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ABSTRACT
We propose a novel neural network architecture, named the Global
Workspace Network (GWN), which addresses the challenge of dy-
namic and unspecified uncertainties in multimodal data fusion.
Our GWN is a model of attention across modalities and evolv-
ing through time, and is inspired by the well-established Global
Workspace Theory from the field of cognitive science. The GWN
achieved average F1 score of 0.92 for discrimination between pain
patients and healthy participants and average F1 score = 0.75 for
further classification of three pain levels for a patient, both based
on the multimodal EmoPain dataset captured from people with
chronic pain and healthy people performing different types of exer-
cise movements in unconstrained settings. In these tasks, the GWN
significantly outperforms the typical fusion approach of merging
by concatenation. We further provide extensive analysis of the be-
haviour of the GWN and its ability to address uncertainties (hidden
noise) in multimodal data.
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1 INTRODUCTION
Reasoning about and interpreting multiple sources of information
concurrently is an important task in machine learning research as
life involves streaming of data from multiple modalities [9]. Mul-
timodal data fusion, which leverages the combination of multiple
modalities, is a valuable strategy [3, 14, 26, 38]. Its benefits include
complementarity of information, higher prediction performance,
and robustness [9]. However, multimodal fusion comes with chal-
lenges; [32] specifies them under two categories: (1) challenges of
multimodal data acquisition, and (2) uncertainties (such as noisy
modalities, missing values, conflicting information) in multimodal
data. The former type of challenges could be managed with later
pre-processing, e.g. resampling to reconcile different temporal reso-
lutions across modalities [4]. However, addressing uncertainties in
multimodal data requires specialised design of models that can ex-
ploit complementarity or discrepancy across modalities [32]. While
there have been approaches such as [58] that address the particular
problem of missing modalities, fusion of multimodal data with vary-
ing types or levels of uncertainty (e.g. noise) which are not known
apriori has been less investigated. Findings of the efficacy of auto-
matic learning of weights (e.g. some “importance” or “confidence”
metric) for individual input features [1, 31, 36, 57, 60], the basis of
attention mechanisms in machine learning [8], suggests that this
may be a more relevant approach to factoring uncertainties into
multimodal data fusion. However, while uncertainty also evolves
through time [32], the typical attention approach has been uni-
dimensional, i.e. attention across modalities alone or attention over
time within individual modalities, e.g. in [11]. Few studies have
explored the propagation of attention across modalities through
time. The memory fusion network of [59] which is based on a
cross-modality attention module with a memory is one of such rare
cases.

To address this gap in multimodal data fusion, we propose the
Global Workspace Network (GWN) which, like [59], propagates
cross-modality attention through time. However, unlike previous
work, the GWN further addresses the problem of differences in fea-
ture dimensionalities of the modalities via a common feature space,
based on pre-trained autoencoders. In addition, different from [59],
our approach is bio-inspired (grounded in the Global Workspace
Theory [6, 7]) and we implement the GWN’s cross-modality atten-
tion using the widely-tested transformer architecture [52].
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The Global Workspace Theory (GWT) is a well-developed frame-
work (originally proposed as a model of human consciousness [5])
in cognitive science. The GWT states that concomitant cognitive
processes compete for the opportunity to broadcast their current
state (to peer processes) [21]. At each iteration, the winner (a single
process or a coalition of processes) earns the privilege of contribut-
ing current information in a global workspacewhich can be accessed
by all processes (including the winner) [49]. This competition and
broadcast cycle is believed to be ubiquitous in the perceptual regions
of the brain [5]. Although the literature on GWT includes architec-
tures of biologically-realistic spiking neural networks [21, 49], to
our knowledge, there has been no direct implementation inmachine
learning. For such implementation, the GWT can be conceptualised
as the combination of a compete-and-broadcast procedure and an
external memory structure. In contrast to the global workspace,
which can be seen as a communication module, the external mem-
ory stores information for later use [48]. By considering eachmodal-
ity in multimodal data as analogous to specialised processes in the
brain, the similarity between the compete-and-broadcast cycle and
typical cross-modality attention mechanism becomes clear. The
repetitiveness of the cycle allows the pattern of attention to evolve
over time and, given the external memory module, be used in the
primary prediction task of the network.

