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Is metacognition a general resource shared across domains? Previous research has documented consistent
biases in judgments across tasks. In contrast, there is debate regarding the domain generality or the
domain specificity of the ability to discriminate between correct and incorrect answers (metacognitive
sensitivity) because most previous work has documented nonsignificant correlations across domains.
However, such null findings may be due to low statistical power and differences in task structure or
performance, thereby masking a latent domain generality in metacognition. We examined across-domain
correlations in confidence level and sensitivity in a large sample (N = 181). Participants performed 4
2-alternative forced-choice tasks (episodic memory, semantic memory, executive function, and visual
perception) with trial-by-trial confidence judgments. We found significant correlations in average
confidence level across tasks. By applying a hierarchical Bayesian model to estimate cross-task cova-
riance, we found five out 6 cross-task correlations in metacognitive efficiency (meta-d'/d’) were
significant, even for pairs of tasks in which first-order performance was not correlated. This suggests that
at least some components of metacognitive efficiency in retrospective confidence are domain general.
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Metacognition refers to the ability to monitor and control cog-
nitive processes (Flavell, 1979). It is often studied with reference
to memory (e.g., Nelson & Narens, 1990) but has also recently
been quantified for other domains such as visual perception (e.g.,
Song et al., 2011), decision making (e.g., Yeung & Summerfield,
2012), and motor tasks (e.g., Simon & Bjork, 2001). A critical
research question therefore concerns the cross-domain organiza-
tion of such metacognitive evaluations of cognition. The core
question of this article is whether metacognition is a specific
process particular to each cognitive domain (e.g., language, mem-
ory, perception) or whether it is a higher-order process with some
overlap across multiple cognitive domains. A domain-general view

of metacognition proposes that people use a common resource
when they evaluate their performance across different types of
tasks. In contrast, a domain-specific account proposes that there
are different metacognitive components at play in different tasks.

By leveraging individual differences, it is possible to adjudicate
between these two proposals. According to the domain-general
view, people who have accurate judgments for one task should also
make accurate judgments for another. In contrast, if metacognition
relies on domain-specific components, we would expect such
abilities to be uncorrelated. The focus of this paper is to investigate
this issue using retrospective confidence judgments (RCJs). RCJs
are self-evaluations of certainty in a given response and are ap-
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propriate for addressing the question of domain generality because
they can be applied to decisions made across a variety of tasks.

In the current study, we focus on assessing the domain generality of
both metacognitive bias and sensitivity, two measures that map onto
two different aspects of metacognition. Metacognitive bias refers to
the overall magnitude of a judgment, such as whether an observer has
a tendency to report high or low confidence, irrespective of their
performance. Metacognitive sensitivity refers to the ability of a person
to discriminate between different levels of performance, such as
correct or incorrect trials (Fleming & Lau, 2014).

Previous research using RCJs has provided equivocal findings for
metacognitive sensitivity. Whereas a few studies have found positive
correlations between metacognitive sensitivity for memory and visual
perception tasks (McCurdy et al., 2013; Lee, Ruby, Giles, & Lau,
2018), a majority concluded in favor of domain specificity because of
nonsignificant correlations (Baird, Cieslak, Smallwood, Grafton, &
Schooler, 2015; Baird, Smallwood, Gorgolewski, & Margulies, 2013;
Fitzgerald, Arvaneh, & Dockree, 2017; Morales, Lau, & Fleming,
2018). Regarding structural magnetic resonance imaging data, distinct
cerebral areas correlating with individual variation within two tasks
has been observed, also supporting the possibility of neurofunctional
independence between domains (Baird et al., 2013; Baird et al., 2015;
McCurdy et al., 2013). Specifically, metacognitive sensitivity in a
visual perception task has been related to the volume and function of
lateral anterior prefrontal cortex (aPFC), whereas metacognitive sen-
sitivity in a memory task is associated with the structure and function
of precuneus and medial aPFC. Accordingly, lesions to aPFC have
been shown to selectively affect visual perceptual sensitivity while
sparing sensitivity on the memory task (Fleming, Ryu, Golfinos, &
Blackmon, 2014).

However, a recent meta-analysis of cross-domain correlations in
metacognitive sensitivity pointed to a heterogeneous pattern of
domain generality (Rouault, McWilliams, Allen, & Fleming,
2018). Although there was an overall cross-domain correlation
between different perceptual tasks (e.g., visual, auditory, tactile;
see, for instance, Ais, Zylberberg, Barttfeld, & Sigman, 2016;
Faivre, Filevich, Solovey, Kiihn, & Blanke, 2018), there was
equivocal evidence for domain generality across visual perception
and memory tasks. Moreover, it was noted that drawing conclu-
sions about domain-specificity relies on accepting the null hypoth-
esis of no correlation, which is problematic if individual experi-
ments are underpowered to detect a correlation. In addition, it was
recognized that cross-domain correlations may also be biased by
inconsistencies in the sensitivity index calculated in these studies
and variability in task structure between domains.

