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A Review of Estimating Population Exposure to Sea-Level Rise and the Relevance for Migration 

Abstract 

This review analyses global or near-global estimates of population exposure to sea-level rise (SLR) and 

related hazards, followed by critically examining subsequent estimates of population migration due 

to this exposure. Our review identified 33 publications that provide global or near-global estimates of 

population exposure to SLR and associated hazards. They fall into three main categories of exposure, 

based on definitions in the publications: (i) the population impacted by specified levels of SLR; (ii) the 

number of people living in floodplains that are subject to coastal flood events with a specific return 

period; and (iii) the population living in low-elevation coastal zones (LECZs). Twenty of these 33 

publications discuss connections between population migration and SLR. In our analysis of the 

exposure and migration data, we consider datasets, analytical methods, and the challenges of 

estimating exposure to SLR followed by potential human migration. We underscore the complex 

connections among SLR, exposure to its impacts, and migration. Human mobility to and from coastal 

areas is shaped by diverse socioeconomic, demographic, institutional, and political factors; there may 

be ‘trapped’ populations as well as those who prefer not to move for social, cultural, and political 

reasons; and migration can be delayed or forestalled through other adaptive measures. While global 

estimates of exposed and potentially migrating populations highlight the significant threats of SLR for 

populations living in low-lying areas at or near coastlines, further research is needed to understand 

the interactions among localised SLR and related hazards, social and political contexts, adaptation 

possibilities, and potential migration and (im)mobility decision-making. 

Keywords 

Adaptation, Climate Change, Floods, Migration, Sea-level Rise 

1. Introduction: Why Concerns about Population Exposure to Sea-Level Rise? 

Between 1902 and 2015, global mean sea-level rise (GMSLR) was 0.12-0.21 m according to the 

Intergovernmental Panel on Climate Change (IPCC 2019, p 334). Relative to 1986–2005, additional 

sea-level rise (SLR) of 0.43-0.84 m is projected by 2100 (0.29-1.10 m, likely range) (IPCC 2019, p 324), 

although it depends particularly on the rate of Greenland and Antarctic ice sheet melting and so it 

could be much higher (Thomas and Lin 2020). At the moment, climate change causes SLR 

predominantly through sea water expanding as it absorbs heat from the atmosphere (thermal 

expansion) and melting of land-based snow and ice (such as from glaciers). SLR interacts with other 

climatic factors, such as intensifying storms and wave action with consequences already observed 

including infrastructure damage, coastal erosion, salination of freshwater, and land habitat loss (IPCC 

2018, 2019). Future SLR is projected to affect human health and wellbeing, cultural and natural 

heritage, freshwater, biodiversity, agriculture, and fisheries (IPCC 2018, WHO 2018, NRC 2019). 

Consequently, various attempts have been made at the global scale to assess populations exposed to 

SLR (Muis et al. 2017). While these assessments use different definitions, approaches and scenarios, 

they seek to estimate the number of people who might be directly affected by SLR and related impacts, 

which defines ‘exposure’. The studies variously combine datasets on SLR, subsidence, coastal extreme 

weather, land elevation, population distribution, land-surface characteristics, adaptation options, and 

socio-economic change scenarios. One of the first global vulnerability assessments estimated that 

200–250 million people per year (in 1990) were exposed to coastal flooding, defined as living below 

the 1-in-1,000-year extreme sea level, and hence 1 m of GMSLR would increase exposure by 50% 
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assuming no other changes (Hoozemans et al. 1993). Recently, IPCC (2019) estimated that 680 million 

people currently live in the low-lying coastal zone and projected this number to reach more than one 

billion by 2050. 

Despite the possibility for various forms of adaptation to SLR, with many people and populations 

already planning for adaptation in situ (e.g. Yamamoto and Esteban 2014), human mobility has been 

widely positioned as a deterministic certainty whereby climatic and environmental hazards such as 

SLR force people away from their coastal homes (c.f. Myers 2001). For example, Strauss et al. (2015) 

state that future carbon emissions ‘will determine which areas we can continue to occupy or may have 

to abandon’ (Strauss et al. 2015, p 13508). The first IPCC assessment report (IPCC 1990) estimated 

that half a million people in archipelago and island countries might live in sites that were at risk of 

submergence or loss of land by 2100, contributing to increased numbers of so-called ‘climate refugees’ 

(Dronkers et al. 1990, but see also Lewis 1990a & 1990b). More recently, Nicholls et al. (2011) 

estimated that if 2 m of GMSLR is realised by 2100, a risk of ‘forced displacement’ exists of up to 187 

million people. Studies draw on estimates of exposure to SLR and other related hazards (e.g. living in 

a 1-in-100-year flood plain) as proxy indicators for population migration and relocation. In some sites, 

specifically low-lying coral atoll nations, population displacement is stated as being likely as even 

modest SLR is assumed to disrupt livelihoods and render land uninhabitable (McLeman 2018). 

Studies that estimate and forecast global and near-global exposure to, or presumed migration due to, 

SLR make choices about parameters, such as level of GMSLR, return periods of flooding, and time 

horizons. They rely on global datasets and draw conclusions on a global scale. While they provide 

important estimates of the scale of potential exposure, there are implicit assumptions that global 

trends are of primary significance for understanding the situation facing people and for planning for 

adaptation, so that the specificities of local sociocultural and environmental contexts are often 

obscured. Indeed, many analyses end at the point where local knock-on impacts and decision-making 

begin, irrespective of global trends. For example, the geographic distribution of coastal flooding is 

mapped against gridded global data sets, but the impact of this flooding on freshwater supplies for 

particular coastal sites is not clear and can sometimes be countered by local measures (Yang et al. 

2019). 

To indicate the advantages and limitations of the studies available, and to better direct future work in 

this area, this paper reviews and discusses datasets and analytical methods for estimating global or 

near-global population exposure to SLR, with a specific focus on suggestions about SLR-related 

population mobility attributed to SLR and associated impacts. 

2. Method 

Three databases - Web of Science, Scopus, and Google Scholar - were searched for publications 

published up until April 2020 that provide quantitative estimates of population exposure to SLR and 

associated hazards. The full-text search string used was English only: population* AND coast* AND 

flood* AND "sea level*" AND (global OR international* OR worldwide) AND (model* OR indic*) 

followed by snowball sampling of citations in publications found. The selected publications were 

restricted to those published in English and with a focus on global or near-global estimates. 

Publications with a regional or smaller-scale focus (c.f. Anderson et al. 2018, Dasgupta et al. 2009, 

2011, Ericson et al. 2006, Hinkel et al. 2011, Taherkhani et al. 2020) were therefore excluded. Provided 

that the publication appeared in the database search or through the snowballing, it was considered 

irrespective of being peer-reviewed or not, but wider searches were not conducted to capture all the 

grey literature on that rationale that the wider material had not necessarily been validated through 

scientific investigation. No time limit was placed on the searches, but the selected publications range 
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from 1993 to 2019. From the results, manual screening was completed based on the authors’ expertise 

to seek comparability among the studies while being strict about the scoping of and definitions used 

by this review. 

33 publications met the inclusion criteria: 30 peer reviewed journal articles, 1 book, 1 working paper 

and 1 report (Table 1). The final study selection of 33 publications resulted in 11 publications 

estimating population exposure to specific levels of GMSLR, 13 publications estimating populations 

living in coastal floodplains, and 12 publications estimating populations living in LECZ or near-coastal 

zones. These publications were analysed by extracting the key information shown in the columns of 

Table 1 permitting a synthesis of what is known about this review’s research topic of estimating 

population exposure to SLR and the relevance for migration. To fulfil this review’s mandate, the 

columns in Table 1 focus on the publications’ aims, sources of information (data sets) and analysis 

methods, time frames considered for forecasts, scenarios and numbers for population exposure, any 

assumptions or implications related to migration, and the data or analysis challenges mentioned, 

thereby also permitting discussion in the next sections of this review regarding what is not mentioned 

in these publications. 
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Table 1: Global or near-global studies of population exposure to GMSLR and/or populations living in low elevation coastal zones (LECZs) and coastal 

floodplains 

 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Estimates of population exposure to specified levels of SLR  
 

 

Nicholls et al. 
1999 

• Global SLR scenarios 
(Hadley Centre) 

• Rise in atmospheric 
carbon dioxide 
concentration from 354 
ppmv (1990) to 731 ppmv 
(2080s) 

• World Bank 1994/95 
global population with 
estimates to 2150 

• (GDP) from Energy 
Modelling Forum 14 
GDP/capita scenario 

To estimate flooding 
due to storm surges, 
and wetland losses due 
to SLR.  

2020s, 2050s, 
2080s 

People living below 
the 1000-year storm 
surge elevation; 
people who 
experience flooding 
by storm surge, 
including the 
influence of sea 
defences.  

