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Abstract—With the advancement in artificial intelligence (AI)
and machine learning (ML) techniques, researchers are striv-
ing towards employing these techniques for advancing clinical
practice. One of the key objectives in healthcare is the early
detection and prediction of disease to timely provide preventive
interventions. This is especially the case for epilepsy, which is
characterized by recurrent and unpredictable seizures. Patients
can be relieved from the adverse consequences of epileptic
seizures if it could somehow be predicted in advance. Despite
decades of research, seizure prediction remains an unsolved
problem. This is likely to remain at least partly because of
the inadequate amount of data to resolve the problem. There
have been exciting new developments in ML-based algorithms
that have the potential to deliver a paradigm shift in the early
and accurate prediction of epileptic seizures. Here we provide
a comprehensive review of state-of-the-art ML techniques in
early prediction of seizures using EEG signals. We will identify
the gaps, challenges, and pitfalls in the current research and
recommend future directions.

Index Terms—Epileptic Seizure, EEG, Machine Learning

I. INTRODUCTION

Epilepsy is a group of neurological disorders that are char-
acterized by an enduring predisposition to generate recurrent
seizures and can affect individuals of any age. Epilepsy arises
from the gradual neurobiological process of ‘epileptogenesis’
[1], which causes the normal brain network to fire neurons
in a self-sustained hyper-synchronized manner in the cerebral
cortex. According to the World Health Organization (WHO),
70 million people worldwide have epilepsy and epilepsy
trails only migraine, stroke, and Alzheimer’s disease in the
list of the most widespread brain diseases [2]. The seizures
caused by epilepsy are debilitating and disrupt the day-to-day
activities of the patients, and are associated with an increased
risk of premature mortality. The dearth of neurologists in
many countries, particularly in developing countries, further
complicates the management of epilepsy.

Even though epilepsy and seizures are sometimes referred to
synonymously in some literature, it is worth noting that not all
seizures are epileptic and convulsions and seizures may also
occur due to acute neurological insults (such as stroke, brain
trauma, metabolic disturbances, and drug toxicity) without
necessarily reflecting a long term predisposition to recurrent
unprovoked seizures (i.e. epilepsy).

An epileptic seizure (ES) is caused by a sudden abnormal,
self-sustained electrical discharge that occurs in the cerebral
networks and usually lasts for less than a few minutes. ES
attacks are hard to predict, moreover, severity and duration
of attack also cannot be anticipated. Therefore, injuries and
safety issues from the events are a major concern for patients
and their families. Hence, early prediction of epilepsy attacks
is crucial to avoid and counter their adverse consequences.
The brain activity of patients with epilepsy can be categorized
as different states: pre-ictal (immediately preceding seizure),
ictal (during a seizure), post-ictal (immediately following a
seizure), and interictal (in-between seizures). Further details
of these terms are provided in the section of the paper. ES
prediction is a classification problem focused on differenti-
ating between the pre-ictal and interictal states. Due to the
recurrent nature of epilepsy, ES occurs in groups and patients
afflicted from seizure clusters can acquire advantage through
the forecasting of follow-on seizures.

Electroencephalography (EEG) is a particularly effective
diagnostic tool to study the functional anatomy of the brain
during an ES attack. The prediction and medication of epilepsy
have been broadly studied through EEG. EEG signals, which
are non-Gaussian and non-stationary, measure the electrical
activity in the brain which are in turn used to diagnose the
type of the brain disorders. The analysis of EEG measurements
helps segregate normal and abnormal function of the brain. For
an accurate prediction of epilepsy, it is necessary to examine
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TABLE I: Comparison of this paper with existing surveys. Legends:
√

= discussed, ×= not discussed, ≈ = partially discussed.

Reference Year Focused Area
EEG
Analysis
Techniques

Feat-
ures ML DL Pitfalls Future

Direction

Mormann et al. [3] 2006 Epilepsy prediction × ×
√

× ≈
√

Subha et al. [4] 2008 EEG signals
√ √

× × ≈ ×
Yuedong et al. [5] 2011 EEG signals

√
≈ × × × ×

Acharya et al. [6] 2013 EEG signals for epilepsy
√ √ √

× ×
√

Gadhoumi et al. [7] 2016 ES prediction ×
√ √

×
√

≈
M.Iftikhar et al. [8] 2018 DL for EEG signals

√
≈ ×

√
× ×

Acharya et al. [9] 2018 ES prediction ×
√ √

≈ ×
√

Kuhlmann et al. [10] 2018 ES prediction × ×
√

≈ ×
√

Roy et al. [11] 2019 DL for EEG
√

× ×
√ √ √

Li et al. [12] 2019 DL for EEG × × ≈
√ √ √

This paper 2020 ES prediction
√ √ √ √ √ √

EEG recordings of longer duration. Expert neurologists ex-
amine epilepsy by studying continuous EEG signals recorded
over several days, weeks, or even months, which requires
a huge amount of human effort and time. Over the years,
various studies have employed machine learning (ML)-based
prediction methods to address this issue. Deep learning (DL)
is an advanced ML technology that is capable of learning
patterns more precisely from large collections of data by pro-
cessing it through a multi-layer hierarchical architecture. The
ability of DL to produce very accurate results has influenced
the researchers to tackle numerous real-world applications by
employing DL techniques with various researchers proposing
DL-based approaches for the ES prediction in the last five to
six years.

The objective of this paper is to review and elaborate upon
the primary advances in the employment of ML methods for
epilepsy prediction. We consider DL as a subset of the broader
class of ML.1 The advancement in the DL methods of ES
prediction is also summarized in the paper. We will provide
a brief introduction to neuroscience, various tools used for
studying brain, and how they have been or could be used for
the prediction of epilepsy.

Contributions of this paper: Although there exist several
reviews that specifically cover epilepsy seizure prediction
using EEG signals, to the best of our knowledge, there does
not yet exist a review that covers in depth the application of
ML methods for predicting epileptic seizures. For instance,
Mormann et al. have provided an overview of the evolution of
seizure predicting methods since the 1970s till 2006 [3] and
have covered the major issues related to methodology of ES
prediction. Gadhoumi et al. have provided a brief overview of
valid methods used for ES prediction and comprehensively
described the statistical significance of the results of the
prediction [7]. In the recently published review, Kuhlmann et
al. have briefly described the advancement in the field of ES
prediction and ES prediction competitions. They concluded
that these advancements with standard statistical evaluations
are opening ways for the development of ES prediction
methodologies and they refined the existing guidelines to

1This is a standard assumption made in mainstream works [13]; interested
readers are referred to https://bit.ly/3gg71Jc for more details. We make the
distinction between DL and ML where necessary to separately talk about
general ML approaches for ES prediction and to differentiate them from
specific DL-based approaches.

TABLE II: List of Acronyms

ANN Artificial Neural Network
ApEn Approximate Entropy
BLDA Bayesian Linear Discriminant Analysis
CNN Convolutional Neural Network
CWT Continuous Wavelet Transform
DNN Deep Neural Network
DWT Discrete Wavelet Transform
EMD Empirical Mode Decomposition
ES Epileptic Seizure
EEG Electroencephalography
FD Fractal Dimension
FPR False Prediction Rate
FT Fourier Transform
HE Hurst Exponent
HHT Hilbert-Huang Transform
HP Hjorth Parameter
LLE Largest Lyapunov Exponent
LSTM Long-Short Term Memory
MLP Multi-layer Perceptron
RNN Recurrent Neural Network
SEF Spectral Edge Frequency
SBP Spectral Band Power
SM Statistical Moment
SOM Self Organizing Map
SpM Spectral Moment
TPR True Positive Rate
WFT Wavelet Fourier Transform
WT Wavelet Transform

achieve this development [10]. This survey is unique because it
provides comprehensive answers to questions like why there is
a need for ML techniques for ES prediction, how the evolution
of relatively newer techniques like DL is proving highly useful
for ES prediction, and discusses directions for future research
in this area. The comparison of this paper with existing surveys
is presented in Table I.

