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ABSTRACT

2

The thesis is concerned with questions arising from recent disputes about the nature 

of periodontal disease progression. Relevant periodontal and statistical literature is 

reviewed.

Three models for periodontal disease progression, allowing for measurement error, 

are constructed; for (1) constant progression, (2) instantaneous bursts of activity and 

(3) varying, but non-instantaneous, rates of progression. When the covariance 

structures of the three models are examined, it becomes clear that they are 

hierarchical, with (1) being a limiting case of (2) and (2) a limiting case of (3).

The covariance structure estimation methods of Browne (British Journal o f 

Mathematical and Statistical Psychology 37 62-83 (1984)) do not require restrictive 

assumptions about the underlying distribution. Software using these methods was 

written in APL. Simulation experiments were performed to examine the conditions 

under which it is possible to distinguish data from the three models.

The study of Loe et al. on Sri Lankan tea labourers (Journal o f Clinical 

Periodontology 13 431-440 (1986)) is the largest longitudinal study of the natural 

history of periodontal disease. Preliminary analysis of these data reveals a large 

subject intraclass correlation, in contrast to recent claims made in the periodontal 

literature. The parameters and goodness of fit of models (l)-(3) for the data from 

this study are estimated, together with cross-validation coefficients and model fit 

indices to aid model selection.
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A criterion for designing studies of periodontal disease progression might be the 

minimisation of the asymptotic variance of a parameter which distinguishes models 

(1) and (2). This is calculated, and the asymptotic properties of maximum-likelihood 

estimates under the minimising conditions are investigated.

Possibilities for further work are briefly discussed. It is to be hoped that the 

methods will be applied to other data collected in longitudinal studies of periodontal 

disease progression.
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INTRODUCTION
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Until the 1980s, the study of periodontal disease had attracted little interest from 

professional statisticians. The disease process was widely, though not universally, 

considered to be chronic and slowly progressing, and it was generally accepted 

that most tooth loss in people over the age of 35 years was caused by periodontal 

disease.

A series of publications by the group working at the Forsyth Dental Center in 

Boston, USA brought profound changes both in the view of the way in which the 

disease progressed, and types of data analysis considered to be appropriate to the 

study of the disease. They did this by the somewhat unfortunate means of 

proposing, using and publishing statistical methods so inappropriate that the 

periodontal journals ever since have been publishing papers by statisticians 

explaining the faults of these methods. There is now broad consensus on matters, 

such as allowing for subject effects when analyzing measurements made at different 

disease sites in the same mouth, which were for some time a matter of furious 

dispute.

Among the papers published by the Forsyth group between 1982 and 1985 was 

one entitled "New Concepts of Periodontal Disease Progression" (Socransky et al. 

1984). This proposed that, rather than being a slow, chronic, continual process, the 

progression of the disease was in short, acute "bursts" of activity interspersed with 

periods of remission. The appealing nature of this idea was demonstrated by the 

speed with which the episodic nature of the disease became accepted by researchers. 

However the statistical basis for the observations on which the hypothesis was based 

was unsound.
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The aim of the present study was to construct statistical models for periodontal 

disease progression, and to use these models as the basis for the development of 

methods which allow us to make inferences about the nature of disease progression. 

Three models for disease progression are constructed; respectively for constant 

progression, instantaneous bursts of activity and for varying, but non instantaneous 

progression. Their covariance structures are calculated and are shown, after 

simplification, to be hierarchical.

The estimation of covariance structures has been used for some years to make 

inferences about the effect of latent variables on multivariate data arising in 

psychology and econometrics, and a theoretical framework has recently been 

developed which allows inference to be made for a very general specification of 

covariance structure and in the absence of knowledge about the underlying 

distribution of the data. The estimation of covariance structures does not appear to 

have been used previously to distinguish between competing statistical models in 

the manner developed here.

The methods are applied to data from the study of Loe et al. (1978a) of the natural 

history of periodontal disease progression in Sri Lankan tea labourers. This is the 

largest long-term study of periodontal disease progression in the absence of therapy 

yet performed. A section on preliminaiy analysis of these data shows the inability 

of previously suggested methods to determine the nature of progression, and 

provides novel information on the magnitude of the subject intraclass correlation for 

this study.
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In the final sections we show how questions about the asymptotic properties of 

maximum likelihood estimation for non independently and identically distributed 

variables arise when criteria for the design of studies of periodontal disease 

progression are considered. Theorems for the consistency of maximum likelihood 

estimates in this case are presented and examples, based on the covariance structures 

of the models for disease progression, are given.

Throughout, column vectors are denoted by lower case Roman or Greek characters 

which are underlined. Matrices are denoted by upper case characters. The end of 

a proof is marked by the symbol |  at the right of the page.
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2

REVIEW OF THE LITERATURE



17

FIGURE 2.1. THE PERIODONTIUM.
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2.1 THE NATURE OF THE PROGRESSION OF PERIODONTAL DISEASES

Periodontal diseases are characterised by the loss of the epithelial attachment of 

the tooth to the connective tissue of the gingivae, and the resorption of the alveolar 

bone which supports the tooth via the collagenous periodontal ligament. Figure 2.1 

is a diagram of the periodontium, with the situation in health shown on the! left 

side of the tooth and that in disease on the! right.Qinically, the loss of attachment 

results in the apical extension of the junction epithelium, detachment of the collagen 

fibres of the ligament and thus an increasing distance between the cement-enamel 

junction on the tooth and nearest point of epithelial attachment. This attachment 

level is commonly measured by inserting a periodontal probe, graduated at 1mm 

intervals, into the space between the tooth and the gingivae. Change in attachment 

may be calculated by comparing attachment level measurements made on two or 

more occasions: if attachment level increases this change is described as loss of 

attachment. Periodontal disease may also be assessed by the measurement of 

alveolar bone levels using radiographs and sophisticated digital subtraction 

techniques are being developed for the assessment of the rate of bone loss over 

time. However we shall concentrate in this thesis on measurements made with 

periodontal probes, these being the source of most of the available data from 

longitudinal studies of periodontal disease progression.

The accepted view of the nature and prevalence of periodontal diseases has changed 

dramatically over the last decade. In a textbook published in 1984 (Carranza 1984), 

the following statements were made:
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"All adults will at some point during their lifetime experience some deterioration 

of their periodontal structures"

"It has been shown that periodontal disease is responsible for approximately 50 

per cent of the total tooth loss after age 15."

"As more people retain their teeth throughout their lifetime, and as the proportion 

of older people increases, more teeth will be at risk for periodontal disease. Hence 

the prevalence of destructive periodontal disease will likely increase in the future."

Six years later, it is generally accepted that periodontal diseases affect only a 

minority of the population, both in Western populations (Miller et al. 1987) and 

in populations not exposed to Westem-style dental care (Baelum et al. 1988). There 

is now evidence that these diseases may be genetically linked (Michalowicz et al. 

1989). Thus it may be that only individuals unable for some reason to mount an 

effective immune response to periodontal bacteria are at risk of developing forms 

of the disease severe enough to endanger their teeth.

The first longitudinal study of the natural history of periodontal disease was on 

two groups: of Norwegian academics and students and of Sri Lankan tea labourers. 

One of the first reports on this study (Loe et al 1978c), whose data will form the 

basis for the applied part of this thesis, stated that:

"It is apparent ... that the destruction of the periodontium progresses steadily over 

time. There may be periods of slow progress and periods in which the destructive
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processes show acceleration. Indeed, different surfaces, teeth, dentitions and 

populations show different rates of progress during different age periods. These 

differences most likely reflect variations in both the pathogenic and the defense 

mechanisms. If these factors are not interfered with by treatment or home care, 

which was true for the Sri Lankan population, the disease progresses at a relatively 

even pace and there are no indications that this progress is not continuous."

It could not, however, be said that this view was universal. Hirschfield and 

Wasserman (1978), in a survey of tooth loss in periodontal patients who had been 

treated at least 15 years previously, stated that: "The disease process often followed 

a cyclically active pattern. Irregularly spaced cycles of destructive activity were 

evident in all response groups, even the well maintained group. Several advanced 

cases responded very well to treatment, with no teeth being lost for over 20 years, 

and then suffered rapid periodontal destruction, with the loss of many teeth. Many 

of the downhill and extreme downhill cases remained stable for years, with periods 

of destruction occurring sporadically."

Similarly, Newman (1979), in discussing the role of anaerobes in periodontal 

infections, proposed a model of quiescence/remission, then exacerbation, then 

quiescence/remission, and claimed that: "The cyclical nature of this disease has 

recently been substantiated by clinical observation and by cultural studies".
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2.1.1 THE BURST HYPOTHESIS FOR PERIODONTAL DISEASE 

PROGRESSION

The paper in which the burst hypothesis was proposed (Socransky et al. 1984) can 

be seen as a culmination of a series of papers from the group at the Forsyth Dental 

Center, in which previously accepted paradigms, both for the nature of periodontal 

diseases and for appropriate statistical methods, were challenged. Whatever may be 

thought, after six years, of the quality of the views of the disease which were 

postulated, there can be no doubt that the statistical methods were seriously flawed.

At the root of the new ideas which were proposed was the concept that periodontal 

diseases are site-specific: that is that they occur independently at different disease 

sites in the same subject. Data from up to 192 sites in each subject (6 per tooth on 

32 teeth) were therefore treated as independent: no allowance was made for subject 

effects. The papers were based mainly on a study in which 22 periodontal patients 

were studied at one-month intervals for between 9 and 23 months. At each 

examination repeat measurements were made at each site.

Goodson et al. (1982) performed linear regression on each of 1,155 sites (two per 

tooth) and, by calculating the ratio of the estimated slope to the standard error, 

determined whether the site had ’significantly’ changed (using p<0.01 as the 

criterion). This was done by starting with the first three measurements, and 

increasing the number of points fitted until data from all appointments were 

included. They found that 82.8% of sites did not change, 5.7% became significantly 

deeper, and 11.5% became significantly shallower. They appeared unaware that by
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performing multiple tests for each site they increased the probability of false 

positives. Interestingly, examination of the data which is presented by subject gives 

the clear impression that there is a marked subject effect, which could be tested by 

standard methods for the analysis of contingency tables. They concluded that "a 

dynamic condition of disease exacerbation and remission as well as periods of 

inactivity may be characteristic of periodontal disease.

Haffajee et al (1983a) noted that in most of the periodontal clinical trials which 

had been reported over the last 20 years, differences had been sought by looking 

for differences between mean values, for instance between groups of patients 

subjected to different therapies. They argued that this might obscure differences 

between different sites in the same patient. They presented data from a periodontal 

split-mouth clinical trial, and assessed which of several forms of statistical test was 

best by looking at which tests were sensitive to changes at a small number of sites. 

Different sites were treated as statistically independent.

This paper was typical of the series in that it raised genuine difficulties in the 

analysis of periodontal data but suggested answers which were statistically invalid. 

It is not the intention here to review the attempts which were made to correct these 

practices and to suggest alternatives. Steme et al. (1990) review the subsequent 

attempts which have been made to provide appropriate methods for the analysis of 

these data.

Haffajee et al. (1983b) extended the idea of using linear regression to detect sites 

at which attachment level had changed, by comparing this with two further methods;
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the tolerance method and the running median method. Using the tolerance method, 

the difference between pairs of measurements taken between successive visits is 

considered to be significantly different if three conditions are met. These are that first, 

a threshold difference of 2 population standard deviations is exceeded; second, a 

threshold difference of three standard deviations of the full mouth replicate 

measurements for the subject is exceeded and third, a threshold of three pooled 

standard deviations at the individual site is exceeded. For the method of running 

medians, successive medians of points taken three at a time were considered, and 

a difference was deemed to be shown by a change of greater than three population 

standard deviations between successive medians. Thus this paper attempted to find 

methods of data analysis which were able to detect sites at which changes had 

occurred over a short period of time. They concluded that the tolerance method was 

best suited to this purpose. Of course, they were only able to compare results 

between methods, having no external means of assessing whether a site had 

experienced breakdown.

Haffajee et al. (1983c) used the tolerance method to classify 3414 sites from the 

same group of 22 subjects as to whether they had showed disease activity. Various 

clinical signs were then assessed (again ignoring subject effects) for their association 

with disease activity. The introduction to this paper stated:

"In recent years, the concept of periodontal disease as a slow, progressive disease 

has been questioned. Longitudinal monitoring of individual sites has indicated that 

destruction occurs in relatively short periods of time which are followed by 

prolonged periods of inactivity."
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The papers cited as proof of this claim were Goodson et al. (1982), Haffajee et al 

(1983b), and Socransky et al. (1984) (then in press). Thus the first two of these 

papers, which had no more than explored the possibility that this might be the case, 

were claimed as having shown something much stronger.

Socransky et al. (1984) provided the description of the burst model for periodontal 

diseases which was the starting point for this thesis. The basis of the paper was the 

comparison of the old concept of chronic destructive periodontitis which, it was 

suggested, brought to mind "terms such as slow, continual, progressive, inexorable 

and unremitting". This model was represented pictorially by constant progression 

whose rate varied from site to site. It was compared to a "random burst" model for 

periodontal diseases in which:

"certain sites within patients would be free of destructive periodontal disease 

throughout that individual's life. Other sites would demonstrate a brief active burst 

of destructive disease (which could take a few days to a few months) before going 

into a period of remission. The site may never demonstrate destructive activity again 

or could be subject to one or more bursts of activity at later time periods. The 

model suggests that prior history of disease would not necessarily make a site more 

likely to demonstrate further periods of activity nor would it exclude the occurrence 

of further destruction at that site."

A third, "asynchronous burst" model was also postulated. Here, it was supposed 

that multiple sites showed breakdown within a reasonably short period of an
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individual’s life with prolonged periods of remission, with the possibility of further 

waves of widespread destruction. It was emphasised that these models were as yet 

unproven hypotheses.

Four lines of evidence were put forward in support of the burst model hypothesis: 

1) that some observed attachment loss rates were too fast or too slow to be 

consistent with the observed mean loss of attachment in individual subjects; 2) that 

large numbers of sites did not appear to change; 3) that animal studies indicate that 

disease does not progress in all lesions; and 4) that animal studies indicate that even 

severe experimentally induced perturbations at a site which induce rapidly 

destructive disease are soon brought under control.

Most of the evidence put forward in support of the first two lines of argument 

was, of course, based on Goodson et al. (1982) and Haffajee et al. (1983b), which 

we have already reviewed. An extra argument was adduced that measures of 

attachment level showed an exponential distribution, and that such distributions are 

used to model random processes such as radioactive decay. However papers by 

other authors were also cited by Socransky et al. (1984). Moskow (1978) reported 

on a patient who refused periodontal treatment and whose condition was 

substantially unchanged after ten years in which she had not received dental care. 

Selikowitz et al. (1981) examined routine bitewing radiographs taken at dental 

practices over a period of 10 years and concluded that in a majority of cases the 

rate of bone loss per year fluctuated, although it was not made clear how this 

conclusion had been reached. Hancock et al. (1981) noted that a cyclical nature of 

periodontitis had been proposed by Stanley (1955) and reviewed available methods
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for the determination of periodontal disease activity. The relevance of animal models 

to the natural history of periodontitis in humans is uncertain (Page 1988), so it 

would clearly be unwise to base the ’burst* hypothesis solely on analogy with 

animal models.

It is not our purpose here to review in detail the battery of criticism of these papers 

which was advanced in subsequent years. Fidler (1984), Laster (1985), Blomqvist, 

(1985, 1987), Imrey (1986), Morrison and Kowalski (1986), Janssen et al. (1987), 

Osborne (1987), Fleiss et al (1987), Birkedal-Hansen (1988), Fleiss et al. (1988), 

Gunsolley and Best (1988) and Sterne (1988) are among those who have joined the 

attack.

We will, however, discuss two particular issues which will be of interest in sections 

6 and 7: the issue of the standard deviation of measures of attachment level for 

subjects with periodontal disease, and the issue of the subject intraclass correlation 

coefficient for changes in attachment level at different sites. This is defined as Rs 

= (^(c^s+c^sws)1, where d*s is the component of variance between subjects and s 

is the component of variance for sites within subjects.

In a reproducibility study performed on 63 Danish men (Glavind and Loe 1967), 

the standard deviation of a single measurement of attachment level was estimated 

to be 0.41mm. Reproducibility data reported after the fourth examination in the 

Sri Lanka study (Loe et al 1978c) appears to give a standard deviation of around

0.53mm. Imrey (1986) took the standard deviation for subjects with periodontal 

disease based on a number of papers to be 0.8mm, although Goodson (1986)
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claimed that this was an over estimate, with the true value being 0.55mm (Goodson 

et al 1986). Janssen et al. (1987) estimated the standard deviation of attachment 

level measurements in 13 patients with chronic periodontitis to be 0.74mm. They 

noted that the distribution was non-Gaussian, so that extreme values occurred more 

frequently than would be the case for the normal distribution, and that 

reproducibility was worse for measurements in deep than for shallow periodontal 

pockets.

The value of Rs was claimed by Haffajee et al. (1985) to have a median value 

over a number of groups of 0.07. This observation was used as justification for 

the practice in the papers discussed above of ignoring subject effects. It was pointed 

out by Fleiss et al. (1987) that Haffajee et al. had failed to take into account the 

component of variation due to measurement error. Fleiss et al. (1988) re-analysed 

the data of Goodson et al. (1982) by calculating the intraclass correlation coefficient 

where the data were sites, means of all sites for a tooth, and means of all sites for 

a quadrant. They showed that the intraclass correlations for change in attachment 

level increased when the observations used to calculate Rs were averages of 

increasing numbers of sites. This indicated that measurement error had obscured the 

values for individual sites. Fleiss et al. also found that the values of Rs increased 

as changes were calculated over longer time periods. They reported a value of 0.55 

where R was calculated for the averages of all sites in a quadrant, and the time 

interval was for 9 months.

Criticism of the papers forming the basis of the burst hypothesis can be summarised 

in five points:
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1. Sites within the same subject cannot be considered to be independent. This 

practice will lead to false positives in significance tests.

2. The substantial measurement error of attachment level measurements, and the 

fact that the frequency of extreme values will be higher than if the errors were 

normally distributed, must be taken into account when analyzing these data.

3. The rate of false positives (sites incorrectly classified as active) was substantially 

larger than assumed in these papers.

4. The methods of analysis used depended on assumptions about the nature of 

disease progression: they did not in themselves investigate the nature of disease 

progression.

5. There is a confusion between failure to achieve statistical significance (i.e. failure 

to be confident that the observation is not a false positive), and the assertion that 

the observation is not a false negative.

All this justifiable criticism of the statistical methods which were used in producing 

evidence means that one needs to be sceptical that the burst hypothesis has been 

demonstrated to be correct. However, the enthusiasm with which these ideas were 

taken up may mean that they fit in with the clinical impression of the disease which 

was held by many researchers (e.g. Hirsch and Garke 1989). The plausibility of this 

theory and its wide acceptance is illustrated by the number of current publications
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of longitudinal clinical studies which use methods of analysis which classify sites 

either as active or inactive, using the tolerance or similar methods. These are not 

only from the Forsyth group, (e.g. Haffajee et al. 1988, Dzink et al. 1988), but also 

from other researchers (most recently Bragd et al. 1987, Ramfjord et al. 1987, 

Jenkins et al. 1988, Listgarten et al. 1989, McCullough et al. 1989).

It is not sufficient, therefore, to dismiss the burst hypothesis on the grounds that 

it has not been proved to be true. Further, it seems clear that not all extreme 

changes observed in longitudinal studies are attributable to measurement error: 

Gunsolley and Best (1988) pointed out that the false positive rate for a population 

can be expressed as

pf+= PffpMi-p(c+))
P(T+)

where P(fp) is the probability of false positive for an individual observation, P(T+) 

is the proportion of measured changes over time and P(C+) is the proportion of real 

changes. Thus an upper bound for the Pf+ is given by P(fp)/P(T+) (this upper bound 

will be close to the true value if the proportion of true changes is close to zero. 

P(fp) for a 3mm loss of attachment level was estimated as 0.0074 for single 

measurements and 0.0014 for repeat measurements. This gave estimated false 

positive rates of 0.32 for single measurements and 0.15 for repeat measurements. 

P(T+) was estimated from the data of the Forsyth group. Thus, although the false 

positive rate was considerably higher than had been thought, it still appeared that 

at least 68% of measured changes in attachment level were due to real disease 

progression. Similarly, Lindhe et al. (1989) estimated the upper bound for the 

proportion of false positives in a study of untreated subjects as 53%. There is, 

therefore, evidence that real changes in attachment level took place during these
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studies. To reject the constant progression model, however, one must also 

demonstrate that the underlying rate of progression at a site changed during the 

period of the study or, as suggested by Socransky et al. (1984) that the observed 

rate of progression at a number of sites, allowing for the effect of measurement 

error, is incompatible with the sites having retained the amount of attachment they 

still possess.

Even the observation that rates of observed attachment loss are inconsistent with 

a constant rate of progression need not lead to acceptance of an hypothesis that 

change occurs instantaneously or nearly so. Birkedal-Hansen (1988) noted the risk 

that methods of analysis such as the tolerance method might select for a particular 

disease entity by assuming that sites failing to reach the criterion for change had 

not undergone periodontal destruction. Similarly differing patterns of disease 

distribution (Haffajee and Socransky 1986) could be explained by a multitude of 

models for disease progression (Cohen and Ralls 1988). Manji and Nagelkerke 

(1989) noted that a Brownian motion model for changes in periodontal attachment 

might equally explain the observed changes in rates of progression. As discussed 

by Listgarten (1986) and Hausmann & Jeffcoat (1988), the change in attachment 

level between two time points represents the integrated sum of periodontal disease 

activity during the period. There is no available method for measuring the 

instantaneous rate of attachment loss.

Thus questions of how often the rate of progression changes, of how rapid is the 

rate of progression when a site experiences disease activity and of whether disease 

progression truly consists of short periods of activity and long periods of quiescence
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remain open. The probability of sampling during a burst is in proportion to its 

duration, so that if they are indeed virtually instantaneous then they can never be 

observed. If the values of the explanatory variables change only during an episode 

of activity then the shorter the duration of the episodes, the smaller the chance of 

detecting associations of interest. Clarification of the nature of disease progression 

is clearly of enormous importance in the study of the aetiology of periodontal 

diseases.
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In this section we review procedures available for the estimation of the parameters 

of covariance structures. The notation used is based on that of Browne (1984) (see 

below). We consider a pxp population covariance matrix 2  obtained from N=n+1 

independent observations on a pxl vector variate x. A structural model for a 

covariance matrix is defined as a pxp matrix-valued function 

(2-1) 2=2(2)

where y is a qxl vector yEG and G is a parameter set contained in Rq. We may 

similarly specify a structural model for a correlation matrix R(y).

2.2.1 MODELS FOR COVARIANCE STRUCTURES.

Models for covariance structures have been studied predominantly in the social 

sciences, but interest in tests on the nature of 2  goes back to Wilks (1946) who 

considered hypotheses of equal means, equal variances and equal covariances of a 

multivariate normal sample, and Votaw (1948) who considered a more complicated 

set of twelve hypotheses of "compound symmetry" of the means, variances and 

covariances of a normal multivariate population. Campbell and Fiske (1959) 

considered how inference on the validity of tests might be derived from a multitrait 

multimethod correlation matrix, which presents the intercorrelations resulting when 

each of several different traits is measured by each of several methods. Bock (1960) 

showed how a covariance structure arises from a model for the response to two 

psychological tests, and gave a method for testing hypotheses about the model. He 

gave the name "structural analysis" to a method which attempts to make causal



33

statements about test performances by assigning to definite sources the covariation 

between psychological tests. Bock and Bargmann (1966) presented a general method 

for estimating variance components arising from latent variable models where the 

experimental design has one random way of classification and a possibly unbalanced 

fixed classification. Latent variable models were restricted by assuming that (I): the 

latent variables are uncorrelated, (II): (I) and the errors are uncorrelated but not 

homoscedastic, and (III): (II) and the errors are uncorrelated and homoscedastic. 

MLE’s and likelihood ratio tests of the goodness of fit of the models were derived. 

Wiley et al. (1973) presented a sequence of eight models based on varying degrees 

of restrictive assumptions. These include the three restrictions suggested by Bock 

and Bargmann (1966).

Srivastava (1966) noted that if

(2.2) x = djZj + + ... + a ^ ,

where Zj (with covariance matrix Zj) are mutually independent, and cq are scalars, 

then Z has the linear structure

(2.3) Z = bjZj + ... + bqZq,

where b4 = cq2. He studied the problem of obtaining the likelihood ratio statistic 

for the testing the hypotheses that Zq has linear structure. Anderson (1969) derived 

the MLE’s and a likelihood ratio test for the hypothesis that either Z or its inverse 

is a linear combination, while Anderson (1973) gave, in addition, a method for the 

iterative solution of these equations and conditions for the asymptotic efficiency of 

these estimates are given. McDonald (1974, 1975), gave MLE’s of the free 

parameters, and an asymptotic likelihood-ratio test, for the hypothesis that one or 

more elements of a covariance or correlation matrix are zero, and/or that two or
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more of its elements are zero. These hypotheses are contained in the class of linear 

covariance structures.

The major application of covariance structure estimation has been in the area of 

factor analysis and, more generally, structural equation modelling. The development 

of these models has been pioneered by Joreskog (1970, 1973, 1978, 1981). We 

make no attempt to review the vast literature on the application of these models in 

psychology and econometrics. However we will review the most general form of 

the linear structural relations (LISREL) model as described by Joreskog (1981). A 

computer programme, LISREL (Joreskog and Sorbom 1988) was devised to allow 

the use of these models and has been updated regularly to allow the use of ever 

more general methods.

The LISREL model considers random vectors = ('n1,rj2,...,iO  and =

of latent dependent and independent variables respectively and the

following system of linear structural relations:

(2.4) Bn  = T t  + l

where B (mxm) and T(mxn) are coefficient matrices and E[£] = 0. It is further 

assumed that £ is uncorrelated with § and that B is nonsingular.

The vectors tj and £ are not observed but instead vectors y ’ = (yi,y2,—,yp) and x’ 

= (x̂ ,X2 ,...,Xq) are observed such that

(2.5) y = Ayll + e,

(2.6) x = A £  + b
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where e and 6 are vectors of errors of measurement in y and x respectively. We 

take y and x to be measured as deviations from their means. The matrices A, 

(pxm) and A, (qxn) are regression matrices of y on tj and of x on |  respectively. 

The errors of measurement are assumed to be uncorrelated with rj, § and £ but may 

be correlated among themselves.

Let O (nxn) and W (mxm) be the covariance matrices of £ and £ respectively, and 

let 6 e and 0 6 be the covariance matrices of £ and 6 respectively. Then it follows 

from the above assumptions that the covariance matrix 2  ((p+q)x(p+q)) of z =

(x’,z’)’ is

Q A-B^roA,'
(2.7) 2  = ^

A jV r B ’+A/ A,$A,’+ ea

where

(2.8) Q = A ^ ^ rO T ’B’1 + B-1WB'-1)Ay* + 0 ,

The elements of 2  are functions of the elements of Ay, A,, B, T, d>, W, 0 e and 0 ft. 

In applications some of these elements are fixed and equal to assigned values. In 

particular, this is so for elements of Ay, A,, B and T, but allowance is made for 

fixed values in the other matrices also. For the remaining nonfixed elements of the 

eight parameter matrices one or more subsets may have identical but unknown 

values. Thus the elements in Ay, A,, B, T, d>, W, 0 e and 0 8 are of three kinds:

(i) fixed parameters that have been assigned given values

(ii) constrained parameters that are unknown but equal to one or more other 

parameters, and
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(iii) free parameters that are unknown and not constrained to be equal to any other 

parameter.

Applications of the LISREL model or restrictions of it include factor analysis, 

measurement models such as those described above and path analysis.

It has become clear that general structural models may be expressed in a variety 

of ways. Interrelations among these models were reviewed by Bender and Weeks 

(1979). McDonald (1978) gave an alternative general form for covariance structural 

models in terms of matrix products, together with first and second derivatives with 

respect to the parameters which allow estimation and testing via a variety of

methods. He showed that this form included as special cases many of the

previously proposed models for covariance structures, including the LISREL model. 

However Bender and Weeks (1980) noted that this specification in turn is a special 

case of LISREL* and that each may be considered as generalizations of another, 

previously presented, form for structural models. They stated that "there appears to

be a circularity regarding the generality of models that allows different models to

be considered as special cases of each other”.

Probably the most general form for structural models was given by McArdle and 

McDonald (1984), who described a compact general form which they named the 

Reticular Action Model (RAM). They showed that this form includes and extends 

other general forms for structural models such as LISREL as well as those of 

McDonald (1978) and Bentler and Weeks (1980). There is however clearly



37

competition between the authors of different models: the claims of McArdle and 

McDonald are disputed by Bentler and Weeks (1985).

Having discussed the specification of models of covariance structures, we now 

examine the estimation and testing of these models.

2.2.2 MAXIMUM LIKELIHOOD ESTIMATION OF COVARIANCE 

STRUCTURES UNDER THE ASSUMPTION OF NORMALITY.

In this section we present estimates under the assumption that {xj (i=l,...,N) have 

a p-variate normal distribution with expectation &  where is a pxl vector of 

unknown constants and variance-covariance matrix 2(y). The log-likelihood is then 

given by:

(2.9) UQyf) = JjN log lX j - >sNtr(X(x)‘1S) - *5N^-ii)’2(i)(S-li) + const 

where

N________ _
(2.10) S = N'1̂ ^  - x)(xj - x)’, is the sample covariance matrix, and

M

(2.11) i  =
i=l

As is well known, (2.9) is maximised with respect to \i at ji = x, so that the 

reduced likelihood function is then given by:

(2.12) LnO) = -SjNloglZj - JjNtrpCjJ'S) + const

Maximisation of (2.12) is equivalent to maximisation of the Wishart likelihood 

function f(y) for the multivariate distribution of S, defined by:

(2.13) f(xMog 12(2) I -log ISI +tr(S(ZCi)-1)
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Maximum-likelihood estimates (MLEs) for parameters of the multivariate normal 

distribution with covariance matrices which are linear combinations of known 

matrices were derived by Anderson (1969), while general solutions are given by 

(e.g.) Joreskog (1978). We write:

(2.14) dZ(y)/aYi = 2®.

and also denote the MLEs of y by y, Z(y) evaluated at y = y by Z, 2® evaluated 

at y = y by 2® etc. The maximum-likelihood estimates are the joint solutions of 

the equations:

(2.15) 0 = -tr^Z®) +tr(Z‘1Z®Z‘1S) (k=l,...q).

If Z(y) is a linear combination of known matrices, Z(y) = YiB!+...+YqBq, then 2® 

= Bj. Anderson (1973) gives a numerical method for the calculation of the MLEs 

in this case.

Under the assumption that {x*} are normally distributed, the estimates are consistent 

and asymptotically efficient as N—»o°. That is:

(2.16) VNy~N(y,r!(y)), where:

(2.17) I(y) = E[dLj(y)/dy]2 = -E ^ L ^ /d f r ) 2] (Lehmann 1983).

The information matrix I(y) is given by:

(2.18) (ICO)* =

Anderson (1973) gave this result for linear covariance structures: it holds for the 

more general definition (2.1).

These results will be used in section 8, when the asymptotic behaviour of the 

estimates of the parameters of models for the progression of periodontal disease 

will be investigated.
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2.2.2.1 MAXIMUM LIKELIHOOD ESTIMATION WITH STRUCTURED MEANS.

More generally, we may assume that the mean vector p  depends on a structural 

model jx = jx(£) where £ and y are disjoint vectors of parameters, or that both 

R=M(i) and 2=2(y) depend on the same parameter vector. This latter, most general 

case is treated by Browne (1988).

For the models of periodontal disease progression developed in subsequent sections 

we shall require only that p  = px, where x is a known vector and p. is an unknown 

parameter. The MLEs and information matrix in this case are easily derived. It is 

then found that the MLEs are the joint solutions of (2.19-21) where:

(2.19) 0 = -trCS'i®) +tr(±1i®ir1C )  (k=l,...q).

(2.20) jx = N 'lx ^ x J iT ’irhy1
i=l

(2.21) C* = 2(Xi - pT)(Xi - (xt)*
i=l

Also, p and y are still asymptotically independent, so that the information matrix 

of y is as in (2.18) and:

(2.22) I(p) = x ’Z ( tih

We have thus presented MLEs and the information matrix for the parameters of 

an arbitrary covariance structure, and have seen how these models can be extended 

to allow in addition for a structural model for the mean vector.
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2.2.3 GENERALIZED LEAST SQUARES ESTIMATION OF COVARIANCE 

STRUCTURES

In a series of papers, Browne (1974, 1982, 1984) has proposed the estimation of 

covariance structures by generalized least squares. Since these are the methods used 

in subsequent sections to fit models for periodontal disease progression, we now 

summarise these results in some detail.

We have N=n+1 independently and identically distributed p-vectors x* with mean 

ji  and variance-covariance matrix We denote by r -  vecs(R) the p 'x l vector 

formed from the p* = %p(p+l) non-duplicated elements of a symmetric matrix R. 

Thus r’ = (ru,r12,r22,r13 ,r23,r3 3  . . .), where ry represents the (i,j)th element of R. We 

denote by S the usual unbiased estimator of the population covariance matrix,

S = n'1 - x)(Xj - x)’
I>1

Write s = vecs(S), o0 = vecs(Z0). If 6, = Vn(s-a0), the finite sample distribution of 

8, has a null mean vector and covariance matrix Y = covfS^S,) with typical 

element:

(2.23) (Y )^  = n covftS-E^CS-X,,),,)

= (̂ o)ik(̂ o)jl + Ĝ o)il(̂ o)jk + (n/N)Kijki

where is a fourth-order cumulant given by

K ijkl =  ° ijk l “ C ^ o)yG ^ o)k l +  (^ o ) ik (^ o ) j l +  (^ o ) il(^ o )jk

om = E[(xj -pi)(xj -Jij)(xk -m3 (Mi = E[Xi])
i

In many situations the exact finite sample distribution of 5, is not known but may 

be approximated by the asymptotic distribution as n—»°o, which is multivariate normal 

with null mean vector and covariance matrix
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(2.24) Y = lim cov(8,,5^), with

(2.25) OOyjj = (Zq̂ ^ ) ^  + (Zo)^^)^ + Kjjjj

We write o  = o(y) where o(y) = vecs(Z(y)). The Jacobian matrix of a(y) is the 

p*xq matrix-valued function of y:

(2.26) A = A(y) = doj&f.

The model (defined at the start of this section) is said to hold if there exists a 

&EG such that Z0 = Z(yo). Given a sample covariance matrix S, an estimate y of 

X may be obtained by minimising a discrepancy function. A discrepancy function 

(Browne 1982) is a scalar valued function F(S,Z) of two pxp symmetric matrices 

S and Z such that:

(i) F(S,Z) * 0

(ii) F(S,Z) = 0 if and only if S = Z

(iii) F(S,Z) is a twice continuously differentiable function of S and Z.

We have

(2.27) F(S,Z0) = min F(S,Z(y))

and we write Z = Z(y). A more general definition of the population value, Xo> of 

the parameter vector, y, which is still valid if Zq can only be approximated by the 

structural model, is to regard Xo as the value of y which minimises F(Zo,Z(y)). We 

represent Z(yo) by Zq (which need not be equal to Zq), i.e.

(2.28) min F ^ S C j)) = F ^ Z ^ ) )  = FCS„,±0)
jeo
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Browne deals predominantly with quadratic form discrepancy functions of the type:

(2.29) F(S^(k)IU) = (s-o toyU ’GroC*))

where U is a p*xp* positive definite matrix. In many applications U is a stochastic 

matrix which converges in probability to a positive definite matrix U as n—>oc. The 

matrix U is said to be correctly specified if U = Y. In this case generalized least 

squares (GLS) estimators have minimum asymptotic variances. The Wishart 

likelihood f(y) given in (2.13) is a discrepancy function: other examples were 

considered by Swain (1975) in the context estimating procedures for factor analysis.

2.2.3.1 GENERALIZED LEAST SQUARES ESTIMATION UNDER THE 

ASSUMPTION OF NO KURTOSIS.

Browne (1974) demonstrates various properties of generalized least squares 

estimators under the assumption that all fourth-order cumulants KijkI are zero. This 

is the case if, but not only if, the Xj have a multivariate normal or elliptical 

distribution. In this case, we say that the distribution of x has no kurtosis, and we 

have:

(2.30) Cov(sy,Su) = n-^cfcOpp + a ^ a ^ )  

and

(2.31) Y m  = (20)ik(20)ji + ^^(Sq)^

It is then desirable for a typical element of U to have the corresponding form:

(2.32) = (V )il(V + (V MV )*
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where V is a positive definite stochastic matrix converging in probability to a 

positive definite matrix V as n-*<». If this is the case then (Browne 1974, equation 

(24)) the quadratic form discrepancy function F(S,ZlU) is equal to:

the distribution of x has no kurtosis then also U = Y.

Browne proves the following propositions under the assumption of no kurtosis and 

the regularity conditions:

(a) All oy(x) (aa(y) = 2(y)y) and partial derivatives of the first 3 orders with 

respect to y exist and are continuous in a neighbourhood of y=yo-

(b) A(yo) is of full column rank.

(c) Xo is identified, i.e. Zfo) = £(&) implies Xo = Xi> and

(d) 2(yo) is positive definite.

Proposition 1.1: The GLS estimators are consistent

(2.33) F(S^IV ) = %kr[(S-ZCtf)V-lI

which is more easily computed. A possible choice for V is V=S, so that V=2o- If

Proposition 1.2: The limiting distribution of a GLS estimator y is multivariate 

normal with mean vector E[y] = Xo, and covariance matrix 

(2.34) Cov(y,y,)=2n'1{0(V)}'1{e(V2oV)}{e(V)}'1



where 0(V) is a qxq matrix function of V defined by 0(V) = A’(V®V)A with 

typical element 0(V)ij = tr(5^(0VZo®V).

Proposition 1.3: The asymptotic dispersion matrix of a GLS estimator is bounded 

below (in the sense that A^B if A-B is positive semi-definite) by 2n"1{0(2o1)}'1. 

This bound is attained, and y is a best generalized least squares (BGLS) estimator, 

if V = kV  (k >0).

Proposition 1.4: Let Q denote the information matrix based on the limiting

distribution of S. Then

lim n p n 'H © ^ '1)}'1 - Q 1]=0.

Propositions 1.1-1.4 show that, as long as V is a consistent estimator of a multiple 

of Sq1, the asymptotic properties of the estimates are the same as those of MLEs 

based on the assumption of a normal distribution for {xj. The asymptotic dispersion 

matrix 2n*1{0(Zo'1)}'1 of a BGLS estimator is equal to that of the MLE (equation 

2.18). However the asymptotic behaviour of BGLS estimators depends only on 

regularity conditions (a-d) and assumptions about the fourth-order moments of the 

distribution (equations 2.31 and 2.32) and the asymptotic normality of S. As pointed 

out above, the assumption of no kurtosis holds if, but not only if, the underlying 

distribution is normal.

Proposition 1.5: If V = I!^1 and Z0 = £(&,), the limiting distribution of nF(ylV) 

= 2An tr[(S-Z(y))V]2 is chi-square with p(p+l)/2 - q degrees of freedom.
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It is also shown that GLS estimators converge in probability to Maximum Wish art 

Likelihood (MWL) estimators based on minimising f(y) as defined in (2.13), and 

that the functions nF(y I (H ® 1)) and nf(y) have asymptotically equivalent properties. 

We have already noted that f(y) is itself a discrepancy function. These results are 

generalized by Shapiro (1985a) (see below). We will refer henceforth to these 

estimators as GLS (nk) estimators, in order to distinguish them from the 

asymptotically distribution-free GLS estimators which we now describe.

2.2.3.2 ASYMPTOTICALLY DISTRIBUTION-FREE ESTIMATION OF 

COVARIANCE STRUCTURES.

Browne (1982, 1984) presented results which generalized the above to the situation

where the underlying distribution does not have the structure of (2.30). He uses the

following regularity conditions:

(Rl) Y is positive definite.

(R2) F(2o,2(y)) has a unique minimum at y = & (y is ’conditionally identified* 

with respect to F(.,.).

(R3) y„ is an interior point of G.

(R4) Aq = A(Yo) is of full column rank.

(R5) IIX0-ZC&)II is OCv'n1).

(R6) The parameter set G is closed and bounded, (implied by:

(R6‘) Given any S, F(S,2)—°° if IIZlI =—<*> (llZll^trCZ2))) and ll2(y)ll-*<» if 

llyll—»°° (llyll = Vy’x))-

(R7) A(y) and, consequently, 2(y) are continuous functions of y.
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Proposition 2.1: A minimum discrepancy function estimator defined in (2.27) is a 

consistent estimator for & as defined by (2.28).

Shapiro (1984) investigated the consistency of estimators in the analysis of 

covariance structures Z(y), where given a sample of size n we have an estimate 

S. of the population value Zj>. It was assumed that Sa converges to Z„ in probability. 

An example was given where in spite of the identifiability of the parameters, the 

associated estimator y which minimises the discrepancy function is inconsistent. 

Consistency was shown to hold under the additional condition of compactness of 

the parameter space G. In many practical situations the assumption of compactness 

of G does not hold (for instance if G=Rq). However this assumption can be replaced 

by the condition of inf-boundedness: There exist a number a>F(Z0,Z(y0)) and a 

compact subset G’ of G such that {y€EG:F(S,Z(y))<a} C G*. If the model holds, i.e. 

if Zq = Z(y<>) then this condition assumes the simple form of boundedness: There 

does not exist an unbounded sequence {y.}CG such that Z(yJ—►Zfft,).