A first important consideration is the method used to assess meta-
cognitive sensitivity. Different techniques are often used to compute
sensitivity, which makes it difficult to compare results across studies.
Moreover, several of these indexes (such as gamma correlation or area
under the type II receiver-operating characteristics (ROC); area under
the Type II ROC curve [AUROC2]) do not control for the effect of
task performance (Fleming et al., 2014), and spurious correlations in
metacognitive sensitivity may emerge between domains that are
driven by variation in task performance (i.e., first-order performance)
rather than metacognitive capacity itself (i.e., second-order perfor-
mance; Rouault et al., 2018). One recent measure that achieves this
control is metacognitive efficiency, meta-d'/d’. The meta-d’ frame-
work models the relationship between performance and metacogni-
tion using signal detection theory (SDT). Meta-d’ is defined as the
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type I d' that would lead to the observed type II ROC curve in the
absence of noise or imprecision in confidence estimates (Maniscalco
& Lau, 2012). Metacognitive efficiency is then defined as the level of
metacognitive sensitivity (meta-d’) of a subject relative to the sub-
ject’s actual type I performance. By estimating meta-d’ in a Bayesian
hierarchical framework (Fleming, 2017), it is possible to directly
estimate covariance in metacognitive efficiencies across domains.

A second possible explanation for inconsistencies between re-
sults of previous studies is that different task designs have been
used in different domains. For instance, several studies have com-
pared metacognitive sensitivity between 2 alternative forced
choice (2AFC) perceptual tasks and yes/no recognition memory
tasks. As recently suggested (Lee et al., 2018), these differences in
task structure may obscure across-domain correlations in metacog-
nitive ability, particularly given potential asymmetries in metacog-
nitive ability for yes and no responses (Kanai, Walsh, & Tseng,
2010; Meuwese, van Loon, Lamme, & Fahrenfort, 2014). Here we
focus on comparing between different 2AFC tasks that are appro-
priate for fitting an equal-variance meta-d’ model.

Unlike the debate surrounding metacognitive sensitivity, there is
greater agreement in previous literature that metacognitive bias is
relatively stable across tasks. People tend to be overconfident in
their judgments of general knowledge (Lichtenstein & Fischhoff,
1977) and visual perception (Baranski & Petrusic, 1994; Song et
al., 2011), and this degree of confidence is correlated across tasks
(Ais et al., 2016). Moreover, the hard-easy effect—overestimation
in difficult tasks and underestimation in easy tasks—has also been
found in both types of task (e.g., Baranski & Petrusic, 1995). In
sum, whereas previous studies support a domain generality in
metacognitive bias, both neuroimaging and behavioral findings,
albeit in small samples, remain equivocal about the domain gen-
erality of metacognitive sensitivity.

On a theoretical level, models of metacognition have been
developed in two distinct fields: metamemory (metacognition
about memory) and metaperception (metacognition about percep-
tual decision making). Although these frameworks have developed
independently, common points can be highlighted. Models of
confidence formation in perceptual decision making suggest that
confidence is based on a computation of a probability that a
decision is correct. A dominant view supports the idea that con-
fidence relies on both evidence from the first-order decision and
additional computations beyond this such as postdecisional pro-
cesses (Navajas, Bahrami, & Latham, 2016) or second-order in-
ference (Fleming & Daw, 2017).

Similarly, in metamemory, the amount and quality of evidence
is proposed to be critical in supporting a confidence estimate (e.g.,
Koriat, Lichtenstein, & Fischhoff, 1980). One component of such
evidence are cues that are intrinsically related to memory pro-
cesses (e.g., extrinsic information such as number of stimuli to
encode, relatedness between targets and distractors, Koriat, 1997),
equivalent to the notion of sensory evidence in perceptual decision
making. However, as in metaperception, metamemory confidence
(and other metacognitive judgments) is thought to also be inferred
from additional information that may not be used to guide first-
order memory responses. In the metaperception field, confidence
has been modeled using extensions of SDT and evidence accumu-
lation frameworks, whereas the computational distinction between
first- and second-order processes in memory has received less
attention. For instance, according to the stochastic detection and
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retrieval model (Jang, Wallsten, & Huber, 2012), a first sample of
evidence informs a recall or recognition response and a second
sample of evidence supports the formation of confidence. This
model, as in related models of perceptual confidence (Fleming et
al., 2017), suggests that additional computations (that can more or
less correlated with a first-order decision computation) are used to
inform confidence judgments. It is therefore possible that both
domain-specific (i.e., internal perceptual or mnemonic states support-
ing first-order decisions in each task) and domain-general resources
(i.e., postdecisional computations that could be common across tasks)
contribute to confidence judgments in the two domains.

Motivated by these theoretical issues, the aim of the present study
was to compare metacognitive judgments across four different 2AFC
cognitive tasks and to ask whether correlations in bias (measured by
confidence level) and/or sensitivity (measured by meta-d’) are indic-
ative of a common underlying process of metacognition. The idea was
to quantify potential domain-general contributions to metacognition
while keeping the task structure similar across first-order decisions.
As noted above, it remains possible that an absence of correlations
regarding metacognitive sensitivity is explained by a lack of statistical
power because the sample sizes of previously mentioned studies
ranged from 23 to 52 participants. It is, however, important to note
that these studies are mainly neuroimaging studies that did not directly
aim to test cross-task correlations in behavioral measures of metacog-
nition. To test a correlation hypothesis, it has been suggested that
“there are few occasions in which it may be justifiable to go below
n = 150” to obtain stable and reliable correlations (Schonbrodt &
Perugini, 2013, p. 10). Here we use a large sample (N = 181) based
on a priori power calculations and compute the covariance of meta-
d'ld’ estimates in a hierarchical Bayesian framework, thereby maxi-
mizing the sensitivity of our analysis approach to detect shared
variance across domains.

