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Abstract

Aims: Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam
scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it
remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort
who might benefit from this treatment.
Materials and methods: Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015
were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field
optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans
involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and
exhalation. Comparative dosimetric and robustness analyses were carried out.
Results: Ten patients were suitable. The mean clinical target volume D95 was 98.1% � 0.4 (97.5e98.8) and 98.4% � 0.2 (98.1e98.9) for PBS and VMAT plans,
respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections mini-
mally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical
target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respec-
tively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05).
Conclusions: In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic
vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of
immunotherapy.
� 2020 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
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Introduction

Superior sulcus tumours (SSTs) are rare subtypes of
locally advanced non-small cell lung cancers (NSCLCs),
representing 5% of all bronchogenic carcinomas. Outcomes
are poor, with local recurrence in 40e50% of patients [1e3]
and 5-year overall survival between 5 and 30% [4,5]. They
present a unique treatment challenge by characteristically
adiologists.
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invading the chest wall and structures of the thoracic inlet,
including the parietal pleura, first and second ribs and
vertebral bodies; as well as (but not necessarily) the
brachial plexus and stellate ganglion [6e8]. This makes
surgical resection difficult and their close proximity to the
spinal canal means that dose coverage by photon radio-
therapy is often compromised. When disease is unresect-
able, radiotherapy (with or without chemotherapy) is the
principal treatment modality.

Proton beam therapy (PBT) has a number of advantages
over state-of-the-art photon-based volumetric-modulated
arc therapy (VMAT). Its physical characteristics result in a
relatively low entrance dose and no exit dose, potentially
achieving superior target conformality while reducing
dose to surrounding tissues [9e11]. Pencil beam scanning
(PBS) is the latest technology whereby narrow proton
beams are magnetically scanned across the tumour vol-
ume, promising better conformality than passively scat-
tered protons [12]. Reservations regarding PBT,
particularly PBS, are due to motion and tissue heteroge-
neity. These affect uncertainties in radiological path
lengths [9,13e15] and subsequently the robustness of
treatment delivery, as motion results in interplay-related
dose degradation [16] and potential overdose to organs
at risk (OARs).

Although an increasing number of studies investigating
the use of PBT in locally advanced NSCLC have emerged
over the last decade, very few have used PBS [17], the vast
majority utilising passively scattered protons [18e25].
From limited studies that do exist, PBS is suggested to
better spare OARs [12,26]. A number of ongoing single-arm
[27e29] and randomised control trials [30,31] intend to
report toxicity following thoracic irradiation with PBT. The
ongoing PRONTOX trial specifically aims to establish if
dose-sparing translates into reduced radiation-induced
toxicity [32]. Of particular interest is the potential for
PBT to improve survival outcomes by sparing dose to the
heart, thereby minimising the risk of cardiac toxicity and
limiting dose to additional lymphopenia-related organs,
such as the lungs and thoracic vertebra. Disappointingly,
Liao et al.’s [19] recent trial reported no reduction in local
failure after passively scattered protons. However, this may
be due to the heterogeneity of disease stages treated
(IIeIV), outdated technology or inadequate image guid-
ance at the time the study was conducted. It is clear that
we have yet to identify key niche cohorts where the ad-
vantages of advanced proton techniques can be fully
exploited.

Patients with SSTs seem likely candidates to benefit from
scanning protons and present an opportunity to develop
PBS techniques in locally advanced NSCLCs as: (i) their in-
vasion of local structures limits motion, circumventing the
challenging issues of interplay; (ii) their apical location re-
sults in smaller volumes of aerated tissue surrounding
them, reducing heterogeneity along proton paths.

The aim of this retrospective planning study was to
explore robust PBS planning of SSTs, assessing if target
coverage is improved and if the dose to normal tissue can be
significantly spared compared with VMAT.
Please cite this article as: Wong S-L et al., Retrospective Planning Study
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Materials and Methods

Patients with SSTs treated with radical radiotherapy be-
tween 2010 and 2015 were identified. All patients were
positioned supine on wing boards, arms above their head
and immobilised with customised vacuum bags. Four-
dimensional computed tomography using the Real-time
Position Management system was used to acquire a free-
breathing trace during acquisition and treatment delivery.

