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Humans have the ability to report the contents of their subjective experience—we can say to each other, ‘I am aware of X’.
The decision processes that support these reports about mental contents remain poorly understood. In this article, I pro-
pose a computational framework that characterizes awareness reports as metacognitive decisions (inference) about a gen-
erative model of perceptual content. This account is motivated from the perspective of how flexible hierarchical state
spaces are built during learning and decision-making. Internal states supporting awareness reports, unlike those covarying
with perceptual contents, are simple and abstract, varying along a 1D continuum from absent to present. A critical feature
of this architecture is that it is both higher-order and asymmetric: a vast number of perceptual states is nested under ‘pre-
sent’, but a much smaller number of possible states nested under ‘absent’. Via simulations, I show that this asymmetry pro-

vides a natural account of observations of ‘global ignition’ in brain imaging studies of awareness reports.
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Humans have the ability to report the contents of their subjective
experience—we can say to each other, ‘I am aware of X’. Such
reports, unlike many other aspects of behaviour, are intended to
convey information about experience (Frith et al. 1999). This prop-
erty of awareness reports makes them central to a science of con-
sciousness, which has focused on measuring and quantifying
differences in awareness while holding other aspects of stimuli
and behavioural performance constant (Bernard 1993; Dehaene
and Changeux 2011). In this article, I propose a computational
framework that characterizes awareness reports as metacogni-
tive decisions (inference) about a generative model of perceptual
content. This higher-order state space (HOSS) framework builds
on Bayesian approaches to perception that invoke hierarchical
probabilistic inference as a route towards efficiently modelling
the external world (von Helmholtz 1860; Kersten et al. 2004;
Friston 2005; Hohwy 2013).

The outline of the article is as follows. I start by describing
the psychological processes hypothesized to support awareness
reports with reference to experimental paradigms commonly

used to study conscious awareness. Second, I outline the central
hypothesis, that awareness is a higher-order state in a genera-
tive model of perceptual contents. Third, I model a simple per-
ceptual decision to explicate aspects of the framework, and
distinguish it from other, related approaches such as signal de-
tection theory (SDT; Green and Swets 1966; King and Dehaene
2014). Finally, I highlight empirical predictions that flow from
the model, and how it relates to existing theories of conscious-
ness such as global workspace and higher-order theories.

Several authors have proposed that the psychological basis of
a (visual) awareness report is an internal decision about the
visibility of perceptual contents (Ramsgy and Overgaard 2004;
Sergent and Dehaene 2004; King and Dehaene 2014). (The same
computational considerations likely hold for awareness of
other sensory modalities—a focus on visibility here reflects a
historical bias towards vision in studies of conscious awareness.)
This implies that internal states supporting awareness reports,
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unlike those covarying with perceptual contents themselves, are
both simple and abstract—simple because they vary along a 1D
continuum from unaware to aware, and abstract because they
do not encode the perceptual state itself, only its presence or ab-
sence. Note that a better terminology for ‘unaware’ is really ‘ab-
sent’, ‘unseen’ or ‘noise’, as participants remain aware of seeing
nothing on trials on which they report ‘unaware’. Awareness
reports also refer to different subsets of perceptual content: for
instance, subjects may be asked ‘did you see the word?’, ‘did you
see the number?’ or ‘did you see anything at all?’. These two fea-
tures imply that awareness reports are metacognitive decisions
about a rich perceptual generative model. I will make this hy-
pothesis more concrete in the next section.

A range of experimental paradigms have been developed to
introduce variability in awareness reports while keeping other
aspects of stimuli and behaviour fixed (see Kim and Blake 2005
for a review). For example, using backward masking, Dehaene
et al. (2001) found that they could make words invisible while
showing (via priming effects and brain imaging) that they were
processed up to a semantic level. When subjects reported con-
sciously seeing the words, whole-brain fMRI showed elevated
activations in the parietal and prefrontal cortex, which have be-
come known as ‘global ignition’ responses due to their non-
linear response profile in relation to stimulation strength (Del
Cul et al. 2007; Dehaene and Changeux 2011). Since these classic
studies, alternative explanations of frontoparietal ignition have
been put forward, including that it is involved in the act of
reporting, but not conscious awareness, or that it reflects
greater performance capacity on conscious trials (Lau and
Passingham 2006; Aru et al. 2012). These debates are ongoing
(see Tsuchiya et al. 2015; Michel and Morales 2019, for recent
arguments from both sides).

