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Abstract

In this paper, we develop a model to describe the generalized wave–particle instability in a quasi-neutral plasma.
We analyze the quasi-linear diffusion equation for particles by expressing an arbitrary unstable and resonant wave
mode as a Gaussian wave packet, allowing for an arbitrary direction of propagation with respect to the background
magnetic field. We show that the localized energy density of the Gaussian wave packet determines the velocity-
space range in which the dominant wave–particle instability and counteracting damping contributions are effective.
Moreover, we derive a relation describing the diffusive trajectories of resonant particles in velocity space under the
action of such an interplay between the wave–particle instability and damping. For the numerical computation of
our theoretical model, we develop a mathematical approach based on the Crank–Nicolson scheme to solve the full
quasi-linear diffusion equation. Our numerical analysis solves the time evolution of the velocity distribution
function under the action of a dominant wave–particle instability and counteracting damping and shows a good
agreement with our theoretical description. As an application, we use our model to study the oblique fast-
magnetosonic/whistler instability, which is proposed as a scattering mechanism for strahl electrons in the solar
wind. In addition, we numerically solve the full Fokker–Planck equation to compute the time evolution of the
electron-strahl distribution function under the action of Coulomb collisions with core electrons and protons after
the collisionless action of the oblique fast-magnetosonic/whistler instability.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Solar wind (1534); Plasma astrophysics (1261)

Supporting material: animations

1. Introduction

Wave–particle resonances play an important role for the energy
exchange between particles and waves in many space and
astrophysical plasmas. For example, wave–particle resonances
contribute to the acceleration and deceleration of particles in
radiation belts (Ukhorskiy & Sitnov 2014), the deviation of the
particle velocity distribution function (VDF) from a Maxwellian
equilibrium in the solar wind (Marsch 2006), the thermodynamic
state of the intracluster medium in galaxy clusters (Roberg-Clark
et al. 2016), and the scattering and absorption of the surface
radiation in neutron-star magnetospheres (Lyutikov & Gavriil
2006). Therefore, it is of great importance to study the mechanics
of wave–particle resonances in order to advance our under-
standing of the physics of astrophysical plasmas throughout the
universe.

According to kinetic theory, wave–particle resonances can
occur in the form of Landau or cyclotron resonances, which
contribute to wave instability or wave damping depending on the
resonance’s characteristics. The quasi-linear theory of magnetized
plasma, first established by Yakimenko (1963) and Kennel &
Engelmann (1966), provides a mathematical framework to predict
the evolution of the particle VDF under the action of wave–
particle resonances. Quasi-linear theory assumes that the spatially
averaged VDF evolves slowly compared to the gyroperiod of the
particles and the wave period. It furthermore assumes that the
fluctuation amplitude is small and that the spatial average of the
fluctuations vanishes. Based on this theory, numerous analytical
studies have successfully explained the evolution of VDFs
resulting from wave–particle resonances.

Resonant particles diffuse along specific trajectories in
velocity space determined by the properties of the resonant

wave (Kennel & Engelmann 1966; Gendrin 1968, 1981;
Gendrin & Roux 1980; Stix 1992; Isenberg & Lee 1996;
Summers et al. 1998, 2001). In these models, quasi-linear
diffusion coefficients determine the diffusion rate of the
resonant particles (Lyons et al. 1971; Lyons 1974; Albert 2004;
Glauert & Horne 2005; Summers 2005; Isenberg & Vasquez
2011; Tang et al. 2020). Alternatively, quasi-linear diffusion
models based on a bi-Maxwellian VDF, in which only its
moments evolve in time, describe the effective evolution of
particle VDFs under the action of microinstabilities (Seough &
Yoon 2012; Yoon & Seough 2012; Yoon et al. 2015, 2017;
Yoon 2017). Moreover, fully nonlinear simulations based on
kinetic theory model the evolution of the particle VDF
consistently with predictions from quasi-linear theory (Vocks
& Mann 2003; Vocks et al. 2005; Gary et al. 2008; Saito et al.
2008, 2010; Saito & Peter Gary 2012). Observations from
Helios revealed signatures in the proton VDFs consistent with
ion cyclotron resonances as predicted by quasi-linear theory
(Marsch & Tu 2001; Tu & Marsch 2002; Heuer & Marsch
2007; Marsch & Bourouaine 2011).
Realistic analytical models must describe the diffusive trajectory

of resonant particles in velocity space, taking into account the
localized (in wavevector space) energy density of the waves that
resonate with these particles. These models must also account for
non-Maxwellian features in the VDF evolution in order to advance
our understanding of plasma observations and kinetic simulation
results. A rigorous numerical analysis of the diffusion equation,
including both the diagonal and off-diagonal diffusion terms, is
necessary to support the theoretical description through the
quantification of the diffusion rates.
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By analyzing the quasi-linear diffusion equation, we propose a
novel quasi-linear diffusion model for the time evolution of VDFs
under the action of a dominant wave–particle instability and
counteracting damping contributions in Section 2. Our model
describes the creation and evolution of non-Maxwellian features in
the particle VDF. We allow for an arbitrary type of the unstable
and resonant wave mode with an arbitrary direction of propagation
with respect to the background magnetic field. In our analysis, we
express the electric field of this wave as a Gaussian wave packet in
configuration space. The localization of such a wave packet in
configuration space is the direct consequence of its generation
through a linear instability, which is localized in wavevector space.

To investigate the stabilization of the VDF through quasi-
linear diffusion, we apply our analysis of the quasi-linear
diffusion equation to Boltzmann’s H theorem. In this scheme,
the localized energy density of the Gaussian wave packet in
wavevector space defines the velocity-space range in which the
dominant wave–particle instability and counteracting damping
contributions are effective. In addition, we derive a relation to
describe the diffusive trajectories of resonant particles in velocity
space under the action of such an instability and damping. In this
way, our model accounts for the diffusive behavior of resonant
particles in different regions of velocity space.

For the numerical evaluation of our theoretical description, we
develop a mathematical approach based on the Crank–Nicolson
scheme (for numerical details, see Appendix A) that solves the full
quasi-linear diffusion equation. Because of its reliable stability, the
Crank–Nicolson scheme has been used previously to solve
diffusion equations in a variety of fields (Khazanov et al. 2002;
Albert 2004; Brügmann et al. 2004; Yang et al. 2009; Klein &
Chandran 2016; Taran et al. 2019). However, most standard
Crank–Nicolson schemes ignore the off-diagonal terms in the
diffusion equation. In our case, these off-diagonal terms are
important for the description of resonant pitch-angle scattering.
We note that our mathematical approach is applicable to all
general two-dimensional diffusion equations, including those with
off-diagonal diffusion terms.