Proposition 2.2: If y is a GLS estimator obtained by minimising F(S,Z(y)) in (2.29) 

then the asymptotic distribution of ST = Vn(y-yo) is multivariate normal with a null 

mean vector and covariance matrix

(2.35) L cov^ d /) = {Ao’O^Aol^Ao’U-W AoiAo’U^Ao}1

where Aq = A(y„). Equivalently

(2.36) Lcov(6r 6 /) = {A0}U-1A0}-1H(U-1YO-1,A0){A0’0 1A0} 1 

where H(.,.) is a qxq quadratic form defined by
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(2.37) H(U J,A) = A’U^A

Corollary 2.1: If the matrix U of the discrepancy function F(S,Z(y) IU) is correctly 

specified then the covariance matrix of the limiting multivariate normal distribution 

of by is given by:

(2.38) Lcov(6r ST’) = {Ao’Y A } 1 = { H ^ A ) } 1

Proposition 2.3: If U = Y then y is asymptotically efficient within the restricted 

class of estimators m inimizing discrepancy functions of the form of F(S,2(y)IU) 

in (2.29) in the sense that the asymptotic variances of all its elements attain lower 

bounds for asymptotic variances of estimators in this class.

These estimators are again referred to as ’best’ generalized least squares (BGLS) 

estimators. Note that, in contrast to the situation where the underlying distribution 

has no kurtosis, the BGLS estimators are not necessarily asymptotically efficient in 

that the asymptotic variance given in (2.38) is not necessarily equal to the 

Cramer-Rao lower bound where the underlying distribution is, for example, 

multivariate normal. Browne also observes that the term ’best’ refers only to a 

specific asymptotic property which may not carry over to finite samples. It is 

possible that other estimators may have superior finite-sample properties.

Proposition 2.4: Suppose that y is an estimator with the property that, as n-»oo, b̂  

= Vn(6-yo) has an asymptotic distribution with a null mean vector and a finite 

covariance matrix. Let Ac = Ac(y) be a p*x(p*-q) matrix-valued function of y such 

that the rank of Ac is (p’-q) and Ac’A = 0 when A = A(y) in (2.26). Also let
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e = s-o  = vecs(S-Z©), £> = 2d- 2d = yecs(2o-2(i,)), A* = A ,©  and = 4 © ).

If the positive definite matrix Y is a consistent estimator of Y, then the asymptotic 

distribution of the quadratic form statistic

(2.39) c©S,Y) = ne’A ^ Y A J - ^ ’e

as n—»o° is non-central chi-square with p*-q degrees of freedom and non-centrality 

parameter

(2.40) X = ne0’A0c{A0c’YA0c}1A<le’e0

Equivalent expressions for the quadratic form statistic and non-centrality parameter 

are

c©S,Y) = ne’IY1 - Y'1A{A’YA}~1A’Y 1]e

(2.41) c©S,Y) = nfe’Y 'e ’ - g ’Hg} 

where

(2.42) g = gftlS.Y) = A’aY 'G s-o© ),

the qxl negative gradient of J$F(S^© IY), H = H(Y \A) in (2.37) and 

X =  neo’I Y 1 - Y ^ A o ’Y ^ A o ^ A o ’Y-1] ^

(2.43) X = njeo’Y ^  - goWgo} 

where g = g©l2o,Y) and H0 = H(Y_11 AJ

Corollary 2.2: If U is correctly specified the asymptotic distribution of nF(S,2© IU) 

is non-central chi-square with p*-q degrees of freedom and non-centrality parameter 

n F ^ S ^ l Y ) .



49

These statistics will have asymptotic (central) chi-square distributions when 

Z^Zfco) so that £,=0 and X=0. Consequently they may be employed to test the 

null hypothesis that the model holds. The non-central distribution is also of interest, 

as a measure of the goodness of the approximation of the model to reality.

2.2.3.3 ASYMPTOTICALLY DISTRIBUTION-FREE BGLS ESTIMATORS.

An estimator % satisfying the conditions of proposition 2.3 may in general be 

obtained by defining a U that is a consistent estimator of Y. This may be 

accomplished by substituting sample moments for the population moments in (2.25). 

Let

(2.44) x* = N 'Zx*
r=i

(2.45) wy = N^Xfr-XjXXfr-Xj) = nN'1(S)y
i=i

N _ _ _ _ _  _
(2.46) Wyu = N'12(xir-xi)(xjr-xj)(xkr-xk)(xlr-x1)

r*l

In order for all sample fourth-order moments about the mean, wi]kl, to be consistent 

estimators of the o^ , it is necessary that all eighth-order moments of the 

distribution of x be finite. This assumption also ensures that Wy will be a consistent 

estimator of ( Z 0)y  so that

(2.47) (U), = wijkl - wswu

will be a consistent estimator of (Y)iikl in (2.25). Since (2.47) represents the sample 

covariance between the product variables (xir-xi)(xjr-xj) and (xkr-xk)(xlr-xL) with means 

Wy and Wy, the matrix U defined by (2.47) will be positive definite with probability 

1 provided that N is greater than p* and Y is positive definite. Browne points out
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that the number of non-duplicated is p(p+l)(p+2)(p+3)/24, which is considerably 

less than p*(p*+l)/2, the number of non-duplicated elements of U. The BGLS 

estimate, y, is obtained by minimising

(2.48) F(S^d)IU ) = %(s-oCD)’U-(s-o(a)) 

with respect to y, where U is defined by (2.47).

We shall refer henceforth to these asymptotically distribution-free GLS estimators 

as GLS (adf) estimators. These are distinguished from the GLS (nk) estimators 

described earlier.

Bender (1983) pointed out that in general, the population counterpart to the optimal 

GLS weight matrix U will be a function of lower-order parameters. He argued that 

the use of fixed weight matrices as suggested by Browne (1982, 1984) and Shapiro 

(1983), may not in practice lead to the best possible (e.g. least biased

or smallest variance or most accurate for small N) consistent estimates of the 

optimal U. If U = U(y), the minimisation of the GLS function can be accomplished 

by differentiating the function with respect to the parameters without assuming that 

dU(y)/dy=0. However, the iterative nonlinear optimization involved in solving for 

y would be difficult. Thus a completely parametric GLS of this sort may be 

abandoned in favour of an iteratively reweighted GLS, in which the weight matrix 

U is updated at each step of an iterative procedure designed to minimise the GLS 

function.

Bender notes that bias reduction may be achieved (Bender and Dijkstra 1983, 

Shapiro 1983) by estimating and thus approximately eliminating the bias if an
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estimator possesses an appropriate asymptotic expansion. The GLS function allows 

the appropriate expansion, and hence it may be of interest to obtain the bias 

adjusted estimator. After some lengthy algebra, using the methods of Shapiro (1983) 

the expression: 

b ©  = -N^Aa’VecOJoX)

can be derived. Here, in Bender’s notation, o ’=dg/d%, A=(a’U a)1, o-dgjd^, 

X=Aa’YaA, and Y^ijUjVyUi’, all evaluated at y = y. Vy is the (i,j)th element of 

V, the limiting covariance matrix of s. Uj is the jth column of U. It is noted that 

the calculation of the bias correction will take a substantial amount of computation.

2.23A  ASYMPTOTICALLY DISTRIBUTION FREE MODELS FOR MULTIPLE 

GROUPS AND STRUCTURED MEANS

Browne’s ADF approach has been extended to allow for estimation in multiple 

groups and for structured means. Bender et al. (1987) considered multiple 

population analysis. They suppose that there are m populations, for each of which 

the GLS function is defined as above, with separate parameter vectors. The overall 

fit function is the sum of the population functions. Constraints are supposed to exist 

which may relate the parameter vectors for different populations. It is supposed that 

as N (the total sample size) tends to infinity the proportion from each population 

tends to a constant between zero and unity. The parameter estimates are then 

shown, under suitable regularity conditions, to be consistent with limiting normal 

distributions, and the asymptotic distribution of the overall fit function is shown to 

be chi-squared with degrees of freedom Zgpg(pg+l)/2 -(q-r). Here the summation is 

over population groups g, pg is the order of the sample covariance matrix Sg, q is
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the sum of the dimensions of the population parameter vectors and r is the number 

of constraints. Estimation of covariance structures subject to functional constraints 

is discussed further below.

Muthen (1989) extended Browne’s ADF approach to include structured means in 

multiple populations, following the work of Joreskog (1971) and Sorbom (1974), 

who considered simultaneous factor analysis in several groups. As applied to GLS, 

their approach results in minimising the fitting function which is the sum of the 

discrepancy functions for the different groups. Muthen extends the discrepancy 

function for a single group allow for structured means in the obvious way, so that 

the function vector is £&’=(€& 1i,d g>2’)i where the first element is that of the 

parameters of the mean structure and the second that of the covariance structure. 

The discrepancy function for a single group is (s^-o^) ’W ^ ^ ^ -o ^ ) , where 

the concatenation of the vectors of mean elements and covariance 

elements, and W® is chosen as a consistent estimator of the asymptotic covariance 

matrix of s®.

Under multivariate normality, if we partition according to sw, then 

Since and Wf e ) 2 2  are already known under non-normality, it remains to find 

W(g)21, a consistent estimator of the asymptotic covariances between Sj and s^ which 

are not zero under non-normality. Such a consistent estimator is formed as follows. 

Let p-i denote the mean variable i and let pijk denote a multivariate third-order 

moment about the mean. Note that pijk = Kijk where Kijk is a third-order cumulant. 

Asymptotically N cov[(s2)y,(s1X] = % . Let yV = (yirYi, .,yPryP) and create the p*
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dimensional vector aj of pairwise products of y*y. Then, (deleting the group index) 

W21 = N ^ a jY , where N is the sample size for the particular group.

Note that for multiple populations, the sample size must be larger than pg(pg+l)/2 

(for the estimation of covariance structures), or pg+pg(pg+l)/2 (for, additionally, 

structured means) to ensure a non-singular for each group.

2.2.4 MINIMUM DISCREPANCY FUNCTION ESTIMATION OF COVARIANCE 

STRUCTURES

In the previous section the only discrepancy functions considered were quadratic 

form functions as defined in (2.29). We now consider theory applicable to any 

discrepancy function.

Shapiro (1985a), following the definition given by Browne (1982, 1984) of a 

discrepancy function, defines a minimum discrepancy function (MDF) estimator of 

a qxl parameter vector y as that value of y which minimises the discrepancy 

function F(s,a) (s = vecs(S) and o  = vecs(2(y))). The MDF test statistic is given 

by nF, where n is the sample size and F is the minimum of F. He proves that 

under the definition of a discrepancy function, there exists a continuous p*xp* 

symmetric valued function = V(s,a), such that:

(2.49) Ffeo^fe-gyV^Xs-a).

This means that any discrepancy function can be represented in the form of an 

"extended" GLS function, where the word "extended" indicates that the 

corresponding weight matrix V(s,g(y)) may depend on y as well as on s. Another
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important consequence of this theorem is that it follows that the second-order Taylor 

approximation of F at the (population) point (q^an) is (s-a)’Vo(s-a), where V0 is the 

(matrix) value of V(s,q) at (q^an). Alternatively the matrix V0 is given by any one 

of the Hessian matrices hd2Fldodo\ -hd^F/dsdo’ or hd2F/dodo’. This implies that 

the second-order Taylor approximation of F at (§o,§o) is symmetric in s and a  while 

the discrepancy function itself possibly is not Finally the Hessian matrices of 

F(s,q(y)) are now readily available, since by the chain rule of differentiation we 

have that ^F/dcrdy’ and dTVdydy’ are equal to -2VoA and 2A,V0A respectively, 

where A is defined as in (2.26).

The asymptotic distribution of the MDF estimator was investigated under the 

regularity conditions:

(51) The parameter space G is compact.

(52) The parameter vector y is identified at

(53) yo is an interior point of G.

(54) The qxq matrix A’VqA is nonsingular.

As observed above, conditions (SI) and (S2) alone imply the consistency of the 

MDF estimator. If W is a symmetric matrix valued function of s converging to 

the matrix V0 as s tends to cfc, and G is the GLS discrepancy function defined by 

G(s,q)=(s-q)’W(s-q), then F and G have the same second-order Taylor 

approximation at the point (q^q^). It follows from standard asymptotic theory that 

the estimates of y which minimise F and G respectively have asymptotically 

equivalent properties.
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Shapiro (1986) generalized the theory of MDF estimators still further by presenting 

a theory of overparametrized structural models. In such a model some "redundant" 

parameters are involved; the parameter vector is not identified, and the information 

matrix is not nonsingular. The MDF test statistic was shown to have an asymptotic 

chi-squared distribution almost everywhere for a wide class of discrepancy functions, 

and asymptotic distribution properties of the MDF estimator were investigated.

Shapiro (1987) studied robustness properties of the MDF analysis of moment 

structures. Generalizing the notation of Browne (1984), the discrepancy function is 

said to be correctly specified if V0 (defined as in (2.49) is equal to a generalized 

inverse Y' of Y (defined in (2.23)). The main purpose was to investigate conditions 

under which the standard or slightly modified MDF procedures result in a correct 

statistical inference for misspecified discrepancy functions.

Suppose that F is correctly specified with respect to a matrix Y0. Necessary and 

sufficient conditions on Y with respect to Y0 are given so that nF has an asymptotic 

non-central chi-squared distribution. Similarly, conditions on Y with respect to Y0 

are given so that the difference between the minimum discrepancy function under 

a restricted model and F has an asymptotic non-central chi-squared distribution, and 

under which this difference and F are asymptotically independent. Conditions on Y 

with respect to Y0 are also given so that y is asymptotically efficient.

Browne and Shapiro (1988) derived the structure of Y under the class of linear 

latent variable models is derived using properties of cumulants. An appendix to 

the paper provides a brief summary of relevant results from a general theory of
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asymptotic robustness of minimum discrepancy methods in the analysis of 

covariance structures, derived from Browne (1984) and Shapiro (1984, 1985a, 1986, 

1987).

These results show that any MDF estimator will have asymptotic properties 

equivalent to those of GLS estimator. The GLS (nk) estimates of section 2.2.3.1 

have been shown to be asymptotically efficient where the underlying distribution 

has no kurtosis, while the best GLS (adf) estimates of section 2.2.3.3 have been 

shown to be asymptotically efficient in the class of GLS estimates. Since GLS 

estimates derived using these discrepancy functions may be taken as representing 

broad classes of estimators with asymptotically optimal properties. The studies of 

the robustness of MDF estimators which we have mentioned briefly give indications 

of the circumstances in which MDF methods will lead to correct inference despite 

relaxation of regularity conditions.

2.2.5 METHODS FOR THE ESTIMATION OF COVARIANCE STRUCTURES.

Lee and Jennrich (1979) considered the Fletcher-Powell, Gauss-Newton, Newton- 

Raphson, Fisher Scoring and Fletcher-Reeves algorithms for estimation of covariance 

structures using either maximum likelihood (ML) or generalized least squares 

assuming no kurtosis (GLS (nk)). From equations (2.12) and (2.33), the MLE of y 

is the vector which minimises the function

(2.50) L(y) = loglzl + tr(S rl) 

while the GLS (nk) estimate minimises

(2.51) Gfr) = Jstr((S-Z)W)2
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where W is a weight matrix usually chosen to be the inverse of S. We write Q(y)

to represent L, G or any other discrepancy function.

A single step in the Newton-Raphson algorithm is defined by

(2.52) Ay = -H 1g,

where g=g(y) is the gradient vector for Q(y) and H=H(y) is the Hessian matrix 

for Q(y), both evaluated at y. ITie main reason for considering other algorithms is 

that the Hessian matrix may be difficult to obtain, so that algorithms which require 

only first order derivatives may be of use.

If Q(y) is taken to be L(y) and the Hessian H in (2.52) is replaced by its 

expectation, one obtains the standard Fisher Scoring algorithm:

(2.53) &X = -E[H] >g

This algorithm is often more robust to bad starting values because E[H] is non­

negative definite for all values of y and is usually positive definite.

The Gauss-Newton algorithm can be applied when Q(y) is the weighted least 

squares function G(y). In this case, a basic step of the algorithm is

(2.54) Ay =-HMg, where

(2.55) H*y = trWZ^WS®

It is noted that the scoring algorithm is simply an iteratively reweighted Gauss- 

Newton algorithm, where the weight matrix W changes with y from iteration to 

iteration, so that the Gauss-Newton algorithm may be used for both weighted least 

squares and maximum likelihood estimation. Lee and Jennrich recommended the



58

Gauss-Newton algorithm, because it is robust to poor starting values, converges 

quickly and conveniently produces consistent standard errors for both maximum- 

likelihood and weighted least squares problems.

Browne (1984) also recommends the Gauss-Newton algorithm for GLS estimation. 

This is modified so that

(2.56) Ay = aH Mg

as proposed by Jennrich and Sampson (1968). Here a  (0<a<l) is chosen so that 

the step always results in a reduction in the discrepancy function. Usually a= l. 

For the general definition of GLS functions given in (2.29), the matrix H* is as 

defined in (2.37).

2.2.6 ESTIMATION UNDER OF COVARIANCE STRUCTURES SUBJECT TO 

CONSTRAINTS.

In subsequent sections we will estimate covariance structures subject to two sorts 

of constraints. These may be broadly defined either as:

(2.57) minimise G(y) subject to h(y)^0 (inequality constraints), or

(2.58) minimise G(y) subject to h(y)=0 (equality constraints)

where as above G(y) is any discrepancy function, and h(y)= (^(y),...^^)), and

hj,...,!], are independent differentiable real-valued functions.

Lee (1980) investigated the use of the penalty function method to estimate 

parameters that are subject either to (2.57) or (2.58). This consists of sequential 

unconstrained minimisation of the function
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Gk&) = G(0) + c^cKh m  

where (c*) is a decreasing sequence of positive real numbers and <j> is any real 

valued differentiable function which has huge value near the boundary of the 

feasible region (e.g <J>(t) = -ln(t)). As the approximation is made more exact, by 

allowing c* to tend to zero, the solution of the unconstrained problem converges 

to the solution of the original problem.

Lee and Poon (1985) presented a method for constrained estimation which handles 

inequality and equality constraints simultaneously by introducing ’slack* variables 

z = (zj,...^) so that (2.62) becomes

(2.59) minimise G(y) subject to (h(y)-z)= 0

The algorithm consists of sequential minimisation of an augmented Lagrangian 

function which includes z. It was claimed that this method is better behaved than 

the penalty function method in the rate of convergence and numerical stability.

Lee and Bentler (1980) extended basic results by Browne (1974) on GLS estimation 

of covariance structures to covariance structures with parameters subject to arbitrary 

nonlinear constraints. They showed that the constrained estimators are consistent, 

asymptotically normally distributed and asymptotically equivalent to constrained 

maximum likelihood estimators. The relationships between the Lagrangian approach 

and the reparametrization approach were also discussed. They observed if one can 

impose equality constraints by finding a reparametrization it will result in a simpler 

and more efficient algorithm for obtaining estimates.
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McDonald (1980) gave matrix identities and reparametrizations useful in imposing 

inequality constraints. A well known procedure for satisfying the requirement that 

the estimate of a variance be non-negative is to estimate the standard deviation (as 

a real number) and to compute the variance estimate as a parametric function, 

namely the square, of the estimated s.d. He showed how this procedure may be 

generalized to allow for, for instance, a sequence of inequalities q1<;q2̂ ...^qk.

It is clear that in order to impose constraints of the form (2.57) or (2.58), one may 

choose either to use a constrained estimation procedure or try to find a 

reparametrizations which allow unconstrained estimation of the reparametrized 

model. The constraints which will be imposed in subsequent sections are of the 

simple forms ypO or Yî O- In either case, we choose to reparametrize the model 

rather than to attempt to implement a constrained estimation procedure.

Shapiro (1985b) considered the case where the population value of the parameter 

vector of a covariance structure is a boundary point of the feasible region. He 

showed that in this case the asymptotic distribution of the test statistic is a mixture 

of chi-square distributions; nF ~ x2v + X2> where v = p*-q, and x2 1S a weighted 

sum of chi-square statistics, pr(x2̂ c2) = SWjprfc2̂ 2) where the summation is over 

i=0,...,q, x2 is a chi-squared random variable with i degrees of freedom, x2̂ ,  and 

Wj are non-negative weights such that w0+...+wq=l. Formulae for the calculation of 

w* were given for q^4. These results explain why models with solutions at the 

boundary of the parameter space are rejected too often by the log likelihood ratio 

statistic.
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2.2.7 SELECTION OF MODELS

In subsequent sections we will construct models which are intended to reflect 

possible properties of the true way in which periodontal disease progresses. We 

will wish to assess which of these models best describes the variation in the data. 

In this section we examine methods for the selection, assessment and comparison 

of models for covariance structures. We will be interested both in additional 

methods for assessing the best choice of model, and in methods which allow for 

the fact that none of our models is likely to be a complete description of the 

variation in the data. For example the assumption that disease progression is 

instantaneous (in our model for progression in ’bursts’ of activity) is more 

realistically an approximation to the idea that periods of disease progression takes 

place over time periods which are short compared to the length of time between 

observations. Similarly in constructing our model for varying, non-instantaneous 

progression we hope to derive a covariance structure which will hold if disease 

progression varies with time. However we are unlikely to believe, as the model 

assumes, that disease progression is constant between time points which occur in 

a Poisson process, with instantaneous changes in rate which occur at those time 

points. Other assumptions made in the models which may well not hold in reality 

include the assumption the measurement error variance does not vary with 

attachment level.

We have already summarised the work of Browne (1974, 1984), which provides 

asymptotic chi-square tests for the goodness of fit of a maximum likelihood and 

covariance structural model. Steiger et al. (1985) investigated the multivariate
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asymptotic distribution of sequential chi-square tests statistics. They were interested 

in procedures for choosing which of several nested structural model appear to be 

"best" for a population of interest. They discuss the sequential chi-square test (SCT) 

procedure, whereby one increases the complexity of the model until the hypothesis 

of perfect fit is not rejected. An alternative approach is the sequential chi-square 

difference test (SCDT), in which nested models are compared by treating the 

difference of their chi-square test statistics as a chi-square statistic with degrees of 

freedom equal to the difference in degrees of freedom for the individual chi-squares, 

and looking for a significant improvement in goodness of fit.

A sequence M1>M2>...>MX of nested models is considered, with parameter spaces 

{Gi} such that G2 is a subset of Gx given by imposing kj equality constraints, G3 

is a subset of G2 given by imposing k2 equality constraints, and so on. In practice 

it is usually not reasonable to assume that a model is a precise representation of 

reality. A more reasonable view is that a model is an approximation. Following the 

formulation of Stroud (1972), a sequence {a.} of population values of a  converging 

to a point Oo where all models hold is considered. That is, there exists yoEGr such 

that Oq = g(x0). The population badness of fit for models Mj? j=l,...,r is defined as 

6,® = min F(an,a(y)), where the minimum is over all yEGj. It is then proved under 

given regularity conditions that the test statistics {nF.(i)} (i=l,..,r) have asymptotic 

non-central chi-square distributions with Vj = m-q+kj+.-.+lq degrees of freedom, and 

non-centrality parameter 8j. The differences in successive test statistics are mutually 

asymptotically independent with degrees of freedom and non-centrality parameters 

given by the difference for the two test statistics. A closed form is given for the
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asymptotic correlation between the test statistics. Simulations confirm the results 

and show that the correlations between successive test statistics can be quite large.

Bentler and Bonnett (1980) observed that in large samples virtually any model 

tends to be rejected as inadequate, and in small samples various competing models, 

if evaluated, might be equally acceptable. They proposed a general null model based 

on modified independence among variables to provide an additional reference point 

for the statistical and scientific evaluation of covariance structure models. The 

model, is defined in the context of structural models as the severely restricted 

model which specifies that the measured variables are mutually independent. If Mt 

corresponds to a model of special interest, then a comparison of M0 with Mt 

provides a test of whether the restrictions made in going from M, to Mq are 

reasonable. It was also suggested that statistical evaluation should be supplemented 

with incremental fit indices associated with the comparison of hierarchical models, 

and various such indices are described. A nonnormed fit index pu for a hierarchical 

models Mq C Mk C Mj is defined by:

(2.60) pu = (Qk-Qi)/(Q0-1)

Here Q. represents the ratio of a chi-squared variate to the degrees of freedom for 

model *. Thus pu represents the increment in fit in moving from Mk to the more 

general Mj. A more general normed fit index is given by:

(2.61) Au = (Fk-Fj)/F0

where F is any fit function such as a discrepancy function. Bentler and Bonnett 

noted that the scale of the fit indices is not necessarily easy to interpret.
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Tanaka and Huba (1985) proposed a general fit index for GLS estimators of 

covariance structure models. This fit index is expressed as a function of the ratio 

of two trace functions. Bollen (1986) showed that Bentler and Bonnett’s nonnormed 

fit index depends on the sample size, and proposed an alternative formulation:

(2.62) p*u = (Qk-QO/Q,-

For a given fit, p*u will be the same regardless of the sample size N.

Cudeck and Browne (1983) examined methods for comparing the suitability of 

alternative models for covariance matrices. A model, Mk, for a population 

covariance matrix 2  between p variables is expressed as Mk:2=d>k(yk) (k=l,...g). 

Since statistical power theory virtually guarantees that, under the hypothesis testing 

approach to model selection, any model will be rejected if the sample size is 

sufficiently large, they prefer to suppose that Mk:2*-d>k(yk), and to search not for the 

correct model, but for the best approximation.

A cross-validation procedure is suggested and its properties are examined. The 

sample is split randomly into two subsamples a and b, of equal size. The first 

sample is used to estimate the parameter values under model a, and the second is 

used as a validation sample to compute the "cross-validation index", F(Sb;2k| B). This 

process is repeated for each of the g models. While the smallest of the calibration- 

sample discrepancy function values F(Sa;2k| a) will usually correspond to the model 

with the largest number of parameters, this will frequently not be the case for the 

cross-validation indices F(Sb;2k| a). It is wise to carry out a "double cross-validation" 

by repeating the process with the roles of samples a and b reversed, yielding a 

second set of cross-validation indices F(Sa;2k| b).
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In some situations if may not be possible to cross-validate, and an alternative is

to use indices which incorporate penalty functions for the numbers of parameters

(<k for model k). The information criteria of Akaike (1974) and Schwarz (1978) 

can be rescaled to eliminate the effect of the sample size and expressed in terms 

of the MWL discrepancy function. This gives:

(2.63) c^  = F(S^Sk) + 2qk/n and

(2.64) C* = F(S;±0 + qJnOO/n 

respectively.

Browne and Cudeck (1987) considered single-sample approximations for the cross- 

validation co-efficient in the analysis of covariance structures. The notation is 

similar to Cudeck and Browne (1983), with Sc and Sv being the sample covariance 

matrices for the calibration and validation samples respectively. The regularity and 

"population drift" conditions are the same as for Steiger et al. (1985). It is assumed 

that the calibration and validation sample sizes are equal. An asymptotic 

approximation, is provided for the expected value of the difference between the 

cross-validation index and the calibration sample discrepancy function value:

(2.65) 6, = E[F(Sv; i kjC)-F(Sc;i:M)] = 2qjn + o ^ 1).

We may therefore take 6* = 2qk/n so that the single sample cross-validation index 

for Mk is approximated by:

(2.66) c* = F(Sc;Stc) + \  = F ( S ^ )  + 2^/n

Note that the same correction term is employed in conjunction with any correctly 

specified discrepancy function. Note also that where F — Fml the coefficient obtained
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is the rescaled Akaike Information Criterion (AIC) (Cudeck and Browne 1983). This 

result is concordant with the finding of Stone (1977) that the "leaving one out at 

a time" method of cross-validation (Stone 1974) gives a log-likelihood measure of 

predictive validity which is asymptotically equivalent to the AIC. Results of a 

random sampling experiment are reported, and exact expressions for ^  for ^ML and 

Fqls are obtained for the saturated model.

Selection of one of a number of possible models for covariance structures presents 

the same difficulties as for model selection in any branch of statistics. As discussed 

by MacCallum (1986) in the context of structural equation models, the goodness of 

fit and meaning of models chosen as the best for a particular data set must be 

interpreted with caution. The aim of the procedures described above is to devise 

selection methods which are likely to identify models which will perform optimally 

in future samples rather than be the best for a particular sample. Although studies 

of the effect of misspecification and specification searches on covariance structural 

models have been performed (e.g. MacCallum 1986, Kaplan 1988), they are 

investigations of the effect of particular specifications and misspecifications on 

simulated data, so that it is difficult to draw general conclusions from them. This 

is illustrated by the fact that while MacCallum (1986) concluded that cross- 

validation following model searches was important, Kaplan specifically disagreed 

with this in concluding that chi-square tests should be used to test model 

specification.
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2.2.8 SOFTWARE FOR THE ESTIMATION OF COVARIANCE STRUCTURES

In this section we review the currently available software for the estimation of 

covariance structures. We have already mentioned that the most widely used models 

are those which can be estimated using the package LISREL. The latest version of 

this package (Joreskog and Sorbom 1988), has many of the features of a standard 

statistical package. As well as maximum likelihood estimation under the assumption 

of multivariate normality, the programme now allows the use of the methods of 

Browne (1974, 1982, 1984) with general weight matrices. For models which can be 

specified in the LISREL form, this programme would clearly be the first choice.

Software has also been written to facilitate the estimation of the other major 

formulations of structural models. For instance the programme COSAN (Fraser and 

McDonald 1988) will fit models of the type specified by McDonald (1980), and the 

program EQS, which is now distributed as part of the statistical package BMDP, 

is designed for structural equations models as proposed by Bentler (1983).

More recently, Browne (1988) has developed AUFIT, a programme designed to 

provide both ML and GLS (nk) estimates. This programme uses the approach of 

Lord (1975), who provided a programme for automated hypothesis testing in which 

derivatives are evaluated numerically and thus need not be provided by the user. 

Generalized secant algorithms (Ralston and Jennrich 1978) are used to 

approximations to the Jacobian matrix which are then used in a modified Gauss- 

Newton algorithm. This programme will therefore fit nonstandard models which 

cannot be specified in McArdle and McDonald’s (1984) RAM format, without the



68

need for the user to calculate the (possibly complex) Jacobian matrix. The same 

approach was used by Lee and Jennrich (1984), who used the BMDP programme 

PAR to estimate GLS functions using numerical derivatives.

2.2.9 SUMMARY AND CONCLUSIONS.

We have reviewed methods for the analysis of covariance structures. In all cases 

the stated properties of the estimates are asymptotic. Finite-sample properties of 

the estimators are virtually unknown, although Browne (1984), in a random 

sampling experiment, concluded that the asymptotically distribution-free methods 

of sections 2.2.3.1 and 2.2.3.2 showed unacceptable negative bias when used to 

estimate covariance structures.

For maximum likelihood and generalized least-squares methods, we have given the 

asymptotic distribution of the estimates (section 2.2.2, propositions 1.2-3, proposition

2.2 and corollary 2.1), and tests of goodness of fit (proposition 1.5 and discussion 

thereof for MLEs and GLS (nk) estimators), (proposition 2.4 and corollary 2.2 for 

GLS (adf) estimators). Because of the well-known asymptotic optimality of 

maximum-likelihood estimates, it would seem natural to use MLE’s when the 

underlying distribution can be assumed to be normal. When the underlying 

distribution has no kurtosis, the GLS estimates have the same asymptotic properties 

as the MLEs. However, it is not clear how often in practice a non-normal 

distribution which has no kurtosis will occur, although the elliptical distribution is 

an example.
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If the underlying distribution has non-zero fourth-order cumulants, then the 

asymptotically distribution-free methods of sections 2.23.2 and 2.2.33 provide a 

procedure for the estimation of covariance structures under weak assumptions. 

However, the estimates are not asymptotically efficient. Further the procedure will 

be impracticable for large p, since the matrix U, which has to be inverted, is of 

order p*. Since large numbers of fourth order moments must be estimated, the 

sample size will need to be large for reliable estimates to be produced.

In subsequent sections, the following will be used in the assessment of models for 

covariance structures:

Discrepancy function: We will use the (correctly specified) functions defined in

(2.33), with V=S, for the GLS (nk) procedure, and defined in (2.29), with U defined 

in (2.44) to (2.47), for the GLS (adf) procedure. As noted in section 2.2.4, estimates 

based on these functions have optimal properties over all discrepancy functions.

Parameter estimate: y - the value of the parameter vector within the parameter 

space which minimises the discrepancy function (equation 2.27).

Standard errors: the square roots of the diagonal elements of the inverse of the 

asymptotic information matrix for the parameter estimates, defined in proposition

1.3 for the GLS procedure, and in corollary 2.1 for the GLS (adf) procedure.

Goodness of fit: nF, where F is the discrepancy function. By proposition 1.5 for 

the GLS (nk) procedure, and corollary 2.2 for the GLS (adf) procedure, when the
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model holds this statistic has an asymptotic central chi-square distribution with p*-q 

degrees of freedom. As discussed in section 2.2.7, the difference between the 

goodness of fit statistics for nested models has a chi-squared distribution with 

degrees of freedom equal to the difference in the number of parameters.

We have described recent developments which include calculation of the asymptotic 

properties of these estimates for any discrepancy function and under inequality 

constraints, and have described computer software which may be used to fit 

covariance structural models. We have also described methods which may be used 

for selection of models. It is clear that a broad theoretical framework exists for our 

purpose, which will be to use a comparison of covariance structures to make 

inference about the suitability of different models for periodontal disease 

progression.
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3

MODELS FOR PERIODONTAL 

DISEASE PROGRESSION.
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3.1 DISTINCTION BETWEEN CONSTANT PROGRESSION AND ’BURSTS’ 

OF ACTIVITY.

In section 2.1 we reviewed the current knowledge of the nature of periodontal 

disease progression and particularly the burst model which was postulated by 

Socransky et al. (1984). In this section we construct three models for periodontal 

disease progression and derive their covariance structures.

We start by constructing two models intended to represent the alternatives of 

constant progression and for instantaneous bursts of activity discussed by Socransky 

et al. Having constructed the models, we then compare the expectation and 

covariance structure of observed increments in attachment level. A feature of our 

approach is that we allow explicitly for measurement error. All sites are assumed 

to be independent; simply in order to make the mathematics tractable.

3.1.1 DEFINITION OF MODELS FOR DISEASE PROGRESSION.

Suppose we have N sites, at each of which p+1 measurements are made; at times 

0,ti,t2,t3, . . . ,tp. Denote by Xi(tj) the attachment level at site i, time tj. At time tj 

we observe attachment level yy =X* (tj )+ey, where ey is the measurement error for 

observation j on site i, with mean 0 and variance a 2, ey -  (O,©2) for short Let:

(3.1) w„ = y„ - y^D = X^tj) - X1̂ , , )  + e, -

Thus yy is the observed attachment level at site i time tj, and wy is the observed 

increment in attachment level at site i between times j-1 and j. Write Tj = t-t^. 

The models for disease progression are defined as follows:
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Model 1 - for constant disease progression

(3.2) X*(t) = dj + Pjt

a i

Disease progression is constant, with 

rate ^  for site i.

Model 2 - for bursts of activity

(3.3) Xft) = dj + Zjj + Zj2 + . . . + where k ~ Poisson^t).

X'(t)

i 2

i l

The times at which the ’bursts’ 

occur are a Poisson process with 

rate The magnitudes Zy of the 

’bursts’ are independently and 

identically distributed with mean 

and variance 

(Z(| — iid ( n ^ o 2̂ )).



74

VARIATION BETWEEN SITES

We suppose that each of the parameters for disease progression at a site is 

distributed independently between sites about a population mean. Thus:

Model 1:

(3.4) fr -  (fro2,); a, -  ( a ^ J

where -<» < p, a  < oo and 0 < o2,,, a 2,, < <»

Model 2:

(3-5) \  -  (k,oV); |i*, -  O^a2̂ ; o2̂  -  (a2*!2,); a, -  (o,o2a) 

where -<» < p, a  < -a> and 0 < X, o \, d2̂  o2̂  ^2r, d 2̂  < 00

We also assume that Xj, and are mutually independent. This means that 

there will be non-zero covariances between different increments at the same site. 

The assumption of independence between sites means that increments at different 

sites will be uncorrelated.

3.1.2 CALCULATION OF EXPECTATION AND COVARIANCE STRUCTURES.

Note: For any random variables X (for which second moments exist), and A, the 

following hold:

(3.6) E[X] = EA[E[X I A=a]

(3.7) Vai(X) = EA[Var(Xl A=a)] + VarA(E[Xl A=a])

(3.8) Cov(X,Y) = EA[Cov(X,YlA=a] + CovA(E[XlA=a],E[YlA=a])
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For Model 1:

From (3.1) and (3.2) wy = rfa  + ey - e^^. So:

(3.9) E fW jp j = TjPj and (applying (3.6) and using (3.4)):

(3.10) E[wJ = TjP

Applying (3.7) and using (3.5) and (3.9):

VarCW.Ift) = 2c2

VarfWj) = [2c2] + Varft (t#,)

(3.11) Var(W,) = 2o* + •tJjoJl>

Applying (3.8) and using (3.3) and (3.9), for j^k:

CovfWjjWfclPi) = Cov^iT, + es - e ^  P ^  + e^ - e ^ 1})

= -cr^’, where:

(3.12) 6* = 1 if Ij-kl = 1, 0 otherwise.

CovfW^Wfc) = E [-o’b*] + Cov ( t fU f t)
Pi Pi

(3.13) CovCWyyWa) = -o26,+ 1^ 0 %

Clearly, Cov(Wij,Wi,k) = 0 if i # ’.

For Model 2:

Denote by N(ij) the number of ’bursts’ between tj and t^ for site i. (N(ij) has a 

Poisson distribution with rate X^). Denote the magnitude of these ’bursts* by

Zg2j • • •> ZyNffl)

Then, from (3.1):

(3.14) Wjj I = Zp+Z^ + ... +ZyNq) + eij _
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Thus:

(3.15) E [W jX ,,^ ,o 2̂ N (ij)] = NGDfta 

Applying (3.6) successively, and using (3.4), we have:

(3.16) E[WaIX,,m<I),o2l(l)] = E ^ JN O j)^ ]  =

(since E[N(ij)] = X^)

(3.17) EfW j (1^0% ] = E^

(3.18) E fW jo 2̂ ]  = E = fcijM,

(3.19) E[W J = E [XxjpJ = XXjP,

Similarly, applying (3.7) successively and using (3.4) and (3.15-3.19):

Var(Wa I ̂ ,M*i).oaI(i),N(ij)) = Vai^,+Z^+...+,ZW)+eirel(,.1))

= 2c2 + N ® ) ^

Var(W|j I ̂ .m^o^o)) = E ^ P o 2 + N (ijV ^] + V a r ^ ^ i j ) ^ )

= 2 a 2 + ^TjO2̂  +Xit j(i.21<0

= 2o2 + + o*))

Var(W4l ( i^ o 2̂ )  = E^ [2d2 + Vi(E2*D + o*))] +Var^ (VjE*,)

= 2c2 + o 2jX2jH2̂ j+ Xt/ h2*, + o2̂

VaifWjIo2̂ )  = E [2o2+o2>r 2|i2I<1)+X.Tj(n2̂ + o2l(i)]+Var ( ta jE ^
Mxo Mxo

= 2c2 + o ^ / i i / t o 2,, + XtX ^+ o^+o2̂ )  + XVjO2,

= 2a2 +

Var(W#) = E [2o2+T2j(o2)jiI2+ a \< + l .2a 2J+>.TJ((iI2+o2l,+o2I<1))] + Var (fctyO
C* .(i) U <0



= 2a2+x2j(o2xm2+o2xa214+X2a2̂ )+X.tj(m2+oV o\) + 0

(3.20) VarOV^ = 2o2 + x*J(oaJtma+o*xo2|1+X1oa|l) + XT^p^+o^+a2,)

Finally, for j^k, applying (3.8) and using (3.4) and (3.15-19): 

Cov(W^,Wik I ̂ p ^ o 2IQ,N(ij),N(ik))=Cov(Zy1+..+ZgNQj)+ê -e|Q.1j,Zikl+..+

= -cPS* (with 6’ defined as in 3.13)

Cov(Wjj,Wikl X^p^o2̂ )  = E ^^^f-o^S’] + CovN(ij)>N(ik)(N(ij) , N(i k) p^)

= -o26’ + 0 since N(ij) and N(ik) are independent 

= -o2 S’

tav(W s, W J p ^ o 2̂ ) = [-o26’] + Cov^ (X^^X^t^ )

= -02S’+ T/CkO2* ^

CovfW^Wiklo2̂ )  = E [V S ’+T^o^p^J+Cov (XTj^XXk^)
M*u

= -o28’+ tjT:lo2x(|j,2+a211) + tjc jftpp  

= -o28’+ TjTl(o2xMI2+o2lo2|l+X.2a 2l<)

Cov(W|j,W|i) = E [-o25 ^ tXo21ii,2+o2i02|1+X2o211)+Cov (X.Tjt̂ X.TjtO°Vd °Vo

(3.21) Coy(W„W») = -o2S’+ W aW + a^ aV X V *)

Clearly, Cov(W,j,Wrt) = 0 if i # \
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Summarising equations (3.10-13) and (3.19-21), we have thus shown:

Lemma 3.1: The expectations, variances and covariances of {w^}, (i=l,2,..,N); 

(j=l,2, . . ,p) are as follows:

Tjp (model 1)
E[WJ =

XjXp* (model 2)

2d2 + x2ja 2p (model 1)
Var(W*) =

2c2 + + Xxj(pi2+o2ll+a2z) (model 2)

-o28,+ x^c^p (model 1)
Cov(W|j,Wik) = (j*k)

-o26’+ xjTk(o2xm2+o2xa 2(i+X2o2(i) (model 2)

where 6*= 1 if Ij-kl = 1, 0 otherwise.

