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Abstract

Many statistical problems involve modelling the times at which events occur.

There are cases where events can occur in clusters with sudden jumps in the

total number of occurrences. To model such data an intensity function can be

constructed which describes the probability of an event occurring at a specific

time. The Hawkes process is a point process model with a conditional intensity

function that provides a change in intensity for each event occurrence and as

such the Hawkes process can be used to explain event clustering. The flexibility

and extendability of the Hawkes process will be highlighted in this thesis.

I extend the Hawkes process by using nonparametric Bayesian methods

where different components of the Hawkes process are constructed using a

Dirichlet process which is a Bayesian prior for distributions. This allows for a

data driven approach and removes the need for parametric assumptions. This

Bayesian approach also allows for a hierarchical structure to be integrated in

the models where appropriate.

These extended Hawkes process are applied to different application do-

mains including: extreme value theory, financial trading and soccer goal oc-

currence modelling. Each new application introduces a different extension to

the Hawkes process and illustrates how it improves on existing methodology.

From this research I also wrote a new software package for using Dirichlet

processes. This software enables users to easily construct Dirichlet process

objects that can incorporated into existing inference workflows. This allows

users to introduce nonparametric methods without needing to program their

own inference methods.



Impact Statement

Hawkes processes are becoming ubiquitous across different disciplines and have

seen application in geology, finance and many more research areas. This thesis

continues this trend and shows how Hawkes processes are a generalisable model

that can be used widely. By extending and demonstrating this methodology

future research can be conducted following the same steps and adapting where

necessary.

The use of probabilistic methods in this thesis is impacting the develop-

ment of Bayesian computational methods for the Hawkes process by providing

a flexible algorithm for inference of a Hawkes process. Furthermore, the ex-

tension into nonparametric methods improves on the existing methodology for

data-driven approaches. This flexible algorithm, combined with numerous ap-

plication examples shows how the Hawkes process can have a major impact on

many different areas.

Outside of academia there are numerous uses for Hawkes processes. The

financial technology firm BestX are currently implementing the hierarchical

nonparametric Hawkes process work (Chapter 5) in their software. This re-

search is enabling them to understand current market conditions based on the

recent pattern of trading. BestX are the industry standard in transaction cost

analysis and currently have over 100 clients that are responsible for roughly

$20 trillion in assets under management.

Secondly, the usage of Hawkes processes as an in-play model for odds

movements has direct impact for betting exchanges and odds compilers. The

work in Chapter 6 shows how a generative model of goals in a match can lead
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to a prediction of the winner of the match. There are many more betting

markets that are based on goals scored and a Hawkes model provides a very

general framework that can form the basis of adjusting prices in real time.

The software package developed as part of this thesis in Chapter 3 has

also had a great impact on the approach of nonparametric Bayesian modelling.

Since release it has over 5,000 downloads, with 15 downloads per month on

average. It is currently hosted on Github where I have helped numerous people

both use and contribute to the software. Finally, it has received its first official

citation in the publication Koenker and Gu (2019).
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Chapter 1

Introduction

A point process is a mathematical model that describes patterns of random

points in a given area. This area could represent a time period where the points

describe when a random event occurs or the area could also be used to describe

a physical space where the random points describe locations within this space.

As a result, point processes have far reaching and diverse applications, from

constructing life tables by counting the number of deaths in a time period

using mortality data (Graunt, 1973) to counting the number of phone calls

down a telephone wire (Erlang, 1909). This thesis focuses on a specific type of

point process called the Hawkes process which is used to model the clustering

behaviour of the points. These points will refer to event occurrence times in a

predefined window of time.

Events from a point process will display clustering when there is a higher

concentration of events around other events. There will periods of time where

many events occur and there is a higher probability of seeing further events

around other events. There are many examples of the clustering of event

times in a wide variety of different fields and Figure 1.1 shows three different

examples of clustering situations. Figure 1.1a shows the time and value of

insurance claims in Denmark for two months in 1980 where the data is taken

from the evir R package (Pfaff and McNeil, 2018). In this example, the points

represent when the claims occurred and they appear to be clustered around

each other. Similarly Figure 1.1b shows the occurrences of losses greater than
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Figure 1.1: Example of clustering in the times of event across different data.

5% of the S&P 500, a financial index. There are three distinct periods where

these losses occur, the financial crisis of 1987, the dot-com bubble of the early

21st century and the great financial crisis of 2008. There are multiple days

where the occurrence of large losses cluster around each other and shows large

losses are observed in bursts. Finally, Figure 1.1c shows the number of price

changes in a second of the Euro to US Dollar exchange rate over the course

of one minute. There is a highly variable rate of price changes where sudden

flurries of increased activity are closely followed by further periods of higher

activity which is another example of clustering.

One such mechanism to model this clustering behaviour is self-excitation

which is a phenomena where the occurrence of an event can increase the fu-

ture rate of the same type of event. Each of these three examples show how

clustering can be viewed as a consequence of self-excitation and suggests that

the Hawkes process can be used to model the occurrence of these event times.

A point process is defined by an intensity function that controls the in-

stantaneous probability of an event occurring at a given time. The specific

form of the Hawkes process is represented by a conditional intensity function

λ(t | Ht) = µ(t) + κ
∑
ti<t

g(t− ti),
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where Ht is the history of the process and represent the information filtration

up to time t, µ(t) is the baseline intensity function of events, κ is a positive

constant value and g(t) is another positive function. The self-excitation comes

from the κ
∑

ti<t
g(t− ti) components of the function as with each event that

occurs there is a increase of κ in the intensity function that decays at a rate

of g(t). Each event that occurs is either generated from the rate µ(t) or the

result of an increase in intensity from previous events that the self-excitation

component controls.

The Hawkes process was first introduced in Hawkes (1971) and has seen

wide ranging applications ever since. It started as a model for earthquakes

(Adamopoulos, 1976; Ogata, 1988) and researchers have since used it to model

different problems in fields such as ecology (Balderama et al., 2012), criminol-

ogy (Mohler, 2013; Porter and White, 2012) and finance (Chavez-Demoulin

and McGill, 2012; Filimonov and Sornette, 2012; Rambaldi et al., 2015). In

each case, self-exciting behaviours have been found to exist and modelled using

a Hawkes process.

Any data where there is a possibility of clustering or self-excitation be-

tween events is well suited for a Hawkes process and this thesis will explore

a number of different areas where the Hawkes process can be applied and

extended.

Like all statistical models, the Hawkes process has a number of free param-

eters, µ(t), κ and g(t) that must be inferred from the data at hand. Current

popular inference techniques are frequentist in nature and consist of max-

imising the likelihood function (Ogata, 1988; Lallouache and Challet, 2016;

Rambaldi et al., 2015) or expectation maximisation (Veen and Schoenberg,

2008; Lewis and Mohler, 2011). This thesis will be taking a different approach

instead and proposes a Bayesian method for inferring the parameters of the

model which will provide a number of benefits over the frequentist methods.

Similarly, these parameters of the Hawkes process are typically assumed to

be of a known form that can be represented by a finite number of parameters,
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for example, a constant baseline intensity µ(t) = µ0, where µ0 is unknown

and must be inferred, or an exponential decay for g(t) = βe−βt, where β is

unknown. Instead, this thesis takes the next step and uses nonparametric

methods. This use of nonparametric models removes the need to make poten-

tially incorrect assumptions about the shape of the data and instead allows

for arbitrary distributions to be learnt from the data instead. Nonparamet-

ric Hawkes processes have been explored previously (Lewis and Mohler, 2011)

but this thesis will bridge the gap between nonparametric statistics, Bayesian

methods and how they can be applied to the Hawkes process.

A Bayesian nonparametric approach provides a general method for esti-

mating Hawkes processes. It minimise the need for assumptions of the form

of the different components of the Hawkes process such that µ, κ or g(t) can

be learnt from the data instead. Furthermore, this allows for a general model

to be applied to different datasets reducing the amount of fine tuning required

for each application. Specifically in the case of g(t) where the dynamics of the

dataset can make the choice of the function difficult, using a Bayesian non-

parametric method helps removes the need to choose and instead lets the data

decide on the most suitable function shape.

Both µ(t) and g(t) will be modelled nonparametrically in this thesis. For

µ(t) the use of a nonparametric model will allow for a more flexible approach

when it comes to modelling seasonality that is present in data. For g(t) it will

reduce the need to make specific assumptions about the data and instead a

suitable form of g(t) will be learnt from the data rather than imposed.

The Dirichlet process will drive the nonparametric approach and provides

a Bayesian method for specifying a prior distribution for the nonparametric

model. The Dirichlet process is a type of stochastic process where each draw is

a distribution and also possess beneficial computational properties that aids in

the sampling of the posterior distribution. This combination of mathematical

and computational elegance allows for a versatile nonparametric model that

can be used by the Hawkes process in variety of ways.
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However the nonparametric methods are not without their drawbacks.

There is an increased computational cost when using such methods to infer the

parameters. This can prohibit the use of such methods on very large datasets

where the running time would be too long compared to frequentist parametric

methods. Therefore there is always the need to judge what technique would

be most practical for the size of the data.

Overall this thesis will be exploring the use and application of Hawkes

processes. By proposing a Bayesian algorithm for sampling the parameters of

a Hawkes process this thesis will be providing the necessary framework to build

upon more complex point process models. The framework will be developed

with a highly applicative view and each new aspect of the Hawkes process is

followed by a suitable application, ensuring that the research has real world

impact and each new addition to the Hawkes process has a clear use case.

The Hawkes process will be extended using nonparametric and hierarchical

methods with topics of application including: extreme value theory, quantitive

finance and sports modelling.

1.1 Contributions

Four papers are being submitted to journals from work described in this thesis.

Firstly, I have independently written and distributed an R package for fitting

Dirichlet process models. dirichletprocess: An R Package for Fitting Complex

Bayesian Nonparametric Models is the accompanying vignette to this software

package and forms Chapter 3. From the work in Chapter 4 I have also written

the paper Hierarchical Bayesian Modelling of Nonstationary Extreme Values.

In this paper the Hawkes process is applied to extreme values and provides a

new framework for modelling both the occurrence and magnitude of an extreme

event. Chapter 5 has also spawned a paper that is in the process of submis-

sion; Hierarchiacal Non Parametric Hawkes Processes with Applications where

the Hawkes process is used with a nonparametric component and applied to

multiple timeseries of financial data. Finally the work on multivariate Hawkes
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processes from Chapter 6 forms the paper Bayesian Multivariate Hawkes Pro-

cesses with Applications to Soccer Goals. All four of the papers described here

are in the process of submission.

1.2 Thesis Outline

In Chapter 2 the early Hawkes literature is reviewed and the necessary back-

ground mathematical detail is outlined. An overview of the Hawkes process

with its associated equations and current inference methods is presented be-

fore proceeding to a brief introduction of Bayesian statistics and nonparametric

methods all of which will be used throughout the thesis.

The Dirichlet process forms the basis of the nonparametric work and is

frequently used in chapters of this thesis. This work lead to the development

of a software package for creating flexible Dirichlet processes objects in R:

dirichletprocess. Chapter 3 showcases the features and implementation of

the package with examples of how users can perform nonparametric Bayesian

analysis using Dirichlet processes. The package allows users to perform non-

parametric modelling without the need to program the inference algorithms

and instead the user can utilise the prebuilt models or specify their own models

whilst allowing the dirichletprocess package to handle the Markov chain

Monte Carlo sampling. The Dirichlet process objects from the package can

act as building blocks for a variety of statistical models including and not lim-

ited to: density estimation, clustering and prior distributions in hierarchical

models.

For Chapter 4 the Hawkes process is applied to extreme value theory

and a new framework is proposed for modelling extreme events. The Hawkes

process is combined with a Dirichlet process to model the occurrence of the

extreme values nonparametrically and then by using the learnt structure be-

tween events, the magnitude of the extreme values is also modelled. The

Hawkes model provides a conditional exceedance distribution that assesses the

probability of an extreme event whilst taking into account the history of the
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process. A full posterior sampling algorithm for the Hawkes process parame-

ters is introduced and also used in further chapters. This chapter uses extreme

terrorist attacks as its application example and provides a prediction for both

when and how large the next attack will be given a recent terror attack. In

Chapter 5 the occurrence of trades in the foreign exchange market are mod-

elled using a Hawkes process. There is strong seasonal day-of-the-week effects

where the behaviour of a financial market on a Monday is quite different to the

behaviour on a Friday. To account for this, a further nonparametric extension

of the Hawkes process is developed which uses a hierarchical Dirichlet process

to learn multiple day-of-the-week seasonality functions simultaneously. This

new model is shown to accurately predict current market conditions given the

recent trading activity.

A multivariate Hawkes process is under consideration in Chapter 6. Soccer

goals are found to not be generated by a Poisson process and thus a multi-

variate Hawkes process is a suitable model choice. Using the same approach

as previous chapters it is shown how the Bayesian inference algorithm can be

extended to multiple variables without major changes in the algorithm. This

multivariate Hawkes process is then used to explore the occurrences of soccer

goals and how the two teams scoring rates can experience both self and mutual

excitations. The scoring rates are then used to form predictions of a match

outcome which are found to agree with prediction formed from the available

market odds.

All three applications outlined above involve a clustering effect where

events appear in bursts. The Hawkes process is a natural choice of model

where self-excitation can be used to induce this type of clustering behaviour.

In all three cases (terror attacks, trades and goals) events can lead to further

events of the same type. It is this size and scale of self-excitation that make

the Hawkes process well suited to these different problems.

Finally, the findings are concluded in Chapter 7 and further possible av-

enues of further work are outlined.



Chapter 2

Background

This chapter begins with an overview of the early literature on Hawkes pro-

cesses and outlines the original usage of the Hawkes process. After this his-

torical reference the necessary background mathematical material is outlined

for understanding the Hawkes process and nonparametric Bayesian statistics.

The concept of a point process and Bayesian analysis form the foundation of

the work in this thesis and each contribute to the development of the nonpara-

metric Hawkes process.

The Hawkes process was first introduced in 1971 by Alan G. Hawkes

(Hawkes, 1971) where it is proposed that a new class of point processes with

intensity functions that are dependent on the history of the process can be well

defined. This paper then proves that such a process cannot be distinguished

from one where the intensity function is random and Hawkes (1971) concludes

by proposing a number of domains where this self-exciting process could be

applied, such as epidemic models with different infection cases and the physical

phenomena of radiating bodies. Hawkes and Oakes (1974) extended this by

proving that this self-exciting process can also be represented using clusters

of Poisson processes. Each event can produce a further generation of events

triggered by some rate and this rate is a defining property of the Hawkes

process. Adamopoulos (1976) used a self-exciting model for modelling global

earthquakes in years 1950-1971. This is one of the first applications of the

Hawkes process and showed how a point process with a clustering property is
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well suited for modelling earthquakes.

The early applications of the Hawkes processes were focused on seismology

and much of its development revolved on the problems that arise in earthquake

modelling. One such problem involves identifying which earthquake was the

main event and which earthquakes are the aftershocks caused by the main

event. As the earthquakes appear in clusters both in time and location it can

be difficult to form a causal structure and show what earthquake caused other

earthquakes.

This lead to the significant applications of a Hawkes process and the in-

troduction of the Epidemic Type Aftershock Sequence (ETAS) model in Ogata

(1988). This paper uses the previous development of the Hawkes process and

applies it to the occurrence and magnitude of Japanese earthquakes from 1885

to 1980. The Hawkes process was found to fit the data better than the stan-

dard models of that time but reiterated the difficulty in identifying the main

and aftershock earthquakes.

The process of untangling this structure between earthquakes is known as

declustering and is a key technical consideration when fitting Hawkes processes.

Zhuang et al. (2002) again used the ETAS model and a variety of algorithms

to determine which earthquakes were main events and which were aftershocks.

However, all algorithm proposals were dependent on model choice and thus the

functional form of the ETAS model. Furthermore, as the process is stochastic

and assigns probabilities to the structure between events each iteration is just

a realisation of the true structure in the data. This declustering will prove an

important tool for parameter inference.

A simple extension to a point process has lead to a new model where

clusters of events can be explained by self-excitation behaviour. This new

point process has then seen a wide range of applications and proves that many

different phenomena can be seen as self-exciting.