In Section 3, as an example, we apply our model to the
scattering of the electron strahl, which is a field-aligned
electron beam population in the solar wind (Pilipp et al. 1987;
Štverák et al. 2009). Observations in the solar wind suggest that
strahl electrons exchange energy with whistler waves, which
ultimately leads to a scattering of strahl electrons into the halo
population (Pagel et al. 2007; Lacombe et al. 2014; Graham
et al. 2017). Our quasi-linear framework confirms that an
instability of the fast-magnetosonic/whistler wave in oblique
propagation with respect to the background magnetic field
scatters the electron strahl into the electron halo, as predicted
by linear theory (Vasko et al. 2019; Verscharen et al. 2019).

In Section 4, for a more realistic model of the strahl evolution
after the collisionless action of the oblique fast-magnetosonic/
whistler instability, we numerically solve the full Fokker–Planck
equation for Coulomb collisions with our mathematical approach
(for numerical details, see Appendix B). We model the time
evolution of the electron-strahl VDF through the action of
Coulomb collisions with core electrons and protons. This
combined method allows us to compare the timescales for the
strahl scattering and collisional relaxation.

In Section 5, we discuss the results of our model for the
strahl scattering and electron-halo formation through the
instability and Coulomb collisions. In Section 6, we summarize
and conclude our treatment.

2. Quasi-linear Diffusion Model

In this section, we establish our general theoretical frame-
work for the description of a resonant wave–particle instability
in quasi-linear theory. Because our work focuses on non-
relativistic space plasma like the solar wind, we ignore
relativistic effects throughout our study.

2.1. Analysis of the Quasi-linear Diffusion Equation

To investigate the time evolution of the particle VDF
through wave–particle resonances, we study the quasi-linear
diffusion equation, given by Stix (1992):
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The integer n determines the order of the resonance, where n=0
corresponds to the Landau resonance and ¹n 0 corresponds to
cyclotron resonances. In our equations, we label contributions
from a given resonance order with a superscript n. The subscript j
indicates the particle species. The particle VDF of species j is
denoted as º ^f f v v t, ,j j ( ) , which is spatially averaged and
gyrotropic, qj and mj are the charge and mass of a particle of
species j, and v̂ and vP are the velocity coordinates perpendicular
and parallel with respect to the background magnetic field. We
choose the coordinate system in which the proton bulk velocity is
zero. We denote the nth-order Bessel function as rJn j( ), where
r º W^ ^k vj j. The cyclotron frequency of species j is defined as
W º q B m cj j j0 , B0 is the background magnetic field, c is the
speed of light, k̂ and kP are the perpendicular and parallel
components of the wavevector k, and V is the volume in which
the wave amplitude is effective so that the wave and particles
undergo a significant interaction. We denote Dirac’s δ function by
δ and the azimuthal angle of wavevector k by f. The frequency ω
is a complex function of k, and we define wk as its real part
and gk as its imaginary part (w w g= + ik k). Without loss of
generality, we set w > 0k . Furthermore, we assume that
g wk k∣ ∣  , i.e., the assumption of slow growth or damping that
is central to quasi-linear theory.
The spatially Fourier-transformed electric field has the form

of = + +E xE yE zEk k
x

k
y

k
zˆ ˆ ˆ and is defined as (Gurnett &

Bhattacharjee 2017)
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where f f= + +^ ^k r k x k y k zcos sin·  and r is the
position vector. We take the constant background magnetic
field as =B zB0 0ˆ and define the right- and left-circularly
polarized components of the electric field as ºEk

R

-E iE 2k
x

k
y( ) and º +E E iE 2k

L
k
x

k
y( ) . The longitudinal

component of the electric field is Ek
z.

Linear instabilities typically create fluctuations across a finite
range of wavevectors. The Fourier transformation of such a
wave packet in wavevector space corresponds to a wave packet
in configuration space. For the sake of simplicity, we model
this finite wave packet by assuming that the electric field Er of
the unstable and resonant waves has the shape of a gyrotropic
Gaussian wave packet,
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where = + +E xE yE zEx y z
0 0 0 0ˆ ˆ ˆ , f= +^ ^k r k x k ycos0 0 0·

f + k zsin 0 , and k0 is the wavevector of the Gaussian wave
packet. We allow for an arbitrary angle θ0 between k0 and B0,
which defines the orientation of the wavevector at maximum
growth of the wave, and assume that ¹k 00 . The vector E0

represents the peak amplitude of the electric field. The free
parameters ŝ 0 and s 0 characterize the width of the Gaussian
envelope. Quasi-linear theory requires that Er spatially
averages to zero. Therefore, we assume that sk 0 0∣ ∣   so
that the spatial dimension of the Gaussian wave packet is large
compared to the parallel wavelength p k2 0∣ ∣ .

The spatial Fourier transformation of Equation (5) according
to Equation (4) then leads to
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We identify V with the volume of the Gaussian envelope,
s s= ^V 1 0 0

2( ) . Equation (6) describes the localization of the
wave energy density in wavevector space. For the instability
analysis through Equation (6), we define the unstable k
spectrum as the finite wavevector range in which g > 0k and
argue that resonant waves exist only in this unstable k
spectrum. We ignore any waves outside this k spectrum
because they are damped.

We define kP0 as the value of kP at the center of the unstable
k spectrum. We then obtain

q=k̂ k tan . 70 0 0 ( )

In the case of linear plasma instability, we identify k̂ 0 and kP0
with the wavevector components at which the instability has its
maximum growth rate as a reasonable approximation. To
approximate the wave frequency of the unstable waves at the
angle θ0 of maximum growth, we expand wk of the unstable
and resonant waves around kP0 as

w w» + -k v k k , 8k k g0 0 0( ) ( ) ( )  

where

w
º

¶
¶

=

v
k

. 9g
k

k k

0

0

( )


 

In Equations (8) and (9), wk0 and vg0 are the wave frequency
and parallel group velocity of the unstable and resonant waves,
evaluated at =k k 0  . We select the values of ŝ 0 and s 0 as the
half widths of the perpendicular and parallel unstable k
spectrum. In the case of linear plasma instability, the numerical
values for k̂ 0, kP0, ŝ 0, s 0 , wk0 and vg0 can be found from the
solutions of the hot-plasma dispersion relation, which thus
closes our set of equations.
By using Equations (6) and (8), we rewrite Equation (1) as
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We set = -E E iE 2R x y
0 0 0( ) and = +E E iE 2L x y

0 0 0( ) as
constant, evaluated at k0.
Equation (10) is the quasi-linear diffusion equation describ-

ing the action of the dominant wave–particle instability and
coexisting damping contributions from other resonances in a
Gaussian wave packet. We define the n resonance as the
contribution to the summation in Equation (10) with only
integer n. We note that any n resonance can contribute to wave
instability or to wave damping depending on the resonance’s
characteristics.