Method

Participants

The current experiment was conducted in the Laboratoire de
Psychologie et Neurocognition in Grenoble, France, and included
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181 young adults (M = 20.01, SD = 3.13; 84% of women)
recruited through an advertisement at the Grenoble-Alpes Univer-
sity. We estimated the required sample size according to Schon-
brodt et al. (2013) using an expected correlation of 0.4 between
metacognitive sensitivity on a memory and a perceptual task
(McCurdy et al., 2013). The authors explained that “the true
correlation strength uncontaminated by outlier influence, although
significant, is likely to be lower than the r value of 0.471” (p. 4),
hence our more conservative estimate of 0.4. According to Schon-
brodt et al. (2013), for a correlation of 0.4 and 80% of power,
correlations begin to be stable for 181 participants. All participants
were native French speakers and reported having normal or
corrected-to-normal vision. The study was preregistered on the
Open Science Framework (https://osf.io/b5ype/) and preregistered
analyses are presented in online supplemental material. We report
here nonpreregistered analyses (see data and statistical analyses
section).

Materials and Procedure

The entire procedure included four cognitive tasks: an episodic
memory task, a semantic memory task, an executive functioning
task, and a visual perception task. Task order was randomly
assigned for each participant. See Figure 1 for examples and a
schematic representation. The episodic memory task was separated
into two parts: an encoding phase and a retrieval phase. During the
encoding phase, participants were presented with 40 unrelated
pairs of words for 2,500 ms duration in a randomized order. Words
were extracted from the French Lexique database (New, Pallier,
Brysbaert, & Ferrand, 2004) according to the following criteria:
nouns or adjectives with six letters, two syllables, and between 20
and 100 occurrences per million. During the retrieval phase, im-
mediately after the end of the encoding phase, participants were
presented with a cue word seen during the encoding phase and had
to select which one of the two other presented words was paired
with this cue word. Participants had no time limit to give their
answer. Distractors were other words extracted from Lexique
according to the same criteria as targets and cues. These 2AFC

B
Encoding phase Retrieval phase
ird - i Confidence? L
L i bird How high is the Mont-Blanc? Confidence?
0%- 10%- ...~
i s banana land 90%- 100% 4810m 4953 m e 1_0220'92 e
paper - cake
2500 ms
E D
Which one had Confidence? Confidence?
more dots?
0%- 10%- .- 90% 7A5N2 14AN  16AN OO S o
L R -100% - 100%
1000 ms
700 ms
Figure 1. Summary of the four tasks. A, Episodic memory task. B, Semantic memory task. C, Visual

perception task—real stimuli included between 25 and 75 dots. D, Working memory/attention task (executive

functioning).
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decisions in this task, and in the following, are referred to as the
firs-order task.

In the semantic memory task, participants performed a series of
2AFC decisions for general knowledge questions specifically de-
signed for the French participants in this study. These questions
included various topics such as cinema, sport, art, history, and
geography (e.g., What is the largest department in France? Which
painter is the main representative of Cubism?). We pretested the
difficulty of 60 questions in 20 participants by calculating the
percent correct for each question. From these 60 questions, 20
were excluded because they were either too easy (above 95%
correct answers) or too difficult (bellow 5% correct answers).
Participants had no time limit to give their answer.

The visual perception task was akin to the one used by Fleming
et al. (2014) and consisted of two circles (diameter of 11.5°), each
containing dots presented for 700 ms. After stimuli presentations,
participants responded as to which one of the two circles contained
more dots with no time limit. Before each new stimulus presenta-
tion, participants had to press the space bar. One of the two circles
always contained 50 dots and the other either had fewer than or
more than 50 dots, randomly defined on each trial. Stimuli were
created using a plot function in R software. For each stimulus the
number of dots was randomly defined—between 25 and 49 for
stimuli with fewer dots and between 51 and 75 for stimuli with
more dots.

The fourth task consisted of an attention, flexibility, and work-
ing memory (executive function) task. Participants were presented
a letter-number sequence of five symbols for 1,000 ms. Half of
these sequences had three letters and two numbers and the other
half had two letters and three numbers (e.g., 7A5SN2). Participants
chose which one of the two presented responses corresponded to
the sum of all numbers and the relevant letters (in the example
above the correct answer would be 14AN). They had no time limit
to give their answer and had to press the space bar before each new
stimulus presentation. All stimuli were made prior to the task by
associating random letters (from A to Z) with numbers (from 0 to
9). Distractors were made by changing either one letter or the sum
of all numbers (e.g., if the correct response is 14AN, distractors
can be either 16AN or 14BN) from the correct answer. All stimuli
had the same structure with numbers embedded in strings of
letters.

All four tasks comprised 40 trials each and had similar response
requirements. The position of the correct answer was randomly
assigned and the order of the four tasks was randomized for all
participants. To begin each trial, participants pressed the space bar.
For the first-order decision, participants had to press the s letter to
select the left-hand answer and the I letter to select the righthand
answer and they had no time limit for make their decision. Figure
1 provides a summary of the four tasks.