As mentioned in the introduction, Hawkes processes have since been ap-

plied to a wide range of different research areas. Balderama et al. (2012)
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applied the ETAS model to the spreading of an invasive plant species in Costa

Rica and found that the presences of a plant increased the further presence of

more plants. In criminology Mohler (2013) use a Hawkes process to model the

occurrences of criminal activity in Chicago and also terrorist attacks in Israel,

Northern Ireland and Iraq. Similarly Porter and White (2012) also used ter-

rorist attacks in Indonesia as their example data set for applying a self-exciting

model.

A large area of work in Hawkes processes has also been dedicated to

financial applications such as high frequency trade dynamics (Bacry et al.,

2012; Chavez-Demoulin and McGill, 2012; Filimonov and Sornette, 2012), risk

modelling (Chavez-Demoulin et al., 2005) and the impact of macroeconomic

news on trading intensity (Rambaldi et al., 2015). In each case the clustering

behaviour is mechanised by the self-excitation behaviour from the Hawkes

process. For a review on the use of Hawkes processes in finance by Hawkes

himself see Hawkes (2018).

Finally there has also been experimentation with neural networks and

Hawkes processes as demonstrated in Mei and Eisner (2017). In this work they

use a neural network to replace the simple summation of event self-excitation

which allows for a complex dependence between events and their effects on

the future intensities. This model is applied to a variety of datasets including

social network interactions, health care visits and financial trades and improves

prediction of future events in all cases.

2.1 Point Processes

A point process is a mathematical model for describing a collection of items

randomly located in some space. If this space is a time axis then these items

refer to event occurrences and are located on the real line. For example, the

arrival time of buses at a bus stop forms a point process, where each event is

the arrival time of a bus and the space in consideration is the time window in

which the experiment takes place.
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For any point process there exists an intensity function that describes the

probability of an event occurring

λ(t) = lim
∆t→0

Pr(N(t+ ∆t)−N(t) = 1)

∆t
,

where N(t) is the number of events at time t. For a small interval [t, t+ ∆t],

the probability of one event occurring is equal to the intensity function at time

t as the vanishing limit of ∆t is taken.

The Poisson point process is the most commonly used point process and

is characterised by two properties. Firstly, the total number of points in the

window is distributed via the Poisson distribution, and secondly, the occur-

rence of each point is independent of the other. Furthermore, given arbitrary

non-overlapping time intervals A1, A2, . . . where N(A1), N(A2), . . . are the re-

spective counts of events in these intervals. If the points arrive as a Poisson

process with intensity λ(t) then the random variables N(A1), N(A2), . . . have

independent Poisson distributions such that the probability of n events in the

interval Ai can be written as

Pr(N(Ai) = n) =
Λ(Ai)

n

n!
e−Λ(Ai),

where Λ(Ai) is the intensity function integrated over the interval

Λ(Ai) ≡
∫
Ai

λ(t)dt.

As this is a Poisson distribution, the expected number of points in each interval

can be written as

E [N(Ai)] =

∫
Ai

λ(t)dt, i = 1, 2, . . . , (2.1)

therefore the counts within any non-overlapping sets are independent. Fur-

thermore, the counts are independent of the history of the process and the

past behaviour has no effect on the future occurrences of events.

If the intensity function λ(t) is a constant and does not depend on any

other variable it is known as the homogeneous Poisson process. If the pro-

cess has a dependence on another variable, such as time, it is referred to as
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an inhomogeneous Poisson processes as long as the above statements remain

satisfied.

2.2 Hawkes Processes
The inhomogeneous Poisson process is extended further and includes an effect

where the intensity function is now dependent on the past events. This inten-

sity function is now conditional on the history up to time t of the process and

can be written as

λ(t | Ht) = lim
∆t→0

E (N([t, t+ ∆t]) | Ht)

∆t
,

where Ht represent the set of past events.

The Hawkes process is one such conditional model where the form of

intensity function can be written as

λ(t | Ht) = µ(t) + κ
∑
ti<t

g(t− ti), (2.2)

where ti, i = 1, . . . , n are the event times, µ(t) is some positive function, κ a

constant and g(t) an arbitrary function.

Under this parametrisation and given that κ > 0 the Hawkes process can

be viewed as a branching process and with each event occurrence there is a

corresponding increase in the intensity function. If an event does occur from

this subsequent increase in intensity then it can be interpreted as an offspring

event from the original event. For each event from the process there will be a

corresponding number of offspring events (which could be zero). Furthermore,

each offspring generation is independent of the other events and each event

occurring can cascade into further events which is the signature for self-exciting

behaviour. This branching interpretation hinges on the linear superposition of

Poisson processes, which itself is a Poisson process (Kingman, 1992) and by

being able to separate out the individual Poisson process generating the events

a causal structure can be established. From this structure the links between

events can be labelled and used to aid inference.
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t1 t4

t2 t3

t5
t6

Figure 2.1: Graphical representation of the structure of events arising in a

Hawkes process. Each black circle represents an event and shows how we can

identify parent events. Only three layers are shown but there can possibly be

an infinite amount of layers with events.

Figure 2.1 shows a realisation of the Hawkes process and how the branch-

ing structure appears naturally. Events t1 and t4 are independent, they have

no parent event and spawned randomly. Events t2, t3, t5, t6 have clear parents

and there exists a causal structure between these events and their parent event

- these events are caused by the increase in the intensity function. However,

whilst this structure between events can be constructed it does not restrict the

Hawkes process to situations where there is causal link between events. This

self-exciting behaviour is used to describe the clustering of events rather than

the causality.

The parameters of the Hawkes intensity function, Eq. (2.2), have an inter-

pretable effect on event generation. Firstly, µ(t) is the background rate - the

rate at which all random events which have no parent are generated, κ is the

expected number of child events for each event and g(t) is the distribution of

child event times relative to their parent events. For stability, κ < 1 otherwise

the total number of events would explode.

The causal structure between events leads to the introduction of a latent

variable for each n events B = {B1, B2, . . . , Bn} that describes the branching

structure. If event i was generated by the background rate then Bi = 0, or, if

event ti was caused by tj then Bi = j. This variable then allows the formation

of two different group, background events and child events. As it is known

that the background rate is responsible for the background events and κ and

g(t) are responsible for the child events then this latent variable can aid in the

estimation of the Hawkes parameters. In practice B must be estimated as the
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true causal structure between events in a real dataset is unknown.

2.2.1 Multivariate Hawkes Processes

Hawkes processes are not limited to the univariate case where events can self-

excite leading to more events of the same type. They can be extended across

multiple event types where both an event can spawn another event of both

the same and different types. To use a financial example from Muni Toke

and Pomponio (2011), both buy orders and sell orders of a stock could be

considered two different types of events, buy orders could lead to more buy

orders and could also excite sell orders. This excitement across both the same

dimension and different dimensions defines the multivariate Hawkes process.

Equation (2.2) is extended to account for m dimensions in the time space.

This means that the data now consists of m series of time events tij where i

labels the dimension and j labels the event occurrence. Both dimension and

event type can be used interchangeably.

There are now m intensity functions, one for each event type

λi(t | Ht) = µi(t) +
m∑
j=1

κij ·
∑
tjk<t

gij(t− tjk), (2.3)

where again Ht is the entire history of the process, i.e. all the events in all

dimensions up to time t.

It can be helpful to imagine that each κ parameter is part of a matrix

K =


κ11 . . . κ1m

... . . . ...

κm1 . . . κmm

 ,

where the diagonal elements are responsible for self-exciting and the off diag-

onal elements control cross-excitations between dimensions.

Similarly, the kernel functions gij(t) can also follow the same matrix ex-

planation. Diagonal elements control the decay of the self-exciting impulse
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and off diagonal elements control the decay of other dimensional excitements.

G =


g11 . . . g1m

... . . . ...

gm1 . . . gmm

 ,

Therefore, for m dimensions of the Hawkes process there are m2 κ values and

m2 kernel parameters that can be assigned. Again, like the univariate Hawkes

process, the kernel function is a probability distribution that integrates to

unity.

2.2.2 Simulation

At the most basic level, the Hawkes process is an inhomogeneous Poisson

process (IHPP) that experiences a change in intensity after every event occurs

λ(t | Ht) =



µ(t), 0 < t < t1

µ(t) + κg(t− t1), t1 < t < t2

µ(t) + κg(t− t1) + κg(t− t2), t2 < t < t3

etc,

therefore the Hawkes process consists of a superposition of multiple IHPP

which allows for an elegant simulation of such a process.

Firstly, all the background events must be generated. This is achieved

by simulating a Poisson process with rate µ(t) in the [0, T ] interval. Then

for each event ti, a further Poisson process with rate κg(t) is simulated in the

interval [ti, T ] and for each event that occurs in this interval the parent event is

ti. Simulations of IHPP can be performed using thinning (Lewis and Shedler,

1979) which is the standard method of simulating from a IHPP.

This approach to simulation highlights the clustering nature of event oc-

currence and how the clusters can be assigned a causal structure based on

what event was responsible. Figure 2.2 is an example of a Hawkes process

being simulated. The parameters are held constant at µ = 0.5, κ = 0.5 and

g(t) = 0.5 exp(−0.5t) and the process was simulated from [0, 10]. The colour-

ing of the points indicates the parent event Bi so that the red dots are the
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Figure 2.2: A Hawkes process simulation with constant parameters. The loca-

tion of each dot indicates at what time the event occurred, the colour of each

dot indicates the parent of the event.

background events and the other colours show the events whose parent event

is a previous event. From this illustration it is shown that the first few events

are generated from the background before cascading into more events from the

previous events.

2.2.3 Frequentist Inference

As mentioned in the introduction, previous work on the Hawkes process has

been largely frequentist in nature. In the available literature maximum likeli-

hood procedures are used to infer the parameters of the Hawkes process (Porter

and White, 2012; Mohler, 2013; Balderama et al., 2012) where full likelihoods

of the models are composed before being numerically optimised to find the

parameters that maximise such likelihoods.

For a general point process the log likelihood can be written as (Daley

and Vere-Jones, 2003)

logL(ti | Θ) =
n∑
i=1

log λ(ti | Hti)−
∫ T

0

λ(t | Ht)dt, (2.4)

where Θ is the set of unknown parameters. For the Hawkes process, the

intensity is given as (2.2) and the unknown parameters are Θ = (µ(t), κ, g(t)).
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This likelihood can be optimised numerically which produces the estimates of

the parameters that give the maximum value of the likelihood given the data.

There a variety of methods that can be used to estimate this maximum such

as the Nelder Mead method (Nelder and Mead, 1965) which is a standard

optimisation method or even genetic algorithm based approaches such as that

used in Chavez-Demoulin and McGill (2012) where they fit a Hawkes process

using a differential genetic algorithm from Storn and Price (1997).

There are a number of potential pitfalls that can inhibit an optimisation

task (Weise et al., 2009). Firstly, it must be ensured that the global maximum

of the function under consideration is found and not just a local maximum.

This local maximum will be misleading and lead to a premature optimal answer

that is incorrect. Similarly, the likelihood function might be very flat around

the maximum value thus leading to a larger uncertainty as to where the true

maximum parameters are located. Both problems are especially troublesome

for maximum likelihood estimation of the Hawkes process as the likelihood can

be both multimodal and flat (Veen and Schoenberg, 2008). This also motivates

a Bayesian method of inference where the uncertainty in parameter estimation

can be obtained directly from the sampling procedure.

These potential complications of direct maximum likelihood estimation

has lead to other approaches being used to infer the parameters of a Hawkes

process.

Expectation Maximisation

Expectation maximisation (EM) is used in parameter inference of Hawkes mod-

els (Veen and Schoenberg, 2008) to remedy the problems of direct optimisa-

tion of the likelihood. The expectation maximisation algorithm consists of two

steps, estimating the log-likelihood and then choosing parameters to maximise

that likelihood. These two steps are then iterated until convergence of the

parameter estimates is achieved.

Expectation maximisation was introduced in Dempster et al. (1977) to

provide a method for estimating the maximum likelihood from incomplete data
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sets. For a Hawkes process, the missing part of the data can be interpreted as

the unknown background and child event structure (the latent variable B). Us-

ing the expectation maximisation algorithm provides a method for estimating

this structure and then using this information to estimate the Hawkes process

parameters.

The first step in this algorithm is to estimate the expectation of the likeli-

hood function and to estimate whether an event was caused by the background

rate or a previous event. To establish an events parent, a probability of par-

ent for each event must be calculated where the background probabilities are

labelled as pii and the probability that event i is caused by event j is labelled

as pij. These probabilities are written as

pkij =
κkgk(ti − tj)

µk + κk
∑i−1

j=1 g
k(ti − tj)

,

pkii =
µk

µk + κk
∑i−1

j=1 g
k(ti − tj)

,

which allows construction of the probability matrix P k where k is the iteration

number. This is the expectation step as it involves evaluating the likelihood of

the Hawkes intensity of the events at the current parameter estimates based on

whether the event was caused by the background rate (the diagonal elements)

or another event (the non-diagonal elements).

The maximisation step involves using these probabilities to generate new

values of the unknown parameters. The background rate is updated by

µk+1 =
tr(P k)

T
,

where T is the window of observation. To update the kernel, a form of g(t)

must be specified and in this example consider a simple exponential kernel

g(t) = βe−βt. The other two parameters of the Hawkes process can then be

updated as

κk+1 =

∑
i>j p

k
ij

n
,

βk+1 =

∑
i>j p

k
ij∑

i>j(ti − tj)pkij
.
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These new values of the parameters are then used in a new expectation step to

recalculate the P matrix. This process is repeated until the values of the pa-

rameters converge to final values and these converged values are the estimated

values of the generating process. This method also produces a matrix that

indicates the probability of each event’s likely parent; either the background

rate or another event. Veen and Schoenberg (2008) state that this expectation

maximisation algorithm is a more robust method than maximum likelihood as

maximum likelihood relies on asymptotic properties of the likelihood whereas

expectation maximisation only relies on enough data to estimate the parent

probability matrix. Therefore, in situations with limited data, the EM algo-

rithm is preferred.

As outlined previously, both of these methods of maximum likelihood

and expectation maximisation are frequentist. In this thesis the problem of

inference will be tackled in a Bayesian manner.

2.3 Bayesian Statistics
A Bayesian approach is one that applies Bayes’ rule to the inference problem.

Bayes’ rule can be written as

p(θ | y) =
p(y | θ)p(θ)

p(y)
,

where θ is the unknown parameter of the model and y is the observed data.

The function p(y | θ) is the likelihood, p(θ) is the prior distribution and p(y)

is the marginal distribution.

For a given model p(y) is a constant with respect to θ and therefore is

common to see the posterior distribution written as

p(θ | y) ∝ p(y | θ)p(θ).

Therefore, with each model a likelihood must be constructed and a prior dis-

tribution for the unknown parameters θ must also be chosen. Eq. (2.4) is a

general likelihood for a point process and thus combined with Eq. (2.2) for

the Hawkes process intensity it is then just a case of using a suitable prior for
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the unknown components. In practice, the choice of prior has computational

consequences on the ease of calculating and sampling from p(θ | y).

An exact calculation of the posterior distribution is not always possible

and only certain combinations of likelihoods and priors produce analytically

tractable posterior distributions where direct samples of the posterior distri-

bution can be taken. If the posterior is not tractable, alternative methods are

needed to approximate the distribution. These methods include constructing

Markov chains of the parameters that emulate the behaviour of the posterior

distribution (Hastings, 1970) or optimising an approximation to the posterior

distribution (Jordan et al., 1999). It is these samples of the posterior distribu-

tion that form the estimate of θ and in contrast to frequentist techniques the

estimate is now a probability distribution rather than a single value. As such

this probability distribution now provides the ability to propagate uncertainty

from the parameters directly into the forecasting of new values from the model.

2.3.1 Bayesian Hierarchical Modelling

In some cases, the prior distributions p(θ) used for the unknown parameters

are also unknown and must be inferred from the data. This process involves

specifying another level to the model and introduces a hierarchy of estimation.

A basic hierarchical model can be written as

y ∼ F (θ),

θ ∼ G(φ),

φ ∼ N(0, 1),

where some data y is drawn from a distribution F parametrised by an unknown

θ, G is the prior distribution parameterised by φ which is also unknown and is

parameterised with a hyper-prior, in this case the standard normal distribution.

The full posterior distribution can be written as

p(θ, φ | y) ∝ p(y | θ)p(θ | φ)p(φ),

and can be sampled accordingly. Under this type of model, it is assumed that

the values of y are exchangeable, that is that the ordering of the y values
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provides no additional information.