Cov = 0 in each model, for i # \  |

Observe that the expectations, variances and covariances have a simple structure 

which is similar for each model. Thus, we can write:

(3.22) E^Vy) = pxj (-oo< p. < oo)

(3.23) Var(Wy) = 20x + 02x2 + 03Xj (0 < 01,02,03 < 0 0 )

(3.24) CovfWjjjWjk) = -016’+ 02XjXk 

where:

(3.25) in model 1; p=p, 02=o2p and 03=O

(3.26) in model 2; p=Xpz, 02=o2xpi2+ o \o2|1+X2a 2ll and 03=X(pz2+o2lt+a2J

In each model 0X = o2.
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In model 1, each parameter is determined by a single population parameter of the 

underlying model. In model 2, however, although 0X is given by the error variance 

(whose value does not affect the value of p, 02 or 63), each of p, 02 and 03 depends 

on a subset of the five population parameters X, p*, o \ ,  d 2̂  and o \. We wish to 

simplify the covariance structure of model 2 by treating {p,0i,02,03} as 

independently varying parameters. To justify this, we need the following lemma:

Lemma 3.2: In model 1, the range of values of {p,0i,02,O3} as defined in (3.26) 

is RxR+3, given the ranges of the underlying parameters.

Proof: Fix p = c > 0, so that X = c/\iz where now

(3.27) Pb > 0, and therefore

(3.28) e2 = o2, ^ 2 + o2̂  + c2o2l/n I2 and

(3.29) 03 = c/m»(m.2+o21.+ojJ

Fix 03 = d>0, and write

(3.30) A = o 2̂  = dp/c - p*2 - a 2, > 0 

Substituting (3.30) in (3.28), we have

02 = o\(d(Vc - a2,) + - (x,2 - a2J

where the conditions on the remaining free parameters o \ ,  p* and o \  are given by

(3.27) and (3.30). Write B = p*2. Then

(3.31) 02 = o\(A+B) + ^A/B

with A = o \  = dp/c - p*2 - a 2, > 0 and B = p*2

We are free to vary o \  in (3.31) between 0 and infinity, while the ranges of A and 

B are constrained by A>0 and the fact that B is a component of A. The range of
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possible values of (A,B) is shown below: clearly the maximum of B is when d2z 

= 0.

Range of possible values of A and B

A

Clearly, 02 varies with the value of o \  between c2A/B and infinity. Fixing B>0, and 

setting o \  to zero, we may clearly allow the value of c^A/B to become arbitrarily 

small. Hence 02 is free to vary between 0 and infinity.

The argument proceeds exactly as above for the case p=c<0, in which case also 

^<0, so that the \jlJc is positive as before.

We have thus shown that the range of values of 02 is not constrained by fixing p 

and 03. Thus, the range of values of {p,01,02,03} as RxR+3 |

From lemmas 3.1 and 3.2 we see that by combining all the parameters which make 

up the expectations, variances and covariances in the two models, we can express 

their covariance structures in the same form.
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For each model p is the average rate of change in attachment for the whole 

population, Oj is the variance due to measurement error, and 02 is due to variation 

in parameters of the model between sites. The parameter 63 is non-zero only in 

model 2, and thus if 03 is greater than zero then model 2 (the ’burst* model) will 

appear to be more appropriate than model 1.

Write Wj = ( w ^  ... ,w*)\ 0 = (0!,02,03), r  = ( t ^ ,  ... ,tp) \

We have proved:

THEOREM 3.1: For each of models 1 and 2, {w j are independently and identically 

distributed with mean pr, (-<»<p<oo) and variance-covariance matrix

(3.32) = OjBj + 02B2 + 03B3 (O^03<o°, O<01,02,<oo), where:

(3.33) Bj is a pxp matrix whose diagonal elements equal 2 and off- diagonal 

elements equal -1.

(3.33) B2 = re ’

(3.34) B3 = diag(r)

and 03 = 0 in model 1, 03 > 0 in model 2 |

3.1.3 SIMULATIONS OF DATA FROM THE TWO MODELS.

In order to illustrate the difficulty in distinguishing data arising from the two 

models of disease progression, two simulation experiments were undertaken. In 

each experiment the parameters were chosen so that the mean and variance of an 

increment were the same for the two models. The simulations were performed 

using the statistical package MINITAB (Minitab Inc., 3081 Enterprise Drive, State



College, PA 16801, USA). The code for the simulations is shown in Appendix 3.1. 

Where distributions had not been specified in the formulation of the model, the 

normal distribution was used. The time intervals were set to 1 and p (the number 

of observations per site) to 10. Two experiments were performed, with differing 

frequencies of bursts per time interval in model /2.

Parameter values for experiment 1 - 2  bursts per time interval

Model 1: o2 = 0.9506, p=l, <=0.1619

Model 2: o2 = 0.64, X=2, <=0.25, p*=0.5, <=0.0225, a 2z=0.04, £2 =0.0001

0! 02 03 E[WJ Var(Wy)

Parameter values: Model 1 1 .9506 .1619 0 1 2.0631

Model 2 1 .64 .1581 .625 1 2.0631

Model l i d 2 = 1.69, p=l, <=0.63

r  . . . . . .

Model 2: o2 = 0.64, k=0.5, <=0.01, p*=2.0, <=0.25, a2 =1.0, =0.04

<DCD 03 E[WJ Var(Wij)

Parameter values: Model 1 1 1.69 .63 0 1 4.01

Model 2 1 .64 .105 2.625 1 4.01

Plots of data arising from the simulations appear on following pages. Eight 

simulations appear on each plot; two plots were made for each model in each 

experiment.
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SIMULATED DATA FROM MODEL 2 (burst) 
E X PE R IM E N T  1 A

SIMULATED DATA FROM MODEL 1 (const prog)
EX PERIM EN T 1 A

SIMULATED DATA FROM MODEL 1 (const prog)
E X PERIM EN T 1 B

SIMULATED DATA FROM MODEL 2 (burst)
E X PE R IM E N T  1 B

Figure 3.1. Simulations of data for experiment 1.

Twelve members of staff at the MRC Dental Research Unit took part in an 

experiment to test whether it was possible to distinguish the plots in figures 3.1 

and 3.2. The nature of the two underlying processes was explained, and participants 

were asked to classify the four plots from each experiment into 2 from each 

process. The results were scored as -1 (all incorrect), 0 (2 incorrect, 2 correct) or
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1 (all correct). Clearly, there are 4 possible ways in which the plots can be 

classified, so that the expected relative frequency under random choice of score 1 

is 0.25.

SIMULATED DATA FROM MODEL 1 (const prog)
EX PERIM EN T 2  A

SIMULATED DATA FROM MODEL 2 (burst)
EX PE R IM E N T  2  A

SIMULATED DATA FROM MODEL 1 (const prog) 
EX PERIM EN T 2  B

SIMULATED DATA FROM MODEL 2 (burst) 
EX PE R IM E N T  2  B

ngure 3.2. Simulations of data from experiment 2.
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The actual frequencies of scores -1, 0 and 1 respectively were 2,10,0 for experiment 

1 and 2,5,5 for experiment 2. For experiment 1, the frequency of correct results 

(based on the binomial distribution with n=12 and p=0.25) was worse than random 

(p=0.0317) while for experiment 2 the frequency was better than random 

(p=0.0544). The plot for experiment 1, model 1 A was consistently misclassified: 

this is not surprising if it is compared with those for experiment 1 model 2.

These results indicate that it can be impossible visually to distinguish between data 

arising from the two models. However an increase in the value of the parameter 03, 

achieved in this case by decreasing the expected frequency of bursts and increasing 

their expected magnitude, did enable visual distinction, albeit imperfect.

In subsequent sections we shall examine methods for the estimation of parameters 

of models 1 and 2. We will see whether statistical methods can distinguish data 

from the two models using the parameters of experiment 1, and we will examine 

the goodness of fit of the two models for data arising from periodontal research.



3.2 A MODEL FOR NON-INSTANTANEOUS CHANGE.
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An interpretation of the covariance structures of models 1 and 2 is as follows. 

When disease progression is constant, the variation in true disease progression 

between observation periods at a disease site is necessarily zero. In the burst model, 

however, there is variation in the rate of disease progression between observation 

periods. This gives rise to variance component 03 in model 2.

Because disease progression is instantaneous, and because of the ’lack of memory’ 

property of the Poisson process, changes in the rate of disease progression at a site 

are uncorrelated in model 2. Thus the off-diagonal elements of B3 are zero. In 

biological terms, an interpretation is that the length of a period of disease activity 

is small compared to the interval between observation periods. However, the ’burst’ 

model is clearly only one of many possible models in which the rate of disease 

progression varies. In order to show that the burst model for disease progression is 

that which best fits available data it will also be desirable to compare it with an 

alternative model in which the length of episodes of disease activity need not be 

small.

In this section, we specify a model for which there is variation in the rate of 

disease progression, but disease progression is not instantaneous. As will be seen, 

this gives rise to a covariance structure in which changes in the rate of disease 

progression at a site are correlated. We will thus be able to test an alternative to 

the ’burst’ hypothesis in which the rate of disease progression varies, but disease 

progression cannot be said to be instantaneous.
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3.2.1 DEFINITION OF MODEL FOR VARYING, NON-INSTANTANEOUS 

PROGRESSION.

We use the notation of section 3, so that N, p, t, x, X*(t), {yj, {ej} and {w j are 

defined as before.

Model 3

(3.35) Xi(t)=ai+pi0sil+pil(si2-sil)+ ... +pil(si2-sil), where k -  Poisson^t). 

^ ( t)

Oi

0

The times {s^} at which the changes 

in rate occur are a Poisson process 

with rate ^  for site i. The slope, or 

rate of disease progression, between 

Sj, and si(j+1) is Py, where:

(3.36) { fy  -  i i d f p ^ ) .
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VARIATION BETWEEN SITES

Again, we suppose that each of the parameters for disease progression at a site is 

distributed independently between sites about a population mean. Thus:

(3.37) Xj -  (X,o\); Pi -  (fro2,,); ~ (o2̂ ) ;  a, ~ ( a ,^ ) ,  where

(3.38) -oo < p, a  < -oo and 0 < X, o \, o%, o2*, g2* o \ ,  < oo

We also assume that Xj, p, and a 2̂  are mutually independent.

3.2.2 CALCULATION OF EXPECTATION AND COVARIANCE STRUCTURE.

Lemma 3.3: Let tl5 t* .. ,tB be the order statistics of n i.i.d. variables uniformly 

distributed on [0,TJ. Then:

(i) E[tj2 + (tr t f  + (h -ttf + . . + CT-O1] = 2TI(n+2)'1

(ii) E[tj] = E[T-t,] = T(n+1)>

Proof: The joint pdf of t1? . . ,tn is ~  (0 <tj<t,< .. <t„<T).

By symmetry, E ft2] = E ^ Q 2] = Efe-Q2] = ... =E[(T-tJ2], so that 

Efc2 + (tr Q 2 + (1,-Q2 + . . + (T-tJ2] = (n+l)E[tj2]

But Eft,2] = . of ti2 dtj dt* . . dt.T1*

n! 2TP+2 2T2
TB (n+2)! "  (n+lXn+2)

n! rT

from which the result is immediate.

(ii) Similarly, Eft,2] = ^ / .  . j \  dt, d^ . . dtB= ^ =  E[T-tJ
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Lemma 3.4: Suppose n-Poisson(X). Then:

(i)  E [ (n + 2 )_1] =  k\X+ex-l)

( ii)  E R n + lJ r 1] =  XXl-t*)

" I 1?-1 “ kp x
Proof: We have that 2 - r r -  =  1 and 2 —rr~ -  X.k=o k! k=o k!

Thus (i) Er(n+2V11 = 2 — —  2 [(k+Zj-lIX^e*
w  ^ n+z) J io  (k + 2 )k !  _ k=o (k + 2 )!  “  \ i o  (k + 2 )!

= X'2[(X-0-Xe'x)-(l-e'x-Xe'x)] = X*2(X+ex-l)

»  Y k_-X to A k+1

S im ila r ly  ( i i )  E [ (n + 1 ) ‘] =  £ , ^ 5 ) 5  =  ( j S I j l  

=  X ‘( l - e ^ )

Recall:

(3.6) E[X] = E J E f X ^ a ]

(3.7) Var(X) = EA[Var(XlA=a)] + VarA(E[Xl A=a])

(3.8) Cov(X,Y) = Ea[Cov(X,Y I A=a] + CovA(E[XlA=a],E[YlA=a])

For notational convenience, write the first time at which there is a slope-change 

after (  to be r.:, the next r^, and so on up to r̂ N(ij}, where N(ij) is the number of 

changes between t, and tj+1 (thus N(ij) -  Poisson(X,Tj). Let the corresponding slopes 

be Yijo (before r„) up to y,nm (between rw  and t,J-  Thus Yso=Yio-i)Nio-i)-

Then from (3.35):

(3.39) w ^ M W 1* ® )* *  = Yiio(r«î )+YDi(%!-rp)+ • •

+YiKN(iĵ l)(riiNCiirriKN(iJ>l))+Ywii)(,j«'rliNCij))+eij'eili-l) 

Applying (3.6) successively, and using (3.36) and (3.37), we have:



(3.40) E[W# I X1.Pi.a2Ki).N(ij),rij, i jl = Y«o(%4))+Y,I(rp-rl(1)+ • •

+Yiww>̂ (r»N(iirr^̂ >i))+Y/jNfii)(tj.r riiNOj))

E[W,IXfcp„o2|1(1),N(ij),ijj] = • •+ PiOj*rW)

(3.41) E tW jI ^ p ^ N ^ ) ,! ,]  = = p,Tj

(3.42) E[W jX,,pso2wi„N(ij)] = E IW j^ p .o 2̂ ]  = E[W,|X„PJ = p ^

(3.43) E[W ,|XJ = E[W,1 = pTj

From (3.39), Var(Wji I >H,Pi,o2wi),N(ij),rJj,^ ) = 2o2

Applying (3.7) successively, and using (3.36-7) and (3.40-43):

Var(WsIX,,pBc^ffl,N(ij))rii) = E [2o2]+Var (EfW, I X ^ o 2w),N(ij),rii,Yii])
ii la

= 2a2 + a 2M[(%-tj)2+(r(J-r,1)2+ • . + (W W )2]

Var(W, I XuPBo2Ki),N(ij)) = E [2o 2+o2W0((r41-tj)2+(r42-ril)2+..+(ti,1-rijN<ij))2)]+V ar(piTj)
il il

= 2o 2+0 2fWE [(riil-tj)2+(rij2-riil)2+..+(tj, r raNW))2]+Var (ftx,)
±1 ±1

Now, given N(ij), {rijk} (k=l,2,..,N(ij)) have the joint distribution of the order 

statistics of N(ij) iid variables uniformly distributed on [tj,tj+1] (Grimmett and 

Stirzaker 1982). Using lemma 3.3 (i), we therefore have:

V a r^ lX ^ a V N O j) )  = 2c2 + 2a2mr l2(N(ij)+2)1 

V a^W jX A a2̂ )  = E1TO[2a2+2a2w)Tj2(N(ij)+2)-1] + V ar^p,-^)

Since N(ij) ~ Poisson(XjCj), we have (using lemma 3.4):

Var(WjX,,pi,o2e(i)) = 2a2 + 2o2wor/(X,TJ)‘2(X1TJ+exp(X1Tj)-l)

= 2a2 + 2o2|10)X,-2(X1TJ+exp(X1Ti)-l)

Var(WijlX,.Pi) = E [2o2+2o2|1(1)X,-2(X,Tj+exp(XiTj)-l)] + Var (p^)
°W> °Pffl

= 2a 2 + 2o26X1'2(XiTj+exp(>LiTj)-l)

Var(WsIX0 = E [2a2 + 2a2jX1'2(X,Tj+exp(X1Ti)-l)] + Var (P,Tj)
Pi Pi

= 2a 2 + 2a2&Xi'2(XiTj+exp(XiTj)-1) + d 2̂ 2
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Var(W ,) = E^ [2o2+2o 2M ^ i + exP(xi'>:i)-1)+o2|.i:jT + V a r ^ )

(3.44) Var(W,) = 2o1 + oVj1 + 2 0 ^  [V(Vj+exp(*,-ij)-l))

We now calculate the covariance between increments:

From (3 .43 ), Cov(W4, W* I X„ = -o 28 ’ ( j # )

where, as in section 3  equation (3 .12), 8 ’ = 1 if  Ij-kl = 1, 0  otherwise.

Applying (3 .8) successively, and using (3 .36-7) and (3 .40 -43 ):

Cov(Ws,Wa I X ^ o V N C j.k ) ,!^  = E [-0 *5 ’]
Ilk

+ (Yijo(rijl_̂ j)"*'""*'YijNGj)0 j+l"riiNGj))’Yilco(rikl_O +”+YikNCik)(̂ k+l-rikNCik)))

Now, Y ^ ) = Yiw> ^  there are no slope changes in [tj+1,tJ . Since the number of 

changes in this interval is distributed as Poisson(>w(tk-tj+1));

Pr(no changes in [^+1,tJ )  = e x p ( - ^ - y ) .

Since Cov (Yw Yiko) = we have:
Xtu

CovfW^WnlkfcPuO2 iio^N^jjk),!^) = ■o2 6 *+o2 p®exp(-Xi(tk-tj+1 )Xtj+|-rjjNejj)(ritl-tt).

Cov(Wa,W* I k,,Pi,o2TO,N(ij,k)) = E [-a28 ’+ a2lwexp(-X1(tk- ^ 1)X ^ rr»Nffl))(rM-'t)]
Ux

+COV (P i^PiT j
£iMk

Using lemma 3.3 (ii):

Cov(Ws,W j X,,poa 2Ki),N(ij,k)) = -os6 ’+ o2w)exp(-X1(tk- ^ 1))tJ-tk(N (ij)+l)-1(N (ik)+ l) 1 

Cov(W#,Wlkl ^.PpO2K0) = Ew ) [KJ25 ’+o2Mexp(-M tl- W ^ ( N ( i j ) + l ) 1(N (ik )+ l)1] 

Using lemma 3 .4  (ii), and the fact that (N (ij)} are independently distributed as 

Poisson^Tj):

C °v(Wij,W|k I ̂ .PpO2̂  = -a 2,. + o 2p<i)V exp(-k 1(tl-tj+1)X1-e,cP(-V i)X 1-e J tp (-^ l)) 

CovfWj.Wul XpP,) = E [V 5 ’+a2IKi)X1-2exp(-X1(tk-tj,1)Xl-exp(-X,TJ)Xl-exp(->.1i:k))]
°W>

+ C o v ( P 1Tj,P1Tk)
°W>
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= - o ^ ’ + oJi^1-2 exp(-X,((t-^ 1 )Xl-exp(-X1T )̂Xl-exp{-X,Ti))

QwCW^W.IV) = E [-o26’+o2tX1'2exp(-X,(tl-V1)Xl-exp(-X1Tj)Xl-exp(-)4Tk))]
Pi

+COV
Pi

C o v O V ^ I X O  =  - o 28 ’+ o 2pTjTk+ o 26Xi"2exp (-X 1(tk-tj+1)X l -e x p ( -X iTj) X l - e x p ( - X iTk) )  

C o v fW ^ W a )  =  E ^  [ - o 26 ,+ o 2pTjTk+ o 2#X(i-2ex p (-> 4(tk-lj+1) X l - e x p ( - X iT j)X l-e x p (-> 4Tk))]

+ Cov^

(3.45) CovCW^WJ = -cr6’ +

+ cr2 jE [̂X1-2exp(-X1(tk-tj+1))(l-exp(-Vj))(l-exp(-^ixk))]

Summarising equations (3.43-45), we have thus shown:

Lemma 3.5: The expectations, variances and covariances of {w^}, (i=l,2, . . ,N); 

(j=l,2 , . . ,p) are as follows:

E[WJ = xfi

Var(Wy) = 2 o 2  + o^Tj2  + 2 o2 8 Ex1 [X1'2 (>4 'Cj+exp(X1Tj)-l)]

CovOV^WiO = -o2 5,+o2 pTjxk+o2 ftE^[V 2 exp(-X1(tk-lj+1 )Xl'exp(-Xixj)Xl-exp(-Xi'ii))]

Cov W^Wj*) = 0 in each model, for # i \  |

It is apparent that we cannot, as desired, calculate the covariance structure without 

specifying the distribution of \  in more detail. This is because, given Xj, the 

covariances are not solely expectations of > 4  or Xf. We therefore now choose a 

distribution for X. We require a distribution which is continuous and strictly 

positive. In keeping with our general principle of specifying simple distributions
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where it is necessary to specify them at all we therefore now assume that \  has 

a gamma distribution with parameters a and b, with a> 2  and b> 0  so that the 

required expectations exist That is, X are i.i.d. with:

(3.46) f(X) = (T(a)b,)'1 X#'1 e'M\

Lemma 3.6: Suppose X — T(a,b). Then:

(i) E[X‘] = [b(a-l) ] 1

(ii) E[X2] = [b2 (a-lXa-2)]‘

(iii) E[X.V“] = [b2 (a-lXa-2 )] 1(l+bt)i *

Proof: The moment generating function M(t) of \  = E[e“] = (1-bt)"* (K b1). Thus

(i) = JM(0 )dt, (ii) = JJM(0 )dt2, (iii) = HJM(-t)dt2. |

We can now use lemma 3.6 to calculate the covariance structure for model 3. 

From (3.44), Var(W„) = 2d2  + o 2 ^ 2  + 2a1,E [X,I(X,^+exp(X1i 5 )-l)]

(3.47) Vat(W„) = 2a 2  + a 2 , ^ 2  + 2ijo2 ,(b(a-l))‘ + 2((l+bii)2 M )a 2 ,(b2 (a-lXa-2) ) - 1

From (3.45), and since i) “ Vi “V

Cov(Wjl,Wik) = E  ̂[-o2,.+o2,ii)-ii+a2̂ 1-2exp(-X,(Vtjt,)Xl-exp(-XiTj)Xl-exp(-X,Ti))]

(3 .48 ) CoV(Ws,W*) = kFS’ + o2, ^

+ 2 Tja 2 ,((b2 (a-lXa-2 ) ) 1 [(l+b(tt-VI))^-(l+b(tt-ti))2 <-(l+b(tk,rVi))2 M l+b(tl.1 -ti) n

Write:

(3.49) n=p, e , ^ ,  e ^ 2,, 0, =2o2 ,(b(a-l) ) ' 1  (03 >O), 64 =a-2 (04 >O), 05 =b.

Then, substituting in (3.43), (3.47) and (3.48):

E [W J = (itj



(3.50) Var(W,) = 202  + 02ij 2  + Orf  + 03 04 -,05 i((1+05^)-m-1)

(3.51) Cov(W„W*) = -0,5’+ 0 ^

Write w, =(w„,wtt..,w^)’, O=(01 ,O2 ,O3 ,O4 ,O5), v =(t»t^ - . t , ) ’. Note that given any 

value of {a,b} (and thus {0 4 ,0 ;}), the range of 0 3  varies with o2, between 0  and

O O .

We have proved:

THEOREM 3.2: If {0r 05} are defined as in (3.49), then {wy} are independently 

and identically distributed with mean px, (-oo<p<oo) and variance-covariance matrix:

(3.52) = 0,Bj + 02 B2  + OjBj + 03 04 J0J 1 B4 (04 ,0!) (O<01 ,02 ,03 ,04 ,0!<c») 

where:

(3.53) Bj is a pxp matrix whose diagonal elements equal 2 and off-diagonal 

elements equal -1 .

(3.54) B2  = r t ’

(3.55) B3  = diag(x)

(3.56) b4l = ( l + 0 ^ r - l

(3 .5 7 ) = *5 [(i+0!(tk-vi)r-(i+05(tk-ij)r-(i+05(h*i-v i)r-(i+0!(^r<i) n

where b4jk is the (j,k)th element of B4 (04 ,05) and j^k. |
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3.2.3 PROPERTIES OF MODEL 3.

Clearly model 3 is nested within model 1. However its more complicated algebraic 

structure means that other of its properties are not obvious. We now consider the 

properties of that part of the covariance structure which is additional to that of 

model 1. We write add Var and addCov for the variance and covariances 

respectively so that:

(3.58) addVar(wa) = 6 3 ^  + 04 1 05 1 ((l+0 5xj)^ -l  )]

(3.59) addCov(Wjj,wik) = OsO+H^b^, (b4jk defined as in (3.57))

Note that:

(3.60) addVar = 2o\E  J V ^ j + e x p ^ H ) ]  = 2 0 ^  >ENCW[^2 (N(ij)+2)1]

(3.61) addCov = o^E ^V expf-M V W X i-eM -^V X 1- * ^ - ^ ) ]

(3 .62) = a 2jE ^ENfw[exp(-)s(tk-tj,1))t/i^(N (ij)+ l)‘1(N (ik)+ l)‘1]

Theorem 3.3:

(i) addVar and addCov are decreasing in 04. Hence model 3 is asymptotically 

equivalent to model 2  as 0 4  tends to oo.

(ii) addVar > addCov if xi = x^

(iii) addCov is decreasing in

Proof:

(i) Clearly, if x,c>0, we have that (1+c) 1  is decreasing in x for all x. Therefore, 

from (3.58-59), addCov->0 as 04->oo and addVar->03xj as 04-*oo. |

(ii) If tj = tk, then (from 3.60 and 3.62):



addVar-addCov = o2̂  E ^ [ 2 V ( N ( i ] > 2 ^ ^ ^

> o2ftE ^ENf̂ )[2xj2 (N(ij)+2)'1 -Tj2 (N(ij)+l)1] > 0.

(since exp(-Xi(tk-lj+1)) < 1 and (N^+l) ' 1  < 1). |

(iii) follows from (3.62). |

Thus, the matrix B4  may be regarded as a generalisation, allowing for differing 

intervals between observation periods and scale parameters, of the usual 

autocorrelation matrix R (rs = p 1H1).

3.2.4 COMPARISON OF THE COVARIANCE STRUCTURES OF MODELS 1-3.

We have shown that the covariance structure of model 1 is a limiting case of that 

of model 2 , whose covariance structure in turn is a limiting case of that of model

3. Our aim in formulating each of the models was to provide definitions which are 

both parsimonious and biologically reasonable. For instance, disease progression in 

each model is independent of the times at which observations are made: this would 

not have been true had we defined, for instance, polynomial models for disease 

progression.

For model 2, changes in the rate of progression are uncorrelated between time 

intervals. The derivation of the covariance structure of model 2 differs from those 

of models 1 and 3 in that for models 1  and 3 (see equations (3.25) and (3.49)) the 

parameters of the covariance structure can be transformed into the parameters of the 

original model, while for model 1 (see equation (3.26)) the four parameters of the 

covariance structure are combinations of the six parameters of the model. The



covariance structure of model 2  can in fact be derived from different formulations. 

For instance, if we modelled disease progression as a Brownian motion process (as 

the limit of a sequence of independent random changes occurring at short intervals) 

we would derive a structure where changes between observation periods were 

uncorrelated. Manji and Nagalkerke (1989) discussed this: their aim was to point 

out that the burst model was not the only one which could explain observed data. 

However such a model would fail to meet our second criterion: that of being 

biologically reasonable. Brownian motion has the property of being everywhere 

continuous but nowhere differentiable: this property seems unlikely to hold for a 

process consisting of the destruction of tissue. This also raises the point that our 

formulation of the burst model is only reasonable in that it represents the idea that 

disease progression takes place in a time which is short compared to the time 

between observation periods.

Our formulation of model 3 aimed to allow for non-instantaneous disease 

progression. Model 3 will be distinguishable from model 2 if covariances between 

successive increments in attachment level (the off-diagonal elements of B4) are 

positive. Factors affecting the covariance between increments are firstly the variation 

in the rate of progression (the parameter 0 3  must be sufficiently large), and secondly 

the times between changes in the rate of progression, which could occur either too 

frequently or too infrequently compared to the time between observations to allow 

distinction of model 3 from models 1 and 2. In section 4 we examine discrimination 

between the three models, for simulated data.
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3.3 COMPUTER SOFTWARE FOR THE ESTIMATION OF THE COVARIANCE 

STRUCTURES OF MODELS 1-3.

In section 2.2 we described generalised least-squares methods for the estimation 

of parameters of covariance structural models. We also reviewed software which 

is available for the estimation of these models. This software requires models to 

be expressed in the form of the LISREL model (equations 2.5-8), or an equivalent.

Although models 1 and 2 of have a simple linear covariance structures, that of 

model 3 is nonlinear and more complex. It does not appear possible to express it 

in a form which would allow the use of standard programmes. Computer 

programmes were therefore written in order to estimate the parameters of models 

1 to 3; we now calculate the necessary derivatives and describe the programmes.

The discrepancy functions used were those of equation (2.33), with V=S, the sample 

covariance matrix, and equation (2.48), with U as defined in equations (2.44-47). 

Thus both the GLS (nk) and GLS (adf) methods were used. As discussed in section 

2.2.5, the resulting estimators are representative of broad classes of MDF estimates 

with optimal properties.

3.3.1 METHOD OF ESTIMATION.

We noted in section 2.2 that the Gauss-Newton method has been recommended 

for the estimation of covariance structures. However, when this method was used 

for the estimation of the parameters of model 3, the matrix H (equation (2.37)
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frequently became singular at the start of the process, causing computational errors. 

The programmes therefore employ the Newton-Raphson method (equation 2.57). For 

linear covariance structures the two methods are equivalent. The modification of 

Jennrich and Sampson (1968) is employed so that each step results in a reduction 

of the discrepancy function.

The gradient vector g is the qxl negative gradient of ^F,

(3.63) a  = -W /dy 1 

Recall:

(2.29) F(S^(x)IU) = (s-oCtf’U ’fe-oC*)

As in section 2.2, we write 2® = 32/dyb Z® = and so on. Then for the

GLS (adf) method (cf equations (2.26) and (2.42)):

(3.64) g  = A’(x)U‘1 (s-a(x))

while for the GLS (nk) method, g is given by the computationally more efficient 

form:

(3.65) & = Sstr^S-ZCtfS'Z®)

The Hessian matrices of %F are given by, for the GLS (adf) method:

(3.66) H(ylS,U) = A’(t)H ‘A(y) - t o )  ( to ) ,  = (o ^ U  ̂ t * ) ) )  

and for GLS (nk) methods.

(3.67) Hy = htriS 'lP S '1!® - S ^ S - I f r ) ) ^ )

We discussed in section 2.2.6 the estimation of covariance structures subject to 

functional constraints. The parameters 0, (i=l,..,5) of models 1-3 are all variance 

components which are constrained to be positive. Since the Newton-Raphson method
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does not necessarily produce positive parameter estimates it was necessary to 

constrain the estimation procedure. This was done by defining 0j = y 2  and 

estimating 2 (y) for each model. Clearly the minima of the structures 2 (0 ) (0>O) and 

2(y) are equal. As discussed in section 2.2.6, the choice between reparametrization 

and constrained estimation is one of computational convenience: the results are 

equivalent.

Such a reparametrization has disadvantages. Firstly, the procedure takes longer to 

converge and seems more sensitive to the initial values. Secondly, for linear 

covariance structures such as those of models 1 and 2 the Newton-Raphson 

algorithm converges in a single step. We can express any linear covariance structure 

in the form a(y) = Ay, so that setting g = 0 in (3.64) gives:

(3.68) i  = (A’U ^ A ’U 's

Under the assumption of no kurtosis, the equivalent equation is:

(3.69) i  = {©(S' 1 ) } ' 1 As, where 0(V) = A’(V®V)A

In an attempt to take account of these disadvantages, the following procedure was 

devised. The process starts with the original parametrization. If, at any stage, the 

procedure produces a negative estimate for any element of 0 , then the model is 

reparametrized by setting Q̂ 2  (i=l,..,q, where q is the number of parameters of 

the model). From then on the value of y is estimated until convergence is achieved.
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To calculate the gradient vector and Hessian matrices we require the first and 

second derivatives of the covariance structure. We shall first calculate the 

derivatives with respect to 0. Then:

(3.70) 2® = Bj (i=l,2, models 1, 2 and 3)

(3.71) 2® = 0 (model 1), B3  (model 2), B3 +04 1 05 1B4

For model 3 we require also 2® and 2(5). Since B4  is a function of 04  and 05, we 

need its partial derivatives. We shall define

B4(4) and B4(5) to be, respectively, the partial derivatives of B4  with respect to 04  

and 05. Thus:

(3.72) 2 (4) = 203 [-04 '2 05 '1B4  + W B / 4!  and

(3.73) 2P  = 203 [-04 1 05 -2 B4  + O*©/^®]

To calculate B4(4) and B4(5) we note that if f(x,y)=(l+ky)*x, then: 

df/dx = -log(l+ky)(l+ky)*x and dt/dy = -kx(l+ky)^x+1). Writing

(3.74) kj = tk-tj+1, k2  = Vtj, k3  = tk+1 -tj+ 1  and k* = tk+1-tj 

we thus have:

(3.75) b„<4) = -log(l+0 5-cjXl+ 0 5 i j ) ' S 4

(3.76) b ^ 4) = ->s[-log(l+05 k1Xl+05 Icir  + log(l+ 0 !k2 )(l+ 0 !k2r

+ log(l+05k3)(l+05k3r  - log(l+e5k,Xl+0W'“

(3.77) b />  = -r:j04 (l+0*)«M+1)

(3.78) b4j® = -isf-k.OXl+^k,)^1' + k A a+ O ^X 94*')

+ k3 0 4 (l+ 0 5 k3) ^ ‘) -  k4 0 4 (l+ 0 5 k4 X94tl>
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Similarly:

(3.79) 2 (11) = = 2(33) = ^  = 2?® = = 0 (models 1, 2 and 3)

For model 3:

(3.80) Z(14) = IP5* = IP4' = 2 ^  = 0

(3.81) I ”  = -04 "2 05 '1B4  + 04 4 05 4 B4(4)

(3.82) 2 ^  = -O^Oj-^ + e/O ^B ®

Then:

(3.83) 2 (44) = 03 04 -1 05 -1 [204 -2 B4 -204 1 B4(4 >+B4(44)]

(3.84) 2 (55) = 03 04 ’1 05 1 [205 '2 B4 -205 '1 B4 (5 )+B4(55)]

(3.84) 2 (45) = 03 04 1 0j-1 [204 -1 05 -1 B4 -04 -1 B4(5)-05 1 B4 (4)+B4(45)]

To calculate B4(44), B4(55) and B4(45) note that if f(x,y)=(l+ky)x, then:

dH/dx2 = { l o g ( l + k y ) } 2( l + k y ) x, d^f/dy2 = k 2x ( x + l ) ( l + k y ) ' (x+Z) and dH/dxdy  =

k[xlog(l +ky)- l](l+ky)^x+1)

Thus:

(3.85) = {log(l+05ij)}J(l+05̂

( 3 .8 6 )  b^<«> =  >5[ { l o g ( l + 0 !k 1) } 2( l + 0 5k ir  -  { l o g ( l + 0 5k 2) } J( l + 0 3k ^

- {log(l+0 !k3 )}2 (l+ 0 5 k3r  - {log(l+0 5 k4 )}2 (l+ 0 !k4)-«]

(3.87) bV55) = v ^ i X i + W *

(3.89) b4jk<!!) = )5[kI2 04 (04 +l)(l+0 5 k1)-<«+« - k2 2 04 (04 +l)(l+0!k2) ^ 2>

- k1 2 0 4 (0 4 +l)(l+ 0 5 k1)-<6442> + k 2 2 0 4 (0 4 +l)(l+ 0 5 k2) < H

( 3 .9 0 )  =  i i [ l o g ( l + 0 5Ti> l ] ( l + 0 5̂ «

( 3 .9 1 )  b ^ 45* =  -tj[k 1l o g ( l + 0 !Ti) - l ] ( l + 0 5k 1)-<94+I» -  k2l o g ( l + 0 5Tj) - l ] ( l + 0 5k 2)-<M41>

k 3l o g ( l + 0 5TJ) - l ] ( l + 0 !k3)-<iK41» +  k 4l o g ( l + 0 5Tj) - l ] ( l + 0 5k4X M+13
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3.3.3 CALCULATION OF DERIVATIVES WITH RESPECT TO y &2 =0).

Derivatives 2® are now with respect to yb but we continue to express the 

derivatives of B4  with respect to 0, so that dBJdyi = 2yjB4®. Thus:

(3.92) 2® = 2y1Bi (i=l,2; models 1, 2 and 3)

(3.93) 2(3) = 0 (model 1), 2 y3B3  (model 2), 2Y3 (B3 +Y4 'zy5 ‘2 B4) (model 3)

For model 3:

(3.94) Z<4) = 2y3 2 [-y4 3Y5 '2 B4  + antl

(3.95) S» = 2y3 2 [-y/2 Y5 3 B4  +

Similarly:

(3.96) 2®> = 2Bj (i=l,2; models 1, 2 and 3)

(3.97) 2 (33) = 0 (model 1), 2B3  (model 2), 2(B3 +y4 V B 4) (model 3)

(3.98) 2 (12) = 2(13) = 2(23) = 0

For model 3:

(3.99) 2 (14) = 2 (15) = 2 (24) = 2 (25) = 0

(3.100) Z ^  = 4y3 [-y4 3Ys'2B4  + y4 ,Y5-2 B4(<>]

(3.101) Z*3 3 3  = 4 Y3[-Y ,2Y! 3B 4 + y«VB."1

(3.102) Z<“) = 4y3 V [3 y /B 4  - 3y4 2 B4 (4 )+2B4(44>]

(3.103) Z(55) = 4y3 V[3Y5^B4  - 3y5 ’2 B4 (!)+2B4<55)]

(3.104) Z<«> = 4y3 2 y4 1Y5-1 [Y4 2Y52 B4  - Y4 2 B4(5) - Ys’W *  + B4<«>]

3.3.4 SOFTWARE FOR THE ESTIMATION OF COVARIANCE STRUCTURES.

Computer programmes to estimate parameters for each of models 1-3 of sections 

1 and 2 were written in APL (STSC, Inc) running under the MS DOS operating
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system. The APL equivalent of a ’programme* in other computer languages is a 

user-defined function. The software for estimation of covariance structures thus 

consists of a number of functions. The main function, RUN, calls other functions, 

which in turn may call still more functions.

Separate programmes were written for the two methods of generalised least-squares 

estimation described in section 3 - the method assuming that the underlying 

distribution has no kurtosis and the asymptotically distribution-free method. The two 

programmes have similar structures and similar code, but are sufficiently different 

to make writing them as one programme cause more problems than are saved by 

the reduction in duplication.

Flow charts for the two programmes are shown in Appendix 4.1. The only 

difference in structure is that the ADF procedure has the additional function SETU, 

called by the READ function, which calculates the p*xp* matrix U which is used 

to calculate the discrepancy function.

The structure shown is that for the estimation of parameters for model 3. Different 

functions (INIMOD1 or INIMOD2, etc.) are used for the estimation of parameters 

from models 1 and 2. The function RUN uses READ, INTMOD3 and ESTIM 

successively, as shown. Each of the functions INIMOD3 and ESTIM uses the 

functions SIGMOD3, DERIVM3, GRADM3 and HESMOD3 in that order. The 

function DERTVM3, which is used to calculate the derivatives of the matrix B4, is 

not needed for the other two models.
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The programmes read data in one of two formats. The time periods between 

observations can be specified in the data (this format was used in section 5) or 

may be specified in the READ function with only the data in the data file (this 

format was used for the simulation data analysed in the next section. In either case 

each data set is preceded in the data file by a line specifying N, the number of 

observations contained in the data set.

Estimates of the asymptotic covariance matrix of g are given (from propositions

1 . 2  and 2 . 2  of section 2 .2 ) by n'^A’U^A) 1 for the asymptotically distribution-free 

method, and by 2n‘1 {0(S ) } ' 1 for the method assuming no kurtosis, ((©(S)^ = 

tr(2®Si®S)).

The function RUN outputs the site number, number of iterations, number of 

parameters, status (’OK’ if no computational errors occur, ’ER’ otherwise), 

parameter estimates and goodness of fit statistic to a file. Where no computational 

errors occur, the estimated covariance matrix is also output, otherwise the error 

message is output.

The complete programmes for the GLS (nk) procedure are shown in appendix 1, 

at the end of the thesis. The programmes for the GLS (adf) procedure, where these 

differ from the no kurtosis procedure, are shown in appendix 2 .



106

APPENDIX 3.1 MINITAB INSTRUCTIONS TO SIMULATE DATA FROM 
MODELS 1 AND 2.

Code for model 1 
random 1  c25; 
normal 2 0.5. 
copy c25 klO 
let k l 0 = l/k l 0

NOTE KlO IS THE POISSON RATE OF OCCURRENCE OF BURSTS 
random 1 c25; 
normal 0.5 0.15. 
copy c25 k l l
NOTE K ll  IS THE EXPECTED BURST MAGNITUDE
random 1 c25;
normal 0 . 2  0 .0 1 .
copy c25 kl2
let kl2=kl2**0.5
NOTE K12 IS THE BURST STANDARD DEVIATION 
random 50 cl; 
expo klO.
NOTE GENERATE POISSON PROCESS
let k5=0
stack k5 c l c l
parsum c l c2

copy c2 c3;
omit c2  = 1 0 :1 0 0 0 .
NOTE C2 CONTAINS ZERO, THEN TIMES AT WHICH BURSTS OCCUR
n c3 kl
random k l c4;
normal k l l  k l 2 .
copy k5 clO
stack k5 c4 c4
copy c4 c4;
omit 2 .
NOTE C4 CONTAINS MAGNITUDE OF BURSTS 
random 1 1  c6 ; 
normal 0  0 .8 .
NOTE C6  CONTAINS MAGNITUDE OF MEASUREMENT ERRORS 
let k2 =l
exec ’observe* 1 0

NOTE OBSERVE RETURNS TRUE ATTACHMENT LEVELS AT TIMES 0 TO 
10, IN CIO

copy c3 c4 cl3 cl4; 
use c3=0:k2. 
sum cl4  k3 
stack clO k3  clO 
let k2 =k2 +l 
end
let c l 2 =cl 0 +c6
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Code for model 2

random 1  c2 ; 
normal 1 0.4023369. 
copy c2  k2 ; 
use 1 .
random 11 c3; 
normal 0 0.975. 
let c4=(k2*cll)+c3 
end
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ESTIM
perform one step of the 
iterative procedure.