After each response on each of the four tasks, participants were
asked to evaluate how confident they were in their answer. The
scale ranged from 0% of confidence (minimum confidence) to
100% (maximum confidence). Participants could report 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% by using the
number keys O to 9. Participants used ¢ to report 100% confidence.
It was explained to the participants that 0% confidence signified a
guess response. There was no time limit for either first-order
decisions or confidence judgments and participants were not asked
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to respond as quickly as possible; however, we measured decision
time in an exploratory analysis.

Data and Statistical Analyses

As described above, we focused on both metacognitive bias and
metacognitive sensitivity. In our initial preregistration, we aimed
to measure metacognitive bias by subtracting mean task perfor-
mance from mean confidence because we anticipated that first-
order performance would differ across the four tasks. Metacogni-
tive sensitivity was proposed to be measured by the area under the
type II ROC curve. We decided to deviate from both of these
planned analyses for several reasons (see online supplemental
material for preregistered analyses).

Regarding metacognitive bias, we reasoned that there was some
ambiguity in the absolute meaning of the scale label 0% confident,
given that chance level in 2AFC tasks is 50%. We therefore
decided to measure the average confidence level across trials
without subtracting mean task performance, which would rely on
subjects having interpreted a scale value of 0% confidence as 50%
performance (chance).

We chose to estimate metacognitive efficiency (meta-d'/d") —
that is, metacognitive sensitivity corrected for differences in per-
formance—when comparing cross-task correlations in metacogni-
tive capacity. This is because measures of metacognitive sensitiv-
ity (such as gamma correlation and AUROC?2) are sensitive to
differences in first-order performance (e.g., Fleming et al., 2014),
rendering such scores inappropriate for the current study in which
task performance varied across both domains and participants.
Using AUROC2, for instance, it is possible that cross-task corre-
lations at the metacognitive level could be partly or fully driven by
correlations in first-order performance. The meta-d’ framework
allows us to control for such variability. In type I SDT, d' refers to
the ability to discriminate between different states of the world
(i.e., signal and noise). This parameter can be calculated as d' =
z(hits) - z(false alarms), where z is the inverse of the cumulative
normal distribution function, hits are the proportion of signal
responses when signal is present, and false alarms are the propor-
tion of signal responses when noise is present (here signal was
defined arbitrarily as one of the two response options because two
stimulus options were presented on each trial of the 2AFC tasks).
In type I SDT, the sensitivity parameter of interest is the ability to
discriminate between correct and incorrect responses, rather than
signal and noise. Meta-d’ refers to the type I d’ that would give rise
to the observed confidence distributions in the absence of noise or
imprecision in the ratings. By modeling the relationship between
type I and type II performance (the more information available for
the type I task, the more sensitive type II confidence ratings should
be), meta-d’ quantifies the sensitivity of confidence ratings to
performance in units of d’ (Maniscalco et al., 2012). Because d’
and meta-d’ are in the same units, they can be compared, which
allows derivation of a measure of metacognitive efficiency, con-
trolling for task performance. If this measure (Mratio; meta-d'/d")
is close to 1, then metacognitive efficiency is optimal under the
SDT model.

Here we used a recent hierarchical Bayesian framework (Flem-
ing, 2017) to estimate meta-d'/d" at the group level (HMeta-d).
This allows a more accurate estimation of subject-level parameters
by allowing the group-level estimates to constrain subject-level fits
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and more stable group-level estimates by limiting the impact of
single-subject estimates with high uncertainty on the group. Flem-
ing (2017) showed in simulation that HMeta-d was able to recover
stable group-level parameter estimates with as few as 50 trials per
subject, which was not the case when averaging single-subject
maximum likelihood fits. This framework is also particularly use-
ful to test the question of the domain generality of metacognition
because it can also be used to estimate covariance between esti-
mates in a hierarchical framework.

Because we have a low number of trial per task (N = 40), a
Bayesian estimation of meta-d’ is more appropriate because it
naturally handles zero cell counts and avoids the use of edge
correction, which may bias maximum likelihood estimates. More-
over, maximum likelihood estimates of parameters based on hit
and false alarm rates fail to take into account uncertainty about
these rates that is a consequence of finite data. A Bayesian ap-
proach takes into account the uncertainty about single-subject
parameter estimates at the group level and thus naturally handles
both within- and between-participants uncertainty. This is partic-
ularly crucial in the current study, given that uncertainty in the
model’s estimate of meta-d’ needs to be incorporated into an
assessment of any correlation between the two domains (see online
supplemental material).

To extend the existing model, each subject’s log metacognitive
efficiency (log(meta-d'/d")) in the four tasks (M1, M2, M3, M4)
was specified as a draw from a multivariate Gaussian:

[log(M1)log(M2)log(M3)log(M4,) ]~

Pt oin Puim2Om1Om2 PMim3Om1Om3  Pmima9mi1Oms

N M2 Pyim20m19m2 012\42 Payam3Tm2m3  PymamaOm20 ma
s [ PrasOinOms Pam3O a0 s 0%43 Pa3maT 30 ma
Para PMIMATMITMa  Pm2amdaOm20ma  Pu3maT 30 ma 0',2\44

Priors were specified as follows:

Bearts Bepp2s Bepr3s Beps = N(O’ 1)
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T 1> Oar2s Oar3s Opps ~ InvSqrtGamma(0.001, 0.001)

Pa1M2s PMIM3s PM 1M Ph2m3s Pyamss Puama ~ Uniform(—1, 1)

N is a normal distribution with mean and standard deviation as
parameters. p,, and o,, refer to the mean and the standard devi-
ation of log(meta-d'/d"). pyy; is the correlation coefficient for
log(meta-d'/d") between tasks i and j.