Hierarchical Bayesian models provide a key benefit when the available

data contains observations from different groups as a hierarchical model al-

lows for the sharing of information between the different groups. The different

groups are linked via the prior and hyper-prior distributions which allows for

the pooling of information to aid the inferences, again assuming that the pa-

rameters of the groups are exchangeable between groups. This feature is even

more pronounced when the number of observations between different groups

varies widely as the groups with less observations benefit from the informa-

tion in the larger groups. Throughout this thesis hierarchical models are used

with the Hawkes process to allow for the sharing of data when inferring the

unknown parameters.

2.3.2 Bayesian Model Assessment

Model assessment consists of deciding how well a constructed model reflect the

data it is fitted on. As each model has a number of choices such as likelihood

and prior distributions it is important to understand how changing these can

effect the model.

In frequentist statistics, p-values and statistical tests can reflect the suit-

ability of a model. However, these can be sensitive to model and data as-

sumptions and lead to difficult interpretations. In contrast, Bayesian model

assessment is more direct. It utilises the full posterior samples of the parame-

ters to assess the viability of the model.

One method of Bayesian model checking is called ‘posterior p-values’

(Meng, 1994). This approach compares simulated data to the real data to

assess whether the specified model is correct and suitable for the observed

data.

In practise there exists some data y that has been generated from some

unknown distribution. In building a model for the data, a distribution F (y | θ)

is chosen for the likelihood. The posterior distribution of the unknown param-

eters θ is then inferred and sampled from which provides parameter samples
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θ̂(1), . . . , θ̂(n). For each posterior sample, a replicated data set can be generated

yrep ∼ F (θ̂(i)) leading to n different replications of the true data.

Graphical checks can now be made between the distribution of the gen-

erated data and the true data. Simply put, if the generated data does not

resemble the real data then the model is unsuitable and a better choice of F

is needed.

If a the distribution of the replicated data aligns with the true distribu-

tion then the next step can be taken for a posterior p-value. This involves

calculating a test statistic T (i) for each of the replicated datasets (labelled by

i) and a true statistic T true. If the model is well suited T true will be comparable

to the values of T (i) and likewise a bad model will have a T true substantially

different from T (i).
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(a) The density of T (i) compared to

the true value T true shown by the

dashed line. In this case the true test

statistic value falls inside the distribu-

tion of replicated test statistics.
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(b) The choice of model does not fit

the data well, hence the true value of

the test statistic, the dashed line, is

not comparable to the replicated val-

ues.

Figure 2.3: A graphical representation of posterior p-values.

This is demonstrated in Figure 2.3 where the densities in both Figures 2.3a

and 2.3b show the distribution of T (i) which is calculated from data that is

simulated from the posterior parameter samples. The dashed line in both
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Figure 2.3a and 2.3b shows the true value of the test statistic, in Figure 2.3a

the chosen model is correctly replicating the true data as the dashed line falls

well inside the density and we would conclude that this is a suitable model. For

Figure 2.3b the real test statistic is substantially different from the distribution

of replicated values, therefore this model should be rejected.

Choices of the test statistic depend entirely on the problem at hand. It

should be a property of the true data that would be difficult for the distribution

F to imitate. For example, T = max(y) is useful for assessing the tails of the

distribution. A F with thin tails would be unlikely to generate a large enough

maximum value compared to the true data.

Throughout this thesis models will be assessed by simulating from the pos-

terior distributions to check that the model is generating similar data. Good

models will produce simulated data that replicates the real data.

Similarly, using unseen data (a test set) and calculating the predictive

likelihood on the held out data in another way of assessing the validity of a

model. The test set provides a sample of data that is different to the data that

the model used to infer the parameters. Therefore, a model that overfits to

the training data will fit the test set poorly whereas a model that captures the

underlying behaviour of the data will produce a better predictive likelihood.

In the Bayesian case, the predictive likelihood is simply the model likelihood

p(y | θ) calculated across the parameter samples of θ.

Another method of assessing the viability of a model is the Deviance

Information Criteria (DIC) which compares goodness of fit of a model to the

number of parameters in the model. As a model increases in the number

of parameters used, the fit is likely to improve but the chance of overfitting

increases. The DIC metric is able to account for this and provides a balance

between ensuring a reasonable fit and the number of parameters. The DIC is

defined as

DIC = −2 log p(y | θ̂) + 2pDIC,

pDIC = 2
(

log p(y | θ̂)− Eposterior log p(y | θ)
)
,
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where θ̂ is the Bayesian estimate of the parameter values, i.e. the mean of

the posterior samples and Eposterior log p(y | θ) is the expected value of the

likelihood over the posterior samples.

The DIC value can be used to compare different models. After calculating

the value from the posterior samples of the parameters of each model, the

model with the lowest DIC value is the preferred model.

The pDIC value is an approximation to the effective number of parameters

in the model (Spiegelhalter et al., 2002). As such, it is suited where the number

of parameters in a model may not be well defined, such as a nonparametric

model.

2.4 Nonparametric Statistics
In the above sections it is typically assumed that the likelihood used for the

models in question has a functional form. For example, a simple toy problem

might propose that some observations yi, i = 1, . . . , n are from a normal distri-

bution. In this case, the probability density function of the normal distribution

would be used as the likelihood

p(y | θ) =
n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − µ)2

)
where θ = {µ, σ2} are the mean and variance of the model. This model has

two free parameters that are unknown and must be inferred. But what if this

likelihood was not suitable for the data? Alternatively, the likelihood could be

changed to a different distribution, one with more free parameters or differ-

ent properties to the normal distribution. This could fit the data better, but

ultimately relies on the observed data being well behaved and described by a

distribution. In most scenarios, the data is likely to be too complicated to be

well described by a distribution assumed by the parametric approach. Instead,

the assumption of a tractable likelihood needs to be replaced with a more flex-

ible approach. This introduces the concept of nonparametric statistics where

the likelihood can no longer be described by a finite number of parameters and

instead it is learnt from the data.
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In the case of the Hawkes process, if the form of the component, such as

the background rate or kernel, was specified beforehand it might miss certain

features in the data or even be completely unsuited for the data resulting in

an incorrect model. Instead by learning the form of the components from the

data a more flexible model can be obtained.

There is a trade off between building simple, computationally efficient

models and those that are more complex and require significantly longer pe-

riods to learn the parameters of the model. In the case of nonparametric

modelling, the infinite number of parameters leads to an increased computa-

tional effort to obtain suitable inferences and therefore it must be considered

whether the additional resources needed are worth the flexibility of the model.

It is imperative to check that a nonparametric approach does offer something

new compared to a simpler model.

There are numerous uses for nonparametric technique in point process

modelling. In Weinberg et al. (2007) a nonparametric approach is used to

model the arrival of calls to a call centre. By using a nonparametric smooth-

ing method they are able to improve the predictive accuracy of the arrival

of calls over traditional methods. Mohler (2013) use a spatial Hawkes pro-

cess to analyse the clustering of residential burglaries in Los Angeles. They

use a nonparametric extension of a Hawkes process to explore the impact a

burglary has on the surrounding area over time. By using a nonparametric

model they are able to capture complex details of the data that would not

have been possible under a parametric framework. Adams et al. (2009) use a

Gaussian process to model the intensity rate of a Poisson process. By using

latent variables to represent possible ‘thinned’ events they infer the intensity

based on the true observed events and these latent unobserved events. Such

a method has an advantage that prior belief of the intensity can be specified

but, computationally, it is a very expensive method, with an expected order

of o(n3) for n points. So whilst it provides a Bayesian method of estimating a

point process, it is limited in scale due to the computational costs.
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These previous works each use a different approach in nonparametric mod-

elling. In this thesis the Dirichlet process will the focus of the nonparametric

models. In the next chapter a full treatment of the Dirichlet process will be

given, both the mathematics needed to understand how it can be used as a

Bayesian nonparametric prior and the computational methods for sampling

from such a posterior distribution. The Dirichlet process will then be used to

form nonparametric components of the Hawkes process which provides a full

Bayesian inference approach thus can capturing and propagating parameter

uncertainty.



Chapter 3

dirichletprocess: An R package for

Fitting Complex Bayesian

Nonparametric Models

The Hawkes process has three free components, the background rate µ(t), κ

and the decay kernel g(t) of which each can be specified to take a particular

form and then must be inferred from the data. However it is also possible

to take a nonparametric approach and learn the forms of these components

from the data which can help prevent miss-specification. As such, when a

nonparametric approach is taken, the components of the Hawkes process are

built using Dirichlet process models and with each application in this thesis a

different component of the Hawkes process is modelled nonparametrically.

This lead to the need for a flexible software package that could perform

the appropriate inference and be reused with each experiment. No such soft-

ware existed with this flexibility and thus the dirichletprocess R package

was written. This chapter details the mathematical information needed to un-

derstand how a Dirichlet process can be used as a nonparametric model, the

design choices that went into the package development and multiple examples

of how the package can be used to perform a wide variety of inference tasks.

While frequentist nonparametrics has a long history, Bayesian nonpara-

metrics was a relatively dormant field until the mid 1990s. Although much
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of the theory of nonparametric priors had been worked out in previous

decades (Ferguson, 1973), computational issues prevented widespread adop-

tion. This changed with the development of posterior simulation methods such

as Metropolis-Hastings (Hastings, 1970) and the Gibbs sampler (Geman and

Geman, 1984) which were first applied to the task of nonparametric density

estimation using Dirichlet process (DP) mixtures in a seminal paper by Esco-

bar and West (1995). This kick-started research into Bayesian nonparametrics

which has now become one of the most popular research areas in statistics

and machine learning. While there are now several widely used models within

the field of Bayesian nonparametrics including the Gaussian process, beta pro-

cess and Polya trees, the Dirichlet process mixture model (DPMM) remains

popular due to its wide applicability and elegant computational structure.

A Dirichlet process is defined by two parameters, α and G0 and can be

written as

G ∼ DP(α,G0), (3.1)

where α is a concentration parameter and G0 is the base measure of the Dirich-

let process. The object G can now be used a prior distribution for the DPMM.

At the most basic level, the DPMM can be viewed as an infinite dimensional

mixture model which represents an unknown density f(y) as:

f(y) =

∫
k(y | θ)p(θ | G)dθ,

where k(· | θ) denotes the mixture kernel, and the mixing distribution G is

assigned a nonparametric Dirichlet process prior as per Equation (3.1) with

a base measure G0 and concentration parameter α. In the most widely used

DPMM, the mixture kernel is taken to be Gaussian so that θ = (µ, σ2) and

k(y | θ) = N(y | µ, σ2) with a conjugate normal inverse-gamma specification

for G0. The infinite dimensional nature of such a model makes it capable of

approximating any continuous distribution to an arbitrary degree of accuracy.

The use of DPMMs is not restricted to simply estimating the density of

observed data. Instead, the DPMM can be used at any level in a hierarchical
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model where it is considered necessary to represent a density nonparametrically

due to a lack of knowledge about its parametric form. For example, consider

a (multilevel) random effects model where there are J groups of observations,

with observations in each group j following a Gaussian distribution with a

group-specific mean µj and a common variance σ2. To share information across

groups, the means µj are assumed to be exchangeable and assigned a prior

p(µj). If yi,j denotes the ith observation in group j, then the model is:

yi,j ∼ N(yi,j | µj, σ2),

µj ∼ p(µj | γ),

where γ is the (hyper-)parameters of the prior. This model is an example

of partial pooling, where the inference for each mean µj is based on the

means of each of the other J − 1 groups, allowing information to be shared

across groups. However, completing the model specification requires choosing

a form for the prior distribution of group means p(µj | γ), which is made more

difficult since the group means may not be observable with a high degree of

accuracy, particularly when the number of observations is small. In this case,

using a nonparametric DPMM specification for p(µj | γ) would avoid the risks

of potentially specifying an inappropriate parametric form.

Typically when working with DPMMs, the posterior distributions are an-

alytically intractable, so inference instead usually involves computational sim-

ulation. A variety of simulation algorithms based around Gibbs sampling

and Metropolis-Hastings have been developed to draw samples from DPMM

posterior distributions, which can then be used for inference. As such, the

widespread adoption of DPMMs has to some extent been held back by the

level of statistical and programming literacy required to implement them. The

purpose of the dirichletprocess package is to provide a unified implementa-

tion of these simulation algorithms for a very wide class of DP mixture models

which makes it easy to incorporate DPMMs into hierarchical models.

The design philosophy of the dirichletprocess package is the polar

opposite of the existing DPpackage R package (Jara et al., 2011) which also
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provides an implementation of DPMMs. The purpose of DPpackage is to give

a fast implementation of several common tasks where DPs are used, such as

density estimation using Gaussian mixtures, and a variety of specific regression

models. While the DPpackage package is very useful in these situations, it

cannot be used for any applications of DPs which do not fall into one of the

pre-specified tasks incorporated in the package, or use mixture kernels or base

measures other than those provided.

In contrast, the purpose of the dirichletprocess package is not to au-

tomate a pre-specified range of tasks but instead represent DPMMs as objects

in R so that they can be used as building blocks inside user-specified hierar-

chical models. The target audience is users who are working with (possibly

hierarchical) models which uses a DPMM at some stage, and who require a

DPMM implementation which can be used as a part of a more general model

estimation scheme. As such, the number of tasks which can be achieved using

the dirichletprocess is quite large, although the trade-off is that the func-

tions in this package will be slower than those in DPpackage when it comes to

the specific models which it implements.

Key features of the dirichletprocess package include:

• An implementation of DP mixture models for various types of mixture

kernel including the Gaussian, beta, multivariate normal and Weibull.

• Implementation of DP posterior sampling algorithms in both the conju-

gate and nonconjugate cases.

• A object-based interface which allows the user to work directly with DP

objects in R so that they can be incorporated into hierarchical models.

The latter point should hopefully make the package especially flexible and

useful.

For the user already well versed in the mathematics behind Dirichlet pro-

cesses, Section 3.3 can be skipped as Section 3.4 shows how the package can

be used in R without any knowledge of the underlying algorithms.



3.1. A Technical Note 44

3.1 A Technical Note

The ultimate purpose of this package is to represent Dirichlet process mixture

models as objects in R, so that they can be manipulated and used as building

blocks. At the time of writing, R currently features three separate object

systems (S3, S4 and RC) designed to allow object-orientated programming.

This package uses S3. There are two motivations for this design choice which

outweigh any advantages that come from using any of other of the R object

systems.

1. Speed. While R is an excellent programming language which makes car-

rying out high level statistical analysis easy, its slow speed remains a bot-

tleneck particularly in tasks such as Gibbs Sampling and Monte Carlo

Markov Chain (MCMC) sampling which are inherently sequential and

cannot be vectorised. While the base R system is already slow, the S4

and Reference Class (RC) object system suffer from further performance

hits since they must search for the correct method for each function eval-

uation (Wickham, 2014). S3 suffers a similar slowdown but to a lesser

extent. The price paid in speed is recovered in code comprehension and

ease of development.

2. Ease-of-use. A key feature of this package is that users can themselves

specify new DP mixture types if the package does not implement the pre-

cise specification they desire. The object systems S4 and RC are geared

towards intermediary/advanced R programmers and can be intimidating

to novices. The design philosophy of this package allows users to over-

ride the behaviour of DP objects and create new mixture types without

needing to learn the intricacies of any particular object system. The cho-

sen representation where DP objects are simple S3 structures does not

require the user to learn anything about the more obscure intricacies of

R objects, and instead they can focus purely on writing the R functions

to implement the DP models.
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Both of these technical features are demonstrated in Section 3.5.2 two new

Dirichlet process models are constructed using just the building blocks that

this package provides to highlight the ease of use of the S3 object system and

subsequent trade-off in performance.

Current alternatives for nonparametric inference include Stan (Carpen-

ter et al., 2016), PyMC3 (Salvatier et al., 2016) and Edward (Tran et al.,

2016). However, whilst all three packages are much more general than the

dirichletprocess offerings, they do not offer ease of customisation that

dirichletprocess does. Firstly, Stan does not allow discrete parameters

in models. As Dirichlet process models require cluster labels which are in-

herently discrete parameters this immediately rules out a direct translation of

Dirichlet process specifications to Stan code. There are certain ‘get arounds’

that can factor out discrete parameters in Stan, but a Dirichlet process cannot

take advantage of these as there are a potentially infinite number of param-

eters that cannot be established before the code is compiled. For both the

Python libraries Edward and PyMC3, examples exist of building Dirichlet

process models in the respective framework. However, these are built on top

of TensorFlow and Theano, therefore, being able to build Dirichlet process ob-

jects into statistical workflows would require learning these external libraries.