Organization of this paper: The organization of this paper
is depicted in Figure 1. In Section II, a brief background of
neuroscience, EEG, and epilepsy prediction is presented. Sec-
tion III covers data-driven ML approaches for ES prediction.
Section IV comprises of identifying several pitfalls in applying
these methods. Future directions and open research problems
are presented in Section V. Finally, the paper is concluded in
Section VI. List of acronyms used in the paper is provided in
Table II.

https://bit.ly/3gg71Jc
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Fig. 1: Organization of the paper

II. BACKGROUND ON EEG, NEUROSCIENCE, AND
EPILEPSY PREDICTION

A. A Brief Introduction to Neuroscience and Neuroimaging

Neuroscience is the multidisciplinary study of the brain.
It integrates multifarious disciplines including neuroanatomy
(in which neuroanatomists engage with the structures of
the human brain), neurochemistry (where chemists observe
the chemical properties of intercommunication in the brain),
neurophysiology (where the neurophysiologists investigate the
electrical properties of the brain) and neuropsychology (where
psychologists endeavor to interpret the cognitive domains and
the structures that sustain those cognitive domains in neuro-
science) [14]. Neuroscience also has further divisions—e.g.,
molecular neuroscience, cognitive neuroscience [15], clinical
neuroscience, computational neuroscience [16], developmental
neuroscience, and cultural neuroscience, to name just a few.

The brain is anatomically segregated to communities which
make up a functionally specialized brain network (functional
segregation). These functionally segregated communities are
functionally interconnected (functional integration) to perform
very complex tasks like they implement cognition [17]. Neu-
roimaging uses various ways to directly or indirectly image
the structure and the function of the central nervous system.
Two broad categories are structural imaging that pertains to

anatomy, pathology or injury and functional imaging that
deals with metabolism, pharmacology or cognition. Some
of the important and widely used neuroimaging techniques
are namely: computed tomography (CT) that computes the
absorbed amount of X-rays to provide a series of cross-
sectional images of the brain; positron emission tomography
(PET) that generates the image of active molecule binding;
structural magnetic resonance imaging (MRI) that examines
the anatomy and pathology of the brain; functional MRI that
examines the brain activity; diffusion MRI that maps the
diffusion of water molecules in the brain to reveal macroscopic
details of brain tissues; and magnetic resonance spectroscopy
(MRS) imaging is used to study the metabolic changes in brain
tumors, stroke, and seizure, etc. The brain’s electrical activity
in different physiological situations can be measured using
EEG, which falls under the category of functional imaging.

B. EEG Signal Analysis Techniques

1) Introduction to EEG: In 1923, Hans Berger contrived
EEG, a non-invasive functional imaging methodology to study
the brain. EEG records the electrical signals from the cerebral
cortex by measuring the electrical activity of the group of
neurons. Compared to the functional MRI, EEG provides a
higher temporal insight into neural activity but has a lower
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spatial resolution. Typically, five frequency bands are analysed
for processing EEG signals, Delta (up to 4 Hz), Theta (4–8
Hz), Alpha (8–12 Hz), Beta (12–26 Hz), and Gamma (26–
100 Hz). The amplitude of EEG range from 10 µV–100 µV
while its frequency ranges from 1 Hz–100 Hz. To diagnose
a disease, or to decode brain activity by using EEG data,
one initially extracts features or uses spectral information of
raw EEG data by applying Fourier transform (FT) or wavelet
transform (WT). These extracted features or transformed raw
data is then used to train an ML-based classifier while DL
algorithms have been proved efficient for automatic extraction
of feature for training.

There are two methods of EEG recording based on the
position of the reference electrode.

• Bipolar Montage: In a bipolar montage, both electrodes
are placed on an electrically active region of the scalp and
the voltage difference between electrodes is measured.

• Monopolar Montage/Unipolar Montage: In a monopolar
montage, one electrode is active and the other one (or two
connected electrodes) serves as a reference electrode. The
reference electrode should be as electrically neutral as
possible in comparison with brain activity. The recorded
signals are the difference between the active brain regions
and reference electrodes. Regularly used reference sites
are the ear lobe, the left or right mastoid, the tip of the
nose, the chest, and the balanced non-cephalic sterno-
vertebral lead [18].

The traditional method for the recording of EEG signals is
to place the electrodes on the surface of the skull, which is
known as scalp EEG. The main drawback of scalp EEG is that
the recorded signals become distorted owing to a large distance
between neurons inside the skull and the electrodes. For the
quality of signals to be enhanced in terms of distortion and
amplitude, intracranial electroencephalography (iEEG) signals
are recorded by placing the electrodes on the exposed surface
of the brain.

EEG possesses several characteristics which makes it quite
preferable to use for ES prediction research. Along with its
ability to track the various changes occurring in the brain dur-
ing epilepsy, another main feature it provides is the relatively
lower hardware cost which makes it able to be used for a
large number of patients and to record for longer duration.
Multiple other techniques such that fMRI or MEG require
bulky and immobile equipment which piles up the cost to
millions of dollars. Heart rate variability (HRV) analysis using
electrocardiography (ECG) (recording of the electrical activity
of the heart) provides a good means of predicting epilepsy
[19]. To achieve the best results for the current practical
approaches to predict epileptic seizures, My Seizure Gauge
is the most example of a wearable device created to work
as a personalized advisory device for seizure prediction [20].
This device can cover intracranial EEG recordings, scalp
EEG, ECG, electromayography (EMG),2 electrodermal activ-
ity (EDA), photoplethysmography (PPG), and respiration. Liu
et al. [21] used a combination of EEG, ECG, and respiratory
signals to predict ES. They mentioned a slight increment in the

2EMG signals record the electrical activity produced by skeletal muscles

results by using the multi-bio signals as compared to uni-data
(EEG signals only). Using a 1D convolutional neural network,
they achieved a 0.5931 F score for EEG signals only and
0.6106 F score for combined data. Valderrama et al. [22] and
Keider et al. [23] also used a fusion of EEG and ECG signals
for ES prediction, but they did not compare their results with
EEG signals only.

2) Analysis Techniques: EEG analysis methods can mainly
be classified into the time domain methods, frequency domain
methods, time-frequency domain methods, and linear or non-
linear methods [4].

a) Time domain methods: EEG recordings are non-
stationary and non-linear functions of time. Linear prediction
is a time-domain method in which the output is calculated from
the input and earlier outputs. Principal component analysis
(PCA), linear discriminant analysis (LDA) and independent
component analysis (ICA) are widely used unsupervised time-
domain methods to summarize EEG data. PCA is used to
transform the high-dimensional data (in case of epilepsy high-
dimensional feature vectors) to a low-dimensional data [24]
while ICA decomposes high-dimensional data into linear sta-
tistically independent components [25]. In EEG data analysis,
ICA is most commonly used to remove artifacts. Whereas,
LDA is used to reduce dimensions of feature sets by finding
linear combinations of feature vectors [26].

b) Frequency domain methods: During an epileptic
seizure, there is a sudden change in the frequency of EEG
signals, which is measurable by applying frequency-domain
methods, e.g., using Fourier transform (FT). One can used
either parametric or non-parametric methods to estimate the
power spectrum using FT [27]. Welch (a non-parametric)
method, a modified version of widely used periodogram
method, is generally used for the estimation of PSD. But this
has a disadvantage of spectral leakage and is overcome by
employing parametric methods. Parametric methods provide
better frequency resolution by assuming the EEG signal is
a stationary random process. Moving average (MA), auto-
regression (AR), and auto-regressive moving average (ARMA)
are commonly applied parametric methods [28].

c) Time-frequency domain methods: Above mentioned
time-domain and frequency-domain methods have limitations
of providing exact frequencies involved at a particular time
instant and the information of time moment respectively. To
overcome these limitations, wavelet transform (WT), a time-
frequency based analysis technique, is widely used to obtain
multi-resolution decomposed sub-band signals by passing the
EEG signal through filter banks [29].

d) Non-linear methods: Non-linear analysis methods are
applied to detect the coupling among harmonics in signal’s
spectrum. Higher order spectra (HOS), various measures
of entropy—e.g., approximate entropy (ApEn); Kolmogorov
entropy; sample entropy (SampEn)—along with the Hurst
exponent (H), largest Lyapunov exponent (LLE) are widely
used non-linear parameters for EEG analysis [30]. Entropy and
LLE are commonly used as features for epilepsy classification.
Entropy provides clues about information stored in the prob-
ability distribution of a signal and measures the uncertainty
or randomness in the patterns of the data. A higher value
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of the entropy refers to highly random patterns of data. LLE
provides the information of the dependence of the system on
initial conditions. For a more detailed review of the analysis
techniques, the interested readers are referred to [6] and [4].

