SUPPLEMENTAL MATERIAL

Proportion of intracerebral haemorrhage due to cerebral amyloid angiopathy in the East and West

Yusuke Yakushiji, Jun Tanaka, Duncan Willson, Andrea Charidimou, Tomoyuki Noguchi, Masatou Kawashima, Masashi Nishihara, Jonathan Best, Toshihiro Ide, Yukiko Nagaishi, Megumi Mizoguchi, Hideo Hara, and David J. Werring

Contents

P2. Supplemental Methods

P3. Supplemental References

P4-10. Table S1-S7

P11. Figure S1

Supplemental Methods

Definition of other clinical variables

Patients who were current smokers at the time of their index haemorrhagic stroke were considered current smokers. Hypertension was defined as systolic blood pressure >140 mmHg and/or diastolic blood pressure >90 mmHg persistent for ≥7 days from admission, and/or use of antihypertensive drug(s) before the onset, and/or having had confirmed hypertension on at least two occasions by a healthcare professionals before intracerebral haemorrhage (ICH) onset. Diabetes mellitus was defined as ongoing use of anti-hypoglycaemic drug(s). Dyslipidaemia was defined as ongoing use of anti-dyslipidaemia drug(s), including 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins), fibrates, niacin/nicotinic acid, or bile acid—binding resins.

Definition and classification of haemorrhagic findings on blood-sensitive magnetic resonance imaging (MRI)

Cerebral microbleeds (CMBs) were defined on blood-sensitive MRI as rounded areas of signal loss, ≤10 mm in diameter [1,2]. CMBs were categorized into different anatomical regions (lobar, deep, or infratentorial areas) using the validated rating scale [3]. Cortical superficial sidelosis (cSS) were defined as linear residues of chronic blood products in the superficial layers of the cerebral cortex showing a characteristic "gyriform" pattern of low signal intensity on blood-sensitive MRI, without corresponding hyperintense signal on T1-weighted or FLuid-Attenuated Inversion Recovery (FLAIR) images [4]. We did not include cSS if it was contiguous with any ICH.

Supplemental References

- [1] Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-174. https://doi:10.1016/S1474-4422(09)70013-4
- [2] Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838. https://doi: 10.1016/s1474-4422(13)70124-8
- [3] Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager HR, et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759-1766. https://doi: 10.1212/WNL.0b013e3181c34a7d
- [4] Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010;74:1346-1350. https://doi:10.1212/WNL.0b013e3181dad605

Table S1: The details of the MRI scanners and protocols in each centre

	Western centres							Eastern centre		
	NHNN			UCH			UCLH	Saga University Hospital		
MRI Equipment	MAGNETOM		MAGNETOM		Achieva	Achieva	MAGNETOM			
	Avanto	TrioTim	Skyra	Avanto	Espree	Symphony			Avanto	TrioTim
Manufacturer		SIEMENS			SIEMEN	S	Philips MS	Philips MS	SI	EMENS
MFS, tesla	1.5	3.0	3.0	1.5	1.5	1.5	3.0	3.0	1.5	3.0
GE-T2*WI, n	6	1	1	13	2	1	2	4	12	29
TR, ms	780-881	625	630	439-865	881	719	832.5-928	700.3-802.3	650-656	532-585
TE, ms	26	20	19.9	25.5-26	25.5	26	16	16.0-16.1	25	15
FA, degree	20	20	20	20	20	20	20	20	20	15
ST / Gap, mm	5/1.0-1.5	5/1.5	5	5	5	5	4	5	6	6
Gap, mm	1.0-1.5	1.5	1.5	1.5-1.6	1.0-1.5	1.5	1.0	1.0	1.0-1.2	1.0-1.2
SWI, n	30	12	4	6	9	0	0	0	14	71
TR, ms	49	27	27	49	49	N/A	N/A	N/A	49	27
TE, ms	40	20	20	40	40	N/A	N/A	N/A	50	20
FA, degree	15	15	15	15	15	N/A	N/A	N/A	15	15
ST, mm	2.0	1.8	1.5	1.6-2.0	2.0	N/A	N/A	N/A	3	3
Gap, mm	0	0	0	0	0	N/A	N/A	N/A	0	0

Abbreviations: FA: flip angle; GE-T2*WI: gradient-echo T2*-weighted imaging; MFS: magnetic field strength; MS: Medical Systems; N/A.: Not Applicable; NHNN: National Hospital for Neurology and Neurosurgery; ST: slice thickness; SWI: susceptibility weighted imaging; TE: echo time; TR: repetition time; UCH: University College Hospital; UCLH: University College London Hospital

Table S2: Ethnicities in Eastern centre origin and Western centre origin in CT-based cohort.

