PHYSICAL REVIEW E 102, 012401 (2020)

Tug-of-war between stretching and bending in living cell sheets
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The balance between stretching and bending deformations characterizes shape transitions of thin elastic sheets.
While stretching dominates the mechanical response in tension, bending dominates in compression after an
abrupt buckling transition. Recently, experimental results in suspended living epithelial monolayers have shown
that, due to the asymmetry in surface stresses generated by molecular motors across the thickness e of the
epithelium, the free edges of such tissues spontaneously curl out-of-plane, stretching the sheet in-plane as a
result. This suggests that a competition between bending and stretching sets the morphology of the tissue margin.
In this paper, we use the framework of non-Euclidean plates to incorporate active pre-strain and spontaneous
curvature to the theory of thin elastic shells. We show that, when the spontaneous curvature of the sheet scales
like 1/e, stretching and bending energies have the same scaling in the limit of a vanishingly small thickness
and therefore both compete, in a way that is continuously altered by an external tension, to define the three-

dimensional shape of the tissue.
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I. INTRODUCTION

Active surfaces are ubiquitous in biology, ranging from
sub-cellular organelles to the complex multi-layered walls
compartmentalizing organs. An important feature of such
surfaces compared to classical visco-elastic materials is that
their mechanical properties depend on the controlled cellu-
lar metabolic processes that continuously inject energy and
maintain mechanical tension in the system [1]. Such activity
is responsible for the appearance of a cleavage cytokinetic
furrow driving the division of a single cell [2,3], or multi-
cellular topological transitions during development such as
mesoderm invagination in Drosophila [4,5] and inversion of
the Volvox embryo [6], both involving hundreds of cells. The
detailed patterns resulting from these mechanical interactions
often involve instabilities where elastic stretching and bending
deformations play an important role, such as in the rupture
and subsequent curling of single red blood cells [7,8] or the
formation of villi in the gut [9] and gyri and sulci in the
brain [10-12] which shape entire organs.

We focus in this paper on epithelial cell monolayers. These
tissues are composed of a single layer of cells laterally at-
tached to one another via specialized adhesion proteins, as
illustrated on Fig. 1. The inner surface of the cells is covered
by a thin cortex composed of a dynamic polymer meshwork
that can contract thanks to molecular motors which act as
active cross-linkers [13]. Epithelial tissues line the surface
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of organs and vessels, physiologically defining compartments
and regulating transport across them. As such, epithelial
monolayers are polarized, with anatomical differences be-
tween the two sides on the monolayer. This includes molec-
ular motors which often exhibit an asymmetric distribution
along the sheet thickness axis and are preferentially located to
one of the sides [14,15]. In continuum mechanics theories, this
uneven distribution of motors gives rise to both active in-plane
tensions and out-of-plane torques [16-23].

Our experimental system consists of a suspended cell
monolayer devoid of its substrate and clamped between two
cantilevers, one fixed and one mobile, the spacing of which
can be adjusted (Fig. 2). The protocol is detailed in [24,25].
This experimental condition allows us to specifically probe the
mechanical properties of the epithelial sheets in the absence
of confounding effects stemming from the substrate. Since
the stiffness of the mobile cantilever is known, the total
traction force on the cantilever can be measured and the active
non-linear rheology of such suspended monolayer can be
probed across various timescales [26,27]. We shall focus here
on an intermediate timescale ranging roughly between 30 s
and 10 min where the macroscopic monolayer stress-strain
curve is well captured by an elastic model with an active
pre-stress [28]. However, examining the shape of the free
edge of the suspended layer also revealed that the margin
locally curls out-of-plane with a high spontaneous curvature
of the order of the inverse of tissue thickness [29] [see also
Fig. 2(b)].

We therefore adopt the framework of non-Euclidean elas-
tic plates (NEPs) [18,30] which generalizes the theory of
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FIG. 1. Sketch of a polar cohesive cell monolayer. Dark ellipses
are the cell nuclei. Black lines show cell-cell junctions. The thin gray
line indicates the basal side which developed in contact with the sub-
strate while the apical side was free. The substrate is then removed
in our mechanical experiments. The apico-basal polarity entails a
mechanical polarity stemming from the inhomogeneous distribution
of active stress along the thickness (thick red arrows). This results in
the presence of active tension along the mid-plane (black arrows) as
well as active torques out-of-plane (rotating arrows).

Foppl-von Karman [31] to account for the presence of both
in-plane pre-strain as well as spontaneous curvature. The
peculiarity of our analysis is that, following experimental
observations, we assume that the spontaneous curvature scales
with the inverse of the layer thickness leading to a direct
competition between stretching and bending energies to set
the shape of the free edge of the monolayer. We then study
how this competition is controlled by the active pre-strain and
spontaneous curvature using a simple one parameter ansatz
which we qualitatively compare to experimental results. Note
that we do not aim at quantitatively capturing the experimental
results, which we rather use to motivate our theoretical study.