Instead our package dirichletprocess is written natively in R and abstracts

the difficulties away, allowing users to write Dirichlet process models in R code

and not worry about computational details.

3.2 Literature Review

For Bayesian computations, the most entrenched software programs are

“Bayesian inference Using Gibbs Sampling” (BUGS) (Lunn et al., 2009) and

“Just Another Gibbs Samples” (JAGS) (Plummer, 2003). Both programs offer

Gibbs sampling for parameter inference in a wide variety of user specified mod-

els. However, both of these software packages are being usurped recently by

Stan, first released in 2012. It is a probabilistic programming language imple-
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menting more modern sampling methods such as; no-U-Turn sampler (NUTS),

Hamiltonian Monte Carlo (HMC) and variational inference (Carpenter et al.,

2016).

All three programs follow similar structure for performing Bayesian infer-

ence. A model with unknown parameters is declared as a likelihood function

and each unknown parameter is given a suitable prior. The model is then sam-

pled to produce posterior samples of the parameters which the user can use

to perform the appropriate analysis with such samples. The software packages

differ in how they arrive at the posterior samples but fundamentally all provide

samples of the given posterior distribution.

The above three programs are complete and contained software packages.

No other programming language is needed to use them and sample from the

models 1. In the Python ecosystem, there has been an explosion of tools

focused on machine learning which can be used for Bayesian inference.

The most similar to BUGS/JAGS/Stan is PyMC3, another probabilistic

programming language built on-top of Python (Salvatier et al., 2016). Again,

models and priors are declared before samples from the posterior distribution

are taken using the NUTS algorithm. The model and priors are written using

the Python language and such models can easily be dropped into other Python

programs. This allows for seamless integration and a full Bayesian analysis can

be undertaken in Python without the need of another language.

A more machine learning focused approach is taken by the Python pack-

age Edward (Tran et al., 2016). Again, code descirbing the model is written

in Python using Edward specific syntax before being sampled using a specified

algorithm. Using integration with TensorFlow (Abadi et al., 2016), Google’s

machine learning platform, more advanced models can be built; such as the

inclusion of neural networks, generative adversarial networks and variational

auto-encoders. Furthermore, machine learning training techniques such as

mini-batches are available in Edward. Overall, Edward bridges the gap be-

1Interfaces do exist for JAGS in R with rjags and Stan has rstan.
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tween Bayesian inference and current machine learning trends.

So whilst the above tools have the ability to implement Dirichlet process

models, it will involve learning package specific syntax and furthermore, under-

stand the mathematics behind how a Dirichlet process can be represented and

sampled. With the dirichletprocess package, this detail is removed from

the user and instead, they can work on what they know - writing a statistical

analysis and using the Dirichlet process objects where necessary.

3.3 Background Information
This section provides background information about the Dirichlet process and

includes the key mathematical properties around which the sampling algo-

rithms in the dirichletprocess package are based. The details on how to

use the package are discussed in Section 3.4.

It is commonly required to learn the unknown probability distribution F

which represents the distribution of the observed data y1, . . . , yn. In parametric

Bayesian inference, F is assumed to belong to a known family of distributions

(such as the normal or exponential) with an associated parameter vector θ

which is of finite length. The parameters θ must be estimated using the avail-

able data y1, . . . , yn. This leads to the model

yi ∼ F (yi | θ),

θ ∼ p(θ | γ),

where p(θ | γ) denotes the prior distribution and γ are the prior parameters.

The task of inference then involves finding an appropriate value for θ, which

is equivalent to choosing which member of the specified family of distributions

gives the best fit to the data.

However, in practise it may not be clear how to choose an appropriate

parametric family of distributions for F . If the wrong family is chosen, then

conclusions based on the estimated model may be highly misleading. For

example, if it is assumed that F has a normal distribution with unknown

parameters θ = (µ, σ2) when in fact the true F is heavy-tailed, this can lead to
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severe underestimation of the probability of extreme events occurring (Coles,

2001).

This problem can be avoided by using a nonparametric prior specification

which puts positive prior mass on the whole space of probability densities

rather than on a subspace spanned by the finite-length parameter vector θ.

This allows the estimated F to adapt to the data, rather than being restricted

to a particular family of distributions such as the normal or exponential. The

Dirichlet process (DP) is one of the most widely used Bayesian nonparametric

priors, due to its flexibility and computational simplicity. The aim of this

section is not to give a full treatment of the Dirichlet processes and a reader

unfamiliar with them should refer to a standard reference such as Antoniak

(1974). Instead the properties of the DP that are directly relevant to their

implementation in the dirichletprocess package will be explained.

The basic DP model has the form:

yi ∼ F,

F ∼ DP(α,G0),

whereG0 is known as the base measure and encapsulates any prior knowledge

that might be known about F . Specifically, it can be shown that E[F | G0, α] =

G0. The concentration parameter α specifies the prior variance and controls

the relative contribution that the prior and data make to the posterior, as the

following result shows.

Key Property 1: The DP is a conjugate prior in the following sense:

if y1, . . . , yn ∼ F and F ∼ DP(α,G0), then:

F | y1, . . . , yn ∼ DP
(
α + n,

αG0 +
∑n

i=1 δyi
α + n

)
,

where δyi denotes a point-mass at yi. In other words, the posterior

distribution of F is a weighted sum of the base measure G0 and the

empirical distribution of the data, with the weighting controlled by α.
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The DP is a prior distribution over the space of probability distributions.

As such, samples from a DP are probability distributions. The stick-breaking

representation first introduced by Sethuraman (1994) shows what such samples

look like.

Key Property 2: Suppose that F ∼ DP(α,G0) is a random probability

distribution sampled from a DP prior. Then with probability 1, F can

be written as:

F =
∞∑
k=1

wkδφk , φk ∼ G0

where

wk = zk

k−1∏
i=1

(1− zi), zi ∼ Beta(1, α).

In other words, random probability distributions can be sampled from

a DP by first drawing a collection of samples zi from a beta distribution,

transforming these to produce the weights wk, and then drawing the associated

atoms from G0. Note that in order for F to be a true from a DP, an infinite

number of such weights and atoms must be drawn. However in practice, the

above summation can be truncated with only a finite number N of draws,

while still providing a very good approximation.

By combining Key Properties 1 and 2, a DP posterior distribution,

F | y1, . . . , yn, can be sampled from as follows:

Key Property 3: If y1, . . . , yn ∼ F and F ∼ DP(α,G0) then a sample

of the posterior distribution F | y1, . . . , yn can be taken as follows:

F =
N∑
k=1

wkδφk , φk ∼
αG0 +

∑n
i=1 δyi

α + n
,

where

wk = zk

k−1∏
i=1

(1− zi), zi ∼ Beta(1, α + n).

which provides the basis of how a Dirichet process can be sampled given

some observed data.
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3.3.1 Dirichlet Process Mixtures

The stick-breaking representation in Key Property 2 above shows that proba-

bility distributions sampled from a DP are discrete with probability 1. There-

fore, the DP is not an appropriate prior for F when F is continuous. As such,

it is usual to adopt the following mixture specification instead, which will be

called the Dirichlet process mixture model (DPMM):

yi ∼ k(yi | θi),

θi ∼ F,

F ∼ DP(α,G0).

(3.2)

In other words, F has a DP prior as before, but rather than the data yi being

drawn from F , it is instead the mixture parameters θ which are drawn from

F . These θ values then act as the parameters of a parametric kernel function

k(·), which is usually continuous. The most commonly used example is the

Gaussian mixture model where θi = (µi, σ
2
i ) so that k(yi | θi) = N(yi | µi, σ2

i ).

The key point here is that since F is discrete, two independent draws θi

and θj from F can have identical values with a non-zero probability. As such,

the DPMM can be seen as sorting the data into clusters, corresponding to the

mixture components. The above model can hence be written equivalently as

the following mixture model, which is infinite dimensional and can be viewed as

a generalisation of the finite mixture models commonly used in nonparametric

statistics:

yi ∼ G,

G =

∫
k(yi | θ)F (θ)dθ,

F ∼ DP(α,G0).

(3.3)

When the DPMM is used in practice there are different use cases for the pos-

terior distribution. In some cases, the primary object of interest will be the θi

parameters from Equation (3.2) which are associated with the y1, . . . , yn obser-

vations. This is particularly the case in clustering applications, where the goal

is to assign similar observations to the same cluster (i.e. to identical values of
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θ). However in other situations it will be the distribution F which is of pri-

mary interest, with the θi parameters integrated out. The dirichletprocess

package returns posterior samples of all these quantities, so that the user can

decide which are most relevant.

Posterior inference in the dirichletprocess package is based around the

Chinese Restaurant Process (CRP) sampler (Neal, 2000). This is a Gibbs-

style algorithm based on the DPMM representation in Equation (3.2) above,

and draws samples of θ1, . . . , θn from their posterior with the distribution F

integrated out.

Key Property 4: Let θ−i denote the set of θ values with θi excluded,

i.e. θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Then the posterior distribution for

θi conditional on the other model parameters is:

p(θi | θ−i, y1:n, α,G0) =
∑
j 6=i

qi,jδ(θj) + riHi,

qi,j = bk(yi, θj),

ri = bα

∫
k(yi, θ)dG0(θ),

where b is set such that
∑

j 6=i qi,j + ri = 1 and Hi is the posterior distri-

bution of θi using the prior base measure G0.

Based on this result, Gibbs sampling is used to repeatedly draw each

value of θi in turn from its posterior distribution, with all other variables held

constant. An important distinction needs to be made between the conjugate

case where the G0 base measure is the conjugate prior for θ with respect to the

kernel k(·), and the nonconjugate case where there is not a closed form for

the posterior distribution. In the conjugate case, the integral in Key Property

4 can be computed analytically and the resulting distribution is simply the

predictive distribution. In this case, the θi values can be sampled directly

from their true posterior distribution.

In the nonconjugate case things are slightly more difficult and the inte-

gral in Key Property 4 cannot be evaluated. As such, numerical techniques
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must be used instead, which will typically result in slower computation. The

dirichletprocess package handles the nonconjugate case by using Algorithm

8 from (Neal, 2000), which is one of the most widely used techniques for per-

forming this sampling.

In both the conjugate and nonconjugate cases the Gibbs sampling is con-

ceptually similar with the new values of θi being proposed sequentially from

their respective posterior distributions. However in practice, this can result in

poor mixing of the samples. Poor mixing results from the sampling procedure

being trapped in a local maximum of the posterior distribution, resulting in

the procedure struggling to explore the full posterior distribution. As new

values of θ are only proposed from the G0 distribution this can result in slow

convergence. One approach to speed up convergence is to add in additional

sample of the θi values at the end of the cluster label sampling. For each clus-

ter and its associated data points the cluster parameter is updated using the

posterior distribution

p(θi | yj) =
∏
j=i

k(yj | θi)G0, (3.4)

for a conjugate base measure, this posterior distribution is tractable and thus

can be sampled directly. For a nonconjugate G0, a posterior sample is achieved

using the Metropolis-Hastings algorithm (Hastings, 1970). This results in a

better exploration of the posterior distributions and thus helps the mixing of

the samples.

For simple density estimation and non-hierarchical predictive tasks, hav-

ing a posterior sample of θ1:n will be sufficient for inference, and the distribu-

tion F is not of any intrinsic interest. However when the DP is used as part

of a hierarchical model it is also necessary to have samples from the posterior

distribution of F . These can be obtained using the following property:
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Key Property 5: Given the model from Eq. (3.2) let θ1, . . . , θn be a

sample from the posterior p(θ1:n | y1:n, α,G0) drawn using the CRP sam-

pler. Then, p(F | θ1:n, y1:n, α,G0) = p(F | θ1:n, α,G0) is conditionally

independent of y1:n. As such, θ1:n can be considered as an i.i.d sample

from F , and so F can be sampled from its posterior distribution using

Key Property 3 above:

F =
N∑
i=1

wiδθi , wi ∼ Beta(α + n, 1), θi ∼ G0 +
n∑
i=1

δθi

3.3.2 Hyperparameter Inference

In the above discussion, it has been assumed that the concentration parameter

α and base measure G0 were constant. However in practice, better results can

often be obtained if they are also learned from the data.

Inferring the Concentration Parameter

Following West (1992) a prior of Gamma(a, b) is used for α. The corresponding

posterior distribution depends only on the number of unique values of θ1:n.

More specifically, given the model in Equation (3.2) let θ1, . . . , θn denote a

sample from the posterior p(θ1:n | y1:n, α,G0). Suppose that there are k unique

values in this sample. Then a sample from p(α | θ1:n, y1:n, G0) can be obtained

as follows:

• Simulate a random number z from a Beta(α + 1, n) distribution

• Define π̃1 = a + k + 1 and π̃2 = n(b − log(z)), then define

π = π̃1/(π̃1 + π̃2) ∈ [0, 1]

• With probability π, draw a value of α from a Gamma(a + k, b −

log(z)) distribution, and with probability (1 − π) draw it from a

Gamma(a+ k − 1, b− log(z)) distribution instead.

When fitting a DP the value of α can be easily inferred and sampled by default

in the dirichletprocess package.
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Inferring the Base Measure

The base measure G0 can be parameterised with values γ which themselves are

also random and from some distribution p(γ). By placing a prior distribution

on the parameters of the base measure this allows for the DP to adapt to

the data and ensure that the fitting algorithms converge to the stationary

distributions quicker

θi | γ ∼ G0,

γ ∼ p(γ),

γ | θi ∼ H,

where H is the posterior distribution. If p(γ) is chosen such that it is conjugate

to the posterior, the posterior distribution can be directly sampled, otherwise

a Metropolis-Hastings step is include in the computation.

3.3.3 Implemented Mixture Models

One of the strengths of the dirichletprocess package is that it allows users

to specify DPMMs using whichever choices of the kernel k and base measure

G0 they please. However for ease of use, certain choices of k and G0 have been

implemented directly in the package.

Gaussian Mixture Model

The Gaussian distribution is the most commonly used mixture model. In this

case, θ = (µ, σ2) for the mean and variance. The kernel is:

k(yi | θ) = N(yi | µ, σ2) =
1√

2πσ2
exp

(
−(yi − µ)2

2σ2

)
.

The conjugate prior for θ is the normal-inverse-gamma distribution, with pa-

rameters γ = (µ0, k0, α0, β0)

G0(θ | γ) = N

(
µ | µ0,

σ2

k0

)
Inv-Gamma

(
σ2 | α0, β0

)
.

the default setting of the parameters is µ0 = 0, k0 = 1, α0 = 1, β0 = 1. It is rec-

ommended to rescale the data y such that its mean is 0 and standard deviation

is 1 as this leads to the default parameterisation of G0 being uninformative.
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Since this prior is conjugate, the predictive distribution for a new observa-

tion ỹ can be found analytically, and is a location/scale Student-t distribution:

p(ỹ | γ) =

∫
k(ỹ | θ)p(θ | G0)dθ =

1

σ̃
Student-t

(
ỹ − µ̃
σ̃
| ṽ
)
,

where ṽ = 2α0, µ̃ = µ0, σ̃ =
√

β0(k0+1)
α0k0

.

Finally the posterior distribution is also a normal-inverse-gamma distri-

bution due to the conjugacy of the prior

p(θ | y, γ) = N

(
µ | µn,

σ2

k0 + n

)
Inv-Gamma(σ2 | αn, βn),

µn =
κ0µ0 + ny

k0 + n
,

αn = α0 +
n

2
,

βn = β0 +
1

2

n∑
i=1

(yi − y)2 +
κ0n(y − µ0)2

2(κ0 + n)
.

Multivariate Gaussian Mixture Model - Conjugate

The multivariate Gaussian mixture model is the most widely used nonparamet-

ric modelling approach for multivariate data and is heavily used in clustering

applications (Maceachern and Müller, 1998). The unknown parameters are

θ = (µ,Λ) and for d dimensional data µ is a column vector of length d and Λ

is a d× d dimensional matrix

k(yi | θ) =
| Λ | 12
2π−

d
2

exp

(
−1

2
(yi − µ)>Λ(yi − µ)

)
.