	Western centre origin	Eastern centre origin
	n= 240	n= 193
Ethnicity, n (%)		
White	144 (60)	0 (0)
East Asian	4 (2)	193 (100)
Other ethnicities		
Any other Asian	17 (7)	0 (0)
African	10 (4)	0 (0)
Caribbean	4 (2)	0 (0)
Other	39 (16)	0 (0)
Not available	22 (9)	0 (0)

Table S3: The details of inter-rater reliability and intra-rater reliability

	Inter-rater reliability testing	Intra-rater reliability testing
Haematoma on CT	Performed with 50 randomly selected scans rated by 2 clinical	Determined from 20 randomly selected scans scored twice
	neurologists (D.W. and Y.Y.)	by 2 clinical neurologists (D.W. and Y.Y.)
Lobar ICH	0.94	0.79-1.00
Deep ICH	0.91	0.88-0.90
Infratentorial ICH	0.88	0.64-1.00
CMBs and cSS on MRI	Performed with 50 randomly selected scans rated by 2 clinical	Determined from 20 randomly selected scans scored twice
	neurologists (D.W. and Y.Y.)	by 2 clinical neurologists (D.W. and Y.Y.)
Any CMBs	0.77	0.86-1.00
Lobar CMBs	0.76	0.90-1.00
Deep CMBs	0.76	0.89-1.00
Infratentorial CMBs	0.83	1.00-1.00
Any cSS	0.65	0.77-1.00
Specific CT findings of Edinburgh	Performed with 20 randomly selected scans rated by 2 raters (a	Determined from 20 randomly selected scans scored twice
CT diagnostic criteria	clinical neurologist [J.B.] and a certificated neuroradiologist [M.N.])	by 2 raters (J.B. and M.N.).
SAH	0.80	0.69-0.90
FLPs	0.78	0.63-0.88

Abbreviations: CMBs: cerebral microbleeds; cSS: cortical superficial siderosis; CT: computed tomography; FLPs= finger-like projections; ICH: intracerebral haemorrhage; MRI: magnetic resonance imaging; SAH = subarachnoid haemorrhage

Table S4: Sensitivity analysis: ethnicities according to Eastern and Western centre origin (CT and MRI-based cohort).

	Western centre origin	Eastern centre origin
	n= 91	n= 126
Ethnicity, n (%)		
White	53 (58)	0 (0)
East Asian	2 (2)	126 (100)
Other ethnicities		
Any other Asian	9 (10)	0 (0)
African	5 (6)	0 (0)
Caribbean	2 (2)	0 (0)
Other	9 (10)	0 (0)
Not available	11 (12)	0 (0)

Table S5: Sensitivity analysis - clinical characteristics and neuroimaging findings according to Eastern and Western centre origin (CT and MRI based cohort).

Variables	Western centre origin	Eastern centre origin	p Value
	n=91 (42%)	n= 126 (58%)	
On-set to Admission, days	0 (0-0)	0 (0-0)	0.330
Age, years	68 (52-76)	71 (60-78)	0.112
Sex, male	47 (52)	67 (53)	0.824
Current smoker	11 (12)	24 (20)	0.147
Previous stroke	7 (8)	31 (25)	0.001
Antithrombotic drug(s) use	28 (31)	26 (21)	0.109
Hypertension	70 (77)	93 (74)	0.601
Diabetes mellitus	11 (12)	19 (15)	0.499
Dyslipidaemia	35 (38)	20 (16)	< 0.001
Hematoma volume, ml	7.7 (3.0-20.6)	8.6 (4.1-23.9)	0.297
Strictly lobar ICH	44 (48)	25 (20)	< 0.001
Admission to MRI > 30 days after ICH onset	21 (23)	9 (7)	0.001
Admission to MRI, day	9 (4-27)	9 (6-13)	0.412
3.0 T use	24 (26)	100 (79)	< 0.001
SWI use	61 (67)	85 (67)	0.947
Echo time, ms	40 (20-40)	20 (20-20)	< 0.001
Strictly lobar CMBs	15 (16)	14 (11)	0.251
Other CMBs	34 (37)	79 (63)	< 0.001
Cortical superficial siderosis	17 (19)	12 (10)	0.050
CAA-related ICH *	21 (23)	10 (8)	0.002

Data presented as median (interquartile range) for continuous variables and number (percentages) for categorical variables.