“  >  

(3)

RUN*
set windows, call 
other functions, 
check convergence 
of estimates, 
output results to 
files. ( 1) 

<  “

(ii)DERIVxx* 
returns 
deriv's

(iii)
GRADxx
returns

g

( 2)1

READ 
read data, 
calculate 
sufficient 
statistics

INIMODxx
create arrays 
and matrices 
for use in the 
rest of the 
programme.
Set initial 
values and 
calculate 1st 
values for 
gradient 
vector and 
Hessian matrix.

I N
SETU 

calculate 
the p*xp* 
matrix U 
(ADF
procedure
only)

* - function is the same for the two procedures.
xx at the end of a function name means a different function is 
used for different models.
The programmes require the following variables to have values 
specified before starting:
BOX - is a character string which draws a box on the screen. 
COL - specifies the number of columns to be skipped at the 

start of each line in the data file.
FORMAT - 1 if time intervals are read from the data file, 2 if 

not (for simulation data).
INIT - name of initialisation routine (INIM0D1, INIM0D2 or 

INIM0D3).PMFILE - name of file to which output is to be written.
SCALE - Integer by which the time intervals are divided.
The APL command which starts the programmes is:

'XXX' RUN 'YYY'
where XXX is the name of the APL output file and YYY is the name 
of the file containing the data.
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4

ESTIMATION OF COVARIANCE STRUCTURES 

FOR DATA FROM SIMULATIONS OF 

DIFFERENT MODELS FOR PERIODONTAL 

DISEASE PROGRESSION.
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In section 2.2 we described methods for the analysis of covariance structures which, 

given suitable computer software, may be used to analyse data from studies of 

periodontal disease progression in order to assess which of models 1 to 3 

(constructed in section 3) best describes the data. However, it was noted that the 

properties of the generalised least-squares estimates of covariance structures which 

were presented are asymptotic, and that little is known of their finite-sample 

behaviour.

It was also noted that the aim of constructing the three models is to derive 

covariance structures which reflect the characteristics of different postulated models 

for disease progression. We do not expect that any of the models will provide an 

exact description of the progression of disease. Further, the algebra used to derive 

the models is difficult to check and the software used to fit them is non-standard. 

It is therefore sensible to check that results are as expected when the true 

distribution of the data is known.

Before we analyse data arising from studies of periodontal disease progression, we 

therefore, in this section, analyse data from simulations of the three models for 

disease progression which were constructed in section 3, using the generalised 

least-squares methods of section 2 .2 .

In a recent issue of the Royal Statistical Society’s News and Notes, S J Senn 

offered the following definition as part of a glossary of statistical terms.
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Experimental Design: A subject whose findings every statistician believes any 

scientist should take into account when conducting an experiment unless the scientist 

is a statistician carrying out a simulation.

Taking note of this, we specify the aims of these experiments, which were:

1. To confirm that the algebra and the software do not contain errors.

2. To show that it is possible to distinguish the 3 models, given that we know the 

underlying distribution of the data.

3. To discover the extent of the finite-sample bias of parameter estimates.

4. To confirm the accuracy of the estimated standard errors of the parameter 

estimates.

Four simulation experiments were performed, with four data sets in each experiment. 

Parameters were estimated using each of models 1 to 3. The data were analysed 

using the programmes described in section 3.3, using both the GLS (nk) and the 

GLS (adf). The output from the APL programmes (see section 2.2.9 for summaries 

of the definitions of the reported statistics) was formatted using SAS: the results for 

each experiment are annotated as follows:



EXPT - 

METH -

MOD - 

DS -

FROMMOD 

TYPE - 

ITER -

STATUS -

Ti - 

Si - 

CHIi -

DIFFij -
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experiment number (1 to 4)

method (nk - assuming no kurtosis of underlying distribution, adf - 

asymptotically distribution free) 

model ( 1 to 3)

data set (1 to 4 for each experiment)

-Model used to simulate data (in experiments 1 and 2)

F (full, unrounded data) or R (rounded data) (experiments 3 and 4). 

number of iterations before termination of procedure (if 500 then 

convergence was not achieved)

OK - no error occurred

ER - computational error occurred

e,

standard error (= square root of estimated variance) of 0 j 

Chi-square goodness of fit statistic for model i on p* = p(p+l)/2-q 

degrees of freedom (53 df for model 1, 52 df for model 2 and 50 

df for model 3.)

Difference between goodness of fit statistics for models i and j. Under 

regularity conditions given by Steiger et al. (1985) this statistic is 

distributed as chi-square with degrees of freedom equal to the 

difference in the number of parameters of the models.

Results are presented to six significant figures, although the output from the APL 

programmes is to a higher degree of accuracy.
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It will be noticed as the results are presented that for model 3 they are not 

well-behaved. Firstly, the parameter estimates of 04  and 05  are highly unstable and 

the information matrix frequently near-singular. Secondly, the improvement in 

goodness of fit of model 3 over the other models 1 and 2 for data generated by 

these models is very small, rather than being distributed as at least x2* as might 

have been expected from the asymptotic theory. The increase in goodness of fit for 

data generated by model 3 is also, under certain conditions, smaller than expected.

It should be emphasised firstly that we do not believe that these results are due 

to computational or algebraic errors: extensive checks were made precisely because 

the results were puzzling and (see section 4.2.1) independently written software gave 

similar results for the GLS (nk) method. Secondly we are able to find conditions 

where the goodness of fit of model 3 over the other two models is markedly 

increased. The findings cannot therefore be blamed simply on the impossibility of 

distinguishing model 3 from model 2. We discuss the results for model 3 further 

at the end of this section.

4.1 SIMULATIONS OF DATA FROM MODELS 1 AND 2 (EXPERIMENTS 1 

AND 2).

In section 3.1, we displayed plots of simulated data from models 1 and 2 which 

had been generated using MINITAB. Two sets of parameters were used; in each 

case they were specified so that the expectation and variance of an increment were 

the same in the two models. The parameter values used are shown in section 3.1.3, 

while the instructions used to generate the data are shown in Appendix 3.1. The
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data were rounded to one decimal place, so that the results approximate the high 

degree of rounding seen in the measurement of periodontal disease.

The same sets of parameter values and the same MINITAB instructions were used 

to generate larger data sets for analysis using the software described in section 3.3. 

Two experiments (corresponding to the two sets of parameter values) were 

performed.

For experiments 1 and 2, four data sets were generated; data sets 1 and 2 using 

model 2 and data sets 3 and 4 using model 1, with sample size n=200 and the 

number of increments per "site", p=10. Parameters were estimated using the 

covariance structures for each of the three models.

Initial values

Since models 1 and 2 have linear covariance structures, the procedure will converge 

in one iteration providing the parameter estimates are all positive, whatever the 

initial values. The initial values did not affect the parameter estimates where the 

quadratic reparametrisation of model 2  was used (because the estimate of 0 3  given 

by the linear parametrisation was less than zero). However, the initial values did 

affect the parameter estimates for model 3, which is non-linear. This is discussed 

below.
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EXPERIMENT 1

The results of experiment 1 are shown in appendix 4.1. Recall that where plots 

were made using simulated data with identical distributions to those used in 

experiment 1 , it proved impossible to distinguish visually data from models 1  and 

2.

For models 1 and 2, the procedure converged in two iterations, except for data set 

4, adf method. For model 3, the estimates shown were (on all but one occasion) 

generated using initial values which were the true parameters for the model 2  

parameters, and (30,.1) for (04 ,0S). For data set 4, method nk, these values gave 

goodness of fit slightly worse than for model 2 , while the estimates shown using 

initial values ( 6 , . l )  for ( 6 4 , 6 5 ) ,  gave slightly better goodness of fit. Usually, where 

smaller initial values for 0 4  were used, the final goodness of fit was worse than for 

model 2 .

Goodness of fit

For the data sets generated using model 2, there was a large improvement in the 

goodness of fit of model 2 over model 1. For the data sets generated using model 

1 , on the other hand, the improvement in goodness of fit when model 2  was 

assumed was small. Where the model used was correct for the data set the 

procedure always converged in two iterations. For model 3, small improvements 

in goodness of fit only were achieved over models 1  and 2 .
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Parameter Estimates

Where the model was that used to generate the data set, the parameter estimates 

were around the values expected, but appeared to show a negative bias compared 

to the true values. This applied to both estimation procedures. Where the parameters 

of model 2 were estimated from data generated using model 1, the estimate of 03 

was close to zero. Where parameters for model 3 were estimated, the estimates 

varied widely, although 04 was often large.

Standard Errors

Using the approximate guide that 19 out of 20 parameter estimates should lie within 

two standard errors of the true value, it appeared from inspection of the duplicate 

data sets generated using each model that the estimated standard errors do give an 

approximate guide to the variability of the parameter estimates, given the negative 

bias of the parameter estimates.

Where parameter estimates were close to zero, or were large (for model 3) the 

estimated standard errors were large. For model 3, the information matrix was 

usually singular, so that standard errors could not be computed. This singularity 

suggests that one of this pair of parameters is redundant. However, fixing one 

always resulted in substantially worse goodness of fit than if both were allowed 

to vary.
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EXPERIMENT 2

For experiment 2, the parameters used were the same as for the second half of the 

simulation experiment in section 3.1.3. Recall that 03 (the parameter which is 

non-zero only for model 2), is considerably larger than for experiment 1, and that 

when plots were made of data simulated using these parameter values, it proved 

possible to discriminate visually between data generated using the two models. For 

data generated using model 2, the mean frequency of bursts was 0.5 per time 

interval. The results of experiment 2 are shown in appendix 4.2.

Goodness of fit

For data sets 1 and 2, the increase in 03 is reflected in an increased goodness of 

fit of model 2 over model 1, compared to experiment 1. The increase in goodness 

of fit of model 3 over model 2 was even more minute than for experiment l.For 

data sets 3 and 4 there was (to five decimal places) no increase in the goodness of 

fit of models 2 and 3 over model 1.

Parameter Estimates

Again, where the model was correct for the data set, the estimates were slightly 

negatively biased. The estimates of 04 and 05 for model 3 again varied widely.
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Standard Errors

It appeared, as for experiment 1, that the estimated standard errors provided a 

reasonable indication of the variation in the parameter estimates, given the negative 

bias of the parameter estimates.

4.2 SIMULATIONS OF DATA FROM MODEL 3 (EXPERIMENTS 3 AND 4).

For experiments 3 and 4, data was simulated using model 3. The results are shown 

in appendices 4.3 and 4.4, and the MINITAB code used is shown in appendix 4.5. 

Because of the increased complexity and non-linearity of model 3, a sample size 

of n=500 was used, with p=10 increments, as in experiments 1 and 2. The initial 

values used for model 3 were the correct parameter values. The estimates for 

models 1 and 2 were all reached in two iterations, and thus did not depend on the 

initial values used.

It was noticed during the analysis of simulated data from model 3 that under some 

conditions the effect of rounding on the results could be substantial. Each data set 

was output to four decimal places, and then rounded to no decimal places. The 

covariance structures for the full and rounded data were then analysed separately.

EXPERIMENT 3.

This experiment confirmed that data from model 3 could be distinguished from 

models 1 and 2 using the GLS procedures.
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Goodness of fit

There was an increase in goodness of fit of between 20.36 and 50.97 (-x 2̂ ) of 

model 3 over model 2. However, the increase in goodness of fit of model 2 over 

model 1 was much more marked (between 310.97 and 390.81 (~X2i). While the 

goodness of fit of model 3 was always reduced for the rounded data, that of model 

2 was increased as often as it was reduced. Although the increase in goodness of 

fit of model 3 over model 2 was generally reduced for the rounded data, model 3 

clearly fitted the data best on each occasion.

Parameter Estimates and standard errors.

For model 3, the estimates of 0j 02 and 03 were close to the true values. Although 

the estimates of 04 and 0S varied markedly, with large estimated standard errors, the 

estimate of X (the rate of changes in progression, given by (04+2)05) was much 

more stable. The estimated standard errors of 03, 04 and 05 were substantially larger 

than those of Bj and 02.

It appears that for model 3, it is difficult to estimate 04 and 6S because the 

discrepancy function is ’’flat" for these parameters. This is possibly not surprising: 

these are parameters of the population distribution of the Poisson rate of occurrence 

of changes in the rate of attachment change, with the expected rate of change equal 

to ab (04=a-2, 0s=b), so that if the product ab is constant only higher moments of 

the distribution are affected by changes in the values of these parameters.
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EXPERIMENT 4

For this experiment, the value of o2*, the population variance of the slope, was 

reduced from 1 in experiment 3 to 0.04. This meant that the value of 03 was 

reduced to 0.1143. The values of 04 and 05 were the same as for experiment 3.

Goodness of fit

The increase in goodness of fit of model 3 over model 2, for this experiment, was 

at most 2.44, while the 95th percentile of the x \  distribution is 5.99. For the 

rounded data, the increase in goodness of fit was in all but one case reduced by 

75% compared to the unrounded data. The increase in goodness of fit of model 2 

over model 1 was far larger: between 9.47 and 24.15 for the unrounded data and 

between 39.16 and 56.64 for the rounded data. Thus for these parameters, where the 

amount of variation in the rate of progression is relatively small, model 3 was 

effectively indistinguishable from model 2, even with the large sample sizes used 

in this experiment. Further, when the data were rounded the increase in goodness 

of fit of model 3 over model 2 was substantially decreased, while the increase in 

goodness of fit of model 2 over model 1 was substantially increased.

Parameter estimates

Again, the estimates of 04 and 05 showed substantial variation, although the estimate 

of X was again much more stable. Where parameters were estimated using models
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1 and 2, the procedure always converged in two iterations. Estimates of 0r 03 did 

not vary substantially between the two GLS methods.

4.2.1. RESULTS USING THE PROGRAMME AUFTT.

In section 2.2.8 we discussed available software for the estimation of covariance 

structures, and mentioned the programme AUFTT, which uses derivative-free 

algorithms to estimate the parameters of covariance structures. Professor Browne 

kindly adapted this programme to estimate the parameters of models 1, 2 and 3, 

although it was received after the APL programmes used above had been completed. 

The programme produces either the normal-theory maximum-likelihood, ordinary 

least-squares or GLS (nk) estimates.

For models 1 and 2, the GLS (nk) estimates calculated by AUFTT were identical 

to those calculated by the APL programmes. For model 3, the estimates differed. 

Appendix 4.6 shows the results produced by AUFIT for estimation of model 3 for 

the data from experiments 3 and 4, using the correct initial values in each case. It 

can be seen that the goodness of fit given by AUFTT was a marginal increase or 

decrease compared to the APL programmes. The exception was experiment 3 data 

set 2, where the estimate of 04 tended to zero, and the goodness of fit was 

improved compared to the APL programmes by 2.28 for the unrounded data and 

1.81 for the rounded data. Except for this data set, the estimates of 02, 02 and 03 

were similar to those produced by the APL programmes. The estimated standard 

errors varied somewhat, reflecting the near-singularity of the information matrix.
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4.3 CONCLUSIONS.

We shall divide the conclusions of this chapter by the different aims stated at the 

start:

1. Errors in algebra or software

During the development of the software, both algebraic and software errors were 

detected because unexpected results were obtained. Because the results for model 

3 were unexpected, both algebra and software were thoroughly checked. Further, the 

results accord with independently written programs. We are thus confident that they 

are not caused by errors of this nature.

2. Distinguishing the models.

For models 1 and 2, these experiments show that the models can be distinguished, 

even where (as for experiment 1) visual discrimination is not possible. Experiment 

3 confirms that data from model 3 is distinguishable from the other two. However, 

experiment 4 shows that where the variation in slope for model 3 is relatively 

small, the increase in goodness of fit may never exceed that attributable to random 

error according the asymptotic chi-square test.

On the other hand, the increase in the goodness of fit of model 3 over models 1 

and 2 for data from models 1 and 2 (experiments 1 and 2) was always much 

smaller, even than that achieved in experiment 4. The greatest increase in goodness



123

of fit of model 3 over model 2 was 0.0354. Although the asymptotic theory which 

we have presented (Steiger et al. 1985) suggests that the difference in goodness of 

fit should have a chi-squared distribution with two degrees of freedom, this theory 

depends on the existence of a limiting interior point of the parameter space at 

which all models hold. For data from models 1 or 2, there is no interior point of 

the parameter space of model 3 (see section 3.2.3) at which the model holds.

Our results are, therefore, consistent with the asymptotic theory of the estimation 

of covariance structures. We are not dealing here with standard asymptotic theory 

where, for instance, the degrees of freedom of the goodness of fit statistic depends 

on the number of observations: for the standard case increasing the number of 

parameters of a model by k will increase the goodness of fit of the model by an 

amount which has a chi-squared distribution with k degrees of freedom.

We noted in section 3.2.3 that the part of the covariance structure of model 3 which 

is in addition to that of model 2 has a specific form where, broadly, the magnitude 

of the (positive) elements decreases as we move from the diagonal to the one-off 

diagonal and so on. Where the true covariance structure of the data does not 

possess this form, it seems reasonable that only a very small increase in goodness 

of fit may be achieved.

What is clear from these simulations is that where the amount of variation in the 

rate of disease progression is comparatively small, as in experiment 4, it will not 

be possible to distinguish model 3 from model 2. Further, the substantial rounding 

of the data which occurs in the measurement of periodontal attachment artificially
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decreases the goodness of fit of model 3 and increases the goodness of fit of model 

2.

The nature of the "nesting" of the covariance structures of model 1 within model 

2 within model 3 deserves careful consideration. Firstly, it should be emphasised 

that the word nesting applies only to the covariance structures rather than to the 

models themselves. Although it is clear that as the variation in the rate of 

progression in model 3 tends to zero model 3 tends to model 1, the parametrisations 

for which model 3 tends to model 2, or model 2 to model 1 are less obvious. It 

appears that as model 3 tends to model 1, and model 2 is "squeezed" between 

models 1 and 3, the covariance structures of models 2 and 3 become 

indistinguishable more rapidly than do those of model 1 and 2.

We must conclude that for data from studies of periodontal disease progression, it 

may not be possible, unless there is substantial variation in the rate of progression, 

to distinguish models 2 and 3. It will be much easier to establish whether there is 

variation in the rate of progression than to establish whether model 2 or model 3 

is a more accurate description of this variation.

The final estimates sometimes depended on the initial values for the iteration; 

particularly for model 3, but also for model 2 where the quadratic estimation 

procedure has to be used because the estimate of a parameter would otherwise be 

negative. Thus, in the analysis of real rather than simulated data, it will be 

necessary to experiment with different initial values to ensure that the best goodness 

of fit has been achieved.
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Generally similar results were obtained from the two methods (adf and nk), although 

the goodness of fit tended to be rather worse for the adf method.

3. Finite-sample bias.

It appeared that for both the adf and nk methods the parameter estimates tended 

to be somewhat smaller than their true values.

4. Standard errors.

For models 1 and 2, these reflected the observed variation in the parameter 

estimates. For parameters 64 and 65 of model 3, the large estimated standard errors 

reflected the instability of the estimates.
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APPENDIX 4.1 RESULTS OF SIMULATION EXPERIMENT 1.

Model 1: o2 = 0.9506, p=l, ^=0.1619
Model 2: o2 = 0.64, k=2, g\=0.25, ^=0.5, d2 =0.0225, a 2 =0.04, g2 =0.0001 
Parameter value Model Data set 0t 02 03 E[Wy] VarfWy)

for underlying 1 3,4 1 .9506 .1619 0 1 2.0631

distribution 2 1,2 1 .64 .1581 .625 1 2.0631

F
R S
O T

E M M I A
X E M M T T
P T 0 D 0 E U T T T T T
T H D S D R S 1 2 3 4 5
1 nk 1 1 2 2 OK 0.85165 0.21347
1 nk 1 2 2 2 OK 0.82762 0.14698 •
1 nk 1 3 1 2 OK 0.94643 0.16229 •
1 nk 1 4 1 2 OK 0.87387 0.16162 •
1 nk 2 1 2 2 OK 0.57809 0.15846 0.56412
1 nk 2 2 2 2 OK 0.55863 0.09738 0.56208
1 nk 2 3 1 2 OK 0.92380 0.15915 0.02764
1 nk 2 4 1 2 OK 0.86854 0.16105 0.00622
1 nk 3 1 2 500 ER 0.67212 0.15764 0.57391 35610 56 0 00008
1 nk 3 2 2 401 ER 0.56666 0.09738 0.56208 117 65 0 29745
1 nk 3 3 1 500 ER 0.93093 0.15892 0.03020 18411 06 0 00008
1 nk 3 4 1 7 OK 0.87064 0.15896 0.06250 1 87 0 04938

MOD DS FROMMOD STATUS SI S2 S3 S4 S5
1 1 2 OK 0.021679 0.01612 9
1 2 2 OK 0.021448 0.01304 .
1 3 1 OK 0.022804 0.01265 .
1 4 1 OK 0.020976 0.01265 .
2 1 2 OK 0.032249 0.01703 0.0495
2 2 2 OK 0.030659 0.01378 0.0460
2 3 1 OK 0.031937 0.01304 0.0272
2 4 1 OK 0.028636 0.01265 0.0228
3 1 2 ER . . .
3 2 2 ER . . .
3 3 1 ER . . .
3 4 1 OK 0.030496 1.10986 78.7977 9361.23 111.929

EXPT METH DS CHI1 CHI2 CHI3 DIFF32 DIFF31 DIFF21
(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)

1 nk 1 121.278 56.6656 56.6302 0.03543 64.6476 64.6122
1 nk 2 148.589 74.4267 74.4267 0.00000 74.1626 74.1626
1 nk 3 39.964 39.4524 39.4502 0.00225 0.5137 0.5115
1 nk 4 36.152 36.1152 36.1014 0.01376 0.0510 0.0372
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F
R S
0 T

E M M I A
X E M M T T
P T 0 D 0 E U T T T T T
T H D S D R S 1 2 3 4 5
1 adf 1 1 2 2 OK 0.77650 0.17223 .
1 adf 1 2 2 2 OK 0.75271 0.09435 .
1 adf 1 3 1 2 OK 0.96893 0.15659 .
1 adf 1 4 1 2 OK 0.88440 0.16352 .
1 adf 2 1 2 2 OK 0.62554 0.14896 0.42052
1 adf 2 2 2 2 OK 0.46687 0.06378 0.63097
1 adf 2 3 1 2 OK 0.96112 0.15602 0.01142
1 adf 2 4 1 11 OK 0.88440 0.16352 0.00000
1 adf 3 1 2 442 ER 0.63218 0.14896 0.42052 104 685 0 30265
1 adf 3 2 2 390 ER 0.47571 0.06378 0.63097 116 108 0 30749
1 adf 3 3 1 4 OK 0.96337 0.15598 0.01167 25 062 0 08360
1 adf 3 4 1 21 ER 0.88440 0.16352 0.03845 0 007 0 00001

M
0 D

F
R
0
M
M
0

S
T
A
T
U S S S S S

D S D S 1 2 3 4 5
1 1 2 OK 0.02588 0.016432
1 2 2 OK 0.02510 0.014832 •
1 3 1 OK 0.02739 0.014491 •
1 4 1 OK 0.02387 0.015811 •
2 1 2 OK 0.03376 0.016733 0.06
2 2 2 OK 0.03606 0.014832 0.06
2 3 1 OK 0.03302 0.014832 0.03
2 4 1 OK 0.01897 0.019494 10714495415.18
3 1 2 ER . . .
3 2 2 ER . . .
3 3 1 OK 0.36097 0.017607 0.12 163946.83 553.
3 4 1 ER .

EXPT METH DS CHI1 CHI2 CHI3 DIFF32 DIFF31 DIFF21 
(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)

1 adf 1 118.918 70.044 70.044 .00000 48.875 48.875
1 adf 2 246.267 124.409 124.409 .00000 121.857 121.857
1 adf 3 58.211 58.034 58.032 .00236 0.179 0.176
1 adf 4 47.113 47.113 47.113 .00000 0.000 0.000
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APPENDIX 4.2 RESULTS OF SIMULATION EXPERIMENT 2.

Model 1: o2 = 1.69, 0=1, ^= 0 .63

Model 2: o2 = 0.64, X=0.5, o\=0.01, ^=2.0, <=0.25, o2 =1.0, | 2 =0.04
Parameter value Model Data set 02 03 E[WJ Var(Wjj)
for underlying 1 3,4 1 1.69 .63 0 1 4.01
distribution 2 1,2 1 .64 .105 2.625 1 4.01

F
R s
0 T

E M N i A
X E M M T T
P T 0 D 0 E U T T T T T
T H D S D R S 1 2 3 4 5
2 nk 1 1 2 2 OK 1.51588 0.33749 m
2 nk 1 2 2 2 OK 1.54174 0.27342 .
2 nk 1 3 1 2 OK 1.50300 0.51610 .
2 nk 1 4 1 2 OK 1.56992 0.55565 .
2 nk 2 1 2 2 OK 0.52682 0.09219 2.54575
2 nk 2 2 2 2 OK 0.66577 0.05852 2.21342
2 nk 2 3 1 8 OK 1.50300 0.51610 0.00000
2 nk 2 4 1 10 ER 1.56992 0.55565 0.00000
2 nk 3 1 2 500 ER 0.57359 0.09219 2.54575 100 07 0.27193
2 nk 3 2 2 500 ER 0.90265 0.05815 2.21797 1823 75 0.00252
2 nk 3 3 1 11 ER 1.50300 0.51610 0.00002 0 73 0.01441
2 nk 3 4 1 12 ER 1.56992 0.55565 0.00000 3 38 0.01863

MOD DS FROMMOD STATUS SI S2 S3
1 1 2 OK 0.040620 0.026833
1 2 2 OK 0.041231 0.023875
1 3 1 OK 0.036469 0.040000
1 4 1 OK 0.038079 0.041352
2 1 2 OK 0.070781 0.030332 0 15
2 2 2 OK 0.067897 0.027203 0 14
2 3 1 OK 0.020736 0.027928 241646374 92
2 4 1 ER . .
3 1 2 ER . .
3 2 2 ER . .
3 3 1 ER . .
3 4 1 ER .

S3 S4 S5

EXPT METH DS CHI1 CHI2 CHI 3 DIFF32 DIFF31 DIFF21
(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)

2 nk 1 200.657 55.8434 55.8434 .00000 144.814 144.814
2 nk 2 201.886 70.3990 70.3980 .00095 131.488 131.487
2 nk 3 47.340 47.3398 47.3398 .00000 0.000 0.000
2 nk 4 51.871 51.8706 51.8706 .00000 0.000 0.000



129

F
R S
0 T

E M M I A
X E M M T T
P T 0 D 0 E U T T T T T
T H D S D R S 1 2 3 4 5
2 adf 1 1 2 2 OK 1.13917 0.22233
2 adf 1 2 2 2 OK 1.05245 0.25624 •
2 adf 1 3 1 2 OK 1.47616 0.48904 •
2 adf 1 4 1 2 OK 1.57463 0.49917 •
2 adf 2 1 2 2 OK 0.60275 0.07362 2.02592
2 adf 2 2 2 2 OK 0.57793 0.06237 1.94885
2 adf 2 3 1 10 OK 1.47616 0.48904 0.00000
2 adf 2 4 1 9 OK 1.57463 0.49917 0.00000
2 adf 3 1 2 4 OK 0.76549 0.07366 2.02606 48 327 0 12872
2 adf 3 2 2 459 ER 0.60540 0.06237 1.94885 116 691 0 30392
2 adf 3 3 1 19 ER 1.47616 0.48904 0.03046 0 045 0 00000
2 adf 3 4 1 23 ER 1.57463 0.49917 0.00000 4.683 0 00823
F
R S 
O T 
M A 

M M T
O D O U S S S S S
D S D S 1 2 3 4 5
1 1 2 OK 0.054 0.026646 .
1 2 2 OK 0.057 0.024290 •
1 3 1 OK 0.041 0.048888 •
1 4 1 OK 0.048 0.044721 •
2 1 2 OK 0.069 0.029326 0.16
2 2 2 OK 0.070 0.029665 0.17
2 3 1 OK 0.024 0.035496 5371663398.18
2 4 1 OK 0.026 0.031937 657963633929.86
3 1 2 OK 274.657 0.071554 0.13 200044.84 10853.3
3 2 2 ER . . .
3 3 1 ER . . .
3 4 1 ER • • • •
EXPT METH DS CHI1 CHI2 CHI3 DIFF32 DIFF31 DIFF21

(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)
2 adf 1 222. 837 68.305 68.299 .00579 154.538 154.532
2 adf 2 238. 396 105.549 105.549 .00000 132.847 132.847
2 adf 3 85. 351 85.351 85.351 .00000 0.000 0.000
2 adf 4 68. 405 68.405 68.405 .00000 0.000 0.000
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Model specification: Measurement error variance a 2 = 0.64 

Poisson rate \  ~ r(a=8,b=0.1) Slope Pj ~ N(P=l,o2p=0.09)

Slope variance o2̂  -  N(o28=l,526=0.01)

From the definition of model 3:

[i=P=l, 01=o2=0.64, 02=oV=O.O9, 03=2o26(b(a-l))'1=2.857143 04=a-2=6, 0 5 =b=O.l.

M S
E T

E T T I A
X H M Y T T
P 0 0 D P E U T T T T T
T D D S E R S 1 2 3 4 5
3 nk 1 1 F 2 OK 0.77963 0.30829 .
3 nk 1 1 R 2 OK 0.81879 0.32712 a

3 nk 1 2 F 2 OK 0.79332 0.30019 .

3 nk 1 2 R 2 OK 0.82233 0.31160 .

3 nk 1 3 F 2 OK 0.74844 0.34298 •

3 nk 1 3 R 2 OK 0.76340 0.34649 .

3 nk 2 1 F 2 OK 0.23444 0.18587 1.36291
3 nk 2 1 R 2 OK 0.24033 0.19585 1.449253 nk 2 2 F 2 OK 0.25046 0.17271 1.38295
3 nk 2 2 R 2 OK 0.24979 0.17572 1.46644
3 nk 2 3 F 2 OK 0.20844 0.21192 1.39325
3 nk 2 3 R 2 OK 0.18796 0.20271 1.50719
3 nk 3 1 F 500 ER 0.63160 0.07173 2.93212 43576 37 0 00001
3 nk 3 1 R 2 OK 0.64810 0.08036 3.07409 5 98 0 09688
3 nk 3 2 F 3 OK 0.63123 0.08497 2.61186 6 23 0 10263
3 nk 3 2 R 2 OK 0.65808 0.07165 2.93795 5 89 0 10086
3 nk 3 3 F 54 OK 0.57024 0.10783 3.06873 0 79 0 40645
3 nk 3 3 R 48 OK 0.56611 0.11179 2.88298 1 05 0 42417

MOD DS TYPE STATUS SI S2 S3 S4 S5
1 1 F OK 0.01304 0.01517 • .
1 1 R OK 0.01342 0.01612 •

1 2 F OK 0.01304 0.01483 •

1 2 R OK 0.01378 0.01549 a

1 3 F OK 0.01225 0.01612 .

1 3 R OK 0.01265 0.01643 a

2 1 F OK 0.02530 0.01581 0.05459
2 1 R OK 0.02683 0.01673 0.05788
2 2 F OK 0.02449 0.01549 0.05282
2 2 R OK 0.02569 0.01612 0.05568
2 3 F OK 0.02387 0.01703 0.05254
2 3 R OK 0.02470 0.01732 0.05532
3 1 F ER . a

3 1 R OK 0.02811 0.05586 1.10935 28.80 0 382
3 2 F OK 0.01789 0.07874 0.26593 6.14 0 659
3 2 R OK 0.02828 0.05254 1.03040 28.07 0 395
3 3 F OK 0.03633 0.07057 2.18480 5.19 1 008
3 3 R OK 0.04278 0.06099 1.61445 5.78 1 096
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EXPT METHOD DS TYPE CHI1 CHI2 CHI3 DIFF32 DIFF31 DIFF21
(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)

3 nk 1 F 422.496 111.525 60.5520 50.9727 361.944 310.972
3 nk 1 R 429.705 117.280 69.1680 48.1118 360.537 312.425
3 nk 2 F 441.893 99.723 73.8024 25.9204 368.091 342.170
3 nk 2 R 449.564 103.318 78.8483 24.4698 370.715 346.246
3 nk 3 F 435.655 84.161 59.2011 24.9599 376.454 351.494
3 nk 3 R 453.110 82.659 62.3027 20.3565 390.807 370.451

M S
E T

E T T I A
X H M Y T T
P 0 0 D P E U T T T T T
T D D S E R S 1 2 3 4 5
3 adf 1 1 F 2 OK 0.77771 0.25256 .
3 adf 1 1 R 2 OK 0.82174 0.27373
3 adf 1 2 F 2 OK 0.73930 0.31154 •

3 adf 1 2 R 2 OK 0.77482 0.31081 •

3 adf 1 3 F 2 OK 0.73437 0.32122
3 adf 1 3 R 2 OK 0.74880 0.30015 •

3 adf 2 1 F 2 OK 0.26766 0.17859 1.27374
3 adf 2 1 R 2 OK 0.27372 0.18870 1.36793
3 adf 2 2 F 2 OK 0.23555 0.15979 1.35295
3 adf 2 2 R 2 OK 0.24427 0.16283 1.41207
3 adf 2 3 F 2 OK 0.23791 0.21259 1.32485
3 adf 2 3 R 2 OK 0.21333 0.19534 1.44959
3 adf 3 1 F 2 OK 0.61707 0.08621 2.75575 5.96 0 10064
3 adf 3 1 R 500 ER 0.65192 0.10887 2.58585 22074 .27 0 00003
3 adf 3 2 F 5 OK 0.63575 0.04723 3.06762 6.87 0 07758
3 adf 3 2 R 4 OK 0.65849 0.03931 3.33544 4.86 0 10214
3 adf 3 3 F 4 OK 0.59273 0.11099 2.70572 6.16 0 10071
3 adf 3 3 R 3 OK 0.58972 0.10700 2.61049 6.54 0 10913

MOD DS TYPE STATUS SI S2 S3 S4 S5
1 1 F OK 0.01703 0.02145
1 1 R OK 0.01844 0.02324 •

1 2 F OK 0.01703 0.02121 •

1 2 R OK 0.01817 0.02168 •

1 3 F OK 0.01703 0.02098 •

1 3 R OK 0.01673 0.02121 .

2 1 F OK 0.03521 0.02191 0.07694
2 1 R OK 0.03715 0.02387 0.08056
2 2 F OK 0.03391 0.02302 0.07874
2 2 R OK 0.03564 0.02324 0.08155
2 3 F OK 0.03225 0.02191 0.07348
2 3 R OK 0.03317 0.02191 0.07772
3 1 F OK 0.03578 0.06293 1.24825 36! 84 0.511
3 1 R ER • «

3 2 F OK 0.02049 0.17649 0.44621 8.75 0.774
3 2 R OK 0.02145 0.22159 0.52660 6.65 0.748
3 3 F OK 0.03286 0.06237 1.18566 38. 40 0.520
3 3 R OK 0.03821 0.05683 0.99812 42. 43 0.601
PT METHOD DS TYPE CHI1 CHI2 CHI 3 DIFF32 DIFF31 DIFF21

(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)
3 adf 1 F 398.421 125.108 84.4657 40.6428 313.956 273.313
3 adf 1 R 412.093 124.152 87.9645 36.1878 324.129 287.941
3 adf 2 F 412.311 117.523 91.0718 26.4508 321.239 294.789
3 adf 2 R 418.713 119.522 90.7237 28.7983 327.989 299.191
3 adf 3 F 428.704 104.359 66.8644 37.4949 361.839 324.345
3 adf 3 R 450.229 102.931 72.2993 30.6315 377.930 347.298
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APPENDIX 4.4 RESULTS OF SIMULATION EXPERIMENT 4.

Model specification: Measurement error variance o2 = 0.64 

Poisson rate Xj ~ T(a=8,b=0.1) Slope Pj -  N(P=l,o*p=0.09) 

Slope variance o2̂  -  N(o28=0.04,526=0.0001)

From the definition of model 3:

H=p=l, 01=o2=0.64, 02=o2p=0.09, 03=2o26(b(a-l))'1=O.114286 04=a-2=6, 0 5 =b=O.l.

M S
E T

E T T I A
X H M Y T T
P 0 0 D P E U T T T T T
T D D S E R S 1 2 3 4 5
4 nk 1 1 F 2 OK 0.63666 0.10761 .
4 nk 1 1 R 2 OK 0.68878 0.11567 .
4 nk 1 2 F 2 OK 0.64950 0.09191 .
4 nk 1 2 R 2 OK 0.70597 0.10149 .4 nk 1 3 F 2 OK 0.63737 0.09571 .
4 nk 1 3 R 2 OK 0.68238 0.09901 .
4 nk 2 1 F 2 OK 0.57949 0.09967 0.07960
4 nk 2 1 R 2 OK 0.58761 0.09970 0.158704 nk 2 2 F 2 OK 0.60544 0.08581 0.05907
4 nk 2 2 R 2 OK 0.61231 0.08687 0.14477
4 nk 2 3 F 2 OK 0.59639 0.09020 0.054044 nk 2 3 R 2 OK 0.59233 0.08524 0.136994 nk 3 1 F 500 ER 0.61059 0.09033 0.22768 3305 64 0 00010
4 nk 3 1 R 74 OK 0.62820 0.09486 0.24841 0 00 1 23974
4 nk 3 2 F 500 ER 0.62174 0.08515 0.06698 460089 16 0 00000
4 nk 3 2 R 44 OK 0.63278 0.08671 0.14665 6 58 0 48898
4 nk 3 3 F 500 ER 0.61754 0.08143 0.20049 42335 52 0 00001
4 nk 3 3 R 3 OK 0.62949 0.08249 0.17066 8 36 0 13099

MOD DS TYPE STATUS SI S2 S3 S4 S5
1 1 F OK 0.00949 0.00548
1 1 R OK 0.01049 0.00548 •

1 2 F OK 0.01000 0.00447
1 2 R OK 0.01095 0.00447 •

1 3 F OK 0.00949 0.00447 •

1 3 R OK 0.01049 0.00447 •

2 1 F OK 0.01342 0.00548 0.01304
2 1 R OK 0.01483 0.00548 0.01612
2 2 F OK 0.01342 0.00447 0.01225
2 2 R OK 0.01483 0.00548 0.01581
2 3 F OK 0.01342 0.00447 0.01225
2 3 R OK 0.01449 0.00548 0.01549
3 1 F ER • •

3 1 R OK 0.01342 0.01732 0.29766 8077.60 1.846
3 2 F ER . • *

3 2 R OK 0.46822 0.00707 0.06033 1292.03 104.241
3 3 F ER • • •

3 3 R OK 0.03507 0.00949 0.13450 299.33 4.382
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METHOD DS TYPE CHI1 CHI2 CHI3 DIFF32 DIFF31 DIFF21
(df 53) (df 52) (df 50) (df 2) (df 3) (df 1)

nk 1 F 73.746 55.585 53.3790 2.2060 20.367 18.161
nk 1 R 97.542 49.574 49.0410 0.5331 48.501 47.968
nk 2 F 58.806 47.470 47.3202 0.1501 11.486 11.336
nk 2 R 91.944 49.644 49.6412 0.0032 42.303 42.300
nk 3 F 67.919 58.454 56.0159 2.4380 11.903 9.465
nk 3 R 96.335 57.177 56.1655 1.0118 40.169 39.157

M
E

E T T I A
X H M Y T T
P O O D P E U T T T T T
T D D S E R S 1 2 3 4 5
4 adf 1 1 F 2 OK 0.63239 0.10446 .
4 adf 1 1 R 2 OK 0.67773 0.10902 «
4 adf 1 2 F 2 OK 0.64948 0.09169 •
4 adf 1 2 R 2 OK 0.70773 0.10088 •
4 adf 1 3 F 2 OK 0.63348 0.09864 •
4 adf 1 3 R 2 OK 0.68455 0.10190 a
4 adf 2 1 F 2 OK 0.57955 0.09901 0.07914
4 adf 2 1 R 2 OK 0.59284 0.09933 0.14789
4 adf 2 2 F 2 OK 0.60348 0.08660 0.05922
4 adf 2 2 R 2 OK 0.60703 0.08763 0.15121
4 adf 2 3 F 2 OK 0.58587 0.09183 0.06382
4 adf 2 3 R 2 OK 0.58981 0.08709 0.13799
4 adf 3 1 F 41 OK 0.61251 0.08656 0.32741 4 68 0 043734 adf 3 1 R 500 ER 0.63535 0.09717 0.17544 4209 52 0 00027
4 adf 3 2 F 3 OK 0.62350 0.08319 0.10429 5 60 0 09417
4 adf 3 2 R 500 ER 0.64584 0.08620 0.16632 22311 98 0 00007
4 adf 3 3 F 500 OK 0.61148 0.08498 0.16570 126 81 0 00282
4 adf 3 3 R 3 OK 0.62757 0.08432 0.17015 8 43 0 13200
DS TYPE STATUS SI S2 S3 S4 S5

F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
ER
OK
ER
OK
OK

0.01265
0.01342
0.01304
0.01378
0.01265
0.01342
0.01643
0.017610.01844
0.01975
0.01761
0.01924
0.01140

0.01265
0.04909

0.00632
0.00632
0.00632
0.00632
0.00548
0.00548
0.00632
0.00707
0.00632
0.00632
0.00548
0.00632
0.29998

0.12787
0.01304

0.01612
0.01975
0.01673
0 . 0 2 1 2 1
0.01673
0.02049
6.19149

0.01612 0.04827 0.96224
144
98

2.34878 7535
0.17779 421

42
16 10
72
78

[PT METHOD DS TYPE CHIl CHI2 CHI3 DIFF32 DIFF31
(df 53) (df 52) (df 50) (df 2) (df 3)

4 adf 1 F 81.029 56.878 54.6737 2.2041 26.355
4 adf 1 R 113.652 57.015 56.4277 0.5877 57.224
4 adf 2 F 60.011 47.489 47.4103 0.0783 12.600
4 adf 2 R 107.707 57.107 56.8817 0.2253 50.826
4 adf 3 F 79.121 64.432 62.1196 2.3129 17.001
4 adf 3 R 108.668 62.973 62.7945 0.1788 45.874

35
6

775
402
047
187

DIFF21 
(df 1)
24.151
56.637
12.522
50.600
14.688
45.695



134

APPENDIX 4.5. MINITAB INSTRUCTIONS TO SIMULATE DATA FROM 

MODEL 3.

random 1 c25; 
gamma 8 0.1. 
copy c25 klO 
let kl0=l/kl0
NOTE KlO IS THE POISSON RATE OF OCCURANCE OF CHANGES IN
SLOPE
random 1 c25;
normal 1 0.3.
copy c25 k l l
NOTE K ll IS THE MEAN SLOPE FOR THE ’SITE’
random 1 c25;
normal 1 0.1.
copy c25 kl2
let kl2=kl2**0.5
NOTE K12 IS THE SLOPE STANDARD DEVIATION FOR THE ’SITE’
let k7=0
random 50 cl;
expo klO.
stack k7 c l c l
parsum c l c2
NOTE C2 CONTAINS TIME POINTS FOR CHANGES IN SLOPE 
copy c l c2 c3 c2;
NOTE C3 CONTAINS INTERVALS BETWEEN CHANGES IN SLOPE
omit c2 = 10:1000.
n c3 k l
let kl=kl+ l
random k l c4;
normal k l l  kl2.
NOTE C4 CONTAINS SLOPES 
let cl0=k7 
random 11 c6; 
normal 0 0.8.
NOTE C6 CONTAINS MEASUREMENT ERRORS 
let k2=l 
exec ’true’ 10
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copy c3 cl3; 
use c2=0:k2.
NOTE C13 CONTAINS INTERVALS UP TO TIME K2 
sum cl3 k3
NOTE K3 CONTAINS TIME OF LAST CHANGE BEFORE K2 
let k4=k2-k3
NOTE K4 CONTAINS INTERVAL BETWEEN LAST CHANGE AND K2 
stack cl3 k4 cl3 
n cl3 k5 
copy c4 cl4; 
use l:k5.
NOTE C14 CONTAINS SLOPES UP TO TIME K2 
let cl5=cl3*cl4
NOTE CHANGE = SLOPE * TIME INTERVAL 
sum cl5 k8
NOTE K8 = TRUE ’ATTACHMENT LEVEL’ AT TIME K2 
stack clO k8 clO 
let k2=k2+l
NOTE INCREASE K2 BY 1 AND REPEAT UP TO K2=10 
end

let c22=cl0+c6
NOTE C22 CONTAINS OBSERVED ATTACHMENT LEVELS
copy c22 c23;
omit 1.
copy c22 c24;
omit 11.
let c21=c23-c24
NOTE C21 CONTAINS INCREMENTS IN OBSERVED ATTACHMENT LEVELS
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APPENDIX 4.6. RESULTS OF SIMULATION EXPERIMENTS 3 AND 4 USING 

THE PROGRAM AUFIT.

