results  (Figure  4  and  Supplementary

Information Figure S4). In addition, regularization weights were more similar across different metrics

than parameter optimizations performed with the provided ground-truths. This greater convergence of

the metrics indicates that incompatibilities between the input data and the proposed ground-truth are

being minimized.

*** Table 3 near here ***

Repeating the background removal analysis on this amended phase yielded small improvements (less

than 2%) for susceptibility maps using WH-QSM and no improvement for PDF (see Supplementary

Information Figure S5 and Table S1 for details). This is a minor improvement, compared to the ~15%

gains shown in Table 3. We found a 4.8% RMSE improvement using the remnants calculated from Φ33

to correct the forward simulation of the STI phase. In contrast, the background remnant calculated from

the acquired phase returned a 3.6% RMSE improvement when comparing to the forward simulations

using χ33 and COSMOS. Both remnant maps are presented in Supplementary Figure S3.

3. Impact of SNR to metrics and ground-truth solutions.

TV-FANSI reconstructions and optimal metric scores using forward simulated phases with COSMOS

as ground truth for SNR=2 to SNR=128 are displayed in Figure 5A-C. Simulations at higher SNR

levels (103 and 106, not shown in Figure 5) reveal a minimal error level at approximately 17.6% RMSE,

15.7% HFEN and 0.99 SSIM. Scores are almost perfect for SNR=106 if no magnitude information is

incorporated in the simulation of the complex normal noise (0.02% RMSE, 0.01 HFEN and 1.0 SSIM),

revealing that this plateau is caused by the truncation of the magnetization fields due to existence of



regions without MRI signal. Simulations done at SNR = 20 yield errors comparable to those found in

the best in-vivo scores, which is not the case of the supplied data (with an SNR at least in the 40-60

range, as shown in Supplementary Information Figure S6). In a realistic SNR range, RMSE and HFEN

scores  reveal  that  the  noise  level  of  the  single  acquisition  cannot  explain  the  scores  obtained  by

reconstructions using χ33 as ground-truth. Both our χSTI proposed ground-truth and working with the Φ33

amended phase reach a score level closer to the baseline. 

In terms of the regularization weight (Figure 5D), optimal values for the HFEN metric tended to be the

lowest  in  simulations,  whereas  SSIM  yielded  the  lower  values  working  with  the  in  vivo  data.

Maximum differences in the optimal weights between metrics (at a given SNR) grows exponentially

with  noise,  at  a  similar  rate,  with  a  high  correlation  between  the  metrics.  Additional  metrics

(Supplementary Information Figure S7) seem also to be correlated. MI seemed to be the least reliable.

When background remnants and anisotropic components are taken into consideration in our simulations

(Figure 6 and Supplementary Information Figure S8) the mismatch is closer in line with the behavior of

the challenge data.  Anisotropic components  were the largest source of mismatch,  with background

remnants having a smaller contribution when both terms are considered together. 

Exhaustive metric scores for reconstructions of the provided in vivo phase, using both  χSTI maps,  χ33

and COSMOS as ground truth,  are presented in Supplementary Information Figure S9. This figure

includes all the analyzed metrics.

Discussion

The analysis of the submitted results to the 2016 QSM Reconstruction Challenge31 raised a few issues

about the challenge design (input data and ground truth) and the metrics.  Errors (measured by the

metrics) using COSMOS as ground-truth were significantly smaller to those using χ33, in opposition to

the assumption  that  χ33 was  a  better  representation  of  the  apparent  susceptibility  in  the  z-axis  (by

discarding  any  anisotropic  contribution).  Furthermore,  most  QSM  submitted  results  were  over-

regularized. And finally, the regularization weights depended significantly on the metric chosen to be

optimized for. Because of this, some algorithms high-scoring in one category performed worse in the

others. To explain these observations, we conducted a series of experiments to determine the role of

background remnants, anisotropic components and noise in the metric scores, and visual appeal of the



results.

Background filtered reconstructions show small improvements for error metrics, independent of the

ground truth.  This indicates  that  although background remnants were present  in the provided local

phase, their impact on the reconstructions is secondary to other effects. Optimal regularization weights

were consistent between methods (with WH-QSM obtaining slightly smaller optimal weights).

Additionally, arguing against the relevance of background remnants is that all the multi-orientation data

were filtered using the same pipeline (LBV + polynomial fit). Although this may introduce errors in the

STI estimation, background ghosting or boundary errors should be mostly contained in the isotropic χ33

component, with a biased estimation similar to the one in the single-orientation reconstruction.

With background remnants  discarded as main contributors  to degradation of the metric  scores,  we

analyzed the  validity  of  assuming  χ33 as  the  ground truth for  a  single orientation  acquisition.  The

assumption that anisotropic magnetizations and microstructure effects were negligible was invalidated

by comparing  the  forward  simulated  phases  using  χ33,  COSMOS,  and the  complete  STI equation.

RMSE of the phase calculated from χ33 was the highest, whereas the phase from the STI equation was

the lowest (by 9.4% with respect to COSMOS and 20.8% to χ33). The remnant phase map using the full

STI  model  (Fig.  2D)  has  no  large-scale  features,  and  major  discrepancies  that  are  found  in  the

vasculature  may  be  associated  with  the  blurring  effect  created  by  spatial  interpolation  in  the  co-

registration step (in the process of calculating the STI tensor), or flow effects in this non-compensated

acquisition. An additional source of uncertainty is the error generated at the STI estimation by the use

of a limited set of orientations. As shown by Li et al45, RMSE could rise up to 30% for acquisitions

similar  to  those  in  the  2016  Challenge  dataset  (in  terms  of  SNR  and  maximum  angulation).