The number of people flooded by storm surge 
will be more than five times higher due to SLR 
by the 2080s. Many will experience annual or 
more frequent flooding requiring some 
response e.g. (increased protection, migration)  

Up to 195 million people 
might need to respond to 
frequent flooding by 
2080s. Potential 
responses include 
migration as well as 
upgrading and flood 
protection.  

Small Gornitz, 
and Cohen 
2000 
(see also LECZ) 

• EROS DEM 

• GPW2 (1994) 
• GSHHS shoreline 

• Tide gauge sea level data 

• SLR scenarios 
 

Estimation of global 
population and land 
area with respect to 
elevation, proximity to 
coastline, SLR and 
coastal hazards. 
 

2000 Population living at 
low elevations (below 
20 m) and near 
coastlines (within 20 
km) 

While large numbers of people live at low 
elevation near the coast, higher resolution 
population datasets and DEMs are needed to 
assess risk from coastal hazards and SLR. 
 

Rates of urbanisation will 
affect size of populations 
in low coastal areas, 
particularly in countries 
with major cities near 
coasts.  

Nicholls and 
Lowe 2004 

• Four scenarios, as per 
Nicholls 2004 (see 
above). Additionally, this 
analysis considers the 
unmitigated scenario 
(IS92a).  

To consider the 
potential benefits of 
mitigation of human-
induced climate change 
in coastal areas, with an 
emphasis on SLR.  

1990, 
2080, 
2140, 

Population in ‘near 
coastal zone’; within 
100 km horizontally 
and 100 m vertically 
of coastline.  

Under the unmitigated scenario significant 
impacts above baseline are not apparent until 
the 2050s. However, after onset, impacts are 
significant with flooding due to SLR estimated 
to impact many millions or even hundreds of 
millions of additional people per year. Adaptive 
response could be protection measures (dike 
building) to migration out of flooded areas.  

Coastal populations are 
growing (net coastward 
migration). Adaptive 
response to SLR could 
include migration out of 
flooded areas.  
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

*Anthoff et al. 
2006 
(see also LECZ) 
 
(*Working 
Paper) 
 

• GLOBE DEM 
• GPW3 population  

• Tidal range data 

• GDP/capita: World 
Resources Institute 

Estimation of damages 
due to SLR scenarios of 
0.5 m, 1 m and 2 m by 
2100.  

2100 Population living 
within 0.5 m, 1 m and 
2 m of sea-level 

Damage cost of SLR include: dryland lost, 
wetland lost, building protection against SLR, 
the costs of displaced people.  
 

The number of forced 
migrants due to SLR is a 
function of population 
density and area of dry 
land lost. With no 
protection, the costs of 
SLR increase due to land 
loss and displacement. 

Rowley et al. 
2007 

• GLOBE DEM 

• ETOP02 DEM 

• LandScan population  

‘Inundation’ approach 
to determine land area 
lost and current 
population affected by 
hypothetical sea level 
increases of between 1 
and 6 meters. 

Future levels 
of SLR 
increase 

Population living in 
inundation zones 
with sea level rise 
(for increments of 1-6 
m) 

Inundated areas ranged between 1.1-2.2 
million km2 (for 1-6 m of SLR) and affected 
population ranged from 107.94 to 431.44 
million, respectively. Further analysis is 
available at regional scale for parts of the world 
(e.g. SE Asia, NW Europe). 

SLR will cause inundation 
of coastal land and the 
resulting displacement of 
millions of coastal 
residents. With 6 m of 
SLR, for example, 431 
million coastal residents 
would be affected.  

Nicholls et al. 
2008b 

• GPW3 population  

• LandScan 2003  
• SRTM30 DEM  

• Land use data, IMAGE 
(2002) 

• Land Ocean Interactions 
in the Coastal Zone 
typology dataset (tidal 
range data) 

Global implications of 
abrupt SLR of 5 m, 
triggered by a 
hypothetical collapse of 
the West Antarctic Ice 
Sheet, including 
population 
displacement both with 
and without coastal 
defence.  

2000 
population 
data, but with 
a future-
oriented 
scenario.  

Global exposure of 
population, as a 
function of 1 m and 5 
m SLR, calculated 
relative to high 
water.  

Based on 2000 data, 131 million people would 
be exposed to SLR of 1 m with 2.5 million km2 
of land area inundated. 410 million people 
would be exposed to 5 m SLR with 4.1 million 
km2 of land area inundated. 

Land loss is assumed to 
lead to forced migration, 
under SLR scenarios. 
Without WAIS collapse, 
displacement starts at 
75,000 people per year, 
but falls to 5,000 people 
in 2050 as defence 
standards improve. With 
WAIS collapse in 100 
years, forced migrants 
peak at 350,000 a year, 
with 15 million displaced 
by an extreme collapse 
scenario (2030 to 2130) 
even if most coastal 
populations are 
protected. 
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Li et al. 2009 • ETOPO5 DEM 
• ETOPO2 DEM 

• GLOBE DEM  

• GTOPO30 DEM  

• SRTM DEM 

• Landscan population 
dataset (2004) 

• UMD landcover dataset 

To assess and visualize 
the global impacts of 
potential inundation 
based on hypothetical 
global sea level 
increases of one to six 
meters. 

Impact of SLR 
of 1, 2, 3, 4, 5 
and 6 m for 
current 
population.  

Population living 
within a ‘potentially 
inundated area’ 
under different SLR 
scenarios.  

Population at risk due to potential inundation 
ranges from 107.9 million people with 1 m SLR 
to 431.4 million with 6 m SLR increment.  

Not discussed 

Nicholls et al. 
2011 

• DIVA model with a focus 
on the variables of 
flooding and 
submergence and erosion 
(with and without 
adaptation) 

• Glacial isostatic 
adjustment (Peltier 
2000a, 2000b) 

Potential SLR by 2100 
for a beyond 4°C 
scenario, and estimates 
of SLR impacts, both 
with and without 
adaptation.  

2100 People displaced by 
SLR due to land-loss 
via erosion, 
submergence and 
flooding. Flooding 
threshold return rate 
for abandonment set 
at >1 in 1 year 
frequency.  
 

SLR by 2100, for a temperature rise of 4°C or 
more, is estimated to be between 0.5-2.0 m. 
Assuming no adaptation, there is the risk of 
displacement of between 72 and 187 million 
people over the century (0.9-2.4% of global 
population). With adaptation (e.g. dikes, dune 
nourishment, the number of people displaced 
falls to 41,000–305,000 people by 2100. 

With SLR of 0.5-2.0 m by 
2100 for a 4◦C increase, 
there is the risk of forced 
displacement of up to 
187 million people (2.4% 
of global population). This 
is potentially avoidable by 
protection. The models 
assume no coastward 
migration. 
 

Marzeion and 
Levermann 
2014 

• SRTM DEM 
• ETOPO1 data (for high 

latitudes) 

• Glacial isostatic 
adjustment (Peltier 
2000a, 200b) 

• GRUMP v1 population 
model  

Estimate of loss of land 
surface, population 
exposed, and loss of 
cultural heritage sites 
due to SLR, for different 
temperature levels. 
 

Future 
degrees of 
warming 

Population exposed 
to GMSLR of 2.3 m 
per degree of global 
mean temperature 
increase. 

% of current population impacted by SLR with 
different levels of warming:  
1°C: 2.2 (1.3-3.9) 
2°C: 4.7 (3.6–7.2) 
3°C: 6.9 (5.1–9.0) 
4°C: 9.1 (7.9–10.8) 
5°C: 10.5 (8.8–11.6) 

Not discussed 

Brown et al. 
2016 

DIVA model with input 
datasets e.g.: 

• GLOBE DEM 

• CIESIN population 
density (as per 1995) 

• Isostatic adjustment 
(Peltier 2000a, 2000b) 

• Socioeconomic scenarios 
 

To estimate distribution 
of coastal impacts, 
including number of 
people flooded per year, 
based on nine scenarios 
with changes due to SLR 
and socio-economic 
conditions.  
 

2000-2100 Population living in 
the coastal flood 
hazard zone (below 
1:1,000 year surge 
level) and the water 
level exceedance 
curve, including the 
effect of adaptive 
measures (e.g. dikes) 

By the 2090s, a maximum of 134 million people 
are projected to be flooded annually. But 
regional scale models of SLR provide improved 
projections; GMSLR is a poor representation. 

Coastward migration of 
populations cannot be 
fully accounted for in 
models due to lack of 
reliable, consistent data. 
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Kummu et al. 
2016 

• GTOPO30 DEM 
• Shore line (1:250,000)  

• Population density, 1900-
2005 (HYDE) 

• Future population 
density, 2005–2050, 
IIASA 

Other datasets (e.g. climate, 
urban population, agriculture, 
economic, human footprint) 

To examine global 
population distribution 
with reference to both 
elevation above sea 
level and horizontal 
proximity to the coast. 

1900 to 
present,  
2030, 2050 
(where data 
allow) 
 

Population living 
below 5 m elevation 
above sea-level.  

The number of people living in zones that are 
less than 5 m above sea level is calculated to be 
290 million (5.4%) in 1990, 380 million (5.6%) in 
2010, and 460 million (5.5%) in 2030, and 495 
million by 2050.  