2.2. Stabilization through a Resonant Wave–Particle Instability

We define stabilization as the process that creates the
condition in which ¶ ¶ f t 0j QLD( ) for all v⊥ and vP. For our
analysis of the stabilization of a VDF through a resonant
wave–particle instability, including coexisting damping effects,
we use Boltzmann’s H theorem, in which the quantity H is
defined as
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The integrand in Equation (15) is equivalent to
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Upon substituting Equation (16) into Equation (15), the first
term on the right-hand side in Equation (16) disappears after
the integration over v. Then, by resolving the δ function in Dj
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The function
~
Dj

n
in Equation (19) plays the role of a

diffusion coefficient for the n resonance. In
~
Dj

n
, the vP function

Wj
n defined in Equation (20) serves as a window function that

determines the region in vP space in which the quasi-linear
diffusion through the n resonance is effective. The window
function Wj

n is maximum at v n
res defined in Equation (21),

which is the parallel velocity of the particles that resonate with
the waves at =k k 0  through the n resonance. Our window
function Wj

n is linked to Dirac’s δ function in the limit
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where sk 0 0∣ ∣   . Through this ordering between k 0∣ ∣ and s 0 ,
we assume that Wj

n restricts a finite region in vP space and that
the Wj

n for different resonances do not overlap with each other
in vP space.

Only particles distributed within Wj
n experience the n

resonance and contribute to the quasi-linear diffusion, which
is ultimately responsible for the stabilization. Because all terms
in Equation (18) are positive semidefinite, all resonances
independently stabilize fj through quasi-linear diffusion in the
vP range defined by their respective Wj

n, according to

Equation (17). Therefore, H decreases and dH dt tends toward
zero during the quasi-linear diffusion through all resonances
while fj is in the process of stabilization. When fj reaches a state
of full stabilization through all n resonances, the instability has
saturated and its growth ends.
The vP function k j

n
 defined in Equation (13) is the resonant

parallel wavenumber, fulfilling the condition that =k kj
n

0  at
=v v n

res  . It quantifies the kP component of the unstable k
spectrum in the vP range defined by Wj

n. Equation (23) defines
the phase velocity at k j

n
 , which is only constant when

w=v kg k0 0 0 , in which case =v vgph 0 for all vP. We discuss
the diffusion operator G k j

nˆ [ ] in Equation (22) in the next
section.

2.3. Nature of Quasi-linear Diffusion in Velocity Space

According to Equation (18), unless the wave amplitude is
zero, the condition for achieving stabilization through the n
resonance is

=^G k v v, 0, 25j
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j
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where ^ v v,j
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through the n resonance. In Equation (25), G k j
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diffusive velocity-space trajectories for the n resonance.
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By integrating Equation (27), the diffusive trajectory for the n
resonance is then given by
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Kennel & Engelmann (1966) treat the two limiting cases in
which w=v kg k0 0 0 and =v 0g0 . Using their assumptions, our
Equation (28) is equivalent to their Equation (4.8) if

w=v kg k0 0 0 , and our Equation (28) is equivalent to their
Equation (4.11) if =v 0g0 . Depending on the dispersion
properties of the resonant waves, Equation (28) is either an
elliptic or a hyperbolic equation when ¹n 0. In the case of
electron resonances, it is safe to assume that
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in Equation (28) if w< + Wv n kg k e0 0 0( ∣ ∣)  for all positive n
and w> + Wv n kg k e0 0 0( ∣ ∣)  for all negative n. However, in the
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case of proton resonances, resonant waves are more likely to
violate Equation (29) because W Wp e∣ ∣ .

Figure 1 illustrates the diffusive flux of particles experien-
cing two arbitrary resonances: the n1 and n2 resonances for an
unstable wave. The dark shaded areas represent isocontours of
the VDFs of two particle populations in velocity space. The red
and dark-blue solid curves represent the diffusive trajectories
according to Equation (28) with =n n1 and =n n2, assuming
that the resonant wave fulfills Equation (29). The window
functions Wj

n1 and Wj
n2 describe the vP ranges in which the n1

and n2 resonances are effective. The light-blue dashed
semicircles correspond to contours of constant kinetic energy
in the proton rest frame, for which

+ =v̂ v const. 302 2 ( )

In general, the diffusive flux is always directed from higher to
lower phase-space densities during the process of stabilization.
At point A, resonant particles in Wj

n1 diffuse along the red solid
curve toward smaller vP. Considering the relative alignment
between the diffusive flux and the constant-energy contour at
point A, the diffusing particles lose kinetic energy. This energy
is transferred to the resonant wave, which consequently grows in
amplitude. Therefore, this situation corresponds to an instability
of the resonant wave. At point B, particles do not diffuse along
the red solid curve because this point lies outside Wj

n1.
At point C, resonant particles in Wj

n2 diffuse along the dark-
blue solid curve toward greater vP. Considering the relative
alignment between the diffusive flux and the constant-energy
contour at point C, the diffusing particles gain kinetic energy. This
energy is taken from the resonant wave, which consequently
shrinks in amplitude. Therefore, this situation corresponds to the
damping of the resonant wave and counteracts the driving of the
instability through the n1 resonance. Because the resonant wave is
unstable, the n1 resonant instability must overcome the counter-
acting n2 resonant damping.

According to Equation (18), there are three factors that
determine the diffusion rate for the action of an n resonance.
The first factor is the particle density fj within Wj

n. The second
factor is

~
Dj

n
, whose magnitude is determined by the

polarization properties of the resonant waves. The third factor
is the quantity G k f fj

n
j j

ˆ [ ] , which defines the relative alignment
between the isocontours of fi and the diffusive flux along the

diffusion trajectory within Wj
n. In Figure 1, the magnitude of

G k f fj
n

j j
1∣ ˆ [ ] ∣ at point A is greater than the magnitude of

G k f fj
n

j j
2∣ ˆ [ ] ∣ at point C.