Nevertheless,  this  error  should  account  only  for  a  fraction  of  the  estimated  anisotropy,  given  the

structures  visible  in  the  remnant  map,  and  could  be  related  more  to  microstructure  effects.

Unfortunately, this source of error cannot be estimated due to the lack of a real ground truth in this in

vivo  setting.  The  remnant  map  also  discards  large  co-registration  errors  as  a  potential  source  of

mismatch, due to the lack of contiguous sharp edge features with a different sign that are created by the

misalignment of structures. Some of the medium-scale features, especially near the para-nasal cavities

and cerebellum, have similarities with the background remnants shown in Figure Supplementary S2.

This explains why the metric scores overall improve when these fields are removed. The COSMOS

forward  simulated  phase  partially  incorporated  anisotropic  components,  and  thus,  reconstruction

metrics using COSMOS as reference achieved overall better scores than using χ33.

QSM reconstructions that incorporated the anisotropic tensor components (either by comparing to the



χSTI ground truths or using the amended  Φ33 phase) resulted in significantly lower errors than when

using χ33 or COSMOS as ground truth. In practice, these tensor elements incorporate contributions from

susceptibility anisotropic effects as micro-structure effects and chemical shielding. Since calculating

the  χcorr term involves  a  dipole  inversion,  we used two algorithms  that  do  not  impose  piece-wise

constant solutions to avoid an unfair advantage to TV-FANSI in the metric scores. This is partially

reflected in the reconstructions using Φ33 as input, where the anisotropic components were incorporated

in  the  acquired  phase  and  were  jointly  reconstructed,  leading  to  the  lowest  error  scores.  Further

background  field  subtraction  improved  the  scores  marginally.  Optimal  regularization  weights

associated with these reconstructions also were smaller (however, yielding more visually appealing

results) and more consistent between metrics.

The analysis of the forward simulated reconstructions at different SNR scenarios gave more insights to

explain the metric scores and the differences in their optimal values. Given that the actual SNR of the

single orientation data is in the 40-60 range, noise does not sufficiently explain the measured (worse)

metric  scores  in  in  vivo  acquisitions.  Optimal  regularization  weights  were  also  smaller  for  our

simulations  in this  noise range,  yielding less over-regularization.  While  SSIM tended to return the

lower regularization weights with in vivo data, in the simulations HFEN consistently yielded lower

regularization weights, while SSIM tended to return similar values to those derived from using the

RMSE. The discrepancy between the optimal regularization weights given by different metrics was

also smaller for simulations. These tests revealed that SSIM is less sensitive to local discrepancies than

HFEN and RMSE. HFEN promotes sharper (less regularization) results than SSIM and RMSE in the

absence of local mismatches. L2 norm-based error metrics (HFEN and RMSE) tend to minimize the

total  energy  of  the  mismatches,  distributing  it  among  neighboring  pixels,  thus  promoting  over-

regularized results. Consequently, this is an indication that other sources for the mismatch between the

acquisitions and the ground-truth are present, beyond noise.

By conducting forward simulations at SNR=32 and SNR=64, which is the expected noise level range

of  the  in  vivo  acquisition,  we  explored  the  influence  of  background  remnants  and  anisotropic

components to the metric scores. This experiment revealed that anisotropic tensor components had a

larger influence on the errors than background remnants. Both effects combined increased the errors to

a level similar to those found in the challenge, confirming that these two were the major sources of

mismatch. Optimal regularization weights also were larger when these effects were included, showing

a similar behavior to the in vivo reconstructions for the RMSE and HFEN metrics. The SSIM metric,



on the other hand, revealed a larger invariance to these effects. In addition, other error sources might be

responsible for minor mismatches of the in vivo reconstruction and ground truth. For example, blurring

of the multiple-orientation data due to interpolation might also play a role in this discrepancy. Please

note that we are ignoring noise and other effects in the STI or COSMOS estimations as sources of

errors. By comparing our reconstruction to noisy or flawed ground-truths (due to the limited available

range  of  angulation  values)  we  are  under-estimating  the  influence  of  noise  and  anisotropic

contributions. Unfortunately, these errors are hard to estimate without an appropiate ground-truth.

Other global metrics may also be considered, as proposed in Supplementary Information Figure S7-S9,

which presented similar  trends to  RMSE, HFEN, and SSIM. Such metrics  may provide additional

information about the source of the errors. For image analysis purposes, other alternatives to consider

in the future may follow multiscale or vectorized metrics46, or the inspection of the SSIM map, which

reveal more information regarding the nature of the errors. Unfortunately, such metrics or methods are

not directly applicable to rank results for a challenge contest as compared to scalar scores.

Finally,  while  other  potential  sources  of  errors  such  as  vascular  flux,  motion,  etc.  might  be  also

considered, it remains an open question on how to properly numerically compare single orientation

with multiple orientation reconstructions. Methods to project the susceptibility tensor onto the apparent

scalar susceptibility should be explored and validated in future investigations. These should considerate

projections onto different head orientations to validate the methods. This may be performed by simply

rotating  all  the  images  to  set  a  new reference  “central”  acquisition,  thus  creating  a  new,  rotated,

susceptibility  tensor  to  account  for  the  anisotropic  contributions  to  the  new  χ33 component.