Patients were excluded if tumour motion was >5 mm
(Figure 1). All patients were planned to 64 Gy(RBE) in 32
fractions using Eclipse (Varian Medical Systems, Palo Alto,
California, USA), version: 13.7.33 for VMAT plans and
version: 13.7 for proton plans.
Motion Assessment

The range of tumour motion was verified to be � 5 mm,
which was considered acceptable [33e35] by assessing z-
axis motion of the most inferior part of the tumour and
delineating the gross tumour volume (GTV) in each phase of
the four-dimensional computed tomography scan to assess
centre-of-mass movement in the x, y and z axes.

For one test case, the OARs were also contoured on CT0
(max-inhalation) and CT50 (max-exhalation) and their
centre-of-mass location noted so that their range of motion
could be assessed.
Volume Delineation

The internal GTV (iGTV) was defined as the envelope of
GTV motion and delineated using the maximum-intensity
projection dataset. In cases where the tumour moved into
nearby soft tissues of a similar density, the maximum-
intensity projection was not appropriate. Here delineation
was aided by all phases, especially max-inspiration and
-expiration. The clinical target volume (CTV) was defined as
the iGTV þ 5 mm in all directions e as such, the CTV is
synonymous with the internal target volume. A technical
optimisation volume was created to account for external
variation in set-up, as per department tolerance guidelines,
and was defined as the CTV þ5 mm in all directions.
Organ at Risk Tolerances

OARs were delineated on the average intensity projec-
tion image datasets and tolerances are defined in
Supplementary Table S1 [36].

Tumour target volumes were delineated by two clini-
cians, one of whom delineated all the OARs. All final patient
volumes were verified by a third independent clinician.
Planning Method

VMAT plans were generated as per our departmental
protocols using target and OAR structures and dose con-
straints, as above (see Supplementary Table S1), to set
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
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Fig 1. Flowchart of case selection and planning procedures. GTV, gross tumour volume; iGTV, internal gross tumour volume as assessed by four-
dimensional computed tomography; CTV, clinical target volume; OAR, organs at risk; DVH, dose-volume histograms.
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planning objectives. Two partial arcs were used tominimise
unnecessary dose to normal lung.

For lung proton plans it has become commonplace to
apply an inhomogeneity correction to ensure density
correction and target coverage [37] but this may not be
necessary for SSTs. Thus, for cases 1e3, two nominal plans
were created with either an inhomogeneity correction
applied to the whole iGTV (by assessing the average density
within the tumour's centre and assigning a uniform CT
Hounsfield unit override); or no inhomogeneity correction.
Only if robustness analysis showed an advantage of
applying an inhomogeneity correction would we continue
for the remaining cases.

Two to three beams of equal weighting were used for all
plans. Beam angles were selected with consideration of
robustness and conformality. The aimwas to ensure: (i) the
shortest, most homogenous path to the target based on a
visual check; (ii) beam entry through stable tissue; (iii)
avoiding critical OARs immediately distal to the target [38];
(iv) avoiding high-Z materials (such as metal clips or pros-
theses). If it was felt that the more robust option resulted in
Please cite this article as: Wong S-L et al., Retrospective Planning Study
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compromise to conformality that was clinically unaccept-
able, then angles were adjusted. Beams did not overlap at
the skin surface, to avoid skin toxicity, and not more than
two of three of the prescribed dose came from beams
directed towards a critical structure.

A single-field optimisation approach was used rather
thanmulti-field optimisation (MFO), despite limited reports
that it might have a dosimetric advantage [26] as MFO is
exquisitely sensitive to motion and therefore considered
potentially less robust.

The spot and layer spacing was nominally set to 5 mm.
Optimisation Approach

Inverse plan optimisation was used for both photon and
proton plans. The technical optimisation volume was used
to optimise CTV coverage. The optimisation went through
iterations in order to achieve OAR tolerances (highest pri-
ority) and target coverage. The target coverage assessment
is described below.
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
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Dose distribution was calculated on the average
computed tomography datasets.
Robustness Assessment

Two strategies were used to assess robustness for both
VMAT and PBS plans. First, we performed robustness anal-
ysis based on worst-case scenario. A geometric uncertainty
of 5 mm, based on our centre's lung set-up tolerance, was
used for proton and photon plans [39]. Range uncertainty of
3.5% was considered for protons only [15,40e42]. The
worst-case scenarios (defined as the minimum target
coverage and maximum dose to OAR across the various
scenarios) were assessed to ensure adequate target
coverage and that dose tolerances were met. The spinal
canal dose constraints were more restrictive for the nomi-
nal plan optimisation (point dose �46 Gy(RBE)) as a prag-
matic decision to ensure it would pass robustness
assessment, where up to 50 Gy(RBE) to 1 cm3 of the spinal
canal was accepted.