In our implementation of the GWN, the transformer [52] was
leveraged to simulate the compete-and-broadcast component of
the GWT, and the Long Short-Term Memory (LSTM) neural net-
work [22, 25] as its external memory. There are 3 key elements of
transformers that illustrate their advantage and relevance to the
current task. First is a self-attention mechanism [15, 47] that we
use as the GWN’s compete-and-broadcast procedure, where each
modality independently scores all modalities and integrates the
data from them based on the resulting weights. A second merit
is the transformer’s bagging approach, where multiple attention
patterns are learnt in parallel, with the advantage of increased ro-
bustness. Finally, a third valuable attribute is its memory-based
structure [51, 55]. Drawing from traditional applications in Natural
Language Processing question answering tasks [43, 51], this unit
further maps the feature vector into query, key, and value spaces to
increase the weighting depth and robustness [27]. This additionally
enables distributed competition versus broadcasting computations.
In essence, the query and key forms can be used for the competition
while broadcast is performed on value form, which can have more
expressive information that is not valuable for the competition. As
for the external memory module, in contrast to the use of a custom
two-gated recurrent network in [59], we used the well-established
LSTM which has two additional gates [37]. Finally, unlike [59], we
provide extensive analysis of the behaviour of the GWN in the
presence of varying degrees of uncertainties across modalities and
over time.

The contribution of this paper is the GWN architecture which we
propose as an approach to fusion of sequential data from multiple
modalities. We evaluate the architecture on the EmoPain dataset [4],
which consists of motion capture and electromyography (EMG) data
collected from patients with chronic lower back pain and healthy
control participants while they performed exercise movements.
While the EMG has four feature dimensions, the motion capture
data comprises 78 dimensions. Further, we provide analysis of the

GWN’s outputs, demonstrating its effectiveness in handling uncer-
tainty in data.

The paper is organized as follows. We discuss the state of the art
in attention-based machine learning in Section 2. We then describe
in Section 3 the proposed GWN architecture that builds on these
and present both validation and analysis of the network in Section 4.
Section 5 concludes the paper.

2 RELATEDWORK
As earlier-stated, there have been different approaches to multi-
modal fusion. For example, [33] simply concatenated vectors from
individual encoders for each modality. The architecture of [58],
which was mainly tested on non-sequential inputs, learns both in-
dividual encodings as well as a common encoding for the different
modalities. For the joint encoding in [58], the individual encodings
are merged by multiplication. Rather than cover the literature on
multimodal data fusion, we refer the reader to [10] for a compre-
hensive review and focus our discussion here on attention-based
approaches to multimodal data fusion.

Attention over time in multimodal fusion. In the literature
on neural networks for multimodal data, attention performed on
the time axis is usually done separately for each modality, and
the resulting context vectors from each modality are then fused
as non-temporal features. A representative case of this approach
is the Recursive Recurrent Neural Network (RRNN) architecture
proposed by [11]. In their work, different modalities (video, audio,
and subtitles) extracted from a subtitled audiovisual dataset were
divided into segments of uttered sentences and each segment was
used an input to the network. For each modality in a segment, a
bi-directional LSTM layer was used to extract features. At a given
time step, attention computation is performed for each modality
separately and the outputs are concatenated over all modalities
together with the current state of a shared memory, which the
authors implemented with a Gated Recurrent Unit (GRU) cell [16].
The outcome is then used to update the state of the memory. An
advantage of this work is that since each modality was encoded
separately, they do not have to follow a common time axis, which
allows each modality to optimally exploit its inherent temporal
properties. However, as this method cannot account for attention
between modalities, different modalities affect the final prediction
equally despite the fact that some modalities could be more noisy
than others. Thus, the challenge of the dynamics of uncertainty
across modalities remains unsolved.

Attention across multiple modalities. Several studies have
modelled the relation between modalities in multimodal fusion.
The typical approach [36, 57, 60] is the use of modality weighting
although not particularly based on attention mechanisms [8]. One
study that does explicitly use the attention mechanism is the work
of [26] on automatic video description. Their approach leverages
attention between different modalities using an encoder-decoder
architecture [8] with separate encoders for each modality and a
single decoder. Features of each modality are encoded separately
and the decoder weights them to generate a context vector as an
output. A similar study [13] applies multimodal attention in neu-
ral machine translation where images are leveraged in translating
the description texts from one language to another. The image



and text modalities were first encoded using pre-trained ResNet-
50 [23] and bi-directional GRU neural networks [16] respectively.
Then, attention scores were computed for these encodings. More
recently, authors of [41] place an attention layer on top of several
modality-specific feature encoding layers to model the importance
of different modalities in book genre prediction. There are many
other works [20, 35, 39, 40] that leverage this technique, i.e. encod-
ing sequential/temporal data for each modality before computing
attention weighting and fusing encoded modality-specific features.
While it is appropriate for obtaining modality-specific feature repre-
sentation, it does not allow in-depth quantification of the complex
interactions between modalities through time.