For the prior choice, a multivariate normal distribution for µ and Wishart

distribution for Λ are used

G0(µ,Λ | µ0, κ0, ν0, T0) = N(µ | µ0, (κ0Λ)−1)Wiν0(Λ | T0),

where µ0 is the mean vector of the prior, κ0, ν0 are single values and T is a

matrix. The default prior parameters are set as µ = 0, T = I, κ0 = d, ν0 = d.

This prior choice is conjugate to the posterior, therefore the posterior
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distribution can be expressed analytically

p(θ | yi) = N(µ | µn, (κnΛn)−1)Wi(Λ | νn, Tn),

µn =
κ0µ0 + ny

k + n
,

κn = κ0 + n,

νn = ν0 + n,

Tn = T0 +
n∑
i=1

(yi − y)(yi − y)> +
κ0n

κ0 + n
(µ0 − y)(µ0 − y)>.

Again, as this is a conjugate mixture the predictive function for some new

data ŷ can be written explicitly as

p(ŷ | y) =
1

π
nd
2

Γd(
νn
2

)

Γd(
ν0
2

)

| T0 |
ν0
2

| Tn |
νn
2

(
κ0

κn

) d
2

.

Multivariate Gaussian Mixture Model - Semi-Conjugate

In the semi-conjugate case, the base measures for each parameter are specified

independently

G0(µ,Σ) = N(µ | µ0,Σ0)Wi−1
ν0

(Φ0).

Therefore, sampling from the posterior is achieved by firstly sampling a new

Σ and then a new µ

Σ | µ, ν0,Φ0 ∼Wi−1
νn (Φn),

νn = ν0 + n,

Φn = Φ0 +
n∑
i=1

(xi − µ)(xi − µ)T ,

µ | Σ,µ0,Σ0 ∼ N(µn,Σn),

Σn =
(
Σ−1

0 + nΣ−1
)−1

,

µn = Σn

(
Σ−1

0 µ0 + nΣ−1y,
)

using the conditional probabilities, each parameter can be sampled using the

previous sample. This allows us to use Algorithm 8 and treat the model as a

nonconjugate mixture model.
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Beta Mixture Model

Dirichlet process mixtures of beta distributions have been considered by Kottas

(2006a) for the nonparametric estimation of continuous distributions that are

defined on a bounded interval, [0, T ]. For ease of interpretation, the beta

distribution is parameterised in terms of its mean and standard deviation, in

this case, θ = (µ, ν) with a known parameter T . The mixture kernel is:

k(yi | θ) = Beta(yi | µ, ν, T ) =
y
µν
T
−1

i (T − yi)ν(1− µ
T

)−1

B(µν
T
, ν(1− µ

T
))T ν−1

.

There is no conjugate prior for the mixture kernel. Instead, the

dirichletprocess package uses the (nonconjugate) prior from Kottas (2006a)

where

G0(µ, ν | T, α0, β0) = U(µ | [0, T ])Inv-Gamma(ν | α0, β0).

the parameters α0 = 2, β0 = 8 as set the default. The Metropolis-Hastings

algorithm is used to sample from the posterior distribution. However, there

is also the ability to place a prior distribution on β0 and update the prior

parameter with each iteration. For this a default prior distribution of

β0 ∼ Gamma(a, b),

with a = 1, b = 0.125 is used.

Weibull Mixture Model

The Weibull distribution has strictly positive support and is mainly used for

positive only data modelling. Furthermore, it is ubiquitously used in survival

analysis. Mixture of Weibull distributions have been considered by Kottas

(2006a) for a variety of survival applications. The parameters of the Weibull

distribution are the shape a and scale b

k(yi | θ) = Weibull(yi | a, b) =
a

b
ya−1
i exp

(
−y

a
i

b

)
,

where θ = (a, b).
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A nonconjugate uniform-inverse-gamma distribution for the unknown pa-

rameters is used

G0(a, b | φ, α, β) = U(a | 0, φ)Inv-Gamma(b | α, β),

by default φ, α and β do not have assigned values. Instead, priors are placed

on φ and β and updated with each fitting procedure, α remains fixed. For φ a

Pareto prior distribution is used as this is conjugate to the uniform distribution

ai ∼ U(0, φ),

φ ∼ Pareto(xm, k),

φ | ai ∼ Pareto(max{ai, xm}, k + n),

by default xm = 6, k = 2 which is an infinite variance prior distribution.

As b is from an inverse-gamma distribution with fixed shape α it has a

conjugate prior which is the gamma distribution.

bi ∼ Inv-Gamma(α, β),

β ∼ Gamma(α0, β0),

β | b ∼ Gamma

(
α0 + nα, β0 +

n∑
i=1

1

bi

)
,

with α fixed by the user and α0 = 1, β0 = 0.5 by default. This prior on β with

α0 = 1 is a conventional distribution with mean 1
β0

which allows for the user to

decide how disperse the prior needs to be. As this is a nonconjugate model a

Metropolis-Hastings step is needed to sample from the posterior distribution.

3.4 Package Overview
The dirichletprocess package contains implementations of a variety of

Dirichlet process mixture models for nonparametric Bayesian analysis. Un-

like several other R packages, the emphasis is less on providing a set of func-

tions which completely automate routine tasks (e.g. density estimation or

linear regression) and more on providing an abstract data type representation
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of Dirichlet process objects which allow them to be used as building blocks

within hierarchical models.

To illustrate how the package is meant to be used and how it differs

from other R packages, consider the task of density estimation. Suppose the

density of some data stored in the variable y needs to be estimated using a

Dirichlet process mixture of Gaussian distributions. This is done as follows:

y ← rt(200, 3) + 2 #generate sample data

dp ← DirichletProcessGaussian(y) #create the object

dp ← Fit(dp, 1000, progressBar = FALSE) #fit the object

The function DirichletProcessGaussian is the creator function for a

mixture model of univariate Gaussians and this creates the object dp. The

function Fit is used on this object to infer the cluster parameters, which uses

the Chinese Restaurant Sample algorithm described in Section 3.3.1. With

each iteration, the assigned cluster label to each datapoint is updated, then

the resulting cluster parameters are updated before finally updating the con-

centration parameter α. Using the Fit function the details of the sampling are

removed from the user and this provides an ‘out-of-the-box’ method to easily fit

a Dirichlet process to data. Only a specification of the type of mixture model is

needed - in this case a Gaussian mixture. The returned object dp from the Fit

function contains the following information: dp$clusterParameterChains

stores the MCMC samples of the cluster parameters, dp$weightsChain stores

the associate weights and dp$alphaChain stores the samples of the concen-

tration parameter α. These posterior samples can then be used for inference

based on what the user is trying to accomplish.

The dirichletprocess package currently provides the following features:

• Implementations of Dirichlet process mixture models using Gaussian,

beta, and Weibull mixture kernels.

• Implementation of various schemes for resampling model parameters.

• Access to samples from the Dirichlet process in both marginal form, as
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well as in (truncated) stick-breaking form

• A flexible way for the user to add new Dirichlet process models which

are not currently implemented in the package, and yet still use the re-

sampling functions from the package. To illustrate this, Section 3.5.2

shows how simple it is to create a Dirichlet process mixture model with

Poisson and gamma distribution kernels, even though this is not imple-

mented in the package.

• An ability to plot the likelihood, posterior and credible intervals of a

Dirichlet process using plot.

All of the above features will be demonstrated in the following examples.

Nonparametric Density Estimation

The most simple application of DPMMs is to nonparametrically estimate the

distribution of independent and identically distributed observations y1, . . . , yn,

where:

yi ∼ F,

F =
n∑
i=1

πik(yi | θi),

where k is some density function parameterised by θi and n is some unknown

amount of clusters (i.e. F has been specifically nonparametrically as a mixture

model). The most widely used specification is the Gaussian mixture kernel

with a normal-inverse-gamma base measure G0, which is described more fully

in Section 3.3.3.

The waiting times between eruptions of the Old Faithful geyser are used

as an example. This dataset is available within R and called faithful. The

waiting times are transformed to be zero mean and unit standard deviation

before a DPMM with the default settings is fitted. This models the waiting
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times as a mixture of normal distributions and can be written as

yi ∼ F,

F =
n∑
i=1

πik(y | θi), θi =
{
µi, σ

2
i

}
,

θi ∼ G,

G ∼ DP(α,G0),

where k(y | θ) is the standard normal probability density and G0 is the base

measure as in Section 3.3.3.

faithfulTransformed ← scale(faithful$waiting)

dp ← DirichletProcessGaussian(faithfulTransformed)

dp ← Fit(dp, 500)

plot(dp)

0.0

0.2

0.4

0.6

−2 −1 0 1 2

(a) The estimated density of the data

is plotted with the DPMM posterior

mean and credible intervals overlaid in

red.

0.0

0.2

0.4

0.6

−2 −1 0 1 2

(b) Instead of a density estimate, a

histogram is plotted for the data.

Figure 3.1: Old Faithful waiting times density estimation with a DPMM of

Gaussians.

The resulting posterior distribution from the model is show in Figure 3.1.

Both peaks in the data have been accurately modelled, something that a single
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normal distribution would not be able to describe.

For most users the Fit function is sufficient for practical purposes.

However, for the more advanced users who wish to alter how they fit the

dirichletprocess object there are a number of functions available to help.

By default, the Fit function updates the cluster allocation, cluster param-

eters and the α parameter. In some rare cases, updating α every iteration can

delay convergence and instead, the user could modify the function to update

α every 10 iterations.

dp ← DirichletProcessGaussian(y)

samples ← list()

for(s in seq_len (1000)){

dp ← ClusterComponentUpdate(dp)

dp ← ClusterParameterUpdate(dp)

if(s %% 10 == 0) {

dp ← UpdateAlpha(dp)

}

samples [[s]] ← list()

samples [[s]]$phi ← dp$clusterParameters

samples [[s]]$weights ← dp$weights

}

The function ClusterComponentUpdate iterates through all the data

points, yi for i = 1, . . . , n, updating its cluster assignment sequentially us-

ing Key Property 4 in Section 3.3.1. For each data point, it can either be

assigned to an existing cluster, or form a new cluster. The probability that

the data point is assigned to an existing cluster is proportional to nik(yj | θi),

where ni is the number of points already assigned to the cluster θi and k is

the likelihood of the data point evaluated with the cluster parameter θi. The

probability that the datapoint forms a new cluster is proportional to α, the

concentration parameter. If the datapoint is selected to form a new cluster,

then this new cluster parameter θnew is drawn from G0 and added to the cluster
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pool. Subsequent points can now also be added to this cluster.

Once each data point has sample a new cluster allocation the function

ClusterParameterUpdate is called and updates each of the unique θj param-

eters. The new values of θj are sampled from the posterior distribution of

the parameter using all the data associated to that cluster parameter as per

Equation (3.4).

Finally, UpdateAlpha samples a new value of α from its posterior distri-

bution using the method outlined in Section 3.3.2. By manually calling these

functions the user has control over the MCMC routine without having to have

specific knowledge of the required algorithms.

The key point of the dirichletprocess package which the above code

highlights is that a) the user controls when to resample the DP parameters, and

b) the current sample is contained in the DP object and ready for inspection

at any point in the code. This allows DP objects to be used as building blocks

within hierarchical models.

3.4.1 Density Estimation on Bounded Intervals

In some situations it will be necessary to estimate densities on bounded inter-

vals. For example, it might be known that the observations yi are restricted to

lie within the interval [0, 1]. In this case, a mixture of Gaussian distributions

is inappropriate, since this will assign positive probability to the whole real

line. An alternative specification is a mixture of beta distributions, since the

beta distribution only has positive mass in [0, 1]. The full model is the same as

in the previous example but replacing k with the beta distribution. Likewise,

similar code is used but with the specific beta mixture constructor.

y ← c(rbeta (150, 1, 3), rbeta (150, 7, 3))

dp ← DirichletProcessBeta(y, 1)

dp ← Fit(dp, 1000)

Figure 3.2 shows the resulting likelihood and posterior draws of the fit to

the simulated data.
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Figure 3.2: Estimated generating density using a beta Dirichlet process mix-

ture model.

3.4.2 Cluster Analysis (Multivariate)

For any Dirichlet model each data point yi is assigned a cluster parameter θi.

The collection of unique values of cluster parameters θ∗i allows for a natural

way of grouping the data and hence the Dirichlet process is an effective way

of performing cluster analysis. For multidimensional data it is most common

to use a mixture of multivariate normal distributions to cluster the observa-

tions into appropriate groups. In the dirichletprocess package, the clus-

tering labels is available at each fitting iteration and available to the user as

dp$clusterLabels. Examples of the use of Dirichlet processes in clustering

can be found in Teh et al. (2005) and Kim et al. (2006).

To demonstrate this the faithful dataset is used again, the length of the

eruption as well as the amount of time between eruptions is considered. The

full model can be written as

yi ∼ N(y | θi),

θi = {µi,Σi} ,

θi ∼ G,

G ∼ DP(α,G0),

where the prior parameters of G0 take on their default value as shown in
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Figure 3.3: The colours of the points indicates that there are groups in the

faithful dataset.

Section 3.3.3. The cluster labels are used to indicate which group each data

point belongs to.

Again, the data is transformed such that each variable is zero mean and

unit standard deviation before forming the dirichletprocess object and fit-

ting for 1000 MCMC iterations.

faithfulTrans ← scale(faithful)

dp ← DirichletProcessMvnormal(faithfulTrans)

dp ← Fit(dp, 1000)

plot(dp)

The final Gibbs sample of the cluster labels is used to analyse the model.

Each cluster label is used to assign a colour so that it can be easily visualised

which datapoint belongs to each cluster.

Here Figure 3.3 shows the last iteration of the cluster labels and the colours

indicate the found clusters. Whilst this example use just two dimensions the

code is generalised to work with as many dimensions as necessary.
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3.4.3 Modifying the Observations

In some applications of using a Dirichlet process the data available can change

from iteration to iteration of the sampling algorithm. This could be because

the values of the data change, or because for a full data set y = y1, . . . , yn,

only subsets of the data are used at each iteration. When fitting a DP object

the function ChangeObservations is used to change the observations between

iterations.

This function takes the new data, predicts what clusters from the previous

fitting the new data belongs to and updates the clustering labels and param-

eters accordingly. A modified object with the new data associated to clusters

and the function Fit is ready to be used to sample the cluster parameters and

weights again.

Example: Priors in Hierarchical Models

One application of observations changing with each iteration is using a Dirich-

let process as a prior for a parameter in a hierarchical model. An example

of hierarchical modelling comes from Gelman et al. (2014) involving tumour

risk in rats. In this example, there are 71 different experiments, and during

each experiment a number of rats are inspected for tumours, with the number

of tumours in each experiment being the observed data. This data is n the

package as the rats variable; the first column being the number of tumours in

each experiment and the second being the number of rats.

A naive approach would model each experiment as a binomial draw with

unknown θi and known Ni. A beta distribution is the conjugate prior for the

binomial distribution and would be used as the prior on θ:

yi | θi, Ni ∼ Binomial(Ni, θi),

θi ∼ Beta(α, β).

However, Figure 3.4a shows the empirical distribution of θ̂i = yi
Ni
. This dis-

tribution shows hints of bimodality, something that a single beta distribution

cannot capture and hence the prior choice of p(θi) is dubious. An alternative
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(a) Empirical distribution of θ̂i.
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(b) Dirichlet prior model for p(θi).

Figure 3.4: Rat tumour risk empirical density and fitted prior distribution.

procedure is to use a nonparametric prior on the θ′is. Since these parameters

are constrained to lie between 0 and 1, one choice might be a Dirichlet process

mixture of beta distributions. This leads to the following model

yi | θi, Ni ∼ Binomial(Ni, θi),

θi ∼ Beta(αi, βj),

αi, βi ∼ F,

F ∼ DP(α,G0),

where α and G0 follow the default implementations of the dirichletprocess

package. This model can then be written using dirichletprocess functions

as follows:
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# First the Dirichlet object is initialised

thetaDirichlet ← rbeta(nrow(rats), 0.01 , 0.01)

dp ← DirichletProcessBeta(thetaDirichlet , 1

mhStep = c(0.002 , 0.005),

alphaPrior = c(2, 0.5))

dp ← Fit(dp, 100)

# Then for a number of iterations

for(i in seq_len(its)){

#Sample from the Dirichlet process

postClusters ← PosteriorClusters(dp)

#Sample a prior cluster parameter for each experiment

wk ← sample.int(length(postClusters$weights),

nrow(rats), replace = T,

prob = postClusters$weights)

#Transform the parameters for the rbeta function

muPost ← postClusters$params [[1]][,,wk]

nuPost ← postClusters$params [[2]][,,wk]

aPost ← muPost * nuPost

bPost ← (1 - muPost) * nuPost

#Draw a new theta value from the posterior

newTheta ← rbeta(nrow(rats), aPost + rats$y,

bPost + rats$N - rats$y)

#Update the Dirichlet process

dp ← ChangeObservations(dp, newTheta)

dp ← Fit(dp , 100, updatePrior = T, progressBar = F)

}

Note the reason why the observations are changing is because the DP

mixture model is applied to the θi parameters, which are resampled (and hence
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have different values) during each MCMC iteration.