Experimental validation of these methods should also consider the errors incurred in the susceptibility

tensor estimation, and estimate how noise impacts the tensor-to-scalar projection. Due to the limitations

of in vivo STI acquisitions, this may be complemented with ex vivo acquisitions.

Conclusions

The 2016 QSM Reconstruction Challenge used a highly accelerated Wave-CAIPI GRE sequence to

provide single and multiple orientation reconstructions. Despite the low SNR of the provided single

orientation phase, noise alone cannot explain the poor metrics scores found in the reconstructions using

χ33 as ground truth, and why using COSMOS as ground truth significantly improved these scores. As

demonstrated  in  the  experiments  in  this  paper,  a  non-negligible  mismatch  was found between the



provided local  phase data  and using χ33 component  of the STI tensor as ground truth.  Anisotropic

magnetization contributions and microstructural effects incorporated in the χ13 and χ23 elements proved

to be the major source for this mismatch. A more adequate ground truth may be obtained by projecting

these  anisotropic  contributions  into  the  apparent  scalar  susceptibility.  However,  because  of  the

necessity to perform a dipole inversion, this estimation is not trivial and requires further investigation.

COSMOS reconstructions can capture some of these effects and may be better suited as ground-truth

targets,  although  differences  might  be  relevant  in  some  structures  (white  matter  and  the  vascular

system). A secondary contribution to the mismatch is the presence of minor background field remnants.

Considerations and Outlook for future QSM challenges

The majority of biomedical imaging challenges (such as from MICCAI) conducted in the past years

aimed segmentation and classification47. However, owing to the underlying physical problem without a

ground truth,  comparing the performance of QSM reconstruction algorithms is  more complex than

what can be reflected by a single numeric error measure, and the question on how to measure the

quality of the reconstructions still remains open. Therefore, for future challenges it could be advisable

to consider the overall performance instead of relying on a single metric. Multiple metric categories is

also an option.  To avoid controversy,  categories should be announced beforehand, and the scoring

source code made available with the release of the ground truth dataset47.

In the case of working with in vivo data, thorough background removal steps should be carried out to

provide  clean  local  phases.  This  may  be  performed  by  including  an  additional  background  field

removal step, such as PDF or V-SHARP. Major possible sources of errors could be also masked out by

using  smaller  regions  of  interest.  Given  all  the  challenges  involved  in  using  multiple  orientation

reconstructions as ground-truth, and the unfeasibility of generating a single orientation ground truth, in

vivo data remains a challenging ground for QSM reconstruction challenges.

Instead, analytic simulations of the acquired signal should be encouraged. Whole head susceptibility

distributions may be derived from in vivo data to provide ground-truth with a realistic brain geometry,

from which scalar (isotropic) magnetization fields may be calculated. Piece-wise analytic phantoms

should  be  avoided  to  prevent  unfair  advantages  to  variational  approaches  (e.g.  TV  or  TGV

regularizations).  In  addition,  analytic  simulations  may  be  even  further  extended  in  the  future  to

incorporate the background field removal step and unwrapping and could provide a complete GRE

signal simulation platform on which all different steps of the QSM reconstruction pipeline can be tested



and evaluated48.

Another consideration for a future challenge design is to include an evaluation of a priori optimization

of the results. Parameter fine-tuning without knowing the ground-truth is a non-trivial task. Having the

ground-truth  hidden  from the  participants  should  allow the  community  to  evaluate  how good  the

analytic predictors of optimal parameters are, and how reliable or reproducible the results may be.

In conclusion, the presence of unaccounted for anisotropic susceptibility contributions, noise, and the

lack of reliable ground-truths using in vivo acquisitions, strongly suggests synthetic data and forward

simulations for future QSM challenge designs.
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Figures

Figure  1. Single  orientation  acquisition  (A)  and  background  remnant  models  using  (B)  weak-

harmonics  (WH-QSM,  with  β=5,  μh=0.1,  the  weak  harmonic  regularization  weights)  and  (C)  the

Projection onto Dipole Fields (PDF) methods.



Figure  2.  Differences  between  forward  simulated  phases  and  the  provided  single  orientation

acquisition (A) for: (B and E) the χ33 component, (C and F) COSMOS, and (D and G) the STI equation,

including the χ13 and χ23 anisotropic components. The right column shows the same difference maps as

the left column, but with a higher contrast to reveal subtle differences.



Figure 3. The χ33 (isotropic) component and correction factors, χcorr  (B and C, derived from χ13 and χ23

anisotropic components) used to estimate χSTI-TKD and χSTI-L2 respectively (D and E). 

Figure 4. Selected optimal reconstructions of the challenge data, based on the RMSE (left panel) and

SSIM (right panel) metrics,  using  χ33 (A,D) and  χSTI-L2 (B, E) as ground truth. (C ,F) show optimal

reconstructions of the amended phase (to remove anisotropic components) and using χ33 as ground truth

(χ33|Φ33 ).



Figure 5. Metric scores of the reconstruction using COSMOS-based forward simulations. Optimal (A)

RMSE, (B) HFEN and (C) SSIM scores are presented as function of SNR. Metric scores for in vivo

reconstructions using χ33 and χSTI-L2  as ground truth, along with reconstructions of the amended phase

with TV-FANSI (χ33|Φ33) and WH-QSM, are also included.  (D) presents  the optimal  regularization

weight for each metric and SNR setting. Ranges for the optimal reconstructions using χ33, χSTI-L2 and χ33|

Φ33 also included.