Attention acrossmodalities and through time.As discussed
in the introduction, [59] addresses the limitation of attention over
time alone or across modality only by considering both the inter-
action of multiple modalities and the temporal variations in this
interaction. Their architecture is based on separate time encoding
of individual modalities. A cross-modality attention is then com-
puted and applied for each time slice. Instead of a single time step
per slice, each slice consists of successive time steps 𝑡 and 𝑡 − 1.
The weighted multimodal encodings for a given time slice are then
fed into a memory module with retain and update gates which
are based on neural networks that have the encodings as input.
A recurrent update is done using the gate outputs, the previous
memory state, and the proposed memory state which is also the
output of a neural network computation on the encodings. The
findings of [59] in a set of ablation studies suggest that propagation
of attention through time improves prediction performance. The
GWN architecture that we propose makes further advance with
implementation of the cross-modality attention module based on
the self-attending, multi-head attention transformer architecture
[52]. The GWN additionally addresses the confounding challenge
of different feature and/or temporal dimensionalities across the
modalities to be fused. While [59] evaluate their model on data
with such characteristic, they do not clarify how their architecture
deals with this. In the GWN, we take the approach of learning a
common dimensionality across modalities. Based on further con-
trolled experiments, we also contribute analysis of the effect of
noise in one of the modalities.

3 GLOBAL WORKSPACE NETWORK (GWN)
The architecture of the GWN is shown in Figure 1. The network
consists of five components: an input unit, a mapping block, an at-
tention module, an external memory, and a prediction block. These
components are described in detail below.

3.1 Mapping Inputs to a Common Feature
Space

Consider𝑀 modalities that they have an identical sampling rate,
i.e. for each data instance, each modality𝑚 ∈ 𝑀 in that instance
can be written as {𝒙 (𝑚)

1 , . . . , 𝒙 (𝑚)
𝑇

}, where 𝑇 denotes the common
temporal length (common across modalities) of the data instance.
The dimensionality at a given time 𝑡 may nevertheless be different
across these modalities, i.e. 𝒙 (𝑚)

𝑡 ∈ R𝑑𝑚 . The attention mechanism
of the GWN requires identical dimension across modalities and so,
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Figure 1: The architecture of the GWN. Here the intermedi-
ate matrices X𝑚𝑎𝑝𝑡 , C∗

t , Z𝑡 , and X𝑎𝑡𝑡𝑒𝑛𝑡 have the same dimen-
sionality of𝑀 × 𝐻 .

it is necessary to have a module for mapping the modalities into
the same dimensions.

Inspired by the work of [2] and [12], we take the approach of
using multiple autoencoders [53] that each learn a common feature
space for multiple modalities. Assuming that the common feature
space 𝒄 has a dimensionality of 𝐻 , the mapping function in the
encoder for each autoencoder 𝐸 (𝑚) outputs a vector with dimen-
sionality of 𝐻 . This function can be designed as a feed forward
network with one hidden layer which is activated with the rectified
linear unit (ReLU) [44] non-linearity, i.e.

𝐸 (𝑚)
(
𝒙 (𝑚)
𝑡

)
= max

(
0, (𝒙 (𝑚)

𝑡 W1 + 𝒃1)
)
W2 + 𝒃2 (1)

where 𝒙 (𝑚)
𝑡 ∈ R𝑑𝑚 is the data instance 𝒙 sampled at modality𝑚

and time 𝑡 ; and W1, W2, 𝒃1, and 𝒃2 are trainable parameters of
function. The findings of [17] suggest that such encoding should
be capable of mapping different modalities into a common feature
space. 𝒄 can then be obtained by summing the outputs across the
encoders

𝒄 =
∑
𝑚

𝐸 (𝑚)
(
𝒙 (𝑚)
𝑡

)
(2)

This is based on previous work in [12]. The decoders have the same
form as the encoders, i.e.

𝒙̂ (𝑚)
𝑡 = 𝐷 (𝑚)

(
𝒙 (𝑚)
𝑡

)
= max

(
0, (𝒄W′

1 + 𝒃 ′1)
)
W′

2 + 𝒃 ′2 (3)

where 𝒙̂ (𝑚)
𝑡 ∈ R𝑑𝑚 is the reconstruction of data instance 𝒙 sampled

at modality 𝑚 and time 𝑡 ; and W′
1, W

′
2, 𝒃

′
1, and 𝒃 ′2 are trainable

parameters of decoder. A sum L
(
𝐸 (𝑚) , 𝐷 (𝑚)

)
of the mean squared

error loss for each autoencoder can be used to train the full mapping
module.

L
(
𝐸 (𝑚) , 𝐷 (𝑚)

)
=

∑
𝑚

������𝒙̂ (𝑚)
𝑡 − 𝒙 (𝑚)

𝑡

������2 (4)
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Figure 2: An illustration of the mapping module with two
modalities.

Figure 2 provides an illustration with an example of two modali-
ties mapped into a common feature space and then reconstructed,
based on two autoencoders. After pre-training the autoencoders,
the encoders are used directly as the mapping function in the GWN.
The pre-trained parameters in the encoders then serve as initial
values for the mapping block in the GWN. Though this approach
introduces more learnable parameters, the findings of [24] suggest
that unsupervised pre-training on shallow layers can improve the
performance of a deep network.