Figure 3.4b reveals that the DP is a more suitable prior than the beta

distribution. This confirms the finding from the empirical distribution that

the data is bimodal.

3.4.4 Hierarchical Dirichlet process

A hierarchical Dirichlet process (Teh et al., 2005) can be used for grouped

data. Each individual dataset is modelled using a separate Dirichlet process

but where the base measure itself is also a Dirichlet process. Mathematically

this can be expressed as

yij ∼ F (θij),

θij ∼ Gj,

Gj ∼ DP(αj, G0),

G0 ∼ DP(γ,H),

for each dataset j = 1, . . . , n with data y1j, . . . yNj there is a separate Dirichlet

process generating the required parameters θij. Using the stick-breaking con-

struction, G0 can be expressed as an infinite sum (Key Property 2), the same

procedure can be applied to the Gj measures

Gj =
∞∑
i=1

πjkδφk , φk ∼ H,

π′jk = Beta

(
αjβk, α

(
1−

k∑
l=1

βl

))
, πjk = π′jk

k−1∏
l=1

(1− π′jl),

β′k ∼ Beta (1, γ) , βk = β′k

k−1∏
l=1

(1− β′l),

(3.5)

where H is the global distribution and each Gj the local distribution. For

further details see Teh et al. (2005).

To fit a hierarchical Dirichlet process, Algorithm 8 from Neal (2000) is used

as detailed in Section 3.3.1. Each datapoint yij is further assigned as label kij

which indicates the global parameter φk it is the data point is assigned to.
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Each global parameter is updated using the available data across datasets.

φk | xij = h(φk)
∏
kij=k

f(xij | φk), (3.6)

where h is the density of the global distribution H and f is the density of

the mixing distribution F . From these updated parameters a new Gj can be

drawn using Key Property 5.

For a hierarchical DP model each individual concentration parameter αj

can be inferred using the usual algorithm as per Section 3.3.2 without modifi-

cation for each individual dataset. For the top level concentration parameter

γ, the number of unique cluster parameters across all the individual Gj’s is

used for n in the sampling of γ.

In this example two synthetic data sets are used to fit a hierarchical Dirich-

let process. A beta Dirichlet mixture model is used and therefore two known

beta distributions are used to simulate the test data.

y1 ∼Beta(0.25, 5) + Beta(0.75, 6),

y2 ∼Beta(0.25, 5) + Beta(0.4, 10),

where there is a common group of parameters between the two datasets.

# Generate the toy data

mu ← c(0.25 , 0.75 , 0.4)

tau ← c(5, 6, 10)

a ← mu * tau

b ← (1 - mu) * tau

y1 ← c(rbeta (100, a[1], b[1]), rbeta (100, a[2], b[2]))

y2 ← c(rbeta (100, a[1], b[1]), rbeta (100, a[3], b[3]))

The appropriate constructor function is used to create a hierarchical

Dirichlet object with uninformative priors for the global base distribution and

then fitted for 5000 iterations.
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Figure 3.5: Hierarchical beta Dirichlet process mixture results.

# Fit the toy data

dpobjlist ← DirichletProcessHierarchicalBeta(list(y1 , y2),

maxY=1,

hyperPriorParameters = c(1, 0.01),

mhStepSize = c(0.1, 0.1),

gammaPriors = c(2, 4),

alphaPriors = c(2, 4))

dpobjlist ← Fit(dpobjlist , 5000, TRUE)

The creator function DirichletProcessHierarchicalBeta returns a list

of dirichletprocess objects for each dataset (in this case two objects), a

vector containing the global stick breaking weights, a list of the global param-

eters and the variable containing the global concentration parameter γ. The

function Fit updates the cluster allocations locally of each dirichletprocess

object using Algorithm 8 from Neal (2000), then the local concentration pa-

rameter αj is updated. The global cluster parameters are then updated using

all the data pooled from the individual datasets by drawing from Eq. (3.6).

Using these parameters a new sample of G0 is taken from which the individual

Gj’s are also drawn using the above procedure in Equation (3.5). The resulting

Gj’s from the above example are plotted in Figure 3.5.
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3.4.5 Stick-Breaking Representation

The stick-breaking representation of a Dirichlet process allows for easy

posterior inference using Key Property 3 and 5 (Section 3.3). In the

dirichletprocess package drawing from the posterior is easily achieved using

both PosteriorClusters and PosteriorFunction depending on users need.

• PosteriorClusters: Returns the posterior clusters φk and weights wk

as a list for the user.

• PosteriorFunction: Draws the posterior clusters and uses the likeli-

hood function of the mixing distribution to return a function with ap-

propriate posterior weights and parameters. This is a sample of the

measure F for models of the form in Eq. (3.2).

3.5 Advanced Features
The material in this section can largely be skipped as long as the user is getting

good results from the dirichletprocess package using the default specifica-

tions. However inevitably problems will arise due to (e.g.) the default hyper

parameters being inadequate for a particular data set, or the sampler seeming

not to converge due to bad initial default parameter values. Alternatively, the

user may wish to use a mixture kernel other than the ones included in the

package (normal, beta, Weibull, etc). In this case, the user will need to know

what is going on under the hood so that they can change the default settings

to better suited values, or otherwise modify the internal sampling procedure.

The package aims to ensure that this will usually only require changing a small

number of the parameters which control the sampling behaviour, but under-

standing what needs to be changed (and why) requires some comprehension

of how the objects are constructed.

3.5.1 Structure of a DP Object: The Gory Details

A DP object is defined by its kernel mixing distribution. Each mixing distri-

bution has the following functions and variables associated with its class
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• Likelihood(...): a function which specifies the density of the mixture

kernel k(y | θ).

• PriorDraw(...): a function which returns a random sample of size n

from the DP base measure G0.

• g0Priors: a list of parameters for the base measure G0.

For a conjugate mixing distribution the posterior distribution of θ is

tractable and can be sampled directly. The marginal distribution of the data

can also be explicitly calculated and evaluated. Therefore two functions are

needed to complete the specification of a conjugate mixture model:

• PosteriorDraw(...): a function that returns a sample of size n given

data y from the posterior distribution of θ, i.e. a sample from the distri-

bution of p(θ | y).

• Predictive(...): a function that returns the value of the marginal

distribution of the data f(y) =
∫
k(y, θ)dG(θ).

With these specified, the Fit function can be used to fit the DP, which

carries out the Chinese Restaurant Sampling procedure using Algorithm 8

(Neal, 2000).

For a nonconjugate mixing distribution the posterior distribution p(θ | y)

is intractable and cannot be sampled from directly. Neither can the marginal

distribution of the data be calculated. Instead the Metropolis-Hastings algo-

rithm is used to sample from the distribution p(θ | y) (Hastings, 1970). The

Metropolis-Hastings algorithm works by generating a candidate parameter θi+1

and accepting this candidate value as a sample from the posterior with prob-

ability proportional to k(y|θi+1)p(θi+1)
k(y|θi)p(θi) . Typically, the candidate parameter is

distributed as θi+1 ∼ N(θi, h
2). From this, the nonconjugate mixture model

requires two additional functions and an extra parameter to be defined.

• PriorDensity(...): a function which evaluates p(θ) which is the DP

base measure G0 for a given θ.
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• mhParameterProposal(...): a function that returns a candidate pa-

rameter to be evaluated for the Metropolis-Hastings algorithm.

• mhStepSize: h, the size of the step to make when proposing a new

parameter for the Metropolis-Hastings algorithm.

Once the appropriate mixing distribution is defined a dirichletprocess ob-

ject is created which contains the data, the mixing distribution object and the

parameter α. Then the rest of dirichletprocess class functions are available.

By using the default constructor functions DirichletProcessBeta etc.

the base measure prior parameters are chosen to be non-informative, see Sec-

tion 3.3.3 for the specific values of the prior parameters.

3.5.2 Creating New Dirichlet Process Mixture Types

The dirichletprocess package currently implements Dirichlet process mix-

ture models using Gaussian, beta and Weibull kernels. While these kernels

should be appropriate for most applications, there will inevitably be times

when a user wants to fit a DP model for a kernel which has not been imple-

mented, or otherwise wants to do something complex with a DP which goes

beyond the scope of this package. In anticipation, this the package has been

designed to for users to construct their own mixture models which can then

automatically use the implemented algorithms for fitting a Dirichlet process.

The functions in the package are designed to work on S3 R objects, where

each object represents a type of Dirichlet process mixture (e.g Gaussian or

beta). In order to create new types of Dirichlet process mixtures, the user

must create a new S3 object type which encapsulates his model and ensure

that its specifications correspond to those of the package. If this is done, then

all the package functions for resampling and prediction should continue work

on the new DP type. This means that the package can hopefully be used for

DP applications that were not considered when writing it, while saving the

user from having to write their own functions for resampling and fitting.

To illustrate how this works, this section will work through an extended



3.5. Advanced Features 75

example of how to create a new S3 type which represents a DP mixture model.

This will be a new mixture not implemented in the dirichletprocess pack-

age. The S3 objects and associated functions are constructed so that the user

will be able to create their own.

Conjugate Mixture

Suppose there is a particular scenario that requires a Dirichlet process mixture

of Poisson distributions. This could involve modelling the counts of some

observation such as goals in a soccer match. Like all Bayesian inference, a prior

must be chosen for the unknown parameter. As the conjugate prior for the

Poisson distribution is the gamma distribution this serves as a good example

of how to implement a conjugate mixture model with a Dirichlet process.

Firstly, the likelihood of the Poisson distribution is required

k(x | θ) =
θx exp(−θ)

x!
,

as there is only one parameter in the Poisson distribution the parameter list θ

is of length 1.

Likelihood.poisson ← function(mdobj , x, theta){

return(as.numeric(dpois(x, theta [[1]])))

}

Note that the [[1]] part is essential, since parameters are internally represented

as lists even when they only have one element.

Next, the random prior sample function which draws a value of θ from

the base measure G0. The conjugate prior to the Poisson distribution is the

gamma distribution

G0 ∼ Gamma(α0, β0).
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PriorDraw.poisson ← function(mdobj , n){

draws ← rgamma(n,

mdobj$priorParameters [1],

mdobj$priorParameters [2])

theta ← list(array(draws , dim=c(1,1,n)))

return(theta)

}

The prior parameters α0, β0 are stored in the mixing distribution object mdobj.

The PosteriorDraw function to sample from the posterior distribution of

θ is tractable as the base measure G0 is conjugate. This results in a direct

sampling function from the posterior distribution

θ | x1, . . . , xn ∼ Gamma

(
α0 +

n∑
i=1

xi, β0 + n

)
,

which using the inbuilt rgamma function is trivial.

PosteriorDraw.poisson ← function(mdobj , x, n=1){

priorParameters ← mdobj$priorParameters

lambda ← rgamma(n,

priorParameters [1] + sum(x),

priorParameters [2] + nrow(x))

return(list(array(lambda , dim=c(1,1,n))))

}

Finally the marginal distribution of the data f(y) can be evaluated as it

is a conjugate mixture model and translated into the appropriate R function.
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Predictive.poisson ← function(mdobj , x){

pp ← mdobj$priorParameters

pred ← numeric(length(x))

for(i in seq_along(x)){

alphaPost ← pp[1] + x[i]

betaPost ← pp[2] + 1

pred[i] ← (pp[2] ∧ pp[1]) / gamma(pp[1])

pred[i] ← pred[i] * gamma(alphaPost) / (betaPost∧ alphaPost)

pred[i] ← pred[i] * (1 / prod(factorial(x[i])))

}

return(pred)

}

With these functions written for the Poisson mixture model the con-

structor function MixingDistribution needs to be called to create a new

object that can be used by the Dirichlet process constructor function,

DirichletProcessCreate.

The constructor function MixingDistribution creates an object of class

distribution, in this case poisson, with prior parameters α0, β0 = 1 and

that it is conjugate.

poisMd ← MixingDistribution(distribution="poisson",

priorParameters = c(1, 1), conjugate="conjugate")

This object is now ready to be used in a dirichletprocess object and the

appropriate sampling tasks can be carried out. To demonstrate this new model,

new data is simulated and fitted using a Dirichlet process with the new mixing

distribution.

y ← c(rpois (150, 3), rpois (150, 10)) #generate sample data

dp ← DirichletProcessCreate(y, poisMd)

dp ← Initialise(dp)

dp ← Fit(dp, 1000)

As Figure 3.6 shows, the true generating function has been recovered. This
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Figure 3.6: The true and estimated distributions from the Poisson mixture

model.

shows how easy it is for the user to create their own mixture models using the

dirichletprocess package. In terms of performance, 1000 iterations took

roughly one minute to sample.

Nonconjugate Mixture

Suppose that a particular application requires a Dirichlet process mixture of

gamma distributions. Additional steps must be taking when creating the nec-

essary functions at the gamma distribution does not have a conjugate prior

distribution.

Again the likelihood function is needed. The gamma distribution has

two parameters α, β, therefore the list θ will also have two components. The

density of the gamma distribution can be written as

k(y | α, β) =
βα

Γ(α)
yα−1e−βy,

which can be easily translated using dgamma in R.

Likelihood.gamma ← function(mdobj , x, theta){

return(as.numeric(dgamma(x, theta [[1]], theta [[2]])))

}
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The function to draw random parameters from the base measure G0 is

also needed. For the parameters of the gamma distribution two exponential

distributions will be used as the base measure α ∼ Exp(α0) and β ∼ Exp(β0).

PriorDraw.gamma ← function(mdobj , n=1){

theta ← list()

theta [[1]] = array(rexp(n, mdobj$priorParameters [1]),

dim=c(1,1, n))

theta [[2]] = array(rexp(n, mdobj$priorParameters [2]),

dim=c(1,1, n))

return(theta)

}

In contrast to the conjugate example, the posterior distribution must be

sampled using the Metropolis-Hastings algorithm and a function that calcu-

lates the prior density for a given α, β is required.

PriorDensity.gamma ← function(mdobj , theta){

pp ← mdobj$priorParameters

thetaDensity ← dexp(theta [[1]], pp[1])

thetaDensity ← thetaDensity * dexp(theta [[2]], pp[2])

return(as.numeric(thetaDensity ))

}

Finally, the Metropolis-Hastings algorithm also needs a function that per-

turbs the parameters to explore the posterior distribution. For the gamma

distribution the parameters α, β are strictly positive and the new parameter

proposals must be constrained. This is achieved by taking the absolute value
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of a standard normal perturbation

αi+1 = |αi + h · η|,

η ∼ N(0, 1),

βi+1 = |βi + h · ζ|,

ζ ∼ N(0, 1),

again this is easy to translate into R:

MhParameterProposal.gamma ← function(mdobj , oldParams ){

mhStepSize ← mdobj$mhStepSize

newParams ← oldParams

newParams [[1]] ← abs(oldParams [[1]] + mhStepSize [1]*rnorm (1))

newParams [[2]] ← abs(oldParams [[2]] + mhStepSize [2]*rnorm (1))

return(newParams)

}

The mixing distribution object is now ready to be constructed using the

MixingDistribution function. The arguments of this function specify the

prior parameters α0, β0 and set the scale h at which the new parameter pro-

posals are made using the parameter mhStepSize.

gammaMd← MixingDistribution("gamma",

priorParameters = c(0.1, 0.1),

"nonconjugate",

mhStepSize=c(0.1, 0.1))

The dirichletprocess object can now be created and fit to some test

data. As it is a new type of mixture, it must be initialised.

y ← c(rgamma (100, 2, 4), rgamma (100, 6, 3))

dp ← DirichletProcessCreate(y, gammaMd)

dp ← Initialise(dp)

dp ← Fit(dp, 1000)
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Figure 3.7: The results of implementing the new gamma mixture model.