In common with other predictive processing approaches, we as-
sume that the brain is engaged in building a hierarchical, proba-
bilistic generative model of the world, one in which inference
and learning proceed using (approximations of) Bayes’ rule. One
algorithmic implementation of Bayesian generative models is
predictive coding, whereby perceptual causes encoded at higher
levels of the system generate predictions about incoming sen-
sory data (Friston 2005; Hohwy 2013). Figure 1A presents an out-
line of this scheme, in which two perceptual causes (apple or
orange) generate predictions that ‘compete’ to explain the in-
coming sensory data, while lower layers in turn signal the error
in the current prediction. Via a prediction error minimization
scheme, over time the best explanation of the sensory data is
‘selected’ at higher levels of the system.

The novel aspect of the current framework is its focus on incor-
porating awareness into the perceptual generative model—explain-
ing how decisions to respond ‘I am aware of X’ or ‘I am unaware of
X’ get made. (Note that here I am focusing on reportable states of
awareness, and leaving aside the issue of whether non-reportable
contents may be conscious (Block 1995, 2011). By adopting this
stance, we can frame a clear question that is answerable by cogni-
tive science: what are the computational processes involved in
producing awareness reports? (Dennett 1993; Graziano 2013).)

The central hypothesis is:

Awareness is a higher-order state in a generative model of percep-
tual contents.

Awareness reports are governed by a second-order (metacogni-
tive) inference about the state of a first-order (perceptual)

generative model (Fleming and Daw 2017). One way of imple-
menting this second-order inference is by adding an additional
hierarchical state above the perceptual generative model, which I
refer to as an ‘awareness state’ (Fig. 1B). Paralleling the psycho-
logical simplicity of awareness reports, the awareness state is
also simple, and signals a probability of whether there is percep-
tual content in the lower layers (corresponding to reports of ‘pre-
sent’ or ‘absent’). It is also part of the generative model, such that
if the model is run forward, states of presence (vs. absence) lead
to the top-down generation of perceptual states in lower layers.

As we reviewed above, a central property of awareness states
is that they are abstract—we can flexibly interrogate awareness of
not only apples or oranges, but also many other aspects of percep-
tual experience. In the language of probabilistic generative models,
this implies awareness states are factorized with respect to lower-
order perceptual causes. This notion of factorization is depicted in
Fig. 1C for the case of awareness of different shapes (a circle or
square). Rather than maintaining separate states for aware-of-
circle, aware-of-square, unaware-of-circle and unaware-of-square,
this space can be factorized into two states, one for circle/square,
and another for aware/unaware. However, this factorization is
asymmetric (Fig. 1D). In the absence of awareness, there is (by defi-
nition) an absence of perceptual content, such that being unaware
of a circle is similar to being unaware of a square. In contrast, a
large number of potential perceptual states is nested under the
awareness state of ‘presence’. This imposes an asymmetry in the
model architecture which we will leverage in the next section
when seeking to account for global ignition responses.

The model can be described formally in terms of a probabilistic
graphical model (Pearl, 1988), where nodes correspond to un-
known variables and the graph structure is used to indicate de-
pendencies between variables. These graphs provide a concise
description of how sensory data are generated (Fig. 2A).

W is a 1 x N vector that encodes the relative probabilities of
each of N discrete perceptual states. A is a scalar awareness state
encoding the probability of a perceptual state W being ‘present’
(wy ... wy) or ‘absent’ (wo). Each ‘perceptual’ state W here is dis-
crete, but in practice this state space is likely to be multidimen-
sional and also hierarchically organized. By expanding the
graphical model to enumerate each discrete state (Fig. 2B), it is
straightforward to see how this architecture imposes an asymme-
try on the perceptual state space: awareness (a,) entails the possi-
bility of perceptual content (w; ... wy), whereas unawareness leads
to the absence of content (wg). To simulate multivariate sensory
data (X), W in turn determines the value of y, which is a M x N ma-
trix defining the location (mean) of a multivariate Gaussian in a
feature space of dimensionality M. X is a M x M covariance matrix
which in the current simulations is fixed and independent of A
and W.