For the subsequent attention module, the output vector from
each modality’s mapping are merged by stacking, to form a matrix
X𝑚𝑎𝑝𝑡 ∈ R𝑀×𝐻 .

3.2 The Attention Module
The attention module is a single layer of the transformer encoder
described in [52] with the difference that, in the GWN, the input
is a set of different modalities for a number of data instances at
a specific time 𝑡 , rather than data sequences (i.e. multiple time
steps and instances) based on a single modality. Since the input
X𝑚𝑎𝑝𝑡 ∈ R𝑀×𝐻 is already in matrix form, the following multi-head
attention calculation can be performed:

C∗
𝑡 = concat

(
C1
𝑡 , . . . ,C

𝐾
𝑡

)
WO (5)

where 𝐾 is a set of heads andWO ∈ R𝐾𝐻×𝐻 is a trainable matrix.
Each context matrix C𝑘𝑡 ∈ R𝑀×𝐻 for a specific head 𝑘 ∈ 𝐾 is
calculated as

C𝑘𝑡 = softmax

(
Q𝑘𝑡 K

𝑘
𝑡
⊤

√
𝐻

)
V𝑘𝑡 (6)

The query, key, and value matrices of a specific head 𝑘 at time 𝑡 are
calculated as:

Q𝑘𝑡 = X𝑚𝑎𝑝𝑡 WQ
𝑘

(7)

K𝑘𝑡 = X𝑚𝑎𝑝𝑡 WK
𝑘

(8)

V𝑘𝑡 = X𝑚𝑎𝑝𝑡 WV
𝑘

(9)

Here, the query, key, and value are variations of the input X𝑚𝑎𝑝𝑡 ,
based on the idea of memory-based attention mechanism [43]. Note
that the trainable matricesWQ

𝑘
∈ R𝐻×𝐻 ,WK

𝑘
∈ R𝐻×𝐻 , andWV

𝑘
∈

R𝐻×𝐻 are reused on different time steps 𝑡 but are independent for
different heads 𝑘 .

As shown in Figure 1, there are two residual connections [23] in
the attention module. Each of the residual connection is followed
by a layer normalisation [34]. The first residual connection can be

represented as:

Z𝑡 = layernorm
(
C∗
𝑡 + X𝑚𝑎𝑝𝑡

)
(10)

Here, the assumption of identical dimensionality for residual con-
nection is satisfied as C∗

𝑡 ∈ R𝑀×𝐻 and X𝑚𝑎𝑝𝑡 ∈ R𝑀×𝐻 . The sub-
sequent feed forward layer and the final output of the attention
module, respectively, are:

FFN (Z𝑡 ) = max (0, (Z𝑡W1 + 𝒃1))W2 + 𝒃2 (11)

X𝑎𝑡𝑡𝑒𝑛𝑡 = layernorm (FFN (Z𝑡 ) + Z𝑡 ) (12)

both ∈ R𝑀×𝐻 .

3.3 External Memory
The external memory is implemented as an LSTM cell [25] with
updates:

𝒇 𝑡 = 𝜎
(
[𝒙𝑎𝑡𝑡𝑒𝑛𝑡 ;𝒉𝑡−1]W𝑓 + 𝒃 𝑓

)
(13)

𝒊𝑡 = 𝜎
(
[𝒙𝑎𝑡𝑡𝑒𝑛𝑡 ;𝒉𝑡−1]W𝑖 + 𝒃𝑖

)
(14)

𝒐𝑡 = 𝜎
(
[𝒙𝑎𝑡𝑡𝑒𝑛𝑡 ;𝒉𝑡−1]W𝑜 + 𝒃𝑜

)
(15)

𝒄𝑡 = 𝒇 𝑡 ⊙ 𝒄𝑡−1 + 𝒊𝑡 ⊙ tanh
(
[𝒙𝑎𝑡𝑡𝑒𝑛𝑡 ;𝒉𝑡−1]W𝑐 + 𝒃𝑐

)
(16)

𝒉𝑡 = 𝒐𝑡 ⊙ tanh (𝒄𝑡 ) (17)

where the input vector 𝒙𝑎𝑡𝑡𝑒𝑛𝑡 ∈ R𝑀𝐻 is the flattened form of
X𝑎𝑡𝑡𝑒𝑛𝑡 ∈ R𝑀×𝐻 ; 𝜎 (·), tanh (·), and ⊙ are sigmoid, hyperbolic tan-
gent, and Hadamard product (i.e. element-wise product) functions
respectively. 𝒔𝑡 ∈ R2𝐺 is the recurrent state at time step 𝑡 , and
consists of a memory cell 𝒄𝑡 ∈ R𝐺 and the output 𝒉𝑡 ∈ R𝐺 at
that time step, with 𝐺 as an hyperparameter that indicates the size
of the external memory. The initial state 𝒔0 = [𝒄0;𝒉0] is set with
zeros. 𝒇 𝑡 , 𝒊𝑡 , and 𝒐𝑡 represent forget, input, and output gates re-
spectively [22, 25]. All the gates have the same dimensionality𝐺 .
The output vector 𝒉𝑇 ∈ R𝐺 in the last recurrent state 𝒔𝑇 is used by
the final prediction component.