The paper is organized as follows. In Secs. II and III, we
present the elastic film framework that we use to model the
passive behavior of the monolayer and exemplify in Sec. IV

FIG. 2. (a) Picture of the cellular layer suspended between two
cantilevers. The dimensions of the layer are L and w = 1.6 mm. The
typical (in-plane) curvature of the free edges is denoted by R and the
deflection in the center by d. The contact lines with the cantilevers
are I'F and the free edges are I';. (b) Profile of the cellular layer in the
(e2, e3) plane where d is measured. Cell-cell junctions are marked in
green via ECadherin-GFP. Medium is marked in red. Note the radius
of curvature of the curl is on the same order of magnitude as the
layer thickness [29]. The profile is taken at the position indicated by
the dashed red line on the diagram above. Scale bar: 30 pm.

that an external compression is needed to observe a buckling
behavior characterized by a transition from a stretching to a
bending dominated regime. We then complete our model in
Sec. V by accounting for tissue activity. Next, in Sec. VI, we
assume a simple deformation ansatz that reduces the mechan-
ical problem to a single parameter characterizing the shape of
the free edge. We use this parameter in Sec. VII to show that
unlike in the passive case there is a continuous competition
between stretching and bending energies even in the absence
of external loading. We study in Sec. VIII how applying an
external tension changes the balance between stretching and
bending, therefore modifying the film free edge. We finally
discuss our results in Sec. IX.

II. LARGE DEFORMATIONS KINEMATICS OF
THE MONOLAYER

We denote w the width of the monolayer at its contact
with the cantilever and L the separation between the two can-
tilevers. A displacement L — Ly can be uni-axially imposed
from the initial separation Ly. The bulk of the layer at a given
time ¢ is denoted 2, the free lateral surface (i.e., the tissue
margin) I';, the fixed left side surface I'{", and the right side
I'f. See Fig. 2(a). The free margin of the layer bridges the
gap between the two cantilevers. The deflection at the middle
of the bridge is denoted d. See Fig. 2(a).

The applied displacement may become large (of the order
of the size of the initial layer) so we do not impose the
restriction of small displacements in the theory presented
below. In the laboratory frame (ej, e;, e3), the displacement
of the monolayer is measured from a flat rectangular reference
configuration 2y = (0, L) x (0, w) where all the reference
boundaries of the domain I’ , Ffo are straight lines. This
physically corresponds to the configuration of the cell mono-
layer in the absence of any internal active stress or external
loading. The position of a material point in the current config-
uration can thus be written

J(x) =x+ulx) + v(x)es,

where the reference configuration coordinate x € ¢ : x; €
0, Ly),x» € (0,w) and u = uje; + ure, is the in-plane
(e1, e2) displacement while v is the out-of-plane displace-
ment. The deformation F is the gradient of f:

1+ 8x]u1 8xZu1
F = Ox, U 14 0,u2 |. @))
Oy, v Oy, ¥

F is not a square matrix because we consider a two-

dimensional (2D) object embedded in a three-dimensional

(3D) space. From the deformation, we compute the membrane
Cauchy-Green tensor C = FTF and
Cc—-1

E=—— 2

5 2

is an associated strain tensor (/ denotes the identity).
The unit normal to the monolayer reads

. Fe, A Fep

n =
v/ detC
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where A denotes the vector product. The local curvature
tensor at each point of the monolayer is then defined by
K = nV?2f, that is in index notation [32]

Kij= Y mdy fr- 3)

k=1.3

Having defined the strain and curvature of the film, we now
use these two variables to specify its mechanical behavior.

III. PASSIVE RHEOLOGY AND BOUNDARY CONDITIONS

We describe the passive response of the cell monolayer as
purely elastic. Due to the thin film approximation, the stored
elastic energy U can be decomposed into membranal and
bending terms [33]:

Ulu, v] = / [uy(E) + uy(K)]dx1d .
Q0

For simplicity, we consider only physically linear elasticity
(meaning that the energy functionals neglect the terms that are
higher than quadratic in the strain and curvature), isotropic
and 3D-incompressible (because the volume of each cell
remains constant in the regime tested [24,28]). The stretching
elastic energy U therefore reduces to the classical Saint-
Venant Kirchhoff expression

Ye
ug(E) = ?[(trE)z +t(ETE),

where Y is the 3D Young’s elastic modulus and e is the
thickness of the layer in the reference configuration (small
compared to Ly and h). Similarly, the bending energy takes
the form

Yel 5 T
up(K) = E[(trl() + tr(K* K)].

Note that retaining only quadratic contributions in the energies
(i.e., assuming a linear material) is compatible with consider-
ing large deformations (i.e., geometrical non-linearities).