The HMeta-d toolbox (https://github.com/metacoglab/HMeta-d)
uses Markov chain Monte Carlo sampling to estimate posterior dis-
tribution over model parameters using the JAGS program (Plummer,
2003). We modified the HMeta-d code to allow estimation of param-
eters in R using rjags. As in the HMeta-d toolbox, we discarded early
samples of the posterior distributions and ran three chains to diagnose
convergence problems. Convergence diagnostics were computed with
the coda package using the potential scale reduction factor R (Gelman
& Rubin, 1992). Material, raw data, model, and analysis scripts are
available in OSF (https://osf.io/bSype/). Significance of group-level
parameters was estimated by calculating whether the 95% highest
density intervals (HDIs) on the posterior distributions of the correla-
tion coefficients p,,;,,; overlapped with zero, which is a Bayesian
analogue of a frequentist confidence interval because it is the smallest
interval containing 95% of the Markov chain Monte Carlo samples
(Kruschke, 2014).

We complemented the HMeta-d analyses for metacognitive effi-
ciency with nonhierarchical Pearson’s r correlations and paired ¢ tests
for magnitude of judgments and task performance. For paired ¢ tests,
outliers were detected using three tests: leverage, RSS, and Cook’s
distance. When necessary, Bonferroni corrections were applied.

Results

Type I Performance

We assessed task performance using type I d'. This index was
calculated for each participant and each task (see Figure 2A for

A B
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Episodic memory  Executive function Semantic memory  Visual perception Episodic memory Executive function Semantic memory Visual perception
Task Task
Figure 2. A, Raincloud plots (Allen, Poggiali, Whitaker, Marshall, & Kievit, 2019) for d’ for the four tasks.

B, Raincloud plots for confidence level for the four tasks.
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Table 1
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Pearson Correlation Coefficients, Confidence Intervals, and p Values for Correlations in Task Performance Between Pairs of Tasks

Performance (d’)

Variables Episodic memory

Visual perception

Semantic memory Executive function

Episodic memory
p = .638
Visual perception

Semantic memory

Executive function

r = .04 [-0.11, 0.18]

r = .231[0.09, 0.37] r = .16 [0.02, 0.30]

p = .002 p = .030
r = —0.08 [—0.23, 0.06] r = .25 [0.11, 0.39]
p = 258 p < .001
r = .25 [0.11, 0.38]
p < .001

Note. Alpha threshold is .008. Significant tests are in bold.

mean and confidence intervals). For these analyses a Bonferroni
correction was used providing a significance threshold of a =
.05/6 = 0.008. Paired ¢ tests showed that performance on the
executive function task (M = 2.58; SD = (.74) was better than the
episodic memory task (M = 1.84; SD = 0.88), #(180) = 9.42, p <
.001, d. = 0.70, semantic memory task (M = 1.19; SD = 0.60),
#(180) = 22.71, p < .001, d_ = 1.69, and visual perception task
(M = 0.92; SD = 0.39), #(180) = 30.26, p < .001, d_ = 2.25. The
episodic memory task was also better performed than the semantic
memory task, #(180) = 9.32, p < .001, d, = 0.69, and the visual
perception task, 1(180) = 13.09, p < .001, d. = 0.97. Finally, the
semantic memory task was better performed than the visual per-
ception task, #(180) = 4.98, p < .001, d, = 0.37.

We next examined intersubject correlations in first-order per-
formance across tasks. Table 1 summarizes Pearson correlation
coefficients between d’ values. These analyses revealed a positive
correlation between episodic and semantic memory performance,
r = .23, p = .002. Executive function performance was also
positively correlated with semantic memory performance, r = .27,
p < .001, and visual perception performance, r = .21, p < .001.
However, correlations between other task performance pairings
(visual perception and episodic memory; executive function and
episodic memory; semantic memory and visual perception) were
not significant after correcting for multiple comparisons.

Confidence Level

Mean confidence judgments were calculated for each participant
and each task (Figure 2B). The pattern of results for confidence
judgments was similar to that for task performance. Paired ¢ tests

Table 2

(corrected for multiple comparisons) showed people were more
confident overall on the executive function task than the episodic
memory task, #(180) = 10.04, p < .001, d_ = 0.75, the semantic
memory task, #(180) = 18.73, p < .001, d, = 1.39, and the visual
perception task, #(180) = 18.10, p < .001, d = 1.35. The episodic
memory task was also judged with higher confidence than the
semantic memory task, #(180) = 4.71, p < .001, d_ = 0.35, and the
visual perception task, #(180) = 6.30, p < .001, d_ = 0.47. Finally,
the semantic memory task was judged with higher confidence than
the visual perception task, #(180) = 3.37, p < .001, d, = 0.25.

To estimate domain-general influences on confidence level, we
computed correlations between average confidence levels across
tasks (see Table 2). We observed a significant correlation between
confidence levels across all tasks after correction for multiple
comparisons (all p < .008, with r ranging from 0.21 to 0.39; the
exception was a trend-level correlation between visual perception
and episodic memory), suggesting that the more participants report
high confidence in one task, the more they report high confidence
in another task.