Figure 6. (A)  RMSE, (B) HFEN and (C) SSIM optimal scores for reconstructions at SNR=64 and

SNR=32 and their  regularization  weight.  Simulations  included  the  phase  forward  calculated  using

COSMOS  Φ  with  the  addition  of  the  background  remnants  obtained  using  PDF  (ΦPDF)  and  the

anisotropic phase contributions (Φcorr) calculated from the χ13 and χ23 components of the STI tensor. (D)

Shows the range span of optimal regularization weight values by the different simulations and in vivo

reconstructions, for a given metric.



Tables

Table 1: Quality metric scores of QSM reconstructions with additional background filtering

COSMOS
RMSE HFEN

TV-FANSI 64.49 59.85
WH-QSM 60.05 58.05

Table 2: Optimal Regularization weight found for each QSM reconstruction

COSMOS
RMSE HFEN

TV-FANSI 6.3E-05 4.0E-05
WH-QSM 4.0E-05 4.0E-05

Table 3: Quality metric scores and optimal QSM regularization parameters of ground-truth solutions

obtained with TV-FANSI. 

RMSE α

76.0 1.0E-04
COSMOS 62.6 5.0E-05

65.2 5.0E-05

χ
33

χ
STI-TKD



Supporting Information captions

Supporting Information Figure S1. Selected optimal reconstructions of the challenge data, based on

RMSE  (left  column)  and  SSIM  (right  column),  using  χ33 as  ground  truth  (A).  Panels  show

reconstructions  of the provided local  phase using (B,  E)  TV-FANSI, (C, F)  WH-QSM (with joint

background removal process), and (D, G) TV-FANSI of the PDF filtered local phase.

Supporting Information Figure S2.  Difference between the forward simulated phases using χ33 and

COSMOS. Note the windowing.

Supporting Information Figure S3.  (A) and (B) reveal the background extracted from the acquired

phase  and  the  amended  phase,  respectively,  using  WH-QSM  (β=500,  μh=10,  the  weak  harmonic

regularization weights).

Supporting Information Figure S4. Difference maps between optimal results using RMSE and SSIM,

for the same ground-truth.

Supporting Information Figure S5. Selected optimal reconstructions of the amended phase (without

anisotropic contributions) based on the RMSE and SSIM metrics, using χ33 as ground truth. Panels

show reconstructions  using  (A,  D)  TV-FANSI,  (B,  E)  WH-QSM (with  joint  background removal

process), and (C, F) TV-FANSI of the background filtered local phase, using PDF.

Supporting  Information  Figure  S6.  Effect  of  noise  level  on  forward  simulations.  (A)  Single

orientation phase data and forward simulations of ΦSTI at SNR levels: (B) 20, (C) 32, (D) 40, (E) 60, (F)

100 and (G) noiseless.

Supporting  Information  Figure  S7.  Metric  scores  of  the  reconstruction  using  COSMOS-based

forward  simulations.  Optimal  (A) CC, (B) MI,  (C) GXE,  (D) MAD and (E)  MADGX scores  are

presented as function of SNR. Metric scores for in vivo reconstructions using χ33 and χSTI-L2  as ground

truth, along with reconstructions of the amended phase with TV-FANSI (χ33|Φ33) and WH-QSM, are

also included. (F) presents the optimal regularization weight for all metrics and SNR setting. Ranges

for the optimal reconstructions using χ33, χSTI-L2 and χ33|Φ33 also included.

Supporting Information Figure S8. (A) RMSE, (B) HFEN, (C) SSIM, (D) CC, (E) MI, (F) GXE, (G)

MAD  and  (H)  MADGX  scores  for  reconstructions  at  SNR=64  and  SNR=32  as  function  of  the

reconstruction weight. Simulations included the phase forward simulatedcalculated using COSMOS Φ

with the addition of the background remnants obtained using PDF (ΦPDF) and the anisotropic phase



contributions (Φcorr) calculated from the χ13 and χ23 components of the STI tensor. (I) Shows the range

span of optimal regularization weight values by the different simulations and in vivo reconstructions,

for all given metrics.

Supporting Information Figure S9. Comparison of all proposed quality metrics as function of the

regularization weigh for in vivo reconstructions. (A) RMSE, (B) HFEN, (C) SSIM, (D)CC, (E) MI, (F)

GXE, (G) MAD and (H) MADGX. Reconstructions times are also provided (I).

Supporting Information Table S1. Quality metric scores and optimal regularization weights of QSM