M
E

E T T
X H M Y
P 0 0 D P T T T T T
T D D S E 1 2 3 4 5
3 nk 3 1 F 0.63068 0.06961 2.97425 45.434 0.01355
3 nk 3 1 R 0.65829 0.08250 2.98670 68.967 0.00951
3 nk 3 2 F 0.62694 0.02241 4.46978 0.000 0.48817
3 nk 3 2 R 0.64322 0.02510 4.50333 0.000 0.52127
3 nk 3 3 F 0.57035 0.10809 3.05948 0.817 0.40185
3 nk 3 3 R 0.56591 0.11173 2.88518 1.035 0.42703
4 nk 3 1 F 0.61068 0.08976 0.24115 23.713 0.01320
4 nk 3 1 R 0.62836 0.09499 0.24668 0.000 1.24785
4 nk 3 2 F 0.62158 0.08508 0.06791 88.723 0.01408
4 nk 3 2 R 0.63476 0.08660 0.14739 10.449 0.27827
4 nk 3 3 F 0.61749 0.08135 0.20301 63.974 0.00427
4 nk 3 3 R 0.63609 0.08154 0.18470 158.524 0.00528

C
H
I
3

60.6310
68.4194
71.5227
77.0381
59.2268
62.3091
53.2149
48.9976
47.2833
49.4658
56.0437
55.7822

EXPT MOD DS TYPE SI S2 S3 S4 S5
3 3 1 F 0.02424 0.03566 0.43350 7.466 0.00000
3 3 1 R 0.02604 0.03623 0.41581 11.187 0.00000
3 3 2 F 0.02842 0.04514 0.99092 0.000 0.13404
3 3 2 R 0.03034 0.04624 0.98475 0.000 0.14551
3 3 3 F 0.05128 0.09926 3.04670 7.431 1.41151
3 3 3 R 0.06063 0.08648 2.29555 8.121 1.55906

3 1 F 0.01650 0.02021 0.39469 36.504 0.00000
3 1 R 0.02941 0.01164 0.17017 0.000 2.26697
3 2 F 0.02448 0.00733 0.04676 204.361 0.00000
3 2 R 0.07905 0.00771 0.03889 0.000 1.21508
3 3 F 0.01636 0.02383 0.52060 138.674 0.00000
3 3 R 0.02105 0.00926 0.08464 137.949 0.00000
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5

PRELIMINARY ANALYSIS 

OF THE SRI LANKA DATA.
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In this section we analyse data from a study of the natural history of periodontal 

disease in a population of 480 male Sri Lankan tea labourers. Our aim is to 

examine how far existing methods such as those used recently in the periodontal 

disease literature allow us to make inferences about the nature of disease 

progression. These results are in preparation for the next section, in which we 

examine which of models 1-3 best fit these data. Our analyses will be solely of 

attachment level measurements. We make no attempt to associate changes in 

attachment level with other characteristics of the subject or site, except for the site 

type and the subject identity.

We may identify two questions about the nature of progression which are of 

interest:

a) What was the rate of progression? To what extent is variation in the observed 

rate of progression between sites accounted for by tooth type, subject effect or 

measurement error?

b) Did the rate of progression vary? If so, what inferences can we make about the 

nature of this variation?

We will see that although existing methods allow us to address both questions, it 

is difficult to use them to gain information ion the nature of progression.

The Sri Lankan study is by far the most extensive study of the natural history of 

periodontal disease in the absence of any dental care. The subjects were examined
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in 1970, and subsequently on five further occasions, in 1971, 1973, 1977, 1982 and 

1985. The 1985 examination included 161 individuals who had participated in the 

first study. Results have already been presented in a series of publications.

Lde et al. (1978a) gave the study design and baseline data. This showed that the 

Sri Lankan population did not perform any conventional oral hygiene measures, 

and were not exposed to Western programmes of prevention or treatment of dental 

disease. They had abundant calculus, generalized gingivitis and showed loss of 

attachment by the age of thirty years. Loe et al. (1978b) presented the rate of tooth 

loss and showed that teeth with deep periodontal lesions started to exfoliate as 

subjects approached 40 years of age. Loe et al. (1978c) discussed the rate of 

periodontal destruction before 40 years of age. We have already quoted (page 4) 

their conclusion that disease progression was continuous. Loe et al. (1986) identified 

three subgroups of the subjects: a rapidly progressive group consisting of 8% of the 

population, a group showing moderate progression (81%) and a groups showing no 

progression (11%).

As with almost all large-scale studies of periodontal disease progression, disease 

levels were measured with a periodontal probe, to the nearest millimetre. Given 

that the total length of the attachment of a healthy tooth is between 10 and 15mm, 

the amount of rounding is substantial relative to the changes observed.



140

5.1 SUMMARY OF THE DATA.

As a starting point, data are presented from every site at which three or more 

observations were made. This is because a sensible minimum requirement for 

inference on the nature of progression at a site to be made is three observations, 

so that for the null model of constant progression we may estimate the initial 

attachment level, rate of progression and the measurement error variance. Only 

data from mesial sites are used - these sites showed the greatest progression of 

periodontal disease during the period of the study. Subjects therefore contributed 

up to 28 measurements per examination - one for each mesial site on each tooth, 

excluding third molars. By numbering these teeth as 1 to 28, we are able in the 

analyses below, to assess the effect of tooth type on disease progression.

Two tables of summary statistics for these data illustrate the enormous problem 

faced by a researcher attempting to use exploratory methods of analysis to gain an 

impression of how the disease progressed. Appendix 5.1 contains tables of the 

observed frequencies of attachment levels at each examination, and of the observed 

loss in attachment between successive examinations for each site. As can be seen, 

the data consist of 32907 individual observations, and 26075 observed increments 

in attachment level.

Table 5.4 shows that the range of measured attachment levels was 0 to 14mm, and 

that the measured attachment levels increased during the study. This is reflected 

both in the steady increase of the frequencies of extreme (>8mm) observations, and
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also in the increase in the modal observations (Omm for examinations 1 and 2, 1mm 

for examination 3, 2mm for examinations 4, 5 and 6).

Table 5.5 contains the observed increments in attachment level between successive 

observations: an observation only appears in the column labelled 5-3 if the site was 

observed at examinations 5 and 3 but not at examination 4. Positive values for loss 

of attachment mean that disease worsened between observations. The range of 

observed changes in attachment level was -9mm to 12mm. Although the modal 

observation was Omm, it is clear (and unsurprising) that there was a trend for more 

positive than negative observations. The occurrence of very large observed gains, 

as well as losses, in attachment indicates that very large measurement errors can 

occur, albeit infrequently.

We could, of course, divide these tables, for instance by subject or by tooth type, 

in an attempt to facilitate inference which might be made by inspection. Subdivision 

by tooth type would ensure that only one observation for each subject appeared in 

each table, so that the accumulated frequencies contained independent observations 

at each examination or interval. However even this subdivision will result in 28 

tables for inspection. Subdivision by subject might be used to assess, for instance, 

which subjects had sites at which the observed loss of attachment had exceeded 

2mm. Here the problem is even more acute - the number of individuals contributing 

data to tables 5.4 and 5.5 (that is, those examined on at least three occasions) was 

259.

The usual numbers for tooth type (with 1 and 2 representing incisors and 6 and 

7 molars) and their corresponding sequence numbers used here are shown below.

Tooth type 7 6
Right 

5 4 3 2 1 1 2
Left 

3 4 5 6 7 Upper
Sequence number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mouth
Tooth 7 6 5 4 3 2 1 1 2 3 4 5 6 7 Lower
Sequence number 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mouth
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A single, large change at a site may be due to measurement error or to real change. 

If it is due to real change, it is evidence that the constant progression model does 

not hold only if it is also possible to conclude that the site went through periods 

where disease progression was not so large. Even if it were possible to inspect the 

data for each of the 6832 sites, inference about an individual site would have to be 

tempered by the knowledge that, since a large number of measurements have been 

made, large errors will occur.

Inspection of the raw data, or of subsets of the raw data, is not, therefore, pursued 

further as a means of making inference about the nature of disease progression. We 

thus face a problem which is inevitable when dealing with such a substantial 

quantity of data - that data reduction which is necessary to make inference may 

obscure interesting features of the data. This was the problem which led Haffajee 

et al. (1983a) to criticise reduction of the data to subject means, and to propose 

instead to ignore subject effects. We now show that for these data such a practice 

would be wholly mistaken.

5.2 ANALYSIS OF THE OBSERVED RATES OF PROGRESSION AT EACH 

SITE.

In this section we present the results of methods which we have devised which 

use standard linear models to examine factors influencing the mean rate of disease 

progression. We discussed in section 2.1 the recent controversy over claims that 

disease sites progress effectively independently within a mouth. We have also seen 

(section 3) that the model for constant progression can be seen as a null model in
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the sense that the covariance structures of models 2 and 3 can be reduced to the 

covariance structure of the constant progression model by fixing the values of 

certain of their parameters. Before examining whether the rate of progression varied, 

we now use the constant progression model to derive the mean rate of progression 

for each site. This was estimated using the usual least-squares methods. All the 

analyses in this section were performed using SAS (SAS Inc, Cary, NC). The times 

of the examinations were expressed in years by dividing the number of days by 

365.25. This gave a total of 6832 estimated slopes (expressed in mm per year), 

from 259 subjects.

These estimated slopes were then used as the response variable in an analysis of 

the extent to which variation in the slopes were due to subject and to tooth type. 

The output from SAS is shown in Table 5.1. Type I sums of squares (SS) are the 

incremental improvement in the error SS as each effect is added to the model: type 

IK sums of squares are the increase in the error SS when each effect, in turn, is 

omitted from the model.
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TABLE 5 . 1 .  SAS OUTPUT FOLLOWING ANALYSIS OF VARIANCE ON ESTIMATED 
PROGRESSION FOR EACH S IT E .

RATES OF

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: YEARRATE

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 2 8 5 1 1 4 .2 4 2 6 6 6 8 7 0 .4 0 0 8 5 1 4 6 1 3 .4 8

ERROR 6 5 4 6 1 9 4 .6 9 3 5 2 3 1 1 0 .0 2 9 7 4 2 3 7

CORRECTED TOTAL 6 8 3 1 3 0 8 .9 3 6 1 8 9 9 8

R-SQUARE C .V . ROOT MSE YEARRATE MEAN

0 .3 6 9 7 9 4 7 5 .3 1 4 4 0 .1 7 2 4 5 9 7 5 0 .2 2 8 9 8 6 2 7

SOURCE DF TYPE I  SS F VALUE PR >  F

SUBJECT
TOOTH

2 5 8
27

1 1 0 .8 3 8 1 9 7 6 4
3 .4 0 4 4 6 9 2 3

1 4 .4 4  0 . 0  
4 .2 4  0 .0 0 0 1

SOURCE DF TYPE I I I  SS F VALUE PR >  F

SUBJECT
TOOTH

2 5 8
27

1 1 0 .8 8 6 5 1 3 9 4
3 .4 0 4 4 6 9 2 3

1 4 .4 5  0 . 0  
4 .2 4  0 .0 0 0 1

We thus see that there is a marked subject effect, and also that teeth of different 

types progress at different rates. The term ERROR (E) consists of the variation 

not explained by the model. We may suppose that this has two independent 

components; the true variation in the rate of progression of sites within subjects 

(SWS) and the variation in the estimated slopes caused by measurement error (ME). 

We may therefore write dlE -  o2̂  + cr2̂ .

We devised the following method to estimate a 2̂ .  Because the slopes were 

estimated from sites with at least three observations, it was possible (except where 

the observed progression was precisely linear) to estimate the measurement error 

and therefore the variance of the estimated slope. The estimate of the measurement 

error variance is given by usual unbiased mean square error estimate, s2 for the site, 

and the covariance matrix of the estimates (of the intercept and the slope) is given 

by s ^ ’X)'1, where X is the design matrix for the site. For each of the estimated
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slopes, a corresponding estimated error variance was therefore derived. Because 

these estimates are unbiased, the expected value of their sum (assuming that the 

constant progression model holds) is

The value of this sum was 112.9571. Thus an unbiased estimate of o2̂  is given 

by 194.6935-112.9571 = 81.7364. A modified analysis of variance, excluding 

measurement error, is therefore:

SOURCE DF SUM OF SQUARES MEAN SQUARE
MODEL 285 114.2427 0.40085

SUBJECT 258 110.8382 0.42961
TOOTH 27 3.4045 0.12609

SITES WITHIN SUBJECTS 6546 81.7364 0.012486

The use of the intraclass correlation coefficient is rather outdated. However we 

saw in section 2.1 that the value of Rs, the subject intraclass correlation coefficient 

for changes in attachment level, has been the subject of considerable interest in 

recent years. For comparative purposes, we therefore calculate Rs throughout this 

section. The estimate of Rs for these analyses is given by 

0.42961/(0.42961+0.012486) = 0.972. This remarkably high value indicates that for 

this population most of the variation in the mean rate of disease progression at a 

site over the period of the study was explained by variation between subjects.

The mean rate of progression for the sites in each subject was therefore calculated 

and is shown in figure 5.1. Here we are of necessity ignoring the fact that subjects
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had missing teeth of different types: the effect of tooth type is in any case 

comparatively small.
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Figure 5.1. Subject mean rates of attachment loss (mm/year) for the complete 
Sri Lankan data set.

It is clear from figure 5.1 that the rate of disease progression showed a skewed 

distribution. While the modal mean rate of progression was 0.12mm/year, over 

20% of the subjects experienced a mean rate of progression of greater than 

0.3mm/year, with the maximum value being 0.77mm/year. These observations are 

entirely consistent with the conclusions of Loe et al (1986) although derived in a 

completely different manner. The large value of the intraclass correlation coefficient 

suggests that over the period of the study there was considerable homogeneity in 

the rate of disease progression within subjects, so that most of the progressing sites
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belong to a minority of subjects. By far the most important factor which determines 

whether a site progresses is the subject to which the site belongs.

These results suggest that, even in a population as highly at risk as this one, 

periodontal disease progresses significantly (the word is used here in its biological 

sense) only in a minority of subjects. In asking questions about the rate of 

progression, it may therefore be that the only sites of interest are those in the 

minority of subjects for whom there was substantial disease progression. It may be 

that although for the majority of subjects there is no significant disease progression 

at any site, and therefore a very high subject intraclass correlation coefficient, the 

within subject variation is substantially higher for the minority of the subjects who 

experienced disease progression. To investigate whether this was the case, the above 

analyses were repeated for the 20% subjects for whom the mean of the estimated 

rate of progression for all their sites was highest (the quintile of subjects with 

greatest disease progression). The output from SAS is shown in table 5.2.
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TABLE 5 . 2 .  SAS OUTPUT FOLLOWING ANALYSIS OF VARIANCE 
PROGRESSION FOR EACH SIT E  IN  THE QUINTILE OF SUBJECTS 
THE MOST PROGRESSION.

ON RATES 
SHOWING

OF

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: YEARRATE

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 77 1 4 .3 3 0 7 5 7 7 8 0 .1 8 6 1 1 3 7 4

ERROR 1 2 2 7 1 0 3 .8 7 7 3 2 4 6 2 0 .0 8 4 6 5 9 6 0

CORRECTED TOTAL 1 3 0 4 1 1 8 .2 0 8 0 8 2 4 0

MODEL F - 2 . 2 0 PR > F -  0 .0 0 0 1

R-SQUARE C .V . ROOT MSE YEARRATE MEAN

0 .1 2 1 2 3 3 6 6 .1 5 3 3 0 .2 9 0 9 6 3 2 2 0 .4 3 9 8 3 1 9 9

SOURCE DF TYPE I  SS F VALUE PR > F

SUBJECT
TOOTH

50
27

9 .5 2 9 7 5 6 1 1
4 .8 0 1 0 0 1 6 7

2 . 2 5
2 . 1 0

0 .0 0 0 1
0 .0 0 0 9

SOURCE DF TYPE I I I  SS F VALUE PR >  F

SUBJECT
TOOTH

5 0
27

9 .5 8 1 2 9 9 8 9
4 .8 0 1 0 0 1 6 7

2 .2 6
2 . 1 0

0 .0 0 0 1
0 .0 0 0 9

As before, the component of d1E due to measurement error was estimated from the 

sum of the estimated variances of the estimated rates of progression. This sum was 

49.1359, so that an unbiased estimate of the sum of squares due to within subject 

variation is given by 103.8873-49.1359 = 54.7514. The amended analysis of 

variance, as before, becomes:

SOURCE
MODEL

SUBJECT
TOOTH

DF SUM OF SQUARES
77 14.3308

9.5298 
4.8010

50
27

MEAN SQUARE
0.18611

0.19060
0.17781

SITES WITHIN SUBJECTS 1227 54.7514 0.04462

Hence the estimate of Rs is 0.19060/(0.19060+0.04462) = 0.81. This value is still 

substantial, and much higher than has been reported previously. Note also that the
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between-tooth variance is now almost as high as the between subject variance, 

indicating that for subjects at risk, a large proportion of the difference in the rate 

of progression at different sites is explained by the tooth type.

5.3. SITES WITH SIX OBSERVATIONS.

In the next section we shall examine which of the covariance structures of models 

1-3 best describes covariance structures of sample covariance matrices arising from 

the Sri Lankan data. We reviewed the theory of the estimation of covariance 

structures in section 2.2. One of the requirements is that observations be 

independently and identically distributed. Since the covariance structures of 

observations from each of models 1-3 depend both on the vector % of time intervals 

between observations and on the number of observations, we shall be able to use 

only those sites for which all six observations were made. It is therefore of interest 

to us to know how representative these sites are of the larger data set with which 

we have been dealing up till now.

Appendix 5.2 contains tables of attachment level and of increments in attachment 

level for this reduced data set, and also tables of increment in attachment level for 

each site. These 28 tables show the raw data used in the next section. There were 

12354 observations of attachment levels, giving 10295 observed increments on 2059 

sites. As for the whole data set, the measured attachment levels increased during 

the study. The range of measured attachment levels was 0 to 13mm, and the range 

of increments was -6 to 9mm. In each case the extreme values are smaller than for 

the complete data set.
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Once again, an analysis of variance was performed on the estimated rates of 

progression for each site. The results are shown in Table 5.3.

TABLE 5 . 3 .  SAS OUTPUT FOLLOWING ANALYSIS OF VARIANCE ON RATES OF 
PROGRESSION FOR SIT E S WITH S IX  OBSERVATIONS.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE! YEARRATE

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 11 3 2 1 .5 0 6 3 0 3 2 5 0 .1 9 0 3 2 1 2 7 2 5 . 1 6

ERROR 1 9 4 5 1 4 .7 1 0 1 1 9 8 5 0 .0 0 7 5 6 3 0 4

CORRECTED TOTAL 2 0 5 8 3 6 .2 1 6 4 2 3 0 9

R-SQUARE C .V . ROOT MSE YEARRATE MEAN

0 .5 9 3 8 2 7 4 7 .9 8 2 6 0 .0 8 6 9 6 5 7 6 0 .1 8 1 2 4 4 3 2

SOURCE DF TYPE I  SS F VALUE PR >  F

SUBJECT
TOOTH

86
27

2 0 .4 8 1 0 9 3 3 4
1 .0 2 5 2 0 9 9 0

3 1 .4 9  0 . 0  
5 .0 2  0 .0 0 0 1

SOURCE DF TYPE I I I  SS F VALUE PR > F

SUBJECT
TOOTH

86
27

2 0 .6 4 4 2 0 6 8 0
1 .0 2 5 2 0 9 9 0

3 1 .7 4  0 . 0  
5 .0 2  0 .0 0 0 1

We could proceed exactly as before to derive the subject intraclass correlation 

coefficient for these data. Because the data are identically distributed, however, an 

alternative method for estimating the component of variance due to measurement 

error may be used. The design matrix in the linear model for sites with 6 

observations is:

1 o 1 r i o1 365/365.25 i 1.00
1 1095/365.25 , so that X = i 3.00
1 2311/365.25 i 6.33
1 4257/365.25 i 11.66
1 5169/365.25 i 14.15

Hence:

6 36.13 0.3818 -0.0357
X’X = , so that (X’X)-1 =

36.13 386.14 . -0.0357 0.005933 .
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The estimated component of the sum of squares due to measurement error is 

therefore given by 0.005933O2, where o2 is the measurement error variance. 

Reasonable low and high estimates of the measurement error standard deviation, 

from the literature (as discussed in section 2), might be 0.55 and 0.8mm, giving 

the range of o2 as between 0.3 and 0.64mm2. Estimates of the measurement error 

sum of squares are given by SSME = 2059X0.005933XO2 = between 3.665 and 

7.818. Summation of the estimated variances of the slope estimates as before gives 

SSME= 8.524. We would expect the measurement error variance for a longitudinal 

study performed in difficult conditions to be towards the high of 0.64mm2. This 

gives some confidence that the estimates of SSME used above are reasonable.

The amended analysis of variance, derived as before, is:

MEAN SQUARE
0.19032

0.23815 
0.03797

0.003181

SOURCE DF SUM OF SQUARES
MODEL 113 21.5063

SUBJECT 86 20.4811
TOOTH 27 1.0252

SITES WITHIN SUBJECTS 1945 6.1861

The value of Rs for these data is thus 0.987.

Clearly, almost all the variation for these sites is between subject variation. The 

subject means were calculated, and are shown in Figure 5.2 below.

Inspection of Figure 5.2 shows that the mean rate of progression for the subjects 

contributing data at each examination was smaller than for the whole data set. This
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' 7igure 5.2. Subject mean rates of attachment loss for sites with six 
observations.

is unsurprising since some of the most rapidly progressing cases were reported to 

have lost many teeth through periodontal disease by the time of the sixth 

examination. However the removal from the data of some of the most rapidly 

progressing sites may make distinction of models 1-3 in the next section more 

difficult. It will be necessary to bear in mind the strong within subject correlations 

when interpreting the results of the next section.

Mean changes in attachment between examinations were calculated and are shown 

in Appendix 5.3. The mean changes for all sites were 0.2020, 0.6814, 0.6989, 

0.6153 and 0.4313mm. The observed rates of progression were thus 0.5540, 0.9334, 

0.5748, 0.3162 and 0.4729mm per 1000 days. These large fluctuations in the rate 

of progression are of concern since models 1-3 all assume a constant mean rate of
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disease progression. They could be caused by changes in examiner bias between 

observation periods (if, in the notation of sections 3 and 4, wa = x1̂ )  + ê  + bj, 

where bj is the examiner bias for time j). If this is the case then bj will be 

eliminated by allowing for differing rates of progression in the estimation procedure 

(i.e. setting the mean vector for the distribution equal to jx (p unknown) rather than 

\n  (p. unknown, x known). If, however, the rate of disease progression varies over 

time (for instance because the population is more susceptible at certain ages) then 

the covariance structures derived from the models may not describe the true 

underlying distribution.

5.4. VARIATION IN THE RATE OF PROGRESSION.

To test whether, as is assumed by our models for disease progression, the expected 

rate of progression was constant over the period of the study, the following 

procedure was devised. For each site with at least four observations, the usual least 

squares methods were used to fit a multiple regression of attachment level against 

time and time2. The sign of the coefficient of the quadratic term was used as an 

indication of whether the rate of progression at the site had been greater at the 

beginning (negative) or the end (positive) of the study. The number of positive 

signs, out of the total number of sites, was calculated for each subject. Under the 

hypothesis that there is no tendency for disease progression to vary over the period 

of the study, the number of positive signs will show a binomial distribution with 

p=0.5. For each subject, the cumulative probability associated with the observed 

number of positives was calculated: a histogram of these probabilities is shown in
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Figure 5.3. Probabilities near to zero or to one mean that the observation was 

respectively substantially smaller or larger than would be expected at random.
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Figure 5.3. Probability of the observed number of positive quadratic terms for 
each subject, given that they arise from a binomial distribution with p=0.5.

It is clear from Figure 5.3 that a substantial number of subjects had proportions 

of positive signs which could not be ascribed to random error. Over twice as many 

had small numbers of positive signs than had large numbers of positive signs, 

indicating that disease progression tended to be higher at the beginning of the study. 

This accords with the observation (above) that the mean rate of progression was 

higher during the early part of the study. The large number of subjects showing 

non-random proportions of positive signs indicates that disease progression varied 

(though this method does not indicate the nature of the variation), and that variation
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in the rate of progression at a site, as well as (as shown above) the estimated rate 

of progression at sites, was correlated within subjects. The observation that more 

subjects showed increased disease progression at the beginning of the study indicates 

(unless, as discussed above, the cause of this observation is changes in examiner 

bias) that the assumption of temporal homogeneity does not hold for these data. If 

the expected disease progression were constant for each subject then even if the rate 

of progression varied in a subject we would expect approximately equal numbers 

of subjects in whom there had been increased rates of progression at the beginning 

and the end of the study.

5.5. CONCLUSIONS

We have shown in this section that disease progression mainly occurred in a 

minority of subjects, and that the rates of progression in different sites in the same 

subject were strongly associated. This latter was also true in the minority of subjects 

showing rapid disease progression, in whom we have further shown that tooth type 

was also a major factor influencing the rate of progression at a site.

We have further provided evidence that the rate of progression varied, that variation 

in the rate of progression was correlated between different sites in the same subject 

and that the assumption of temporal homogeneity may not hold for these data. 

However the methods used in this section, which are based on existing statistical 

methods, are not designed to distinguish between different models for the nature of 

progression, and therefore gave limited information in this regard. In the next 

section, we use the estimation of covariance structures to compare how well models 

1-3 of sections 3 and 4 describe these data.



156

APPENDIX 5.1 TABLE OF FREQUENCIES OF ATTACHMENT LEVEL AND 

OF LOSS OF ATTACHMENT.

Table 5.4. Frequencies of attachment level by examination number.

EXAMINATION
TIME (DAYS) 0 365 1095 2311 4257 5169

ATTACHMENT EXAMINATION NUMBER
LEVEL 1 2 3 4 5 6 TOTAL

0 3408 2736 1101 83 92 32 7452
1 2062 2116 2463 1509 786 494 9430
2 773 884 1484 1833 1068 1236 7278
3 252 274 704 793 577 684 3284
4 143 210 419 500 399 371 2042
5 85 168 281 392 422 385 1733
6 38 45 88 131 183 158 643
7 28 39 71 120 140 169 567
8 5 11 11 32 53 50 162
9 3 3 14 30 40 42 132
10 0 2 6 14 15 25 62
11 0 0 2 5 14 17 38
12 0 1 2 7 14 22 46
13 0 0 1 24 0 12 37
14 0 0 0 1 0 0 1

TOTAL 6797 6489 6647 5474 3803 3697 32907
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Table 5.5. Frequencies of observed attachment loss by examination interval.

INTERVAL TIME (DAYS)
2-1 365
3-1 1095
3-2 730
4-1 2311
4-2 1946
4-3 1216
5-1 4257
5-2 3892
5-3 3162
5-4 1946
6-2 4804
6-3 4074
6-4 2858
6-5 912

LOSSOF
ATTACHMENT

2-1 3-1 3-2
-9 0 0 0
-7 0 0 0
-6 1 0 0
-5 2 0 2
-4 7 1 8
-3 30 1 6
-2 149 2 50
-1 850 8 408
0 3471 127 2300
1 1428 100 2426
2 358 65 787
3 100 16 233
4 42 8 57
5 16 1 22
6 5 0 8
7 1 0 2
8 0 0 0
9 1 0 0
10 0 0 2
11 0 0 0
12 0

6461
0

329
0

6311

4-1 4-2 4-3 5-1
1 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 5 0
0 0 12 0
0 0 94 1
0 4 445 0
2 13 1787 02 49 1889 0
1 43 714 0
0 4 257 0
0 6 75 0
0 0 31 0
0 1 10 0
0 3 10 0
0 1 5 0
0 0 4 0
0 0 1 0
0 0 1 0
0 0 1 0
6 124 5344 1

TIME PERIOD
5-2 5-3 5-4 6-2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 3 0
0 0 8 0
0 4 15 0
0 10 100 0
2 44 390 0
13 176 951 0
23 289 782 0
10 150 361 2
1 78 178 0
2 41 81 0
0 20 27 0
0 5 21 0
1 1 7 0
0 1 1 0
0 1 3 0
0 1 0 0
0 0 0 0
0 0 1 052 821 2929 2

6-3 6-4 6-5 TOTAL
0 0 0 2
0 0 0 1
0 0 0 1
0 1 0 9
0 2 3 34
0 1 23 92
1 6 141 554

15 40 398 2604
72 166 1100 10178108 144 815 8055
56 67 253 2867
27 24 92 1010
18 9 38 377
11 7 11 146
10 2 12 74
5 1 5 36
2 1 1 12
0 1 1 11
1 1 1 7
1 0 0 2
1 0 0 3

328 473 2894 26075
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APPENDIX 5.2 TABLES OF ATTACHMENT LEVELS AND LOSS OF 

ATTACHMENT BETWEEN OBSERVATION PERIODS FOR SITES WITH SIX 

OBSERVATIONS.

TABLE OF EXAMINATION BY ATTACHMENT LEVEL
ALL DATA
EXAMINATION ATTACHMENT LEVEL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 TOTAL
1 1050 640 205 72 41 29 14 6 2 0 0 0 0 0 2059
2 852 723 283 82 48 43 12 12 2 1 1 0 0 0 2059
3 304 832 496 195 124 60 22 18 3 2 2 1 0 0 2059
4 24 630 708 280 184 140 42 30 9 7 3 0 0 2 2059
5 37 428 586 317 247 217 85 78 32 22 4 4 2 0 2059
6 10 211 682 409 222 224 81 104 36 33 18 13 10 6 2059

ALL 2277 3464 2960 1355 866 713 256 248 84 65 28 18 12 8 12354

TABLES OF TIME PERIOD BY INCREMENT IN ATTACHMENT LEVEL 
TIME PERIOD 1 MEANS INTERVAL BETWEEN EXAMINATIONS 1 AND 2 ETC. 
ALL DATA
ROWS: TIME PERIOD COLUMNS: INCREMENT

■6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 1 1 1 11 39 253 1125 501 101 18 5 1 1 1 0 0 2059
2 0 1 1 1 13 146 751 822 237 69 11 3 3 1 0 0 20593 0 1 0 6 36 171 705 747 265 97 21 9 0 0 1 0 2059
4 0 2 7 12 72 257 714 559 248 113 47 14 12 0 0 2 2059
5 0 0 2 16 102 296 743 581 196 70 28 10 9 4 1 1 2059
ALL 1 5 11 46 262 1123 4038 3210 1047 367 112 37 25 6 2 3 10295
TABLES BY SITE 
SITE NUMBER 1
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 3 13 35 18 5 0 0 0 0 1 0 0 76
2 0 1 0 0 1 4 20 32 12 4 2 0 0 0 0 0 76
3 0 0 0 0 4 7 25 20 11 8 1 0 0 0 0 0 76
4 0 0 0 1 2 8 15 23 15 9 3 0 0 0 0 0 76
5 0 0 0 2 3 13 28 16 7 4 1 1 1 0 0 0 76

ALL 0 1 0 4 13 45 123 109 50 25 7 1 1 1 0 0 380
SITE NUMBER 2
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 11 25 20 5 1 2 0 0 0 0 0 65
2 0 0 0 0 0 6 18 30 11 0 0 0 0 0 0 0 65
3 0 0 0 0 0 5 25 23 8 3 1 0 0 0 0 0 65
4 0 0 0 0 2 4 15 19 18 5 1 1 0 0 0 0 65
5 0 0 0 0 2 13 24 16 4 5 0 1 0 0 0 0 65

ALL 0 0 0 0 5 39 107 108 46 14 4 2 0 0 0 0 325
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SITE NUMBER 3
ROWS

NUMUEK J
: TIME PERIOD COLUMNS: INCREMENT
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL

1 0 0 0 1 2 12 39 14 2 0 0 0 0 0 0 0 70
2 0 0 0 0 0 3 20 33 9 4 0 1 0 0 0 0 70
3 0 0 0 0 0 6 22 29 10 3 0 0 0 0 0 0 70
4 0 0 0 0 2 8 18 25 10 6 1 0 0 0 0 0 70
5 0 0 0 0 4 15 21 18 8 3 0 1 0 0 0 0 70

ALL 0 0 0 1 8 44 120 119 39 16 1 2 0 0 0 0 350
SITE NUMBER 4
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 - 1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 1 0 0 0 12 34 25 3 0 0 0 0 0 0 0 75
2 0 0 0 0 0 5 36 22 9 2 1 0 0 0 0 0 75
3 0 0 0 0 1 4 19 40 8 2 1 0 0 0 0 0 75
4 0 0 1 0 2 10 24 23 7 2 5 1 0 0 0 0 75
5 0 0 0 1 7 10 26 21 7 2 1 0 0 0 0 0 75

ALL 0 1 1 1 10 41 139 131 34 8 8 1 0 0 0 0 375
SITE NUMBER 5
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 7 54 16 5 1 0 0 0 0 0 0 84
2 0 0 0 0 0 3 35 36 7 2 0 1 0 0 0 0 84
3 0 0 0 0 1 5 26 33 14 3 2 0 0 0 0 0 84
4 0 0 0 0 2 14 31 22 9 0 4 2 0 0 0 0 84
5 0 0 0 0 4 13 26 26 10 2 1 1 0 0 1 0 84

ALL 0 0 0 0 8 42 172 133 45 8 7 4 0 0 1 0 420
SITE NUMBER 6
ROWS: TIME 

-6 -5
PERIOD -4 -3 COLUMNS: 

-2 -1
INCREMENT 0 1 2 3 4 5 6 7 8 9 ALL

1 0 0 0 0 1 15 46 15 3 0 0 0 0 0 0 0 80
2 0 0 0 0 1 4 26 39 7 2 0 0 1 0 0 0 80
3 0 0 0 0 3 6 22 33 8 7 0 1 0 0 0 0 80
4 0 0 0 0 4 7 34 21 5 6 1 2 0 0 0 0 80
5 0 0 0 1 5 6 24 33 4 6 0 1 0 0 0 0 80

ALL 0 0 0 1 14 38 152 141 27 21 1 4 1 0 0 0 400
SITE NUMBER 7
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 4 8 56 10 2 0 0 0 0 0 0 0 80
2 0 0 0 0 1 2 15 46 11 4 0 0 1 0 0 0 80
3 0 0 0 0 2 8 33 23 10 4 0 0 0 0 0 0 80
4 0 0 0 0 2 6 32 21 8 9 1 1 0 0 0 0 80
5 0 0 0 2 3 13 29 22 7 2 1 0 0 0 0 1 80

ALL 0 0 0 2 12 37 165 122 38 19 2 1 1 0 0 1 400
SITE NUMBER 8
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 - 1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 2 7 53 15 0 0 0 0 0 0 0 0 77
2 0 0 0 0 0 2 27 35 9 2 2 0 0 0 0 0 77
3 0 0 0 1 1 5 32 29 7 1 1 0 0 0 0 0 77
4 0 0 1 1 3 5 30 21 9 5 1 0 1 0 0 0 77
5 0 0 0 0 3 11 28 26 4 2 0 0 3 0 0 0 77

ALL 0 0 1 2 9 30 170 126 29 10 4 0 4 0 0 0 385
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SITE NUMBER 9
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 2 12 47 15 0 0 0 0 0 0 0 0 77
2 0 0 0 0 0 2 29 30 12 3 1 0 0 0 0 0 77
3 0 0 0 0 0 10 28 25 9 3 0 2 0 0 0 0 77
4 0 0 1 0 2 8 20 32 9 2 3 0 0 0 0 0 77
5 0 0 0 1 2 14 33 14 10 1 1 1 0 0 0 0 77

ALL 0 0 1 2 6 46 157 116 40 9 5 3 0 0 0 0 385

SITE NUMBER 10
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 9 50 19 2 1 0 0 0 0 0 0 82
2 0 0 0 0 0 2 37 28 10 4 1 0 0 0 0 0 82
3 0 0 0 0 2 5 27 31 10 5 1 0 0 0 1 0 82
4 0 0 1 0 2 13 33 16 8 6 2 0 1 0 0 0 82
5 0 0 0 2 6 11 31 24 5 2 0 1 0 0 0 0 82

ALL 0 0 1 2 11 40 178 118 35 18 4 1 1 0 1 0 410
SITE NUMBER 11
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 0 8 36 20 7 0 0 0 0 0 0 0 72
2 0 0 0 0 0 3 29 27 11 1 1 0 0 0 0 0 72
3 0 0 0 0 1 9 24 24 12 2 0 0 0 0 0 0 72
4 0 0 0 0 0 13 22 20 11 3 2 0 1 0 0 0 72
5 0 0 0 0 5 12 25 21 4 4 0 0 0 1 0 0 72

ALL 0 0 0 1 6 45 136 112 45 10 3 0 1 1 0 0 360
SITE NUMBER 12
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 3 9 36 19 4 1 0 0 0 0 0 0 72
2 0 0 0 0 1 5 26 32 7 1 0 0 0 0 0 0 72
3 0 0 0 0 1 3 27 27 8 5 0 1 0 0 0 0 72
4 0 0 0 1 0 15 13 28 9 5 1 0 0 0 0 0 72
5 0 0 0 0 4 12 29 20 5 0 2 0 0 0 0 0 72

ALL 0 0 0 1 9 44 131 126 33 12 3 1 0 0 0 0 360
SITE NUMBER 13
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 2 12 33 18 6 2 0 0 1 0 0 0 74
2 0 0 1 0 0 7 22 27 11 6 0 0 0 0 0 0 74
3 0 0 0 0 5 8 25 25 9 1 1 0 0 0 0 0 74
4 0 2 0 0 1 10 22 21 11 5 1 0 0 0 0 1 74
5 0 0 0 0 3 14 25 25 5 1 1 0 0 0 0 0 74

