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ABSTRACT 

Language production provides important markers of neurological health. One feature of impairments of 

language and cognition, such as those that occur in stroke aphasia or Alzheimer’s disease, is an overuse of 

high frequency, “familiar” expressions. We used computerized analysis to profile narrative speech samples 

from speakers with variants of frontotemporal dementia (FTD), including subtypes of primary progressive 

aphasia (PPA). Analysis was performed on language samples from 29 speakers with semantic variant PPA 

(svPPA), 25 speakers with logopenic variant PPA (lvPPA), 34 speakers with non-fluent variant PPA (nfvPPA), 

14 speakers with behavioural variant FTD (bvFTD) and 20 older normal controls (NCs). We used frequency 

and collocation strength measures to determine use of familiar words and word combinations. We also 

computed word counts, content word ratio and a combination ratio, a measure of the degree to which the 

individual produces connected language. All dementia subtypes differed significantly from NCs. The most 

discriminating variables were word count, combination ratio, and content word ratio, each of which 

distinguished at least one dementia group from NCs. All participants with PPA, but not participants with 

bvFTD, produced significantly more frequent forms at the level of content words, word combinations, or 

both. Each dementia group differed from the others on at least one variable, and language production 

variables correlated with established behavioral measures of disease progression. A machine learning 

classifier, using narrative speech variables, achieved 90% accuracy when classifying samples as NC or 

dementia, and 59.4% accuracy when matching samples to their diagnostic group. Automated 

quantification of spontaneous speech in both language-led and non-language led dementias, is feasible. It 

allows extraction of syndromic profiles that complement those derived from standardized tests, 

warranting further evaluation as candidate biomarkers. Inclusion of frequency-based language variables 

benefits profiling and classification. 
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1. Background 

In clinical practice, diagnosis and tracking of language in dementia, such as in primary progressive aphasias 

(PPA), commonly relies on a range of formal neuropsychological tests, such as picture naming or sentence-

picture matching, as well as descriptions of spontaneous language output, e.g. as “non-fluent” or “jargon” 

(Gorno-Tempini et al., 2011; Marshall et al., 2018). However, there is considerable  interest in 

quantification of broader aspects of spontaneous speech, which in turn may support early identification 

of decline in language function and allow sensitive tracking of behavior change (Ash et al., 2013; Boschi et 

al., 2017; Fraser et al., 2014; Fraser, Meltzer, & Rudzicz, 2015; Nevler et al., 2017; Wilson et al., 2010; 

Zimmerer, Wibrow, & Varley, 2016). Investigations of spontaneous production also provide more direct 

insight into the functional difficulties experienced by patients and their communication partners, and may 

be less subject to test anxiety in comparison to formal tests (Keady & Gillard, 2002). 

Traditionally in studies of language in cognitive disorders, the focus has been on structural properties of 

language output, such as the complexity of syntactic structures, the distribution of different word classes, 

and the number of errors. These measures are rooted in formal grammar traditions, such as generative 

linguistics (e.g. Chomsky, 1981), that focus on word types or classes of grammatical operations. Processing 

difficulties (and likelihood of impairment in a clinical condition) are seen as a result of disruption of a 

formal grammatical operation, such as past tense inflection or transformation from canonical word order 

(see also Avrutin, 2000; Grodzinsky, 2000; Mauner, Fromkin, & Cornell, 1993). However, recent studies 

reveal that patterns of impairment do not necessarily match to lexical or grammatical category boundaries, 

and that usage-frequency, i.e., how often an expression is encountered in everyday communication, is an 

important predictor of its likely resilience to neurological damage (for discussions see Gahl & Menn, 2016; 

Zimmerer, Dąbrowska, & Varley, under review). 

For example, interpretation of passive constructions, often described as impaired in people with non-

fluent, Broca’s type aphasia, is less disrupted if the utterance contains a verb that is biased towards passive 
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use, e.g. clean such as in The room was cleaned by the maid (Gahl et al., 2003; Menn, Gahl, Holland, 

Ramsberger, & Jurafsky, 2003). Similarly, plural morphology is more available, and even overproduced, 

when the noun is biased towards its plural form, e.g. slippers (Hatchard & Lieven, 2019). Very familiar 

expressions (e.g., I don’t know), frequent function word clusters (e.g., I can’t), or frequent compounds 

(e.g., red cross) may become entrenched as formulaic expressions and preserved even in the case of severe 

aphasia (Code, 1982; Mondini, Jarema, Luzzatti, Burani, & Semenza, 2002; Van Lancker Sidtis & Yang, 2016; 

Zimmerer, Newman, Thomson, Coleman, & Varley, 2018), or Alzheimer’s disease (Bridges & Van Lancker 

Sidtis, 2013; Wray, 2014; Zimmerer et al., 2016). The presence of these phenomena can be traced back to 

Broca’s famous case “Tan”, whose production was extremely limited but who retained the expletive Sacré 

nom de Dieu (Code, 2013). Far from being “automatic” or non-propositional speech in a pathological sense, 

formulas are often used appropriately (Bruns et al., 2019; Van Lancker Sidtis, 2012). Because they are 

represented as a sequence of strongly associated words, or as a single “word-like” unit, they pose fewer 

demands on word retrieval and combinatorial systems (Conklin & Schmitt, 2012; Siyanova-Chanturia, 

Conklin, Caffarra, Kaan, & van Heuven, 2017). 

For this reason, we expect that most disruptions of lexical or grammatical production will result in 

individuals compensating by over-relying on frequent language forms. Fraser et al. (2014) showed that 

speakers with svPPA and nfvPPA produced more frequent words in spontaneous speech. In the current 

study, we explored usage frequency of words but also the collocation strength of word combinations 

(which is based on frequency). We also examined performance in a broader range of FTD sub-groups. We 

analysed samples of spontaneous speech from three PPA variant syndromes: semantic variant (svPPA), 

logopenic variant (lvPPA) and non-fluent variant (nfvPPA). We compared language measures with those 

derived from participants with behavioral variant frontotemporal dementia (bvFTD) as a disease control 

group without a primary language disorder, and with older normal control individuals (NC). We used the 

Frequency in Language Analysis Tool (FLAT), an automated script for quantification of language features. 
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FLAT extracts each word and word combination from a sample and looks up their frequencies in the spoken 

subcorpus of the British National Corpus (BNC; 2007), a 10-million-word collection of normative samples 

recorded across a range of communication contexts, geographical regions and demographic groups. It also 

uses these values to calculate collocation strength, a variable that indicates the degree to which words 

within a combination are associated with one another. Stronger collocations are more likely to be 

processed as formulas. FLAT also characterizes grammatical profile via content/function word ratios and 

combination ratio - a measure of how connected the language output is. In previous work we employed 

FLAT to characterize language production in stroke aphasia (Bruns et al., 2019; Zimmerer, Newman, 

Thomson, Coleman, & Varley, 2018) and Alzheimer’s disease (Zimmerer et al., 2016). These studies found 

increased word frequency and collocation strength in both groups. In Alzheimer’s disease, the correlation 

between collocation strength of combinations and estimated time post-disease onset was significant.  