Not discussed 

Estimates of population living in coastal floodplains or storm surge zones 
 

 

*Hoozemans 
et al. 1993 
(*Book) 

The database containing: 
area of coastal flood plain 
after SLR; the flood 
exceedance curve for storm 
surges; average coastal 
population density in 1990; 
subsidence; standard of 
coastal protection. 

Estimated flood risk, 
costs, loss of coastal 
wetlands, and changes 
in rice production, 
assuming 1 m GMSLR.  

1990 Population living in 1-
in-1000 years storm 
surge zone (i.e. 
coastal flood plain)  

About 200-250 million people were estimated 
to live within the 1-in-1000-year coastal flood 
plain in 1990; 1-meter GMSLR would increase 
exposure by 50%, assuming no other changes.  
 
 

Not discussed.  

Nicholls 2002 • Hoozemans et al. (1993) 
database of key 
parameters: e.g. coastal 
flood plain after 3 m SLR, 
average coastal 
population density 

• Per capita GDP as an 
‘ability to pay’ for flood 
protection parameter 

To assess the extent to 
which global SLR 
exacerbates coastal 
flood problems.  

1990 
2020s 
2050s 
2080s  
2100 

People in the hazard 
zone (PHZ) exposed 
to flooding by 1000-
year storm surges 
ignoring sea 
defences; the 
average annual 
number of people 
exposed to flooding 
by storm surge.  
 

10 million people experienced flooding 
annually in 1990. In 2100, the estimated people 
in the hazard zone is between 424-755, and the 
average annual people flooded is 83–510 
million people per year and 9–337 million 
people per year under evolving protection.  

Where flooding by storm 
surge is frequent (i.e. 
more than once per year) 
a significant response is 
expected: upgrade flood 
protection, migrate, etc.  
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Nicholls 2004 Four scenarios – with 
different political, economic, 
technical social development 
– are quantified, derived from 
IPCC Special Report on 
Emissions Scenarios (SRES), 
e.g.: GDP and population 
scenarios, via IPCC Data 
Distribution Centre (DDC); 
GMSLR scenarios; subsidence 
scenarios.  

Considers range of 
GMSLR and socio-
economic scenarios on: 
(1) changes in flooding 
by storm surges; and (2) 
potential losses of 
coastal wetlands 
through the 21st 
century.  

2020, 
2050, 
2080 

People living below 
the 1 in 1000-year 
storm surge elevation 
(ignoring sea 
defences). People 
who experience 
flooding by storm 
surge per year, 
(including the 
benefits of sea 
defences).  

SLR increases flood impacts although 
significant impacts are not apparent until the 
2080s where between 2 and 50 million 
additional people are estimated to be flooded 
under different emissions scenarios (i.e. 7–10 
million, 29–50 million, 2–3 million, 16–27 
million people/year under the four scenarios 
respectively).  

The number of people 
affected by flooding will 
increase due to growing 
coastal populations, 
including net coastward 
migration.  

Nicholls and 
Tol 2006 

• SRES population and GDP 
scenarios from the IPCC 
Data Distribution Centre 

 

To consider the 
potential impacts – e.g. 
economic impacts – of 
SLR through the twenty-
first century, taking 
account of different 
climate and socio-
economic scenarios.  

2020s 
2050s 
2080s 

People living below 
the 1000-year storm 
surge elevation (i.e. 
ignoring dikes). 
People who 
experience flooding 
by storm surge 
(including effects of 
dikes). 

For all SRES scenarios, the number of people in 
the coastal flood plain increases by 2050, from 
a 1990 baseline of 200 million, and then 
diverges from the 2080s. While climate 
stabilization reduces impacts, adaptation to 
SLR is still required.  

Not discussed 

Pardaens et al. 
2011 
 

• DIVA: SLR projections and 
integrated socio-
biophysical‐economic 
model of coastal systems  

• Met Office ocean-
atmosphere models: 
HadCM3C; HadGEM2‐AO 

To consider the effect of 
GHG mitigation policies 
on 21st century SLR 
relative to business-as-
usual scenario  

2020s, 2050s, 
2090s, 2100 

People flooded 
globally per year due 
to SLR and related 
coastal impacts, 
assuming no upgrade 
in defences.  

By 2100, without upgrade in defences, around 
55% of the 84 million additional people flooded 
per year due to SLR under business as usual 
scenario could be avoided under a mitigation 
scenario which stabilises temperature at a 2-
degree increase.  

Not discussed 
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Jongman et al. 
2012 
 

• GADM administrative 
boundaries 

• Food Producing Units  

• PREVIEW: river flood 
extent 

• DIVA: coastal flood extents 

• SRTM & GTOPO30 DEM 

• HYDE: population; land-
use 

• Penn World tables; GDP 
per capita 
 

To estimate global 
economic and 
population exposure to 
both river and coastal 
flooding  

1970-2050 Populations exposed 
to 1-in-100 year 
coastal and/or river 
flood events.  

Global population exposed to 1/100 year floods 
reached 271 million in 2010. In the year 2050, 
an estimated 345 million people will be living in 
the 1/100 coastal flood areas. Between 1970-
2010, an additional 4.7% of the world’s 
population was exposed to coastal flooding.  

Not discussed 

Hinkel et al. 
2014 

DIVA model with input 
datasets: 

• GLOBE DEM dataset  

• SRTM DEM dataset 

• GRUMP population 
dataset v1 

• LandScan population 
dataset  

Coastal flood damage 
and adaptation costs 
under 21st century SLR 
are assessed taking 
account of uncertainties 
in topography data, 
population data, 
protection strategies, 
socio-economic 
development and SLR.  

2010, 2100 Population living 
below the 1 in 100-
year flood event; 
population exposed 
to annual flooding 
due to SLR.  

Without adaptation, 0.2–4.6% of global 
population is expected to be flooded annually 
in 2100 under 25–123 cm of GMSLR. In 2010, 
the population living below the 1 in 100-y flood 
event plain is estimated to be between 93-310 
million, depending on population and DEM 
datasets. 

For many locations, 
coastal populations  
are growing due to 
coastward migration and 
urbanization, thereby 
increasing population 
exposure.  

Neumann et 
al. 2015  
(also cited in 
LECZ section) 

• Population estimates for 
2000, 2030, 2060 

• SRTM30 Enhanced Global 
Map 

• MODIS 500 m Map of 
Global Urban Extent 

Scenario-driven 
projections of impact of 
SLR on coastal 
populations by the years 
2030 and 2060, with a 
2000 baseline. Four 
population growth 
scenarios are modelled, 
that take account of 
urban and non-urban 
populations.  
 

2000, 
2030, 2060 

Population in LECZs 
and 1-in-100-year 
coastal floods zones.  

The population living in the 100-year flood 
plain was estimated as follows: 2000 (189.2 
million people); 2030 (282.2-285.9 million 
people); 2060, (315.5-411.3) million people.  

Not discussed 
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Muis et al. 
2016 

• Global Tide and Surge 
Reanalysis (GTSR) dataset 

• SRTM elevation  

• GRUMP (2000) 

Flood hazard 
(inundation extent) and 
flood exposure (exposed 
people) based on 1 in 
100-year extreme sea 
levels.  

2000 Population exposed 
to 1 in 100-year 
extreme sea levels, 
caused by storm 
surges and high tides, 
assuming no 
adaptation.  

1.3% of the global population, equal to 76 
million people, is living in the 1 in 100-year 
floodplain (based on population data from year 
2000).  

Not discussed  

Muis et al. 
2017 

• Global Tide and Surge 
Reanalysis (GTSR) dataset 

• DINAS-COAST Extreme 
Sea Levels (DCESL) 

• DIVA 

• GRUMP 

Present-day flood 
exposure of land area 
and population below 
the 1 in 100-year sea 
levels 

2015 Population below the 
1 in 100-year sea 
levels, assuming no 
flood defences, 
hydrological 
connectivity, and 
planar flood levels 

Global exposed population is 28% lower when 
based on GTSR instead of DCESL. After 
correcting for vertical data, DCESL estimates 
218 million people are exposed and GTSR 
estimates that 158 million people are exposed.  

Without adaptation, risks 
from coastal flooding are 
projected to increase 
further including because 
of migration towards the 
coast.  

Brown et al. 
2018 

DIVA model with input 
datasets: 

• 1-in-100 year flood plain 

• SRTM DEM  
• GTOPO30  

• GRUMP v1  

• Glacial isostatic 
adjustment  

ALSO 

• SSPs  

• SLR scenarios/WASP 
model 

To project land and 
population exposed in 
the 1 in 100-year coastal 
flood plain, for the years 
2100 and 2300, taking 
into account different 
mitigation and SLR 
scenarios and SSPs.  

2100, 2300 Population in the 1-
in-100 year coastal 
flood plain for 
different 
temperature and 
associated SLR 
scenarios.  