Metacognitive Efficiency

To estimate metacognitive efficiency, we estimated the group
meta-d'/d’ ratio for each task (see Figure 3). According to the
overlap of 95% HDIs, metacognitive efficiencies were similar for
the two memory tasks, which in turn were greater than both the
executive function and visual perception tasks (for means and
HDIs related to the difference distributions for each comparison
see Table 3). Executive function metacognitive efficiency was also
greater than visual perceptual metacognitive efficiency.

Pearson Correlation Coefficients, Confidence Intervals, and p Values for Paired Correlations of Confidence Levels Across Tasks

Correlations in confidence level

Variables Episodic memory Visual perception Semantic memory Executive functioning
Episodic memory r = .19 [0.05, 0.33] r = .34 [0.21, 0.46] r = .21 [0.06, 0.34]
p = .009 p <.001 p = .005
Visual perception r = .39 [0.27, 0.52] r = .36 [0.23, 0.48]
p <.001 p < .001
Semantic memory r = .37 [0.23, 0.49]
p <.001

Executive functioning

Note. Alpha threshold is .008. Significant tests are in bold.
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Figure 3. Posterior distributions over p Mratio (meta-d'/d’ ratio) for the episodic memory, visual perception,

semantic memory, and executive functioning tasks.

To evaluate domain-general contributions to metacognitive ef-
ficiency, we estimated correlations between all four task pairings
within the hierarchical model. These correlations are estimated at
the group level from the variance-covariance matrix. Figure 4B
presents posterior distributions over each cross-task correlation
parameter and associated 95% HDIs are presented in Table 4.
Figure 4A visualizes the relationships between single-subject
meta-d'/d’ values estimated within the hierarchical model. Criti-
cally, 95% HDIs on the posterior correlation coefficients for five
of six task pairings did not overlap zero, suggesting substantial
covariance in metacognitive efficiency across domains. This was
also the case for task pairings for which we did not observe
correlations in task performance (e.g., visual perception and se-

mantic memory; Table 1), suggesting it is unlikely to be an artifact
of covariance in first-order capacity. Only the HDI for the corre-
lation between visual perception task and episodic memory task
(p = 0.28; HDI = [—0.03, 0.60]) overlapped zero, indicating a
lack of cross-task correlation.

Although the current study has few trials per task, for complete-
ness we nonetheless performed nonhierarchical estimation of
subject-specific meta-d’ to calculate a meta-d'/d’ ratio per partic-
ipant and per task. We excluded nine participants with very low
performance (d° < 0.10) in one of the four tasks. Then we
performed Pearson’s correlations for metacognitive efficiency
across tasks (see Table 5). When controlling for multiple compar-
isons, we found positive correlations for meta-d'/d" across visual



IS THERE A G FACTOR FOR METACOGNITION?

1795

Table 3
Means and HDIs of the Posteriors of the Difference Between p. Mratio Distributions for Each
Task Pairing
Difference distributions between group-level meta-d’/d’ estimates
Variables Episodic memory Visual perception Semantic memory Executive function

Episodic memory
Visual perception
Semantic memory
Executive function

0.84 [0.72, 0.97]

0.05[—0.01,0.11]
0.79 [0.68, 0.91]

0.22 [0.17, 0.28]
0.62 [0.51, 0.75]
0.17 [0.11, 0.23]

Note. Only the difference distribution between episodic memory and semantic memory overlaps with 0,
indicating no significant difference between tasks. Significant tests are in bold.

perception and semantic memory and across visual perception and
executive function.

Discussion

The present study compared RCJs across four cognitive tasks to
quantify a potential domain-general metacognitive resource. We
focused on both confidence level and metacognitive efficiency.
Our study goes beyond previous studies by using a large sample to
increase reliability, using four distinct 2AFC tasks to avoid prob-
lems that arise when comparing different task formats and using a
hierarchical estimation of meta-d'/d" (and covariance parameters)
that facilitated efficient estimation of group-level correlation pa-
rameters.

We reproduced previous findings on the domain generality of
metacognitive bias using a confidence level (e.g., Ais et al., 2016).
Except for a trend between episodic memory and visual percep-
tion, we found that the tendency to report high confidence in one
task is correlated with the tendency to report high confidence in
another task, suggesting domain-general contributions to overall
confidence level. These results are in line with judgments of
confidence being biased by domain-general contextual factors
such as mood (see Ais et al., 2016 for influences of optimism on
bias) and psychiatric symptomology (see Rouault, Seow, Gillan, &
Fleming, 2018 in perceptual decision making).

Our study also allowed us to estimate the extent of across-task
stability in metacognitive efficiency by estimating the parameters
of a covariance matrix governing the association between meta-
d'/d’ values in a hierarchical framework. We found substantial
shared variance in meta-d'/d’ across tasks, with five of six corre-
lation parameters deviating from zero. Because the meta-d'/d’
measure controls for influences of task performance, this result
suggests a substantial shared variance in metacognitive efficiency
and is consistent with a domain-general resource supporting meta-
cognition. Critically, these correlations were obtained even for
pairs of tasks that did not show correlations in first-order perfor-
mance (i.e., for semantic memory and visual perception; for epi-
sodic memory and executive function). This suggests that corre-
lations in metacognitive efficiency are unlikely to be driven by
covariance in task performance.