Using the internal energy, we can define the Piola-
Kirchhoff stress N = dgus and the torque M = dguy,. On the
reference boundary I'; g, the traction stress as well as the
torque vanish. Note the absence of a work term in the above
expression of the potential energy U because there is no
surface where a non-zero traction stress is imposed. Locally,
it is always the displacement which is imposed on Fi[ , 1.e.,
(L — Lp)e; on F:O and clamped conditions on F;O. The local
traction stress on '}, eT' = FNF"e,, which is opposite to
the one on l";o, cannot be imposed with this device. Instead,
we impose a certain displacement such that a target global
traction force T, = [I"} |~ fl“jo Te is applied [28].

IV. THE STRETCHING TO BENDING
TRANSITION IN BUCKLING

Before moving to our main results, we re-derive in this
section some classical results about the stretching and bend-
ing behavior of a plate in plane strain (i.e., equivalent to a
one-dimensional beam in the e; direction) for our specific
theoretical setting.

To do so, we consider the case where u, = 0 and u;(x;)
and v(x;) do not depend on x,. Then, setting 1 + 0,,u; =
A cos(¢) and 9, v = Asin(¢) the strain and the curvature
become scalar quantities:

AZ—1
E =

and K = —A0d,,¢. 4)

The variable A therefore represents the stretch along the x;
direction and ¢ represents the angle of the plate with its
tangent. Using A and ¢ we can re-express the bending and
stretching energies,

2e (A2 —1\° Ye 5
“s=7( 2 )a“d“FK(AW’

such that the total elastic energy reads

Liloye /A2 —1\> Y& 5
U[A,(P]:/O {T( 5 )+§(Aaxl¢) ]dxl.

In our problem, the plate is clamped at x; = 0 and x; = Ly:
v(0) = v(Ly) = 0,u(0) =0, and u(Ly) = L — Ly with a slope
that we assume null [9,,v(0) = d,,v(Lg) = 0]. In the new
variables A and ¢, these boundary conditions become the
integrals constraints

Lo Lo
f (Acos(¢p) — 1 —€™)dx; = 0and / A sin(¢)dx; =0,
0

0
where € = (L — Ly)/Ly and the boundary conditions

#(0) = ¢(Lo) = 0.
The solution of this problem is therefore obtained by mini-

mization of the Lagrangian:
Ly

(A cos(p) — 1 — €™)dx;
0

LIA, ¢l =UlA, 9] - P

Ly
— Q/ A sin(¢)dxy, ®))
0

where the Lagrange multipliers P and Q represent the forces
at the boundary in the e; and e3 directions. The first variation
of L provides the two coupled equations determining the
equilibrium shape:

Yed ,  2Ye 2 .
7“8’“‘(1’) + TA(A — 1) = Pcos(¢) + QOsin(¢),

Ye? 2 .
— 0y, (A%3,¢) = QA cos(¢) — PAsin(e).

9
(6)

When €” > 0 (i.e., the film is put under tension as in the
experimental conditions that we will study in the rest of
the paper where the monolayer is enriched with an active
behavior), the solution of (6) clearly corresponds to a pure
stretching case which is given by (with obvious notations)

2Ye )
¢s=0,A; =Lo(1+€™),0;,=0and P, = TA‘Y(AS —1).

The total bending energy

Lo
Ub:/ up(x1 )dxy
0
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therefore vanishes and the total stretching energy

Lo
l]s = / M‘v(xl)dxl
0

scales with e leading to a stretching energy dominated regime
where the bending term is irrelevant.

The case € < 0 (i.e. the film is put under compression) is
more complex and corresponds to a classical buckling prob-
lem. When € is lower than the deformation corresponding to
the critical loading threshold

27722
= 1- 8y,
313

the trivial solution ¢;, A, Q;, Py ceases to be stable and
bifurcates through a second order phase transition to a non-
homogeneous solution which can be expanded in power series
close to the bifurcation point using the Lyapunov-Schmidt
reduction technique [34,35]. Following this approach, the
normal form up to second order reads

Ge(x1) = ¢y + Vo1 (x1) + V2o (x),
Ae > A+ VA1) + v Ax(xy),

Qc = Qs +vQ1 + 1’0,
P. ~ P, + vP| + VP,

(7

As it is classical for a second order phase transition (i.e. a
super-critical pitchfork bifurcation), the small parameter in
the expansion is given by

and in our specific problem

$1(11) = o) = V2 sin (22‘1),

AN=P=01=0,=0
while
Az (x1)
e (e + 1)[2(2”262 —3) cos (42’)“) 4 o 3]

L Lg
2 (274t Sm2e?
413 ( = — +3)

3

L,

(®)

w2 (3 - ) (e 4 1)

oL (5 1)

’

and

(271494 + Tn2e? 6)(6:” + 1)

L Lg

4,4 2,2
42ne_5:1e +3
(Lg L} )

€ =

Using the above expressions we obtain the scaling of the
stretching and bending energies for the buckled solution close

to the critical threshold:
mteY (2782 + 128 +4) &
P 54 L

and

U A2e2Y 8. (28, + 225 + 1) e
b= N
9 Lo

where 8. = €' — €, > 0 and we retained only the dominating
term in the expansion in e/L of the power series.