reconstructions of the amended phase Φ33 with additional background filtering.
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	Purpose: The 4th International Workshop on MRI Phase Contrast & QSM (2016, Graz) hosted the first QSM challenge. A single-orientation GRE acquisition was provided, along with COSMOS and the χ33 STI component as ground-truths. The submitted solutions differed more than expected depending on the error metric used for optimization and tended to over-regularization. This raised (unanswered) questions about the ground-truths and the metrics utilized. Methods: We investigated the influence of background field remnants by applying additional filters. We also estimated the anisotropic contributions from the STI tensor to the apparent susceptibility, to amend the χ33 ground-truth and to investigate the impact on the reconstructions. Lastly, we used forward simulations from the COSMOS reconstruction to investigate the impact that has noise on the metrics. Results: Reconstructions compared against the amended STI ground-truth returned lower errors. We show that the background field remnants had a minor impact in the errors. In the absence of inconsistencies, all metrics converged to the same regularization weights, whereas SSIM was more insensitive to such inconsistencies. Conclusion: There was a mismatch between the provided data and the ground-truths due to the presence of unaccounted anisotropic susceptibility contributions and noise. Given the lack of reliable ground-truths when using in vivo acquisitions, simulations are suggested for future QSM challenges.
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	Introduction
	Quantitative Susceptibility Mapping (QSM) is a relatively new MRI technique, where susceptibility changes in tissues are conventionally estimated from Gradient Recalled Echo (GRE) acquisitions1,2. The phase of the GRE signal is proportional to changes in the local (macroscopic) magnetic field induced by the underlying distribution of magnetic susceptibility in the tissue3,4. The calculation of the magnetic susceptibility distribution from a given magnetization field is an ill-conditioned and also ill-posed inverse problem5,6. One of the reasons for the ill-conditioning of the problem is that the dipole convolution kernel, which describes the susceptibility-to-field problem, decays to zero around a double-shaped conical surface at the magic angle around the main field direction. A straightforward inversion implies a division by small numbers, resulting in severe noise-amplification5,7. Reasons for the ill-posedness of the problem include the limited field of view coverage, signal dropout due to fast T2* decay (or lack of signal in bone and air regions), and non-Gaussian noise behavior8–10. The majority of the most recently published QSM techniques rely on solving the inverse problem by minimizing an objective function that includes a regularization term. Other QSM techniques rely on modifications to the dipole kernel, or to exploit approaches derived from the Compressed Sensing theory11. All these techniques try to reduce streaking artifacts and to prevent noise amplification during the inversion process12. Other methodological studies focus on preprocessing steps, such as the removal of background fields (magnetization fields originated from objects outside of the field of view)13,14, phase unwrapping and multi-echo / multi-coil combination techniques15,16. The integration of those techniques and the inversion problem into a single process is referred as the so-called single-step algorithms17–23.
	In addition to those methodological papers, several clinical studies using QSM have been conducted, some of them combining well-established relaxometry measures such as T2*/R2* 24–29. Generally, it has been observed that the quantified susceptibility values vary depending on the employed methodology30.
	Given such a variety of methods and associated results, a QSM Challenge was proposed in the context of the 4th International Workshop on MRI Phase Contrast & QSM (Graz, Austria, September 2016)31. The challenge aimed at defining a faithful reconstruction of magnetic susceptibility. A single head orientation GRE acquisition (from a multi-orientation set) was released to the contestants to test their algorithms. The whole multi-orientation set was used to calculate the susceptibility tensor32 (STI) and a Calculation Of Susceptibility through Multiple Orientation Sampling (COSMOS)33 reconstruction. While the χ33 term of the susceptibility tensor was used as ground-truth, the COSMOS reconstruction was also provided. Anisotropic elements of the susceptibility tensor (χ13 and χ23) were discarded, assuming that their contributions were negligible in an acquisition with an orientation parallel to the main field. Since most of the algorithms depend on one or more parameters that must be fine-tuned, the ground truth was provided to allow for optimization of the parameters, ensuring that submitted susceptibility maps represent the best results that can be achieved with a certain algorithm. Totally 27 reconstructed QSM images were submitted by 15 teams, and 4 metrics were evaluated (Root Mean Square Error - RMSE, High Frequency Error Norm - HFEN, Structural Similarity Index Metric - SSIM, and error in anatomical ROIs) in separate categories. Henceforth, teams optimized their results to minimize (or maximize in the case of SSIM) a certain quality metric. It turned out that most of numerically well performing approaches produced (visually) over-regularized susceptibility maps either blurry or piece-wise smooth. Reconstructions (and the optimal parameter values) also varied upon the employed quality metric. Furthermore, many approaches performed well according to a particular metric, but poorly according to others. Subsequent discussions and analyses pointed at several possible sources of inconsistency that might have degraded the given phase data and therefore its correspondence to the provided ground truth susceptibility. These effects include incomplete background field removal, noise, anisotropic susceptibility and microstructure contributions, flow and motion artifacts, and co-registration (i.e. misalignment of the multiple orientation acquisitions) errors. In addition, questions were raised about the behavior of the selected quality metrics, mainly whether or not they could provide the same optimal parameters.
	In this paper, we investigated the viability of the provided χ33 susceptibility map as ground truth for single orientation acquisitions and compared it with the COSMOS reconstruction and an STI derived scalar projection. We also investigated the impact of noise and the influence of background field residuals in the reconstructions.
	Methods
	MRI data
	1. Background field remnants.
	Background field removal is one part of the QSM pipeline where results may vary substantially depending on the algorithm used. The QSM challenge data was processed using LBV and polynomial fit steps. To evaluate the quality of the provided local phase, and how background field remnants could impact in the error metrics, we included two additional methods to reduce the remaining background fields. The first method is the recently proposed Weak-harmonics QSM (WH-QSM) reconstruction19, where an estimate of the background field is jointly reconstructed with the susceptibility map, by imposing a weak-harmonics regularization to decouple terms. The second method is the popular Projection onto Dipole Fields39 (PDF) algorithm, followed by a TV-FANSI reconstruction10 (300 iterations, and μ = 100*α, μ is an internal Lagrangian weight and α is the regularization weight). Both methods were chosen to avoid further ROI reduction and to minimize over-filtration. We optimized the metric scores by an exhaustive search, for different regularization weights (α), with multiplicative steps of 100.2. We compared these results with reconstructions performed using TV-FANSI and no additional background removal step. Error metrics were evaluated using χ33 and COSMOS as ground truth.