3.4 Prediction
The final prediction module consists of a feed forward layer with
one hidden layer activated with a ReLU followed by a softmax
function. The layer serves as a simple non-linear transformation
from the external memory and can be applied at any time step,
making it suitable for online prediction with streaming data. The
equations are given as

𝒓 = max (0,𝒉𝑇W1 + 𝒃1)W2 + 𝒃2 (18)
𝒚̂ = softmax (𝒓) (19)

i.e.

𝑦𝑖 =
exp (𝑟𝑖 )∑
𝑗 exp

(
𝑟 𝑗

) (20)

where 𝒓 is the prediction result mapped into the distribution 𝒚̂. Both
𝒓 and 𝒚̂ have the same dimensionality, the size of label 𝐿.
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Figure 3: Number of exercise instances per classes for: (a)
The Healthy-vs-Patient Discrimination Task and (b) The
Pain Level Detection Task.

4 EXPERIMENTS
To evaluate the proposed GWN architecture, we conducted experi-
ments on the multimodal EmoPain dataset [4]. The dataset, data
preprocessing, and experiment tasks are introduced in Section 4.1.
Section 4.2 describes the baseline model used for comparison and
the methods and metrics of this evaluation. Finally, Section 4.3
presents the performance and empirical analyses of the GWN.

4.1 Data
4.1.1 The EmoPain Dataset. The EmoPain dataset [4] is suitable for
exploring the GWN architecture given that it consists of sequential
data from multiple modalities and in unconstrained settings where
there are bound to be uncertainties (e.g. in form of sensor noise) in
the data, and in varying degrees over time. The data was collected
from 22 patients with chronic low back pain and 28 healthy control
participants and includes motion capture (MC) and muscle activity
data based on surface electromyography (EMG). The data for each
participant was acquired while they performed physical exercises
that put demands on the lower back. For each exercise, there were
two levels of difficulty. There is the normal trial, for 7 types of
exercise ((1) balancing on preferred leg, (2) sitting still, (3) reaching
forward, (4) standing still, (5) sitting to standing and standing to
sitting at preferred pace, (6) bending down, and (7) walking). There
is additionally the difficult trial, where four of these exercise types
were modified to increase the level of physical demand, i.e. (8)
balancing on each leg, (9) holding a 2 kg dumbbell while reaching
forward, (10) sitting to standing and return to sitting initiated upon
instruction, (11) walking with 2 kg weight in each hand, starting
by bending down to pick up the weights, and exercises (2) and
(4) repeated without modification. The data was acquired so as to
build automatic detection models for pain and related cognitive
and affective states, and so after each exercise type, patients self-
reported the level of pain they experienced, on a scale of 0 to 10 (0
for no pain and 10 for extreme pain) [28]. In this paper, we used the
subset of the EmoPain dataset with the self-reported pain labels
available and where consent was given for further use of the data.
This subset consists of 14 patients with chronic pain and 8 healthy
control participants, resulting in a total of 200 exercise instances.

4.1.2 Evaluation Experiment Tasks. The proposed GWN architec-
ture was evaluated on two classification tasks based on the multi-
modal EmoPain dataset:

Pain Level Detection Task. The aim of this task is to detect the
level of a personwith chronic pain. Themotivation for creating such
system is to endow technology with the capability for supporting
physical rehabilitation by providing timely feedback or prompts,
and personalised recommendations tailored to the pain level of a
person with chronic pain. For example, a person with low level
pain may be reminded to take breaks at appropriate times and not
overdo, whilst a person with high pain may be reminded to breath
to reduce tension which may further increase pain levels [46].

A formal description of the task is as follows. Given M and
E, denoting MC and EMG data, for an unseen subject known to
have chronic pain (i.e. the event 𝑐𝑝 = 1), infer the probability
𝑝 (𝑙 |𝑐𝑝 = 1, 𝑀, 𝐸) that the data corresponds to one of three levels
of pain. A random variable 𝑙 represents the level of chronic pain
and is ∈ {0, 1, 2}. In this paper, 0 represents zero level pain, i.e. pain
self-report = 0, 1 represents low level pain, i.e 0 < pain self-report
≤ 5, and 2 represents high level pain, i.e pain self-report > 5.