This shows that as soon as §. > 0 (i.e., after the bifurcation
from the constant solution), for a slender structure (e/Ly <
1), the bending energy dominates over the stretching energy.

Classical buckling of a passive elastic slender structure
therefore involves a transition from a stretching dominated
regime to a bending dominated regime at the bifurcation
point. In the stretching dominated regime, the bending energy
vanishes, while in the bending dominated regime it is the
stretching energy that is negligible. In the more complex 2D
theory where plane strain is not assumed, it is possible that
stretching of the film in the e; direction, as imposed with
our experimental device, initiates the formation of wrinkles
in the e, direction [33]. Indeed, volume conservation implies
a certain level of compression which activates the bending
energy in that direction. Similar to the classical buckling case
presented above, these wrinkles happen through a bifurcation
indicating a transition—driven by the external loading—from
a regime dominated by the stretching energy to a regime
where minimization of the bending energy becomes more
favorable.

In the following sections, we will show that, due to active
effects, this situation changes as the film exhibits a tug-of-war
between the stretching and the bending energies even when
the film is put under an external tension. This is because
both energies scale in the same way with respect to the small
parameter e/Ly to determine the film shape.

V. INCORPORATION OF THE ACTIVE RHEOLOGY

The biological activity in the monolayer here refers to a
contractile acto-myosin polymer network generating mechan-
ical tension in the plane of the monolayer. This active tension,
combined with the elastic modulus of the monolayer, leads to
the emergence of an effective pre-strain that can be controlled
by modulating the acto-myosin dynamics [28]. In addition
to the in-plane component of the tension, an asymmetry of
myosin activity across the thickness of the monolayer leads
to an active torque, which in turn manifests itself as a sponta-
neous curvature of the monolayer [14,15].

Building on the idea of a stretching and bending decom-
position, we therefore speculate that the total potential energy
reads

Ulu,vl = | [us(E — E;) +up(K — Kp)ldx1dxp,  (9)

Qo
where we suppose that the minimum of the internal en-
ergy (i.e., the ground state) is shifted by active ef-
fects [17,18,30,36]. In particular, we do not consider here
the fact that activity may modify the functional form of the
energies us and up themselves. This expression of the elastic
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(a) initial (b) stretched

- -
|,

(c) stretched and
curled

(d) 3D edge

FIG. 3. Ansatz of the deformation of a flat monolayer from its natural configuration (a) in the absence of active terms (membranal pre-strain
and spontaneous curvature) to its curled configuration in presence of activity (c). We decompose the displacement into two steps, f**h and
feut, fsteteh brings the monolayer to its actual in-plane dimensions (b) and £ curls the margins to reach the current configuration (c). The
hatched regions therefore indicate the material points corresponding to the curled margins in the current configuration. The last panel (d) shows

the 3D projections of the ansatz, focusing on the bottom free edge only.

energy has been justified under the classical Kirchhoff-Love
assumptions in the limit of small thickness of a bulk elastic
material with embedded pre-strain [18]. However, for a spon-
taneous curvature of the order of 1/e created between the api-
cal and basal side of the cell monolayer, one of the Kirchhoff-
Love assumptions (the plane-stress assumption) is no longer
verified and we therefore use this form of the elastic energy as
an effective way to capture the competition between stretching
and bending that we experimentally observed, rather than the
one originating from a generic thin film limit.

We also assume that the active contributions are isotropic
in the monolayer plane:

7 — (& 0 dK_Ra’1 0
“_Oeaan «=\o gr1)

where €, < 0 is an in-plane contractile pre-strain while R, is
a spontaneous radius of curvature.

The total potential energy U then needs to be minimized
in the proper kinematically admissible field of displacement
(u, v) (displacements satisfying the imposed displacements
boundary conditions) to solve the problem. To gain some
analytical insight, we follow below a more simple single
parameter analysis that captures the monolayer shape.

VI. PARAMETRIC MODEL OF THE
TISSUE MARGIN CURLING

In experiments, we noticed the presence of a strong curling
at the tissue margin with more pronounced curling in the
center of the margin (of the order of 1/¢) [29]. Our hypothesis
is that such curling localized at the tissue margin creates the
deflection d by relaxing some bending energy. The deflection,
however, remains finite since this operation costs stretching
energy as it leads to stretching in the monolayer tangential
to the tissue margin. The deflection is thus a compromise
between stretching and bending of the cell monolayer.