ALL 0 2 1 0 11 51 127 116 42 15 3 0 1 0 0 1 370
SITE NUMBER 14
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 2 11 44 11 1 2 1 0 0 0 0 0 73
2 0 0 0 0 0 6 20 27 10 9 1 0 0 0 0 0 73
3 0 0 0 1 3 11 16 26 9 5 1 1 0 0 0 0 73
4 0 0 0 2 4 7 21 24 9 5 0 1 0 0 0 0 73
5 0 0 0 0 0 11 29 24 6 2 1 0 0 0 0 0 73

ALL 0 0 0 4 9 46 130 112 35 23 4 2 0 0 0 0 365
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SITE NUMBER 15
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 10 26 18 5 0 0 0 0 0 0 0 60
2 0 0 0 0 0 4 26 20 9 1 0 0 0 0 0 0 60
3 0 0 0 1 1 5 20 21 5 6 1 0 0 0 0 0 60
4 0 0 1 0 4 4 21 18 5 4 0 1 2 0 0 0 60
5 0 0 0 0 4 7 24 17 2 5 1 0 0 0 0 0 60

ALL 0 0 1 1 10 30 117 94 26 16 2 1 2 0 0 0 300
SITE NUMBER 16
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 1 0 0 0 0 5 19 22 5 1 0 0 0 0 0 0 53
2 0 0 0 0 1 10 22 13 4 2 0 0 1 0 0 0 53
3 0 0 0 0 1 4 20 18 8 2 0 0 0 0 0 0 53
4 0 0 0 0 1 9 18 13 7 3 2 0 0 0 0 0 53
5 0 0 0 0 3 5 20 15 8 1 1 0 0 0 0 0 53

ALL 1 0 0 0 6 33 99 81 32 9 3 0 1 0 0 0 265
SITE NUMBER 17
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 2 3 54 14 4 0 0 0 0 0 0 0 77
2 0 0 0 0 2 3 30 33 7 1 0 1 0 0 0 0 77
3 0 0 0 0 3 3 23 36 9 3 0 0 0 0 0 0 77
4 0 0 0 0 2 10 34 20 5 4 2 0 0 0 0 0 77
5 0 0 0 0 3 13 22 28 10 0 1 0 0 0 0 0 77

ALL 0 0 0 0 12 32 163 131 35 8 3 1 0 0 0 0 385
SITE NUMBER 18
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 1 4 39 28 7 1 0 0 0 0 0 0 81
2 0 0 0 0 1 11 33 29 5 1 1 0 0 0 0 0 81
3 0 0 0 0 0 8 27 33 9 2 0 2 0 0 0 0 81
4 0 0 0 2 2 6 29 31 9 2 0 0 0 0 0 0 81
5 0 0 0 0 5 8 34 23 9 1 1 0 0 0 0 0 81

ALL 0 0 0 3 9 37 162 144 39 7 2 2 0 0 0 0 405
SITE NUMBER 19
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 5 51 21 6 0 0 0 0 0 0 0 84
2 0 0 0 0 1 11 27 36 7 2 0 0 0 0 0 0 84
3 0 0 0 0 1 8 27 28 12 5 3 0 0 0 0 0 84
4 0 0 0 1 5 7 33 17 11 5 3 0 2 0 0 0 84
5 0 0 1 1 6 13 23 22 13 2 1 1 1 0 0 0 84

ALL 0 0 1 2 14 44 161 124 49 14 7 1 3 0 0 0 420
SITE NUMBER 20
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 1 0 2 12 31 19 4 1 0 0 0 0 0 0 70
2 0 0 0 0 0 6 24 27 10 2 1 0 0 0 0 0 70
3 0 0 0 0 1 7 32 18 9 3 0 0 0 0 0 0 70
4 0 0 0 0 1 4 32 14 13 4 1 1 0 0 0 0 70
5 0 0 0 0 1 15 22 22 7 1 1 1 0 0 0 0 70

ALL 0 0 1 0 5 44 141 100 43 11 3 2 0 0 0 0 350
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SITE NUMBER 21
ROWS: TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 2 0 11 34 16 8 3 1 1 0 0 0 0 76
2 0 0 0 0 3 8 28 22 11 4 0 0 0 0 0 0 76
3 0 0 0 1 2 10 19 27 12 4 1 0 0 0 0 0 76
4 0 0 0 0 2 14 26 19 7 6 2 0 0 0 0 0 76
5 0 0 1 2 3 13 26 15 7 4 2 0 2 1 0 0 76

ALL 0 0 1 5 10 56 133 99 45 21 6 1 2 1 0 0 380
SITE NUMBER 22
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 11 34 21 6 2 0 0 0 0 0 0 75
2 0 0 0 0 0 9 20 37 6 3 0 0 0 0 0 0 75
3 0 0 0 1 0 10 24 23 12 5 0 0 0 0 0 0 75
4 0 0 0 0 3 15 25 19 6 4 1 2 0 0 0 0 75
5 0 0 0 0 6 7 27 17 10 5 2 0 0 1 0 0 75

ALL 0 0 0 1 10 52 130 117 40 19 3 2 0 1 0 0 375
SITE NUMBER 23
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 2 8 32 25 4 2 0 0 0 0 0 0 73
2 0 0 0 0 0 4 23 34 9 3 0 0 0 0 0 0 73
3 0 0 0 0 1 6 30 23 8 3 2 0 0 0 0 0 73
4 0 0 0 1 1 9 31 10 18 1 1 1 0 0 0 0 73
5 0 0 0 1 4 12 29 12 9 3 1 1 1 0 0 0 73

ALL 0 0 0 2 8 39 145 104 48 12 4 2 1 0 0 0 365
SITE NUMBER 24
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 1 5 53 22 2 0 0 0 0 0 0 0 83
2 0 0 0 0 0 2 32 40 6 3 0 0 0 0 0 0 83
3 0 0 0 1 0 4 33 24 14 4 3 0 0 0 0 0 83
4 0 0 0 1 8 10 34 15 7 3 3 0 1 0 0 1 83
5 0 0 0 2 3 6 31 23 9 1 6 0 1 1 0 0 83

ALL 0 0 0 4 12 27 183 124 38 11 12 0 2 1 0 1 415

SITE
ROWS

NUMBER 25 
: TIME PERIOD 
-6 -5 -4 -3

COLUMNS: 
-2 -1

INCREMENT 
0 1 2 3 4 5 6 7 8 9 ALL

1 0 0 0 1 0 8 56 17 2 0 0 0 0 0 0 0 84
2 0 0 0 1 0 7 36 29 10 1 0 0 0 0 0 0 84
3 0 0 0 0 1 5 30 34 10 3 0 1 0 0 0 0 84
4 0 0 0 1 3 16 26 22 7 3 3 1 2 0 0 0 84
5 0 0 0 0 6 8 33 27 6 3 1 0 0 0 0 0 84

ALL 0 0 0 3 10 44 181 129 35 10 4 2 2 0 0 0 420
SITE
ROWS

NUMBER 26 
: TIME PERIOD 
-6 -5 -4 -3

COLUMNS: 
-2 -1

INCREMENT 
0 1 2 3 4 5 6 7 8 9 ALL

1 0 0 0 1 1 8 47 14 1 0 0 0 0 0 0 0 72
2 0 0 0 0 1 5 36 23 7 0 0 0 0 0 0 0 72
3 0 0 0 0 0 4 23 33 11 1 0 0 0 0 0 0 72
4 0 0 0 1 3 10 30 18 7 3 0 0 0 0 0 0 72
5 0 0 0 0 2 7 36 17 5 4 1 0 0 0 0 0 72

ALL 0 0 0 2 7 34 172 105 31 8 1 0 0 0 0 0 360
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SITE NUMBER 27
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 0 3 8 26 14 0 0 0 0 0 0 0 0 51
2 0 0 0 0 0 3 25 18 4 1 0 0 0 0 0 0 51
3 0 0 0 0 1 0 23 18 4 3 1 1 0 0 0 0 51
4 0 0 1 0 6 6 18 14 3 0 2 0 1 0 0 0 51
5 0 0 0 1 3 4 19 17 6 1 0 0 0 0 0 0 51

ALL 0 0 1 1 13 21 111 81 17 5 3 1 1 0 0 0 255
SITE NUMBER 28
ROWS : TIME PERIOD COLUMNS: INCREMENT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ALL
1 0 0 0 1 0 9 35 15 2 0 1 0 0 0 0 0 63
2 0 0 0 0 0 9 29 17 6 1 0 0 0 1 0 0 63
3 0 1 0 0 0 5 23 23 9 1 1 0 0 0 0 0 63
4 0 0 1 0 3 9 27 13 5 3 1 0 1 0 0 0 63
5 0 0 0 0 2 10 19 20 9 3 0 0 0 0 0 0 63

ALL 0 1 1 1 5 42 133 88 31 8 3 0 1 1 0 0 315
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APPENDIX 5.3. MEAN CHANGES IN ATTACHMENT LEVEL BETWEEN

OBSERVATION PERIODS.

ROWS : SITE COLUMNS s TIME
1 2 3 4 5 ALL

1 0.1711 0.8553 0.7237 1.0132 0.4211 0.6368
2 0.4308 0.7077 0.7231 1.0923 0.4154 0.6738
3 -0.0143 0.9286 0.7429 0.7857 0.3571 0.5600
4 0.1867 0.6000 0.8000 0.6667 0.2400 0.4987
5 0.2381 0.6905 0.8452 0.5714 0.5714 0.5833
6 0.0500 0.7375 0.7875 0.6000 0.5625 0.5475
7 -0.0250 1.0250 0.5375 0.7875 0.3750 0.5400
8 0.0519 0.8442 0.5195 0.5974 0.5325 0.5091
9 -0.0519 0.8442 0.6753 0.6753 0.3247 0.4935
10 0.1829 0.7561 0.8415 0.5244 0.1951 0.5000
11 0.3194 0.7361 0.5972 0.7222 0.3611 0.5472
12 0.2083 0.5833 0.8056 0.6528 0.2500 0.5000
13 0.3514 0.7568 0.4324 0.6622 0.2973 0.5000
14 0.0685 0.9863 0.6575 0.5616 0.4795 0.5507
15 0.2667 0.6167 0.7167 0.6833 0.4167 0.5400
16 0.4528 0.3962 0.6415 0.6226 0.5094 0.5245
17 0.1948 0.6234 0.7013 0.4675 0.4286 0.4831
18 0.4444 0.4074 0.7284 0.4815 0.3704 0.4864
19 0.3095 0.5119 0.8214 0.6905 0.4405 0.5548
20 0.1429 0.7286 0.5143 0.7857 0.4429 0.5229
21 0.4342 0.5526 0.6579 0.5395 0.5132 0.5395
22 0.3467 0.6533 0.6533 0.4800 0.6400 0.5547
23 0.3699 0.7808 0.6575 0.6027 0.4247 0.5671
24 0.2289 0.7108 0.8313 0.4337 0.7590 0.5928
25 0.1190 0.5000 0.7262 0.5833 0.3810 0.4619
26 0.0417 0.4167 0.7500 0.3056 0.4444 0.3917
27 0.0000 0.5098 0.8235 0.2353 0.3725 0.3882
28 0.1746 0.4762 0.6032 0.3651 0.5238 0.4286
ALL 0.2020 0.6814 0.6989 0.6153 0.4313 0.5258
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6

ESTIMATION OF COVARIANCE STRUCTURES 

FOR THE SRI LANKA DATA.
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In this section we apply the methods described in section 2.2 in order to assess 

which of models 1-3 of section 3 best describes the progression of periodontal 

disease in the study. Because only limited assumptions were made about the various 

distributions which are defined in the formulation of the models, no distribution for 

the observed increments in attachment is available on which to base an estimation 

procedure. We can thus either make assumptions about the likelihood of the 

observed increments or use procedures which do not depend on specification of a 

particular distribution, but rather on assumptions about its moments. We choose the 

latter, and use the methods of Browne (1974, 1982, 1984) for the estimation of the 

parameters of the three models for disease progression.

The data analyzed are, as described in section 5.3, from those sites for which there 

were measurements at each of the six examinations. We have already ascertained 

that there is a strong within subject correlation of the observed rates of progression. 

Since estimation procedures require independent identically distributed observations, 

the data were partitioned by tooth type into 28 separate data sets, so that data from 

no more than one tooth per subject was contained in any data set. The raw data are 

shown in appendix 6.2. We thus have 28 data sets, whose distribution will be 

correlated. Although the estimates of parameters based on the different data sets will 

therefore also be correlated, consistency of parameter estimates between the data 

sets will provide evidence that the values reflect the nature of the underlying 

distribution rather than random variation. The number of teeth in each data set is 

shown below. The times between examinations (the vector x of section 3) were 365, 

730, 1216, 1946 and 912 days.
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Jhe sample covariance matrix S = (N-l)_12(wi - w)(wj - w)’ forms the basis for
i*=i

GLS estimation procedures. A first step in the analysis is thus to inspect the sample 

covariance matrix. We have adopted the following form for the presentation of a 

real symmetric matrix S of dimension 5:

S 11

S12

S22

S23

S 13

S 14
S33

S34

S24

S25

S44

S45

S35

S55

This form enables the diagonals and one-off-diagonals of S, which are the important 

features of the covariance structures, to be easily discerned. We have:
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The 28 sample covariance matrices are shown in Appendix 6.1. A "mean" sample 

covariance matrix, S, was derived by calculating the mean value of each element 

of these 28 matrices. The result, with the usual estimate of the standard error of 

each element in parentheses, was:
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0.860(.071)
-0.450(.047)

1.007(.056) 0.002(.018)
-0.425(.038) -0.053(.027)

1.311(.060) 0.025(.030) 0.061(.033)
-0.373(.043) 0.006(.033)

2.086(.041) -0.019(.041)
-0.488(.052)

1.859(.116)

The component of the structure due to measurement error has the form OjBj. By 

inspection, it is clear that the diagonal and off- diagonal elements of S contain, as 

expected, a large component due to measurement error.

We discussed the likely measurement error variance for these data in section 5.2. 

If we take the same high and low estimates (0.64 and 0.3mm2) respectively, we 

may derive estimates of the underlying sample covariance matrix, excluding the 

effect of measurement error. Subtracting 0.64 Bi from S gives:

-0.420
0.190

-0.273 0.002
0.215 -0.053

S’ = 0.031 0.025 0.061
0.267 0.006

0.806 -0.019
0.152

0.579

Subtracting 0.3 Bx from S gives:

0.260
-0.150

0.607 0.002
-0.125 -0.053

S” = 0.711 0.025
-0.073 0.006

1.486 -0.019
-0.188

1.259



169

While some of the diagonal elements of S* are negative and all of the 

one-off-diagonal elements of S’ are positive, all one-off-diagonal elements of S” are 

still negative. This appears to confirm that the true measurement error variance for 

the study lies between the two values.

The six elements of S not affected by the value of Oj (S13 S14 and S35)

are all small (absolute value 0.07 or less), with two being negative. These 

components, which are positive in each model, are affected by the value of 02 in 

all models, and of 04 and 05 in model 3. Thus the value of these elements suggests 

that the between-site variation is small, and that the correlations between different 

increments which may be observed under model 3 are small where the increments 

are separated by more than one examination.

6.2 SAMPLE KURTOSIS.

The choice of which of the generalised least-squares methods should be used for 

estimation of covariance structure parameters depends on whether the underlying 

distribution has excess kurtosis compared to the normal distribution. Mardia (1970) 

proposed b^  = N -^K Q ^-S’S ^ - X ) } 2
i=l

as a measure of kurtosis and showed that if the distribution of {XJ is multivariate 

normal then B = [b^ - {p(p+2Xn-l)/(n+l)}]/v^{8p(p+2)/n} is asymptotically 

distributed as N(0,1). The values of b^  and B were calculated for each of the 28 

data sets. The results are shown in appendix 6.2. For each site the value of B 

clearly indicated that the underlying distribution possessed excess kurtosis. The
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asymptotically distribution-free methods of section 2.2.3.2 may therefore be the most 

appropriate for these data.

6.3. ESTIMATION OF COVARIANCE STRUCTURES.

The generalized least squares methods of Browne described in section 2.2.3, and 

the computer software described in section 3.3, were used to estimate the parameters 

of models 1-3. Note that these methods assume E[w] = ]i (y, unknown), rather than 

E[w] = \ix (p unknown, t  known) as in each of our models. However, we clearly 

have E[wJ = px^ so that S is a consistent estimator of Z(y). Further, the possible 

variation in examiner bias between examinations (see section 5.3) suggests that it 

may be sensible to allow for differing observed rates of progression.

Both the GLS (adf) and GLS (nk) methods were used, since neither can be 

considered to be clearly more suited to the analysis of these data. While the GLS 

(nk) method assumes that the underlying distribution of the data has no excess 

kurtosis, the GLS (adf) methods are computationally expensive, and have been 

reported to produce parameter estimates with negative finite-sample bias (Browne 

1984). The vector % was expressed in thousands of days, in order to ensure that the 

parameters were of similar magnitudes.

Parameters were estimated for each model, using each generalized least-squares 

method, on each data set (i.e. each site), using the software described in section

3.3. For model 3, a number of different sets of initial values were used. The sets 

of values were combinations of the means of the estimates of {0 2,0 2 ,0 3} for model
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1, the alternative values .5 for 02 and .8 for 03, and the pairs (5,5), (1,1) and (10,.1) 

for (04,05). This gave the following combinations.

SET METHOD 0j 02 03 04 05
NUMBER

l nk .314 .016 .314 5 5
2 nk .314 .016 .314 1 1
3 nk .314 .016 .8 5 54 nk .314 .016 .8 1 1
5 nk .314 .5 .314 5 5
6 nk .314 .5 .314 1 1
7 nk .314 .016 .314 10 .1
8 nk .314 .5 .314 10 .1
9 nk .314 .016 .8 10 .1
10 nk .314 .5 .8 10 .1
SET METHOD 0! e2 03 04 05

NUMBER

1 adf .315 .01 .235 5 5
2 adf .315 .01 .235 1 1
3 adf .315 .01 .8 5 54 adf .315 .01 .8 1 1
5 adf .315 .5 .235 5 5
6 adf .315 .5 .235 1 1
7 adf .315 .01 .235 10 .1
8 adf .315 .5 .235 10 .1
9 adf .315 .01 .8 10 .1
10 adf .315 .5 .8 10 .1

The parameter estimates corresponding to the best goodness of fit achieved were 

then selected. The iterations for model 3 almost invariably ended when no value of 

the parameter gave a reduction in the discrepancy function, suggesting that the 

function was at a local minimum. Although there were sites for which all or nearly 

all of the sets of initial values gave the same goodness of fit, it was more common 

for between 1 and 4 of the sets to give the best goodness of fit. On 8 and 12 

occasions for the nk and adf methods respectively, only 1 of the sets gave rise to 

the best value.
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The results of Steiger et al. (discussed in section 2.2.7) suggest that, given that the 

covariance structures of models 1-3 are nested, it will be more important to examine 

the improvement in goodness of fit achieved by using model 3 over model 2 over 

model 1 than to test the goodness of fit of any of the models. We also calculate 

cross-validation indices and incremental fit indices as aids to model selection.

6.3.1 GOODNESS OF FIT.

The goodness of fit statistics and differences in goodness of fit between the three 

models, together with a table of summary statistics and p values, and a table of the 

relevant points of the x2 distribution are shown in Appendix 6.3. The values shown 

for model 3 are those for the best goodness of fit achieved.

The results for the two methods follow similar patterns, although the fit of the 

models is generally better for the ADF method than for the method assuming no 

kurtosis. Thus, taking p=0.05 as a cutoff; model 2 fails fully to account for the 

variation in 16 and 22 of the data sets for the adf and nk methods respectively.

Model 2 fits statistically significantly (again taking 0.05 as the cut off) better than 

model 1 in 16 and 11 of the data sets for the adf and nk methods respectively. 

However, it is noteworthy that for around half of the sites there is no evidence, 

even in a long term study such as this, that the rate of disease progression varied.

The improvement in goodness of fit of model 3 over model 2 was (to within five 

decimal places) zero for 16 of the data sets, for each GLS method. On no occasion
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did the increase in goodness of fit reach the upper 10% point of the x2 (2 df) 

distribution. However, the results of section 5 must be borne in mind. The 

improvement in the goodness of fit of model 2 over model 1 was never as large 

as that achieved in simulation experiments 1 to 3, and the largest improvements 

were of the order of those achieved in experiment 4, where the data were in fact 

generated using model 3. It may therefore be that the power of the asymptotic 

chi-square tests is insufficient to distinguish between the two models, because of the 

relatively small variation in the rate of progression .

6.3.2 NULL MODELS.

In order to test the relative amounts of variation due to measurement error and 

between subject variation, two more models were fitted. These estimated the effect 

of Bj and 02 separately, by using a single matrix (Bj and B2 respectively) in the 

covariance structure. The results of fitting these models is shown in appendix 6.4. 

This shows that, although the omission of either component of model 1 caused a 

large decrease in goodness of fit, by far the largest source of variation is the 

measurement error. The mean goodness of fit statistic increased by around half 

when B2 was omitted, but over fourfold when B: was omitted.

The presence of measurement error as a large proportion of the variation means that 

an appropriate "null" model, (cf Bentler and Bonnett (1980) and section 2.2.7) will 

be one where it is assumed that the only component of the covariance structure is 

the component OjBj due to measurement error.
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6.3.3 INCREMENTAL FIT INDICES.

The null model M0: 2(0) = 0 ^  was used to calculate incremental fit indices as 

discussed in section 2.2.7. The fit index chosen was Bollen’s (1986) modification 

of Bentler and Bonnett’s nonnormed fit index (equation 2.62). The chi square 

goodness of fit statistics and incremental fit indices, together with summary statistics 

for moving from model 0 to 1, 1 to 2 and 2 to 3 are shown in Appendix 6.5.

The greatest improvement in fit as measured by the nonnormed fit index was in 

moving from the null model to model 1. The mean of R12 was a little over half that 

for Rq! for the adf method, a little under half for the nk method. The mean of R^ 

was close to zero for both methods.

6.3.4 CROSS VALIDATION COEFFICIENTS.

We also discussed in section 2.2.7 the use of cross-validation to aid the selection 

of models for covariance structures. Single-sample cross-validation indices c* 

(equation 2.66) were calculated for each sample and each model. Appendix 6.6 

contains the cross-validation coefficients (Ck for model k) and differences between 

the coefficients, together with summary statistics.

The single sample cross-validation index is simply the discrepancy function plus a 

penalty for the number of parameters, so that models with less parameters are 

favoured. This is reflected in that the values of c are similar for models 1 and 3. 

The smallest values of c are, on average, for model 2.
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6.3.5 PARAMETER ESTIMATES FOR THE THREE MODELS.

The parameter estimates given by each of the GLS methods and each of the three 

models, together with summary statistics, are shown in appendix 6.7. For model 3, 

the parameters 64 and 05 are those of the distribution of X, the rate of changes in 

slope (see section 2). This is in contrast to model 2, where the parameters of the 

distribution of X are combined with other parameters. We can thus estimate the rate 

of changes in slope from model 3 as (04+2)05. This product is also shown, in the 

column labelled RATE, in appendix 6.7.

The parameter estimates are similar for the two methods, although the estimates for 

the ADF method are rather smaller. This may reflect the negative bias reported by 

Browne (1984). The mean estimate of 0j (the measurement error variance) for 

models 1, 2 and 3 respectively is (0.414, 0.314, 0.334)mm2 for the nk method and 

(0.389, 0.315, 0.330)mm2 for the adf method. These values appear entirely consistent 

with those reported in the literature (see section 2.1).

The estimated values of 02 (the between-subject variation) were surprisingly small 

for models 2 and 3 where the estimate was less than 10"5 for over half of the sites, 

given the heterogeneity of the subjects noted in section 5. in the study (Loe 1986) 

this was surprising. These models may be misspecified in a manner which tends 

to bias the estimate of 02 towards zero. When model 1 was used the estimate of 02 

was zero only once.



176

For model 2, the estimates of 03 for the two methods were clearly strongly 

associated, although they were smaller for the adf method. Where the estimate was 

zero or near zero the improvement in the goodness of fit of model 2 over model 

1 was negligible.

For model 3, the parameter estimates were as expected given the small increase in 

goodness of fit over model 2. The estimates of 01-03 were similar for the two 

models. The estimates of 04 and 05 showed wide variation, as in section 5.

For data sets where the difference in goodness of fit of models 2 and 3 was greater 

than 0.01, the estimated rates of changes in slope, showed a surprising homogeneity, 

with every estimate for the nk method lying between 0.415 and 4.061 changes per 

1000 days, and all but one of the estimates for the adf method lying between 0.397 

and 3.105 per 1000 days. Note that the variance of this rate, which is given by 

(04+2)052, is almost always estimated to be near zero since the estimate of 05 is 

nearly always small. However, given the failure to demonstrate that model 3 holds, 

these results cannot be taken as more than a indication of the possible frequency 

of slope changes which requires more evidence.

6.4 DISCUSSION

These results do not lead to the unequivocal acceptance of any of models 1 to 3, 

although it seems clear that model 1 is accepted over the null model M0.
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Both the goodness of fit statistics and the cross-validation indices suggest that 

model 2 is a better description of the data than model 1. However, as noted above, 

there were a substantial number of sites where model 2 did not significantly 

improve on model 1. The main evidence against model 2 is that the estimates of 

the between-subject variance (0J are nearly always zero. The results of section 5 

where we showed both that there was a large subject effect and large intra-subject 

heterogeneity, indicate that 02 must be greater than zero. This suggests that model 

2 is not an accurate description of the underlying distribution. It also suggests that 

the estimate of 03 (the variance component representing variation in the rate of 

progression) is artificially inflated by variation which is in reality between site 

variation.

We have provided no positive evidence that model 3 is the best description of the 

data. However the results of section 5 lead us to emphasise that failure to provide 

evidence for model 3 should not lead to unequivocal acceptance of model 2, leading 

to the conclusion that changes in the rate of disease progression occurred frequently in 

comparison to the time between observations. It certainly appears that changes in 

the rate of disease progression do not account for a large part of the observed 

variation, so that for these data, we are not likely to be able to distinguish models 

2 and 3.

Each of the models assumes that the rate of progression of disease is constant over 

time. The breaching of this assumption for these data (which were collected over 

a substantial proportion of an adult life, may be an explanation for these results.
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We noted above that calculation of the mean rates of progression between 

observations appeared to indicate that the rate of progression had changed between 

observation periods. This was also reported by Loe et al. (1978c), who reported that 

the rate of destruction showed a significant increase when subjects were in their late 

twenties and throughout the thirties. It may therefore be that variation in the rate 

of progression took place, but was correlated between subjects. This certainly might 

account for the differences between fitting models 1 and 2 discussed above.

6.5. CONCLUSIONS.

We have estimated the parameters of models 1, 2 and 3 using each of the GLS 

methods described in section 2.2. The estimates of the measurement error variance 

were consistent with the values reported in the literature. For models which assumed 

that the rate of progression varied, the estimates of the between-subject variation 

were surprisingly small given the heterogeneity of the sample population.

The improvement in goodness of fit of models 2 and 3 over model 1 showed that 

for around half the sites there was evidence that the rate of disease progression 

varied. However the small estimates of 02 indicate that neither of these models is 

a satisfactory description of the data. Because the variation in the rate of disease 

progression is a relatively small component of the total variation, models 2 and 3 

are likely to be hard to distinguish.

We may conclude that we have provided evidence that the rate of disease 

progression varied, but that this variation is as likely to be due to changes in the 

rate of progression over time as to random bursts of activity.
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APPENDIX 6.1 SAMPLE COVARIANCE MATRICES.

Site Sample Covariance Matrix
1 1.58

- 1 . 0 0
1.67 -.11

-.44 -.11
1.80 .08 -.13

-.93 .13
2.12 .16
2.49

1.75

1.80

1.70

-.65

1.31
-.51.74 .04
-.11 -.15

1.08 .17 .16
-.35 -.08

1.74 .18
-.45

.74
-.36

1.05 .03-.32 -.09
.92 .04 .09

-.37 .24
1.56 -.30

-.17

.96
-.48

.95 .04
-.57 -.05

.89 .14 -.26
-.32 .03

2.36 .01
- . 6 6

.62
-.37

.84 .06
-.36 -.11

1.17 .05 .13
-.09 -.34

2.01 -.24
-.33

2.30
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Site Sample Covariance Matrix
6 .58

-.43
1.08 .07

-.58 -.21
1.54 .11

-.30 -.15
1.96 -.16

-.18
1.74

.53
-.39

1.06 .03
-.36 -.12

1.16 .44
-.24 -.01

1.76 -.13
- . 2 2

2.49

.39
-.27

.90 .01
-.40 -.10

1.04 .23
-.29 .24

2.22 .06
-.61

2.23

.58
-.36

.90 -.19
-.13 -.06

1.49 -.09
-.38 .14

1.72 -.20
- . 2 0

1.67

10 .57
-.23

.93 -.08
-.47 -.07

1 . 8 6  . 0 2
-.50 -.27

2.28 -.08
-.46

1.69

11 .81
-.24

.84 .07
-.45 -.19

1.09 .02
-.18 -.09

1.89 -.01
-.17

2.04

.16

-.05

-.25

.04

.41

.01
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Site Sample Covariance Matrix
12 .87

-.40
.75 -.09

-.42 -.14
1.26 .08

-.55 -.27
1.67 -.12

-.18
1.35

13 1.46
-.79

1.45 -.03
-.39 -.40

1.37 -.12
-.73 .033.27 .17
-.54

1.23

14 1.06
-.62

1.37 -.14
-.88 .28

2.06 -.05
-.67 .01

2.06 -.03 
-.25

1.06

15 .81
-.29

.78 .01
-.26 .02

1.66 -.24
-.57 .30

3.03 .20
-.51

1.67

16 1.56
-1.16

1.71 -.03
-.62 -.13

1.04 .15
-.37 .08

1.78 -.18
-.40

1.45

17 .50
-.29

1.00 .06
-.32 .01

1.00 .15
-.40 -.13

1.44 .08
-.39

1.25

.13

.18

- . 0 2

-.06

. 0 0

.03
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Site Sample Covariance Matrix
18 .83

-.51
.94 .16

-.29 .02
1.28 -.10

-.31 .06
1.23 .29

-.33
1.26

19 .55
-.29

.90 -.05
-.43 -.26

1.50 .26
-.15 -.05

2.67 -.33
-.75

2.59

20 1.14
-.47

1.01 .04
-.39 .23

1.07 -.15
-.02 .19

1.56 -.19
- . 2 2

1.53

21 1.74
-.84

1.32 .04
-.65 .031.61 -.09
-.29 .10

1.77 .10
-.91

3.61

22 .93
-.42

.88 -.04
-.31 .09

1.39 -.30
.10 .24

2.09 -.64
-.62

2.48

23 .90
- . 2 1

.78 .09
-.38 -.06

1.28 .12
-.24 -.31

1.77 .20
-.69

2.44

- . 2 2

.07

.14

.13

.03

.58
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Site Sample Covariance Matrix
24 .42

-.13
.62 .03

-.22 .06
1.46 -.13

-.26 -.03
3.30 .32

- 1.11
2.89

25 .49
-  29

.88 ' .06
-.48 -.14

1.09 -.02
-.30 .14

2.78 -.03
-.42

1.37

26 .55
-.33

.67 .04
-.27 -.06

.70 .08
-.40 .00

1.37 -.03 
-.45

1.26

27 .68
- . 2 2

.65 -.24
-.35 .04

1.43 -.10
-.80 -.05

2.74 .17
-1.17

1.36

28 .89
- . 6 8

1.51 .17
-1.05 .18

1.47 -.05
-.55 .00

2.27 .16
-.63

1.35

.07

-.05

.05

. 2 0

.12
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APPENDIX 6.2 MULTIVARIATE KURTOSIS. 

B = [bj, - {p(p+2)(n-l)/(n+l)}]/V,{8p(p+2)/n}

Site b2,P B
1 46.75877 6.59981
2 39.84813 2.84690
3 41.52785 3.75688
4 48.20978 7.31340
5 50.20987 8.78185
6 50.18551 8.57893
7 51.93442 9.51376
8 59.68068 13.41328
9 48.84017 7.72847
10 55.86545 11.74801
11 45.97390 6.05104
12 40.21792 3.13222
13 56.48311 11.52401
14 37.40868 1.71288
15 44.14248 4.76335
16 46.04460 5.36915
17 47.89356 7.23206
18 48.04930 7.47775
19 41.15993 3.82500
20 44.32902 5.15747
21 41.10833 3.65599
22 39.79943 2.96063
23 41.51678 3.81048
24 43.95750 5.33065
25 48.32330 7.74854
26 41.83275 3.95109
27 40.61322 2.97014
28 62.48163 13.55449
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APPENDIX 6.3. GOODNESS OF FIT OF MODELS 1-3.

SITE METHOD MODEL 1 MODEL 2 MODEL 3 DIFF 2-1 DIFF 3-1 DIFF 3-2
(df 13) (df 12) (df 10) (df 1) (df 3) (df 2)

1 nk 18.1450 16.5177 16.5041 1.6274 1.6409 0.01359
2 nk 23.6708 21.5683 19.9641 2.1025 3.7068 1.60428
3 nk 21.4660 15.9048 15.9048 5.5612 5.5612 0.00000
4 nk 38.3423 38.3423 38.3423 0.0000 0.0000 0.00000
5 nk 43.8149 36.5947 36.2352 7.2202 7.5798 0.35959
6 nk 51.7203 38.2332 38.2332 13.4871 13.4871 0.00000
7 nk 45.2322 35.5888 35.5888 9.6434 9.6434 0.00000
8 nk 65.9509 42.8879 42.8879 23.0630 23.0630 0.00000
9 nk 46.7730 32.1678 32.1678 14.6052 14.6052 0.00000
10 nk 56.9228 30.8890 30.8890 26.0339 26.0339 0.00000
11 nk 25.3894 20.6480 20.5775 4.7414 4.8119 0.07047
12 nk 35.0191 33.6933 33.4607 1.3258 1.5584 0.23261
13 nk 21.5616 21.3767 21.3756 0.1849 0.1860 0.00107
14 nk 23.9305 23.5271 23.1656 0.4034 0.7649 0.36145
15 nk 25.9910 21.1699 20.9026 4.8211 5.0884 0.26733
16 nk 29.2324 29.2324 29.2324 0.0000 0.0000 0.00000
17 nk 24.1323 12.1352 12.1352 11.9971 11.9971 0.00000
18 nk 29.3471 21.5059 20.4712 7.8412 8.8759 1.03466
19 nk 57.3903 39.2618 39.2618 18.1285 18.1285 0.00000
20 nk 12.4326 11.5560 10.8946 0.8766 1.5379 0.66138
21 nk 22.3689 22.3689 22.3664 0.0000 0.0025 0.00253
22 nk 31.6753 25.3103 23.6271 6.3651 8.0482 1.68313
23 nk 35.7879 22.4290 22.4290 13.3590 13.3590 0.00000
24 nk 63.3936 35.5664 35.5664 27.8272 27.8272 0.00000
25 nk 45.3407 34.3083 34.3083 11.0324 11.0324 0.00000
26 nk 19.4860 17.2754 17.2754 2.2106 2.2106 0.00000
27 nk 25.3620 21.3255 21.3255 4.0365 4.0365 0.00000
28 nk 37.2938 37.2938 37.2938 0.0000 0.0000 0.00000

p value
Minimum Maximum Mean >0.1 <0.1 <0.05 <0.025 <0.01 <0.005

MODEL 1 12.4326 65.9509 34.8990 3 2 4 3 2 14
MODEL 2 11.5560 42.8879 27.0957 5 1 7 2 0 13
MODEL 3 10.8946 42.8879 26.8709 3 2 2 7 1 13
DIFF 2-1 0 27.8272 7.8034 11 0 3 2 2 10
DIFF 3-1 0 27.8272 8.0281 15 1 2 2 1 7
DIFF 3-2 0 1.6831 0.2247 28 0 0 0 0 0

Points of the x2 distribution

df 0 . 1 0.05 0.025 0 . 0 1 0 0.005
1
2
3
10
12
13

2.7055
4.6052
6.2514
15.9872
18.5493
19.8119

3.8415
5.9915
7.8147
18.3070
21.0261
22.3620

5.0239
7.3778
9.3484

20.4832
23.3367
24.7356

6.6349
9.2103
11.3449
23.2093
26.2170
27.6882

7.8794
10.5967
12.8382
25.1882
28.2995
29.8195
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SITE METHOD MODEL 1 MODEL 2 MODEL 3 DIFF 2-1 DIFF 3-1 DIFF 3-2
(df 13) (df 12) (df 10) (df 1) (df 3) (df 2)

1 adf 19.7298 19.2282 19.2280 0.5016 0.5018 0.00017
2 adf 32.4622 28.0504 26.7373 4.4119 5.7249 1.31307
3 adf 22.0897 13.0564 13.0506 9.0334 9.0391 0.00574
4 adf 41.1833 41.1833 41.1833 0.0000 0.0000 0.00000
5 adf 27.6042 19.3923 19.3923 8.2119 8.2119 0.00000
6 adf 43.3625 27.5473 27.5473 15.8151 15.8151 0.00000
7 adf 19.0775 13.3139 13.1209 5.7636 5.9566 0.19303
8 adf 31.6930 29.8102 29.8102 1.8827 1.8827 0.00000
9 adf 30.5279 21.2489 21.2489 9.2790 9.2790 0.00000
10 adf 31.7313 21.8643 21.8643 9.8670 9.8670 0.00000
11 adf 18.6846 15.3846 15.3846 3.3001 3.3001 0.00000
12 adf 27.1089 27.1089 23.7608 0.0000 3.3481 3.34812
13 adf 10.3278 10.2483 10.2483 0.0794 0.0794 0.00000
14 adf 31.9447 31.7577 31.1057 0.1870 0.8391 0.65205
15 adf 17.3332 17.3327 17.3314 0.0005 0.0019 0.00134
16 adf 23.3975 23.3975 23.3975 0.0000 0.0000 0.00000
17 adf 22.5639 10.9665 10.9665 11.5974 11.5974 0.00000
18 adf 27.1215 23.4602 22.3509 3.6613 4.7706 1.10922
19 adf 41.3090 28.2458 28.2458 13.0632 13.0632 0.00000
20 adf 21.7852 17.6210 16.6269 4.1642 5.1584 0.99419
21 adf 24.3588 24.3181 24.1148 0.0406 0.2440 0.20339
22 adf 22.9009 19.9129 18.9425 2.9880 3.9584 0.97035
23 adf 34.1740 24.1688 24.1688 10.0052 10.0052 0.00000
24 adf 48.6747 32.5448 32.5448 16.1299 16.1299 0.00000
25 adf 27.9697 26.3715 26.3715 1.5981 1.5981 0.00000
26 adf 14.6537 14.4772 14.4468 0.1766 0.2070 0.03040
27 adf 16.3992 13.4239 13.4239 2.9753 2.9753 0.00000
28 adf 21.6068 21.6068 21.6068 0.0000 0.0000 0.00000

Minimum Maximum Mean >0.1 <0.1 <0.05
p value 

<0.025 <0 .01
MODEL 1 10.3278 48.6747 26.8491 7 3 4 3 1
MODEL 2 10.2483 41.1833 22.0372 9 3 3 4 5
MODEL 3 10.2483 41.1833 21.7222 7 2 3 4 4
DIFF 2-1 0 16.1299 4.8119 12 4 2 1 0
DIFF 3-1 0 16.1299 5.1269 19 0 3 2 1
DIFF 3-2 0 3.3481 0.3150 28 0 0 0 0

Points of the x2 distribution

df 0 . 1 0.05 0.025 0 . 0 1 0 0.005
1
2
3
10
12
13

2.7055
4.6052
6.2514
15.9872
18.5493
19.8119

3.8415
5.9915
7.8147
18.3070
21.0261
22.3620

5.0239
7.3778
9.3484

20.4832
23.3367
24.7356

6.6349
9.2103
11.3449
23.2093
26.2170
27.6882

7.8794
10.5967
12.8382
25.1882
28.2995
29.8195

OU
VO
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APPENDIX 6.4. RESULTS FROM FITTING MODELS WITH EITHER THE 

MATRIX Bj OR THE MATRIX B, ONLY.