When answering the query, ‘Present or absent?’, we compute
the posterior P(A|X = x), marginalizing over perceptual states W:

P(AIX=%) o Y P(A)P(W|A)P(X =x|W)
w

x P(A) Y P(W|A)P(X = x|W) @

w
where the likelihood of X given W is:

P(X = X|W) ~ N(jiy, 2) @
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Figure 1. (A) Schematic of standard predictive coding architectures in which hypotheses about perceptual causes (predictions) are updated in re-
sponse to prediction errors generated by incoming sensory data. (B) Extension of the predictive coding architecture in (A) to accommodate a
higher-order awareness state. (C) Factorization of awareness and perceptual content. (D) lllustration of the asymmetry that ensues from facto-
rizing an awareness state; being unaware of a circle is a similar state to being unaware of a square.
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Figure 2. (A) Probabilistic graphical model of awareness reports. Nodes represent random variables and the graph structure is used to indicate
dependencies as indicated by directed arrows. The shaded node indicates that this variable is observed by the system as sensory input. (B)
Expanded version of the graphical model from panel (A) that makes explicit the asymmetry in the state space. Figures created using the Daft
package in Python.

020z Jaquialdes €0 uo Jesn uopuo abejjo0 Alsiaaiun Agq 91 L£08S/0Z0ZIU/ L /0Z0Z/2191e/ou/Ww oo dno olwapeoe//:sdny WwoJj papeojumoq



4 | Fleming

As in standard models of perceptual decision-making such
as SDT, inference on contents W is also straightforward:

P(W|X = x) o Y P(A)P(W|A)P(X = x|W) (3)

Simulations

To simulate the model, I build on previous work using a 2D fea-
ture space to capture important features of multidimensional
perceptual categorization (King and Dehaene 2014). Each axis
represents the strength of activation of one of two possible
stimulus features, such as leftward or rightward tilted grating
orientations (see Fig. 3). The origin represents low activation on
both features, consistent with no stimulus (or noise) being pre-
sented. As in the more general case described in the previous
section, each stimulus category generates samples from a mul-
tivariate Gaussian whose mean is dominated by one or other
feature. Thus, if I receive a sample of X = [20], I can be confident
that I was shown a left-tilted stimulus; if I receive a sample
X =[02],Ican be confident in seeing a right-tilted stimulus.
King and Dehaene (2014) showed that by placing different
types of decision criteria onto this space, multiple empirical
relationships between discrimination performance, confidence
and visibility could be simulated. In their model, visibility was
modelled as the distance from the origin, and stimulus aware-
ness reflected a first-order perceptual categorization in which
‘absent’ was one of several potential stimulus classes (Fig. 3A).

A

2D SDT

Our model builds closely on theirs and inherits the benefits of
being able to accommodate dissociations between forced-
choice responding and awareness reports. However, it differs in
proposing that awareness is not inherent to perceptual categori-
zation; instead, perceptual categorization is nested under a gen-
erative model of awareness (Fig. 3B). In other words, unlike in
SDT, deciding that a stimulus is ‘absent’ in the HOSS model is
governed by a more abstract state than deciding a stimulus is
tilted to the left or right. We will see that this seemingly minor
change in architecture leads to important consequences for the
relationship between awareness and global ignition.

To explore the properties of the model, I simulate inference
at different levels of the hierarchy for the two-class stimulus
discrimination problem described in Fig. 3B. I first simulate, for
a variety of 2D inputs (X’s), the probability of saying ‘aware’ or
‘seen’ (P(A = a1|X = x)). Figure 4A shows that this probability
rises in a graded manner from the lower left corner of the graph
(low activation of any feature) to the upper right (high activation
of both features). In contrast, confidence in making a discrimi-
nation response (e.g. rightward vs. leftward) increases away
from the major diagonal (Fig. 4B), as the model becomes sure
that the sample was generated by either a leftward or rightward
tilted stimulus. As in King and Dehaene (2014), these changes in
discrimination confidence also occur in the absence of reporting
‘seen’.