Second, verification plans were calculated in order to
assess the impact of motion. These were recalculations of
the nominal plan on CT0 (max-inhalation) and CT50 (max-
exhalation) keeping the exposure parameters constant.
Dosimetric changes affecting target coverage led to further
optimisation iterations and, if necessary, beam angle
changes.
Plan Evaluation

Nominal plans were considered acceptable if the CTV
D95 was �95%, acknowledging that SST CTVs can infiltrate
the spinal canal, creating a conflict of dose limitations; and
OAR criteria were met.

Plans passed robustness assessment if the maximum
percentage difference in target coverage (difference be-
tween CTV D95 in the worst-case scenario and CTV D95 in
the nominal plan) was �5%; and if OAR tolerances were
maintained.
Statistical Analysis

The Mann-Whitney U test was used to calculate statis-
tical significance (P values) of mean dose parameters from
the VMAT compared with PBS plans using the statistics
software programme R.

A value of P < 0.05 was considered statistically
significant.
Results

Ten of 17 patients were identified as suitable e four pa-
tients were excluded as they did not have four-dimensional
computed tomography scans and three had large tumours
extending into the lower lobes where motion was >5 mm.
The median CTV was 274.4 cm3 (101.4e645.8 cm3) (Table 1,
Figure 2).
Please cite this article as: Wong S-L et al., Retrospective Planning Study
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Effect of Inhomogeneity Correction on Target Coverage

Applying the inhomogeneity correction had little effect
on target volume coverage and OARs. The mean CTV D95
was 98.0% (range 97.6e98.7%) compared with 98.1% (range
97.5e98.7%) with no correction. Importantly, there was
minimal effect on the robustness of target coverage e a
mean maximum percentage difference in CTV D95 (no in-
homogeneity correction) of 1.65% (range 0.93e2.23%)
compared with a mean of 3.74% (range 1.54e7.37%) when
inhomogeneity correction was used (Supplementary
Figure S1). Surprisingly, applying the inhomogeneity
correction for case 1 made robustness worse, resulting in a
CTV D95 deviation from the nominal plan of up to 7.37%
(inhomogeneity correction) versus 1.79% (no in-
homogeneity correction). Based on these findings, the
override method was not used for the remaining seven
cases.

Dosimetric Assessment

For all plans, Dmaxwas<107%. CTV D95was>97% for all
cases and all the means of the dose parameters of OARs for
proton plans were lower than those for VMAT plans, except
heart V40 (mean: 7.1% versus 6.3%, P ¼ 0.24) and brachial
plexus Dmax (1 cm3) (mean: 62.3 Gy versus 62.0 Gy,
P ¼ 0.23).

Proton plans almost completely spared the contralateral
lung, on average, reducing the V5 by 79.0% (P < 0.01).
Compared with VMAT plans, proton plans reduced the
mean lung dose by 21.7% (mean 9.4 Gy(RBE), P < 0.01), lung
V20 by 12.1% (mean 17.4%, P < 0.05), lung V10 by 36.4%
(mean 21.8%, P < 0.01), lung V5 by 47.9% (mean 25.5%,
P < 0.01), mean heart dose by 21.4% (mean 6.4 Gy(RBE),
P < 0.05) and mean thoracic vertebra dose by 29.2% (mean
10.0 Gy(RBE), P < 0.01) (Table 2, Figure 3).

Robustness Assessment

Six scenarios were generated for the photon plans
following isotropic shifts. Incorporating range uncertainty
as well resulted in 12 scenarios being generated for the
proton plans. Figure 4 shows the resulting CTV and OAR
variation for case 1 as an example. On robustness analysis,
the mean CTV D95, in the worst-case scenario, was
93.9% � 3.0 (range 89.5e97.8%) for proton plans (maximum
percentage difference 0.9e9.0%) and 97% � 1.3 (range
93e98%) for VMAT plans (maximum percentage difference
0.26e5.49%). For all photon and proton verification plans,
the CTV D95 was >95%, except the proton plan for case 9
where CTV D95 was 91.9%.

Relative OAR motion at the extremes of breathing on
the test case was <3 mm, except for the heart and lungs
(see Supplementary Table S2). As such, OAR dosimetry on
verification plans were not carried out, especially as un-
certainty scenarios identified breaches in OAR
constraints.