Methods 

1.1 Hypotheses 

We hypothesized that, in pairwise group comparisons, the spontaneous speech of each group would differ 

from all others on at least one variable. While we had expectations about specific variables and directions, 

such as that svPPA would produce more common content words than NCs, and that speakers with nfvPPA 

would produce less connected language, the novelty of the research warrants a more exploratory 

approach, and we therefore chose bi-directional inferential tests. We also expected that within each 

group, properties of language production would be related to validated measures of dementia 

progression.  

1.2 Participants and samples 

This study employs secondary analysis of data from University College London’s (UCL) Dementia Research 

Centre. Data collection was approved by the University College London institutional ethics committee 
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(reference no. Q6/Q051/52) and all participants gave informed consent in accordance with the Declaration 

of Helsinki. Participants were recruited via a tertiary cognitive disorders clinic as part of a larger 

neuropsychological and neuroimaging study of frontotemporal dementia and related disorders. Speech 

samples were recorded on first assessment. Time points varied relative to initial diagnosis. 

The recorded interviews were conducted by psychology research assistants working in the Dementia 

Research Centre, UCL. All examiners were trained to ensure consistency in conduct of the assessments. 

Interviews were undertaken in a quiet room, and speech samples were recorded using handheld recording 

devices for subsequent offline transcription. 

Participants were asked to talk about their last holiday and, using prompts if necessary, encouraged to talk 

for up to three minutes. The procedure was designed to be open-ended, in order to capture the wide 

range of fluency and general language difficulties experienced by patients. Examples of prompts included, 

“Where did you go?”, “How long were you there for?”, “How did you get there?”, and “What did you do 

there?”. 

In comparison with picture or video description tasks, holiday narratives are less constrained by topic and 

lexical items. This lack of constraint can introduce additional heterogeneity into samples, since the 

participant’s experience or topic choice may influence type of language elicited (e.g., word selection), and 

participants have more freedom to employ compensatory strategies. However, compared to description 

tasks open questions elicit more naturalistic linguistic behaviour, increasing ecological validity of the 

measures. 

We selected recordings of spontaneous speech based on the following criteria: (1) diagnosis of one of the 

three canonical PPA types or bvFTD, or being part of the healthy older control sample; (2) adequate audio 

quality for transcription since, in a few cases, there was too much background noise or the microphone 

had been placed too far from the participant. Speech samples were orthographically transcribed from the 
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audio recording. The examiner prompts were removed from transcriptions, which was carried out by J.E. 

and S.D. under supervision of V.Z. In cases of portions of unclear audio or speech, an experienced clinician 

(R.A.V.) was consulted and consensus was reached. In cases of phonological errors, the target word was 

transcribed if it was recognizable on the basis of context and phonological form. If not, it was excluded. 

Place and person names were also excluded.  

The final sample set consisted of 20 NCs, 29 participants with svPPA, 25 participants with lvPPA, 34 

participants with nfvPPA and 14 people with bvFTD (see Table 1 for summary). All patients met consensus 

criteria for their diagnostic group (Gorno-Tempini et al., 2011; Rascovsky et al., 2011). Age did not differ 

significantly across groups, F(1,120) = .01, p = .937, though pairwise comparisons revealed that individuals 

with nfvPPA were significantly older than NCs (p = .009). 

A range of standardized tests was used to profile cognitive status, although protocols were not the same 

in all cases. All groups except NCs were assessed using the Mini Mental State Examination (MMSE; Folstein, 

Folstein, & McHugh, 1975). Relative to a large UK population sample (Huppert, Cabelli, Matthews, 2005), 

average MMSE scores for svPPA and lvPPA were below the 5th percentile, nfvPPA scores were at 

approximately the 25th percentile, and bvFTD scores at approximately the 5th percentile. 

Participants were also tested on the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 2011), 

the Recognition Memory Test (RMT; Warrington, 1984) for words and faces, which assesses episodic 

memory, maximum forward and reverse digit span (Wechsler, 2011), the Graded Difficulty Arithmetic 

(GDA; Jackson & Warrington, 1986) which tests calculation, the Graded Naming Test (GNT; McKenna & 

Warrington, 1983) which tests word retrieval, the British Picture Vocabulary Scale (BPVS; Dunn, Dunn, 

Whetton, & Burley, 1997) which tests word comprehension, and the Visual Object Space Perception 

(VOSP; Warrington & James, 1991). See Appendix A for test summaries and group comparisons. 
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Table 1. Demographic, clinical and general neuropsychological data for the participant groups. Mean 

(standard deviation) values are shown. Raw scores are presented. Bold numbers indicate significant 

differences from normal controls (p < .05).  

Key: bvFTD, behavioral variant frontotemporal dementia; BPVS, British Picture Vocabulary Scale; Controls, 

healthy control group; Digit span forward/reverse, maximum digit span recorded; F, Female; GDA, Graded 

Difficulty Arithmetic; GNT, Graded Naming Test; lvPPA; patient group with logopenic variant primary 

progressive aphasia; M, Male; MMSE, Mini-Mental State Examination; nfvPPA, patient group with non-

fluent variant primary progressive aphasia; RMT, Recognition Memory Test; svPPA, patient group with 

semantic variant primary progressive aphasia; VOSP, Visual Object Space Perception; WASI, Wechsler 

Abbreviated Scale of Intelligence. Maximum value in parentheses; n indicates number of scores available 

for the respective group and test. 

 
svPPA 

n = 29 

 

 

lvPPA 

n = 25 

nfvPPA 

n = 34 

bvFTD 

n = 14 

Controls 

n = 20 

Demographic and clinical 
  

   

     No. (M:F) 17:12 12:13 13:20 12:2 10:10 

     Age (years) 64.00 (7.84) 63.32 (13.61) 69.82 (8.41) 64.36 (8.45) 62.78 (7.27) 

     MMSE (/30) 20.39 (8.19) 

n = 25 

19.47 (7.85) 

 n = 19 

26.96 (10.15) 

 n = 23 

23.83 (7.33) 

n = 12 

- 

General intellect (WASI) n = 25 n = 20 n = 22 n = 14 n = 20 

     WASI Vocabulary (/80) 24.07 (22.38) 19.00 (16.78) 32.59 (20.12) 39.64 (25.18) 70.40 (4.71) 

     WASI Block design (/71) 32.04 (18.85) 14.95 (16.94) 23.05 (18.53) 20.93 (17.91) 45.65 (10.78) 