To make this reasoning quantitative but keep analytical
computations tractable, we postulate that the deformation field
is an isotropic planar stretch of the rectangular configuration

Qo = (0, Ly) x (0, w) corresponding to a relaxed state in the
absence of external stretch and activity into a rectangular
configuration with the actual size (0, L) x (0, w). This con-
figuration is then combined with a curling normal to the
free margins of the monolayer with the constant radius of
curvature R,. A more refined ansatz would take into account
some expected [37] self-similar curling at the margin. The
shape of the free interface is assumed to be an arc circle
of radius R. See Figs. 2 and 3. Given the symmetry of the
problem, we only consider the lower half of the monolayer in
the following analysis.

The initial isotropic stretching is related to the deformation
ansatz in the (eq, e, e3) frame:

fstrelch fstretch _
1 2 -

stretch
=X1— f3 = 0

Ly
Next, the lower edge curling is captured in the Frenet frame
(81, &2, e3) attached to the free margin [see Fig. 3(c)] by

it = R, sin ll =0 =R, 1—cos ).
Rd : Ru

The curling is normal to the free margin (direction &) and
encompasses the material points denoted as ' on Fig. 3. Thus
X, € [—rm, 0], where r,, is the length of material curled at a
given point of the interface. A more refined ansatz involving
a non-constant curvature of the free margin would modify
the expression of f“!. Points outside of the domain Q! are
unaffected by the curling. The final deformation is then the
composition of the two deformations specified above: [ =
fcurl o fslretch.

Based on f, we need to evaluate the total energy U in
the reference configuration. To this end, we separately define
the deformation into the two domains 2 (where there is
no curling) and Q' (where there is curling) in the current
configuration and we map them back into Q7 and € in
the reference configuration. We parametrize (x;, x;) € Q(z, by
using a mapping j, transforming [0, 1] to Q(z]:

. w w
Jo i (A, A) (Xl = Lok1, xo = 3 +)»2[S()»1) - 5]),
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where variables 1| and A, vary in the unit interval (A, X,) €
[0, 17%. The expression of the local deflection s [see Fig. 3(c)]

is given by
LyT= 20 = 1PE(1 -\ =iy
S()»]) = .
2
In the above formula,
£ = L (10
" 2R

is a convenient non-dimensional quantity ranging between 0
and 1 that parametrizes the deflection at the center of the layer:

2f 2R.&
(11)

Next, we parametrize the domain (x, xp) € Q(l) using polar
coordinates mapping

Ji(n )H{x1—7[31n( )<f+§>+ i|,
_ cos(O)(L+2r§) — L

1-g
S

The angle 6 thus varies in the range [—6,,6,] where
0,, = arcsin(§) € [0, w /2] and the radius r varies in the range
[—7rn(0),0] where r,(0)=L[l—+/1—E&%sec(0)]/(2¢).
When & =0 (i.e., 6, = 0), the margin is flat and uncurled
while the deflection is maximal when & = 1 (i.e., 6,, = 7 /2).

In each domain, the final deformation can then be
exzpressed in the (e, ez, e3) frame. Namely, deformation in
Q5 is

X2

w w
fi=La f=h(sGn-3)+3 f£=0. 12

2

and in SZ(I) it reads

_ Lsin(0) E . LT
fi= 2% + 2 + R, sin(@) sin <Ra>

_ L L1—&%sec(9) . r
Hh= COS(Q)(E_ T) + R, cos(6) sin (E)

f :Ra[l — cos (Riﬂ (13)

With L, w, and R, given, the deformation f is fully character-
ized by &, which controls the amount of curling at the margin
as we illustrate in Fig. 4
With our ansatz of f, we can now compute the total elastic
energy of the layer:
U

U= 5= / [us(E — Eq) + up(K — Ko)ldxidx;
2

+ / [U(E — Ex) + up(K — K)ldxidxs. (14)
o

For this we use the deformation fields (12) and (13) to com-
pute the strain tensor and the curvature tensor according to

£=03 ‘
— —

£=05 ‘
— — A
5207‘\ __________
T A
''''' £=09 g

FIG. 4. Different views of the margin curling when the parameter
& increases with L, w, and R, fixed.

formulas (1)—(3). The integrals and partial derivatives entering
in all formulas have to be computed using the mappings j;
and j,, respectively, in Q(l) and Q(z). All these computations,
though giving potentially lengthy expressions, can be carried
out explicitly except for the final integration of local stretching
and bending energies.