The same four proton and photon plans failed robustness
assessment (Table 3). Cases planned using VMAT primarily
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
gy, https://doi.org/10.1016/j.clon.2020.07.016



Table 1
Anatomical tumour characteristics for each case. All patients had histological confirmation of their diagnosis of non-small cell lung cancer. All patients had positron emission
tomography-computed tomography and brain imaging as part of their staging imaging. Patient 1 had a magnetic resonance imaging thorax as additional imaging

Patient

1 2 3 4 5 6 7 8 9 10

TNM stage (AJCC
7th Edition)

T3N0M0 T4N2M0 T4N0M0 T4N3M0 T3N2M0 T3N2M0 T3N2M0 T4N2M0 Locally
recurrent
disease

T3N3M0

Histological
confirmation of
diagnosis

Adenocarcinoma Squamous cell
carcinoma

Adenocarcinoma Squamous cell
carcinoma

Squamous cell
carcinoma

Adenocarcinoma Adenocarcinoma Adenocarcinoma Squamous cell
carcinoma

Adenocarcinoma

OTV volume
(cm3)

200.13 958.79 286.48 595.52 585.83 766.30 315.86 499.39 223.30 389.00

Tumour location Right apex Right apex and
mediastinum

Left apex Right apex
and
mediastinum

Right apex
and
mediastinum

Right apex and
mediastinum

Right apex and
mediastinum

Left apex and
mediastinum

Left apex Right apex and
mediastinum

Abutting or
invasion of
structures

Invades
mediastinal
pleura medially.
No brachial
plexus invasion.

Involves
mediastinal and
peripheral pleura.
Encases superior
vena cava.

Abuts mediastinal
and peripheral
pleura.
Infiltration of
mediastinum at
the level of the
aorto pulmonary
window.

Abuts second
rib, four
vertebral
bodies and
pericardial sac
superiorly to
bottom of
pulmonary
trunk

Invades third
rib posteriorly

Abuts third to
sixth ribs
posteriorly and
the T4e6 thoracic
vertebral bodies
anteriorly

Abuts chest wall
and first to
second ribs
anteriorly over a
longitudinal
length of 2.5 cm

Invades chest
wall along first to
fourth ribs
posteriorly

Abuts first to
third ribs
posteriorly
and invades
second rib

Abuts first to third
ribs and the
thoracic vertebral
bodies anteriorly
over a length of
2.25 cm

Minimum GTV-
to- spinal canal
distance (cm)

0.75 1.55 3.00 0.91 1.50 0.70 3.50 1.00 0.50 1.50

Minimum GTV-
to- brachial
plexus distance
(cm)

Abutting the
brachial plexus on
one CT slice

Abutting and
displacing the
brachial plexus

Abutting the
brachial plexus

Abutting the
brachial
plexus and
within 0.5 cm
over a length
of 1.00 cm

1.54 0.40 cm at two
points

Within 0.5 cm
over a length of
1.50 cm

Abutting and
within 0.5 cm
over a length of
1.50 cm

Abutting and
within 0.5 cm
over a length
of 1.75 cm

1.50

Minimum GTV-
to- heart
distance (cm)

3.25 0.25 Abutting
pericardiac sac
superiorly to
bottom of
pulmonary trunk

Abutting
pericardial sac
superiorly to
bottom of
pulmonary
trunk over a
length of 2.75
cm

Abutting and
overlapping
pericardium
superiorly
over a length
of 5 cm

Abutting and
within 0.5 cm
over a length of
2.25 cm

Abutting and
within 0.5 cm
over a length of
5.25 cm

Abutting over a
length of 3.00 cm

5.00 Abutting and
within 0.5 cm over
a length of 1 cm

Minimum GTV-
to- oesophagus
distance (cm)

2.30 1.04 Abutting for 1 cm
length

Abutting and
within 0.5 cm
over a length
of 5 cm

Within 0.5 cm
from
oesophagus
over a length
of 1.25 cm

Within 0.5 cm
over a length of 1
cm

Abutting or
overlapping
oesophagus over
a length of 4 cm

Within 0.5 cm
over a length of 2
cm

Abutting and
within 0.5 cm
over a length
of 2.75 cm

0.60

(continued on next page)
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Table 1 (continued )

Patient

1 2 3 4 5 6 7 8 9 10

Minimum GTV-
to- rib distance
(cm)

Adjacent to
second rib
extending to the
costovertebral
junction but no
bone invasion

Abutting first,
second and third
ribs posteriorly

Abutting first and
second rib

Abutting
second rib

Invading third
rib
posteriorly,
tracking along
second and
fourth ribs
posteriorly