     WASI Similarities (/48) 14.36 (11.31) 14.05 (13.60) 20.05 (13.92) 19.50 (12.25) 39.95 (4.73) 

     WASI Matrix Reasoning (/35) 

((/35(/35) 

18.32 (8.86) 11.35 (9.20) 15.95 (9.17) 13.57 (8.34) 25.25 (1.8) 

Episodic memory      

     RMT Words (/50) 34.19 (7.59) 

 n = 21 

32.31 (9.60) 

 n = 16 

43.47 (6.01) 

 n = 19 

35.50 (7.74) 

 n = 12 

48.40 (1.82) 

 n = 20 

     RMT Faces (/50) 34.86 (8.14) 

n = 22 

34.32 (7.20) 

 n = 19 

38.35 (6.28) 

 n = 20 

33.92 (6.20) 

 n = 13 

43.10 (5.06) 

n = 20 

Working memory      
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     Digit span forward (max) 6.40 (1.63) 

n = 25 

3.45 (1.28) 

 n = 20 

5.05 (1.57) 

 n = 20 

6.15 (1.41) 

 n = 13 

6.85 (1.27) 

n = 20 

Executive function      

     Digit span reverse (max) 4.72 (1.99) 

 n = 25 

2.70 (0.98) 

 n =20 

3.56 (1.76) 

 n = 18 

3.77 (2.01) 

 n = 13 

5.20 (1.06) 

 n = 20 

Posterior cortical skills      

     GDA Calculation (/24)j 9.54 (7.94) 

 n = 24 

2.35 (2.74) 

 n = 17 

5.17 (5.45) 

 n = 18 

10.25 (7.31) 

 n = 12 

16.15 (3.76) 

 n = 20 

     VOSP Object Decision (/20)k 16.40 (3.34) 

 n = 25 

17.0 (3.34) 

 n = 20 

16.19 (3.89) 

 n = 21 

15.29 (2.95) 

 n = 14 

18.70 (1.42) 

 n = 20 

Word retrieval      

     GNT (/30)l 1.21 (2.87) 

 n = 24 

4.75 (5.97) 

 n = 20 

13.90 (9.10) 

 n = 21 

10.93 (7.49) 

 n = 14 

25.10 (3.41) 

 n = 20 

Word comprehension      

     BPVS (/150)m 69.10 (55.47) 

 n = 24 

125.37 (26.56) 

 n = 19 

128.90 (35.70) 

 n = 21 

128.43 (34.16) 

 n = 14 

147.50 (2.01) 

 n = 20 



10 
 

1.1 Sample analysis procedure 

Samples were formatted for analysis with the Language Analysis Tool (FLAT) (Bruns et al., 2019; Zimmerer 

et al., 2018; Zimmerer et al., 2016). See the online supplement for annotation rules and examples. The 

FLAT is a computer program that works with any text, e.g. transcribed speech. It extracts from the sample 

every word, bigram (two-word combination) and trigram (three-word combination), moving through the 

text one word at a time. For example, the expression The man eats bread consists of four words, three 

bigrams (the man; man eats; eats bread) and two trigrams (the man eats; man eats bread). It classifies 

each word as a content word (e.g., house, climb, fast) or function word (e.g., it, the, when), and calculates 

the proportion of content words. It also calculates combination ratio, a measure of fluency, by dividing the 

number of trigrams in the corresponding sample by the number of words. For example, a sample consisting 

of the utterance My parents came to my house and we all had dinner together contains 12 words and 10 

trigrams (my parents came, parents came to, came to my, etc.). The combination ratio of would be .83 (10 

divided by 12). In contrast, My parents. They came to my house. We all had dinner together contains 12 

words and 6 trigrams (They came to, to my house, we all had, etc.). That sample would have a combination 

ratio of .5. 

Importantly, the FLAT looks up usage frequency of each word, bigram or trigram (reported in instances 

per million words) in the spoken subsection of the British National Corpus (BNC; 2007). At the single word 

level, we were interested in the frequency of each content word in the sample and averaged these values 

for each participant. The most novel contribution of FLAT however is the inclusion of collocation strength 

of word combinations in the samples. Collocation strength measures the frequency with which words co-

occur relative to their “expected frequency”, i.e., if word order was random. The value can be high even if 

the frequency of individual words is low, e.g., the combination plate tectonics has high collocation strength 

despite containing low frequency words. Therefore, while individual word frequency reflects the difficulty 

of retrieving word forms (more frequent is considered easier), collocation strength reflects the difficulty 
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posed in combining individual words (higher collocation strength is considered easier). We focused on 

bigrams since in previous studies, these yielded bigger effect sizes than trigrams when comparing 

participants with neurological damage to controls (Bruns et al., 2019; Zimmerer et al., 2016). 

We used t-scores as our measure of collocation strength.  

The t-scores formula for a bigram collocation of words a and b is 

𝑡-𝑠𝑐𝑜𝑟𝑒𝑎𝑏 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏

√𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏

 

where 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏 stands for the observed frequency of the bigram in the spoken BNC. In the 10 million 

word corpus, the expected frequency for a bigram ab is 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎𝑏 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏

10,000,000
 

where 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑎 and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏 stand for the observed frequency of the individual words of the 

bigram in the spoken BNC. Compared to other collocation strength measures such as Mutual Information, 

t-scores are better suited for lower frequency combinations (Church & Hanks, 1990; Gries, 2010). 

Collocation strength averages excluded bigrams with a frequency of zero. Table 2 summarizes variables 

produced by FLAT.  
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Table 2. Properties of language production measured by the automated Frequency in Language Analysis 

Tool (FLAT). 

Variable name Description Type of marker 

Word count Measure of sample size. Quantity of language output; verbal 

responsiveness. 

Combination ratio 

(
𝑡𝑟𝑖𝑔𝑟𝑎𝑚 𝑐𝑜𝑢𝑛𝑡

𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡
) 

Measure of connected 

language, i.e., the degree to 

which the speaker produces 

longer combinations as 

opposed to one- and two-

word fragments. 

Verbal responsiveness; sentence 

complexity. 

Content word ratio 

(
𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡

𝑤𝑜𝑟𝑑 𝑐𝑜𝑢𝑛𝑡
) 

Proportion of content words 

(vs. function words) in a 

language sample. 

Relationship between lexical and 

grammatical capacity. Can indicate 

lexical impairment (too few content 

words) or grammatical impairment 

(too few function words). 

Content word frequency Average usage frequency of 

content words, measured in 

occurrences per million 

words in the spoken BNC.  

Lexical capacity. Over-representation 

of more frequent words can indicate 

lexical impairment. 