MATRIX B1 ONLY MATRIX B2 ONLY
METHOD SITE THETA CHISQ THETA CHISQ

nk 1 0.82212 27.3150 0.09958 150.00
nk 2 0.43823 46.6420 0.13834 128.00
nk 3 0.45317 38.7161 0.09468 138.00
nk 4 0.43887 40.3266 0.06165 148.00
nk 5 0.39170 59.9482 0.10376 166.00
nk 6 0.37001 67.1022 0.10533 158.00
nk 7 0.35638 65.3814 0.14413 158.00
nk 8 0.25596 80.8907 0.11057 152.00
nk 9 0.36538 60.7115 0.10592 152.00
nk 10 0.32343 85.1566 0.12509 162.00
nk 11 0.46393 44.8782 0.11936 142.00
nk 12 0.41481 38.5708 0.04837 142.00
nk 13 0.63458 36.2685 0.11426 146.00
nk 14 0.55582 34.2537 0.08743 144.00
nk 15 0.46240 43.2132 0.16399 118.00
nk 16 0.48436 29.9096 0.05370 104.00
nk 17 0.36354 49.8679 0.09619 152.00
nk 18 0.40091 47.6919 0.09659 160.00
nk 19 0.38333 74.7694 0.13062 166.00
nk 20 0.51036 33.7896 0.13394 138.00
nk 21 0.76050 34.5803 0.11584 150.00
nk 22 0.48163 52.1401 0.12613 148.00
nk 23 0.41595 57.3071 0.13864 144.00
nk 24 0.28172 91.7826 0.17776 164.00
nk 25 0.35425 62.3181 0.10321 166.00
nk 26 0.34382 33.2429 0.05115 142.00
nk 27 0.37439 34.1869 0.05730 100.00
nk 28 0.41677 40.5769 0.06052 124.00

Variable Matrix Method Minimum Maximum Mean
THETA B1 nk 0.2559628 0.8221204 0.4399401
THETA B2 nk 0.0483733 0.1777558 0.1058592
CHISQ B1 nk 27.3150370 91.7826312 50.4120688
CHISQ B2 nk 100.0000000 166.0000000 145.0714286
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MATRIX Bx ONLY MATRIX Bj ONLY
METHOD SITE THETA CHISQ THETA CHISQ
adf 1 0.73708 22.2910 0.09298 101.40
adf 2 0.39775 39.1305 0.14689 147.55
adf 3 0.44431 25.7363 0.08655 163.73
adf 4 0.38918 41.6117 0.04804 95.73
adf 5 0.35201 43.5704 0.05693 113.41
adf 6 0.29973 44.9195 0.00000 101.24
adf 7 0.35573 28.1782 0.00780 113.62
adf 8 0.18766 37.8547 0.03435 71.06
adf 9 0.36134 34.4503 0.07129 81.19
adf 10 0.25012 46.4624 0.06011 91.57
adf 11 0.43843 28.3649 0.03200 146.50
adf 12 0.41156 27.1089 0.03068 129.89
adf 13 0.50633 19.4085 0.04549 112.78
adf 14 0.47312 41.3106 0.08276 100.56
adf 15 0.40022 18.0869 0.02759 128.41
adf 16 0.44063 23.3975 0.03252 113.90
adf 17 0.36237 31.8975 0.02914 117.03
adf 18 0.33433 36.2728 0.04094 142.59
adf 19 0.35499 43.1556 0.12375 151.65
adf 20 0.40276 26.8335 0.00000 138.29
adf 21 0.66865 30.1703 0.03565 150.24
adf 22 0.42813 35.0944 0.08375 149.58
adf 23 0.34785 47.0004 0.06660 138.26
adf 24 0.26664 66.7639 0.08379 119.51
adf 25 0.39524 29.7257 0.03933 114.47
adf 26 0.35102 28.1715 0.05180 97.53
adf 27 0.33358 27.2725 0.04087 79.07
adf 28 0.34647 21.6274 0.02148 62.00

Variable Matrix Method Minimum Maximum Mean
THETA B1 adf 0.1876556 0.7370820 0.3941858
THETA B2 adf 1.044049E-53 0.1468939 0.0526091
CHISQ B1 adf 18.0868747 66.7639063 33.7809952
CHISQ B2 adf 62.0015866 163.7294624 116.8838771
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APPENDIX 6.5. INCREMENTAL FIT INDICES FOR MODELS 1-3.
TE METHOD CHIO CHIl CHI2 CHI 3 R01 R12 R23
1 adf 22.2910 19.7298 19.2282 19.2280 0.11490 0.02250 0.00001
2 adf 39.1305 32.4622 28.0504 26.7373 0.17041 0.11275 0.03356
3 adf 25.7363 22.0897 13.0564 13.0506 0.14169 0.35100 0.00022
4 adf 41.6117 41.1833 41.1833 41.1833 0.01029 0.00000 0.00000
5 adf 43.5704 27.6042 19.3923 19.3923 0.36645 0.18847 0.00000
6 adf 44.9195 43.3625 27.5473 27.5473 0.03466 0.35208 0.00000
7 adf 28.1782 19.0775 13.3139 13.1209 0.32297 0.20454 0.00685
8 adf 37.8547 31.6930 29.8102 29.8102 0.16277 0.04974 0.00000
9 adf 34.4503 30.5279 21.2489 21.2489 0.11386 0.26934 0.00000
10 adf 46.4624 31.7313 21.8643 21.8643 0.31705 0.21237 0.00000
11 adf 28.3649 18.6846 15.3846 15.3846 0.34128 0.11634 0.00000
12 adf 27.1089 27.1089 27.1089 23.7608 0.00000 0.00000 0.12351
13 adf 19.4085 10.3278 10.2483 10.2483 0.46787 0.00409 0.00000
14 adf 41.3106 31.9447 31.7577 31.1057 0.22672 0.00453 0.01578
15 adf 18.0869 17.3332 17.3327 17.3314 0.04167 0.00003 0.00007
16 adf 23.3975 23.3975 23.3975 23.3975 0.00000 0.00000 0.00000
17 adf 31.8975 22.5639 10.9665 10.9665 0.29261 0.36358 0.00000
18 adf 36.2728 27.1215 23.4602 22.3509 0.25229 0.10094 0.03058
19 adf 43.1556 41.3090 28.2458 28.2458 0.04279 0.30270 0.00000
20 adf 26.8335 21.7852 17.6210 16.6269 0.18813 0.15519 0.03705
21 adf 30.1703 24.3588 24.3181 24.1148 0.19263 0.00135 0.00674
22 adf 35.0944 22.9009 19.9129 18.9425 0.34745 0.08514 0.02765
23 adf 47.0004 34.1740 24.1688 24.1688 0.27290 0.21287 0.00000
24 adf 66.7639 48.6747 32.5448 32.5448 0.27094 0.24160 0.00000
25 adf 29.7257 27.9697 26.3715 26.3715 0.05907 0.05376 0.00000
26 adf 28.1715 14.6537 14.4772 14.4468 0.47984 0.00627 0.00108
27 adf 27.2725 16.3992 13.4239 13.4239 0.39869 0.10909 0.00000
28 adf 21.6274 21.6068 21.6068 21.6068 0.00095 0.00000 0.00000
1 nk 27.3150 18.1450 16.5177 16.5041 0.33571 0.05958 0.00050
2 nk 46.6420 23.6708 21.5683 19.9641 0.49250 0.04508 0.03440
3 nk 38.7161 21.4660 15.9048 15.9048 0.44555 0.14364 0.00000
4 nk 40.3266 38.3423 38.3423 38.3423 0.04921 0.00000 0.00000
5 nk 59.9482 43.8149 36.5947 36.2352 0.26912 0.12044 0.00600
6 nk 67.1022 51.7203 38.2332 38.2332 0.22923 0.20099 0.00000
7 nk 65.3814 45.2322 35.5888 35.5888 0.30818 0.14749 0.00000
8 nk 80.8907 65.9509 42.8879 42.8879 0.18469 0.28511 0.00000
9 nk 60.7115 46.7730 32.1678 32.1678 0.22959 0.24057 0.00000
10 nk 85.1566 56.9228 30.8890 30.8890 0.33155 0.30572 0.00000
11 nk 44.8782 25.3894 20.6480 20.5775 0.43426 0.10565 0.00157
12 nk 38.5708 35.0191 33.6933 33.4607 0.09208 0.03437 0.00603
13 nk 36.2685 21.5616 21.3767 21.3756 0.40550 0.00510 0.00003
14 nk 34.2537 23.9305 23.5271 23.1656 0.30137 0.01178 0.01055
15 nk 43.2132 25.9910 21.1699 20.9026 0.39854 0.11156 0.00619
16 nk 29.9096 29.2324 29.2324 29.2324 0.02264 0.00000 0.00000
17 nk 49.8679 24.1323 12.1352 12.1352 0.51607 0.24058 0.00000
18 nk 47.6919 29.3471 21.5059 20.4712 0.38465 0.16441 0.02169
19 nk 74.7694 57.3903 39.2618 39.2618 0.23244 0.24246 0.00000
20 nk 33.7896 12.4326 11.5560 10.8946 0.63206 0.02594 0.01957
21 nk 34.5803 22.3689 22.3689 22.3664 0.35313 0.00000 0.00007
22 nk 52.1401 31.6753 25.3103 23.6271 0.39250 0.12208 0.03228
23 nk 57.3071 35.7879 22.4290 22.4290 0.37551 0.23311 0.00000
24 nk 91.7826 63.3936 35.5664 35.5664 0.30931 0.30319 0.00000
25 nk 62.3181 45.3407 34.3083 34.3083 0.27243 0.17703 0.00000
26 nk 33.2429 19.4860 17.2754 17.2754 0.41383 0.06650 0.00000
27 nk 34.1869 25.3620 21.3255 21.3255 0.25814 0.11807 0.00000
28 nk 40.5769 37.2938 37.2938 37.2938 0.08091 0.00000 0.00000

METHOD: GLS (adf) METHOD: GLS (nk)
Minimum Maximum Mean Minimum Maximum M

CHIl 10.3277805 48.6747197 26.8491311 12.4325634 65.9508942 34.8990284
CHI2 10.2483469 41.1833121 22.0372345 11.5559908 42.8879129 27.0956566
CHI3 10.2483469 41.1833121 21.7221955 10.8946150 42.8879129 26.8709392
CHIO 18.0868747 66.7639063 33.7809952 27.3150370 91.7826312 50.4120688
R01 0 0.4798375 0.2011033 0.0226419 0.6320598 0.3125251
R12 0 0.3635823 0.1257239 0 0.3057175 0.1253734
R23 0 0.1235063 0.0101108 0 0.0343956 0.0049601
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APPENDIX 6.6. CROSS-VALIDATION COEFFICIENTS FOR MODELS 1-3.
SITE METHOD Cl C2 C3 Cl-2 Cl-3 C2-3

1 adf 0.31570 0.33532 0.38795 -0.01963 -0.07226 -0.052629
2 adf 0.56876 0.53059 0.57162 0.03817 -0.00286 -0.041022
3 adf 0.37728 0.27494 0.33200 0.10235 0.04529 -0.057060
4 adf 0.60986 0.63653 0.68986 -0.02667 -0.08000 -0.053333
5 adf 0.38020 0.30507 0.35269 0.07513 0.02751 -0.047619
6 adf 0.59889 0.42370 0.47370 0.17519 0.12519 -0.050000
7 adf 0.29149 0.24353 0.29109 0.04796 0.00040 -0.047557
8 adf 0.46896 0.47016 0.52211 -0.00120 -0.05315 -0.051948
9 adf 0.45363 0.35751 0.40946 0.09612 0.04417 -0.051948
10 adf 0.44053 0.34310 0.39188 0.09742 0.04864 -0.048780
11 adf 0.31872 0.30002 0.35557 0.01870 -0.03685 -0.055556
12 adf 0.43737 0.46515 0.47355 -0.02778 -0.03618 -0.008399
13 adf 0.19553 0.22147 0.27552 -0.02594 -0.07999 -0.054054
14 adf 0.49847 0.52327 0.56901 -0.02480 -0.07054 -0.045738
15 adf 0.36045 0.39377 0.46042 -0.03332 -0.09997 -0.066644
16 adf 0.52542 0.56316 0.63863 -0.03774 -0.11321 -0.075472
17 adf 0.34884 0.22222 0.27417 0.12662 0.07467 -0.051948
18 adf 0.38840 0.36733 0.40284 0.02108 -0.01444 -0.035517
19 adf 0.54532 0.41174 0.45936 0.13358 0.08596 -0.047619
20 adf 0.37287 0.34109 0.38383 0.03178 -0.01096 -0.042734
21 adf 0.37742 0.40319 0.45311 -0.02577 -0.07569 -0.049920
22 adf 0.36280 0.34909 0.38931 0.01371 -0.02651 -0.040221
23 adf 0.52943 0.41787 0.47266 0.11156 0.05677 -0.054795
24 adf 0.64179 0.46918 0.51737 0.17261 0.12442 -0.048193
25 adf 0.38460 0.38916 0.43678 -0.00456 -0.05217 -0.047619
26 adf 0.26195 0.28724 0.34236 -0.02529 -0.08042 -0.055127
27 adf 0.40642 0.38613 0.46456 0.02029 -0.05814 -0.078431
28 adf 0.41199 0.44373 0.50723 -0.03175 -0.09524 -0.063492
1 nk 0.29457 0.29918 0.35163 -0.00462 -0.05707 -0.052450
2 nk 0.43140 0.42931 0.46578 0.00208 -0.03439 -0.036472
3 nk 0.36824 0.31622 0.37336 0.05203 -0.00512 -0.057143
4 nk 0.57147 0.59814 0.65147 -0.02667 -0.08000 -0.053333
5 nk 0.57551 0.51233 0.55562 0.06318 0.01989 -0.043287
6 nk 0.70469 0.55897 0.60897 0.14572 0.09572 -0.050000
7 nk 0.62256 0.52549 0.57549 0.09707 0.04707 -0.050000
8 nk 0.91972 0.64224 0.69418 0.27749 0.22554 -0.051948
9 nk 0.66738 0.50118 0.55313 0.16620 0.11425 -0.051948
10 nk 0.75153 0.45452 0.50330 0.29702 0.24823 -0.048780
11 nk 0.41315 0.37415 0.42871 0.03900 -0.01556 -0.054563
12 nk 0.54878 0.55789 0.61017 -0.00911 -0.06138 -0.052279
13 nk 0.34942 0.37391 0.42795 -0.02449 -0.07853 -0.054039
14 nk 0.38716 0.40896 0.45873 -0.02179 -0.07157 -0.049774
15 nk 0.50719 0.45881 0.52095 0.04838 -0.01376 -0.062136
16 nk 0.63763 0.67537 0.75084 -0.03774 -0.11321 -0.075472
17 nk 0.36948 0.23760 0.28954 0.13188 0.07993 -0.051948
18 nk 0.41622 0.34290 0.37935 0.07332 0.03687 -0.036449
19 nk 0.73907 0.54446 0.59208 0.19461 0.14699 -0.047619
20 nk 0.23732 0.25319 0.30075 -0.01587 -0.06343 -0.047558
21 nk 0.35088 0.37720 0.42980 -0.02632 -0.07891 -0.052598
22 nk 0.48138 0.42203 0.45262 0.05935 0.02876 -0.030588
23 nk 0.55185 0.39371 0.44850 0.15814 0.10335 -0.054795
24 nk 0.82129 0.50603 0.55422 0.31526 0.26707 -0.048193
25 nk 0.59389 0.48478 0.53240 0.10911 0.06149 -0.047619
26 nk 0.33001 0.32665 0.38220 0.00336 -0.05220 -0.055556
27 nk 0.58567 0.54416 0.62259 0.04151 -0.03692 -0.078431
28 nk 0.66500 0.69675 0.76024 -0.03175 -0.09524 -0.063492

METHOD: GLS (adf) METHOD: GLS (nk)
Minimum Maximum Mean Minimum Maximum Mean

0.1955305 0.6417869 0.4240390 0.2373249 0.9197230 0.5318741
C2 0.2214694 0.6365312 0.3884023 0.2375962 0.6967506 0.4577182
C3 0.2741662 0.6898646 0.4392371 0.2895442 0.7602427 0.5098064
Cl-2 -0.0377358 0.1751917 0.0356367 -0.0377358 0.3152595 0.0741559
Cl-3 -0.1132075 0.1251917 -0.0151981 -0.1132075 0.2670667 0.0220677
C2-3 -0.0784314 -0.0083989 -0.0508348 -0.0784314 -0.0305883 -0.0520882
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APPENDIX 6.7. PARAMETER ESTIMATES FOR MODELS 1, 2 AND 3.

s
T

s I M I A
I N E M T T
T I T 0 E U T T T
E T H D R S 1 2 3
1 0 nk 1 2 OK 0.77083 0.05089 *
2 0 nk 1 2 OK 0.42186 0.11761 •

3 0 nk 1 2 OK 0.42799 0.06775 •

4 0 nk 1 2 OK 0.41655 0.01556 .
5 0 nk 1 2 OK 0.36432 0.06612 •
6 0 nk 1 2 OK 0.34204 0.06730 .
7 0 nk 1 2 OK 0.33362 0.10430 •
8 0 nk 1 2 OK 0.23357 0.07124
9 0 nk 1 2 OK 0.33807 0.06579
10 0 nk 1 2 OK 0.30759 0.10497 •
11 0 nk 1 2 OK 0.43921 0.08929 a
12 0 nk 1 2 OK 0.38954 0.01637 •
13 0 nk 1 2 OK 0.59603 0.07384 •
14 0 nk 1 2 OK 0.51949 0.04821 •

15 0 nk 1 2 OK 0.43798 0.12636 •
16 0 nk 1 2 OK 0.46508 0.00963 •
17 0 nk 1 2 OK 0.34882 0.07951 a
18 0 nk 1 2 OK 0.37683 0.06638 •
19 0 nk 1 2 OK 0.35427 0.08636 •
20 0 nk 1 2 OK 0.48848 0.10601
21 0 nk 1 2 OK 0.71214 0.06776 #
22 0 nk 1 2 OK 0.45508 0.09473 •
23 0 nk 1 2 OK 0.39378 0.10805
24 0 nk 1 2 OK 0.26700 0.14872 •
25 0 nk 1 2 OK 0.32958 0.06737
26 0 nk 1 2 OK 0.32292 0.03245
27 0 nk 1 2 OK 0.34799 0.03491 #
28 0 nk 1 2 OK 0.38930 0.02114
1 0 nk 2 15 OK 0.65419 0 . 0 0 0 0 0 0.28100
2 0 nk 2 2 OK 0.31536 0.06832 0.26528
3 0 nk 2 13 ER 0.30521 0 . 0 0 0 0 0 0.35650
4 0 nk 2 10 OK 0.41655 0.01556 0 . 0 0 0 0 0
5 0 nk 2 12 OK 0.24647 0 . 0 0 0 0 0 0.36224
6 0 nk 2 10 OK 0.21261 0 . 0 0 0 0 0 0.42467
7 0 nk 2 2 OK 0.20558 0.03709 0.38407
8 0 nk 2 10 OK 0.11422 0 . 0 0 0 0 0 0.45801
9 0 nk 2 10 OK 0.20252 0 . 0 0 0 0 0 0.44565
10 0 nk 2 10 OK 0.14150 0 . 0 0 0 0 0 0.65979
11 0 nk 2 2 OK 0.31427 0.01542 0.37160
12 0 nk 2 13 OK 0.34985 0 . 0 0 0 0 0 0.09874
13 0 nk 2 2 OK 0.55805 0.05711 0.09105
14 0 nk 2 2 OK 0.47482 0.02954 0.10387
15 0 nk 2 2 OK 0.29428 0.04093 0.43837
16 0 nk 2 11 OK 0.46508 0.00963 0 . 0 0 0 0 0
17 0 nk 2 13 OK 0.21168 0 . 0 0 0 0 0 0.43305
18 0 nk 2 13 OK 0.23591 0 . 0 0 0 0 0 0.38342
19 0 nk 2 10 OK 0.20529 0 . 0 0 0 0 0 0.53423
20 0 nk 2 2 OK 0.42436 0.07716 0.15243
21 0 nk 2 11 OK 0.71214 0.06776 0 . 0 0 0 0 0
22 0 nk 2 2 OK 0.29043 0.00617 0.48091
23 0 nk 2 2 OK 0.21875 0.00110 0.56463
24 0 nk 2 11 OK 0.08671 0 . 0 0 0 0 0 0.77422
25 0 nk 2 12 ER 0.22229 0 . 0 0 0 0 0 0.35925
26 0 nk 2 2 OK 0.26242 0.00251 0.15831
27 0 nk 2 12 OK 0.27273 0 . 0 0 0 0 0 0.21457
28 0 nk 2 10 OK 0.38930 0.02114 0 . 0 0 0 0 0
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s I M I
S
T
A R

I N E M T T A
T I T 0 E U T T T T T T
E T H D R S 1 2 3 4 5 E
1 7 nk 3 500 ER 0.69070 0.00000 0.28476 437212.51 0.00001 3.377
2 10 nk 3 500 ER 0.37221 0.00000 0.84075 101268.32 0.00001 0.617
3 8 nk 3 320 ER 0.30712 0.00000 0.35650 127.29 0.73085 94.490
4 7 nk 3 48 ER 0.41655 0.01556 0.00019 20182.41 0.00000 0.000
5 8 nk 3 500 ER 0.31010 0.00000 0.41172 326144.86 0.00001 1.726
6 8 nk 3 244 ER 0.21488 0.00000 0.42467 127.93 0.72950 94.787
7 7 nk 3 246 ER 0.20765 0.03709 0.38407 127.28 0.72788 94.102
8 8 nk 3 247 ER 0.11669 0.00000 0.45801 125.38 0.73918 94.154
9 8 nk 3 259 ER 0.20492 0.00000 0.44565 133.45 0.69549 94.206
10 7 nk 3 334 ER 0.14493 0.00000 0.65979 128.93 0.74493 97.530
11 7 nk 3 27 ER 0.36650 0.00000 0.53036 0.31 1.75547 4.061
12 2 nk 3 13 ER 0.36943 0.00000 0.13107 0.00 1.76631 3.533
13 3 nk 3 3 OK 0.56125 0.05706 0.09138 3.76 3.58745 20.680
14 10 nk 3 20 OK 0.49650 0.00002 0.40751 32.69 0.01384 0.480
15 8 nk 3 500 ER 0.34855 0.03054 0.50718 838755.19 0.00000 2.672
16 10 nk 3 30 ER 0.46508 0.00963 0.00000 14.64 0.00000 0.000
17 8 nk 3 328 ER 0.21391 0.00000 0.43305 138.51 0.70300 98.778
18 8 nk 3 500 ER 0.31757 0.00000 0.43923 656556.30 0.00000 1.436
19 8 nk 3 311 ER 0.20806 0.00000 0.53423 130.34 0.74069 98.025
20 9 nk 3 500 ER 0.45497 0.00948 0.81462 6597.29 0.00006 0.415
21 7 nk 3 10 OK 0.70832 0.05793 0.10931 8.84 0.02942 0.319
22 8 nk 3 500 ER 0.38441 0.00000 0.59351 821390.37 0.00000 1.480
23 5 nk 3 355 ER 0.22033 0.00110 0.56463 21.26 8.36868 194.636
24 9 nk 3 379 ER 0.09120 0.00000 0.77422 104.68 0.82360 87.858
25 5 nk 3 147 ER 0.22327 0.00000 0.35925 21.05 8.68683 200.270
26 5 nk 3 201 ER 0.26322 0.00251 0.15831 68.26 1.44819 101.748
27 5 nk 3 180 ER 0.27331 0.00000 0.21457 19.39 9.60649 205.491
28 10 nk 3 36 ER 0.38930 0.02114 0.00000 1.23 0.00000 0.000
Variable Model Minimum Maximum Mean
Tl 1 0.2335743 0.7708282 0.4139272
T2 1 0.0096288 0.1487155 0.0717366
Tl 2 0.0867112 0.7121430 0.3143772
T2 2 1.365589E-33 0.0771631 0.0160514
T3 2 1.86583E-28 0.7742242 0.3141374
Tl 3 0.0912014 0.7083244 0.3336050
T2 3 0 0.0579317 0.0086447
T3 3 9.844385E-11 0.8407529 0.3903048
T4 3 3.7895282E-9 838755.19 114622.95
T5 3 5.944275E-10 9.6064864 1.4963534
RATE 3 1.8038888E-7 205.4914764 57.0311093
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I M I
S
T
A

N E M T T
I T 0 E U T T T
T H D R S 1 2 3
0 adf 1 2 OK 0.68477 0.02706
0 adf 1 2 OK 0.37628 0.07402 •

0 adf 1 2 OK 0.43556 0.04861 •
0 adf 1 2 OK 0.37955 0.01135 •
0 adf 1 2 OK 0.34361 0.05033 •
0 adf 1 2 OK 0.31383 0.03404
0 adf 1 2 OK 0.38959 0.08046 .
0 adf 1 2 OK 0.18620 0.03272 •
0 adf 1 2 OK 0.34069 0.03999 •

0 adf 1 2 OK 0.25234 0.06233 •

0 adf 1 2 OK 0.45129 0.05132 •

0 adf 1 11 ER 0.41156 0 . 0 0 0 0 0 •

0 adf 1 2 OK 0.49911 0.03911
0 adf 1 2 OK 0.42578 0.04561
0 adf 1 2 OK 0.40075 0.03428
0 adf 1 10 OK 0.44063 0 . 0 0 0 0 0
0 adf 1 2 OK 0.37832 0.05083 s
0 adf 1 2 OK 0.33627 0.04415 s
0 adf 1 2 OK 0.33777 0.03058
0 adf 1 2 OK 0.43404 0.06063
0 adf 1 2 OK 0.66677 0.03359
0 adf 1 2 OK 0.41163 0.05913
0 adf 1 2 OK 0.36494 0.10744
0 adf 1 2 OK 0.27284 0.09196 .
0 adf 1 2 OK 0.38964 0.02303 •
0 adf 1 2 OK 0.31735 0.03139
0 adf 1 2 OK 0.31599 0.03094
0 adf 1 2 OK 0.34346 0.00118
0 adf 2 15 OK 0.61185 0 . 0 0 0 0 0 0.161
0 adf 2 2 OK 0.27005 0.01447 0.311
0 adf 2 9 OK 0.29064 0 . 0 0 0 0 0 0.360
0 adf 2 10 ER 0.37955 0.01135 0 . 0 0 0
0 adf 2 11 OK 0.27185 0 . 0 0 0 0 0 0.284
0 adf 2 8 OK 0.24140 0 . 0 0 0 0 0 0.436
0 adf 2 2 OK 0.24159 0.01121 0.375
0 adf 2 2 OK 0.14367 0.00534 0.181
0 adf 2 10 OK 0.21891 0 . 0 0 0 0 0 0.353
0 adf 2 11 OK 0.16374 0 . 0 0 0 0 0 0.410
0 adf 2 2 OK 0.33121 0.00483 0.306
0 adf 2 11 OK 0.41156 0 . 0 0 0 0 0 0 . 0 0 0
0 adf 2 2 OK 0.47709 0.02951 0.048
0 adf 2 2 OK 0.39131 0.03163 0.075
0 adf 2 2 OK 0.39965 0.03348 0.004
0 adf 2 11 OK 0.44063 0 . 0 0 0 0 0 0 . 0 0 0
0 adf 2 10 OK 0.23088 0 . 0 0 0 0 0 0.445
0 adf 2 2 OK 0.23935 0.00352 0.261
0 adf 2 10 OK 0.21165 0 . 0 0 0 0 0 0.474
0 adf 2 11 OK 0.30538 0 . 0 0 0 0 0 0.322
0 adf 2 2 OK 0.64844 0.02745 0.035
0 adf 2 12 OK 0.31492 0 . 0 0 0 0 0 0.304
0 adf 2 2 OK 0.21839 0.02993 0.479
0 adf 2 12 OK 0.13498 0 . 0 0 0 0 0 0.584
0 adf 2 13 OK 0.33884 0 . 0 0 0 0 0 0.137
0 adf 2 2 OK 0.29482 0.02237 0.051
0 adf 2 13 OK 0.24340 0 . 0 0 0 0 0 0.181
0 adf 2 12 OK 0.34346 0.00118 0 . 0 0 0
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s I M I
S
T
A

I N E M T T
T I T 0 E U T T
E T H D R S 1 2
1 3 adf 3 8 OK 0.61549 0.00000
2 8 adf 3 500 ER 0.33355 0.00000
3 7 adf 3 500 ER 0.33718 0.00000
4 10 adf 3 24 ER 0.37955 0.01135
5 5 adf 3 176 ER 0.27224 0.00000
6 5 adf 3 223 ER 0.24232 0.00000
7 4 adf 3 6 OK 0.30492 0.00000
8 5 adf 3 194 ER 0.14416 0.00534
9 5 adf 3 136 ER 0.21920 0.00000
10 7 adf 3 267 ER 0.16598 0.00000
11 5 adf 3 213 ER 0.33200 0.00483
12 9 adf 3 31 ER 0.42808 0.00000
13 5 adf 3 110 ER 0.47727 0.02951
14 10 adf 3 500 ER 0.40718 0.00000
15 10 adf 3 20 ER 0.40080 0.03432
16 10 adf 3 21 ER 0.44063 0.00000
17 5 adf 3 203 ER 0.23129 0.00000
18 7 adf 3 500 ER 0.30646 0.00000
19 5 adf 3 211 ER 0.21212 0.00000
20 8 adf 3 500 ER 0.38557 0.00000
21 9 adf 3 4 OK 0.63387 0.00296
22 9 adf 3 500 ER 0.37639 0.00000
23 5 adf 3 283 ER 0.21971 0.02993
24 8 adf 3 283 ER 0.13815 0.00000
25 5 adf 3 154 ER 0.33938 0.00000
26 7 adf 3 500 ER 0.30169 0.01981
27 5 adf 3 155 ER 0.24385 0.00000
28 2 adf 3 20 ER 0.34346 0.00118

R
A

T T T T
3 4 5 E

0.161 4.89 4.3969 30.279
0.485 133.32 0.0084 1.135
0.368 145.98 0.0237 3.504
0.000 5.50 0.0474 0.355
0.284 11.10 33.3282 436.619
0.436 16.06 14.6815 265.176
0.525 0.65 1.1712 3.105
0.180 22.64 8.1590 201.056
0.353 8.82 68.5931 742.034
0.410 137.19 0.6688 93.088
0.306 20.67 9.3737 212.502

521.960 0.00 0.0000 0.000
0.048 29.98 4.4863 143.482
0.413 126.07 0.0031 0.397
17.560 0.00 0.0001 0.000
0.000 16.19 0.0000 0.000
0.445 10.16 53.3888 649.398
0.340 134.92 0.0083 1.138
0.474 10.03 50.3875 606.012
0.394 136.13 0.0099 1.373
0.209 9.29 0.0970 1.095
0.369 130.19 0.0105 1.389
0.479 20.91 8.7157 199.707
0.584 119.66 0.7696 93.635
0.137 36.96 3.4299 133.629
0.069 179920.34 0.0000 1.799
0.181 16.73 12.2071 228.629
0.132 0.01 0.0000 0.000

Variable Model Minimum Maximum Mean
Tl
T2
TlT2
T3
Tl
T2
T3
T4
T5
RATE

1 0.1861963
1 2.317071E-34
2 0.13498162 1.284429E-30
2 3.36887E-30
3 0.1381500
3 0
3 0
3 0
3 0
3 0

0.6847705
0.1074371
0.6484418
0.0334827
0.5842294
0.6338700
0.0343200

521.9601700
179920.34

68.5930800
742.0337661

0.3893061
0.0427174
0.3146147
0.0080813
0.2348848
0.3297318
0.0049725
19.5464711

6472.30
9.7844932

144.6620523
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7

THE ASYMPTOTIC VARIANCE OF 03 

AS A CRITERION FOR STUDY DESIGN.
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In previous sections, we have developed models for periodontal disease progression 

and have investigated the goodness of fit of these models for real and simulated 

data. We now examine how an asymptotic property of these models might guide 

us in the design of studies of periodontal disease progression. Because this involves 

a substantial amount of algebraic manipulation, it was necessary to make more 

restrictive assumptions than have been made in previous sections. We consider only 

the conditions under which model 2 may be distinguished from model 1, and 

examine the properties of maximum-likelihood, rather than generalised least-squares, 

estimates. We also assume that time intervals are constant (x = tl, with t known). 

Thus we have (using the notation of section 3), that:

(7.1) B2 = t2l l \  where 1 is the unit p-vector and

(7.2) B3=tl, where I is the identity matrix of dimension p.

As has been seen, model 2 is distinguished from model 1 according to whether 

03 is greater than zero. In order to assess whether this is the case, a measure of 

the precision of 03 (the estimate of 03) is needed. A criterion for the design of a 

study to determine which of models 1 and 2 better describes the nature of 

periodontal disease progression might therefore be to minimise the variance of 03 

using the factors over which we have control; namely n (the number of sites), p 

(the number of observations per site), and t (the time between observations).

The null hypothesis that model 1 holds will be rejected if 03 differs from zero by 

an amount which can be considered to be unlikely to arise from random variation
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in the data, given that model 1 holds. We thus minimise the asymptotic variance 

of 03 given that 03 = 0 (var(03l03=O)).

The information matrix 1(0) for a covariance structure 2(0) where the underlying 

distribution is normal was shown in section 2 to be given by

(7 .3 )1 ^ . =

The asymptotic variance-covariance matrix of 0 is given by the inverse of NI(0). 

Under model 2, we have that:

(7.4) 2 ^  = OjBj + 02B2 + 03B3. Thus

(7-5) = B. (i= l,2).

The elements of 1(0) under model 1 (for which 03 = 0) are therefore given by:

(7.6) 1(0), = 35tr[(01B1+02B2)'1Bi(01B1+e2B2)'1Bj] (i,j = 1,2,3)

7.1 CALCULATION OF THE INVERSE OF 2 ^  UNDER MODEL 1.

Lemma 7.1: The inverse of Bj as defined in section 3 is given by:

(p+ l)‘i(p-j+l) (isj)
(7.7) (Br1), =

(p+ l^jC p-i+ l) (jsi)

2 (rj),Proof: Recall that b18 = -1 ( I i-j I =1)
0 otherwise

The product (P, say) of the two matrices is given by:

p, = W (p +l)-‘k(p-j+l) + Zb^fp+iy’jfp-k+l)
k=l k=j+l

= (P+ l)1[2byfck(p-j+l) + ^ (p -k + l) ]
k=l k=j+l
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It is now straightforward to check, for the three cases i<j, i=j, and i>j, that the 

three terms involving non zero elements of Bx sum to 0, 1 and 0 respectively. |

Lemma 7.2: 2L)1 = (O^B,1 - where C = B ^ ll ’B j1
y=i

Proof: = ( 0 ^  +

= (01B1 + t2© ^ ’)'1

= Oĵ Bj 1 - t20201'2(l+ t20201'1l ,B1'1l) '1B1'1l l ,B1'1 (by a standard formula)

= Oĵ Bj’1 - t20201-2( l+t20201-12(B11)Ij)-1C as required. |
y-i

Note that C4 = (2(B ,1) ^ ^ 1̂ ).
k-1 k-l

Now = 2(p+l)-‘k(p-i+l) + 5^p+l) *i(p-k+l)
t l  t l  ttf 1

= (p+iy‘[(p-i+l)2k + ill]
t l  1=1

= (p+l)"1[3s(p-i+l)i(i+l)+3s (p-i+l)i(p-i)] 

whence

(7.8) i ( B { \  = %i(p-i+l)
t i

Thus, = 2^i(p-i+l)
ij=l i=l

= 3s[(p+l)Jsp(p+l) - 6 'p(p+lX2p+l)] 

so that

(7.9) 2(IV)a = U'pip+iyp+l)
u-l

So, using lemmas 7.1 and 7.2 and equations (7.8-9):

V  = e^B,-1 - t2e2e1-2(i+tJ020r‘i2 1p(p+i)(p+2))-1c

(7.10) Ze,-1 = Oj-'B,-1 - 1202t2[01(1201+02t2p(p+l)(p+2)]',C, where
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(7.11) C, = J*i(p-i+l)j(p-j+l)

Write

(7.12) <|> = 1202t2[01(1201+02t2p(p+l)(p+2))]"1; then we have proved 

Theorem 7.1.

(7.13) V  = ^

with Bj"1, C and (|> defined in (7.7), (7.11) and (7.12) respectively. |

7.2 CALCULATION OF THE ELEMENTS OF 1(0)

From (7.6) and (7.13), the elements of 1(0) are given by

(7.14) 1(0), = )str[(01'1Br1-<|>C)Bl(01'1Bl‘1-(t>QBj] (U = 1,2,3)

We now calculate the six non-duplicated elements of 1(0).

I(0)u = *5tr[(011B1‘-<tC)B1(01-IB11-(|)qB1]

= ^ [(0 ^ 1  - <t>CB1)(011I - ((.CB,)]

= Sstr[0,-2I - 201‘<|>CB1 + <))2CBjCB1]

= *str[0,‘2I - 2 0 ^ 8 t^ li’ + 4>JB2J l l ,B1-1i r ]  (since O B ^ l l ’B ,1)

= S5tr(0,-2I) - 0i'1<t>tr(TB1'*!) + H ^ ’B ^ ll’Bj1!)

(7.15) I(6)u  = %0r2p - ^ ( B , 1), + Jŝ & b a p
ij=l ij=l

Using equation (7.9), we therefore have that

l(0)u = *50;2P - 0 ;1[lZ 1p(p+l)(p+2)] + J5<f2[1441p2(p+l)2(p+2)2]

= %0 *p - 01-202t2p(p+lXp+2)[1201+02t2p(p+l)(p+2)]-‘

+ !502¥ p 2(p+l)2(p+2)2[1201+02t2p(p+l)(p+2)]2
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= )561'2p[1201+02t2p(p+l)(p+2)]‘2[144012+240102t2p(p+l)(p+2)+82t4p2(p + l)2(p+2)2-

202t2(p+lXp+2X1201+02t2p(p+l)(p+2))+e22t4p(P+l)2(P+2)2]

(7.16) l(0)y = Js0r2p[120,+02t2p(p+l)(p+2)r2[144012+24(p-lXp+l)(p+2)0102t2

+(p-l)p(p+l)2(p+2)2e2t<]

I(0 )u  = J5tr[(0r1B ,1-<[,C)BI(01-1BI 1-<t>QB2]

= S5t2tr[(01IB1-1-(t^B 1(01-1B1-I-(t>Qll’]

= %t2l ’(Oi'1B i1-(t>C)B1(01‘1B1'1-((iC)l 

= - 2 ^ , ‘C + ♦2B1Jl l ,B1-,l l ,Br,) l

= - 2ij)01'2c  + ^ ^ ’B r D ^ r 'i i ’B!1))!

(7.17) I(0)u = + (4>22(BI1)lm-2<t.e 11)Cy]
u~l k̂n=l

Lemma 7.3: 2CS = (144)1p2(P+l)2(P+2)2
y=i

Proof: 2CS = 2^i(p-i+l)j(p-j+l)
y=l y=l

= *[£(p+l)i - i2]2 
y=i

= >*(35p(p+l)2 - 61p(p+lX2p+l))2

= (144)'1p2(p+l)2(p+2)2 as required. |

Using equation (7.9) and lemma 7.3, we have

!(§)« = %t2[01-2121p(p+l)(p+2)+(<t.212-1p(p+l)(p+2)-2<^1-1)(144)-1p2(p+l)2(p+2)2] 

= 24‘2t2p(p+l)(p+2)[01'2-2<|>01',12Jp(p+l)(p+2)+(|>2144'1p2(p+l)2(p+2)2]
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= 24101¥p(p+lXp+2)[(1201+02t2p(p+lXp+2))]-2[144012+24ei02t2p(p+l)(p+2) 

+022t4p2(p+l)2(p+2)2-240102t2p(p+lXp+2)-202Vp2(p+l)2(p+2)2+202¥p 2(p+l)2(p+2)2]

(7.18) 1(0),,, = 60,¥p(p+lXp+2)[(1201+02t2p(p+l)(p+2»] J

1(6) , 3  = %tr[(01 ,Br‘-<|)qB1 (0r‘B1-‘-4)C)B3]

= >st tr[(0jJB1 '*-(|)C)B 1(01 ‘*B1‘I-(|>QI]

= %t trfOj^Bj- 1  - 2<|)01-1C + ( ^  ■C]

= %t trlOj^Bj1  - 2<|)011C + ^ ^  ‘l l ’B i 'l l ’Bj-1]

= 3st [ t r ^ , ^ , 1) - 24«,-,tr(Q  + 4>2ClB11l)tr(C )]

(7.19) I(6 )u  = Jst M O /’Br1) - [24.0, 1  + 4>2 (S(Bl*1)t()]tr(CT)]
u»i

te.mma 7.4: tr(B2) = 6‘‘p(p+2)

Proof: ti^Bj) = 2 (p+ l)‘j(p-j+l)

= e - ^ i r p ^ p + l ) 2 - p(p+l)(2p+l)

-  6 '*p(p+2 ) as required. |

lem nu  7.5: tr (q  = 120'1p(p+l)(p+2)(p2 +2p+2)

Proof: tr(Q  = H j 2 (p-j+l) 2

j-i

= %Z(j4  - 2 (p+l)j3  + (p+ lfi2  

j-i
= )*[30-1p(p+lX2p+l)(3p2+3p-l) - 2(p+l)4'1p2 (p+l) 2  + (p+l)2 6 '1 p(p+l)(2 p+l)]

= %30_1p(p+l)[p3 + 4P2 + 6p + 4]

= 1 2 0 '1p(p+l)(p+2 )(p2 +2 p+2 ) as required |
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Using (7.19), (7.9), lemma 7.4 and lemma 7.5, we thus have

I(6)u = )st[01‘26‘1p(p+2) - [2 4 0 , 1  + <|>2(12‘1p(p+l)(p+2))]120'1p(p+l)(p+2)(p2+2p+2)]

= 6O‘tp(p+2)[501-J - >5(1)011(p+l)(p2+2p+2) + i()J48'1p(p+l)J(p+2)(p2+2p+2)]

= 6O1tp(p+2)01-2(1201+e2t2p(p+l)(p+2))2[5(1201+e2t2p(p+l)(p+2))2 

- 602t2(p+l Xp2+2p+2)(1201+02t2p(p+1 Xp+2)) + 302¥p(p+l)2(p+2)(p2+2p+2)]

= 6O~1tp(p+2)01‘2(1201+02t2p(p+l)(p+2))‘2[72O012+0102t2(p+l)(48p2+96p-144)

+02Vp(p+l)2(p+2)(2p2+4p-6)] 

(7.20) I(0)u  = 3ff‘tp(p+2)01-2(1201+02t2p(p+l)(p+2))2[36Oei2

+240102t2(p-l)(p+lXp+3)+022t<(p-l)p(p+l)2(p+2)(p+3)]

I(g)y = >5tr[(ei-1B11-<K^B2(er1B1-1-<|)QBJ 

= %tr[(01-1B11-d>O)t2l l ,(011Bl-,-«|)C)tal l ’]

= %t4[ i ’(e1IBr1-<t.qi]2

(7.21) 1(0)^ = J s t i k e . - w v w
u-i

Using (7.9) and lemma 7.3, we have 

I(2)u = >5t4[0r112-1p(p+l)(p+2)-(K144)-1p2(p+l)2(p+2)2]2 

= 288I01-2t4p2(p+l)2(p+2)2(1201+02t2p(p+l)(p+2))-2[1201

+02t2p(p+l)(p+2)-02t2p(p+l)(p+2)]2

(7.22) 1 (0^  = *st4p2(p+l)2(p+2)2(1201+02t2p(p+l)(p+2))‘2

l(0)u = >5tr[(011B1I-(t)C)B2(01-1B1-1-<|)C)B3]

= >5t3tr[(01-IB1-I-(t)Qii,(er1Br‘-<t>c)i]
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= *5t3l ’(ei 1Bi'1-<l>C)2i

= !5t3[012tr(B1‘1r iB 1‘1) -20,'1(|>1’B1'111’B1‘1B1'11 + <t'2l ,B1'1JJ.,Bi‘1B1'Il l ’B1'1l]

(7.23) 1 (0^  = - 2011<Kl’B l 1Dtr(C) + ^ ( l ’B /lX C ) ]

Using (7.9) and lemma 7.5, we have that

1 (0 ^  = !5t3[01‘212O‘1p(p+l)(p+2)(p2+2p+2)-72OJ<t>01‘1p2(p+l)2(p+2)2(p2+2p+2)

+<t>21728alp3(p+l)3(p+2)3(p2+2p+2)]

= 24O1t3012p(p+l)(p+2Xp2+2p+2)(1201+02t2p(p+lXp+2))2[(1201+02t2p(p+l)(p+2))2 

- 202t2p(p+l)(p+2)(1201+02t2p(p+l)(p+2)) + 02¥ p 2(p+l)2(p+2)2]

(7.24) 1 (0^  = 3(5'1)t3p(p+l)(p+2)(p2+2p+2X120j+02t2p(p+l)(p+2))'2 

1(0)33 = ^[(Oj-’B X Q B  3(011B11-<|>C)B 3]

(7.25) 1 (0 ) 3 3  = J5t^((B1-1V4.Cjj)2
ij-1

We therefore require

( i)  Z ^ 1) ,2U-l

(ii) ^ C ,)2, and
4-1

(in) zob.-j.c ,
ij=l

Now, (i) = [22 2(p+l)"2(p-j+1)2!2] + P fc+ irfC p-j+ l)2]
i=i w i=i

where the sum in the first bracket is of the off-diagonal elements, and that in the 

second bracket is of the diagonal elements of Bj.