	2. Ensuring the validity of the QSM physical model
	2.1 Forward phase estimates with anisotropic components.
	One way to compare the validity of the provided ground-truths is to estimate the differences between the calculated magnetization field generated by such susceptibility maps with the single-orientation acquired phase. To account for anisotropic components, we calculated the whole susceptibility tensor from the in vivo dataset using all 12 orientations, provided by the challenge organizers, and then applied the full forward STI model to synthesize the phase of a single acquisition in the same orientation as the main field32:
	, Eq. 1
	This simulated phase was compared with the acquired single orientation phase, as well as the simulated fields from the χ33 and COSMOS ground-truths (obtained by convolution with the dipole kernel). RMSE calculation was repeated for each case.
	2.2 Solving the inverse-problem with anisotropic components.
	The susceptibility distribution calculated by QSM methods is an apparent susceptibility that incorporates both isotropic and anisotropic components. The latter is the result of micro-structure effects and the tensor nature of the susceptibilities of certain tissues. Whereas some studies40-42 have described how micro-structure affects phase contrast and its impact on both QSM and STI, we are interested in providing a scalar apparent susceptibility ground-truth from STI. For this effect, a projection of the STI data onto a scalar value is required. To assess the impact of the anisotropic components on the QSM estimations, and how it compares with the χ33 component, a new ground-truth must be derived. A direct division of the synthetic STI-derived phase (Eq. 1) by the dipole kernel yielded:
	, Eq. 2
	This may be interpreted as:
	, Eq. 3
	where χcorr is a correction term that incorporates projections of the anisotropic components. However, χcorr cannot be analytically derived since it involves division by zero-valued coefficients within the “magic cone”. Approximations to this correction term were computed using TKD5 (threshold = 0.17) and Tikhonov6 (λ = 6E-2) regularization methods, to obtain two new proposed ground-truths: χSTI-TKD and χSTI-L2. We chose the L2 and TKD algorithms for these correction terms to avoid giving TV-FANSI an unfair advantage if variational penalties were also applied as regularization in this step. Algorithms´ parameters were chosen for the apparent well-behavior when working with the single acquisition data and were directly applied for this correction factor estimation. QSM reconstructions were performed using TV-FANSI10 (maximum 50 iterations), with an exhaustive search of the optimal regularization weight using multiplicative 100.1 steps from 10-6 to 10-2. Metric scores were evaluated using χSTI-TKD, χSTI-L2, χ33 and COSMOS as ground truth, respectively.
	Alternatively, from Eq. 1, we may instead use the anisotropic χ13 and χ23 terms to forward simulate a phase correction term for the acquired data. This amended phase corresponds to Φ33, the scalar magnetization of a susceptibility distribution χ33 (i.e. convolving by the dipole kernel). Then, it becomes possible to compare QSM reconstructions using χ33 as ground truth by using either the acquired phase or the amended phase as input data for the algorithm (Eq. 4).
	Eq.4
	To see if background field remnants had still an effect in the reconstructions when anisotropic components are taken into consideration (the cumulative effect), we repeated the background removal analysis described earlier (section 1) for the best scoring (lowest RMSE/HFEN and larger SSIM) phase/ground-truth set.
	3. Impact of SNR to metrics and ground-truth solutions.
	Data provided for the challenge corresponded to a single-orientation acquired using Wave-CAIPI with a high acceleration factor, thus enabling relatively short acquisition times (all 12 head orientations were acquired within one hour). In turn, this high acceleration factor produced low SNR data. Statistical analysis of the real and imaginary components in the signal-void background gave a peak SNR between 40 to 60. In order to assess the influence of noise in the reconstruction quality (measured by the metrics used in the challenge) and the correlation between the predicted optimal parameters by each metric, we designed an analytic simulation experiment. We used COSMOS-based forward simulations, where the phase data were simulated by convolving with the dipole kernel. In these experiments, susceptibility values outside the brain were set to zero (the mean susceptibility value). We used the calculated phase and the provided magnitude data (normalized between 0 and 1) to create real and imaginary images. Gaussian noise was added to each channel in the complex image domain, with SNR settings from 2 to 128 in a dyadic sequence. Noise-corrupted phase images were used directly as input for TV-FANSI reconstructions. Because only local phases were simulated, objects outside the region of interest were not included and consequently, unwrapping or background field removal methods were not required. Individual optimal reconstruction parameters were found for each error metric and SNR level.
	In all the presented experiments, QSM reconstructions were evaluated with RMSE, HFEN and SSIM (with K = [0.01, 0.03] and L = 255 parameters43, as used by the organizers of the challenge), with respect to each ground-truth. To provide further insights about quality metrics, we also include the analysis of metrics not used in the challenge, such as the correlation coefficient (CC), mutual information44 (MI), root mean squared error of the gradient of susceptibilities (GXE), mean absolute deviation (MAD) and the mean absolute deviation of the gradient of susceptibilities (MADGX). GXE, MAD and MADGX errors are normalized by the L2-norm and L1-norm of the gradients of the ground truth, and the L1-norm of the ground truth, as correspond for each metric. Source code to evaluate all the described metrics is available at the FANSI-Toolbox site: http://gitlab.com/cmilovic/FANSI-Toolbox
	Results
	1. Background field remnants.
	*** Table 1 near here ***
	*** Table 2 near here ***
	2. Ensuring the validity of the QSM physical model
	2.1 Forward phase estimates with anisotropic components.
	The simulated field (i.e. the phase data) estimated from the STI equation (Eq. 1) returned lower RMSE values (relative to the phase from the single acquisition) than forward simulations using χ33 (-20.8%) and COSMOS (-9.4%), as seen in Figure 2. Phase differences are also reported in Supplementary Figure S2 with higher contrast. Notably, the STI-based phase error map (Figure 2D) contains no medium or large-scale anatomical features. Differences are more prominent in the venous system, which seem to be independent on the orientation of the vessels.
	2.2 Solving the inverse-problem with anisotropic components.
	Estimated χcorr-L2 and χcorr-STI correction images are shown in Figure 3. These corrections are incorporated into the χ33 ground-truth (χSTI maps), for optimization of the reconstructions with the single orientation acquisition. The χSTI maps returned better quality metric scores than χ33, and at least similar to COSMOS (Table 3). This indicates that the proposed χSTI solutions constitute more consistent ground truths for single orientation QSM. Even so, the amended Φ33 phase with anisotropic components turned χ33 into the best ground truth in this comparison. Notably, optimal regularization parameters for QSM reconstructions (for a given target metric) were smaller using the STI-based ground-truths and the amended Φ33 phase, thus achieving less over-regularized results (Figure 4 and Supplementary Information Figure S4). In addition, regularization weights were more similar across different metrics than parameter optimizations performed with the provided ground-truths. This greater convergence of the metrics indicates that incompatibilities between the input data and the proposed ground-truth are being minimized.