Collocation strength (bigram 

t-score) 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

√𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

The degree to which words 

in a combination appear 

more often together than 

Capacity to produce new or novel 

utterances, e.g., production of more 

highly collocated utterances indicates 
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would be expected by 

chance. 

stronger reliance on formulaic 

language. 

 

As a first step, we looked for differences between groups for each variable, treating each as a separate 

hypothesis. For word count, combination ratio and content word ratio, there is one data point for each 

participant, and we computed analyses of covariance with participant group as the independent variable, 

age as covariate and the language measure as dependent variable. For content word frequency and 

collocation strength, there were multiple data points for each participant. We exploited this through use 

of R (R Core Team, 2019) and lme4 (Bates, Mächler, Bolker, & Walker, 2015) to perform linear mixed effects 

analyses of the relationship between group and the respective variables. As fixed effects, we entered 

group and age (without interaction term) into the model. We entered participant ID (“Transcript”) as a 

random effect. Adding an additional random slope (Age|Group) resulted in overfitting (singular fits). Visual 

inspection of residual plots did not reveal any obvious deviations from homoscedasticity or normality. We 

obtained p-values via likelihood ratio tests of the full model (DV ~ Age + Group + (1|Transcript)) against 

the model without the effect of group (DV ~ Age + (1|Transcript)). We adjusted significance thresholds for 

between-group comparisons. 

We then explored correlations between FLAT variables and validated markers of disease within each group 

by examining Pearson’s r correlations between language measures and standardized test scores. Our 

primary question was to determine the properties of spontaneous language most strongly related with 

standardized verbal and non-verbal cognitive measures, as well as with MMSE scores. We had no specific 

hypotheses, beyond the expectation that deviations from the control group in the observed direction 

(lower word count, fewer combinations, higher frequency and collocation strength) would be associated 

with poorer performance. We built correlation heatmaps to visualize these relationships using the ggplot2 

package for R (R Development Core Team, 2008; Wickham et al., 2016). 
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While group comparisons reveal differences with regard to specific language features, the combination of 

features into the profiles associated with a type of dementia have the greatest potential in supporting 

clinical diagnosis. Patterns of variable distributions may be specific enough to a group that, even in the 

case where group effects on single variables are not significant, the variables can still contribute to 

classification. In the final step of the analysis, we used a machine learning classifier to determine the 

degree to which the combination of FLAT variables can distinguish between diagnosis groups (see 2.3). We 

chose a support vector machine (SVM), which has been established as a text classifier that can use multiple 

variables (Joachims, 1998; Meyer, Leisch, & Hornik, 2003). We used the SVM function of MATLAB’s 

Classification Learner app (“MATLAB and Statistics and Machine Learning Toolbox,” 2018).  

Original data and test materials will be shared in secure, anonymised form (to protect patient 

confidentiality) with researchers based at other academic institutions, following an email request to the 

corresponding author. This may include a material transfer agreement to cover data exchange between 

the relevant institutions. 

2. Results 

2.1 Group comparisons 

Table 3 displays group averages and main effects for between-group comparisons with age entered as 

covariate. All independent variables yielded significant main effects in between-group comparisons. The 

biggest effect size was for combination ratio, followed by content word frequency, word count, content 

word ratio and collocation strength. Figure 1 visualizes the language profiles of the dementia subtypes in 

relation to NCs. 

For pairwise comparisons, we used Bonferroni adjustments of significance threshold based on ten 

comparisons for each variable (each group with each other group). The adjusted threshold was p < .005. 

For mean differences, confidence intervals and p values, see Appendix B. Compared to NCs, speakers with 



15 
 

svPPA produced more frequent content words and stronger collocations. Speakers with lvPPA produced 

language that was less connected, contained fewer and more frequent content words, and stronger 

collocations. Speakers with nfvPPA produced fewer words, less connected language, more frequent 

content words and stronger collocations. Speakers with bvFTD produced fewer words, less connected 

output and more frequent content words. Each dementia subgroup differed from each other subgroup on 

at least one variable (Appendix B). 
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Table 3. Group averages (SD) and main effects with age as covariate.  ANCOVAs were used for word count, 

combination ratio and content word ratio. For content word frequency and collocation strength, we 

compared linear mixed effect models which included age as predictor with models which included age and 

group. A significant difference indicated that group was a significant predictor. We indicate statistical 

significance of pairwise differences between groups in each cell: * = sig. different from controls; S = sig. 

different from svPPA; L = sig. different from lvPPA; N = sig. different from nfvPPA; B = sig. different from 

bvFTD.  A single character denotes p < .05 (n.s. after adjustment for multiple comparisons); two characters 

denote p < .005 (sig. after adjustment); three characters denote p < .001. For complete inferential 

statistics, see Appendix B.  

Variable Normal 

controls 

Semantic 

variant PPA 

Logopenic 

variant PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Main effect 

(Age as 

covariate) 

Word count 260.7  

(169) 

248.7LNNNBBB  

(141.3)  

156.1*SN   

(98.0)  

87.2***SSSL  

(80.7)  

166.2***SSS  

(134.6)  

F(4,116) = 

9.813,  

p < .001, η2 

= .25 

Combination 

ratio 

.77  

(.05) 

.69*LLLNNNB  

(.07)  

.60***SSSNNN  

(.09)  

.43***SSSLLLBBB  

(.18)  

.60***SNNN  

(.09)  

F(4,116) = 

36.717, p < 

.001, η2 = 

.56 

Content word 

ratio 

.37 

(.04) 

.33*LL   

(.04)  

.28***SSNNB  

(.05)  

.35LL   

(.09)  

.33*L   

(.07)  

F(4,116) = 

5.878,  

p < .001, η2 

= .17 
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Content word 

frequency 

(per million) 

524 

(185) 

969***LLLNNN  

(337)  

1278***SSSB  

(461)  

966***NNNB  

(489)  

820***LN   

(382)  

β = 4608, SE 

= 903, χ2(1) 

=  18.949, 

p < .001 

Bigram 

collocation 

strength (t-

scores) 

24.51 

(4.07) 

29.60***LLNN  

(4.00)  

35.32***SSB  

(11.90)  

32.29***SLB  

(12.27)  

30.37*LN  

(10.92)  

β = 1.74, SE 

= .44, χ2(1) = 

13.95, 

p < .001 
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Figure 1. Radar plot visualization of language profiles of different dementia groups. Data were residualized over participant age in order to account 

for age differences, and then normalized using control means and standard deviations. The outer line in each plot represents the control mean; each 

line towards the center represents a distance of one standard deviation from the control mean.
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2.2 Relationship with standardized test scores 

We expected the deviations from normative language production observed in 2.1 (lower number of words, 

lower combination ratio, lower content word ratios, higher content word frequency, greater collocation 

strength) to be associated with worse performance in standardized tests of language and cognition. 