The one 95% HDI that did overlap zero, for the correlation
between episodic memory and visual perception, still showed a
substantial probability mass above zero, suggesting uncertainty
around the proportion of shared variance, rather than an absence of
correlation (HDI = [—0.03, 0.60]). Although our findings are less

clear regarding these two tasks, a recent study (Lee et al., 2018)
suggested a positive relationship between metacognitive sensitiv-
ity for short-term memory and visual perception when comparing
2AFC tasks using a large sample size (100 participants) and a
larger number of trials (120 trials). The correlation they found was
very close to the one we estimated here (r = .31 and r = .28).

Our results on shared variance in metacognitive efficiency
across tasks thus suggest the involvement of a common resource in
metacognitive sensitivity across domains. Nevertheless, it seems
that the involvement of this common resource differed across
tasks, with variation in the strength of cross-task correlations (from
0.28 to 0.69). From this perspective, general metacognition ex-
plains between 7% and 48% of the variance in cross-task meta-
d'/d" estimates (i.e., r* coefficient). Because this range is large, it
supports the idea that both domain-general and domain-specific
processes are at play in metacognition. Recent work has indeed
found common and distinct brain areas tracking confidence across
recognition memory and visual perceptual metacognition tasks
(Morales et al., 2018), supporting the idea that both domain-
specific and domain-general processes may influence the sensitiv-
ity of metacognitive judgments. Moreover, the contribution of a
putative global resource may differ according to the cognitive
domain.

Comparing the highest cross-task correlation (semantic memory
and visual perception) with the lowest (episodic memory and
visual perception) is especially interesting. We will briefly high-
light a potential reason for this difference in the use of domain-
general metacognition. In the visual perception task, there is an
objective level of task difficulty—the difference in terms of num-
ber of dots between the two stimuli. In the semantic memory task,
difficulty varies in a more subjective way: for instance, people are
more likely to know a very famous actor compared with a less
well-known one. However, because people share representations
about general knowledge (e.g., Juslin, 1993), this variation could
also create shared knowledge about task difficulty and therefore a
quasiobjective level (or at least an intersubjective or a consensual
level; Koriat, 2008). As such, a putative domain-general metacog-
nitive resource could reflect the ability to build metalevel repre-
sentations of task difficulty to infer confidence. We would there-
fore expect that the more task difficulty can be easily inferred
across two tasks (e.g., from shared experimental cues, see Bar-
thelmé & Mamassian, 2010), the more metacognitive efficiency
would also correlate. Conversely, if one task has an easily avail-
able difficulty signal and another task did not, we would expect a
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Figure 4. A, Single-subject parameter estimates from the hierarchical model of meta-d'/d’ and Pearson
correlations between meta-d'/d’ estimates across the four tasks. B, Posterior distributions over p for each entry
in the covariance matrix determining the correlations between meta-d'/d’ across the four tasks.
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Means and HDIs of the Distribution of Posteriors of the p Value for Each Task Pairing. Only
the HDI for the Correlation Between Episodic Memory and Visual Perception Overlap With 0,

Indicating a Lack of Cross-Task Correlation

Group-level correlations in meta-d'/d’

Variables Episodic memory

Visual perception

Semantic memory Executive function

Episodic memory
Visual perception
Semantic memory
Executive function

0.28 [—0.03, 0.60]

0.41[0.14, 0.66]
0.69 [0.36, 0.94]

0.44 [0.24, 0.63]
0.65 [0.35, 0.89]
0.41 [0.16, 0.65]

Note. Significant tests are in bold.

lower cross-task correlation for metacognitive efficiency: the abil-
ity to infer task difficulty is less useful for the second task. We
suggest that such a lack of correlation occurs in the episodic
memory task because there is less intersubject consensus regarding
task difficulty, and such domain-general cues are less readily
available.

Our findings are also consistent with a second-order model that
proposes that a common algorithm for second-order inference may
be engaged across domains (Fleming et al., 2017). As such, shared
aspects of the state space, such as motor responses being shared
across tasks (Faivre et al., 2018), can increase the prevalence of
domain-general metacognition. Another driver to global metacog-
nition would be the ability to generalize priors from one task to
another, such as between two memory tasks, or two perceptual
tasks (Rouault et al., 2018). Although some cross-domain cues and
processes influencing bias have been identified (as described
above), further research should focus on identifying domain-
general processes influencing metacognitive efficiency.

When analyzing our data using a nonhierarchical estimation of
cross-task correlations, only two of five correlations remained
significant. This is likely due to the low number of trials in this
experiment, and we suggest that the hierarchical model is more
powerful and accurate in this context (see Method section). To
confirm this intuition, we carried out simulations to compare the
power of hierarchical and nonhierarchical estimation procedures in
recovering cross-task correlations in metacognitive efficiency (see
online supplemental material). Simulated data were generated us-
ing the variance-covariance matrix and parameters estimated from
data from the current experiment. When analyzing these data using

Table 5

both hierarchical and nonhierarchical estimations of cross-task
correlations, we found that the hierarchical model estimations
achieved a closer match to the ground truth correlations than the
nonhierarchical fits for a low number of trials (N = 40), a differ-
ence that was not seen when conducting parameter recovery sim-
ulations with a higher number of trials (N = 400). In the present
work, we opted to use a large number of participants and several
cognitive tasks to study a breadth of cross-task correlations and
isolate a domain-general resource. However, this approach was at
the expense of having fewer trials per task. It will be important to
replicate our findings with a higher number of trials to strengthen
conclusions regarding the involvement of a domain-general re-
source for metacognitive efficiency.