From Figure 3.7 the true distribution has been correctly identified.

Both of these examples show the ease and flexibility of how a new mixture

model can be implemented without needing to know the details of the sampling

algorithms from Neal (2000). The fitting procedure took roughly 5 minutes for

1000 iterations. This increase over the conjugate model is down to the need

to perform a Metropolis Hastings step with each cluster paramter update.

Overall, the performance of this package is slightly slower than other

Dirichlet process implementations not using R, but what is lost in sampling

speed is gained in ease of model building and iterating. As all the functions and

building blocks are written in native R code any user of the R can comprehend

and construct their own Dirichlet process models using this package.

3.5.3 Resampling Component Indexes and Parameters

When calling the Fit function on a DP object the component indexes and

parameters are resampled following Algorithm 4 for the conjugate case and

Algorithm 8 for the nonconjugate case using the specification from Neal (2000).

For both types of DP mixture the two functions that do the majority of the

work are ClusterComponentUpdate and ClusterParameterUpdate.

In a conjugate DPMM new component indexes and new cluster parameters
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are drawn directly from the predictive and posterior distributions making the

algorithm very efficient. In such cases the only option available to users is

to change the prior parameters of the base distribution G0. Ensuring that

the base distribution is correctly parameterised with sensible values for the

underlying data will provide optimal performance for the fitting algorithm.

However, in a nonconjugate case new cluster components are proposed

from the chosen prior distribution and new cluster parameters are sampled us-

ing the Metropolis-Hastings algorithm to obtain a posterior sample. By using

the Metropolis-Hastings algorithm, the parameters in question are proposed

using a random walk but constrained to the particular support of the parame-

ter. For example, the parameters in a Weibull distribution are strictly positive,

therefore the random walk is restricted to fall on the positive real line. An ill

proposed prior distribution can severely affect the convergence of the fitting

process. The parameter mhStepSize in the constructor function for a noncon-

jugate mixture controls the scale of new parameter proposals for the random

walk. When creating a new DP object, the constructor function has a flag

verbose that outputs an estimated acceptance ratio 2. As with the conjugate

case, care must be taken to ensure that the base measure is well suited for the

data.

Overriding Default Behaviour

For both conjugate and nonconjugate mixture models, the user can write their

own

ClusterComponentUpdate and ClusterParameterUpdate functions to over-

ride the default behaviour. The user can still benefit from the other S3 meth-

ods and structures implemented in dirichletprocess but with their custom

sampling schemes.

For the nonconjugate mixture models there is a further option available to

change the component index and parameter resampling. In Algorithm 8 of Neal

2For optimal performance of the Metropolis-Hastings algorithm this value should be

around 0.234 (Gelman et al., 1996)
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(2000) each datapoint can form a new cluster with parameter drawn from the

base measure, these proposals are called ‘auxiliary’ variables and m are drawn

for each data point. By default m = 3. However this can be changed in the

Initialise(dp, ...,m=m) function. Using more auxiliary variables can lead

to more changes in the component indexes and greater exploration of the base

measure but at the cost of computational time.

3.5.4 Resampling the Base Measure, G0

It is helpful that the user knows how to best set the parameters of the base mea-

sure to correctly represent the underlying data. However, whilst desirable this

is not always practical. In which case dirichletprocess offers functionality

to use hyper-prior parameters on G0 and update them with each iteration.

For the mixing distributions that allow for re-sampling of the base mea-

sure, it is simple to include the flag Fit(dp,...,updatePrior=TRUE). At each

fitting iteration the base measure with variable parameters will be updated

based on the current cluster parameters. For details on the exact specification

of the hyper-prior distributions for each implemented mixture kernel see Sec-

tion 3.3.3. If a user wishes to change the default prior on the hyper parameters

then it is as simple as changing the PriorParametersUpdate function for the

mixing distribution object.

3.5.5 Component Prediction

Given a fitted DP object and some new data ŷ the command ClusterLabelPredict

can be used to predict the cluster labels of this new data . Using the appro-

priate algorithm for a conjugate or nonconjugate mixture model the cluster

label probabilities are calculated from the new data ŷ, these probabilities are

then sampled once to obtain a cluster label. It is these cluster labels that are

returned with the appropriate cluster parameters.

Referring back to the example in Section 3.4.2 where a Dirichlet process is

used to cluster the faithful dataset, this example is updated to withhold the

last five entries of the data as the prediction set and use ClusterLabelPredict
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to estimate their cluster allocation.

faithfulTrans ← scale(faithful)

trainIndex ← 1:( nrow(faithfulTrans)-5)

dp ← DirichletProcessMvnormal(faithfulTrans[trainIndex , ])

dp ← Fit(dp, 1000)

labelPred ← ClusterLabelPredict(mvDPFaith ,

faithfulTrans[-trainIndex , ])

The function ClusterLabelPredict works by calculating and sampling

the clustering label from the probability that each test point ŷj belongs to each

cluster θi or should form its own cluster proportional to α

p(i) ∝ nik(ŷj | θi),

p(i = new) ∝ α

∫
k(ŷj, θi)dG0.

The function returns a list with multiple entries:

• The predicted cluster labels for the data under labelPred$componentIndexes.

• The cluster parameters assigned to the predicted data points in case a

new cluster is predicted labelPred$clusterParameters.

• The new number of data points per cluster labelPred$pointsPerCluster.

• The total number of clusters are also returned labelPred$numLabels as

this can change with each prediction.

Figure 3.8 shows the test data being correctly identified with the appro-

priate cluster.

3.5.6 Working with Censored Observations

The following example is intended to illustrate how simple the dirichletprocess

package makes it for the user to extend Dirichlet process mixture modelling

to situations which are not directly supported by the package.
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Figure 3.8: The predicted labels of the last 5 entries of the faithful dataset

against the training data. The predicted values are indicated by a solid colour

and triangle shapes.

Survival analysis is an area of statistics concerned with analysing the du-

ration of time before an event happens such as a failure in a mechanical system

or a death in a biological context. The aim is to construct a survival function

which, as the name indicates, shows how the probability of not experiencing

the event changes with time. Survival type data is often generated by obser-

vational studies which result in censoring. In the context of medical statistics,

censoring occurs due to finite time periods of the studies. When analysing the

effects of medical treatments patients events can be censored for a variety of

reasons. This is a missing data problem as it is no longer known the exact

time at which an event occurred, just that it occurred before or after a specific

time. Right censoring is when a patient is yet to be effected by the event after

a study ends. Left censoring is when it is not known exactly when the event

occurred, just that it occurred before the study started. To deal with this

censored information the likelihood must be adapted.

One approach for modelling such data nonparametrically is a Dirichlet

process mixture of Weibull distributions. The dirichletprocess package

does not directly support the analysis of censored data – as stated throughout,
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the purpose of the package is not to provide the user with a small number of

functions for solving predefined problems, but to make it easy to use Dirichlet

process mixtures in a wide variety of contexts. As such, it is very simple for

the user to extend the functionality of the package to allow for censoring.

Example: Censored Observations

In this example, the work of Kottas (2006b) will be replicated and use

leukaemia remission times taken from Lawless (2011). This dataset contains

two groups of censored observations that two different treatments have on

leukaemia remission times. A censored Weibull DP is used to model each of

the datasets and compare the survival functions. The full model can be written

as

yi ∼Weibull(yi | ai, bi),

ai, bi ∼ G,

G ∼ DP(α,G0),

where the Weibull density and G0 follow the form shown in Section 3.3.3.

Censored data can come in the form of two columns - the time it takes for

the event to occur and an indicator variable; 1 for a right censored observation,

0 otherwise. Therefore the density of the Weibull distribution can be written

as

k(y | a, b) =
a

b
ya−1 exp

(
−y

a

b

)
for uncensored,

k(y | a, b) = 1− exp

(
−y

a

b

)
for censored.

This likelihood needs to be translated into the appropriate function for the

dirichletprocess package.
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Likelihood.weibullcens ← function(mdobj , x, theta){

a = theta [[1]][,,,drop=TRUE]

b = theta [[2]][,,,drop=TRUE]

y ← as.numeric(

b∧(-1) * a * x[,1]∧(a-1) * exp(-b∧(-1) * x[, 1]∧a))

y_cens ← as.numeric (1 - exp(-x[,1]∧a / b))

if(nrow(x) == 1){

if(x[,2] == 0) return(y)

if(x[,2] == 1) return(y_cens)

}

else{

y_ret ← y

y_ret[x[, 2] == 1] ← y_cens[x[, 2]==1]

return(y_ret)

}

}

Two different mixingDistribution objects are created for each of the

data sets. Again, using the MixingDistribution constructor function and

provide the resulting object with a custom class such that it can use the new

likelihood function.
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mdobjA ← MixingDistribution("weibullcens", c(1,2,0.5),

"nonconjugate",

mhStepSize=c(0.11 ,0.11),

hyperPriorParameters=c(2.222 , 2, 1, 0.05))

mdobjB ← MixingDistribution("weibullcens", c(1,2,0.5),

"nonconjugate",

mhStepSize=c(0.11 ,0.11),

hyperPriorParameters=c(2.069 , 2, 1, 0.08))

class(mdobjA) ← c("list", "weibullcens",

"weibull", "nonconjugate")

class(mdobjB) ← c("list", "weibullcens",

"weibull", "nonconjugate")

The sampling is then carried out as normal with no other changes needed.

The default functions available for the Weibull mixture model are applied to

our custom dirichletprocess object.

dpA ← DirichletProcessCreate(data_a, mdobjA , c(2, 0.9))

dpA ← Initialise(apA)

dpB ← DirichletProcessCreate(data_b, mdobjB , c(2, 0.9))

dpB ← Initialise(dpB)

dpA ← Fit(dpA , 500, TRUE)

dpB ← Fit(dpB , 500, TRUE)

The survival function is calculated as S(y) = 1− exp(−ya

b
) and the parameter

samples are easily extracted from the fitted objects.

The resulting density and survival estimate is shown in Figure 3.9 which

correctly replicate the findings of Kottas (2006b).

To fully understand what has happened here, it is vital to understand

that the DP is defined by its base likelihood and G0 distribution. In creating a

new mixing distribution of class weibullcens and weibull the new likelihood
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Figure 3.9: Point estimates for the survival and density functions of the two

treatments.

can be used whilst using all the previous functions of a Weibull DP mixture.

This makes it trivial to define your own likelihoods using the foundations laid

in the different classes available.

3.6 Point Process Intensity Estimation
One practical application of beta mixture models is the estimation of an inho-

mogeneous Poisson process intensity function. As stated previously a Poisson

process is a collection of points in space distributed with rate λ. In the inho-

mogeneous case, the intensity is dependent on time and as such the number of

events at time t can be written as

N(t) ∼ Poisson(λ(t)). (3.7)

In parametric estimation, a functional form of λ(t) would be constructed i.e.

α0+αt and the parameters {α0, α} would be estimated. However, the accuracy

of such a method would be dependent on correctly identifying the parametric

form of λ(t). With the nonparametric methods that a DPMM provides, such

assumptions can be ignored and an intensity function can be built without

the need to specify a parametric form. Firstly, it is assumed that λ(t) =
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λ0h(t) where
∫ T

0
h(t)dt = 1, i.e. the intensity rate can be decomposed into an

amplitude λ0 controlling the number of events and a density h(t) controlling

the distribution of the events over the window of observation [0, T ]. To infer

the value of λ0 a conjugate gamma prior can be used and thus the posterior

distribution can be directly sampled.

In this example, an intensity rate λ(t) will be estimated with each iteration

and used to update the data the model uses to infer the parameters. The full

model can be written as

N ∼ Poisson(λ(t)),

λ(t) = λ0h(t)

h(t) =

∫
k(t | θ)dF,

F ∼ DP(α,G0),

where k and G0 are as per Section 3.3.3 for the beta distribution mixture

models. The posterior distribution of G is sampled using Key Property 5

(Section 3.3) which states that a sample of G can be drawn independently of

the data using the stick-breaking representation of the data and the model

parameters θ.

In this toy model 500 event times are simulated using the intensity func-

tion λ(t) = sin2 t
50
. Instead of passing the full data set into the Dirichlet

process object, a random sample of 100 of these event times are used instead.

# Generate some toy data

y ← cumsum(runif (1000))

pdf ← function(x) sin(x/50)∧2

accept_prob ← pdf(y)

pts ← sample(y, 500, prob=accept_prob)

The Dirichlet process object is fitted, then a posterior sample is drawn of

the intensity function λ̂(t) and sample 150 new points from the full data set

with probabilities proportional to λ̂(t). The Dirichlet process object is then

modified with the new data and the process is repeated.
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Figure 3.10: Estimation of the inhomogeneous Poisson process using stick

breaking.

# Create the object and initially fit it

dp ← DirichletProcessBeta(sample(pts , 100),

maxY = max(pts)*1.01 ,

alphaPrior = c(2, 0.01))

dp ← Fit(dp , 100, TRUE)

for(i in seq_len (2000)){

# For each iteration sample the function

lambdaHat ← PosteriorFunction(dp)

# Sample a new dataset

newPts ← sample(pts , 150, prob=lambdaHat(pts))

newPts[is.infinite(newPts )] ← 1

newPts[is.na(newPts )] ← 0

# Update the object

dp ← ChangeObservations(dp, newPts)

dp ← Fit(dp , 2, TRUE)

}
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Figure 3.10 shows the true intensity function is being recovered even

though the full dataset is never observed.

3.7 Final Remarks
This package provides the foundation for the nonparametric work in the thesis.

It has taken the standard algorithms for fitting a Dirichlet process model from

Neal (2000) and produced a comprehensive interface for anyone to use. In

the next two chapters of this thesis multiple sections of this chapter will be

referred to and explicitly used with within a Hawkes process.



Chapter 4

Bayesian Nonparametric Hawkes

Processes with Application to

Extreme Values

In this thesis the first application of the nonparametric Hawkes process is the

modelling of the occurrence of extreme events in a time series. In time series

data, any event that is larger than a predetermined threshold is regarded as

extreme and the occurrence of such an event is believed to be sufficiently rare.

In this chapter a Hawkes process will be used to model the extreme events

as self-exciting such that the occurrence of an extreme event increases the

probability of further extreme events, which in turn leads to clusters in time

of when these extreme events occur.

Effective risk management often requires an estimate of the probability

that large events will occur during a given time frame. For example, suppose

that m terrorist attacks have previously occurred over a period of T years,

at times t1, t2, . . . , tm. For each attack time ti, let ri be a mark denoting the

corresponding number of fatalities. Based on this historical data, it may be

important for insurance or disaster response purposes to have a probabilistic

estimate for the chance of a terrorist attack causing more than z fatalities in the

next 5 years for a given value of z. Similar problems are also often considered

in other fields such as natural hazard modelling where the events correspond
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to earthquakes and the marks correspond to earthquake magnitudes (Bray and

Schoenberg, 2013), and in finance where the events are the times at which the

increase or decrease in a company’s stock price are observed, and the marks

represent the size of the change (Chavez-Demoulin and McGill, 2012).

The estimation task can be broken down into two parts. First, a prediction

is made for the number of large events which are likely to occur in a given

period along with their occurrence times. Second, for each predicted event

ri, the probability p(ri > z) is estimated. Direct estimation of this latter

quantity is difficult since it usually involves inference about extreme quantiles

of the distribution governing ri. This can be highly sensitive to the parametric

assumptions made about the distribution, where the danger of misspecification

can invalidate parameter inference results (White, 1982). As such, it is usual

to instead rely on asymptotic results from the field of extreme value theory

(EVT) to avoid the need to make strong parametric assumptions.

For this purpose, the well known Pickands-Balkema-de Haan (PBH) from

EVT states that as long as z is sufficiently large, the distribution p(ri > z)

can be approximated by a Generalised Pareto Distribution (GPD) as long as

the distribution satisfies certain regularity conditions (Balkema and de Haan,

1974). This means that the distribution of the extreme marks, denoted by

r∗i , can be modelled without the need for parametric assumptions of the full

distribution. This has led to the widely-used Peaks-Over-Threshold (PoT) ap-

proach for modelling extreme values where the occurrence times t∗i of extremes

is assumed to follow a Poisson process, with the corresponding marks r∗i follow-

ing a GPD. However the direct application of this methodology to real-world

problems is limited by the strong stationarity assumptions that it requires.