Assuming no population growth after 2100, the 
proportion of global population exposed to SLR 
in 2300 is projected to be between 1.5% and 
5.4% for the aggressive mitigation and the non-
mitigation scenario, respectively. National 
estimates are available. 

Adaptation to coastal 
flooding required, 
particularly where large 
population growth or 
coastward migration is 
expected. Populations 
may not wish to retreat, 
but in some places this 
may be the only option.  

Kulp and 
Strauss 2019 

• CoastalDEM 

• SRTM 

• LandScan (2010 
population density data) 

Using a new DEM 
(CoastalDEM), to 
examine global 
population living on land 
below the high tide line 
currently, mid-century 
and in 2100. To 
compare CoastalDEM 
and SRTM-based values.  

2010 
2050 
2100 

People living on land 
that may be exposed 
to coastal inundation, 
either by 
permanently falling 
below mean higher 
high water (MHHW), 
or temporarily falling 
below the local 
annual flood height.  

110 M people currently live on land below the 
high tide line and 250 M on land below annual 
flood levels.  One billion people currently 
occupy land less than 10 m above current high 
tide lines. 
Under high emissions, up to 630 M people live 
on land below projected annual flood levels for 
2100, and up to 340 M for mid-century.  

SLR in the US this century 
may induce large-scale 
migration away from 
unprotected coastlines.  
Global-scale modelling 
of the timing, locations, 
and intensity of migratory 
responses to coastal 
flooding is needed.  
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Vafeidis et al. 
2019 

• DIVA, including SRTM 
• Water attenuation rates 

based on values reported 
in the literature 

• One SSP (2) to represent 
changes in coastal 
population and assets 

• SLR projections of 29, 50 
and 110 cm by 2100 

To explore uncertainty 
introduced in global 
assessments of coastal 
flood exposure and risk 
when not accounting for 
water-level attenuation 
due to land-surface 
characteristics.  

2015 People living in the 1-
in-100-year 
floodplain; expected 
number of people 
flooded per year 
based on sea flood 
heights and their 
probability of 
occurrence 
 

There is a reduction of up to 44 % in area 
exposure and even larger reductions in 
population exposure and expected flood 
damages when considering water-level 
attenuation 

Not discussed 

Estimates of population living in low-elevation coastal zones (LECZs) or “near-coastal” zones 
 

Hinrichsen 
1996 
(see also 1990, 
1994, 1998) 

 

• Methodology not 
thoroughly documented 

Estimations of the 
coastal population  

1990s Population living 
within 200-400km of 
coastline.  

In 1994, 50% of total global population lived 
within 200 km of coastline, over two-thirds 
within 400 km of coastline; by 2025 70% would 
live within 200 km of coastline 

Not discussed 

Cohen and 
Small 1998 

• Population distribution 
based on censuses (1979-
94 data) from 217 
countries  

• EROS DEM  

• Defense Mapping Agency 
terrain elevation data 
Level 1 (30) 

To quantify the global 
distribution of the 
human population by 
elevation 

1994 Global population by 
elevation (m) and by 
population density 
(people/km2).  

As of 1994, an estimated 1.88 billion people 
(33.5% of world’s population) lived within 100 
vertical meters of sea level (the lowest vertical 
resolution investigated in this study). 

Not discussed 

Small, Gornitz, 
and Cohen 
(2000) 
(see also SLR) 

• EROS DEM 

• GPW (1994) 

• GSHHS shoreline 
• Tide gauge sea level data 

• SLR scenarios 

Estimation of global 
population and land 
area with respect to 
elevation, proximity to 
coastline, SLR and 
coastal hazards.  

2000 Population living at 
low elevations (below 
20 m) and near 
coastlines (within 20 
km) 

400 million people live within 20 m of sea level 
and 20 km of a coastline.  

Rates of urbanisation will 
affect population size in 
low coastal areas, 
particularly in countries 
with major cities near 
coasts. 
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Small and 
Nicholls 2003 

• GTOPO30 DEM  
• GPW2 (2000)  

• Night-time imagery of 
Visible and Near Infrared 
(VNIR) emissions (e.g. 
fires) via The Defense 
Meteorological Satellite 
Program/Operational 
Linescan  

• High resolution coastline 
data: World Vector 
Shoreline, CIA World Data 
Bank II 

Estimation of population 
distribution and land 
area in the ‘near-coastal 
zone’.  
 

1990 Human habitation of 
near coastal zones 
(i.e. within 100 
horizontal kilometres 
and 100 vertical 
meters of a 
coastline).  

The population within the near coastal zone for 
1990 was estimated at 1.20 billion. The 
population living below 20 m elevation (and 
within 20 vertical km of coast) was found to be 
450 million people. 

Urban growth from 
demographic momentum 
and urban migration 
would increase the 
number of people 
potentially exposed to 
coastal hazards.  

*Anthoff et al. 
2006 
(see also SLR) 
 
(*Working 
Paper) 
 

• GLOBE DEM 

• GPW3 population  

• Tidal range data 

• GDP/capita: World 
Resources Institute 

Estimation of population 
living within 1 m and 10 
m of mean high water in 
1995.  

1995  Population living 
within 1-10 m of high 
water.  

146 million people and 397 million people 
living within 1 m and 10 m of high water in 
1995.  
 
 

Not discussed (in relation 
to LECZ). But see SLR 
above.  

McGrahanan 
et al. 2007 

• GRUMP urban extent grid 
(2000) 

• GRUMP GPW v3 (2004) 

• SRTM DEM 

Distribution of global 
population in LECZs. This 
elevation is chosen 
because estimates 
based on elevations <10 
metres are not reliable.  
 

2000 Population residing in  
LECZ (i.e. contiguous 
land area up to 10 m 
elevation that 
borders a coastline) 
 

LECZs cover 2% (2.7 million km2) of the world’s 
area and 8% (0.3 million km2) of its urban area. 
It contains 10% (618 million) of the world’s 
population and 13% (352 million) of its urban 
population. 

Coastal disaster risk 
reduction will require 
mitigation, migration and 
settlement modification. 
Out migration from LECZs 
will be important, but 
costly and disruptive. 

Lichter et al. 
2011 

• GRUMP population model 
(2000)  

• LandScan population 
(2006) 

• GTOPO30 DEM 

• GLOBE DEM 

• SRTM30 

Comparative analysis of 
land area and 
population distribution 
in LECZ and their 
susceptibility to future 
SLR, based on three 
DEM and two 
population datasets.  

2000 (GRUMP 
dataset); 
2006 
(LandScan 
dataset) 

Population living 
below 1, 2, 3, 4, 5, 
and 10 m (LECZ) 
elevation above sea-
level. 
 

Variations in results are dependent on the 
input datasets. For example, depending on 
choice of DEM and population dataset, the 
estimated population living in LECZs ranges 
from 557-709 million. These differences 
indicate that results should be regarded with 
caution and with reference to methods and 
datasets used. 

Displacement of coastal 
inhabitants because of 
coastal flooding is noted 
as a potential outcome of 
future SLR.  
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

*Vafeidis, 
Neumann, 
Zimmermann, 
Nicholls 2011 
 
(*Foresight 
Report) 

• Landscan population 
(2008) 

• GRUMP population 
(2000) 

• SRTM DEM  

• SRTM30 Enhanced Global  

• GTOPO30 DEM  

• DIVA Database 1-in-100-
year storm surge heights 

• MODIS 500 m Map of 
Global Urban Extent (15 
arc sec; 2009) 

Estimation of land area 
and number of people 
located in LECZ for 2000, 
2030, and 2060, 
including estimates 
based on four scenarios 
(developed by 
Foresight) that include 
demographic change 
and SLR.  

2000, 2030, 
2060 

Population living in 
LECZs (i.e. contiguous 
coastal area that is 
less than 10 m above 
sea level) 

The number of people living in the 1-in-100-
year floodplain in 2000 (considering GMSLR 
only) is 628 million. In 2030 and 2060, 
estimated numbers of people in the floodplain 
increase slightly with SLR. The main increase in 
exposure is the result of demographic changes. 
Asia has the largest proportion of people living 
in LECZs, in the base year 2000 and in all future 
forecasts. Further analysis available at national 
and regional scale.  

Modelling accounts for 
internal migration to the 
coast. 

Mondal and 
Tatem 2012 

• LandScan (2008 version) 

• GRUMP (2000 version 1, 
projected to 2008) 

• SRTM30 Enhanced Global 
Map (enhanced with 
GTOPO30 and ocean 
bathymetry data from 
ETOPO2) 

Demonstrate the 
variability in estimates 
of LECZ population size 
based on use of 
different population 
datasets, namely 
LandScan and GRUMP.  

2008 Population residing in  
LECZ (i.e. contiguous 
land area up to 10 m 
elevation that 
borders a coastline) 

Estimates of proportions of national 
populations in LECZ vary by between 0.1% to 
45%, depending on the dataset. Choice of 
dataset can lead to a difference of more than 
7.5 million vulnerable people for countries with 
extensive coastal populations.  