= ( p + i^ te + i- tf f e i2 + j2]
i-i j-i
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= (p+l)'22((p+l)2-2(p+l)j4j2)[3‘1(j-l)j(2j-l) + f ]
M

= 3'1(p+l)‘22(2j5-4(p+l)j4+(2(p+l)2+l)j3-2(p+l)j2+(p+l)2j) 
j-x

= 3 1(p+l)-2[61p2(p+l)2(2p2+2p-l) - 2.15‘1p(p+l)2(2p+l)(3p2+3p+l)

+ >s(2p2+4+3)p2(p+l)2 - 3 1p(p+l)2(2p+l) + >sp(p+l)3

= 180‘1p[2p3+8p2+17p+18]

(7.26) ^(B ,1),2 = 180'1p(p+2)(2p2+4p+9)
U-l

Similarly, (ii) = (^(^(p-i+ l))2)2
M

= 161(£[(p+l)2i2-2(p+l)i3+i‘‘])2

= 161[61p<p+l)3(2p+l) - %p2(p+l)3 + 30‘1p(p+l)(2p+l)(3p2+3p-l)p 

= 14400‘1p2(p+l)2[p3+4p2+6p+4]2

(7.27) i (O )2 = 14400"'p2(p+l)2(p+2)2(p2+2p+2)2
g-i

Finally, (iii) = %2j(p-j+l)[Zi(p-j+l)i(p-i+l) + 2j(p-i+l)i(p-i+l)]
j=l i-i 1-f+l

= %(p+l)1l:j(p-j+l)[(p-j+l)2((p+l)F-i3) +jX((p+l)k2-k3)]
j=l i=l k=l

= is(p+l)',2j(p-j+l)[(p-j+lX(P+l)6'1jO+1X2j+l)-^j2(j+l)2)i-i
+ j(6-1(p+l)(p-j)(p-j+lX2p-2j+l)  - ^ (p -jX -j+ l)2)] 

= 48'l2[-jis+3(p+l)j5-(2p2+4p+l)j4-(p+l)(p2+2p+3)j3+(p+l)2(p2+2p+2)j2]
M

= 4 8 1[-421p(p+lX2p+l)(3p4+6p3-3p+l)+>«p2(p+l)3(2p2+2p-l)

-30’Ip(p+lX2p+l)(3p2+3p-lX2p2+4p+l)-isp2(p+l)3(p2+2p+3)

+6Ip(p+l)3(2p+l)(p2+2p+2)]

(7.28) = 20160rlp(p+l)(p+2)[17p4+68p3+133p2+130p+72]
4 -1
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Substituting (7.26-28) in (7.25), we therefore have 

I<SX, = %t2[0,'J18O‘1p(p+2X2p2+4p+9)

- 20] 1((>2O16O-1p(p+l)(p+2)(17p4+68p3+133p2+13Op+72)

+ <t>214400'1p2(p+l)2(p+2)V+2p+2)2] 

= 20160a1t2p(p+2)[560e1-,(2p2+4p+9) - lO011<|)(p+lX17p4+68p2+133p2+13Op+72)

+ 7<t>2p(p+l)2(p+2)(p2+2p+2)2] 

=2O16OO-‘61-2t2p(p+2X12el+e2t2p(p+l)(p+2))-2[56O(2p2+4p+9X1201+e2t2p(p+l)(p+2))2 

- 12O0/(p+lX17p4+68p5+i33p2+13Op+72X1201+02t2p(p+l)(p+2))

+ lOO8022t4p(p+l)2(p+2)(p2+2p+2)2]

= 252OO-I01-2t2p(p+2X1201+02t2p(p+l)(p+2))-2[lOO8O(2p2+4p+9)012 

+6O(p+lX5p4+2Op3+77p2+114p-216)0102t2+p(p+l)2(p+2Xllp2+44p3+2O3p3+318p-576)022t4]

(7.29) I(0)„ = 252OO-‘01¥p(p+2X1201+02t2p(p+l)(p+2))-2[lOO8O(2p2+4p+9)012 

+6O(p-l)(p+l)(p+3)(5p2+lOp+72)0102t2+(p-l)p(p+l)2(p+2)(p+3Xllp2+22p+192)022t4]

We have thus completed calculation of the elements of 1(0), which are given in 

equations (7.16), (7.18), (7.20), (7.22), (7.24) and (7.29). We write

(7.30) 1(0) = JS01-2p(1201+02t2p(p+l)(p+2)).-2
'a b c 
b d e 

lc e f

where

(7.31) a = 144012+24(p-l)(p+l)(p+2)0,02t2+(p-l)p(p+l)2(p+2)2022t4

(7.32) b = 12(p+lXp+2)0j¥
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(7.33) c = 151t(p+2)[36Oei2+24(p-l)(p+l)(p+3)0ie2t2+O-l)p(p+l)2(p+2)(p+3)02Y]

(7.34) d = p(p+ l)2(p+2)201V

(7.35) e = 6(51Xp+lXp+2)(p2+2p+2)01¥

(7.36) f  = 126OOJ(p+2)t2[lOO8O(2p2+4p+9)0j2

+6O(p-l)(p+l)(p+3X5p2+lOp+72)0102t2+(p-l)p(p+l)(p+2)2(p+3)(llp2+22p+192)022t4]

7.3 CALCULATION OF THE ASYMPTOTIC VARIANCE OF 0,.

As stated earlier, the asymptotic variance-covariance matrix of 0 is given by the 

inverse of NI(0). We thus now calculate T2(0). Write

(7.37) ip = 3501'2p(1201+02t2p(p+l)(p+2))'2 

With 1(0) defined in (7.30), we then have

(7.38) 11(0) I = ii)3(adf+2cbe-ae2-dc2-fb2) 

so that

Idf-e2 ,ec-bf,be-cd\
(7.39) I"1®) = ip 1(adf+2cbe-ae2-dc2-fb2)'1 ec-bf ,af-<? ,bc-ae|

\be-cd,bc-ae,ad-b2/

Now, var(03103=O) is given by the (3,3) element of N'1?1̂ ) , so that

(7.40) var(03l03=O) = n'Hp1(adf+2cbe-ae2-dc2-fb2)"1(ad-b2)

Since we are interested in asymptotic properties of var(03103=O), and since the 

amount of algebraic manipulation required to calculate its exact value is substantial, 

we simplify by writing

(7.41) jtj means "polynomial of order i"

Thus, from (7.31-36)

(7.42) a= 144012+24jc30102t2+jt6022t4



207

(7.43) b = 12it2el¥

(7.44) c = 15•1t[360Jtlel2+24Jt4ele2t2+Jt7e2:1t,]

(7.45) d = * & ¥

(7.46) e = 6(51)jt4el¥

(7.47) f  = i26oo-1t2[2oi6ojt3012+3oojt(i0102t2+i ijc,e2¥ ]

where are implicitly defined by the previously given formulae.

For large p we can use the approximations that and Jti + jij = it, if i>j.

We therefore have, from (7.42-47),:

(7.48) adf = 126OO-1jt802¥(29O3O4O014+527O4Ojc30,302t2+28944jc601202¥

+564ji90102¥+1 1 jc1202Y)

(7.49) 2cbe = 48(25)1ic7014t<(36O012+24jt30102t2+jc602¥ )

(7.50) ae2 = 36(25)1Jt,0,4t6(144l2+243t30102t2+3t602¥ )

(7.51) dc2 = 225"1jt701¥(1296OO014+1728Ojtj01302t2+1296jt80,202¥+48ji,0,02¥

+Jt1202V)

(7.52) fb2 = 1751n7014t6(2O16O012+3OOjt30102t2+ llji6022t4)

(7.53) ad = jc3012t4(144012+24jt30102t2+jt60J¥ )

(7.54) b2 = 144*,0,¥

Thus

(7.55) (adf+2cbe-ae2-dc2-fb2) = 128OO1ji801¥(29O3O4O014+527O4Ojt301302t2

+28944jtj0j202¥+564jt,0102¥ + ll3 t12024lf)

and

(7.56) ad-b2 = it501¥(144012+24it30I02t2+it6e2¥ )

Also, from (7.37)
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(7.57) rp = >snlel-:!(1201+3iie2tJ)-2 

Thus, from (7.40) and (7.55-7)

var/fi 10  -n \  -  n 1r2jt,18,2(12e,+?i,e,t2)2jc.e,¥a44e,2+24n:,e,9,t2+ jt.e,¥ l 
var(0jl 03-u) -  (adf+2cbe-ae2-dc2-fb2)

_______ 6400n‘jt/11-26. ¥  128. +ji.6,t2>2('1448.2+24n,6, 9,t2+;i,B,¥'t
-  (29O3O4Oe14+527O4Ow3el3e2t2+28944n6012e2¥+5643t,0102¥ + ll3 t12e2,t8)

We now examine (7.58) to ascertain asymptotic properties of var(03l03=0). By 

subtracting the maximum power of the term of interest in the denominator from that 

in the numerator we find that:

(i) keeping all other parameters fixed and varying p, var(03103=O) is proportional 

to p-4 + 0(p*5).

(ii) keeping tp (the total time of the study) constant, and varying p, var(03l 03=O) 

is proportional to p'2 + (^(p 3)

(iii) keeping all other parameters fixed and varying t, var(03l 03=O) is proportional 

to t 2 + 0(t_3)

(iv) varying 02 has no overall effect on var(03l03=O).

(v) keeping all other parameters fixed and varying n, var(03103=O) is proportional 

to n 1.
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(vi) keeping all other parameters fixed and varying 0j, var(03l03=O) is 

proportional to 0j2 + 0(0!).

Thus the variance of 03 will be minimised faster by increasing p, the number of 

observations per site, rather than n, the number of sites, and will decrease if t, the 

time between observations, increases. We therefore see that in designing a study 

whose aim is to estimate 03 we will try to make as many observations as possible 

per site, rather than to observe a large number of sites, and will try to maximise 

the time between these observations.

It may at first seem odd that we detect whether bursts of activity occur by 

increasing, rather than decreasing the time between observations. The reason for 

this is that the longer the time between observations, the greater the average change 

in attachment, and the larger, therefore the proportion of observed change which is 

due to true change rather than to measurement error.

It should also be remembered that we do not attempt either to identify at which 

sites bursts of activity occur, or to identify when a burst of activity has taken place. 

We simply assess whether the whole data set appears to be described better by the 

’burst’ model or the ’steady progression’ model.
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8

MAXIMUM LIKELIHOOD ESTIMATION 

FOR DEPENDENT OBSERVATIONS.
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We saw in the last section that the properties of maximum-likelihood (ML) 

estimates of the parameters of covariance structures as p, rather than n, tends to 

infinity may be of interest. Under such conditions, the assumption that the 

observations are independently and identically distributed (iid) no longer holds, so 

that the classical asymptotic properties of maximum likelihood estimates (MLEs) 

need no longer be valid. In this section we review the literature on ML estimation 

where these assumptions are relaxed, and present sufficient conditions for the 

estimates to be consistent as p-*oo.

Most of the literature on asymptotic properties of MLEs is based on the work 

either of Cramer (1946) or of Wald (1949). While Cramer (1946) assumed that 

the log-likelihood is three-times differentiable, Wald (1949) made no differentiability 

assumptions to prove consistency. Each applied the strong law of large numbers, 

using the fact that the log-likelihood and its derivatives are the sum of 

independently and identically distributed random variables.

We will use the following notation. Let be random variables taking values

Xj,...^ in a sample space, with joint distribution p(x*,6) ((x„ = ( x ^ . . .^ ’) which 

depends on a qxl parameter vector 0 belonging to a parameter space Q. We denote 

by L(0,x„) the log-likelihood of 0 and by 0Q the true value of 0.

A number of authors (Prasad and Prakasa Rao 1976, Bhat 1979, Bad 1979, Sarma 

1986) make assumptions about the conditional density, defined by

(8.1) p '& j) = p(x„fi)/p(x..„e).

Since the log-likelihood can be expressed as
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(8.2) L & xJ = Zlogfofeffi)
i=i

suitable regularity conditions can be imposed to allow the application of martingale 

limit theorems in a manner analogous to the application of the strong law of large 

numbers in the iid case. Our approach, on the other hand, will be to impose 

conditions on L(0,xJ. This approach was taken by, for instance, Crowder (1976) 

and Heijmans and Magnus (1986a). The theorems are adaptations of those of 

Lehmann (1983) which apply to the iid case: we replace the application of the 

strong law of large numbers by assumptions about the expectation and variance of 

the log likelihood and its derivatives. We make the following assumptions:

(Al) For each (fixed) n, the distributions p(x„,8) and p(x«,0o) are distinct for 0 

not equal to 6q.

(A2) The support of p(x*,0) does not depend on 0.

8.1 ASYMPTOTIC CONSISTENCY FOR THE SINGLE PARAMETER CASE.

Here we assume that q=l. We now give conditions for the consistency of the MLE 

for the single parameter case. We need the further assumptions:

(A3) P[L(0o,2Q - L(6,2Q > 0] -  1

(A4) The parameter space Q contains an open interval co of which the true 

parameter value 0O is an interior point.
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Theorem 8.1. For each (fixed) n, let X. satisfy (A1)-(A4) and suppose that, for all 

X.. LfQ^x,) is differentiable with respect to 0 in co. Then with probability tending 

to 1 as n—»oo, the likelihood equation

(8.3) (0/00)L(0,xJ = 0

has a root 0B = 0 6 0  such that 0(xj tends to the true value 0O in probability.

Proof: Let 6 be small enough so that (0o-6,0o+6)Cco, and let 

Sa= {x„:L(0o,xn)>L(0o-6,x11) and L(0o,xa)>L(0o+6,xll)}

By (A3), P ^ E S J —>1. For any x, in S„ there exists a value 0n(6) with 

0o-8<0a(6)<0o+6 at which L(0o,xj has a local maximum and at which, therefore, 

(d/d0)L(OjxJ  evaluated at 0=0,(6) is equal to zero. Hence for any small 6>0,

(8.4) P[(8.3) has a root in (0o-6,0o+6)] -* 1 as n-^».

Let 0 .  be the set of roots of L(0,xj (if there is no root let 0„={1}). Let 0tt* be the 

element of 0„ closest to 0O [this exists because the limit of a sequence of roots is 

again a root by the continuity of L(0)]. If there is a root in (0o-6,0o+6) then 

0/E(0o-6,0o+8), and therefore from (8.4) P(0n*E(0o-S,0o+6))-*l as n-»o°. Choosing 0n 

= 0 /  establishes the theorem. |

The argument in the last paragraph is, we believe, an improvement on that 

presented by Lehmann. For the iid case condition (A3) can be established from the 

strong law of large numbers: we present sufficient conditions for (A3) to hold in 

the non iid case below.
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Corollary 8.1. Under the assumptions of theorem 8.1, if the likelihood equation has 

a unique root 6a for each n and for all x*, then {6a} is a consistent estimator 

sequence for 0O. If, in addition, the parameter space is an open interval (a,b) then

with probability tending to 1, 6a maximises the likelihood, i.e. 5a is the MLE, which

is therefore consistent.

Proof: The first statement is clearly true. To prove the second, suppose the 

probability of 6a being the MLE does not tend to 1. Then, for arbitrarily large n, 

the likelihood has a supremum at a or b with probability cj> with lim inf (j»0. We 

suppose (without loss of generality) that this supremum is at b.

From theorem 8 .1 ,  as n-><», there is a root 0 a such that for any e> 0  which is 

sufficiently small 0 aG (0 o-E ,0o+ e )  and 0 a is a local maximum of L(0,xj. Since §a is 

unique, 6a=0a and therefore 6a is a local maximum. Since L(h,xB)>L(^n»ii) f°r 

arbitrarily large n, L has a local minimum for arbitrarily large n, contradicting the 

uniqueness of 6a. |

We now give a condition can be used to prove consistency in the non iid case. 

Assume:

(Bl) There exists a sequence a. = aB(0) with aa(0)>O and lim inf a„>0 such that 

for each (fixed) 0 not equal to 0O:

(i) lim sup - L(0o,2O)] = \i(Q) < 0.
|-M 0

(u) Var„(aI'I(L(0,XJ-L(0o,2L)) -  0 as n - ~ .

Theorem 8.2. Given assumptions A l, A2 and Bl, P[L(0O,2Q - LL.X.1 2 : 0] —> 1 

as n—*0 ° for any fixed 0 not equal to 0o_
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Proof: Suppose not. Then there exists some 8 such that for arbitrarily large n, 

P[L(0o,2Q-L(0^L) * 0 ] > e. Thus

P[a.1(L(0o,2Q - L(6,2Q) *  0] > £

But from (i) there exists some N such that for n>N 

EJa_1(T /0JQ  - L(0q,2L))] < O.5xp(0) implying that for n>N 

Vare[am'1(L(0o,2 y  - L(0,XJ)] > O^xep^©)2, contradicting B l (ii) above.

(since if E[Y] = p < 0 and p(Y>0) > 8 then

Var(Y) = J  (y-p)2dF(y) :> J  (y-p)MF(y) z  \i2J  dF(y) > p2e) |

Since assumption Bl implies assumption A3, it can be used to prove consistency 

of the MLE for particular examples.

8.2 ASYMPTOTIC CONSISTENCY FOR MULTIPLE PARAMETERS.

It was shown by Crowder (1976) that where the likelihood depends on multiple 

parameters (i.e. q>l) and the observations are not iid, it is possible either that the 

MLEs are consistent or that the MLEs for a subset of the parameters are consistent 

while the MLEs for "transient" parameters (as Crowder calls them) are not 

consistent. Clearly, it is possible that the MLEs of all parameters are not consistent; 

for instance in the non iid case where the density of X2 is p(x,0), while XpO with 

probability 1 for i=2,3,... It is therefore clear that conditions which ensure the 

consistency of the MLEs for non iid variables, will not be as simple, general or 

easy to specify as for the iid case.
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Intuitively, it seems likely that the MLEs will be consistent if an analogue of the 

Fisher information (for instance the matrix -E^LfQ.x^/dQdQ*]) given by x„ tends 

to infinity in some specified sense as n—»o°. However, such a condition does not 

appear to be sufficient in itself to prove consistency of the MLE: we need also to 

ensure convergence in probability of the first three derivatives of the likelihood 

function. In the theorem below we have again adapted the proof of Lehmann by 

specifying conditions sufficient for consistency in the non iid case, which replace 

the use of the strong law of large numbers in the iid case.

We make the following assumptions, in addition to (Al) and (A2).

(Cl) There exists an open subset co of the parameter space Q containing the true 

parameter value 6q such that for all x, the likelihood admits all third derivatives.

(C2) There exists a sequence {a,} (a>>0) (n=l,2,...) which may depend on 0 such 

that the following hold:

(i) lydL ^xJ/dO J = 0 (j=l,..,q) for all 0Eco.

(ii) Define the qxq matrix JB(0) with (i,j)th element

(8.5) Jjjn = E5[aB1(aL(0,x1I)/00i)(dL(0,xII)/00j)] = E . l ^ U ^ x ^ / d Q ^ ]

Since JB(0) is a covariance matrix, it is positive semi-definite. We assume that, as 

n—*0 0 , for any qxl vector y, with at least one non-zero element, we have for all 0Eco: 

y’Jn(0)y > 0, and lim inf y ’J.(0)y/y’y = k  > 0.
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(iii) For all 0Eco, I E8[am1d3L(0,xB)/d0id0jd0k] I < 0 0  (i,j\k=l,...,q) and is bounded (less 

than b ^  say) as n-*<».

(iv) Var(am'1dL(0^)/d01) -*> 0 as n-*<» (i=l,...,q) for all 0Eco.

(v) Var(am'1a2L(0,xJ/a0ia0j) -» 0 as n-*a> (ij=l,...,q) for all 0Eco.

(vi) Var(all'1a3L(0,xI1)/a0ia0ja0k) -> 0 as n— (ij,k=l,...,q) for all 0Eco.

Theorem 8.3. If L(0,xj is defined for all n and satisfies (Al), (A2) and (C) then, 

with probability tending to 1 as n-*oo there exists a solution 0B=0B(x.) of the 

likelihood equations such that {0,} is consistent for 0q.

Proof: We consider the behaviour of the log-likelihood L(0,x.l on the sphere Qb 

with radius 5 and centre at the true point 0q. We will show that for any sufficiently 

small 5 the probability tends to 1 that:

(8.6) L(6,2 )̂ < L(0o,sJ

at all points 0 on the surface of Q6, and hence that L(0,xj has a local maximum 

in the interior of Q6. Since at a local maximum the likelihood equations must be 

satisfied it will follow that for any 6>0 with probability tending to 1 as n—>oo5 the 

likelihood equations have a solution 0,(6) within Q8. We can then complete the 

proof as in the 1-dimensional case.

We write L®(0*,i) = dL^xJ/dOj, = d2L(0,2L1)/^0î 0j, etc., and use

L°Yx.,6*) to mean dlY^xJ/dOj evaluated at 0 = 0*. Expand L(0,xj about 0q and 

divide by a,:
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an1L(6,xJ-a>-1L(S0,xJ = a.4L®(0o,xJ(0r e(H)+(2all)-12 2
i=l i=l j=l

+(6aa)-12 2 2  LW'k)(0*,xa)(0r0oi)(0r 0pj)(ek-eQk)
i-l j-1 k-1

where 0* is in the interior of Q6. Write a,'1L(0,xn)-a.'1L(0o,xll) = Sj + S2 + S3. We 

now show that, with probability tending to 1 as n-*°°, if 6 is sufficiently small then 

the maximum S2 is negative while Sx and S3 are small compared to S2.

We begin with S2. By (C2) (i) and (iv), and using Tchebychev’s inequality, 

an1L(i)(0o,xll) tends to zero in probability, so that for any 62, with probability tending 

to 1, I a ,1L(i>(0o,xll) I <62. On Qfi we have IS j ^ an'1621 L(iY6.xJ I. It follows that:

(8.7) ISjl ^ q63 with probability 1 as n—»o°.

For Sj, we have from (C2) (ii) and (v) and Tchebychev’s inequality that

an"1LW)(0o,xa) tends in probability to -J.(0o) as n—»o°. We have:

2S2 = 2 + 2 2[(aB-1L^X0o,xa)< -J ^ )))(0 r0Oi)(0j-0oj)]
i=l j-1 i=l j=l

For the second term, for an argument analogous to that for it follows that its

absolute value is less than s263 with probability tending to 1 as n—»oo. The first term 

is a negative (nonrandom) quadratic form in the variables (Oj-Oqj). Write y=(0-0o). 

From condition (C2) (ii) we have:

■y’JnOJx/i’y > 0, and lim inf -y’J.O y/y’y = -k  < 0.

Hence there exist k>0 and N such that -y’JuOy/y’y < -k for all n>N. On Q6 

y’y=82, and therefore the first term has absolute value greater than k82 for n>N.
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Combining the first and second terms, we see that there exist c>0, 5o>0 such that 

for d<6 0

(8.8) S2 < -c62 as n->o°.

By (C2) (iii) and (vi) and Tchebychev’s inequality:

a^L ^IX B ’jXa) tends in probability to E[am1 L(U’k)(0*,xll)] < b^ as n—>0 °. Hence:

(8.9) S3 <b6 3

on Q6, where b=(q3 /6)2ZSbyk.

Combining (8.7), (8 .8 ) and (8.9): 

max (Sj + Sj + S3 ) < -c8 2  + (b+q)6 3

which is less than zero if 5 < c/(b+q). |

We present two conditions for (C2) (ii) to hold. These are:

(Dl) As n—►0 °, J„(0)—>1(0), where 1(0) is a positive definite matrix.

(D2) lim inf ^*(0) > 0, where X,*(0) is the minimum eigenvalue of JB(0).
1-M>

Each follows immediately from the fact that for any positive definite matrix A and 

vector x, X* (x’AxXx’x)'1, where X’ is the minimum eigenvalue of A.

8.3 EXAMPLES.

In this section we give examples, based on simplifications of the covariance 

structures of models 1  and 2 , firstly where the conditions of theorem are satisfied
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and secondly where they are not satisfied. We will assume that X~N(O,2a(0)), so 

that:

(8.10) Lt(e.x.) = const -Sjlogl S .(0)l - W S .fO’lx.x.’f

and that 2,(0) = 01B1 1 +...+0qByq, where B^ (i=l,„q) are known (nxn) matrices. Thus 

(cf sections 2.2.1 and 7) we find that

(8.11) L®(0^) = -JStr(E.(0)-1B J  + %Q,

(8.12) L«>(0^) = ^ . ( © ‘B A O -'B ,,) - Qa

(8.13) Lw’t)(8 .x,) = + 3Q|jk

where

(8.14) Q, = x’2.(0) 1B^.(O)-1x

(8.15) Qs = x’2 11(0)'1 B11j2.(0)1B1|j2.(0)'1x

(8.16)

Since if X — N (0^) then Efx’Ax] = tr(AX) and Var(x’Ax) = 2tr(A2)2, we have:

(8.17) E[QJ = tr(Z.(0)‘B1J

(8.18) Var(Q|) = 2tr(E.(0)‘1B„ i ) 2

(8.19) E[QJ = t r ^ O - B . A © - ^

(8.20) Var(Qjj) = 2tr(S.(O)1 B-S.(0)-1 Bl i ) 2

(8.21) EtQjJ = tr(2.(0)‘B^.(0)- 1 B^:„(e)-1 B111)

(8.22) Var(Q^ = 2tr(E,(0)1BBii:.(0) 1 B1̂ „(e)-1 B J 2  

Hence:

(8.23) E[L®(0,xJ] = 0

(8.24) Var(L®(0^)) = *str^.(0)'1B11)2
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(8.25) E[L(y)(0^n)] = - ^ t r C S ^ B A C e W

(8.26) Var(L(ij)(0,xJ) = 2tr(2B( 0 ‘1 BliZ1 (0)'1B i a ) 2

(8.27) E [L ^(0 ,xJ] = 2tr(2n(0)-1BA(0)- 1B ^ ( 0 ) 1Biy)

(8.28) V ar(L^(0,xJ) = 18tr(2.(0)1B^;(e)-1B1̂ :il(0)-1Bia)2

8.3.1 ASYMPTOTIC CONSISTENCY FOR DEPENDENT VARIABLES.

Suppose that we sample only one site, at unit time intervals, and that the mean 

rate of progression is zero. Then (see section 3.1.2) the covariance structure is 

Z(0)=0iBi for model 1, and 2 (0 )=0 1 B1 +0 3 B3  for model 2 (B3 =I), while E[X]=0. 

Here we are estimating the value of 03  for the site, rather than for the population.

If A is a tri-diagonal matrix, that is with diagonal elements equal to a, off-diagonal 

elements equal to b and other elements equal to zero, then the eigenvalues of A are 

given (Press 1972) by

(8.29) Xk = a + 2b cos iji/(n+l) (i=l,...,n) 

with corresponding eigenvectors

(8.30) Xj/ = (sin ijt/(n+l),sin 2ijt/(n+l),...,sin 2 ijt/(n+l))

Since {x;„} do not depend on a and b, the (nxn) orthogonal matrix Pw=(x, x„„)

diagonalises any matrix of the form of A. In particular, it diagonalises 2(0), which 

has eigenvalues

(8.31) <1̂  = 0 3 +0 ^  = 03  + 0j(2-2cos(i0/(n+l))) = 0 ^  + 0 ^  

where

(8.32) = 2-2cos(i0/(n+l)) (i=l,...,n)

(8.33) = 1 (i=l,...,n)



so that A.lk>0, ^ < 4 ,  ())ill>0 3 , (})lm<0 3 +4 0 1  for i=l,...,n, n=l,...,oo.
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Define:

(8.34) Ob = PB’2(0)PB = diag((|>1,...,(|)J

(8.35) A*. = PB’BjBP. = d i a g ^ , . . . ^  (j=l,3). 

Using (8.23) to (8.28), we therefore have

■
2(8.36) Var L®(0,xj) = )5 tr(P.’<I>.1P.P.,APJ = )sSV<l>i.

j- i

(8.37) E[LW>(6 ,x.)] = - ^ V t V 2

1=1

(8.38) V a r^ ^ ^ x .) )  =
1=1

The conditions are satisfied, as follows:

(C2) (i) holds for any choice of aB, from (8.23).

(C2 )( ii)  J. = (2a, ) ' 1

i=l 1=1

i=l 1=1

We verify (Dl). From the definition of the Riemann integral, the limit as n-»oo of 

is given by:

(8.39) I, = (2aJV n^(y)dy 

where

(8.40) fu(y) = (2-2cos(y))2 (03 +ei(2-2cos(y)))J

(8.41) f1 2 (y) = (2-2cos(y))(03 +01 (2-2cos(y) ) ) ' 2

(8.42) f^ y ) = (03+0 i(2 -2 cos(y))) J
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Taking a,=n, we have thus shown that the limit as n-*oo of JH is the positive definite 

matrix I with elements defined in (8.39-42), and therefore that (Dl), which implies 

(C2) (ii), is satisfied.

(C2) (iii) We require that for all 0Eo), I Eeo[aB*1d3L(0,xB)/80id0jd0J I <°° (i,j,k=l,...,q) 

and is bounded (less than b^, say) as n-»«>.

Now Eao[an1a3L(0,xJ/a0ia0ja0k] = 2a/1IX1IllXjIlIXldll<|>1Il-3
1 = 1

< 2au"1p(max (min
1=13; j = w  i=i3;j=:U»

= 2naB'1x6403'3

Thus (C2) (iii) is satisfied for a, = n.

(C2) (iv) Var(a.-1L®(0^))=35a>4v<t>i.2i=i

< -*  0 as n-»oo for a.=n.

(C2) (v) and (vi) follow similarly.

Hence the conditions for theorem 8.3 are satisfied and the MLEs of 0j and 03 are 

consistent. |

8.3.2 FAILURE TO MEET CONDITIONS FOR ASYMPTOTIC CONSISTENCY.

Suppose now that, in the notation of section 3, we have p observations on m sites, 

so that the total number of observations is given by n = mp. Suppose also that we
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make observations at unit time intervals, that the population mean rate of 

progression is zero and that there is no measurement error. It follows from standard 

theory of maximum likelihood estimation for iid variables that the estimates are 

consistent as m-*°o; we will investigate whether this holds for p-»oo. The covariance 

matrix for model 2 has block diagonal structure and is given by:

(8.43) 2 (0) = diag(A,...An)

where 2(6) has dimension n and A  has dimension p w ith

(8.44) A  = G JT + W  (i=l,...,m)

where 1*=(1,...,1) is a (p x l) vector and I is the identity matrix of dimension p. If 

we w rite x„ — (xi x„. ..I (xjj,...,Xjp,X2 i,.-.,X2 p,...,xni2 ,...,x1I1p)

then clearly L (0,xJ = 2L(0,Xj)
i-i

Since (A*)'1 = 0 3 1! - 03'1021 (0i +P0J)11 ’, we have

(8.45) = 031(I - p ' l T )
p-w»

and using (8.25) we find:

EI-L^&xJ] = hm trfVlT VIT] = md’A 1!)2
(8.46) lim E[-L(2,2)(8.x,)] = W*mf p  - I f

P - O D

E[-L(2’2)(8.xn)] = 3 5 m t r tV U ’V l ]  = m tr[l’A 2I]

(8.47) lim E[-L(23)(0jrB)= 3503-2m[p -2p + p] = 0
p—»

E[-L(33)(0^n) = 3 5 m trfA 2]

(8.48) lim E[-L^>(0^)] = - 2 + 1] = - 1]

while similarly, from (8.26):



(8.49) lim VarL^CfLxJ) = 2m(l’A11I)4 = 203̂ m[p - I f
p-**
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(8.50) lim V a rL ^ ^ x J )  = 2m(l,Ai-2l)2 = 0
p~*“

(8.51) lim V a rL ^ ^ x J )  = 2m ti^A^) = 2m(p-4+6-4+l) = 2m(p-l)
p-**

We thus see that as p-*°o E[-L(y)(0,xj])2 = 0 (V a r^ ^ ^ x j) ) .  Since the off-diagonal 

elements of J. tend to zero as p-*®, the eigenvalues of JB are equal to the diagonal 

elements of JB. Thus, for any fixed m, and n=mp,

^ E l - L ^ ] ) 2 = CXVar(a1|-1L«>(0,xll)))

Hence conditions (C2) (ii) and (C2) (v) cannot be simultaneously satisfied for any 

choice of a^ as p-»®. |

8.4 DISCUSSION.

We have given conditions under which MLEs for non iid variables are consistent, 

and have presented examples where these conditions are, and are not, satisfied.

Our conditions present the same problems as others given in the literature: that 

they are difficult to verify in practice. The paper by Heijmans and Magnus (1986a) 

contains conditions which may be more easily verified since they do not depend on 

derivatives of the likelihood function with respect to the parameter vector. This 

paper appeared after the completion of the theorems presented in this section: the 

examples given are still relatively simple and depend on knowledge of the 

eigenvalues of the covariance matrix. The treatment for the normal distribution is
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more general than for the present study in that the case is treated where the mean 

vector and covariance matrix depend on the same parameter vector.

We have given simplifications of the covariance structures of models 1 and 2 where 

the MLEs are and are not consistent as p-*-®. For the second example, it is 

unsurprising that the estimates are not consistent as p-*®: since increasing the 

number of observations in this way provides limited extra information on 02, the 

between-site variance.



9

DISCUSSION AND CONCLUSIONS.
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The major part of this thesis is the development of methods which may be used 

to provide information in the nature of the progression of periodontal diseases. 

Although the nature of periodontal disease progression has been the subject of 

controversy and interest during recent years, statistical methods for determining 

their nature have not, until now, been proposed. We have shown that data consisting 

of successive measurements of attachment level and subject to measurement error 

may be used to determine which of three models for disease progression is the most 

appropriate. Our observation that the covariance structure for the burst model is a 

limiting case of that of a general model for varying rates of progression serves to 

remind periodontal researchers that the rejection of the constant progression model 

does not lead to the acceptance of any specific model in which the rate of 

progression varies. However we have also seen that it may not be possible to 

distinguish our formulation of this general model from the burst model when the 

amount of variation in the rate of progression is small.

We have examined the nature of disease progression in the most extensive long­

term longitudinal study of untreated periodontal disease. Using standard linear 

regression, we have shown that there is a marked subject effect, in contrast to 

claims made recently in the literature. The observation that over a long time period 

the rate at which sites progressed was determined substantially by the subject in 

whom the site was found might in itself be thought to be evidence against the 

random burst model as proposed by Socransky et al. As we observed in section 2.1, 

the burst hypothesis was developed as part of a view of the disease that the nature 

of the microflora at a particular disease site was much more important than the 

subject effect. Although the large subject effect which we have observed could be
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due either to the increased susceptibility of a minority of subjects or to the infection 

of the whole mouth over a long period with microorganisms causing periodontal 

disease, neither of these explanations sits easily with the view of the disease 

underlying the burst hypothesis.

Application of our methods for determining disease progression to these data has 

met with mixed success. None of the models could be said unambiguously to be 

the most appropriate for the data. Although there is evidence that the rate of 

progression changed, the estimates of the parameters representing between-subject 

variation in the burst and varying rates models were zero or close to zero, in 

contrast to the marked between-subject variation which was shown to exist in the 

preliminary analysis of the data. A possible explanation is that the variation in the 

rate of progression was due to differing rates of progression at different ages, and 

is therefore correlated between subjects.

It is to be hoped, therefore, that after the methods have been published it will be 

possible to apply them to other, possibly more appropriate data sets. For instance 

the assumption of constant mean rate of progression may be more realistic for a 

study in which observations were made at shorter intervals and over a shorter total 

time period. Similarly, given that a majority of subjects in the Sri Lanka study did 

not experience disease progression, studies of subject with pre-existing disease might 

provide more sites which show progression and therefore be more powerful for 

making inference about the nature of progression, where it occurs.
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However an ideal data set probably does not exist. For instance the data of 

Goodson et aL were collected on a total of 22 subjects, with the aim of examining 

each subject every 28 days. We might require, for inclusion in data sets suitable for 

our methods, that a subject provide five successive increments in attachment level, 

with between 14 and 56 days between each observations. Sixteen of the subjects 

provided data meeting this criterion. There seems little chance of making reliable 

inference about the covariance structure of data sets based on a maximum of sixteen 

observations.

Another problem which will make accumulation of a suitable data set difficult is, 

for populations receiving Westem-style dental care, the necessity of treating any 

patient for whom it is believed that disease is progressing. Gearly, the assumptions 

of the models could not hold for subjects for whom there has been major 

intervention in the disease process.

It is to be hoped that our critique of the evidence so far presented for differing 

theories on the nature of periodontal disease progression, together with the provision 

of methods which can distinguish between these different possibilities, and 

application of these methods to data from a major study will provoke further 

investigation into the nature of the disease.

Various possibilities for further work arise. An obvious possible extension is to 

use estimation procedures which do not require identical time intervals for each 

site. We reviewed in section 2.2.3.4 the estimation of covariance structures for 

multiple groups. This theory is easily applicable to the situation where different
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subjects have been measured at different time intervals: a separate sample 

covariance matrix is formed for each group of sites analysed at the same time 

intervals. This does however lead to the major restriction that each sample 

covariance matrix must be nonsingular, so that the number of sites in each group 

must be at the very least greater than the dimension of the sample covariance 

matrix. The construction of the GLS estimator is based around the sample 

covariance matrix so that for the general case where each subject is examined at 

different time intervals no obvious analogue to the GLS estimator exists. It would, 

however be possible in this situation to derive MLEs, although the procedures 

would be computationally rather heavy because of the lack of a sufficient statistic 

for the parameter vector.

We have shown that, for the GLS (nk) method, parameters estimates produced by 

the program AUFTT were identical to those of the APL programs for models 1 and 

2, which have linear covariance structures. For model 3 the goodness of fit was 

similar or slightly better than for the APL programs, while the parameter estimates 

differed (as they did for different starting values for the APL programs. These 

results confirmed the potential of AUFTT to save the substantial amount of time 

involved in calculating and writing routines for the derivatives of nonlinear 

covariance structures.

In the final sections we showed that the power of a study to discriminate between 

models 1 and 2 was increased faster as p, the number of observations per site, 

rather than n, the number of sites, increased. This led us to examine the conditions 

under which MLEs for dependent variables are consistent. We presented such
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conditions, gave an example where they are satisfied, and showed that they were 

not satisfied for an example where a component of the covariance structure is the 

between-subject variation, but the number of subjects is fixed.

The main problem for our, and others’ theorems on asymptotic consistency is the 

verification of the conditions, which is time-consuming even for simple examples. 

It would be of interest to provide more easily verifiable conditions. A possibility 

for this would be to show that the likelihood satisfied conditions for the 

convergence of dependent variables, by showing that it meets the conditions of one 

of a number of papers which have recently appeared, for instance that of Andrews

(1988), who provided laws of large numbers for L1 mixingales.

Asymptotic consistency is a weak condition for estimating sequences. It would be 

of interest to generalise the theorems of section 8 by presenting conditions where 

the MLEs for dependent variables are asymptotically normally distributed, such as 

were given by Heijmans and Magnus (1986b) and Sarma (1986).
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