C. EEG Signal Analysis for Epilepsy

Analysis of the EEG signals is the primary method to
identify ES activities in the brain. EEG recordings are an
important clinical tool for distinguishing ES from non-ES.
EEG signals recorded, before and during a seizure, contains
characteristics that can be used to identify the different stages
of an epileptic seizure, and the pre- and post-seizure periods.
During the past two decades, various studies have shown
experimental confirmation that seizures are preceded by spatial
and temporal changes in EEG (i.e., change in short-term
maximum Lyapunov exponent (STLmax) of EEG studied by
Iasemidis et al. [31], Le Van Quyen et al. [32] examined
change in phase synchronization and showed the existence
of different seizure states, Kalitzin et al., [33] used relative
phase clustering index as a measure to show the pre-seizure
changes). Change in spike rate of EEG signals before epilepsy
is also widely studied and it shows a logical existence of pre-
ictal state [34]. However, there does not exist one or more
definite features to characterize the EEG states. How to best
define these states and to find the definite characteristic is still
an open issue [10]. These stages are briefly described below.

(a) Pre-ictal State: A pre-ictal state becomes apparent dur-
ing a said time period before the occurrence of a seizure
and does not occur at the rest of the times. It might
not necessarily be visually apparent. However, it will
reflect changes in the underlying signals and would be
predictive of seizures within a specific range of values.
For a pre-ictal state to be of use clinically in a warning
system, it has to be detected early enough so that the
time under false warning is minimized [10].

(b) Pro-Ictal State: In this state seizures are more likely but
not guaranteed to happen.

(c) Ictal and Interictal State: The ictal state is a change in
EEG signals during a seizure and interictal is the stage
between two following seizure onsets. For the same
person, the number of epileptogenic neurons, cortical
region, and the span of seizure can be altered.

(d) Post-Ictal State: This state is after the occurrence of a
seizure.

The wave pattern may hold valuable information about
brain activity. Experienced neurologists can detect disorders by
visually observing the EEG signals. However, this procedure
is time-consuming and is prone to faulty detection due to high
temporal and spatial aspects of the dynamic non-linear EEG
data. Therefore, computerized techniques, EEG signal param-
eters extraction, and analysis can be profoundly beneficial in
the diagnostics.

D. Epilepsy Seizure Prediction

In the 1970s, early research of ES prediction carried out
using linear approaches of feature extraction [35]. While in
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2012: EPILEPSIAE database created.

2019: Troung et al. proposed an unsupervised method for 
seizure prediction using GAN [97].

2018: Use of LSTM for automatic feature learning from EEG 
data for ES prediction [96].

In Future: Use of DL techniques for unsupervised learning from 
raw EEG data to predict ES.

1981: With the development of non-linear methods, non-
linear measure have been used to identify pre-ictal patterns     
[35]
1983:  Lange et al. showed the change in spike rate before 
seizure onset [36].

1990: Largest Lyapunov Exponent extracted by Iasemidis et al. 
from iEEG for seizure prediction [38].

1970-1979: Use of Linear measures to identify pre-ictal 
patterns [34]

1985: Gotman et al. raised a contradiction to change in spike 
rate before seizure onset [37].  

1998: Martinerie et al. showed the change in correlation 
density for preictal pattern [39].

1999: Change in dynamical similarity before seizure onset was 
observed by Le Van Quyen [40].

2002: Drop in similarity index before seizure onset was 
observed by Navarro et al [42].

2003: De Clercq and Winterhalder challenged the performance 
of similarity index measure for seizure prediction using large 
EEG data [43]. 

2005: Performance of correlation dimension measure was 
challenged by Harrison et al [44].

2005: D’Alessandro et al. , Harrison et al. showed that results 
of ES prediction are poor while using univariate measures 
[45]. 
2005-2006: Iasemidis et al. [46], Le Van Quyan et al. [47], 
Mormann et al. [48] showed better results with bi- or 
multivariate measures

2009: Mirowski et al. [39] presented results of ES prediction by 
employing bivariate measures and CNN.

2000: Change in phase synchronization before seizure onset 
was observed by Mormann et al [41].

2002: First International workshop on seizure 
prediction (IWSP1).

2014: American epilepsy society seizure prediction challenge which 
Involved short-term iEEG data of humans and long-term iEEG data of dogs

2016: Melbourne University NIH seizure prediction challenge.

Fig. 2: The timeline for the development of EEG measures
used for ES prediction.

1980s, the development of non-linear methods helped re-
searchers to employ these techniques for feature extraction
because of the non-linear nature of EEG signals [36] [46]
. With the recognition of EEG patterns of epilepsy—i.e, pre-
ictal, ictal, and interictal patterns—the use of the pre-ictal stage
for ES detection was also applied in this decade. In 1998, early
prediction of ES almost 6 sec before the seizure onset, was
carried out by Salant et al. [49] which was further developed
by Drogenlen et al. in 2003 [50]. They used Kolmogorov
entropy as a feature to predict ES 2–40 min before onset. First
international workshop on ES prediction was held in 2002 in
which dataset of multi-day recordings of EEG provided by
different epilepsy centers. Later, several studies were carried
out on this dataset [51]. In 2003, Mormann et al. used the
fact that the hyper-synchronous firing of neurons in the brain
is a cause of ES and found that the phase synchronization
of different EEG channels decrease before seizure onset [52].
In the first decade of the present century, studies based on
extensive EEG data have raised doubts about the performance
of measures calculated in the previous century. Researchers
found that the results of earlier studies based on a selected
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and inadequate amount of data could not be reproduced on
extensive and unseen data.

It was decided to conduct competitions on seizure predic-
tion in international workshops conducted on the said topic.
The purpose of these competitions was to standardize the
comparison of the performance of algorithms trained on a
common dataset. The first seizure prediction competition was
held in collaboration with International Workshop on Seizure
Prediction 3 (IWSP3) in 2007 while the second competition
conducted in 2009 was in collaboration with IWSP4. In
both the competitions, the contestants were provided with
the continuous iEEG recording from three epileptic patients.
However, the performance results of the algorithms were not
satisfactory. American Epilepsy Society Seizure Prediction
Challenge which was held in 2014, involved short-term human
iEEG containing 942 seizures recorded over more than 500
days and long-term iEEG recordings of dogs with epilepsy.
All contestants were provided with the same 10 min long
training and testing data. The Area Under the Curve (AUC)
was used as a performance evaluation metric. With the same
structure, another contest held by Melbourne University which
involved long-term iEEG recording with 1139 seizures. For
more details of the contest see [53]. The contests were open
to any algorithm computing basic features of EEG signals
for ES prediction or ML methods trained on these basic
features. In any case we still do not really know what features
or algorithms are best. In the contests, people submitted
algorithms, that were too complicated. So it is difficult to
say which feature or ML algorithm was best. The organizers
of the contests are working towards dissecting it now with
Epilepsyecosystem.org. Recent work of Matias Maturana et al.
[54] presents a solution that might work well across patients.
They identified the critical slowing of brain signals as an
indicator for ES prediction. A timeline for the development of
the EEG data measures is depicted in Figure 2, the interested
readers can refer to [55] for more detailed information about
the history of these developments.

a) Types of ES: In 1981 International League Against
Epilepsy (ILAE) made classes of epilepsy to facilitate clini-
cians diagnose and treat patients with epilepsy. They revised
this classification in 2017. According to the new classification
scheme of ILAE, epilepsy is categorized as focal epilepsy,
generalised epilepsy, and unknown epilepsy. These are further
classified in motor onsets and non-motor onsets. Interested
readers may consult [56] for further reading. To classify [57],
detect [58], and predict [59] these ES types, researchers are
using ML methods. Researchers are also working on predicting
the surgical outcomes for these types of epilepsy [60]. To
predict the drug-resistant epilepsy cook et al. held a study
by implanting advisory devices in patients for almost one
year [59]. Sungtae et al. evaluated different ML algorithms
to predict drug-resistant ES [61].

III. ML APPROACHES FOR ES PREDICTION

In this section, we provide a comprehensive review of the
literature using ML-based methods for ES prediction and we
start this section by first highlighting the potential of using
ML techniques for healthcare and neuroscience applications.

A. Introduction to ML for Healthcare

ML is proliferating across research areas over the past few
decades by using statistical methods to recognize patterns
in large collections of data. The availability of large-scale
biomedical data is turning over a new leaf for healthcare
researchers. Development of effective medical tools relies
on data analysis approaches and the advancements of ML
techniques. Because the manual detection of representations
is not possible due to the complex structure of medical data
and that is why ML is extensively used in healthcare for the
diagnosis of diseases, e.g., detection of breast cancer [62],
classification of skin cancer [63], diagnosis of Alzheimer
disease [64], prediction of epilepsy [65], and diagnosis of
diabetic retinopathy in retinal images [66]. Electronic health
records (EHR)-based ML algorithms have proved beneficial
for prediction of future diseases and are capable of auto-
matically diagnosing patients given their clinical status [67]
although still much work is needed. Biomedical fields with
large image datasets—such as radiology [68], cardiology [69],
pathology [70], and genomics [71]—are using various ML
methods for automatic diagnosis, classification, and prediction
of various disease.