Healthy-vs-Patient Discrimination Task. The healthy control par-
ticipants were assumed to have no pain. However, patients with
chronic pain who reported pain as 0 were not considered to be
in the same class as these participants. Hence, a separate model
may be needed to first distinguish a person with chronic pain from
healthy participants.

The formal definition of the task is as follows. Given M and E,
infer the probability 𝑝 (𝑐𝑝 |𝑀, 𝐸) that the data belongs to a person
with chronic pain. A random variable 𝑐𝑝 represents the event that
an unseen subject has chronic pain, and 𝑐𝑝 ∈ {0, 1} with 0 for
healthy and 1 for chronic pain person.

Figure 3 shows the number of exercise instances for each class,
for the Healthy-vs-Patient Discrimination Task and Pain Level
Detection Task respectively.

4.1.3 Data Preprocessing. Here, we describe the preprocessing
performed to prepare the data for the evaluation experiments.

Dealingwith AHigh Sampling Rate. The EMGdata of the EmoPain
dataset had been downsampled from 1000Hz to 60Hz for consis-
tency with the MC data. However, 60Hz results in high dimension-
ality whereas preliminary experiments suggest that 10Hz may be
sufficient for the Healthy-vs-Patient Discrimination Task. Thus, we
downsampled both MC and EMG data further to 10 Hz to be suit-
able for the Healthy-vs-Patient Discrimination Task. The original
60Hz was found to be more appropriate for the Pain Level Detection
Task.

Padding for Uniform Sequence Lengths. Based on the findings
in [19, 54], we used pre-padding rather than post-padding to obtain
uniform time sequence lengths for different data instances. Further,
we used zero padding, which is the common approach used in
modelling when assuming no prior knowledge about the input
data [50].

Dealing with Imbalanced Data. As can be seen in Figure 3, the
class distribution of the data is skewed for both pain classification
tasks. To reduce bias toward the majority class, we randomly over-
sampled data instances of the minority class [30].

Data Augmentation. The total number of exercise instances avail-
able for training and evaluation was 200, which is a limited amount



Task Validation Model ACC MCC F1 (0) F1 (1) F1 (2) F1 (avg) 𝑟 𝑝

Healthy-vs-Patient
Discrimination Task

LOSOCV
CONCATN 0.765 0.489 0.662 0.820 - 0.745

0.628 0.003
GWN∗ 0.920 0.831 0.887 0.938 - 0.915

5 × 2 CV
CONCATN 0.587 0.110 0.434 0.675 - 0.555

0.768 0.015
GWN∗ 0.648 0.225 0.482 0.733 - 0.613

Pain Level
Detection Task

LOSOCV
CONCATN 0.653 0.465 0.464 0.667 0.756 0.629

0.487 0.068
GWN 0.766 0.645 0.581 0.800 0.857 0.748

5 × 2 CV
CONCATN 0.395 0.075 0.249 0.438 0.441 0.379

0.596 0.059
GWN† 0.448 0.151 0.309 0.474 0.503 0.430

Table 1: Evaluation experiment results comparing our GWNwith the baseline CONCATN. ∗ indicates that a Wilcoxon Signed-
Rank test showed that the model performance is significantly (significance level 𝑝 = 0.05) higher. † indicates that the model
accuracy is marginally significantly higher.

for training a neural network. We employed data augmentation,
particularly creating new instances from the original by rotating
them, to address this problem. Preliminary experiments that we
performed show that rotation about y-axis, which is along the
cranial-caudal, outperforms the mirror reflection augmentation
used in [45]. This augmentation approach used four angles, 0°, 90°,
180°, and 270°, and resulted in four times the original data size.
For each newly created instance, only the original MC data was
changed by the rotation; for these instances, the original EMG data
was used unchanged as they are not affected by the orientations.

4.2 Evaluation Methods
4.2.1 Baseline Model. A simple concatenation (CONCATN) archi-
tecture, which is representative of the traditional multimodal data
fusion approach, was used as the baseline network against whichwe
evaluated our GWN architecture. This baseline allows evaluation of
the contribution of the GWN’s mapping and attention components
to its performance. The CONCATN has identical external memory
and prediction units. Hence, it can be seen as a network that does
not pay particular attention to different modalities over time, but
rather treats them equally through time.