Abutting third to
sixth ribs
posteriorly

Within 0.5 cm of
first and second
ribs anteriorly
over a
longitudinal
length of 2.5 cm

Abutting first to
fourth ribs
posteriorly over
a length of 5.75
cm

Abutting first
to third ribs
posteriorly
and invading
second rib

Abutting the first,
second and third
ribs

Minimum GTV-
to- thoracic
vertebrae
distance (cm)

Adjacent to
thoracic vertebra.
Within 0.5 cm
over a length of
2.50 cm

Adjacent to
thoracic vertebra.
Within 0.5 cm
over a length of
5.25 cm

Within 1.3 cm
over a length of
0.25 cm

Abutting and
within 0.5 cm
of the anterior
part of the
thoracic
vertebra over
a length 6.25
cm

Within 0.5 cm
over a length
of 0.25 cm

Abutting the
anterior part of
the thoracic
vertebra over a
length 6 cm

Within 0.5 cm
over a length of
4.00 cm

Within 0.5 cm
over a length of
5.00 cm

Abutting the
anterior
bodies of the
thoracic
vertebra over
a length of
5.00 cm

Within 0.5 cm of
the anterior bodies
of the thoracic
vertebrae along a
length of 2.25 cm

CTV immediately
adjacent to or
overlapping
spinal canal

Yes No No No No Yes No No Yes No

OTV immediately
adjacent to or
overlapping
spinal canal
PRV

Yes Yes No Yes Yes Yes No Yes Yes Yes

CTV immediately
adjacent to or
overlapping
brachial plexus

Yes Yes Yes Yes No Yes Yes Yes Yes No

OTV immediately
adjacent to or
overlapping
brachial plexus

Yes Yes Yes Yes No Yes Yes Yes Yes Yes

CT, computed tomography; CTV, clinical target volume; GTV, gross tumour volume; OTV, optimisation target volume; PRV, planning at risk volume.
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Fig 2. (a) Axial images, (b) full doses 5e68.5 Gy(RBE), (c) D95 coverage of case 1. The pencil beam scanning plan is shown in the top row. The
volumetric-modulated arc therapy (VMAT) plan is shown in the bottom row. (a) The tumour's proximity to the spinal canal and canal planning at
risk volume in each case. Structures seen include: clinical target volume (CTV, magenta), brachial plexus (red), spinal canal (pink), canal planning
at risk volume (dark blue), oesophagus (light green).

Table 2
Mean dose to target and organs at risk for the nominal photon volumetric-modulated arc therapy (VMAT) and pencil beam scanning (PBS)
single-field optimisation plans. All percentage differences show a reduction in dose or volume in the PBS plans compared with the VMAT
except for values preceded by (þ) indicating a percentage increase in the PBS plan compared with the VMAT plan

Assessment parameter VMAT PBS Difference (%)

Mean Range Mean Range

CTV D95 (%) 98.4 � 0.2 98.1e98.9 98.1 � 0.4 97.5e98.8 0.3
D98 (%) 97.5 � 1.2 94.1e98.1 97.2 � 0.6 96.2e98.2 0.3

Lung V5 (%) 48.9 � 15.4 13.9e68.7 25.5 � 9.9 7.8e43.4 47.9**
V10 (%) 34.3 � 12.8 8.9e50.2 21.8 � 8.4 6.4e36.7 36.4**
V20 (%) 19.8 � 8.3 4.7e29.6 17.4 � 6.3 4.7e25.8 12.1*
Mean dose (Gy[RBE]) 12.0 � 4.1 3.6e16.3 9.4 � 3.4 2.7e13.2 21.9**

Contralateral lung V5 (%) 48.6 � 16.5 10.4e71.1 10.2 � 15.0 0.0e49.6 79.0**
V10 (%) 27.4 � 14.1 5.9e59.0 6.7 � 12.2 0.0e39.9 75.4**
V20 (%) 7.4 � 8.5 0.0e31.4 3.2 � 7.2 0.0e23.3 56.5**

Heart V5 (%) 26.1 � 13.2 0.0e50.3 19.3 � 11.3 0.0e37.8 26.0
V10 (%) 20.6 � 10.9 0.0e41.3 15.9 � 9.7 0.0e32.6 23.0
V20 (%) 14.7 � 8.1 0.0e28.0 11.8 � 7.7 0.0e26.3 19.8
V30 (%) 9.8 � 5.7 0.0e17.5 9.2 � 6.4 0.0e21.6 6.7
V40 (%) 6.3 � 4.0 0.0e12.3 7.1 � 5.1 0.0e17.2 þ12.8
Mean dose (Gy[RBE]) 8.1 � 3.9 0.4e13.5 6.4 � 4.1 0.0e14.0 21.4*