Not discussed.  

Neumann et 
al. 2015 
(see coastal 
flood plain) 

• Population estimates for 
2000, 2030, 2060 

• SRTM30 Enhanced Global 
Map 

• MODIS 500 m Map of 
Global Urban Extent 

Scenario-driven 
projections of impact of 
SLR on coastal 
populations by the years 

2030 and 2060, with a 
2000 baseline. Four 
population growth 
scenarios are modelled, 
that take account of 
urban and non-urban 
populations.  
 

2000, 
2030, 2060 

Population in LECZs 
and 1-in-100-year 
coastal floods zones.  

The population living in LECZs was estimated as 
follows: 2000 (625.2 million); 2030 (879.1-
948.9 million); 2060 (1,052.8-1,388.2 million).  

Not discussed.   
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 KEY DATA SETS AIMS TIME-
FRAME 

EXPOSED 
POPULATION 

ESTIMATE/KEY FINDING MIGRATION  

Jones and 
O’Neill 2016 

• Shared Socioeconomic 
Pathways (SSPs) 

• GPW 2000  

• GRUMP population 

To identify global-scale 
population scenarios for 
the year 2100, including 
populations living in 
LECZ, taking account of 
the SSPs.  

2100 Population residing in  
LECZ (i.e. contiguous 
land area under 10 m 
in elevation that 
borders a coastline).  

The population living in LECZs will change from 
702 million in the year 2000 to between 493-
1,146 million in the year 2100, depending on 
the socioeconomic pathway.  

Different SSPs account for 
human migration 
patterns; migration as a 
function of exposure is 
not discussed.  

Merkens et al. 
2016 

• GRUMP population dataset  

• GRUMP urban extent grid 

• SRTM v4.1 DEM 

• GTOPO30 DEM (for high 
latitudes) 

• IIASA national urban and 
rural population projection 
until 2100 

• urbanisation rates data 
(NCAR) 

• country economic growth 
rates  

Spatial projections of 
global coastal 
population distribution 
for the five basic Shared 
Socioeconomic 
Pathways (SSPs).  

2000, 
2050, 2100 

Population living in 
LECZs (<10 m above 
sea level).  
 

With 2000 as a baseline, the population living 
in LECZs will change from 637 million to - 
depending on the societal scenario chosen - 
1,005-1,091 million by 2050 and 830-1,184 
million by 2100. Asia expects the highest 
absolute growth and Africa the highest relative 
growth.  
  

Explicitly includes coastal 
migration drivers to 
develop nuanced 
accounts of coastal 
populations for different 
SSPs. These can be used 
to assess exposure 
of population to climate-
change impacts. 
 

* indicates publications that are not peer reviewed journal articles. 

ASLR = accelerated sea-level rise 
CIESIN = Center for International Earth Science Information Network 
DCESL = DINAS-COAST Extreme Sea Levels 
DEM = Digital Elevation Model 
DIVA = Dynamic Interactive Vulnerability Assessment 
EROS = Earth Resources Observation Systems 
ETOPO = Earth Topography Dataset 
GDP = Gross Domestic Product 
GSHHG = A Global Self-consistent, Hierarchical, High-resolution Geography Database 
GMSLR = global mean sea-level rise 
GRUMP = Global Rural-Urban Mapping Project 
GPW = Gridded Population of the World 
GTSR = Global Tide and Surge Reanalysis 
IIASA = International Institute for Applied Systems Analysis 
IPCC = Intergovernmental Panel on Climate Change 
LECZ = low-elevation coastal zone 
MODIS = Moderate Resolution Imaging Spectroradiometer 
NCAR = National Center for Atmospheric Research 
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ppmv = parts per million volume 
SLR = sea-level rise 
SRTM = Shuttle Radar Topography Mission 
SSP = shared socioeconomic pathway 
UMD = University of Maryland Dataset 
WASP = Warming Acidification and Sea-level Projector 
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3. Results: Scenarios and Numbers for Population Exposure  

3.1. Overview 

Global and near-global estimates of exposure to SLR and associated hazards variously take into 

account different emission and socioeconomic scenarios, focus on different timeframes and 

geographic scales, and employ different datasets and methods of estimating land area and population 

distributions in coastal zones, from simple inundation models to more complex vulnerability 

assessments (Lichter et al. 2011). Shown in Table 1, the publications found for this review focus on 

three categories of exposure, reviewed in three subsections below, based on definitions in the 

publications: (i) the population impacted by specified levels of SLR; (ii) the number of people living in 

floodplains that are subject to coastal flood events with a specific return period; and (iii) the 

population living in LECZs defined as the contiguous and hydrologically connected zone of land along 

the coast and below 10 m of elevation (McGranahan et al. 2007) or in the “near coastal” zone (i.e. 

within 100 km of a coast). 

The most conservative definition of populations exposed to SLR identifies those living below the future 

projected sea level with potential for permanent inundation. Residence in the projected floodplain 

demarcates exposure to SLR-related impacts, but not necessarily permanent inundation. Residence in 

a LECZ is the broadest definition of exposure to SLR. These three exposure categories are related, can 

be expressed differently among publications (see Table 1), can have ambiguities in their delineation, 

and are sometimes combined in different ways for estimates and models. For example, DIVA (Dynamic 

Interactive Vulnerability Assessment) is an integrated research model of coastal systems that assesses 

climatic and socioeconomic scenarios and considers diverse processes such as SLR, coastal erosion, 

coastal flooding (including rivers), wetland change, and salinity intrusion into deltas and estuaries 

(McLeod et al. 2010). 

3.2. Population impacted by specified levels of SLR 

Eleven publications provide global estimates of the land area and number of people exposed to 

specific levels of SLR at different timescales (Table 1). For example, Li et al. (2009) estimate that based 

on current population distributions, 1 m of SLR would expose 108 million people to potential 

inundation and up to 431 million people at the 6 m increment. Marzeion and Levermann (2014) 

assume 2.3 m of GMSLR per degree of global mean temperature increase; they find that between 

2.2% and 10.5% of the world’s population would be directly exposed to SLR for 1°C and 5°C of 

temperature increase, respectively. Hinkel et al. (2014) estimate that 1.2 m of SLR by 2100 would 

threaten up to 649 million people (4.6% of the world’s population) assuming a global population of 

14.1 billion. Brown et al. (2018) consider climate scenarios of 1.5°C and 2.0°C of warming which 

correlate to different levels of SLR and then estimate the number of people directly exposed to SLR, 

assuming no adaptation, in the years 2050, 2100, and 2300. 

Estimates of the impact of SLR are generally limited to the 21st century (Pardaens et al. 2011, Nicholls 

et al. 1999, Nicholls 2004, Hinkel et al. 2014), perhaps due to the time horizon of socioeconomic 

development and planning and the neatness of 2100 as an event horizon (Marzeion and Levermann 

2014). But given current emission trajectories, SLR will continue over several centuries (Clark et al. 

2016, Le Cozannet et al. 2018, Nicholls and Cazenave 2010). Brown et al. (2018) produce estimates to 

the year 2300, and project that the proportion of global population exposed to SLR in 2300 is 1.5% for 

an aggressive mitigation scenario and 5.4% for a non-mitigation scenario (assuming no population 

growth after 2100). 
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In each of these publications, the primary point of reference, or ‘independent variable’, is GMSLR. 

However, estimates are difficult to compare as they focus on different time scales, use different 

GMSLR values linked to different climate scenarios, and make differing assumptions about population 

size and distribution. Nonetheless, they convey the scenarios and numbers of people living in places 

that would be below global mean sea level and permanently inundated, if no other adaptation 

responses are implemented (which is a big assumption). 

3.3. Population Living in Coastal Floodplains  

Thirteen publications focus on global coastal floodplains based on SLR with particular return periods 

under present and future scenarios (Table 1). Return periods for heights are available via the Global 

Tides and Surge Reanalysis (GTSR) dataset which provides data on storm surges and extreme sea-

levels for the entire world's coastline and provides estimates of extreme sea levels with a 1-in-100-

year return period (see Muis et al. 2016). Brown et al.’s (2018) estimates to the year 2300 (section 

3.2) apply to the coastal floodplain as well. Neumann et al. (2015) estimate the number of people 

living in the 1-in-100-year coastal floodplain at three points in time: 189 million people in 2000, 

between 283-286 million people in 2030, and between 316-411 million people in 2060. 

While these analyses of exposure to coastal floods can inform adaptation planning and policymaking, 

they are constrained by methodological limitations, computational restrictions, and lack of consistent 

datasets (Vousdoukas et al. 2018). Many studies use the simple ‘bathtub method’ to estimate global 

impacts of SLR and associated coastal flooding (Lichter et al. 2011, Hinkel et al. 2014) in which a pre-

determined flood surface is projected onto a digital elevation model. Yet some studies suggest a 

pronounced reduction in coastal flood exposure when estimates account for hydrodynamic processes, 

namely water level attenuation in coastal flood plains due to vegetated surfaces, or the role that 

wetlands play in offsetting SLR through soil building (McLeod et al. 2010, Vafeidis et al. 2019). 