However, we had no specific hypotheses about how individual FLAT variables would correlate with 

individual test scores. This part of the analysis is therefore more exploratory. We started with a correlation 

heatmap (Figure 2), which suggests that in some participant groups, clusters of test scores correlated with 

FLAT variables. One meaningful categorization of tests is whether they are predominantly verbal (naming 

tests, verbal memory tests, verbal calculation) or non-verbal (object and space perception, face 

recognition, matrix- and block reasoning). We calculated composite variables for verbal and non-verbal 

tests (see Figure 2 for categorization) by first transforming raw scores into z-scores based on control means 

and standard deviations, and then averaging all scores grouped under one category. We treated MMSE 

scores separately as a measure of general cognition. These were not available for controls because the 

MMSE was not part of their protocol. For each correlation, we included participants for which all test 

scores that made up the composite variable were available. We report correlations with p < .05. 

Results are consistent with the visualization in Figure 2. In participants with svPPA, poorer non-verbal test 

performance was associated with higher content word frequency, r(20) = -.720, p < .001, and higher bigram 

t-scores, r(20) = -.501, p = .024. Lower verbal test performance was associated with higher content word 

frequency, r(19) = -.667, p = .002, as were lower MMSE scores, r(23) = -.593, p = .003. In participants with 

lvPPA, lower non-verbal test scores were associated with higher content word frequency, r(19) = -.517, p 

= .013. Lower MMSE scores were also associated with higher content word frequency, r(18) = -.488, p = 

.04. In the nfPPA group, none of the correlations between FLAT variables and composite variables or MMSE 

scores were significant below the threshold of p < .05. In people with bvFTD, poorer MMSE performance 

was associated with lower proportions of content words, r(12) = .725, p = .008, lower combination ratio, 
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r(12) = .673, p = .016, and lower bigram t-scores, r(12) = -.587, p = .045. In controls, bigram t-scores 

correlated with non-verbal scores, r(20) = .461, p = .041. 

Note that analysis using individual tests, rather than composite scores, showed some notable 

relationships, including in the nfPPA group. We report correlations with individual tests with p < .05 in 

Appendix C. 
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Figure 2. Correlation heatmaps displaying the relationship between spontaneous language output and 

standardized measures of language and cognition. Colors indicate effect size (Pearson’s r). Tests were 

categorized according to whether administration and stimuli are predominantly verbal or non-verbal. The 

MMSE was categorized as a test of general cognition, and was not administered to controls. 
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2.3 Machine learning classification 

In a final, post-hoc analysis we applied machine learning methods to determine how FLAT data can be 

used to categorize participants into the five participant groups based solely on their narrative samples. We 

used a SVM, a complementary linear classifier approach to compare the five groups based on the results 

of the FLAT analysis. The SVM classifier was trained on a subset of data (80%, randomly selected) to 

categorize each individual as belonging to one of the five groups based on a linear combination of the five 

variables (word count, combination ratio, content word ratio, content word frequency, collocation 

strength). The prediction accuracy of the obtained classifier was then evaluated on the remaining 20% of 

the data set (test set), in terms of the percentage of correct prediction, and the classification matrix. This 

procedure was then repeated five times so that each participant was in the test set once. The accuracy of 

the five tests was averaged to determine overall accuracy of the model. 

Against a chance level of 20%, the SVM classifier achieved a prediction accuracy of 59.8%. The classification 

matrix for the model prediction is shown in Figure 3. The model was most successful in identifying NCs 

(70% correct classification), speakers with svPPA (72.4% correct) and speakers with nfvPPA (67.6% 

correct). The model’s performance was less accurate for lvPPA (52% correct), and strikingly inaccurate for 

bvFTD (14.3% correct), with 78.5% of bvFTD samples being classified as one of the PPA types. Of all NCs, 

30% (six participants) were classified as svPPA. Six participants with dementia (10.3% of speakers with 

svPPA, 5.9% of speakers with nfvPPA, 7.1% of speakers with bvFTD) were classified as NCs. The 

classification matrix is therefore in line with the group comparisons which showed that speakers with 

svPPA were the group most similar to NCs. It also illustrates the large overlap between language features 

in bvFTD, as measured by FLAT, and the features of PPAs. If regarded as a detector of dementia in general 

(two categories: NCs vs. pooled dementia groups), accuracy increases to 90%, with a true positive rate of 

94% and a false positive rate of 30%. 
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Figure 3. Classification matrix based on the SVM classifier. Columns display the clinical diagnosis. Rows 

show the predicted class on the basis of the five FLAT variables. Percentages represent the proportion of 

members of the true class with a given diagnosis. Beneath is a raw count of the same members. 

 

3. Discussion 

We ran an automated analysis of spontaneous language production in healthy speakers, canonical PPAs 

and bvFTD. Group comparisons showed significant differences between all dementia groups and healthy 

speakers as well as between each dementia subtype. In all dementia groups, there were correlations 

between language production variables and validated behavioral measures of disease progression. A 
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machine learning classifier, using the output from the analysis, categorized samples with a success rate 

three times better than chance.  

Current diagnostic guidelines mostly limit their description of spontaneous production to reduction of 

output, grammatical simplification or errors (Gorno-Tempini et al., 2011; Marshall et al., 2018; Wilson et 

al., 2010). There is strong evidence for another type of simplification, namely increased use of common 

words and/or phrases. Previous research showed that speakers with svPPA and, to a lesser degree, 

speakers with nfvPPA, tend to produce more common words (Fraser et al., 2014). Our data support these 

conclusions and show that this pattern also exists in lvPPA. We also saw differences in the ratio of content 

words. Speakers with svPPA had a lower content word ratio, consistent with reports of higher pronoun 

use as a sign of semantic difficulties (e.g. “it” instead of a concrete noun) (Fraser et al., 2014). Speakers 

with lvPPA also displayed a lower ratio, likely a result of lexical impairment attributed to this population. 

Moreover, we show that speakers with nfPPA and lvPPA used more familiar word combinations, as 

indicated by collocation strength. According to usage-based language theories such as Construction 

Grammar (Goldberg, 2003), familiar combinations are not produced by retrieving each individual word 

and combining words using abstract grammatical rules, but through access to holistic representations of 

the entire phrase or utterance. In many cases, word combinations may be represented as a single “word”. 