B. ML for Neuroscience

Learning about the structure and functional anatomy of the
human brain has been the foremost focus of neuroscientists in
recent years. The advancements in technology have enabled
the neuroscientists to acquire, process, and analyse the neu-
roimaging data at unprecedented detail, while ML and DL
are the paramount examples for such enabling technologies
that can be used as a potential exploratory source for building
theories about brain functioning for neuroscientists [72]. In
this section, we provide a general introduction to various ML
techniques (e.g., supervised learning, unsupervised learning,
and reinforcement learning) that have been used in the field
of neuroscience.

1) Supervised Learning: In supervised learning, training
data accompanied by labels assigned by human experts is fed
to the learning algorithm for extracting the relation between
data and labels so that the system can classify the unseen
data accurately to their respective categories. For instance, a
training data consists of images with labels of house, a dog,
a cat and we want an algorithm that can predict the label of
an image previously unknown to the system. These algorithms
have wide applications in the field of computational and theo-
retical neuroscience—an example technique is support vector
machine (SVM), a supervised learning algorithm generally
used for prediction of ES (described in a subsection III-C).
Analysis of neural mechanisms under stress is carried out
using a supervised ML approach [73].

2) Unsupervised Learning: Our brain receives most of the
information in a day without any guidance. The brain develops
a working model from the repetition of information and uses
this model to make a perception. This perception is then used
for detecting the patterns in new information. Unsupervised
learning algorithms are motivated by how the brain studies
new things through perceptions. Unsupervised learning applies

Epilepsyecosystem.org
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Fig. 3: Process of epilepsy prediction using EEG data and classification algorithm.

unclassified or unlabeled data for training of the algorithms.
These algorithms are extensively used in the identification and
classification of diseases from neurophysiological data. As a
representative example, we refer to the work of Drysdale et
al. who classified depression types using fMRI [74] and the
work of O’Donnell et al. who used a clustering algorithm for
the identification of white matter tracts from diffusion MRI
[75].

Fig. 4: Feature classification based on number of channels of
EEG data.

3) Reinforcement Learning: Animal psychology, how ani-
mals communicate with each other and with the environment,
helped to develop reinforcement learning (RL) [76]. RL is a
significant illustration of the advancement of technology due
to the collaboration of neuroscience and AI. Reinforcement
Learning is the process of developing a policy to maximize the
rewards of interaction between an agent and its environment.
Central factors of a reinforcement learning system are a policy,
reward signal, value function, and model of the environment.

C. ML for Epileptic Seizure Prediction

Since the last century, researchers are working to overcome
the hurdles related to the detection and prediction of epilepsy.
As EEG signals are a key source for monitoring brain activity
before, during, and after ES so the first focus of ES prediction
research was on the analysis of EEG recordings. EEG signals
are vitiated by eye-movements, blinks, cardiac signals, and
muscle noise. Several filtering and noise reduction methods
are used to decrease the effect of these various sources
of noise and artifacts [77]. After the removal of artifacts,
significant features are needed for building ML methods for
the identification and classification of pre-ictal and interictal
stages. Figure 3 shows the classical ML methodology for the
epilepsy prediction and also highlight the major difference
between the use of ML and DL technique. Basically one can
give the raw data or minimally processed data (i.e., without
extraction of features from the raw data) to a DL model for
pattern learning.

1) Signal processing: Noise and artifact identification is
a crucial procedure in raw biomedical signals. To reduce
the influence of these artifacts in feature extraction, filtering
of these artifacts is needed. Multiple techniques have been
employed for filtering, e.g., band-pass filter, wavelet filter,
finite impulse response filter, and adaptive filter. This pro-
cessing is also performed to normalize the data to make
it comparable with the recording of other patients. There
are also many data dropouts or corrupted data in the EEG
recording due to limitations of implanted electrodes which
lead to the insignificant performance of algorithms. Due to
muscle artifacts and environmental noise, there also exist some
outliers in data. The presence of these outliers badly influences
the extracted features.

2) Feature Extraction and Selection: All prediction meth-
ods need reliable features, well correlated with pre-ictal and
interictal stages. One can categorize these features based on
the number of EEG channels as univariate (measures taken
on each EEG channel separately) and multivariate (measures
taken on two or more EEG channels) features. Further cat-
egorization of each of these is as linear or nonlinear fea-
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TABLE III: Summary of ML methods used for ES prediction. N/M indicates the not mentioned entries in the table.

Year Ref Predictive characteristics Model EEG
Type

No. of
Patients

No. of Seizure
per Patient

Prediction
Time Sensitivity False

Positive per hr
MIT Database

2017 Usman
et al. [78]

Entropy, ApEn, HP, SpM,
SM SVM Scalp 24 3.5 23.48 min 92.23% N/M

2018 Usman
et al. [79]

Variance, Skewness, SD,
HP, Entropy, Kurtosis

KNN
Naive Bayes
SVM

Scalp 24 3.5 34 min
97.44%
90.66%
97.07%

N/M

2018 Kitano
et al. [80]

Zero-crossing of DWT
coefficients SOM Scalp 9 >4 N/M 98% N/M

Freiburg Database

2017 Sharif
et al. [81]

Distribution of 6
fuzzy rules SVM iEEG 19 4.4 42 min 96.6% 0.05-0.08

2018 Yang
et al. [65] Permutation Entropy SVM iEEG 21 >2 61.93 min 94% 0.111

2020 Stojanovic
et al. [82] NMF SVM iEEG 5 >2 N/M 95.2% N/M

EPILEPSIAE Database

2015 Bandarabadi
et al. [83]

Amplitude distribution
histogram & Spectral power N/M iEEG/E

EG 24 3.6 8 sec 73.98% 0.06

2017 Direito
et al. [84] 22 univariate features SVM iEEG/E

EG 216 5.6 N/M 38.5 0.2

IEEG.org Database

2018 Assi
et al. [85]

Bi-spectral Entropy
Bi-spectral Squared Entropy
Mean magnitude of
bispectrum

MLP iEEG 3 Dogs N/M N/M N/M N/M

Epilepsyecosystem Database

2020 Stojanovic
et al. [82] NMF SVM iEEG 3 >200 N/M 69% N/M

tures. Florian et al. compared the performance of univariate
and bivariate measures containing both linear and non-linear
strategies for ES prediction [86]. They noted that while using
univariate measures, pre-ictal variations transpired 5-30 min
before ES onset. While bivariate measures performed better
by capturing pre-ictal changes at least 240 min before an ES
onset. Fig 4 shows some of the linear and nonlinear measures
used in the literature for ES prediction. Linear measures
performed better or some times similar to nonlinear measures.

3) Classification: Identification of pre-ictal and interictal
patterns from EEG data is carried out using ML algorithms,
e.g, artificial neural network (ANN), k-means clustering, de-
cision trees, SVM, and fuzzy logic. Mostly threshold-based
on features values are utilized to make conclusions. However,
ML-based studies broadly focused on the extraction of opti-
mized features for prediction.

a) Use of Bispectral Features to Predict Seizure: Higher-
order spectrum (HOS) features of iEEG recordings used to de-
tect the seizure in earlier studies [87]. However, Assi et al. [85]
used the HOS features to present that the bispectrum analysis
of EEG provides significant phase information. They showed
that the normalized bispectral entropy and the normalized
squared bispectral entropy decreased during the pre-ictal state
of seizure. They extracted these features from the 30 sec non-
overlapping windows of iEEG recordings of epileptic dogs.
They trained a 5-layer multilayer perceptron (MLP) for the
classification of pre-ictal and interictal classes. The input layer
of MLP consisted of 16 nodes as there are 16 channels of iEEG
signals. They added 3 hidden layers of 30, 60 and 30 nodes
of ReLu activation function. They computed the F1 score and
p-value corresponding to pre-ictal and interictal distribution
using each feature. However, researchers prefer to analyse

the performance of the algorithm in terms of sensitivity and
specificity for defined seizure prediction horizon and seizure
occurrence period. This aspect is missing in this study.