Conversely, other local-level studies that combine SLR estimates with wave and erosion models, find 

there is considerably more land at exposed to flooding or erosion due to SLR than is shown by simple 

passive flood mapping (Anderson et al. 2018). 

Furthermore, while the concept of return periods - e.g. a 1-in-100-year flood event - is widely used in 

estimating land area and population exposure to coastal floods, this assumes an unchanging or 

“stationary” climate in the past and in the future. Given climate change, this is no longer an 

appropriate way in which to convey coastal flood risk, with SLR and shifts in the frequency and 

intensity of storms influencing the return periods (Gilleland et al. 2017). Finally, maximum flood height 

is only one parameter characterising the potential hazard, as adaptation measures, duration of 

flooding, and contaminants are also key hazard dimensions. Nonetheless, these estimates highlight 

that continued climate change is projected to lead to greater exposure of populations to coastal 

flooding and related impacts such as erosion and saltwater intrusion. 

3.4. Population Living in Low-Elevation Coastal Zones (LECZs) 

Twelve publications provide global estimates of the number of people living in LECZs, as an indicator 

of exposure to SLR and coastal flooding (Table 1). Many large cities (e.g., Shanghai, Kolkata, Jakarta, 

London, and New York City) are situated at least partially within LECZs. McGranahan et al. (2007) find 

that 618 million people were living in LECZs in 2000, while Lichter et al. (2011) estimate that the 

population living in LECZs ranges from 557.1 million to 709.1 million. Variations in estimates are 

determined largely by dataset choice. Studies have also projected future population numbers living in 

LECZs. They find that by 2100, LECZs population could be as low as 492.7 million in a world of 

increasing socioeconomic inequality with low-income growth (Jones and O’Neill 2016) and as high as 
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1.2 billion in the highest economic growth scenarios (Jones and O’Neill 2016, Merkens et al. 2016). 

Other studies have estimated that, with high population growth, as many as 1.4 billion people could 

inhabit LECZs by as early as 2060 (McGranahan et al. 2007, Neumann et al. 2015, Vafeidis et al. 2011). 

While McGranahan et al. (2007) state that LECZs are a defensible measure of exposure to SLR because 

elevation data below 10 m are not reliable, others warn that given the uncertainties inherent in 

elevation and population datasets, any LECZ estimates should be regarded with caution and with 

reference to methods and datasets used (Lichter et al. 2011, Mondal and Tatem 2012). Living in a LECZ 

does not necessarily entail current or future exposure to SLR-related hazards, as flooding is not a 

certainty and because of the wide variety of potential adaptation measures (Yamamoto and Esteban 

2014), but estimates draw attention to the concentration of populations and physical assets in LECZs. 

4. Challenges of Measuring Population Exposure to Sea-Level Rise 

This review found numerous challenges in the literature when measuring population exposure to SLR 

and related impacts. The estimates are based on gridded datasets that include digital elevation models 

(DEMs), flooding and extreme sea-levels, and population distribution. Hinkel et al. (2014), Lichter et 

al. (2011), and Mondal and Tatem (2012) have shown that estimates of land and population exposure 

to SLR and coastal flooding vary significantly according to which datasets are employed. Final 

estimates depend on the input data, and decisions about key parameters such as time horizons, 

warming scenarios, and ecological or socioeconomic processes and feedbacks including adaptation 

measures assumed. Four main challenges are discussed here based on our review and analysis. 

First, estimates of populations exposed to SLR rely on elevation data to define zones of inundation or 

potential hazard parameters (Ericson et al. 2006, Lichter et al. 2011, McGranahan et al. 2007, Small 

and Nicholls 2003). Global DEM datasets include GLOBE which combines six gridded DEMs and five 

cartographic sources; the US Geological Survey GTOPO30 which combines eight raster and vector 

sources of topographic information; and the Shuttle Radar Topography Mission (SRTM) elevation data 

with a vertical resolution of 1 m and spatial resolution of approximately 90 m at the equator (Brown 

et al. 2018, Lichter et al. 2011, McGranahan et al. 2007). Any DEM has vertical and horizontal 

uncertainties (Wolff et al. 2016). For example, while there are enhanced versions of SRTM data (see 

Kulp and Strauss 2019, Mondal and Tatem 2012), SRTM datasets have uncertainties in urban and 

forested areas where radar technologies capture infrastructure or tree elevation as opposed to ground 

elevation (Dasgupta et al. 2011, Marzeion and Levermann 2014). Global mean error in SRTM’s 1–20 

m elevation band has been found to be 1.9 m (and 3.7 m in the US) (Kulp and Strauss, 2019). Choice 

of DEM also has significant effects on estimates. Hinkel et al. (2014) found the estimated number of 

people flooded according to the GLOBE elevation model to be double that calculated using the SRTM 

elevation model, and Kulp and Strauss (2019) found that using CoastalDEM instead of SRTM resulted 

in estimates of population exposure to extreme coastal water level that were three or more times 

higher. Improvements in elevation datasets are required to enable accurate estimates of land area 

exposure (Gesch et al. 2009). 

Second, estimating coastal floodplains and potential coastal flooding requires datasets on extreme 

sea levels. A significant limitation of flood analysis at all scales is limited availability of accurate 

datasets (Gesch et al. 2009, Mondal and Tatem 2012, Neumann et al. 2015). In their analysis of coastal 

flood exposure, Muis et al. (2017) found that correcting vertical data of sea-level extremes and land 

elevation for two sea-level datasets - DINAS-COAST Extreme Sea Levels (DCESL) dataset and the Global 

Tide and Surge Reanalysis (GTSR) dataset - resulted in an increase of 16% and 20% respectively in flood 

exposed land, and 39% and 60% respectively for exposed populations. Moreover, there are other 

drivers of flooding including storm intensity, and climate change affects frequencies, magnitudes, and 
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tracks of storms thereby yielding low confidence in how storm surges and extreme sea levels may alter 

over time (Brown et al. 2018, Knutson et al. 2019, Marzeion and Levermann 2014). Hazard parameters 

must be set within models, but it is not always clear which hazard parameters to select, or whether to 

select extremes or means. 

Third, estimates of population exposure to SLR require population distribution datasets. Key datasets 

are the Gridded Population of the World (GPW), the Global Rural Urban Mapping Project (GRUMP), 

and LandScan Global Population database, all of which are developed from census data. Census data 

are available by census accounting units, with uncertainty in the spatial distribution of populations 

within each unit. GPW was the first global and widely available dataset that transformed census data 

to a grid; it emphasises input data rather than modelling distributions (Nicholls et al. 2008a). GRUMP 

combines population data with census units, allocating people into urban or rural areas to coincide 

with UN estimates and using an urban extent assessment derived mostly from the night-time lights 

dataset of the US National Oceanic and Atmospheric Administration (NOAA) (CIESIN, IFPRI, the World 

Bank and CIAT 2011, McGranahan et al. 2007, Mondal and Tatem 2012). LandScan disaggregates 

census data within administrative boundaries based on weightings derived from land cover data, 

proximity to roads, slope, and populated areas (Mondal and Tatem 2012, Bhaduri et al. 2007). As 

always, all these datasets have limitations. Spatially detailed census data are often not available for 

low-income countries; some census data are over 10 years old; informal settlements and 

undocumented people might not be accounted for in census data; and datasets that use night-time 

lights as a proxy for population can miss smaller coastal settlements with limited development and 

where electricity supply is intermittent or unavailable (Dugoua et al. 2017). Different datasets produce 

differing population distributions. An analysis of variation in estimates of populations in LECZ as 

derived from LandScan and GRUMP found that eight of the top ten locations with the largest 

differences in estimates were small low-lying island countries or territories, including for example 

Tuvalu (Mondal and Tatem 2012). Consequently, the limited spatial resolution of census data means 

there is uncertainty as to the location of populations relative to SLR and its related hazards (Small and 

Nicholls 2003, Foley 2018). 

Finally, many studies set specified levels of future GMSLR based on different emission and warming 

pathways over the coming decades, centuries, and millennia (e.g., Brown et al. 2016, Clark et al. 2016, 

Mengel et al. 2016, Pfeffer et al. 2008). Debates regarding GMSLR estimates and forecasts relate to 

spatial variations, temporal uncertainties, rates of ice mass loss especially from Greenland and 

Antarctica, ocean dynamics, emission scenarios, and changes in gravity associated with water mass 

redistribution, leading to significant regional variations from the global mean (Clark et al. 2016, Geisler 

and Currens 2017, Jevrejeva et al. 2016, Mengel et al. 2016). Subsidence and isostatic uplift further 

affect local sea level projections (Erkens et al. 2015, Brown and Nicholls 2015, Hinkel et al. 2014). 