Because the diffusive flux is directed from higher to lower
values of fj, the quantity G k f fj

n
j j

ˆ [ ] resolves the ambiguity in
the directions of the trajectories for resonant particles. A careful
analysis of G k j

nˆ [ ] using Equation (29) shows that, if

>k k G k f f 0j
n

j j( ∣ ∣)( ˆ [ ] )   at a given resonant velocity, reso-
nant particles diffuse toward a smaller value of vP along the
diffusive trajectory, while if <k k G k f f 0j

n
j j( ∣ ∣)( ˆ [ ] )   at a

given resonant velocity, resonant particles diffuse toward a
greater value of vP.

2.4. Numerical Analysis of the Quasi-linear Diffusion Equation

To simulate the VDF evolution and to compare the diffusion
rates between resonances quantitatively, a rigorous numerical
analysis of Equation (10) is necessary. For this purpose, we
develop a mathematical approach based on the Crank–Nicolson
scheme and present the mathematical details in Appendix A.
Our approach is applicable to all two-dimensional diffusion
equations with off-diagonal diffusion terms. Our numerical
solution, given by Equation (A28), evolves the VDF under the
action of multiple resonances in one time step. We tested our
numerical solution by showing that the diffusive flux obeys the
predicted diffusion properties discussed in Section 2.3.

3. Fast-magnetosonic/Whistler Wave and Electron-strahl
Scattering

As an example, we apply our model developed in Section 2
to an electron resonant instability in the solar wind. The fast-
magnetosonic/whistler (FM/W) wave propagating in the anti-
sunward direction and with an angle of ~ 60 with respect to
the background magnetic field scatters the electron strahl
(Vasko et al. 2019; Verscharen et al. 2019). Because this
prediction is based on linear theory, our quasi-linear framework
is appropriate for demonstrating the action of this instability on
the electron strahl.

3.1. Linear Dispersion Relation

To find the characteristics of the unstable oblique FM/W
wave, we numerically solve the hot-plasma dispersion relation
with the NHDS code (Verscharen & Chandran 2018). We use
the same plasma parameters as Verscharen et al. (2019), which
are, notwithstanding the wide range of natural variation,
representative for the average electron parameters in the solar
wind (Wilson et al. 2019). We assume that the initial plasma
consists of isotropic Maxwellian protons, core electrons, and
strahl electrons. The subscripts p, e, c, and s indicate protons,
electrons, electron core, and electron strahl, respectively.
We choose our coordinate system so that the anti-sunward

and obliquely propagating FM/W waves have >k 0 . We set
b b= = 1c p and b = 0.174s , where b pº n k T B8j j B j 0

2( ) , nj
and Tj are the density and temperature of species j, and kB is the
Boltzmann constant. We set np= ne, =n n0.92c p, =n n0.08s p,
Tc=Tp, and =T T2s p. In the proton rest frame, we set

+ =n U n U 0c c s s . We initialize the core and strahl bulk
velocity with = -U v 0.22c Ae and =U v 2.52s Ae , where

pºv B n m4Ae e e0 is the electron Alfvén speed. NHDS finds
that, under these plasma parameters, g > 0k at angles between

Figure 1. The diffusive flux of resonant particles in velocity space under the
action of two arbitrary (n1 and n2) resonances. The dark shaded areas represent
isocontours of the VDFs of two particle populations. The red and dark-blue
solid curves show the diffusive trajectories, Equation (28) with =n n1 and
=n n2. Wj

n1 and Wj
n2 represent the window functions according to

Equation (20), in which the n1 and n2 resonances are effective. The light-
blue dashed semicircles correspond to constant-energy contours. The black
solid line indicates =v vg0 .
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q = 510 and q = 670 . Our strahl bulk velocity then provides
a maximum growth rate of g W = -10k e

3∣ ∣ (Verscharen et al.
2019).

Figure 2 shows gk and wk as functions of the kP component
of the wavevector k for three different θ0. The oblique FM/W
instability has its maximum growth rate at q = 550 , while
g > 0k for W k v0.21 0.28Ae e∣ ∣ , which is the parallel
unstable k spectrum. As defined in Section 2.1, we acquire

W »k v 0.245Ae e0 ∣ ∣ . This value with Equations (7)–(9) leads
to W =k̂ v 0.35Ae e0 ∣ ∣ , w W » 0.07k e0 ∣ ∣ , and »v v 0.86g Ae0 .
We also acquire s W »v 0.035Ae e0 ∣ ∣ and s W »^ v 0.05Ae e0 ∣ ∣
from the unstable k spectrum.

3.2. Theoretical Description of the Quasi-linear Diffusion in
the FM/W Instability

Using the wave and plasma parameters from the previous
section, we describe the electron strahl and core diffusion in
velocity space. In our analysis, we only consider the n=+1,
−1, and 0 resonances, ignoring higher-n resonances due to
their negligible contributions.

Upon substituting our wave parameters into Equation (20), we
quantify the dimensionless window functions W ve

n
Ae with

n=+1, −1, and 0. In Figure 3, the red, dark-blue and orange
lines represent +W ve Ae

1 , -W ve Ae
1 andW ve Ae

0 , which are maximum
at =+v v 4.37Aeres

1
 , = --v v 3.8Aeres

1
 and =v v 0.29Aeres

0
 ,

respectively. We reiterate that the superscripts indicate the n
resonance. The black line indicates =v vg0 . Each W ve

n
Ae shows

the vP range in which the quasi-linear diffusion through each
resonance is effective. We note that the W ve

n
Ae for the three

resonances have different widths in vP space and maximum
values due to the different magnitudes of -v vn

gres 0∣ ∣ (see
Equation (24)). By substituting our wave parameters into
Equation (28), the diffusive trajectories for the n=+1, −1,
and 0 resonances are given by

+ - =v̂ v v v1.16 0.86 const, 31Ae Ae
2 2( ) ( ) ( )

+ - =v̂ v v v0.88 0.86 const, 32Ae Ae
2 2( ) ( ) ( )

and

=v̂ v const. 33Ae
2( ) ( )

Equations (31) and (32) describe ellipses with their axes
oriented along the v⊥ and vP directions. In Equation (33), the
perpendicular velocity of resonant particles is constant.
Figure 4 illustrates the electron diffusion from these three

resonances. We show the vP ranges in which the three
resonances are effective according to +W ve Ae