Permutation entropy (PE) has been used in various early
studies to characterize the EEG states of epilepsy [88], [89].
In 2007, Li et al. [90] used PE to distinguish pre-ictal states in
rats. Recently, Yang et al. [65] used PE as a feature extracted
from the iEEG data of Freiburg hospital data. They analysed
83 seizures from 19 patients. They trained an SVM classifier
with RBF kernel using 5 sec segments of features as input.
Sensitivity and false prediction rate (FPR) used as performance
analysis measures. They achieved 94% sensitivity and 0.11
FPR on average with a mean SPH of 61 min.

b) Use of Non-negative matrix factorization to Predict
Seizure: To make a computationally efficient patient-specific
ES predicting algorithm Stojanovic et al. [82] proposed the
use for non-negative matrix factorization (NMF) for extracting
features from the power spectra of interictal and pre-ictal
classes of iEEG data. They decompose the power spectra
of the Freiburg and Epilepsyecosystem dataset into time and
frequency components. These time and frequency components
then used as features (input) to SVM for classification. To
get better results, they used synthetic minority over-sampling
technique (SMOTE) to overcome the issue of imbalanced data.
They achieved 97.42% accuracy, 95.2% sensitivity, and 99.4%
specificity on average for the Freiburg dataset. They achieved
75.2% accuracy, 69% sensitivity, 78.6% specificity on average
for Epilepsyecosystem dataset.

c) Use of Selected Amount of Data to Predict Seizure: To
reduce the dimensions of EEG is one of the foremost concerns
of researchers for the processing of data and predicting seizure
using this data. Various dimension reduction techniques have
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Fig. 5: Comparison of sensitivity and prediction time for ES
prediction using ML methods.

been proposed with some pros and cons. In the resent work,
Kitano et al. [80] proposed the use of a small amount of
data to predict seizure. They used only 20 min data of 9
patients out of the hours-long recording of 24 patients of
CHBMIT database. 20 min data consisted of the 10 min pre-
ictal and 10 min interictal data. They applied DWT on 4sec
non-overlapping windows of this 20 min data and extracted
zero-crossings of level 1 detailed coefficients of DWT. They
used a self-organizing map (SOM), formerly introduced by
Teuvo Kohonen in 1982 [91], for mapping the input data in
clusters of pre-ictal and interictal states. They achieved 98%
sensitivity using the selected amount of data.

Although Kitano et al. achieved highly significant results
on the selected amount of data, there are various flaws with
this selection. Pre-ictal and interictal patterns have temporal
variations across patients and with inpatient. To randomly
select 10-min pre-ictal data is not a significant approach.
Training of neural networks on a small amount of data leads
to the over-fitting of results. With the training on the randomly
selected small amount of data, the model might not be able to
show significant performance in real-time scenarios. Summary
of recent work on ES prediction using ML techniques is in
Table III. Comparison of sensitivity and prediction time for
ES prediction using ML methods is shown in fig 5.

D. Introduction to DL For Healthcare

DL methods are the result of advancements in ML research
that provide an ability to process raw data. DL methods
comprise of multiple layers of computational (non-linear)
modules that work mutually to process data and produce an
ultimate result. These multiple layers help in extraction of
appropriate features and their examination or analysis for the
output result. For example, in the classification task, higher
layers of representation amplify features of the input that are
significant for discrimination and subdue unnecessary varia-
tions. The core of DL methods is that they contain modular
layers that are designed to learned data using general-purpose
algorithms [100]. These layers are building blocks of deep
neural networks (DNN). Commonly used neural networks are
convolutional neural network (CNN) and recurrent neural

network (RNN) [100]. The structure of CNN is similar to that
of the connectivity pattern of neurons in the brain. Convolution
operation of a CNN is just like a filter with weights for
extracting the features from multi-dimensional input data.
While the RNNs are used to find logical sequences in input
data. The output of each hidden layer passed to the next layer
and also fed back to itself. Simply, the current output is a com-
bined experience of the present moment and history. The key
difference between CNN and RNN architecture is that CNNs
only consider the current input while RNN considers current
input and as well as the previous input, i.e., it contains memory
logic. RNN performs significantly better on time series data
while CNN is good for tasks like image classification.

DL architectures have been used in many medical domains,
e.g., in clinical imaging [101], genomics, and proteomics
[102], computational biology [103], and disease prediction
[92]. DL algorithms are turned out to be adequate in detecting
intricate patterns in high-dimensional data for classification,
especially in EEG data. CNN is a widely used neural network
for the training using EEG data because it can be very effective
to reduce noise [104].

E. DL for Neuroscience

DL is solving problems in many fields, however, a potent
relation exists between DNN and the study of the nervous
system. ANNs were considered as a model for brain activity
computations [105], while CNNs are used for visual infor-
mation processing and the activations of hidden layers of
CNN are considered as the activity of neurons in connected
brain regions associated with the processing of visual sensory
motors. Deep networks are a valuable mean of computation
in neuroscience as these are statistical time-series models of
neural activity in the brain, e.g, the CNN can act as an
encoding model of computational neuroscience. In connec-
tomics, to understand the mapping of the connectivity of neural
networks in the brain, deep networks are used to understand
the connectivity of neural units from 3D electron microscopic
images [106]. The existing era of advancement is accelerating
the research of neuroscience-inspired ML tools [105].

F. DL for ES Prediction

ML classification algorithms use feature vectors, derived
from traditional signal processing methods for training and
provide good accuracy but a generalised model can not be an-
ticipated from these techniques. For seizure prediction through
an ML approach, script writing requires feature extraction
stage that takes a lot of time. The presence of noise and arti-
facts in data makes feature extraction very complex to handle.
Hence it is a challenging problem to produce a generalised
automatic system with loyal performance especially even when
limited training samples are available. On the other hand,
the ability of DL algorithms to automatic feature learning
is opening new ways of research in ES prediction [107].
Features learned through DL methods are more distinguishing
and robust than hand-crafted features [108].



10

TABLE IV: Summary of DL methods used for ES prediction

Year Ref Predictive
characteristics Database EEG

Type
No. of
Patients

No. of Seizure
per Patient

Prediction
Time Sensitivity False

Positive/hr
CNN

2017 Haider
et al. [92] Wavelet Transform MSSM

CHB-MIT Scalp 47 2.78 8 min
6 min 87.8% 0.142

2018 Truong
et al. [93] STFT

Freiburg
CHB-MIT
American Epilepsy Society

iEEG/
Scalp

28 humans
5 canines N/M 5 min

81.4%
81.2%
82%

0.06
0.16
0.22

2019 Ramy Hussain
et al. [94] STFT

Melbourne seizure
prediction competition
dataset

iEEG 3 380 5 min 87.8% N/M

2020 Usman et al. [95] Feature extracted
from CNN CHB-MIT Scalp 24 3.7 21 min 92.7% N/M

2020 Ranjan et al. [96] Feature extracted
from CNN CHB-MIT Scalp 24 3.7 20 min 68% 0.05

LSTM

2018 Tsiouris
et al. [97]

Various time and
frequency features CHB-MIT Scalp 24 7.7 15-120 min 99.28% 0.11-0.02

GAN

2019 Troung
et al. [98] STFT

Freiburg
CHB-MIT
EPILEPSIAE

iEEG/
Scalp 56 6.8 5 min N/M N/M

DCAE + Bi-LSTM

2019 Hisham
et al. [99] Raw data CHB-MIT Scalp 8 5.37 1 hr 99.72% 0.004

1) Use of CNN for ES Prediction: To introduce a method
that can be applied for all patients with minimum pre-
processing of EEG data Troung et al. [93] proposed a CNN
based prediction method. They used the Freiburg hospital
iEEG database and CHBMIT scalp EEG database for training
and testing of the CNN model. Short-term Fourier transform
(STFT) used to transform the raw EEG data into a two-
dimensional matrix. This image is then fed to the CNN for
feature learning and classification of pre-ictal and interictal
states. For evaluation of the performance of the algorithm, they
set the seizure prediction horizon (SPH) to 5 min and seizure
occurrence period (SOP) to 30 min and used sensitivity and
false prediction rate as evaluation metrics. While following a
leave-one-out cross-validation, they reached 79.7% sensitivity
with 0.24 FPR on raw EEG and 89.8% sensitivity with 0.17
FPR on standardized data.

For real-time clinical use of ES predictor, SPH must be
long enough to allow the patient to come out of a dangerous
situation and take precautionary measures and SOP should
not be too long. The work of Haider et el. [92] performed
better than previous work by giving 87.8% sensitivity and
0.142 FPR with 10 min SPH. They used CHBMIT and MSSM
databases for the training and the testing of the model. Raw
EEG converted into wavelet tensors and CNN used to extract
features from transformed data for classification of pre-ictal
and interictal data.