However, this last step can also be made explicit using
the fact that e is very small compared to all other lengths
(there are two orders of magnitude between e >~ 10 um and
L ~ 1 mm or w ~ 1 mm) but spontaneous curvature is very
large, essentially of the order of the inverse of a cell thickness.
We therefore assume that R, is of the form

e
ki

where k, is a non-dimensional parameter quantifying the
magnitude of the spontaneous curvature [38]. The implication
of this last assumption is that, despite the smallness of the
thickness e, the stretching and bending energies have terms
contributing at first order in e and can locally balance each
other even in the limit where e is vanishingly small. Indeed,
both (12) and (13) can generically be written as

f@ = 20 +ef'(x.%)

R, =

such that the bending term in (9) contributes to U through f!
even at first order in e. The computation of U at first order
in e essentially involves asymptotic expansions in the small
parameters e/L and e/w as well as some averaging over the
variable x/e which varies very quickly compared to x (similar
to the technique employed in vibrational mechanics [39] to
extract the slow part of the motion).

Note that the average tension on the cantilevers only in-
volves the elementary deformation field in Q> and thus takes

012401-6
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a simple form

T = %Ai(xi —2€, + 1) (1 + A7 — 4e, — 2),

where the stretch variable
ola ol
AL =L/Ly N
>l
can be experimentally adjusted by moving the cantilevers. For -1t
small applied strains the tension reads
-2t
T =T, +eYs(hp — 1)
where the active stress reads T, = 4eY (¢, — 1)¢,/3 and the 0 i ;
active rigidity is ¥, = 2Y (4€2 — 7¢, + 1)/3. It is known that 2
the effective stiffness of a single cell [40] or a tissue [28,41] ¢
can change when some of its molecular motors are inhibited FIG. 5. Dependence of the energy U on the deflection variable
& for a given value of €, = —0.4. The inset shows the decay of the
energy with £ for experimentally relevant values of k, ~ 1 [29].

or activated.
The value of €, was measured in [28] to be €, >~ —0.4 and

the effective modulus Y, >~ 650 Pa.

VIIL. INITIAL DEFLECTION

Before any stretching is applied, we consider that Ay, = 1
such that the only source of tension 7 = T, > 0 in the mono-
layer is endogenous. This assumption was experimentally

checked with drugs inhibiting the motors activity in [28].
At the leading order in the monolayer thickness, the energy

then takes the form
U - Uy
eYL?

- 144£2(1 — (,;_—2){[ 4k (1 —&7) +36(1 — £%)e, + 3]
x [sin™'(§) — 5\/@] + 122 = D)(3e, + DM (E)

+ 6571 — &2}

where the special function M can be expanded in power series,
2sin~ (&) cos[2k sin ™ (£)]
M) = Z(—l)k(
k=1

k
sin[2k sin™' (&)]
_ o ) ’

and Uy = U (£ = 0) is a constant independent of £. We show
in Fig. 5 the typical behavior of the energy for several values
of k, For small values of &, it decreases as
eY szg .

54

oo

5)

0 —Uo -

To find the balancing point between bending and stretch-
ing, we therefore minimize U with respect to £. It is important
to note that Y drops out from the minimization and therefore
does not influence &, the equilibrium value that minimizes
the energy. We show in Fig. 6 the dependence of & on
the spontaneous curvature parameter k, As we expect, &4
increases with k, as an increase of spontaneous curvature

favors curling. The dependence of &4 on k, can be analytically
captured in two asymptotic cases. When k, < 1 we obtain

S kg
€eq ™~ \/; (16)

3/—€,
which degenerates as a square root dependence when ¢, = 0:
Eeq ~ (7/3)"/*/ky/2. Interestingly, this limit still accurately

T ——
; 0.5
g 1| d
¥
R P
]
|
[ ol ‘ ‘ |
! 0 1 2 3
[ A
1
ol ‘ |
0 5 10 15 20
Ka

because curling more material reduces the bending energy

while the stretching energy is negligible. This is a bending
dominated regime. However, in the opposite limit where &

approaches 1 the energy diverges as
U eYL’n

021 192(1 —¢)
and is dominated by the stretching contribution. The balance
between these two regimes determines the equilibrium shape
of the free margin of the monolayer.

U —

FIG. 6. The full green line shows the equilibrium value of &
as a function of k, obtained by numerical minimization of the
potential energy U. The dashed lines correspond to the asymptotic
formulas (16) (in the k, < 1 regime) and (17) (in the k, > 1
regime). Parameter €, = —0.4. The inset shows how the deflection
associated to the value of & varies as a function of the motor activity
which proportionally affects both the pre-strain and the spontaneous
curvature [see (18)]. Parameters &, = —0.4 and k, = 5.
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captures the value of £.4 up to moderate values of k, < 1 that

correspond to some experimental measurements [29]. In the
opposite limit when k, < 1, we can approximate &4 by

247 128+/2(k2 — 18¢, — 4)

(1 - ‘i:eq)z RV 1 - geq
A7

Note that when k, > 1 the spontaneous radius of curvature
is larger than the monolayer thickness, which is admissible
since it is induced by a mismatch of apical and basal ten-
sion [38] and not related to the actual curvature of a single cell.
However, the applicability of our ansatz may be questioned
in this case where mechanical contacts between the folds of
the curled region may play an important role. The account
of such non-penetration constraints would require a complex
numerical treatment.