1 , -W ve Ae
1 , and

W ve Ae
0 from Figure 3. The red, dark-blue, and orange solid

curves represent the contours given by Equations (31)–(33),
respectively. The light-blue dashed semicircles correspond to
constant-energy contours in the proton rest frame (see
Equation (30)). The black line indicates =v vg0 . For the
initial strahl and core VDF, we apply the plasma parameters in
Section 3.1 to the dimensionless Maxwellian distribution:

p
= -

+ -^f
n v

n v

v v U

v
exp , 34j

M j Ae

p j

j

j

3

3 2
th,
3

2 2

th,
2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
( )

where ºv k T m2j j jth, B . The red and blue areas in Figure 4
represent fs

M and fc
M, which are normalized by the maximum value

of fc
M and plotted up to a value of 10−5. In this normalization,

Figure 2. NHDS solutions provide gk (dashed curves, axis on the left) and wk

(solid curves, axis on the right) as functions of the kP component of the
wavevector k. We show solutions for q = 510 , q = 550 , and q = 590 .

Figure 3. The red, dark-blue, and orange curves illustrate +W ve Ae
1 , -W ve Ae

1 , and
W ve Ae

0 for the oblique FM/W wave. The black solid line represents =v vg0 .
Each W ve

n
Ae shows the vP range in which the corresponding resonance is

effective. EachW ve
n

Ae has a different width in vP space and maximum value due
to a different magnitude of -v vn

gres 0∣ ∣ (see Equation (24)).

Figure 4. The red, dark-blue, and orange arrows illustrate the diffusive flux for
the n=+1, −1, and 0 resonances in the oblique FM/W instability. The red
and dark-blue filled semicircles represent isocontours of the strahl and core
VDF. This figure does not reflect the relative densities of both electron species.
The light-blue dashed semicircles correspond to constant-energy contours. The
black solid line indicates =v vg0 .
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Figure 4 does not reflect the relative density ratio between both
electron species.

Due to the vP profile of +We
1, the n=+1 resonance has a

significant effect on fs
M. As discussed in Section 2.3, because

>+k k G k f f 0e s
M

s
M1( ∣ ∣)( ˆ [ ] )   , this resonance leads to a

diffusion of the resonant strahl electrons in +We
1 along

trajectories represented by the red arrows. According to
Equation (30), the phase-space trajectory of particles that
diffuse without a change in kinetic energy is described by

= -^

^

dv

dv

v

v
. 35

E

⎛
⎝⎜

⎞
⎠⎟ ( )




According to Equation (31), the phase-space trajectory of
resonant particles fulfilling the n=+1 resonance, indicated by
the superscript +1, is described by

= - -^
+

^

dv

dv

v

v

v

v
1.16 0.86 . 36Ae

Ae

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )





Comparing Equations (35) and (36) in +We
1 shows that

<^
+

^dv dv dv dv E
1∣( ) ∣ ∣( ) ∣  for the resonant electrons. There-

fore, resolving the ambiguity in the directions of the
trajectories, the distance of resonant strahl electrons from the
origin of the coordinate system decreases. This decrease in

+v̂ v2 2
 represents a loss of kinetic energy of the resonant

strahl electrons. The n=+1 resonance, therefore, contributes
to the driving of the FM/W instability.

Due to the vP profile of -We
1, the n=−1 resonance has a

significant effect on fc
M. Because <-k k G k f f 0e c

M
c
M1( ∣ ∣)( ˆ [ ] )   ,

this resonance leads to a diffusion of the resonant core electrons
in -We

1 along trajectories represented by the dark-blue arrows.
According to Equation (32), the phase-space trajectory of
resonant particles fulfilling the n=−1 resonance, indicated by
the superscript −1, is described by

= - -^
-

^

dv

dv

v

v

v

v
0.88 0.86 . 37Ae

Ae

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )





Comparing Equations (35) and (37) in -We
1 shows that

>^
-

^dv dv dv dv E
1∣( ) ∣ ∣( ) ∣  for the resonant electrons. There-

fore, resolving the ambiguity in the directions of the
trajectories, the distance of resonant core electrons from the
origin of the coordinate system increases. This increase in

+v̂ v2 2
 represents a gain of kinetic energy of the resonant core

electrons. The n=−1 resonance, therefore, counteracts the
FM/W instability through the n=+1 resonance.

Due to the vP profile of We
0, the n=0 resonance has a

significant effect on electrons in the vP range in which >f fc
M

s
M

and ¶ ¶ <f v 0c
M

 . Because <k k G k f f 0e c
M

c
M0( ∣ ∣)( ˆ [ ] )   , the

resonant electrons inWe
0 diffuse along trajectories represented by

the yellow arrows. Because the distance of these electrons from
the origin of the coordinate system increases, these resonant
electrons diffuse toward greater kinetic energies. This diffusion
removes energy from the resonant FM/W waves and thus
counteracts the driving of the FM/W instability through the
n=+1 resonance.

Figure 4 only illustrates the nature of the quasi-linear
diffusion through the n=+1, −1, and 0 resonances in velocity
space. It does not give any information regarding the relative

strengths of the diffusion rates between the three resonances.
Because the FM/W wave is unstable according to linear
theory, the n=+1 resonant instability must dominate over any
counteracting contributions from the n=−1 and 0 resonances.

3.3. Numerical Description of the Quasi-linear Diffusion in the
FM/W Instability

We use our numerical procedure from Equation (A28) to
simulate the quasi-linear diffusion through the n=+1, −1, and 0
resonances, predicted in Section 3.2. According to the definitions
in Appendix A, we select the discretization parameters Nv=60

= =v̂ v v v 7Ae Aemax max , and W D =t 1e∣ ∣ . For the computa-
tion of Equation (A28), we use the same parameters of resonant

FM/Wwaves as those presented in Section 3.1 and quantify
~
De

1

and
~
De

0
in Equation (19).