After the establishment of the feasibility of ES prediction in
a clinical setting by demonstrating the success of implantable
recording system by Cook et al. [59], new avenues of further
research have been opened. To take the work of Cook et
al. forward, Isabell et al. [107] presented a portable seizure
prediction system with tunable parameters according to the
patient’s need. They transformed iEEG data into spectrograms
and used frequency transformed data as an input to the deep
learning model for automatic pre-ictal feature learning. These
tunable parameters are the sensitivity of the system, duration,
and the number of alarms. For the tuning of these parameters,

the authors added a processing layer in the model. They
deployed their prediction algorithm on a low-power TrueNorth
chip to introduce a wearable device. Their prediction system
performed an average sensitivity of 69% and average time in
warning of 27%, significantly exceeding a comparable random
predictor for all patients by 42%.

Motivated by the work of Cook et al. [59] and Karoly et
al. [109], demonstrating that the seizure prediction algorithm
could not produce satisfactory prediction sensitivity for some
patients, Ramy Hussain et al. [94] worked on some part
of the data of these patients. They applied a technique of
downsampling to reduce the dimension of data by a factor of
4. They explained that handcrafted features are not suitable for
authentic ES prediction because the EEG data not only varies
between patients but also varies for the same patient over time.
They transformed the EEG data by applying STFT and fed this
transformed data to CNN. To learn local features they used
1x1 convolutional layers and for abstract feature learning, they
used larger convolutions. They obtained 87.85% sensitivity
and 0.84 AUC on average as a performance measure of the
prediction algorithm. They also explained that reasons for the
limited performance of ES prediction algorithms are data drop-
outs, data mismatch, imbalance distribution and outliers in
data.

CNN methods are not only used for classification but also
widely used for feature extraction. These features then used
as input to a simple classifier. This aspect of the CNN is
used by Usman et al. [95] for ES prediction. They proposed
a three-layered CNN architecture to extract feasible features
from pre-ictal and interictal classes of the CHB-MIT dataset.
They used SVM as a classifier for the classification of pre-
ictal and interictal classes based on features extracted from
CNN. They anticipated ES 21 min before onset with 92.7%
sensitivity and 90.8% specificity.

2) Unsupervised DL Method for ES Prediction: One prob-
lem in the ES prediction is the availability of labeled data. To
overcome this problem the first step taken by Troung et al.
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TABLE V: Overview of EEG databases

Database No. of Subjects No. of Channels Recording Type No. of ES Duration of Each
Recording (Hour)

Sampling Frequency
(Hz)

CHB-MIT 24 23 Scalp EEG 198 1 (some cases have
2-4 hours of recording) 256

MSSM 28 22 Scalp 61 48-192 256
Freiburg 21 128 iEEG 88 At least 24 256

Bonn
25 (5 sets each
consists of recording
of 5 subjects)

1 (100 flies of single
channel data in each
set)

Scalp/iEEG
Dataset E is the
recording
of ictal stage

23.6 173

EPILEPSIAE 30 122 Scalp/iEEG 1800+ 96 250-2500
TUH 10874 24-36 iEEG ≈ 14777 - 250

[98] is the use of a generative adversarial network (GAN) to
do unsupervised training. They fed the spectrogram of STFT
of EEG to GAN and used trained discriminator as a feature
to predict seizures. This unsupervised training is significant
because it not only provides real-time prediction using EEG
recording also does not require manual effort for feature
extraction. They used AUC as a performance measure with
5 min SPH and SOP of 30 min. They compared their results
with supervised methods of model training, and their approach
performed well with 77.68% AUC for CHBMIT scalp EEG
data, 75.47% AUC on Freiburg hospital data and 65.05% AUC
with EPILEPSIAE database. A summary of these works is
presented in Table IV.

Another work suggested by Ahmed et al. [110] to predict
ES with unlabeled data is the use of a 2D deep convolutional
autoencoder for learning the appropriate features from the un-
labeled raw EEG signals of CHB-MIT database. The proposed
architecture of the encoder contains four 2D convolutional
layers and three max-pooling layers and the decoder consists
of four 2D convolutional layers and three upsampling layers.
They trained the autoencoder for 100 epochs with the selected
amount of data and saved the weights of the encoder. These
weights are later used to initialize weights while training other
patients’ networks. This transfer learning technique is used to
facilitate fast learning. The features learned from the trained
encoder are used as an input to a Bidirectional LSTM for
classification of pre-ictal and interictal EEG intervals. For one
hour of SPH, they scored an average sensitivity of 94.6% and
an average low false prediction alarm rate of 0.04FP/h.

3) Use of RNN for ES Prediction: Tsiouris et al. [97] used
long short-term memory (LSTM) for the first time for the pre-
diction of an epileptic seizure. They compared the performance
of different architectures of LSTM for randomly selected input
segment size of 5-50 sec. They compared the performance of
three architectures of LSTM using feature vectors of EEG
segments as input to LSTM, where the feature vector consists
of various features from the time domain, frequency domain,
and local and global measures from graph theory. LSTM-
1 architecture consisted of a single layer with 32 memory
units, while the number of memory units increased to 128 in
LSTM-2 architecture. The number of memory units preserved
at 128 but an extra layer of equal dimension added to LSTM-
3. The performance of LSTM-3 was the best among the three
considered architectures. Using the pre-ictal window of 15
min, they also evaluated the performance of LSTM-3 for raw
EEG as input as compared to the performance of the feature
vector. They showed that deep architecture with raw EEG

input and satisfactory performance is still an open issue in the
said field. On average, LSTM-3 performed better with 99.28%
sensitivity for 15 min pre-ictal period, 99.35% sensitivity for
30 min pre-ictal period, 99.63% sensitivity with 60 min pre-
ictal period, and 99.84% sensitivity with 120 min pre-ictal
period. However, too much feature engineering needed for
these results. Comparison of sensitivity and prediction time
for ES prediction using DL methods is shown in fig 6.

Fig. 6: Comparison of sensitivity and prediction time for ES
prediction using DL methods.

G. Datasets used for ES Prediction and Analysis

EEG is becoming a prevailing mean of acquiring brain
signals to detect and predict ES. To this end, various open-
access databases have been published by various hospitals
and research centers. For instance, the Center of Epilepsy at
Children’s Hospital, Boston and Temple University Hospital
have made their EEG databases publicly available to the
researchers who aim to develop ML/DL methods and other sta-
tistical analysis based methods at physionet.org. In Table V, a
summary of such widely used and publicly available databases
is provided. Although, the database of Bonn University is not
large enough but is extensively used for the detection of ES in
the literature. It consists of 5 datasets A, B, C, D and E. CHB-
MIT database has data of 22 patients with 9-24 recordings of
each patient and every recording is 1 hour long with some
discontinuities due to hardware limitation (some cases have
2-4 hours long recordings). Freiburg Hospital’s database was
one of the considerable databases which contained iEEG data
of 21 subjects with around 88 seizures but recently it has been

physionet.org
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merged into EPILEPSIAE database to provide more larger
datasets due to which this database is not open-source now.

H. Evaluation Metrics for ES Prediction

The clinical employment of ES prediction methods requires
a sufficient performance and quality check and different
evaluation metrics have been proposed in the ES prediction
literature. For instance, Osorio et al. proposed sensitivity
and false prediction rate as performance parameters of ES
predictors [111]. Sensitivity is measured as the ratio of cor-
rectly predicted seizures to all seizures. Moreover, contrary to
the ideal situation, one can not prevent false prediction and
with the increase in sensitivity, the false prediction rate also
increases. The widely used evaluation metrics are described
below.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Where
• True positive (TP) is the number of correctly predicted

ES.
• False Negative (FN) is the number of ES that are incor-

rectly predicted as not seizures.
• True negative (TN) is the number of correctly predicted

no-seizure.
• False Negative (FP) is the number of non-ES that are

incorrectly predicted as seizures.

Fig. 7: Concept of seizure occurrence period (SOP) and
Seizure prediction horizon (SPH). With a precise prediction,
a seizure must occur after SPH and within the SOP.

An ES predictor generates an alarm before seizure onset
and according to ideal situation the predictors must anticipate
the exact time of onset. In practical applications, a predictor
anticipates a duration of the high probability of occurrence
of seizure. So, another performance check metric is a seizure

occurrence period (SOP), the time duration in which there is a
possibility of seizure. Another metric is the seizure prediction
horizon (SPH), the duration of time between the alarm and
the inception of SOP [112], [113]. In Fig 7 the concept of
SPH and SOP is illustrated. Another widely used evaluation
metric for the detection and prediction of ES is the Receiver
Operator Characteristic (ROC) curve. ROC is a plot used to
exhibit the diagnostic efficacy of classifiers. ROC evaluates
the true positive rate against false positive rate during the
interictal and pre-ictal states. The use of ROC curves as
evaluation matric is evident from [95], [114] Area under the
ROC curve (AUC) is also used for performance evaluation of
ES predicting algorithms [53].