Thoracic vertebra Mean dose (Gy[RBE]) 14.1 � 3.4 9.2e18.1 10.0 � 2.8 5.5e14.1 29.2**
Oesophagus V35 (%) 32.8 � 9.9 14.6e43.1 29.8 � 12.0 8.2e43.3 9.2
Brachial plexus Dmax (1cm3)(Gy[RBE]) 62.0 � 5.0 48.2e65.0 62.3 � 5.4 47.2e65.1 þ0.5
Spinal canal Dmax (point dose) (Gy[RBE]) 43.4 � 2.2 38.6e45.6 41.4 � 3.6 33.6e45.3 4.6

PRV Dmax (1cm3) (Gy[RBE]) 45.9 � 3.8 40.5e49.6 45.1 � 3.9 35.6e48.3 1.6

*P < 0.05. **P < 0.01.
CTV, clinical target volume; PRV, planning at risk volume.
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failed due to lung V20 tolerance being exceeded in one
scenario, whereas inadequately robust CTV coverage was
the dominant reason for the proton-planned cases not
passing assessment. Both VMAT and PBS plans failed
robustness assessment for case 9, probably a result of the
CTV abutting the spinal cord.
Please cite this article as: Wong S-L et al., Retrospective Planning Study
Scanning Protons to Volumetric-Modulated Arc Therapy, Clinical Oncolog
Discussion

Our results suggest that it is feasible to deliver robust PBS
treatment in select SST cases where tumour motion �5 mm
and tissue heterogeneity along the proton paths is minimal.
Comparable CTV coverage and considerable reduction in
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
y, https://doi.org/10.1016/j.clon.2020.07.016
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Fig 3. Box plot of distributions of doseevolume indices for the lungs, heart and thoracic vertebrae (TV) when planned with pencil beam
scanning protons compared with volumetric-modulated arc therapy for 10 patients with superior sulcus tumours. Whiskers show range and
boxes show quartiles 1, 2 and 3. Pencil beam scanning protons reduced the mean lung dose by 21.9% (mean 9.4 Gy(RBE), P < 0.01), lung V20 by
12.1% (mean 17.4%, P < 0.05), lung V10 by 36.4% (mean 21.8%, P < 0.01), lung V5 by 47.9% (mean 25.5%, P < 0.01), mean heart dose by 21.4% (mean
6.4 Gy(RBE), P < 0.05) and mean thoracic vertebra dose by 29.2% (mean 10.0 Gy (RBE), P < 0.01).
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lung, mean heart dose and mean thoracic vertebra dose can
be achieved.

SSTs present similar challenges for photons and protons.
These include the image quality needed for accurate tumour
and OAR delineation, motion and the proximity of critical
organs. Additional considerations for protons are inherent
uncertainties, such as range, lateral scattering and exquisite
sensitivity to changes in anatomy [9,13e15].

Magnetic resonance imaging (MRI) helps to evaluate
SSTs, as higher contrast resolution results in superior
anatomical visualisation, especially the brachial plexus.
MRI-guided radiotherapy (MR-linac) is an evolving tech-
nology incorporatingMRI sequences to improve delineation
accuracy. It can enable uncertainty margins to be reduced,
thus better sparing OARs [43]. However, respiratory motion
can cause ghosting artefacts and compromise resolution
[44]. Furthermore, although advanced MRI-to-four-
dimensional computed tomography registration algo-
rithms exist, they are not yet used in clinical practice [45]
and assessment on an individual basis, in order to minimise
error propagation, is recommended [46]. Studies comparing
MR-linac and PBT for SSTs should be explored.

Motion is problematic for any form of high-precision
radiotherapy where steep dose gradients can result in
dose uncertainty. Our motion monitoring strategy relied on
Please cite this article as: Wong S-L et al., Retrospective Planning Study
Scanning Protons to Volumetric-Modulated Arc Therapy, Clinical Oncolo
external devices tracking chest wall movement but this can
be smaller than that of the tumour [13,47]. Subsequent
analysis assessed overall and maximal motion but rota-
tional or tumour deformity analysis was not possible. Our
study only included apical tumours with motion �5 mm,
therefore negating the need to evaluate interplay
[33e35,48]. The impact of motion on dosimetry was ana-
lysed by robustness assessment and considered for both
VMAT and PBS. To our knowledge, this has not been carried
out in previous comparative lung planning studies.