In
~
De

n
for each resonance, we only consider the J0 term in y j

n
0,

ignoring higher-order Bessel functions due to their small
contributions. Our NHDS solutions show that »E E0.39y x

0 0∣ ∣ ∣ ∣
and »E E0.28z x

0 0∣ ∣ ∣ ∣ in the unstable k spectrum. Then, we
set » »E E E0.76R L x

0 0 0∣ ∣ ∣ ∣ ∣ ∣. Faraday’s law yields »E x
0

w k c Bk
y

0 0 0[ ( )] when ignoring the small contributions from any
E0
z terms. This allows us to express E x

0 through B y
0 in y j

n
0, where

B0
y represents the peak amplitude of the wave magnetic-field

fluctuations. For simplicity, we assume that B y
0 is constant in time

during the quasi-linear diffusion. Under these assumptions, we
acquire

ò

p
s s

w

r
s

»
W

´ -
-

~  ^

^

¥
^ ^

^
^ ^

D W
v B

B k

J
k k

k dk

0.58

exp 38

e e
e

y
k

e

1 1
2 2 2

0 0
2

0

0

0

0

2

0
0

2 0
2

0
2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∣ ∣

( ) ( ) ( )

 

and

ò

p

s s
w

r
s

»
W

´ -
-

~

^

¥
^ ^

^
^ ^

D W
v B

B k

J
k k

k dk

0.16

exp , 39

e e
e

y
k

e

0 0
2 2 2

0 0
2

0

0

0

0

2

0
0

2 0
2

0
2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∣ ∣

( ) ( ) ( )



 

where the relative amplitude B By
0 0 is a free parameter, and we

set =B B 0.001y
0 0 . Then, we apply Equations (38) and (39) to

Equation (A28).
We initialize our numerical computation with the same fs

M

and fc
M as defined in Section 3.2. Figure 5(a) represents the

normalized = +f f fe c
M

s
M , plotted up to a value of 10−5.

Figure 5(b) shows fe evolved through the n=+1, −1, and 0
resonances, resulting from our iterative calculation of
Equation (A28). Considering the maximum value of the
instability’s growth rate, g W = ´ -4.8 10k e

3∣ ∣ in Figure 2,
we terminate the evaluation of our numerical computation at
W = ´t 5 10e

2∣ ∣ , which corresponds to g ~t 1k and thus a
reasonable total growth of the unstable FM/W waves.
The strahl electrons at around »v v 4.4Ae diffuse through

the n=+1 resonance, as theoretically predicted in Figure 4.
This diffusion increases the pitch angle of the resonant strahl
electrons and generates a strong pitch-angle gradient at

»v v 3.8Ae . During this process, the v̂ of the scattered strahl
electrons increases while their vP decreases.
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Because the longitudinal component of the electric-field
fluctuations is weaker than their transverse components, the
diffusion through the n=0 resonance is only slightly notice-
able over the modeled time interval. The diffusion through the

n=−1 resonance is not noticeable even though
~-
De

1
and

~+
De

1

have similar magnitudes. This is because -G k f fe e e
1∣ ˆ [ ] ∣ in -We

1

is much smaller than +G k f fe e e
1∣ ˆ [ ] ∣ in +We

1, as discussed in

Section 2.3, and the number of core electrons in -We
1 is very

small (see Figures 4 and 5).

4. The Secondary Effect of Coulomb Collisions

Because the collisionless action of resonant wave–particle
instabilities often forms strong pitch-angle gradients (see, for
example, Figure 5), collisions can be enhanced in the plasma.
Therefore, a more realistic evolution of the total electron VDF
must account for the action of Coulomb collisions of strahl
electrons with core electrons and protons. For this purpose, we
adopt the Fokker–Planck equation given by Ljepojevic et al.
(1990) with Rosenbluth potentials (Rosenbluth et al. 1957) and

normalize it in our dimensionless system of units as

å p
¶

¶
= G

+
¶
¶

¶

¶
+

¶
¶ ¶

¶

¶ ¶a a a b a b

-

f

t

m

m
f f

h

v

f

v

g

v v

f

v v

4

1

2
, 40

j

b
jb

j

b
b j

j j

Fokker
Planck

2 2
⎪

⎪

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫
⎬
⎭ ( )

where

òº ¢ - ¢ ¢v v v v vg f d , 41b
3( ) ( )∣ ∣ ( )

òº
-

¢ - ¢ ¢-v v v v vh
m m

m
f d , 42

b j

b
b

1 3( ) ( )∣ ∣ ( )

and

p
G º

W
L

n

v

Z Z q

m

4
ln . 43jb

b

Ae e

j b j

j
jb3

2 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣

( )

The subscript b indicates the species of background particles,
with which the particles of species j Coulomb-collide. The
quantity Lln jb is the Coulomb logarithm and typically

L »ln 25jb in space plasmas. The parameters Zj and Zb are
the atomic masses of a particle of species j and b. The
superscripts α and β indicate the component of the velocity in
cylindrical coordinates and the summation convention holds.
We assume that the timescale of Coulomb collisions is much

longer than the timescale of the quasi-linear diffusion in the
solar wind under our set of parameters. This assumption allows
us to model the resonant wave–particle instability first and to
use the resulting VDF as the input for the model of the
subsequent, secondary effects of the collisions.
Based on our mathematical approach presented in

Appendix A, we present our numerical scheme to solve the
Fokker–Planck equation, Equation (40), in Appendix B. We
tested our numerical solutions, Equation (B2), by showing that
a set of arbitrary test VDFs diffuses toward fb with time.
For the computation of Equation (B2), we set isotropic

Maxwellian electron-core and proton VDFs as background
species, =f fb c

M and =f fb p
M , for which we apply the plasma

parameters presented in Section 3.1 to Equation (34). In this
numerical computation, we select the discretization parameters
Nv=60, = =v̂ v v v 7Ae Aemax max , and W D =t 10e∣ ∣ . More-
over, we set = ´ -B 5 10 G0

4 and = -n 10 cmb
2 3 in

Equation (43), which are representative for the conditions in
the solar wind at a distance of 0.3au from the Sun. We
initialize fj with the electron-strahl VDF fs from our quasi-linear
analysis of the oblique FM/W instability at time
W = ´t 5 10e

2∣ ∣ . In this setup, our initial electron VDF for
the Coulomb collision analysis is the same as the electron VDF
shown in Figure 5(b).
The iterative calculation of Equation (B2) results in the time

evolution of the electron-strahl VDF under the action of
Coulomb collisions with core electrons and protons. The result
of this computation at the time W = ´t 7 10e

7∣ ∣ is shown in
Figure 6. A detailed comparison of the distribution function
before (Figure 6(a)) and after (Figure 6(b)) our calculation of
the effect of Coulomb collisions reveals that Coulomb
collisions relax the strong pitch-angle gradient at

»v v 3.8Ae , which resulted from the action of the oblique

Figure 5. (a) The initial electron VDF; (b) the electron VDF evolved through
the n=+1, −1, and 0 resonances. Compared to Figure 4, the effect of the
n=+1 resonance dominates the evolution during the time g ~t 1k . It causes a
significant pitch-angle gradient at »v v 3.8Ae through the scattering of strahl
electrons. An animation of this figure is available. The animation shows the
time evolution of the distribution function from W =t 0e∣ ∣ to W = ´t 5 10e

2∣ ∣ .
During this evolution, the strahl scattering toward larger v⊥ is visible.