Holistic processing reduces demands on language networks both at the lexical level, as fewer units need 

to be retrieved, and at the grammatical level, as fewer units need to be combined. Both lexical and 

grammatical impairment should therefore result in an overuse of highly collocated combinations. Our data 

suggest that this is the case for nfvPPA, primarily a grammatical impairment, and lvPPA, a primarily lexical 

impairment. Previous studies using FLAT have shown that this is also the case for Alzheimer’s disease and 

both Broca’s type and Wernicke’s type aphasia (Zimmerer et al., 2018; Zimmerer et al., 2016). We regard 

them as one aspect of “formulaic language” (Wray, 2012), i.e. the set of combinations, phrases and clauses 

which consist of words which are strongly associated with each other either because of frequent co-
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occurrence (measured by collocation strength in this study) or because of idiomatic meaning or use 

(Bridges & Van Lancker Sidtis, 2013). Overuse of formulaic language forms can have a substantial impact 

on communication, and therefore quality of life, as the speaker will find it difficult to adapt to unfamiliar 

situations and speak about new thoughts and needs. There is also the risk of locking conversations into a 

small number of repeating discourse patterns (Wray, 2011). This is one of the ways in which language 

measures not only indicate cognitive change, but provide insight into difficulties with social participation. 

Formulaic language can also explain why differences in content/function word ratio in spontaneous speech 

were relatively small even between non-fluent speakers and NCs. Many strongly collocated combinations 

contain function word clusters, such as I don’t in the expression I don’t know. They comprise a substantial 

proportion of aphasic production (Zimmerer et al., 2018). While one striking feature of non-fluent aphasia 

is omission of function words, resulting in a “telegraphic” style, formula overuse can result in non-fluent 

speakers producing a similar ratio of content words to neurotypical speakers over the entire sample, as is 

the case in the current study. 

Our data also support earlier studies which found that bvFTD is associated with significant changes in 

linguistic behavior (Hardy et al., 2015). In our bvFTD samples, language change affected less the quality of 

words and word combinations, but rather their quantity, as speakers spoke less and produced shorter 

utterances. This reduction was roughly on a par with speakers with lvPPA, but while in the latter group this 

likely reflects impairment of linguistic representations, the linguistic profile in bvFTD may be explained by 

changes to mood and social behavior, as well as impairment of executive function. However, the 

differences between bvFTD and NC groups in content word ratio and usage frequency were significant 

before correction for multiple comparisons (Appendix B), and these findings are consistent with results 

from studies of word naming and comprehension in bvFTD that also revealed lexical disruption (Hardy et 

al., 2015). Similarly, other differences that were close to significance thresholds, such as lower 

combination ratio in speakers with svPPA, may prove important for modelling language in dementia. 
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Correlations with validated cognitive measures of dementia progression provide further evidence for the 

clinical relevance of new variables. Properties of spontaneous language samples were linked to 

performance on standardized language and cognitive tests, although the precise nature of these 

relationships differed from profile to profile. Generally, a decrease in fluency, and production of more 

frequent words and strongly collocated combinations were associated with poorer performance in 

standardized tests. Relationships were strongest in svPPA, lvPPA and bvFTD. Effect sizes were particularly 

large in the svPPA sample, supporting accounts that regard svPPA not merely as a language impairment, 

but broader general breakdown of cognitive capacity as multimodal conceptual systems become affected 

(Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 2000; Gorno-Tempini et al., 2011). The data also 

underline that changes in linguistic behaviour are intrinsic to the broader cognitive profile of bvFTD. 

Our application of a machine learning classifier was a first exploration in using FLAT variables for 

categorization. While the overall accuracy is encouraging, more work is needed to understand its errors 

and to build better models. Some errors may reflect the nature of the dementia subtypes. Of the PPAs, 

the model was most accurate for svPPA and nfvPPA, where language changes are more observable in 

spontaneous language production, and less accurate for lvPPA, where sentence repetition difficulties are 

an important diagnostic feature (Marshall et al., 2018). The classifier miscategorized 44% of the lvPPA 

sample as another type of PPA, which is consistent with the overlaps observed in group comparisons and 

clinicians’ difficulties in assessing the clinical presentation of lvPPA (Marshall et al., 2018). 

The model had the most difficulties with bvFTD, suggesting that within our study, this non-PPA subtype 

has the least defined language production profile. However, the bvFTD group also had the smallest sample 

size, and the relatively small number of data points that were available to training the algorithm may have 

affected accuracy. Finally, a large number of NCs were classified under svPPA. Future studies will benefit 

from expanding sample size and including more biographical variables in order to identify further factors 
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that affect language in older adults. Only very large databases will be able to explore the effects of 

education, socio-economic status and gender in conjunction with age. 

Future work can also experiment with different language elicitation tasks, more language variables and 

more dementia groups. To date, there is no full integrative language model for dementias which includes 

properties of the acoustic signal, such as prosody and speech pauses (Angelopoulou et al., 2018; López-

de-Ipiña et al., 2015; Nevler et al., 2017), as well as phonological, lexical and grammatical properties. 

Furthermore, frequency-based variables have not been compared with generativist concepts, such as 

canonicity and locality, in order to reach an optimal model (as well as to test the validity of both 

frameworks). 

Because of hitherto under-researched biographical factors it may be that, ultimately, we should not look 

at absolute values at a specific timepoint, but the trajectory of change within an individual. The most 

effective use of language as a marker of cognitive function may involve longitudinal data in conjunction 

with a multifactorial model of language change in ageing. Measures of information gain will be able to 

help select which combination of variables and standardized tests is of most use. 

For clinical purposes, a practical model will contain variables that can be automatically extracted in order 

to minimize workload and costs. Computerized analysis can be fast and less susceptible to bias, as no raters 

are involved. Recordings of a few hundred words, as used in this study, can be made quickly and at bedside. 

As transcription technology advances, these methods will become increasingly practical and widely 

available for clinical applications. This in turn would open up the potential use of linguistic behavior as a 

biomarker to detect more subtle and ecologically relevant dysfunction of the cognitive systems, and to 

track this over time. 
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List of abbreviations 

BNC: British National Corpus 

BPVS: British Picture Vocabulary Scale 

bvFTD: behavioral variant frontotemporal dementia 

FLAT: Frequency in Language Analysis Tool 

GDA: Graded Difficulty Arithmetic 

GNT: Graded Naming Test 

lvPPA: logopenic variant primary progressive aphasia 

MMSE: Mini Mental State Examination 

NCs: normal controls 

nfvPPA: non-fluent variant primary progressive aphasia 

PPA: primary progressive aphasia 

RMT: Recognition Memory Test 

SVM: support vector machine 

svPPA: semantic variant primary progressive aphasia 

VOSP: Visual Object Space Perception 

WASI: Wechsler Abbreviated Scale of Intelligence 
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Figures 

Figure 1. Radar plot visualization of language profiles of different dementia groups. 

Data were residualized over participant age in order to account for age differences, and then 

normalized using control means and standard deviations. The outer line in each plot represents the 

control mean; each line towards the center represents a distance of one standard deviation from the 

control mean. 