In the CONCATN, multiple modalities are concatenated along
the feature axis and fed into a LSTM network. The feed forward
equations are

𝒙∗𝑡 = concat
(
𝒙 (1)
𝑡 , . . . , 𝒙 (𝑀)

𝑡

)
(21)

𝒄𝑡 ,𝒉𝑡 = lstm
(
𝒙∗𝑡 , 𝒄𝑡−1,𝒉𝑡−1

)
(22)

where 𝑀 is the number of modalities, 𝒄𝑡 is a memory cell and 𝒉𝑡
is the hidden state. Initial states 𝒄0 and 𝒉0 have values of zero.
Assuming the dimensionality of each modality input at a specific
time 𝑡 is 𝑑𝑚 , the dimensionality of the concatenated vector 𝒙∗𝑡 is∑𝑀
𝑚 𝑑𝑚 . The dimensionalities of 𝒄𝑡 and 𝒉𝑡 have the same values

as in the GWN model. The prediction module is also identical to
the GWN model, i.e. the last LSTM output 𝒉𝑇 is fed into a feed
forward network with one hidden layer activated with ReLU [44]
non-linearity.

0% 100%40% 60%

FIAFOSFIOBFISFOA

Figure 4: The percentage of itself that a modality pays atten-
tion to in the five different attention patterns we found. The
thresholds 40% and 60% used in this definition were chosen
heuristically as a ±10% interval around 50%.

4.2.2 Validation Technique. In the experiments carried out, we
used the leave-one-subject-out cross-validation (LOSOCV), where
the data for a single subject is left out for testing in each fold as is the
standard approach for evaluating the generalisation capability of a
model to unseen subjects. However, for statistical tests to compare
the proposed GWN with the baseline CONCATN, the LOSOCV
has the limitation of lack of independence between folds (due to
overlapping training sets across folds) that has higher risk of Type I
error [18]. Thus, in this work, we additionally perform 5× 2 CV (i.e.
5 random replications of 2-fold CV) which has a lower risk of Type
I errors [18] for the purpose of model comparison. The advantage
of the 2-fold CV is that there is no overlap between training sets.

For both LOSOCV and 5 × 2 CV, we perform Wilcoxon signed-
rank test [56] to compare the proposed GWN and the baseline
CONCATN.

4.3 Results and Discussion
4.3.1 Comparison with the Baseline. Both the GWN and the CON-
CATN baseline model are trained with Adam optimisation algo-
rithm [29], learning rate = 0.001, and batch size = 32, which were
chosen by grid search. The dimensionality of each LSTM cell are
also kept the same, i.e. 64, for the two models. The performance
of the GWN can be seen in Table 1 showing comparison with the
CONCATN baseline model, based on accuracy (ACC), Matthews
Correlation Coefficient (MCC) [42], and F1 scores.



1
Noise

FIA FOS FIOB FIS FOA mean of
switch #

std. of
switch #

2 MC EMG MC EMG MC EMG MC EMG MC EMG MC EMG MC EMG

3 None 0.51 0.40 0.04 0.29 0.03 0.05 0.05 0.15 0.37 0.11 0.40 14.3 1.32 30.9

4 In MC 0.31 0.43 0.08 0.36 0.02 0.05 0.11 0.10 0.48 0.07 6.92 14.6 25.0 30.4

5 In EMG 0.50 0.46 0.02 0.27 0.02 0.05 0.06 0.09 0.41 0.13 0.35 12.6 1.52 30.7
Table 2: Relative frequency of the five attention patterns for the Pain Level Detection Task, with or without noise added in
the data.

Figure 5: An example of the attention distribution of one
exercise instance. Head 0 means the first attention head.
Modality 0 (M0) represents MC and modality 1 (M1) repre-
sents EMG.

Our results show that the GWN significantly outperforms the
baseline for the Health-vs-Patient Discrimination task (significance
level 𝑝 = 0.05) with F1 score of 0.913 based on LOSOCV, averaged
over the two classes. The effect size is 𝑟=0.768 for the 5 × 2 CV and
𝑟=0.628 for the LOSOCV. As expected, due to smaller training data
size in the 5× 2 CV, it gives lower performance estimation than the
LOSOCV for both the baseline CONCATN and the GWN. Although
only marginally significant in this case, the GWN also outperforms
the baseline CONCATN in the Pain Level Detection Task, effect
size 𝑟=0.596, for the 5 × 2 CV.

4.3.2 Attention Patterns. An additional advantage of the proposed
GWN model is that patterns of its attention scores

a𝑘𝑡 = softmax

(
Q𝑘𝑡 K

𝑘
𝑡
⊤

√
𝐻

)
∀𝑡 (a𝑘𝑡 is one of the terms in equation 6 and a𝑘𝑡 ∈ R𝑀×𝑀 ) can provide
insight into the relevance of each modality through time. In our
experiments, we found 5 attention patterns (see Figure 4 for further
specification of each pattern):

Favours-Itself-Always (FIA) The given modality always pays at-
tention to itself and never switches attention to the other modality.
Favours-Other-Sometimes (FOS) The givenmodalitymostly pays
attention to itself but sometimes switches its attention to the other
modality.
Favours-Itself-and-Other-in-Balance (FIOB) The givenmodal-
ity pays balanced attention to itself and the other modality.