(An animation of this figure is available.)
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FM/W instability. However, the Coulomb collisions are only
capable of affecting strong pitch-angle gradients in the
modified electron VDF under our plasma parameters. In
addition, the required time for a noticeable collisional effect
on this pitch-angle gradient is of order 105 times longer than
the characteristic timescale of the quasi-linear diffusion.

5. Discussion of the Strahl Scattering

The numerical computation of Equation (17) shows that dH/
dt is negative and asymptotically tends toward zero as the
electron VDF evolves through the oblique FM/W instability and
the counteracting damping effects until the time
W = ´t 5 10e

2∣ ∣ , which is presented in Figure 5. Therefore,
our quasi-linear diffusion model reflects the stabilization of the
particle VDF through the participating wave–particle resonances.

During the action of the oblique FM/W instability, the
scattered strahl electrons reduce their collimation along the B0

direction and become more isotropic. Even though this

instability does not cause significant strahl scattering, we argue
that it contributes to the initial formation of the halo population.
However, other mechanisms must be considered to account for
the full strahl scattering, in agreement with observations
(Gurgiolo et al. 2012; Gurgiolo & Goldstein 2016).
Alternative models describing Coulomb-collisional effects

on the strahl VDF suggest that an anomalous-diffusion process
must be considered in order to achieve an agreement with
observations (Lemons & Feldman 1983; Horaites et al.
2018, 2019). We note that our analysis includes the subsequent
action of Coulomb collisions after the action of collisionless
wave–particle resonances assuming plasma parameters consis-
tent with the solar wind at a distance of about 0.3au from the
Sun. Our collisional effects are similar to those proposed by
Vocks et al. (2005). However, our model predicts that the
collisional relaxation is so subtle that the strahl scattering
through collisions is barely noticeable for the analyzed phase of
the VDF evolution.
The clear separation of timescales between wave–particle

effects and Coulomb-collisional effects complicates the
description of the VDF evolution on heliospheric scales,
because other processes act on comparable timescales. These
additional processes, which our analysis ignores, include
turbulence, shocks, plasma mixing, plasma expansion, and
magnetic focusing (Feldman et al. 1983; Fitzenreiter et al.
2003; Ryu et al. 2007; Yoon et al. 2012; Tang et al. 2020). A
complete model for the radial evolution of the VDF must
quantify and account for these processes as well. In the context
of our work, these processes can potentially push a VDF that
has undergone stabilization as shown in Figure 5(b) into the
unstable regime again. In this case, dH/dt in Equation (17)
returns to a nonzero value, which signifies a new onset of
wave–particle resonances and further scattering of resonant
particles.

6. Conclusions

Wave–particle resonances are important plasma-physics
processes in many astrophysical plasmas. Often, fully nonlinear
simulations with codes solving the equations of kinetic plasma
theory are used to model the evolution of the distribution
function under the action of wave–particle resonances.
However, quasi-linear theory augments this approach as it
allows us to study the contributions of different processes to
these resonances. Therefore, quasi-linear theory is a very
helpful tool to improve our understanding of wave–particle
resonances in astrophysical plasmas.
We propose a quasi-linear diffusion model for any general-

ized wave–particle instability. We analyze the quasi-linear
diffusion equation by expressing the electric field of an
arbitrary unstable and resonant wave mode as a Gaussian
wave packet. From Boltzmann’s H theorem in our quasi-linear
analysis, we define a window function that determines the
specific velocity-space range in which a dominant wave–
particle instability and counteracting damping contributions are
effective. This window function is the consequence of the
localized energy density of our Gaussian wave packet both in
configuration space and in wavevector space.
Moreover, we derive a relation describing the diffusive

trajectories of the resonant particles for such an instability in
velocity space. These trajectories evolve the particle VDF into
a stable state in which no further quasi-linear diffusion occurs.

Figure 6. (a) The electron VDF as initial condition for our collision analysis;
(b) the electron VDF evolved through Coulomb collisions of strahl electrons
with core electrons and protons. The strong pitch-angle gradient at »v v 3.8Ae
(shown in Figures 6(a) and 5(b)) is relaxed through Coulomb collisions.
However, the required time for a noticeable collisional effect on that gradient is
around 105 times longer than the timescale of the strahl scattering. An
animation of this figure is available. The animation shows the time evolution of
the distribution function from W = ´t 5 10e

2∣ ∣ to W = ´t 7 10e
7∣ ∣ . During this

evolution, the collisional smoothing of the pitch-angle gradients is visible.

(An animation of this figure is available.)
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Therefore, our theoretical model illustrates the diffusion and
stabilization which resonant particles, depending on their
location in velocity space, experience in wave–particle
resonances.

For the computational quantification of our theoretical
model, we introduce a mathematical approach based on the
Crank–Nicolson scheme to numerically solve the full quasi-
linear diffusion equation. We highlight that this mathematical
approach applies to all general two-dimensional diffusion
equations, including those with off-diagonal diffusion terms.

As an example, we apply our model to the oblique FM/W
instability that scatters strahl electrons in the solar wind. Our
model shows that the n=+1 resonant instability of FM/W
waves propagating with an angle of ~ 55 with respect to the
background magnetic field scatters strahl electrons toward
larger v⊥ and smaller vP. The strahl scattering instability
through the n=+1 resonance dominates over the counter-
acting damping contributions through the n=−1 and n=0
resonances. This instability creates a strong pitch-angle
gradient in the electron-strahl VDF.

By numerically solving the Fokker–Planck equation, we
show that Coulomb collisions of strahl electrons with core
electrons and protons relax this strong pitch-angle gradient on a
timescale about 105 times longer than the timescale of the
collisionless strahl scattering. This finding suggests that
collisional effects are negligible in the strahl-driven oblique
FM/W instability, which is a representative example for a
resonant wave–particle instability in the solar wind.

Our predicted evolution of the electron VDF is consistent
with the observed formation of a proto-halo through strahl
scattering (Gurgiolo et al. 2012). However, further observations
are ambiguous regarding the exact source of the proto-halo
(Gurgiolo & Goldstein 2016). Future high-resolution electron
observations with Solar Orbiter and Parker Solar Probe at
different distances from the Sun may help us resolve these
ambiguities.