 

Figure 2. Correlation heatmaps displaying the relationship between spontaneous language output 

and standardized measures of language and cognition. 

Colors indicate effect size (Pearson’s r). Tests were classified according to whether administration 

and stimuli are predominantly verbal or non-verbal. The MMSE was categorized as a test of general 

cognition, and was not administered to controls. 

 

Figure 3. Classification matrix based on the SVM classifier. 

Columns display the clinical diagnosis. Rows show the predicted class on the basis of the five FLAT 

variables. Percentages represent the proportion of members of the true class with a given diagnosis. 

Beneath is a raw count of the same members. 
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Appendices 

Appendix A. Report of significant group differences. 

There was a significant difference in MMSE scores between patient groups, F(1,75) = 4.77, p = .03; 

people with svPPA had significantly lower scores than the nfvPPA group, (p = .012) and the lvPPA group 

lower scores than the nfvPPA group (p = .007). 

There were differences between groups in all subtests of the Wechsler Abbreviated Scale of 

Intelligence (WASI). WASI vocabulary scores differed significantly between groups, F(1,99) = 52.80, p 

< .001, as all patient groups had significantly lower scores than controls (p < .01). WASI block scores 

were significantly different between groups, F(1,99) = 5.61, p = .019; all patient groups had 

significantly lower scores than NCs (p < .001). WASI Matrix scores differed significantly between 

groups, F(1,99) = 6.38, p = .01; all patient groups had significantly lower scores than NCs (p < .001). 

Scores for WASI Similarities differed significantly across groups, F(1,99) = 44.85, p < .001; all patient 

groups were significantly worse than NCs (p < .001). 

All patient groups performed worse on the Recognition Memory Test (RMT),(Warrington, 1984) which 

assesses episodic memory. There were significant differences in RMT Words scores between groups, 

F(1,86) = 35.67, p < .001; all patient groups were significantly worse than NCs (p < .05). RMT Faces 

scores also differed significantly between groups, F(1,92) = 12.48, p < .001; all patient groups 

performed significantly worse than NCs (p < .05). Maximum forward digit span (Wechsler, 2011), 

which is an indicator of verbal working memory, also differed significantly between groups, F(1,96) = 

4.99, p = .028; lvPPA and nfvPPA groups performed significantly worse than controls (p < .001). There 

was no main effect for backwards digit span as an indicator of executive function (Wechsler, 2011), 

F(1,94) = 1.87, p = .175, however, pairwise comparisons showed significant differences between NCs 

and lvPPA, nfvPPA and bvFTD groups (p < .05). 
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Groups differed in their capacity for calculation, which was assessed using the Graded Difficulty 

Arithmetic (GDA),(Jackson & Warrington, 1986) F(1,89) = 15.37, p < .001; all patient groups performed 

worse than NCs (p < .05). Object and space perception was measured using the Visual Object Space 

Perception (VOSP) (Warrington & James, 1991). There was no main group effect for VOSP scores, 

F(1,98) = 2.24, p = 0.137; however, pairwise comparisons showed that the lvPPA group performed 

worse than NCs (p < .05). 

There were significant group differences for both naming and word comprehension: Groups differed 

significantly the Graded Naming Test (GNT), (McKenna & Warrington, 1983) F(1,97) = 145.16, p < .001, 

as all groups performed more poorly than NCs (p < .001). Performance in the British Picture Vocabulary 

Scale (BPVS) (Dunn et al., 1997) also differed between groups, F(1,96) = 31.72, p < .001; svPPA and 

lvPPA groups had lower scores than NCs (p < .05). 
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Appendix B. Pairwise comparisons of properties of spontaneous language output, with age entered as 

covariate. Suggested Bonferroni adjustment of significance threshold due to ten comparisons for each 

variable/hypothesis: p < .005. MD = mean difference, calculated as: mean of group in the left column 

subtracted by the mean of the group in the top row. PPA = primary progressive aphasia; FTD = fronto-

temporal dementia. 

Appendix B.1 Word count. 

Word count Semantic variant 

PPA 

Logopenic variant 

PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Normal controls MD = 12 

95% CI [-60, 83] 

p = .749 

MD = 106 

95% CI [32, 180] 

p = .006 

MD = 177 

95% CI [105, 248] 

p < .001 

MD = 145 

95% CI [59, 231] 

p = .001 

Semantic variant 

PPA 

  MD = 94.124 

95% CI [27, 162] 

p = .007 

MD = 165 

95% CI [101, 229] 

p < .001 

MD = 133 

95% CI [53, 214] 

p = 001 

Logopenic variant 

PPA 

  MD = 71 

95% CI [4, 138] 

p = .039 

MD = 40 

95% CI [-43, 122] 

p = .346 

Non-fluent 

variant PPA 

   MD = -31 

95% CI [-111, 48] 

p = .436 
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Appendix B.2 Combination ratio. 

Combination 

ratio 

Semantic variant 

PPA 

Logopenic variant 

PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Normal controls MD = .08 

95% CI [.01, .14] 

p = .021 

MD = .18 

95% CI [.11, .24] 

p < .001 

MD = .35 

95% CI [.29, .41] 

p < .001 

MD = .18 

95% CI [.1, .25] 

p < .001 

Semantic variant 

PPA 

  MD = .1 

95% CI [.04, .16] 

p = .001 

MD = .27 

95% CI [.22, .33] 

p < .001 

MD = .1 

95% CI [.03, .17] 

p = 006 

Logopenic variant 

PPA 

  MD = .17 

95% CI [.11, .23] 

p < .001 

MD = -.001 

95% CI [-.07, .07] 

p = .985 

Non-fluent 

variant PPA 

   MD = -.17 

95% CI [-.24, -.1] 

p < .001 
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Appendix B.3 Content word ratio. 

Content word 

ratio 

Semantic variant 

PPA 

Logopenic variant 

PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Normal controls MD = .38 

95% CI [.002, 

.075] 

p = .039 

MD = .09 

95% CI [.05, .13] 

p < .001 

MD = .03 

95% CI [-.002, 

.07] 

p = .065 

MD = .05 

95% CI [.003, .09] 

p = .035 

Semantic variant 

PPA 

  MD = .05 

95% CI [.02, .09] 

p = .004 

MD = -.004 

95% CI [-.04, .03] 

p = .8 

MD = .009 

95% CI [-.03, .5] 

p = .67 

Logopenic variant 

PPA 

  MD = -.06 

95% CI [-.09, -.02] 

p = .002 

MD = -.04 

95% CI [-.08, 0] 

p = .048 

Non-fluent 

variant PPA 

   MD = .01 

95% CI [-.03, .05] 

p = .525 
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Appendix B.4 Content word frequency. 