The equilibrium value of &4 can be easily translated into a
measured deflection through Eq. (11), which, at zeroth order
in e/L, reads

2887 (2¢, + 1)
1 - Eeq ’

d _1-/1-¢

L 26

and increases from zero when £ = 0to 1/2 when & =1

It is not directly obvious how an inhibition or promotion
of molecular motors activity will affect the deflection because
motors control both €, and k,, which can have antagonistic
roles in &4 [see (16)]. However, a simple assumption is that
€, scales with the average of the activity of the motor on
the apical and basal side of the monolayer while k, scales
with the difference between the activities on both faces of
the monolayer. In this respect, it is reasonable to assume that
both k, and €, are affected in the same proportion if the motor
activity is modified genetically or with drugs. We formally
express this proportionality as

k, = k,Aand ¢, = E,A, (18)

where A is a non-dimensional measure of the motor activity
and we show in the inset of Fig. 6 the dependence of deq/L
on A. We observe that the effect of spontaneous curvature
surpasses that of in-plane pre-stress to increase the deflection
of the margin when activity increases. In agreement with
this trend, we show in Fig. 7 the equilibrium shape of the
monolayer free edge in response to two pharmacological
treatments that reduce the activity of the cell monolayer either
by partially inhibiting the molecular motors (Y27 curve) or by
partially depolymerizing the polymers that serve as scaffolds
for molecular motor contractility (Lat B curve).

VIII. DEFLECTION TO ELONGATION RELATION

From the initial configuration, we can experimentally apply
a finite stretch to the mobile cantilever and observe that the
deflection decreases (see Fig. 8), while we would expect
an increase of the necking for a passive elastic sheet. To
rationalize this observation, we can compute again the elas-
tic energy, which takes a more complex form in this case
[see Eq. (A1)]

As for the initial case, this form has a single minimum in &
corresponding to the equilibrium deflection of the free tissue

— Ctrl
— Y27
0.50
—
~~
o
< 0.25
0.00

FIG. 7. Shape of the free edge of monolayers (I'; on Fig. 2) in
a control untreated situation (blue line, N=5) and with two drug
treatments (Y27, red line, N = 6) and (Latrunculin-B, purple line,
N = 6) that impair the active tensions in the cell cortex. The thick
lines represent the mean behavior while the light lines are directly
extracted from experiments. The dashed black line corresponds to
a straight bridge between the two cantilevers. Misalignment of the
monolayers boundaries appears as a result of the uneven spreading
of the monolayers on each of the two plates.

margin. Figure 9 shows how the deflection depends on the
applied stretch for small, moderate, and large values of k,
For a small value of k, < 1, we can compute the deflection

for small strains,
NETCPRYS

dy ik

- , 19
L 12/—¢€, 36(—e,)3/? (19)
and in the k, > 1 regime we obtain
dg 1 B JmOL—1) 0)
L2 4P 2k

While the value of the deflection itself is larger for a higher
motor activity A, we expect the slope of the deflection under
stretch to decrease with the motor activity, because such slope

— T =T,/2
050_ — T=Ta
1
=
N 0.25
0.00
0.0 0.5 1.0
X1/L

FIG. 8. Shape of the free edge of monolayers (I'; in Fig. 2) for
different applied tensions. The blue line corresponds to the initial
state where A, =0 and T = T,. The black line corresponds to a
smaller tension 7 = % The cyan line corresponds to a larger tension
T = % The thick lines represent the mean behavior while the
light lines are directly extracted from experiments (N = 6). The
dashed black line corresponds to a straight bridge between the two
cantilevers. Misalignment of the monolayers boundaries appears as a
result of the uneven spreading of the monolayers on each of the two
plates.
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0.4

FIG. 9. Deflection of the layer margin as a function of the stretch.
The dashed lines are related to the asymptotic formulas (19) (when
k, < 1,red) and (20) (when k, >> 1, black). We show in the inset the
value of the deflection normalized by the initial length L, instead of
the actual length. Parameter €, = —0.4

scales as A~/2 for A <« 1 [see (19)] and A=%? for A > 1
[see (20)].

We also show in the inset of Fig. 9 the value of the
deflection normalized by the initial length instead of the actual
length. Note that, unlike deq/L, deq/Lo does not have to be
smaller than 1/2. In the large spontaneous curvature regime,
this ratio starts to increase for small strains. This is because
&eq Temains close to 1 since the energy needed to uncurl the
margin is very large while the length increases. Ultimately, as
the stretch becomes large, it can again balance the bending
energy and uncurls the margin, leading to a decrease of
deq/Lo. This behavior is not present in the k, < 1 regime
where d.q/Lo immediately starts to decrease by uncurling the
margin in response to even small stretches. Note that the large
tension limit is not necessarily well captured by our ansatz
since it does not account for stress concentration phenomena
involved in necking and/or mechanical damage of the cell
monolayer under loading.