Our general quasi-linear diffusion model applies to all
nonrelativistic collisionless plasmas, such as planetary magne-
tospheres (e.g., Mourenas et al. 2015). It also applies to other
types of wave–particle instabilities in plasmas such as the
resonant instabilities driven by temperature anisotropy or by
relative drift. We especially note that our model is also capable
of describing ion-driven instabilities.

We appreciate helpful discussions with Georgios Nicolaou,
Konstantinos Horaites, and Jung Joon Seough. D.V. is
supported by the STFC Ernest Rutherford Fellowship ST/
P003826/1. D.V., R.T.W., and A.N.F. are supported by STFC
Consolidated Grant ST/S000240/1.

Appendix A
Numerical Analysis of the Quasi-linear Diffusion Equation

Equation (10) is a second-order differential equation that
includes cross-derivative operators such as ¶ ¶ ¶ ^v v2

 . In order
to simultaneously evaluate the ¶ ¶ ¶ ^v v2

 operators with the
¶ ¶v2 2

 and ¶ ¶v̂2 2 operators in Equation (10), we divide
velocity space into ´N N2 2v v steps with equal step sizes of
Dv 2 by defining the outer boundaries of velocity space as
v̂ max and v max . The v̂ index M and the vP index N both
step through 1, 3/2, 2, ..., Nv, +N 1 2v . We define the discrete
velocity coordinates as º - + - D^ ^v v M v1M max ( ) and

º - + - Dv v N v1N max ( )  . We note that this definition
introduces negative v⊥ values that, although they simplify
our numerical analysis, we ignore in our computational results.
We divide the time t with equal step sizes ofDt and the t-index
T steps through 1, 2, 3,. We define the discrete time as

º - Dt T t1T ( ) . We then define the discrete VDF as
º ^f f v v t, ,M N

T
j M N

T
, ( ) . For the discretization of the velocity

derivatives, we adopt the two-point central difference operators
(Gilat & Subramaniam 2011)
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For the discretization of the time derivative, we adopt the
forward difference operator
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By using Equations (A1) and(A2), we discretize the right-hand
side of Equation (10) and express it as
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According to the Crank–Nicolson scheme (Iserles 2008), the
full discretization of Equation (10) in its time and velocity
derivatives is then given by
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By using Equations (A4)–(A6) and resolving the δ functions in

DM N
n

1 2, and DM N
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, 1 2 through the kP integral, we rewrite
Equation (A7) as
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and m º D Dt v 2( ) . Equation (A8) is a two-dimensional set of
algebraic equations, the solution of which, +fM N

T
,

1, for all v̂ and

v indexes describes the VDF at time +T 1 based on fM N
T

, for
all v̂ and v indexes.

In order to transform Equation (A8) into a single matrix
equation with a tridiagonal matrix, we introduce the concept of
a double matrix. On both sides of Equation (A8), we group the

terms by the same v̂ index in the VDF and rearrange these
groups in increasing order in their v̂ index. In each group, we
then rearrange terms in increasing order in the vP index in the
VDF. Then, we have
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All terms on both sides of Equation (A12) with a constant v⊥ index account for variations in vP space only. Therefore, they can be
grouped into a single system of one-dimensional algebraic equations.

We transform all terms with the v⊥ index M on both sides of Equation (A12) into the tridiagonal matrices m +A FM M
T 1[ ( ) ][ ] and
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We transform all terms with the v⊥ index -M 1 2 on both sides of Equation (A12) into the tridiagonal matrices m -
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We transform all terms with the v⊥ index +M 1 2 on both sides of Equation (A12) into the tridiagonal matrices m +
+B FM M
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We transform all terms with the v⊥ index -M 1 on both sides of Equation (A12) into the tridiagonal matrices m -
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Lastly, we transform all terms with the v⊥ index +M 1 on both sides of Equation (A12) into the tridiagonal matrices m +
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This strategy allows us to express Equation (A12) as a single system of one-dimensional algebraic equations:

m m m m m

m m m m m

+ + + +

= - + - + - + - + -
-
+

-
+ +

+
+

+
+

- - + +

C F B F A F B F C F

C F B F A F B F C F . A27

M M
T

M M
T

M M
T

M M
T

M M
T

M M
T

M M
T

M M
T

M M
T

M M
T

1
1
1 1

1 2
1 1 2

1 2
1 2

1
1

1
1

1
1 2

2
1 2

2
1

[ ( ) ][ ] [ ( ) ][ ] [ ( ) ] [ ] [ ( ) ][ ] [ ( ) ][ ]

[ ( ) ][ ] [ ( ) ][ ] [ ( ) ][ ] [ ( ) ][ ] [ ( ) ][ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

12

The Astrophysical Journal, 902:128 (15pp), 2020 October 20 Jeong et al.



Equation (A27) only describes the VDF evolution in v⊥ space. However, each matrix term itself includes the VDF evolution in vP
space. We transform Equation (A27) into a single tridiagonal matrix:
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Equation (A28) is in the form of a double matrix, and mE QLD( ) in Equation (A29) defines the evolution matrix. The inner matrices of
mE QLD( ) evolve fM N

T
, in vP space while the outer matrices of mE QLD( ) evolve fM N

T
, in v⊥ space during each time step. By multiplying

Equation (A28) with the inverse of mE QLD( ) on both sides, Equation (A28) provides the time evolution of fM N
T

, in one time step
simultaneously in the v⊥ and vP spaces. Therefore, it represents the numerical solution of Equation (10), which describes the quasi-
linear diffusion of a VDF through all resonances.

Appendix B
Numerical Analysis of the Fokker–Planck Equation

In this appendix, we present our numerical strategy to solve the Fokker–Planck equation for Coulomb collisions in Equation (40).
Using the Crank–Nicolson scheme presented in Appendix A, we discretize Equation (40) as
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Equation (B1) represents a system of two-dimensional algebraic equations. Therefore, we transform Equation (B1) into a single

tridiagonal matrix using the same strategy for a double matrix as presented in Appendix A.
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Like Equation (A28), Equation (B2) provides the time evolution of fM N
T

, in one time step simultaneously in the v⊥ and vP spaces.
Therefore, it represents the numerical solution of Equation (40), which describes the action of Coulomb collisions of particles in fj
with particles in fb.
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