Content word 

frequency 

Semantic variant 

PPA 

Logopenic variant 

PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Normal controls β = 6985, SE = 

1579, χ2(4) = 

16.992, p < .001 

β = 11063, SE = 

1621, χ2(4) = 

24.303, p < .001 

β = 7845, SE = 

1279, χ2(4) = 

22.726, p < .001 

β = 1753, SE = 

468, χ2(4) = 22.6, 

p < .001 

Semantic variant 

PPA 

 β = 14897, SE = 

3768, χ2(4) = 

15.581, p < .001 

β = 8392, SE = 

2148, χ2(4) = 

15.216, p < .001 

β = -161, SE = 

1131, χ2(4) = .02, 

p = .89 

Logopenic variant 

PPA 

  β = 3737, SE = 

6806, χ2(4) = 

.301, p = .58 

β = -8828, SE = 

3385, χ2(4) = 7.19, 

p = .007 

Non-fluent 

variant PPA 

   β = -19762, SE = 

7667, χ2(4) = 

6.623, p = .01 
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Appendix B.5 Bigram collocation strength. 

Bigram 

collocation 

strength 

Semantic variant 

PPA 

Logopenic variant 

PPA 

Non-fluent 

variant PPA 

Behavioral 

variant FTD 

Normal controls β = 4.77, SE = .99, 

χ2(4) = 17.882, p < 

.001 

β = 4.92, SE = .85, 

χ2(4) = 24.448, p < 

.001 

β = 2.99, SE = .56, 

χ2(4) = 18.892, p < 

.001 

β = 1.04, SE = .38, 

χ2(4) = 6.62, p = 

.01 

Semantic variant 

PPA 

 β = 4.69, SE = 

1.43, χ2(4) = 

9.871, p = .002 

β = 2.03, SE = .67, 

χ2(4) = 8.223, p = 

.004 

β = -.04, SE = .46, 

χ2(4)=.01, p=.94 

Logopenic variant 

PPA 

  β = -.35, SE = 

2.16, χ2(4) = .02, p 

= .87 

β = -3.05, SE = 1.2, 

χ2(4) = 5.847, p = 

.02 

Non-fluent 

variant PPA 

   β = -5.41, SE = 

2.19, χ2(4) = 

5.673, p = .017 
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Appendix C. Correlations (Pearson’s r, two-tailed) at p < .05 between FLAT measures and established 

measures of dementia progression. 

Appendix C.1 Normal controls. Number of data points: All measures (20). 

FLAT variable Correlations with verbal 

measures 

Correlations with non-verbal 

measures 

Word count - - 

Combination ratio - - 

Content word ratio - - 

Content word frequency - RTM Faces, r = .569, p = .009 

Collocation strength 

(bigram t-score) 

- RTM Faces, r = .472, p = .036 

 

Appendix C.2 Semantic variant PPA: Number of data points: WASI Vocab (29), WASI Blocks (25), 

WASI Similarities (25), WASI Matrices (25), RMT Faces (22), RMT Words (21), BPVS (29), GNT (24), 

VOSP (25), Digit Span forward (25), Digit Span backward (25), Arithmetic total (24). 

FLAT variable Correlations with verbal 

measures 

Correlations with non-verbal 

measures 

Word count Digit Span backward, r = .436, p = 

.029 

- 

Combination ratio WASI Similarities, r = .426, p = 

.034; Digit Span forward, r = .409, 

p = .043; Digit Span backward, r = 

.589, p = .002 

Arithmetic,  r = .577, p = .003 

Content word ratio - WASI Matrices, r = .424, p = .035 
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Content word frequency WASI Vocab, r = -.45, p = .014; 

WASI Similarities, r =-.429, p = 

.032, RMT Words, r = -.571, p = 

.007; Digit Span backwards, r = -

.424, p = .035 

WASI Blocks, r = -.583, p = .002; 

WASI Matrices, r = -.666, p < .001; 

VOSP, r = -.428, p = .033; 

Arithmetic, r = -.546, p = .006 

Collocation strength 

(bigram t-score) 

- - 

 

Appendix C.3 Logopenic variant PPA: Number of data points: WASI Vocab (20), WASI Blocks (20), 

WASI Similarities (20), WASI Matrices (20), RMT Faces (19), RMT Words (16), BPVS (19), GNT (20), 

VOSP (20), Digit Span forward (20), Digit Span backward (20), Arithmetic total (17). 

FLAT variable Correlations with verbal 

measures 

Correlations with non-verbal 

measures 

Word count GNT, r = .459, p = .042 - 

Combination ratio - - 

Content word ratio Digit Span forward, r = .621, p = 

.003 

- 

Content word frequency Digit Span backward, r = -.526, p = 

.017 

WASI Matrices, r = -.468, p = .037; 

RMT Faces, r = -.457, p = .049 

Collocation strength 

(bigram t-score) 

Digit Span forward, r = -.576, p = 

.008 

- 
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Appendix C.4 Non-fluent variant PPA: Number of data points: WASI Vocab (22), WASI Blocks (22), 

WASI Similarities (22), WASI Matrices (22), RMT Faces (20), RMT Words (19), BPVS (21), GNT (21), 

VOSP (21), Digit Span forward (20), Digit Span backward (18), Arithmetic total (18). 

FLAT variable Correlations with verbal 

measures 

Correlations with non-verbal 

measures 

Word count - - 

Combination ratio - - 

Content word ratio WASI Vocabulary, r = .465, p = 

.029; WASI Similarities, r = -.496, 

p = .019 

- 

Content word frequency WASI Vocabulary, r = -.703, p < 

.001; BPVS, r = -.517, p = .016; 

GNT, r = -.726, p < .001; Digit 

Span forward, r = -.52, p = .019 

- 

Collocation strength 

(bigram t-score) 

WASI Vocabulary, r = -.579; GNT, r 

= -.519, p = .016; Digit Span 

forward, r = .666, p = .001; Digit 

Span backward, r = .532, p = .023 

- 

 

 

 

Appendix C.5 Behavioral variant FTD: Number of data points: WASI Vocab (14), WASI Blocks (14), 

WASI Similarities (14), WASI Matrices (14), RMT Faces (13), RMT Words (12), BPVS (14), GNT (14), 

VOSP (14), Digit Span forward (13), Digit Span backward (13), Arithmetic total (12). 



48 
 

FLAT variable Correlations with verbal 

measures 

Correlations with non-verbal 

measures 

Word count - RMT Faces, r = .659, p = .014 

Combination ratio - - 

Content word ratio WASI Vocabulary, r = .653, p = 

.011; WASI Similarities, r = .627, p 

= .016; Digit Span backward, r = 

.719, r = .006 

- 

Content word frequency WASI Similarities, r = -.603, p = 

.022 

- 

Collocation strength 

(bigram t-score) 

- - 

 

 

 

 