Abbreviations: CAA = cerebral amyloid angiopathy; CMBs = cerebral microbleeds; ICH= intracerebral haemorrhage; IQR = interquartile range; MRI = magnetic resonance imaging; SWI = susceptibility-weighted imaging All data was <5% missing.

^{*} defined by the modified Boston criteria

Table S6: Sensitivity analysis - differences in patient characteristics according to CAA status defined by the modified Boston criteria.

Variables	Other ICH	CAA-related ICH	p Value
Variables	n=186 (86%)	n=31 (14%)	
Age, years	68 (56-77)	74 (68-81)	0.001
Sex, male	106 (57)	8 (26)	0.001
Eastern centre origin	116 (62)	10 (32)	0.002
Current smoker ^a	32 (17)	3 (10)	0.277
Previous stroke	33 (18)	5 (16)	0.827
Antithrombotic drug(s) use ^b	44 (24)	10 (32)	0.330
Hypertension	143 (77)	20 (65)	0.140
Diabetes mellitus ^c	22 (12)	8 (26)	0.040
Dyslipidaemia ^d	44 (24)	11 (35)	0.172

Data presented as median (interquartile range) for continuous variables and number (percentages) for categorical variables.

All data was <5% missing.

Table S7: Sensitivity analysis - multivariable logistic regression analyses of associations of geographical location and ethnicity with CAA-related ICH defined by the MRI-based modified Boston criteria.

Geographical location	Model I	Model II	Model III
Eastern centre origin	0.29 (0.13-0.65)	0.22 (0.09-0.53)	0.31 (0.10-0.93)
Ethnicity	Model IV	Model V	Model VI
East Asian	0.20 (0.08-0.47)	0.19 (0.08-0.49)	0.24 (0.07-0.82)
Other ethnicities	0.20 (0.04-0.96)	0.30 (0.06-1.55)	0.38 (0.07-2.11)

Odds ratios (95% confidence intervals) for CAA-related ICH according to geographical location (Eastern vs. Western centre origin [Reference]) are presented in models I, II and III. Odds ratios (95% confidence intervals) for CAA-related ICH according to ethnicity (East Asian and other ethnicities vs. White [Reference]) are presented in models IV, V and VI.

Abbreviations: CAA: cerebral amyloid angiopathy; CI: confidence interval; CT: computed tomography; ICH: intracerebral haemorrhage; MRI: magnetic resonance imaging; OR: odds ratio.

Model I: unadjusted; included all patients from the full CT or MRI-based cohort (n=217).

Model II: adjusted for age and sex (n=217).

Model III: further adjusted for previous stroke, antithrombotic use, hypertension, 3T use, and echo time (n=214).

Model IV: unadjusted; included all patients from the full CT or MRI-based cohort with available data (n=206)

Model V: adjusted for age and sex (n=206)

Model VI: further adjusted for previous stroke, antithrombotic use, hypertension, 3T use, and echo time (n=203)

Estimated incidence and its 95%CI of each type of ICH by White and East Asian ethnicity (using the CT/MRI-based classifications of ICH types)

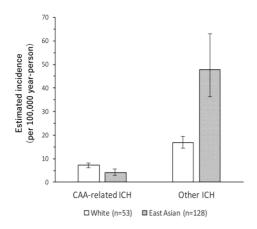


Figure S1

Abbreviations: CAA: cerebral amyloid angiopathy; CI: confidence interval; ICH: intracerebral haemorrhage White represents estimated incidence of each type of ICH (per 100,000 person-year) in White ethnicity. Grey represents that in East Asian ethnicity.

The error bars indicated 95% CI.

In the result of CT/MRI-based cohort (CAA-related ICH, 30.2% in White ethnicities; 7.8% in East Asian ethnicities), the incidence of CAA-related ICH of East Asian ethnicity (4.0 ([3.0-5.4]) was about half (0.55-fold) of that of White ethnicity (7.3 [6.3-8.5]), while the rate of other ICH was 2.8-fold higher in those of East Asian [46.5 (34.8-62.2)] compared to White ethnicity [18.4 (15.9-21.4)].