IV. PITFALLS OF EPILEPTIC SEIZURE PREDICTION
METHODS

ML has solved several challenges for ES prediction that
include manual, tedious, and time-consuming analysis meth-
ods. Model interpretation is crucial and pattern identification in
data is as significant as data fitting. A fundamental difficulty
in bio-medicine is the correct classification of ailment and
its sub-types. Enormous available biomedical data can lead
to the identification of more comprehensive sub-types. One
can easily find various ways in which ML, specifically DL
has improved the EEG analysis. The hierarchical nature of
neural networks has significantly developed the potential of
learning features from raw data or minimally processed data.
Automatically learned features through DL methods are more
powerful and effective than those extracted by analytical tools.
This shows that DL has the potential to give high performance
on analysis tasks. Research on epilepsy prediction has been
going for many years and much progress has been made
using different approaches, but there also exist many problems.
Some potential pitfalls related to ES prediction using ML
methods are discussed next.

A. Unavailability of Open Access EEG Data
A core problem in the ES prediction and analysis research is

the unavailability of long-term EEG data. In 2005 Iasemidis
et al. performed the prediction alarm almost 91 min before
the ES onset on private EEG data [47]. However, no one
has been able to reproduce these results since then on any
publicly open EEG data. so, there is an urgent need for open
access sharing of EEG databases with long-term recordings
and also code sharing (using Github or similar repositories)
for reproducibility of findings.

B. Data Dropouts
One of the main reasons for the low performance of

prediction algorithms is the missing observations. There are
many zero or nearly equal to zero values in the observed data
because of the failure of communication between the wearable
devices or implanted devices with limited storage capacity and
storage device for several possible reasons. Learning from
corrupt, or missing, data has not attained much attention to
the machine learning community. However, there is a need
to add missingness indicators in algorithms that can provide
significant pieces of information for making predictions.
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C. Incapability to Predict ES Using Raw Signals

Time consumption and computational cost will increase due
to excessive feature extraction. We require a quick prediction
with comparatively low-power hardware and cheaper compu-
tational cost so that the real-time system for ES prediction
becomes feasible. Unfortunately, researchers are not able to
build a model for learning feasible features from raw signals
yet. Although DL has greatly rectified the problem of fea-
ture extraction by automatically extracting features from pre-
processed data, the limitation is that these methods require an
abundant amount of data for effective prediction [115].

D. Challenges in Clinical Deployment

Despite the impressive performance of ML/DL techniques
in ES prediction, these techniques are not yet translated for
clinical deployment. Below we provide a non-exhaustive list
of the roadblocks in taking ES prediction to clinic.

1) Reliability and reproducibility of ES predictions: While
the ES prediction works well in a prototype, it suffers from
the lack of reliability and reproducibility in clinical setting.
One of main the reasons for the failure of the reproducibility
of predictive results in clinical practice is due to the flaw
in setting up the seizure prediction as a binary classification
problem [116]. Epilepsy is a multi-scale problem [117] and
also strongly depends on the circadian profile of the patient
(wake-sleep routine of a patient, environment, time of the
day, etc.) [118]. That is why stating the problem as a simple
binary classification of seizure segments is not enough to
design efficient predictive ML/DL methods. This challenge
can be met by developing more complete understanding of
the mechanisms of how epilepsy is caused [10].

2) Generalisability of ES predictions: One of the main
concerns with clinical implementation is the lack of generalis-
ablity of ML-based seizure prediction algorithms across types
of seizures and patients. ES-related biomarkers are patients
specific and the findings may not generalise well due to the
variability of seizure characteristics across patients (sometimes
even the same individual patient can show different char-
acteristics at different times). This variability and, as stated
above, reflects the general lack of mechanistic understanding
of epilepsy leading to poor predictive performance in clinical
settings [119].

3) Heterogeneity of Seizures Types: The major reasons
behind the failure in the use of the ES prediction algorithms
in clinical practice are the variance in the causes of ES
occurrence, difficulty in locating the area of occurrence [120],
and a lack of understanding of how the seizures spread [121].
To develop a robust solution, researchers need to understand
the different causes, and the ensuing consequences of epileptic
seizure.

4) Development of Multimodal Framework: The develop-
ment of multimodal framework is critical for clinical settings
since reliance on a single modality may well not be enough
for clinical translation. Studies have revealed several non-
neurological changes during the pre-ictal state. Heart rate vari-
ability [19], change in local cerebral blood flow (CBR) [122],
variation in inhibitory neurotransmitter (GABA) (experiment

on mice neural network) [123], and an increase in blood-
oxygen-level-dependent activities [124] are evidence for the
need of a multimodal framework for ES prediction. However,
these variations are also patient dependent, and also leads to
generalization problems as mentioned above.

5) Effective Hardware Implementations: For the translation
of the ES prediction algorithms into clinical practice, there
is a dire need to develop cost-effective and power-efficient
hardware implementation. In particular, computational com-
plexity should be low so they can be deployed in real time for
implantable or wearable devices. Although some initial work
on hardware implementation has been performed [125], more
work is required on manufacturing cost-effective devices at
scale that produce optimized results.

6) Development of Automated and User Friendly Inter-
faces: The patients and clinicians are increasingly more
concerned about the lack of customized user interface which
is intuitive and easy to operate and maintain [126]. Current
development in this area is still far from where the interaction
between patients, researchers, and clinicians can happen in
a meaningful way to develop an optimized user friendly
interface. To develop a user-friendly predictive system, there is
a need to get specifications from patients whether, for example,
if they require invasive or non-invasive solution, how much
accuracy and sensitivity will be sufficient for a given severity
of disease and patient history, and whether patient would be
better served with only a predictive signal or a closed-loop
therapy based system would be more efficient [127], [128].

V. FUTURE DIRECTIONS AND OPEN RESEARCH ISSUES

In this section, we present directions for future work in ES
prediction and various open research issues that require further
investigation.

A. Future Development on ES Prediction

The following are the promising possible future develop-
ments on ES prediction.

1) Curse of Data Dimensionality: EEG signals are recorded
using multiple electrodes due to which the dimensions of
the recorded signals increases and analyzing multi-channel
EEG signal become difficult. An ideal approach is to convert
multi-channel EEG data into a single channel by applying
appropriate signal analysis techniques (e.g., converting them
to spectrograms) or to make use of the single-channel EEG
signals from the collection of brain signals. It has been
observed that interesting seizure-related brain activities were
weak in a few signals of multi-channel EEG [129]. Therefore,
the selection of a good quality signal for effective prediction of
seizure is crucial. In a recent study, signal quality index (SQI)
based adaptive algorithm is presented for best channel selec-
tion in multi-channel EEG of nonconvulsive seizure patient
[129] and substantial efforts have been made on developing
adaptive algorithms for EEG channel selection using different
dimensionality reduction techniques such as principal compo-
nent analysis (PCA) [130], independent component analysis
(ICA) [131], and discernibility matrix-based dimensionality
reduction [132], etc. However , the development of an optimal
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technique for dimensionality reduction of EEG signals or an
optimal way for the selection of most significant channel in
multi-channel EEG recordings can be interesting future work
in ES prediction. This will decrease time involved in feature
extraction across different channels and will eventually enable
timely prediction of ES onset.

2) Handling Data Annotation Problem: In the literature,
the problem of ES prediction and detection is mostly formu-
lated as a supervised learning task that requires labeled data.
The EEG recordings are manually annotated by expert neurol-
ogists and physicians which is a costly, time-consuming, and
tidy task. The performance of the ML techniques significantly
depends upon the quality of annotations and to increase the
efficacy of ML techniques, and in particular DL the natural
approach is to use more training data. The development of a
true validation set for assessing the performance of the trained
model is also important. However, the annotation of large-scale
collections of EEG recordings into respective categories is
practically not feasible, it hinders the applicability of ML/DL
techniques. This necessitates the development of automated
ways for data labeling such as active learning, data labeling
using generative models. For instance , ES prediction using
GAN is presented in [98]) that uses unsupervised training for
ES prediction. However, such methods need the availability of
enough variables to learn classification. Therefore, future work
on ES prediction using ML/DL techniques should incorporate
annotation efficiency in the model development.