Protons are particularly sensitive to motion as their
radiological path length is affected, not only by tumour
movement but also normal lung tissue e at different phases
of breathing, variable filling of airways and blood vessels
results in variable relative stopping power ratio values [40].
This interplay between the scanned beam and target mo-
tion not only causes degradation of dose homogeneity, due
to misplacement of individual spots relative to planned
positions, but it also affects the dose to critical organs
[15,49,50]. Dose-repainting has been proposed to reduce
this, but it is not effective alone [33,50] and questions
remain about the effect of washout [16,33,48,51].

Our proton planning approach focused on maximising
robustness. Considerations included defining margins,
choosing robust beam angles and investigating the use of
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
gy, https://doi.org/10.1016/j.clon.2020.07.016



Fig 4. (a) Proton and (b) photon plan dose volume histograms for (i) clinical target volume (CTV), (ii) lung, (iii) heart, (iv) thoracic vertebrae and
(v) oesophagus generated from robustness scenarios for patient 1 as a case example. Robustness analysis for the proton plan involved 12
scenarios of varying 5 mm isocentre shifts and �3.5% range uncertainty. Robustness analysis for the photon plans involved six scenarios of
varying 5 mm isocentre shifts.
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Table 3
Volumetric-modulated arc therapy (VMAT) and pencil beam scanning (PBS) plans that failed robustness assessment

Case VMAT PBS

Reason(s) for failing robustness assessment Reason(s) for failing robustness assessment

2 Lung V20 tolerance exceeded on one worst-case scenario from
robustness analysis

Spinal canal tolerance exceeded on one worst-case scenario from
robustness analysis

4 Lung V20 tolerance exceeded on one worst-case scenario from
robustness analysis

Maximum percentage difference in CTV coverage on robustness
analysis >5%

7 Lung V20 tolerance exceeded on one worst-case scenario from
robustness analysis

Maximum percentage difference in CTV coverage on robustness
analysis >5%

9 Maximum percentage difference in CTV coverage on robustness
analysis >5%

Maximum percentage difference in CTV coverage on robustness
analysis >5%

CTV, clinical target volume.
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an inhomogeneity correction. The concept of beam-
specific margins that incorporate proximal and distal un-
certainties has been implemented in passive scattering
protons but the translation to PBS is not well established
[52] so was not applied here. Another strategy to allow for
uncertainties is to use minimax optimisation [53]. Here,
uncertainties are entered into the planning system and
multiple scenario-based plans are generated. This by-
passes the need for a technical optimisation volume and
coverage is thought to be equivalent to technical optimi-
sation volume-based plans [54e56]. Although it is recog-
nised that technical optimisation volume margins
effectively only take lateral uncertainties into account, we
compensated for this by retrospectively assessing target
coverage before re-optimising areas of under-coverage
[57].

All proton plans were achieved using a two-to three-field
arrangement, which is in keeping with previous studies
[10,26,58e60] who have used between two and four beams.
In principle, an increased number of beams increases
robustness, at the expense of an increased integral dose and
dose to certain OARs.

The main purpose of an inhomogeneity correction is to
account for motion-induced tissue density variation to
minimise the risk of under-dosing the target and is widely
used in passively scattered techniques [50,61,62]. However,
this is an artificial scenario and our study showed that its
effect on plan robustness was minimal, probably due to SSTs
being more fixed and their apical location. Unexpectedly,
the inhomogeneity correction resulted in reduced CTV
robustness for one case due to the complex geometry and
relative position of the tumour limiting choices of beam
angles. This meant part of a beamwas directed through the
shoulder blade. Under uncertainties, the amount of bone in
the path increased. The effect was less detrimental when no
inhomogeneity correction was used as the extra bone was
counteracted by more lung in the path length. This extra
lung was overridden with the inhomogeneity correction
and resulted in under-coverage being observed. On visual
assessment, it was clear that the inhomogeneity correction
effect became more noticeable in parts of tumours that
were spiculated and extended lower into the thorax where
movement was greater. The most important factor affecting
target coverage and robustness was the target volume
overlapping with the spinal canal. The need to compromise
Please cite this article as: Wong S-L et al., Retrospective Planning Study
Scanning Protons to Volumetric-Modulated Arc Therapy, Clinical Oncolo
target coverage in order to adhere to spinal canal tolerance
remains as much a problem for PBS protons as it does for
VMAT. This lack of improved target conformality may be
explained by the lateral penumbra for PBS being worse than
for photons and range straggling blunting the sharpness of
distal dose fall-off such that safety margins are still needed
[63]. In contrast to other reports [21], our results did not
show size affecting target coverage or robustness.