I next simulate a proxy for prediction error at each layer in
the model—in other words, how much belief change was in-
duced by the sensory sample. I use the Kullback-Leibler (K-L)

HOSS

Figure 3. (A) 2D feature space for a toy perceptual decision problem involving classifying two possible stimuli (e.g. left- and right-tilted Gabors).
Each Gaussian indicates the likelihood of observing a pair of features (e.g. orientation) given each stimulus class (where = [3.57], [73.5] or
[3.53.5] and X is the identity matrix). The right-tilted stimuli occupy the right-hand side of the grid; left-tilted stimuli occupy the left-hand side
of the grid. The absence of stimulation is represented by a distribution in which activation of each feature is low towards the origin. In 2D SDT,
there are three stimulus classes organized in a flat (non-hierarchical) structure. (B) The same 2D feature space from (A), modified to make ex-
plicit the hierarchical aspect of the HOSS model. A higher-order awareness state (a,) nests perceptual states w; and wy.
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Figure 4. Simulations of inference on (A) awareness state A and (B) perceptual states W, as a function of sensory input X (where p=
[0.51.5], [1.50.5] or [0.50.5] and X is the identity matrix). In panel (A), the posterior probability of a report of ‘presence’ rises from the lower left
to the upper right of the grid. In panel (B), confidence in stimulus identify (e.g. left- or right-tilted Gabor) increases towards the corners of the
grid. Overlaid in white is the 0.5 contour from panel (A) showing that graded changes in confidence in identity still occur on trials that have a
high likelihood of being classed as ‘unseen’ by the model. Confidence in identity was computed as max[P(w;|X = x), P(w;|X = x)).

divergence as a compact summary of how far the posterior
probability distribution at each level in the network differs from
the prior. Flat priors were used for both the A and W levels. The
K-L divergence is a measure of Bayesian surprise, which under
predictive coding accounts is linked to neural activation at each
level in a hierarchical network (Friston 2005; Summerfield and
de Lange 2014). For instance, if the model starts out with a
strong prior that it will see gratings of either orientation, but a
grating is omitted, this constitutes a large prediction error (an
unexpected absence). Thus, computing K-L divergence provides
a rough proxy for the amount of ‘activation’ we would expect as
a function of different types of decision.

At the level of perceptual states W, there is substantial
asymmetry in the K-L divergence expected when the model
says ‘seen’ vs. ‘unseen’ (Fig. 5A). This is due to the large belief
updates invoked in the perceptual layer W by samples that devi-
ate from the origin. In contrast, when we compute K-L diver-
gence for the awareness state (Fig. 5B), the level of prediction
error is symmetric across seen and unseen decisions. This is be-
cause at this level inference on presence and absence is sym-
metric. When simulating these belief updates over a range of
precisions to mimic increasing stimulus-onset asynchrony in a
typical backward-masking experiment, we see that the asym-
metry in K-L divergence of the W states increases with
stimulus-onset asynchrony (SOA), producing an ignition-like
pattern when the stimulus is ‘seen’ (Fig. 5C).

Empirical Predictions

The model is currently situated at a computational level and
remains agnostic about temporal dynamics and neural imple-
mentation. (For recent work translating probabilistic graphical
models into models of neuronal message passing see George
et al. (2017) and Friston et al. (2017).). Here, I instead focus on
coarser-scale predictions about the neural correlates of aware-
ness reports in typical consciousness experiments.

First, as hinted above, an asymmetric state space for pres-
ence and absence suggests there will be greater summed predic-
tion error in the entire network on presence decisions (as
summarized by K-L divergence at each node of W). This may be
a computational correlate of the global ignition responses often
found to track awareness reports (Del Cul et al. 2007; Dehaene
and Changeux 2011).

Second, the model predicts that awareness reports (but not
discrimination performance, which relies on lower-order infer-
ence on W) will depend on higher-order states. These may be in-
stantiated in neural populations in prefrontal and parietal cortex
(Lau and Rosenthal 2011). Thus, it may be possible to silence or
otherwise inactivate the neural substrates of an awareness state
without affecting performance—a type of blindsight (Weiskrantz
1999; Del Cul et al. 2009). However, to the extent that this network
is flexible in its functional contribution to higher cognition, show-
ing both ‘multiple demand’ characteristics (Duncan 2010) and
mixed selectivity (Mante et al. 2013), we should also not be sur-
prised by null results, given that single lesions may belie redun-
dancy in its contribution to awareness (Michel and Morales 2019).