Noise ACC MCC F1 (0) F1 (1) F1 (2) F1 (avg)

None 0.766 0.645 0.581 0.800 0.857 0.748

In MC 0.734 0.594 0.557 0.763 0.822 0.715

In EMG 0.734 0.599 0.590 0.747 0.813 0.721
Table 3: Results of Pain LevelDetectionTaskwith orwithout
noise in each MC and EMG.

Favours-Itself-Sometimes (FIS) The givenmodalitymostly pays
attention to the other modality but sometimes switches attention
to itself.
Favours-Other-Always (FOA) The given modality always pays
attention to the other modality and never to itself.

Figure 5 gives an example of the FOS pattern. In this case, modal-
ity 1 (EMG) pays attention to itself most of the time (98.54%), with
a few switches (6 times) to modality 0 (MC).

The frequency of occurrence of each of the five attention cases
are shown in Table 2 (row 3). It can be seen that MC tends to always
pay attention to either only itself or mostly to the EMG (higher
FIA and FOA frequencies), whereas the EMG balances its attention
(higher FOS, FIOB and FIS frequencies). One possible explanation
is that, since the dimensionality of EMG (4) is much lower than the
dimensionality of MC data (78), EMG is always trying to balance
the difference in information. In contrast, the modality of MC is
rich in information, and so can afford to pay 100 percent attention
to itself.

4.3.3 Evaluating How The GWN Deals with Uncertainty in Data. In
order to further examine the behaviour of the GWN model with re-
spect to uncertainties in the data, noise was added to one modality
at a time. We experimented with different levels of noise. We ex-
pected that if the GWN manages uncertainty in data, the modality
without added noise would pay less attention to the noisy modality.

The noise was sampled from a Gaussian distribution with zero
mean and standard deviation 𝜎noise, equal to 10% of the standard
deviation in the original data for this modality. For instance, as the
standard deviation of MC in the Pain Level Detection Task is 105.4,
in this case, 𝜎noise = 10 (rounded to the nearest one significant
figure number). Similarly, in the case of the EMG recordings of the
same dataset, 𝜎noise = 0.001.



Table 3 presents the result of adding noise. A Wilcoxon Signed-
Rank test showed no significant (significance level of 𝑝 = 0.05) dif-
ference between the accuracy of the GWN model with and without
noise in the MC data, based on the LOSOCV (𝑟 = 0.492, 𝑝 = 0.066)
or with and without noise in the EMG also based on the LOSOCV
(𝑟 = 0.045, 𝑝 = 0.866). This suggests that the proposed GWN may
be tolerant to this level of noise.

Table 2 shows the GWN’s behaviour with the noisy input (row
4 for noisy MC and row 5 for noisy EMG), separated based on the
detected attention patterns. Compared with frequencies of the 5
attention cases without added noise, with the noisy MC data, the
frequency of FIA for the MC decreases while its frequencies of FOS,
FIS, and FOA increase. This indicates that the MCmodality is able to
recognise noise in itself and rely more on the other modality (EMG).
This is also evident in the increase in mean switch frequency.

In contrast, having a noisy EMG (see row 5 in Table 2) does
not result in the same behaviour. Compared with the frequencies
of the 5 attention cases (see row 3), the frequency of the EMG’s
FIA with noisy EMG unexpectedly increases. The frequencies of
FOS and FIS also do not increase. Only the FOA frequencies shows
expected albeit slight increase. In addition, the mean of switch
frequency shows no increment. These results suggest that the EMG
modality is less sensitive to its noisiness. One explanation is that
the amount of noise added to the EMG data is not sufficient enough
to influence the feature representation. Another possible reason
is that the system is sensitive to precise amount of information
being lost per modality and so since the dimensionalities of MC and
EMG are 78 and 4 respectively, the 10% noise added to MC corrupts
more information than when added to the EMG, leading to a more
sensitive MC in the case of the former.

5 CONCLUSION
We propose the GWN, a novel neural network architecture for mul-
timodal fusion of sequential, multimodal data. Drawing from the
Global Workspace Theory, at each time step of the GWN, multiple
modalities compete to broadcast information, and each broadcast is
propagated through time. We find that this approach outperforms
simply concatenating multiple modalities, for pain level detection
based on the EmoPain dataset. Our analysis further highlights the
modality selectivity that occurs in the GWN for this dataset. More-
over, controlled experiments with simulated noise suggest that the
GWN addresses uncertainty and its variation over time. This could
be a promising direction for future research in multimodal neural
networks while promoting a close connection with cognitive neu-
roscience research. Such interdisciplinary links may be valuable in
consolidating the myriad of advances in both communities.
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