Robustness analysis tools within treatment planning
systems are commonly used for the assessment of proton
plans [12] and can be applied to photon plans [39]. In Chang
et al.’s [12] study comparing PBS-MFO, passive scattering
protons and intensity-modulated radiotherapy (IMRT) for
thoracic tumours, robustness was assessed by verification
plans and nine scenarios of �3 mm shifts (although set-up
error was 5 mm) and �3.5% range uncertainty, with a pre-
scription criteria of CTV D95 > 95%. They concluded that
MFO enabled a dosimetric advantage in sparing OARs but
no advantage in CTV coverage [12]. Similarly, we used a
combination 12 scenarios with various permutations of �5
mm isocentre shifts and �3.5% range uncertainty [40] as
well as verification plans at CT0 and CT50. In this way, target
coverage and OAR doses could be assessed in worst-case
scenarios and at the extremes of the breathing cycle e a
necessary two-step check. Verification plans on repeat
computed tomography datasets were not calculated, how-
ever, so the impact of inter-fractional rotational variation
was not accessed with this initial cohort.

The same four cases failed robustness assessment for
photon and proton planning e the photon plans primarily
due to lung V20 tolerance being exceeded and the proton
plans due to CTV D95 variation being unacceptable, high-
lighting the specific challenges faced by both techniques. It
was not possible to create VMAT or PBS plans that robustly
covered the CTV for case 9, emphasising that the most
critical factor affecting target robustness was the CTV
entering the spinal canal. One proton-planned case failed
due to an uncertainty scenario where the isocentre shift
resulted in the spinal canal being placed into the beam's
path resulting in an excess dose to it. In reality, such a
scenario would be avoided by ensuring patients are shifted
to ‘0’ position following verification imaging prior to each
fraction e this technique is applied to all patients with tu-
mours close to the spinal canal. These results show that it is
not practically possible to resolve all uncertainties in the
of Patients with Superior Sulcus Tumours Comparing Pencil Beam
gy, https://doi.org/10.1016/j.clon.2020.07.016
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planning phase and it does not diminish the need for dili-
gent image guidance and adaptive strategies during
treatment.

The most significant dosimetric advantage of protons
was in sparing central structures such as the heart and
thoracic vertebra (in addition to lungs), suggesting that SSTs
with associated mediastinal involvement will probably
show the greatest benefit from PBS. There is accumulating
evidence correlating low dose to lungs and heart to poorer
survival [64]. This is thought to be a result of irradiation of
circulating lymphocytes [64e67], as well as cardiac toxicity.
Tang et al. [66] showed significant correlation between lung
V5e10 and lymphocyte nadir and Joseph et al. [68] showed
in their retrospective analysis that higher integral heart
doses correlated with a decline in post-treatment lympho-
cyte counts. Additionally, limiting dose to the thoracic
vertebra, where 35% of haematopoietic bone marrow is
located, also reduces the risk of lymphopenia. Based on
previous studies, if the lung V5, V10, V20 andmean thoracic
vertebra dose are kept under about 65%, 55%, 45% and 23 Gy,
respectively, the risk of grade 3 (or higher) haematological
toxicity can be dramatically reduced [69e71]. We showed a
significant reduction in dose to these lymphopenia-related
organs, which may be the most advantageous role of PBS-
PBT in this era of immunotherapy.
Limitations

The Monte Carlo calculation algorithm is considered to
be more accurate in heterogeneous environments, like the
lung cohort [72]. As expected, Monte Carlo calculations had
little effect on the OARs, but showed an approximate 5%
reduction in mean CTV D95 compared with the clinical al-
gorithm utilised, which is in agreement with other reports
[73,74]. Unfortunately, Monte Carlo-based optimisation is
not currently available within the Eclipse treatment plan-
ning system but follow-up studies utilising this are
warranted.
Conclusions

In our planning study, we demonstrated that robust PBS
plans are achievable in carefully selected patients. Signifi-
cant dose reductions to the lung, heart and thoracic
vertebra are possible without compromising target
coverage. Sparing these lymphopenia-related organs may
be particularly important in this era of immunotherapy.
Identifying suitable cases that would probably benefit from
scanning protons is crucial and further analyses on a larger
patient cohort is required.
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