Third, for the uppermost awareness state, we expect sym-
metry—decisions in favour of both presence and absence will
lead to belief updates of similar magnitude. There has been lim-
ited focus on examining decisions about stimulus absence (as
these decisions are often used as a baseline or control condition
in studies of perceptual awareness). However, existing data are
compatible with symmetric encoding of presence and absence
at the upper level of the visual hierarchy, in primate lateral pre-
frontal cortex (LPFC; Panagiotaropoulos et al. 2012). Merten and
Nieder (2012) trained monkeys to report the presence or absence
of a variety of low-contrast shapes presented near to visual
threshold. Neural activity tracking the decision (present or ab-
sent) was decorrelated from that involved in planning a motor
response by use of a post-stimulus cue that varied from trial to
trial. Distinct neural populations tracked the decision to report
‘seen’ vs. ‘unseen’. Importantly the magnitude of activation of
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Figure 5. (A, B) K-L divergence for (A) perceptual states W and (B) awareness state A as a function of sensory input X. K-L divergence quantifies
the change from prior to posterior after seeing the stimulus X and provides a metric for the magnitude of belief update at different levels of the
network. The lower panels show the averaged K-L divergence for both W and A as a function of whether the model reports presence
(P(A = a1]X = x) > 0.5) or absence. The network nodes correspond to those in Fig. 2A and the orange node indicates the node for which the K-L
divergence is calculated. (C) Behaviour of the network in a simulated masking experiment at various levels of SOA (modelled as increasing sen-
sory precision) in which sensory evidence was sampled from the three stimulus classes shown in Fig. 3B. The left-hand panel shows that the
model is more likely to report ‘seen’ as SOA increases. The middle panel shows the K-L divergence at the level of perceptual states W as a func-
tion of whether the model reports presence (P(A = a;|X = x) > 0.5) or absence. The expected K-L divergence is asymmetric, with a bigger aver-
age belief update following ‘seen’ decisions (a computational correlate of global ignition). The right-hand panel shows the average K-L
divergence of awareness state A as a function of whether the model reports presence (P(A = a4|X =x) > 0.5) or absence. At this level the
expected K-L divergence is relatively symmetric for ‘seen’ and ‘unseen’ decisions.

these populations was similar in timing and strength, suggest- intermediate visibility rating) in anterior prefrontal cortex,
ing a symmetric encoding of awareness in LPFC. Using fMRI, whereas a global ignition response was seen for presence (com-
Christensen et al. (2006) also observed symmetric activation for pared to absence) in a widespread frontoparietal/striatal

judgments of presence and absence (compared to an network.

020z Jaquialdes €0 uo Jesn uopuo abejjo0 Alsiaaiun Agq 91 L£08S/0Z0ZIU/ L /0Z0Z/2191e/ou/Ww oo dno olwapeoe//:sdny WwoJj papeojumoq



More broadly, the current framework suggests that focusing
on inference about absence will be particularly fruitful for un-
derstanding the neural and computational basis of conscious
awareness (Merten and Nieder 2012; Farennikova 2013; Merten
and Nieder 2013).

The current simulations assume that the noise of sensory input
is fixed, but in reality this parameter would also need to be esti-
mated. A range of disambiguating cues are likely to prove im-
portant in such an estimation scheme and thereby affect an
inference on awareness. For instance, beliefs about the state of
attention or other properties of the sensory system provide
global, low-dimensional cues as to the state of awareness (Lau
2008; Graziano 2013). Computationally these cues may be imple-
mented as beliefs about precision (priors on ¥ in the model in
Fig. 2A), where precision refers to the inverse of the noise (vari-
ability) we expect from a particular sensory channel.

Another source of information about sensory precision is
proprioceptive and interoceptive input about bodily states.
Consider the following thought experiment in which we set up
two conditions in a dark room, one in which the subject has
their eyes open and one in which they have their eyes closed.
Now imagine that we have arranged for neural activity in early
visual areas to be identical in the two cases (the X’s are the
same), and that in both cases the subject is told (for instance via
an auditory cue) that there might have been a faint flash of
light. Despite the visual activity being identical, the subject can
be sure that they didn’t see anything when their eyes were
closed compared to when they were open. In other words, pro-
prioception provides disambiguating information as to the cur-
rent state of awareness—when the eyes are open we expect to
have higher precision input than when the eyes are closed.

One straightforward way of introducing this relationship is
to allow precision itself to depend on awareness (a connection
between A and X in Fig. 2A). Such a modification implies that an
awareness state may be 2D, encoding the distinction between
whether something has the potential to be seen (high vs. low
expected precision or eyes open vs. eyes closed) as well as
whether something is seen (present vs. absent; Metzinger 2014;
Limanowski and Friston 2018). This aspect of the HOSS model is
also in keeping with Graziano’s attention schema model of con-
sciousness, in which awareness is equated to a model of atten-
tion (Graziano, 2013). However, in contrast to the attention
schema approach, in HOSS a model of attention provides a criti-
cal input into resolving ambiguity about whether we are aware
or not (by affecting beliefs about precision), rather than deter-
mining awareness itself.