	*** Table 3 near here ***
	3. Impact of SNR to metrics and ground-truth solutions.
	TV-FANSI reconstructions and optimal metric scores using forward simulated phases with COSMOS as ground truth for SNR=2 to SNR=128 are displayed in Figure 5A-C. Simulations at higher SNR levels (103 and 106, not shown in Figure 5) reveal a minimal error level at approximately 17.6% RMSE, 15.7% HFEN and 0.99 SSIM. Scores are almost perfect for SNR=106 if no magnitude information is incorporated in the simulation of the complex normal noise (0.02% RMSE, 0.01 HFEN and 1.0 SSIM), revealing that this plateau is caused by the truncation of the magnetization fields due to existence of regions without MRI signal. Simulations done at SNR = 20 yield errors comparable to those found in the best in-vivo scores, which is not the case of the supplied data (with an SNR at least in the 40-60 range, as shown in Supplementary Information Figure S6). In a realistic SNR range, RMSE and HFEN scores reveal that the noise level of the single acquisition cannot explain the scores obtained by reconstructions using χ33 as ground-truth. Both our χSTI proposed ground-truth and working with the Φ33 amended phase reach a score level closer to the baseline.
	In terms of the regularization weight (Figure 5D), optimal values for the HFEN metric tended to be the lowest in simulations, whereas SSIM yielded the lower values working with the in vivo data. Maximum differences in the optimal weights between metrics (at a given SNR) grows exponentially with noise, at a similar rate, with a high correlation between the metrics. Additional metrics (Supplementary Information Figure S7) seem also to be correlated. MI seemed to be the least reliable.
	When background remnants and anisotropic components are taken into consideration in our simulations (Figure 6 and Supplementary Information Figure S8) the mismatch is closer in line with the behavior of the challenge data. Anisotropic components were the largest source of mismatch, with background remnants having a smaller contribution when both terms are considered together.
	Exhaustive metric scores for reconstructions of the provided in vivo phase, using both χSTI maps, χ33 and COSMOS as ground truth, are presented in Supplementary Information Figure S9. This figure includes all the analyzed metrics.
	Discussion
	Finally, while other potential sources of errors such as vascular flux, motion, etc. might be also considered, it remains an open question on how to properly numerically compare single orientation with multiple orientation reconstructions. Methods to project the susceptibility tensor onto the apparent scalar susceptibility should be explored and validated in future investigations. These should considerate projections onto different head orientations to validate the methods. This may be performed by simply rotating all the images to set a new reference “central” acquisition, thus creating a new, rotated, susceptibility tensor to account for the anisotropic contributions to the new χ33 component. Experimental validation of these methods should also consider the errors incurred in the susceptibility tensor estimation, and estimate how noise impacts the tensor-to-scalar projection. Due to the limitations of in vivo STI acquisitions, this may be complemented with ex vivo acquisitions.
	Conclusions
	The 2016 QSM Reconstruction Challenge used a highly accelerated Wave-CAIPI GRE sequence to provide single and multiple orientation reconstructions. Despite the low SNR of the provided single orientation phase, noise alone cannot explain the poor metrics scores found in the reconstructions using χ33 as ground truth, and why using COSMOS as ground truth significantly improved these scores. As demonstrated in the experiments in this paper, a non-negligible mismatch was found between the provided local phase data and using χ33 component of the STI tensor as ground truth. Anisotropic magnetization contributions and microstructural effects incorporated in the χ13 and χ23 elements proved to be the major source for this mismatch. A more adequate ground truth may be obtained by projecting these anisotropic contributions into the apparent scalar susceptibility. However, because of the necessity to perform a dipole inversion, this estimation is not trivial and requires further investigation. COSMOS reconstructions can capture some of these effects and may be better suited as ground-truth targets, although differences might be relevant in some structures (white matter and the vascular system). A secondary contribution to the mismatch is the presence of minor background field remnants.
	Considerations and Outlook for future QSM challenges
	In the case of working with in vivo data, thorough background removal steps should be carried out to provide clean local phases. This may be performed by including an additional background field removal step, such as PDF or V-SHARP. Major possible sources of errors could be also masked out by using smaller regions of interest. Given all the challenges involved in using multiple orientation reconstructions as ground-truth, and the unfeasibility of generating a single orientation ground truth, in vivo data remains a challenging ground for QSM reconstruction challenges.
	In conclusion, the presence of unaccounted for anisotropic susceptibility contributions, noise, and the lack of reliable ground-truths using in vivo acquisitions, strongly suggests synthetic data and forward simulations for future QSM challenge designs.
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	Figures
	Figure 1. Single orientation acquisition (A) and background remnant models using (B) weak-harmonics (WH-QSM, with β=5, μh=0.1, the weak harmonic regularization weights) and (C) the Projection onto Dipole Fields (PDF) methods.
	Figure 2. Differences between forward simulated phases and the provided single orientation acquisition (A) for: (B and E) the χ33 component, (C and F) COSMOS, and (D and G) the STI equation, including the χ13 and χ23 anisotropic components. The right column shows the same difference maps as the left column, but with a higher contrast to reveal subtle differences.
	Figure 3. The χ33 (isotropic) component and correction factors, χcorr (B and C, derived from χ13 and χ23 anisotropic components) used to estimate χSTI-TKD and χSTI-L2 respectively (D and E).
	Figure 4. Selected optimal reconstructions of the challenge data, based on the RMSE (left panel) and SSIM (right panel) metrics, using χ33 (A,D) and χSTI-L2 (B, E) as ground truth. (C ,F) show optimal reconstructions of the amended phase (to remove anisotropic components) and using χ33 as ground truth (χ33|Φ33 ).
	Figure 5. Metric scores of the reconstruction using COSMOS-based forward simulations. Optimal (A) RMSE, (B) HFEN and (C) SSIM scores are presented as function of SNR. Metric scores for in vivo reconstructions using χ33 and χSTI-L2 as ground truth, along with reconstructions of the amended phase with TV-FANSI (χ33|Φ33) and WH-QSM, are also included. (D) presents the optimal regularization weight for each metric and SNR setting. Ranges for the optimal reconstructions using χ33, χSTI-L2 and χ33|Φ33 also included.
	Figure 6. (A) RMSE, (B) HFEN and (C) SSIM optimal scores for reconstructions at SNR=64 and SNR=32 and their regularization weight. Simulations included the phase forward calculated using COSMOS Φ with the addition of the background remnants obtained using PDF (ΦPDF) and the anisotropic phase contributions (Φcorr) calculated from the χ13 and χ23 components of the STI tensor. (D) Shows the range span of optimal regularization weight values by the different simulations and in vivo reconstructions, for a given metric.
	Tables
	Table 3: Quality metric scores and optimal QSM regularization parameters of ground-truth solutions obtained with TV-FANSI.
	