IX. DISCUSSION

We began by studying the case of the buckling of an
elastic film suspended between two cantilevers and subjected
to in-plane strain to illustrate the fact that there is a transition
from a regime dominated by the stretching energy when
the film is put under tension to a regime dominated by the
bending energy when the film is compressed beyond a critical
threshold. While the two energies do compete to set the value
of this buckling threshold, only one of the two is important
in each regime to determine at least qualitatively the object
shape. Another signature in this passive case is that buckling
does not happen continuously as the compression is gradually
increased but suddenly through a bifurcation at the critical
loading threshold.

Next, to model the activity of the cellular monolayer,
following the framework of NEPs, we have augmented the
passive film model by introducing a spontaneous in-plane
contractility and out-of-plane curvature that originate from the
presence of molecular motors unevenly distributed along the

film thickness. As a result, the spontaneous curvature scales
with the inverse of the film thickness leading, even in the
absence of an external loading, to a competition between the
stretching and bending energies to set the shape of the free
edge of the film.

More precisely, by assuming that the shape of the free
margin is an arc of a circle, the elastic energy depends on only
a single free parameter that quantifies the central deflection of
the film. We then show that the minimum of the energy corre-
sponding to the mechanical equilibrium of the film exhibits a
deflection that balances stretching and bending. We obtain the
expression of this deflection as a function of the active param-
eters quantifying the contractility and spontaneous curvature
and conclude, in agreement with experiments, that increasing
the molecular motor activity leads to a larger deflection.

Interestingly, increasing the external stretch applied to the
monolayer continuously modifies the balancing point between
stretching and bending in a non-trivial manner. If the spon-
taneous curvature is not too high, the prevailing effect is
to uncurl the tissue margin, leading to a decrease of the
deflection as observed in experiments. However, in the limit
of a high spontaneous curvature, we predict that the deflection
will first increase as for a passive material because uncurling
the layer requires a lot of energy until the stretching is enough
to uncurl the margin and the deflection decreases again.

Overall, our results suggest that, unlike in the case of pas-
sive slender elastic objects where the transition from bending
to stretching happens through a sharp transition when the
loading is changed, the presence of a spontaneous curvature
scaling with the inverse of the film thickness leads to a com-
petition between stretching and bending that is continuously
affected by an external loading. Such competition may be cru-
cial to understand some three-dimensional mechanical events
that happen during morphogenesis such as the formation
of folds and invaginations, for instance, during gastrulation,
or the fracture of an epithelium which happens during the
Drosophila leg disk eversion [29].

One interesting follow-up of this paper would be to solve
the full mechanical problem with the new assumption of a
small spontaneous curvature scaling like the inverse of the
film thickness formulated above instead of using an ansatz for
the deformation. By doing so, one would be able to find the
real equilibrium shape of the tissue margin (i.e., not approxi-
mating it by an arc of a circle) which will be characteristic of
the competition between stretching and bending. Other non-
linear effects could also be investigated in this way such as
necking under tension or wrinkling [42]. A more fundamental
perspective that is suggested by our results is to rigorously
develop a theory for elastic plates with a spontaneous curva-
ture that scales with the inverse of the thickness instead of
postulating the NEP type energy (9) used in this paper. This
may generalize the framework developed in [43] that assumes
a finite spontaneous curvature.

Another important generalization of this paper would be
to account for cell-cell rearrangements that are known to
happen over a long timescale during many developmental
processes [44], such as convergence and extension [45]. This
would require one to specify in a self-consistent way the time
evolution of the target metric controlled by E, and K, as is
done, for instance, in the framework of morpho-elasticity [46].
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However, in the experiments presented here, cell-cell rear-
rangements have been shown to be negligible over hour long
timescales [47].
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APPENDIX: EXPRESSION OF THE ELASTIC ENERGY WHEN A, # 0

U —-U oL

115282(&2 —

= 1)[s;,/1 — E2{k2[(4E* — 3487 4+ 30)5] + (—8E* + 9267 — 84)5] + 46*[—26&7 + 22]

+587[288(6> — 1)e, — 8&* + 2485% — 246] — 576E%€, + 576¢, + (46* — 64E% + 45)8] + 4E* — 23267 + 225}

— sin”'(&)(2k2[3(4E* — 987 + 5)8] + (—32&* + T4E> — 42)57 + 2061 — 3167 + 1] + 3{ — 257[48(6 — 1)’e,
+326% — 7467 + 411 4 96(8* — 3E% + 2)e, + (24E* — 3487 + 15)5] + 408" — 114£% + 75})

+12(87 — (87 + 1) ( — 126, + 87 — 5)M(®)].
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