There are temporal uncertainties in forecasting GMSLR associated with projected rates (e.g., Bindoff 

et al. 2007, Solomon et al. 2007); natural, multi-decadal oscillations (Sérazin et al. 2016); and the pace 

of ice mass loss from the Greenland and Antarctica ice sheets (Jevrejeva et al. 2016, Tol et al. 2006, 

Hansen 2007, Nicholls et al. 2011, Pfeffer et al. 2008). Thus, future GMSLR is uncertain, something 

that many studies address by using higher and lower bounds of GMSLR in their analyses (IPCC 2019, 

c.f. Marzeion and Levermann 2014). 

In summary, reliability of the estimates of both current and future population exposure to GMSLR and 
related hazards depend on the reliability of input datasets, with precision not always reflecting 
accuracy. Global quantitative estimates rely on global datasets, yet there are widely acknowledged 
challenges in estimating land elevation, extreme sea levels, population distribution, and GMSLR 
scenarios. These problems are amplified for studies seeking to estimate population exposure to 
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GMSLR in the future. For example, the uncertainties in current population distribution estimates mean 
that future estimates also have large uncertainties. 
 
5. Relevance of Population Exposure to Sea-Level Rise for Migration 

While noting the challenges of estimating population exposure to SLR, most global estimates are in 

the order of tens or hundreds of millions of people exposed to coastal inundation and coastal flooding 

for different timeframes and scenarios. Given the current and expected impact of SLR, exposed 

populations must adapt (Murphy 2015). Adaptation to SLR and related hazards is widely defined under 

three main categories (Brown et al. 2016, Dronkers et al. 1990, IPCC 2019): (1) protection (measures 

reducing the parameters or likelihood of inundation in a specific location); (2) accommodation 

(policies or actions to live with the consequences of SLR); and (3) migration or relocation (planned 

movements of populations, sometimes termed ‘managed retreat’ or ‘managed realignment’). Despite 

the possibility for different adaptive measures to SLR, migration or relocation - also variously referred 

to as retreat, displacement, resettlement, realignment, evacuation, and abandonment - has received 

significant attention in public and policy discussion. 

First suggested in the 1970s (e.g. Brown 1976), the term ‘environmental refugee’ was the focus of 

much debate before being largely discredited on the basis of its legal definition, since the United 

Nations (UNHCR 1951/1967) does not include any environmental basis for claiming or granting 

refugee status. Additionally, the multi-causal nature of migration (Ayeb-Karlsson et al. 2018, Felli and 

Castree 2012, Fiddian-Qasmiyeh et al. 2016, Foresight 2011) undermined concepts of environmental, 

climate, and climate change refugees, along with increasing resistance among residents of small island 

states to narratives of disappearing islands and population displacement as iconic examples of the 

threat of climate change (Farbotko 2010). Nonetheless, a recent ruling by the United Nations in 

response to a protection claim from a resident of Kiribati (OHCHR 2020) referred to ‘climate change 

refugees’ as people where ‘the risk of serious harm arises from environmental factors indirectly caused 

by humans, rather than from violent acts’ (OHCHR 2020, p 8). There are also emerging studies 

documenting early cases of human migration and relocation linked to the perceived impacts of SLR 

(c.f. McMichael and Katonivualiku 2020). Some countries – e.g. Micronesia, the Marshall Islands, the 

Solomon Islands, Fiji, and Kiribati – are developing policy and practice responses that include migration 

and planned resettlement of vulnerable populations in response to perceived climate impacts such as 

SLR (Hauer et al. 2020). Despite the discursive, legal, and policy developments that link SLR to human 

migration, as well as emerging examples of low-lying places where SLR is considered a key climate 

change-related hazard which could affect migration decision-making, the question remains as to how, 

where, and to what extent population exposure to SLR might shape human mobility globally. 

Twenty of the 33 publications reviewed in this article discuss connections between population 

migration and SLR. For example, Nicholls et al. (2011) suggest that 2 m of SLR by 2100 yields the risk 

of ‘forced displacement’ of up to 187 million people. They suggest that, although displacement is 

avoidable through protection, the likelihood of protection being successfully implemented is lowest 

in small islands, Africa, and parts of Asia, hence these regions are likely to experience coastal 

abandonment. Brown et al. (2018) note that although people may not want to move from their coastal 

sites, in some places this may be the most viable option, highlighting low-lying settlements in Fiji, the 

Maldives, and Panama. Kulp and Strauss (2019) suggest that coastal communities must prepare for 

difficult futures including large-scale migration away from coastlines, and they call for global modelling 

that accounts for the timing, locations, and scale of human migration in response to worsening coastal 

flooding. Nicholls et al. (2008b) consider the scenario of West Antarctic Ice Sheet collapse (WAIS) 

producing 5 m of SLR, and consequent land loss that would lead to forced migration. Rowley et al. 
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(2007) suggest that inundation of coastal land due to SLR could displace millions of coastal residents, 

with up to 430 million people affected by SLR of 6 m. 

Other studies that focus on wider SLR-related hazards such as coastal flooding have also suggested 

migration will be a key response. For example, Hinkel et al. (2014) argue that where protection is not 

in place, populations will move in response to growing flood risk. McGranahan et al. (2007) note that 

migration represents a key risk reduction strategy for populations in coastal lowlands, albeit a costly 

and disruptive form of adaptation. Given that exposure to SLR is not a reliable proxy indicator for 

migration, none of these studies rigorously or reliably quantifies the number of people who might be 

expected to move due to SLR or could do so. Beyond estimates of exposure, the connections between 

SLR and migration are complex and uncertain. 

Consequently, population exposure to SLR and related impacts should not be conflated with inevitable 

migration. As has been widely noted, migration decisions are shaped by more than environmental 

factors, including economic, social, demographic, institutional, and political dimensions (Ayeb-

Karlsson et al. 2018, Felli and Castree 2012, Fiddian-Qasmiyeh et al. 2016, Foresight 2011, Hauer et al. 

2020, Nicholls et al. 2008a). SLR could generate ‘trapped’ populations who have a desire to move but 

not the necessary resources, and there will be those who prefer not to move for social, cultural, and 

political reasons including place attachment (Farbotko and McMichael 2019). 

Further, migration can be prevented or forestalled through other adaptive strategies. Nicholls et al. 

(2010) emphasise that humans have historically adapted to coastal change, and many of the world’s 

most populated coastlines and coastal cities are currently managed and engineered for flood risk (see 

also Hallegate et al. 2013). Over the 20th century, coasts have subsided by up to 5 m in Tokyo, 3 m in 

Shanghai, and 2 m in Bangkok; these cities depend on flood- and water management infrastructure to 

prevent further submergence. Some countries and cities with large coastal populations will try to 

adapt in situ (Davis et al. 2018). Indeed, Lincke and Hinkel (2018) suggested that for 90% of exposed 

populations, who live on only 13% of the world’s coasts, it will be cost-effective to protect. Nicholls et 

al. (2008b) find that even in the scenario of the WAIS collapse, significant lengths of the world’s 

populated coast could be defended, thereby significantly reducing migration. 

Publications (including ten from this review) make the important point that coastal populations are 

growing due to migration into urban sites which increases population exposure to SLR (c.f. Hinkel et 

al. 2014, Kummu et al. 2016, McGranahan et al. 2007, Muis et al. 2017, Neumann et al. 2015, Nicholls 

2004, Small and Nicholls 2003). Jones and O’Neill (2016) suggest that models of future population 

distribution do not adequately account for the potential impacts of climate change. They argue that 

population distribution may be shaped by migration away from inland drought-affected regions and 

into coastal areas, and that population projections should include these parameters. These 

considerations highlight that populations are not static unless affected by SLR and related impacts. As 

the migration and mobilities literature has long explained (e.g. Fiddian-Qasmiyeh et al. 2016), people 

continually move into and away from sites for numerous reasons, including coasts, so any estimates 

are subject to large uncertainties. These uncertainties do not decrease due to exposure to SLR. 

Studies with a tighter geographic focus address some of these challenges, as they draw on datasets 

with higher spatial resolution and can include parameters that address the specificities of local social, 

economic, demographic, and political contexts (c.f. Chen and Mueller 2018, Hauer 2017). For example, 

Davis et al. (2018) modify a diffusion-based model of human mobility in combination with population, 

elevation, and climatic data to forecast SLR-driven migration in Bangladesh in the years 2050 and 2100. 

They predict that 0.9 million people by 2050 and 2.1 million people by 2100 could be displaced by 

permanent inundation, predominantly within the southern half of Bangladesh. Hauer (2017) focuses 
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on populations in the US, estimating both the number and destinations of potential SLR migrants by 

2100. The analysis uses county-level projected population data, county-to-county migration flow data, 

and household economic status while assuming a 1.8 m SLR scenario, in order to simulate expected 

impacts. Hauer (2017) finds that by 2100, every US state and 56% of counties could be affected by 

SLR-related migration, of people moving either in or out. 