The goal of the higher-order state-space (HOSS) approach out-
lined here is modest—to delineate computations supporting
metacognitive reports about awareness. This is a useful place to
start given that report (or the potential for report) is the
jumping-off point for a scientific study of consciousness.

A stronger reading of the model is that conscious awareness
and metacognitive reports depend on shared mechanisms in
the human brain (Shaver et al. 2008; Brown et al. 2019). This
stronger version shares similarities with higher-order theories

of consciousness, particularly Lau’s proposal that conscious-
ness involves ‘signal detection on the mind’ (Lau 2008; Hohwy
2015). Notably, a process of hierarchical inference may take
place via passive message-passing without any strategic, cogni-
tive access to this information e.g. in working memory
(Carruthers 2017), making it compatible with higher-order rep-
resentational accounts of phenomenal consciousness (Brown
2015).

However, while inference on higher-order states is, on this
view, necessary for awareness, it may not be sufficient. In
HOSS, the higher-order awareness state is simple and low-
dimensional. Lower-order states clearly make a contribution to
perceptual experience under this arrangement—a variant of the
‘joint determination’ view advocated by Lau and Brown (2019).
However, it seems an empirical question as to the relative gran-
ularity of higher-order and first-order representations, and a
range of intermediate views are plausible. The more important
point is that the state space is factorized to allow two separate
causes of the sensory data—what it is, and whether I have seen
it. In other words, becoming aware of a red, tilted object may de-
pend on learning an abstract, factorized state of presence/ab-
sence that is not bound up with the states of being red or tilted.
This is likely to be computationally demanding in a rich, multi-
dimensional state space (as it requires marginalizing over W)
and may be rare in most cognitive systems.

HOSS also provides a new perspective on global workspace
(GWS) architectures. GWS proposes that consciousness
occurs when information is ‘globally broadcast’ throughout
the brain. As a result of global broadcast, cognitive and lin-
guistic machinery have access to information about a particu-
lar stimulus or subpersonal mental state (Dehaene et al. 1998).
HOSS retains the ‘global’ aspect of GWS, in that an awareness
state is hierarchically higher with respect to the range of pos-
sible perceptual states, and therefore has a wide conceptual
purview. However, HOSS recasts ignition-like activations as
asymmetric inference about stimulus presence rather than a
consequence of stimulus content being ‘broadcast’. Such a
move potentially resolves the conundrum of how global
broadcast directly accounts for systems claiming to be con-
scious of a stimulus without positing additional machinery.
Global access to the workspace allows the system to say
‘there is an X’, but not endow it with the capacity to report
awareness of X. This point is made concisely by Graziano
(Graziano 2016):

Consider asking ‘Are you aware of the apple?” The search engine
searches the internal model and finds no answer. It finds informa-
tion about an apple, but no information about what ‘awareness’ is,
or whether it has any of it. .. It cannot answer the question. It does
not compute in this domain.

In other words, it is difficult to see how such a system can be ac-
tively aware of the absence of stimulation when global broad-
cast is constitutive of awareness. The state space approach
outlined here is designed explicitly to compute in this domain,
and therefore does not suffer from the same problem. Another
critical difference between GWS and HOSS is that HOSS predicts
prefrontal involvement for active decisions about stimulus ab-
sence, whereas GWS predicts that PFC remains quiescent on
such trials due to a failure of the stimulus to gain access to the
workspace.

Finally, to the extent that abstract awareness states need to
be learnt or constructed, creating this level may require a pro-
tracted period of development. Such development would begin
with creating a perceptual generative model (W) before a more
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general property (awareness) could be abstracted from these
perceptual states. This is consistent with Cleeremans’ ‘radical
plasticity thesis’ in which consciousness is underpinned by
learning abstract representations of both ourselves and the
world (Cleeremans 2011).

I close with questions for future research motivated by the cur-
rent computational sketch:

1. How are awareness states represented in neural activity?
Are presence and absence encoded symmetrically?

2. Is a (neural) representation of awareness factorized with re-
spect to other aspects of perceptual content?

3. How are awareness states learned?

Model and simulation code can be accessed at https://github.
com/smfleming/HOSS.
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