Finally, as in previous studies (e.g., Morales et al., 2018), we
found that metacognitive efficiency was better for memory (for
both episodic and semantic memory tasks in the present study)
compared with visual perception. Here we consider potential ex-
planations of this difference. One potential possibility is that the
one-dimensional SDT model that underpins the modeling of meta-
cognitive efficiency is less appropriate for memory compared with
perception tasks because memory decisions are presumably made
by matching a target to a sample in a high-dimensional space. How
confidence is formed in such a situation, and how the link between
confidence and accuracy should be modeled relative to SDT-
observer predictions therefore remains an open question (van den
Berg, Yoo, & Ma, 2017). This may especially be the case for
episodic memory decisions, which have been proposed to be
influenced both by a familiarity process accommodated by classi-
cal SDT and an all-or-none recollection process (e.g., Yonelinas,

Pearson Correlation Coefficients, Confidence Intervals, and p Values for Correlations in

Individual meta-d'/d' Between Pairs of Tasks

Correlations in individual meta-d'/d" estimates

Variables Episodic memory

Visual perception

Semantic memory Executive function

Episodic memory

~

p =212
Visual perception

Semantic memory

Executive function

= .10 [—0.05, 0.24] r = .05 [—0.10, 0.19] r = .18 [0.04, 0.33]

p = 516 p = .015
r = .21[0.06, 0.35] r = .25[0.11, 0.39]
p = .006 p < .001
r = .12 [-0.03, 0.26]
p = .106

Note. Alpha threshold is .008. N = 172. Significant tests are in bold.
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1994, 2002). Another possibility is that control processes exert a
greater influence on confidence in the memory compared with
perceptual task. In memory, metacognitive beliefs are important in
regulating attempts to retrieve information: Participants are more
likely to engage in a search if they believe they can recall the
information (Nelson & Narens, 1994). Thus, a positive feedback
loop might ensue in which good metacognitive sensitivity is used
to guide memory search, which in turn may further increase
measured metacognitive sensitivity: If one knows that she can
remember the answer, she will engage a search in memory, which
is more likely to lead to successful remembering (compared with
a situation with no active search in memory). Conversely, a belief
that one cannot remember a target would lead to weaker memory
search and the increased likelihood of an incorrect response. How-
ever, such a belief would be metacognitively informative for these
incorrect responses (i.e., “this response should be incorrect be-
cause I did not search in memory”), therefore increasing metacog-
nitive sensitivity. We suggest that such processes are less likely to
occur in the case of visual perception, which would point to a
unique variance component associated with metamemory. How-
ever, as also suggested by previous work (Morales et al., 2018),
both domain-specific processes and a more domain-general re-
source may make independent contributions to confidence forma-
tion.

To conclude, we find that contrary to previous results, both
metacognitive bias (measured by confidence level) and metacog-
nitive efficiency share common resources across domains. This
observation of a domain-general signature of metacognitive effi-
ciency was obtained after ensuring that task structures were similar
across domains (2AFC), that experimental power was sufficient,
and that performance-controlled measures of metacognition were
used (meta-d'/d"). The percentage of explained variance, however,
suggests that both domain-specific and domain-general resources
are involved in metacognitive efficiency, which is consistent with
previous neuroimaging data (Morales et al., 2018) and models of
confidence formation (Fleming et al., 2017). It also suggests that
the use of a global resource may differ according to the evaluated
domain. Nevertheless, this lends support to the idea that training
metacognitive efficiency in one domain can enhance metacogni-
tive efficiency in another domain (Carpenter et al., 2018). Such
transfer effects on metacognition may have important implications
for education and rehabilitation programs because they offer a
pathway toward generalized improvements of awareness of abili-
ties (or disabilities). Although domain-general cues have been
identified for biases in confidence judgment (i.e., anchoring ef-
fects, confirmation bias), the source(s) of domain-generality in
metacognitive efficiency has received less attention. Further work
should focus on identifying the types of processes which influence
metacognitive efficiency across domains. A second question of
interest is understanding sources of variation in cross-task corre-
lation, which may indicate that some tasks are less likely than
others to rely on a domain-general metacognitive resource.

Context

This experiment is the first in a series conducted as part of
Audrey Mazancieux’s doctoral research program, the details of
which can be found on OSF. The aim of the research program is
to assess whether there are domain-general resources contributing
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to metacognition. More broadly, the research straddles a well-
established metacognitive tradition grounded in memory research
(hence the focus on memory) and the more recent field inspired by
psychophysical experiments examining metaperception (hence the
signal-detection inspired modeling approach). The research re-
ported here benefited from a collaborative visit by A.M. to
S.M.F.’s laboratory in 2018 after the study had been preregistered
and the data had been collected. This greatly influenced the choice
of hierarchical modeling approach, leading to the changes between
our preregistered analysis plans and the results presented here.
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