Another advantage of more localised studies is that they can account for other environmental changes 

and coastal geomorphology that interact with SLR such as pre-existing subsidence, coastal erosion due 

to ecosystem destruction (e.g. wetlands, mangroves, and coral reefs), land use changes, or 

groundwater extraction (Arkema et al. 2013, McLeod et al. 2010). Here, SLR and associated coastal 

change, might be a necessary but not sufficient driver of migration. For example, research in Louisiana 

illustrates that 5,000 km2 of coastal land has been lost since 1932 – due to local, regional, and global 

factors driving relative sea level change – yet Louisiana’s population has not moved landward in 

concert with observed shoreline encroachment (Hauer et al. 2019). While this article is specifically 

examining global or near-global estimates for considering the implications of SLR and associated 

impacts, such as potential migration, more localised studies might be more appropriate. 

Nonetheless, data are not readily available in many places identified as vulnerable to the impacts of 

SLR. For example, in 2014, residents of the small coastal village of Vunidogoloa, Fiji relocated from the 

foreshore to a higher site within their customary mataqali (i.e. clan) land. Over recent years and 

decades, villagers experienced high tides that regularly flooded their homes and village land, coastal 

erosion which led to the loss of some homes, storm surges, and saltwater intrusion. Earlier efforts to 

adapt included ad hoc relocation of houses and construction of two seawalls. The entire village 

relocated in January 2014, with the support of the Government of Fiji and donor organisations as well 

as significant community input and resources. Villagers consider their relocation to be driven by 

climate change, specifically SLR impacts (McMichael et al. 2019). It is referred to and labelled by the 

Government of Fiji and institutions and donor organisations as a climate change-related relocation 

(c.f. The Fijian Government 2019). 

Yet, many coastal sites are not well-represented in global gridded population and elevation datasets. 

An assessment of Pacific island countries and territories found that LandScan tended to overestimate 

numbers of Fijians in urban centres and GPWv4 tended to over-disperse the population, resulting in a 

smoothed population distribution rather than small dispersed settlements and urban centres (Andrew 

et al. 2019). Moreover, SRTM elevation data could be unreliable in Fiji since SRTM imagery has large 

errors for sites vegetated with mangroves and evergreen tree cover (Hawker et al. 2018). 

Furthermore, there is limited coastal monitoring in Fiji and other Pacific island countries to determine 

the extent to which coastal erosion and flooding are attributable to climate change related SLR, as 

opposed to other coastal geomorphology processes associated with subsidence, or human activity 

such as river dredging and removal of mangroves (Singh et al. 2019). Vunidogoloa is an example of 

planned relocation in which emerging, local, coastal exposure aligns with the types of impacts 

expected with SLR, yet the resolution of global and regional SLR exposure estimates is too coarse to 

generate meaningful assessment of the causes of local coastal changes. 

6. Conclusions 

Coastal zones are some of the most densely populated areas in the world and include many of the 

world’s large cities and many of the fastest growing urban areas (Brown et al. 2018, Smith 2011). There 

are also coastal zones with small settlements and villages, such as those in outer islands of small island 

states or rural areas of Belize and Bangladesh. This review shows that the existing estimates of 

population exposure to GMSLR and related hazards largely depend on the reliability of input datasets 
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and the methodologies adopted. The underlying uncertainties in the elevation datasets continue to 

result in significant differences in the estimates. Another limitation in the literature arises from the 

spatially gridded population datasets that are still unable to produce reliable high-resolution estimates 

in the lowest-lying coastal areas. The uncertainties in the current population distribution likely mean 

that future estimates will have large uncertainties. Low statistical confidence levels associated with 

extreme sea levels datasets are also common, especially regarding the vertical data of sea level 

extremes and land elevation. Finally, despite the fact that future estimates of GMSLR are uncertain, 

many existing studies do not provide confidence limits of their estimates of population exposure. 

Irrespective of the uncertainties, the literature converges on the point that coming decades and 

centuries will see SLR radically redefine the world’s coastlines (Taherkhani et al. 2020). Global and 

near-global population estimates with their ranges highlight the large numbers of people exposed to 

SLR, both now and in the future. Even with climate change mitigation and more stable global 

temperatures, the land area and population exposed to SLR seem likely to continue increasing for 

centuries (Nicholls and Lowe 2004, Hauer et al. 2020), so climate change adaptation is still required of 

which population mobility is frequently highlighted. 

SLR has the potential to shape population mobility at all scales (Hauer et al. 2020). There are significant 

and long-term implications of SLR-related hazards for coastal habitation (Brown et al. 2018). Migration 

and relocation are ways for people to adapt to environmental and climatic changes (Black et al. 2011, 

Murphy 2015), and migration has been a way of responding to shifting coastlines throughout human 

history (Fiddian-Qasmiyeh et al. 2016). The main difference today is that climate and coastal changes 

contributing to human migration are increasingly human-induced, so global and national policy and 

practice debates are examining this topic. 

Whether or not improved global estimates of population exposure to SLR are needed for policy and 

decision-making is debatable. Global estimates give a sense of the scale and distribution of exposure, 

but many other factors are needed for understanding and managing potential impacts and for 

planning for adaptation locally. Paramount are the moral, ethical, and legal debates regarding 

population stabilisation, land ownership, resources available, and decision-making for moving or 

staying. This review’s value in these discussions is demonstrating that (i) despite the uncertainties and 

unknowns, it is clear that coastal changes and consequences for populations will be large and require 

significant action, (ii) there is time now to consider thoroughly the situations and options, so this 

should be done rather than waiting for more urgency, and (iii) many aspects of the topic need to be 

decoupled to avoid repeating myths or reproducing discursive narratives that uphold global power 

relations, especially those covering ‘climate refugees’ (Kelman 2019, Ayeb-Karlsson 2020). 

For example, this review shows that the (imprecise) global estimates of population exposure to SLR 

are inaccurate proxies for estimates of SLR-related migration. Migration decisions are shaped by more 

than exposure to environmental changes (Fiddian-Qasmiyeh et al. 2016); people may be trapped or 

choose to remain in sites of high exposure; people move into sites of exposure; and migration can be 

prevented or delayed through other adaptation and accommodation measures. It is necessary to 

connect SLR-related hazards to human migration at the temporal and spatial scale of lived experience 

and decision-making. More work is needed to better understand how to ensure that policies and 

decision-making focus on the research findings rather than the rhetoric, especially regarding how SLR 

interacts with other factors to shape migration decision-making. 

A key area for further research could be to understand the ways in which adaptation measures (e.g. 

protection, accommodation, or migration) to SLR are shaped by wealth, including at the societal, 

household, and individual level. While some continue to highlight GDP (e.g. Kirezci et al. 2020), this 
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indicator is known to have such severe limitations that robust and meaningful results for policy and 

decision-making would be much better obtained by extracting information from micro surveys. 

Additionally, economic analyses suggest that managed migration might be cost-effective for the 

majority of the world’s coastlines while protection might be pursued selectively in sites with dense 

populations and assets (Diaz 2016, Jevrejeva et al. 2018). To illustrate, Hauer (2017) assumes that 

wealthier households in the US (earning more than US$100,000 per year) are more likely to adapt to 

SLR in situ, and thus unlikely to migrate. Economic analyses cannot fully account for intangible costs, 

such as health impacts, disrupted place attachments, and loss of culture and wellbeing, so further 

work should do so. 

This work should also include focusing on improving terrain elevations in urban and coastal settings. 

Furthermore, although this review covers a global phenomenon, more localised studies are needed to 

better examine locally driven environmental stressors and coastal geomorphology. This will require 

developing coastal area elevation datasets by combining local terrain information with high-resolution 

satellite data. One other input into this work is considering scenarios of the Greenland and/or 

Antarctic ice sheets melting rapidly, because then, adapting in situ might not be an option for many. 

Understanding the drivers and any tipping points for SLR-related migration requires more detailed 

investigation, which then circles back to the decision-making for adaptation. As this review shows, 

without ice sheets melting, GMSLR might not exceed the maximum sea level since the last ice age 

(Dickinson 2009) until next century, in the absence of action related to climate change. Ice sheet 

melting provides substantially worse scenarios. Decisions need to be made over the next century 

considering these two widely divergent possibilities. 

Thus, global and near-global estimates of SLR-related population exposure and their relevance for 

migration highlight (i) widespread impacts of human-caused climate change with the single 

phenomenon of GMSLR affecting a significant proportion of the human population and (ii) challenging 

circumstances for deciding how to act, considering the wide-ranging options from population 

stabilisation to engineering coastlines to moving away from the current shores. These decisions might 

be helped by spatial distribution and resolution of global datasets improving significantly to enable 

more reliable quantitative assessments of population exposure to SLR and related impacts, but 

decision-making should not wait for them, instead planning now for the various decision pathways. 

Meanwhile, people in LECZs are increasingly reporting environmental changes that are potentially 

attributable to SLR. At this local scale, more effort is needed to understand the complex interactions 

between localised SLR and related hazards, local social contexts and potential strategies regarding 

demographics, migration, and (im)mobility. 
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