3) Real-time Monitoring of ES Patients: Real-time or near
real-time monitoring of ES patients could be key for enabling
timely interventions before the onset of ES, e.g., emergency
services in case of severe onset. In this regard, continuous
monitoring of ES patients using wearable EEG devices inter-
connected with smartphones, and other IoT devices have great
potential to augment the capacity of ML/DL for ES prediction
or forecasting. For example, EEG recordings collected using
wearable sensors can be transmitted to fog/cloud servers for
the analysis and ML/DL method(s) deployed on the fog/cloud
server can transmit back its outcomes, e.g., prediction of ES.
Similar system architecture has been proposed to diagnose
the abnormal ECG using deep learning in [133], the idea of
Wearable IoT-cloud-based health monitoring system (WISE)
is also proposed by Wan et al. [134].

B. Open Research Issues

In this section, we briefly describe general open research
issues related to ML/DL and its deployment in healthcare
applications.

1) Distribution Data Sharing and Management: In clinical
settings, patients’ data is produced across different facilities
and to develop efficient ML/DL techniques, sharing of dis-
tributed data across different departments and as well across
different hospitals is required. Moreover, data from different
domains can be integrated to extract knowledge required for
different tasks, e.g., the annotation. Recurrent neural networks
and different natural language processing (NLP) techniques
can be used to extract rich knowledge from raw clinical notes
and electronic health records (EHR) that can enhance the
capability of data annotators. In addition, ML/DL methods can

be developed that are capable of learning from heterogeneous
sources and distributed data. However, the cost of data sharing
and management can be huge and also this will lead to new
challenges of data integrity, availability, and privacy. This
direction of work requires innovative ways to encourage data
pooling and sharing.

2) Interpretable ML: Despite the state of the art per-
formance of DL techniques, these methods are black-box
techniques and lack underlying theory about their learning
behavior and thought process. Therefore, their decisions are
not interpretable due to which uncertainty quantification of
predictions becomes extremely difficult. In addition, the life-
critical nature of healthcare applications demands that DL
methods’ decision should be explainable and interpretable at
the same time. It has been argued that interpretable methods
enable the extraction of most relevant and important features
for the specific tasks for which they are developed [135]. In a
recent study, a visualization framework named Deep-Tune is
presented that enables neuroscientists to identify patterns that
activate a certain neuron in a CNN model that was trained
for the task of neural spike rate prediction [136]. The work
on developing interpretable ML methods is catching up and is
still an open research problem.

3) Secure and Private ML: ML methods in general and DL,
in particular, suffers from various security and privacy issues
such as adversarial attacks on DL based medical systems
[137], poisoning attack [138], and privacy breaches. Such vul-
nerabilities hinder the smooth, robust, and efficient application
of ML and DL systems in actual clinical settings. Privacy is
a major challenge in predictive healthcare which is associated
with the utilization of patient’s data by ML/DL techniques that
often contain personal attributes. Techniques used should not
reveal any information about the identity of subject patients
either at the training or inference phase. To ensure privacy-
preserving ML, three types of methods have been used in
literature, i.e., cryptographic approaches, differential privacy,
and federated learning. On the other hand, various methods
to make DL robust against different security attacks (such as
adversarial attacks, model stealing, and poisoning attacks, etc.)
have been proposed in the literature [139]. However, these
methods only work in particular settings (i.e., for a specific
type of attack) for which they were developed and fail to
defend in different settings (i.e., defense does not generalise
to other type of attacks). Therefore, the development of secure
and privacy-preserving ML/DL models is still an open research
problem.

VI. CONCLUSIONS

In this paper, we comprehensively reviewed the available lit-
erature and highlighted why early prediction of ES is required,
how ML and DL techniques are used for ES prediction. In
the context of EEG analysis, feature selection, ES detection,
and prediction, and the evaluation of prediction or detection
algorithms, ES prediction is a capacious topic. Contrary to
the findings of this paper, most of the previous survey papers
focused only on EEG analysis and a few of them covered
the developments of prediction techniques; while we tried to
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provide insights by considering the aspects of the feature selec-
tion, prediction techniques, and evaluation methodologies, etc.
In addition, we have also highlighted future work directions
and open research problems that require further investigation.
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Clemenceau, Claude Adam, Michel Baulac, and Francisco Varela.
Seizure anticipation in human neocortical partial epilepsy. Brain,
125(3):640–655, 2002.

[44] Wim De Clercq, Philippe Lemmerling, Sabine Van Huffel, and Wim
Van Paesschen. Anticipation of epileptic seizures from standard EEG
recordings. The Lancet, 361(9361):971, 2003.

[45] Mary Ann F Harrison, Mark G Frei, and Ivan Osorio. Accumulated
energy revisited. Clinical Neurophysiology, 116(3):527–531, 2005.

[46] Mary Ann F Harrison, Ivan Osorio, Mark G Frei, Srividhya Asuri, and
Ying-Cheng Lai. Correlation dimension and integral do not predict
epileptic seizures. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 15(3):033106, 2005.

[47] LD Iasemidis, D-S Shiau, Panos M Pardalos, Wanpracha Chaoval-
itwongse, K Narayanan, Awadhesh Prasad, Konstantinos Tsakalis,
Paul R Carney, and J Chris Sackellares. Long-term prospective on-line
real-time seizure prediction. Clinical Neurophysiology, 116(3):532–
544, 2005.

[48] Piotr Mirowski, Deepak Madhavan, Yann LeCun, and Ruben
Kuzniecky. Classification of patterns of EEG synchronization for
seizure prediction. Clinical neurophysiology, 120(11):1927–1940,
2009.

[49] Y Salant, I Gath, and O Henriksen. Prediction of epileptic seizures
from two-channel EEG. Medical and Biological Engineering and
Computing, 36(5):549–556, 1998.

[50] Wim van Drongelen, Sujatha Nayak, David M Frim, Michael H
Kohrman, Vernon L Towle, Hyong C Lee, Arnetta B McGee, Maria S
Chico, and Kurt E Hecox. Seizure anticipation in pediatric epilepsy:
use of kolmogorov entropy. Pediatric neurology, 29(3):207–213, 2003.

[51] Klaus Lehnertz and Brian Litt. The first international collaborative
workshop on seizure prediction: summary and data description. Clini-
cal neurophysiology, 116(3):493–505, 2005.

[52] Florian Mormann, Thomas Kreuz, Ralph G Andrzejak, Peter David,
Klaus Lehnertz, and Christian E Elger. Epileptic seizures are preceded
by a decrease in synchronization. Epilepsy research, 53(3):173–185,
2003.

[53] Levin Kuhlmann, Philippa Karoly, Dean R Freestone, Benjamin H
Brinkmann, Andriy Temko, Alexandre Barachant, Feng Li, Gilberto
Titericz Jr, Brian W Lang, Daniel Lavery, et al. Epilepsyecosystem. org:
crowd-sourcing reproducible seizure prediction with long-term human
intracranial EEG. Brain, 141(9):2619–2630, 2018.

[54] Matias I Maturana, Christian Meisel, Katrina Dell, Philippa J Karoly,
Wendyl D’Souza, David B Grayden, Anthony N Burkitt, Premysl
Jiruska, Jan Kudlacek, Jaroslav Hlinka, et al. Critical slowing as a
biomarker for seizure susceptibility. bioRxiv, page 689893, 2019.

[55] Editor: Bjorn Schelter, Editor: Jens Timmer, and Schulze-Bonhag.
Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical
Applicati. John Wiley & Sons, 2008.

[56] Robert S Fisher. The new classification of seizures by the international
league against epilepsy 2017. Current neurology and neuroscience
reports, 17(6):48, 2017.

[57] Mette Berendt and Lennart Gram. Epilepsy and seizure classification
in 63 dogs: a reappraisal of veterinary epilepsy terminology. Journal
of Veterinary Internal Medicine, 13(1):14–20, 1999.

[58] Wouter JC Van Elmpt, Tamara ME Nijsen, Paul AM Griep, and
Johan BAM Arends. A model of heart rate changes to detect seizures
in severe epilepsy. Seizure, 15(6):366–375, 2006.

[59] Mark J Cook, Terence J O’Brien, Samuel F Berkovic, Michael Mur-
phy, Andrew Morokoff, Gavin Fabinyi, Wendyl D’Souza, Raju Yerra,
John Archer, Lucas Litewka, et al. Prediction of seizure likelihood
with a long-term, implanted seizure advisory system in patients with
drug-resistant epilepsy: a first-in-man study. The Lancet Neurology,
12(6):563–571, 2013.

[60] Dongmei An, Firas Fahoum, Jeffery Hall, André Olivier, Jean Gotman,
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