	Supporting Information captions
	Supporting Information Figure S1. Selected optimal reconstructions of the challenge data, based on RMSE (left column) and SSIM (right column), using χ33 as ground truth (A). Panels show reconstructions of the provided local phase using (B, E) TV-FANSI, (C, F) WH-QSM (with joint background removal process), and (D, G) TV-FANSI of the PDF filtered local phase.
	Supporting Information Figure S2. Difference between the forward simulated phases using χ33 and COSMOS. Note the windowing.
	Supporting Information Figure S3. (A) and (B) reveal the background extracted from the acquired phase and the amended phase, respectively, using WH-QSM (β=500, μh=10, the weak harmonic regularization weights).
	Supporting Information Figure S4. Difference maps between optimal results using RMSE and SSIM, for the same ground-truth.
	Supporting Information Figure S5. Selected optimal reconstructions of the amended phase (without anisotropic contributions) based on the RMSE and SSIM metrics, using χ33 as ground truth. Panels show reconstructions using (A, D) TV-FANSI, (B, E) WH-QSM (with joint background removal process), and (C, F) TV-FANSI of the background filtered local phase, using PDF.
	Supporting Information Figure S6. Effect of noise level on forward simulations. (A) Single orientation phase data and forward simulations of ΦSTI at SNR levels: (B) 20, (C) 32, (D) 40, (E) 60, (F) 100 and (G) noiseless.
	Supporting Information Figure S7. Metric scores of the reconstruction using COSMOS-based forward simulations. Optimal (A) CC, (B) MI, (C) GXE, (D) MAD and (E) MADGX scores are presented as function of SNR. Metric scores for in vivo reconstructions using χ33 and χSTI-L2 as ground truth, along with reconstructions of the amended phase with TV-FANSI (χ33|Φ33) and WH-QSM, are also included. (F) presents the optimal regularization weight for all metrics and SNR setting. Ranges for the optimal reconstructions using χ33, χSTI-L2 and χ33|Φ33 also included.
	Supporting Information Figure S8. (A) RMSE, (B) HFEN, (C) SSIM, (D) CC, (E) MI, (F) GXE, (G) MAD and (H) MADGX scores for reconstructions at SNR=64 and SNR=32 as function of the reconstruction weight. Simulations included the phase forward simulatedcalculated using COSMOS Φ with the addition of the background remnants obtained using PDF (ΦPDF) and the anisotropic phase contributions (Φcorr) calculated from the χ13 and χ23 components of the STI tensor. (I) Shows the range span of optimal regularization weight values by the different simulations and in vivo reconstructions, for all given metrics.
	Supporting Information Figure S9. Comparison of all proposed quality metrics as function of the regularization weigh for in vivo reconstructions. (A) RMSE, (B) HFEN, (C) SSIM, (D)CC, (E) MI, (F) GXE, (G) MAD and (H) MADGX. Reconstructions times are also provided (I).
	Supporting Information Table S1. Quality metric scores and optimal regularization weights of QSM reconstructions of the amended phase Φ33 with additional background filtering.