Specifically, a straightforwards EVT analysis is only possible if: a) the time

occurrences t∗i of large values can be modelled by a (possibly inhomogeneous)

Poisson process and b) the conditional distribution of the magnitude r∗i ex-

ceeding some threshold z are independent draws from a GPD with constant

parameters.
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Unfortunately these assumptions often do not hold. Figure 4.1a shows the

daily log returns of the S&P 500 stock index. This index is designed to provide

an easily calculable measure of the US stock market and an indicator of the

general outlook of the economy. Many risk measures are based on the S&P 500

daily closing price therefore it is of great interest to predict when the next large

drop could occur and how severe it could be. In Figure 4.1a notable clusters of

large movements can be observed; Black Monday in 1987, the dot-com bubble

era at the turn of the 21st century and finally the 2008 financial crisis. All three

periods are easily identified by the larger values of log return, both positive and

negative. This in turn shows that the occurrence of these large events appears

to be inhomogeneously distributed and clustered. Furthermore, there appears

to be structural change in the distribution of r∗i , with the losses during the

2008 financial crisis being larger and a higher frequency than previously seen

in other downturns. It would hence be unwise to fit single stationary GPD to

this data

Similarly, Figure 4.1b shows the time series of fatalities that occurred in

terrorist attacks in Afghanistan during the 21st century, taken from the widely

studied RAND database of Worldwide Terrorism Incidents. The number of

fatalities has been plotted over time. Again, there are clear increases over

time in both the frequency and magnitude of the attacks over the period, with

both variables seeming to violate the assumptions of classic EVT.

This chapter develops a novel approach to extreme value theory that is

suitable for making predictions about future extreme events in situations where

the exceedances are nonstationary in both the time and mark domain. Specif-

ically, the self-exciting Hawkes process is shown to be a good model for the

time-domain which can reproduce clustering patterns such as those seen in

Figure 4.1. A previous frequentist application of the Hawkes process to EVT

was carried out by Chavez-Demoulin et al. (2005), however their approach is

limited by the need to make strong parametric assumptions about the form

of the Hawkes kernel, specifically that extreme values occur in a similar man-
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(a) Daily log returns of the S&P 500

stock index. The red points and line

indicate decreases larger than 3%.
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(b) Terror attacks in Afghanistan from

the RAND Database of Worldwide

Terrorism Incidents (RDWTI). The

dotted line indicates the threshold and

triangular points are those attacks

greater than the threshold.

Figure 4.1: Examples of extreme events occurring over a threshold.

ner to earthquakes with a power law kernel. Instead, nonparametric Bayesian

techniques are used to avoid the need for these strong assumptions and the

form of the kernel is learnt from the data rather than being prespecified.

The Hawkes formulation allows for self-excitation in the arrival events

compared to using a regression model for the process intensity. The self-

excitation can then be used as a mechanism to describe how clusters have

formed in the event arrival times. These clusters are also used to show how

hierarchical Bayesian modelling can be used to handle nonstationarity in the

mark distribution in a natural manner, with the clusters produced by the

Hawkes process assigned different parameters of the GPD distribution, with

hierarchical pooling used to allow more accurate inference.

The literature is discussed in Section 4.1 before reviewing the traditional

methods of EVT for estimating p(ri > z) when the event process is station-

ary in Section 4.2. Section 4.3 builds on the Hawkes process from Chapter 2
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and show how it can be used with nonparametric methods which is suitable

for when there is no strong theoretical motivation for particular parametric

assumptions. In Section 4.4 the Bayesian algorithm for sampling the full pos-

terior distribution of our model parameters is developed and explained. Syn-

thetic data is then used to demonstrate the posterior sampling in Section 4.5.

Finally, the new framework is applied to a dataset of terror attacks in Sec-

tion 4.6

4.1 Literature Review

The time varying nature of extreme events in real world data has lead to numer-

ous different approaches to modelling this nonstationarity. An early influential

paper suggested a parametric regression framework for the GPD parameters

to allow variation over time (Davison and Smith, 1990) and this idea has been

extended in several ways (Northrop and Jonathan, 2011; Chavez-Demoulin

and Davison, 2005). Related work has proposed various more sophisticated

models for the point process governing the occurrence of extremes, for exam-

ple (Gyarmati-Szabo, 2011). A partial review of the literature can be found in

Coles (2001).

As mentioned earlier Hawkes processes have been used for the extreme

values in financial time series both on the daily time scale (Chavez-Demoulin

et al., 2005) and on a high frequency intraday time scale (Chavez-Demoulin

and McGill, 2012). In both cases where the occurrence over the threshold of

the extreme event is modeled using the ETAS form of the Hawkes process,

then using the conditional intensity function a risk metric is updated based on

the last extreme event. For multivariate extreme values, (Grothe et al., 2014)

use a two dimensional Hawkes process to study the clustering and dependence

of returns in US and European stock markets.

Hierarchical extreme value models have also been used to model the effects

of climate change. Cooley et al. (2006) built such a model to study the effect

of the ‘Little Ice Age’ that was well recorded and observed in Europe. From
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this model they wished to understand whether the subsequent effects of this

weather were also felt in South America. A hierarchical model is useful in this

case as the information from a particular set of observations is able to influence

a different sample were such data may be less informative. This is the pooling

effect in hierarchical modelling and produced a better model for the data in

studying the effects of climate changes geological effects.

Extreme value theory has been applied to financial markets in Gilli and

Këllezi (2006) they introduce and apply extreme value theory to the extreme

values found in the Credit Suisse General index from 1969 to 1999. They use

the sample mean excess function to select the appropriate threshold before

using maximum likelihood estimation to fit the GPD to the extreme values.

This is a similar approach used in this thesis but instead the models in this

work are fitted in a Bayesian manner and developed further than just a singular

GPD combined with a Hawkes process for the time component.

A recent series of innovative papers (Kottas and Sansó, 2007; Wang et al.,

2011; Kottas et al., 2012) introduced a novel Bayesian approach for modelling

the occurrence of extreme values in nonstationary series. Their insight was

that the pairs (t∗i , r
∗
i ) can be viewed as observations from a bivariate Poisson

process, and that the intensity function associated with this process can be es-

timated using Bayesian nonparametric methods based on the Dirichlet process.

The flexibility of nonparametric estimation allows nonstationary behaviour in

both the time and mark domains to be easily handled. However while their

framework is well-suited to modelling historical data, it is less useful for mak-

ing predictions about the occurrence of extremes in the future. This is because

their point process representation effectively smooths out the historical data

rather than explicitly modelling the conditional intensity function of the point

process, which makes it difficult to make predictions based on recent process

behaviour.
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4.2 Extreme Value Theory

Suppose that r1, . . . , rm ∼ F are a sequence of independent and identically dis-

tributed observations, and that interest lies in the probability of large values

occurring. If the functional form of F is known, then this can be computed

directly after any unknown parameters have been estimated. However the

functional form of F is usually unknown, and a particular parametric form

will have to be chosen based on both the observed data and theoretical con-

siderations. Unfortunately, inference for extreme quantiles of F is known to

be highly sensitive to these parametric assumptions (White, 1982).

To avoid making parametric assumptions, it is common to instead use

the peaks-over-threshold (POT) approach which models only the distribution

p(ri | ri > z) rather than p(ri), where z is a threshold parameter chosen prior

to modelling. This approach is justified by the Pickands–Balkema–de Haan

theorem which essentially states that regardless of the unknown form of F ,

‘most’ probability distributions look the same as long as z is sufficiently large.

More formally:

Pickands–Balkema–de Haan (PBH) Theorem: Suppose r1, . . . , rm

are i.i.d with distribution F . Let Fz(y) = p(ri − z ≤ y | ri > z) denote the

conditional excess distribution function which describes the behaviour of F

above a given threshold z. Then, assuming that F satisfies certain regularity

conditions, Fz converges to the Generalised Pareto Distribution (GPD), i.e.

Fz(y)→ G(y | α, ξ) as u→∞ where:

G(y | α, ξ) =

 1− (1 + αy/ξ)
−1/α
+ if α 6= 0

1− e−y/ξ if α = 0,


where y > 0 (Balkema and de Haan, 1974). The regularity conditions here

essentially require that F can be normalised, and are satisfied by most non-

pathological distributions. Assuming they are satisfied, the POT approach to

extreme value estimation is to choose a threshold z sufficiently large to make

the GPD a good approximation for F , estimate the GPD parameters (α, ξ),
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and then approximate p(ri > z | ri > u) by 1−G(r − z | α, ξ).

The PBH theorem is closely related to another theorem in EVT which

states that the occurrence of extreme values can be treated as observations

from a two-dimensional Poisson process, where one dimension denotes time,

while the other represents the marks. First, write the original data as ordered

pairs (ti, ri) for i = 1, 2, . . . ,m. Next, delete the pairs where ri < z. Suppose

n pairs remain, and for notational convenience write these as (t∗i , r
∗
i ) for i =

1, . . . , n where r∗i denotes an extreme value. Then, {(t∗i , r∗i )} can be viewed as

observations from a Poisson process with intensity function:

1

ξ

(
1 + α

r∗

ξ

)−1/α−1

,

note that this process is stationary in the time-domain so that extreme values

are equally likely to occur at any point in the sequence, while the nonsta-

tionarity reflects the fact that the exceedances follow the GPD. As such, an

alternative way to view this result is to consider the observations {(t∗i , r∗i )} as

being drawn from a homogenous marked point process. In this case, the ex-

ceedance times t1, . . . , tn are governed by a homogenous Poisson process, while

the marks r∗i are i.i.d draws from a GPD(α, ξ).

4.3 Nonstationarity of The Exceedance Process
For the rest of this chapter, we drop the ∗ denoting an extreme event for

notional convenience and thus extreme events are now defined as (ti, ri) given

that ri is larger than some threshold z.

In many applications the i.i.d assumptions on the marks r1, . . . , rn above

the threshold that are required by both the PBH theorem and the above point

process representation will not be satisfied. This can occur for two reasons:

1. The point process governing the times at which the exceedances occur

can be nonstationary. This can be seen in Figures 4.1a and 4.1b discussed

earlier where the exceedances fall into clusters, with no exceedances oc-

curring for long periods of time followed by many occurring close to-

gether.
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2. The distribution p(r) of the exceedances may also change over time.

This can be seen in Figure 4.1a where it appears that the extreme values

observed during the 2008 financial crisis are systematically higher than

those during the previous two decades.

There is also previous work that relaxes the need for the exceedance occur-

rences to be i.i.d. Given that the exceedances satisfy some mixing condition

(Leadbetter, 1976), they are no longer required to be independent and in-

stead can display some local dependance. This local dependance is expressed

through the extremal index θ (Hsing et al., 1988) and can be interpreted as

the average clustering effect in the extreme values.

Much of the existing literature relies on specifying parametric models for

the time-evolution of both processes. Although this is a reasonable approach

for modelling historical nonstationarity, it typically does not allow for inference

of the conditional exceedance distribution p(rt | rt > z, r1:(t−1)) which will

often be the main object of interest. In many applications it will be important

to assess the probability of an extreme value occurring at some particular time

point t (e.g. “next week") which requires taking into account the conditional

history of the process.

In this chapter a different approach is taken which focuses on modelling

the conditional exceedance distribution directly. This is based on the point

process representation for the marked exceedance process (ti, ri). However,

rather than treating this process as homogenous in the time-domain with a

constant mark distribution, instead a representation that allows for conditional

nonstationarity in both domains is used. Specifically, (ti, ri) are modelled as a

marked process with the following intensity function:

λ(ti, ri) = λ(ti)λ(ri | ti),

where again ri denotes the set of marks which have magnitude higher than the

threshold z. The intensity λ(ti) will be modelled as a Hawkes process which

allows for nonstationary and clustered behaviour to arise directly. The mark
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intensity λ(ri | ti) will be modelled using a GPD with different parameter

specifications for each cluster.

4.3.1 Hawkes Process

The background outlined in Chapter 2 is built upon by taking the standard

Hawkes process (Eq. (2.2)) and extending the kernel to take a nonparametric

form using a Dirichlet process. This will allow the model to learn from the

data, rather than prespecifying and potentially miss-specifying the form of the

kernel. For notional purposes, the kernel g(t) in Eq. (2.2) is relabelled as h(t).

A Nonparametric Kernel

In previous applications of the Hawkes process, the kernel of the Hawkes pro-

cess h(t) has been specified parametrically and fitted using frequentist tech-

niques (Porter and White, 2012; Balderama et al., 2012). However in most

realistic applications it will not be obvious which sort of parametric form is

most appropriate. As such, there has been recent interest in nonparametric

specifications of the kernel function, typically within a frequentist framework

(Mohler, 2013; Bacry et al., 2012; Lallouache and Challet, 2016).

The details of using a Dirichlet process as the basis for a nonparametric

model have been previously outlined in Chapter 3. This same type of model

is used to extend the kernel nonparametrically.

The general form of the Hawkes process, Equation (2.2), is modified to

use a Dirichlet process as a prior to model h(t). Specifically, as a mixture of

some probability distribution k(. | φ) with parameters φ;

h(t) =

∫
k(t | φ)dG(φ),

φ ∼ G,

G ∼ DP(α,G0),

where G0 is the base distribution of the Dirichlet process and α the concentra-

tion parameter. By using a mixture of distributions the shape of h(t) is flexible

and adaptable to the data. Features such as heavier tails and multiple peaks
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can emerge from the data that a parametric kernel would miss. Furthermore,

the Dirichlet process can revert to a single mixture component if necessary.

Two forms of k will be investigated; the exponential distribution and

lognormal distribution. Exponential kernels are commonly used in Hawkes

process models, both parametrically and as finite mixture models (Lallouache

and Challet, 2016). This previous work is extended to develop an infinite

mixture model that learns the most suitable amount of components. The

exponential has one free parameter φ = β and probability density function

k(t | φ) = β exp(−βt), with mean β. For the base measure G0 the gamma

distribution is used G0 = Gamma(β | α0, β0), where α0 and β0 are the prior

parameters. The gamma distribution is a conjugate prior for the exponential

distribution used as the mixture kernel.

The lognormal distribution has two free parameters φ = {µ, σ2} and den-

sity function k(y | φ) = 1√
2πσt

exp
(
− (log y−µ)2

2σ2

)
, with mean of exp(µ + 1

2
σ2).

The lognormal distribution is a good choice for mixing kernel as using the trans-

formation y′ = log(y) means that the data can be modelled using a mixture

of Gaussian distributions and thus a conjugate prior distribution can be used.

The base measure choice exploits this with a normal distribution on µ and

inverse gamma distribution on σ: G0 = N(µ | µ0,
σ2

k0
)Inv-Gamma(σ2 | α0, β0),

where the prior parameters {µ0 = 0, k0 = 1, α0 = 1, β0 = 1} are set to be

uninformative.

As both the exponential and lognormal mixture models have conjugate

base measures Algorithm 4 of Neal (2000) is used when performing posterior

sampling. As explained in Chapter 3, this sampling will be handled by the

dirichletprocess package.

4.3.2 Extreme Value Theory and the Generalised Pareto

Distribution

Extreme events consist of a pair of values (ti, ri) where ti is the time at which

at the ith extreme event occurs and ri > z is the magnitude of the events that

are above the given threshold z. The Hawkes process is used to model the
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occurrence of the extreme events, i.e. the ti value. The dynamic model for

the magnitudes ri is now discussed. In the simplest application of the PBH

theorem it can be assumed that for some threshold z

p(ri | ti, ri > z) ∼ GPD(α, ξ),

with i.i.d ri. The parameters α, ξ can be estimated and used to compute

the future probability of large ri occurring. However, this assumes that the

distribution of the ri values is constant over time, which is not the case in

many real world applications. In the traditional extreme value literature these

problems are overcome by allowing the parameters of the GPD to depend

on time and applying common regression estimation techniques (Coles, 2001).

However, there are a number of problems with this approach. Firstly, one

must assume a particular parametric form for the time dependence, which can

lead to under fitting or over fitting depending on the number of parameters

chosen. Secondly, this does not provide a suitable method for accounting for

the clusters in the data. Instead, a new method is proposed that groups the

data into appropriate clusters and fits a GPD to each cluster individually. This

hierarchical model is then able to pool the individual data points across the

different clusters and thus allows the time varying nature of the ri values to

be accounted for.

Recall from Section 2.2.2 that sampling the exceedance times ti from the

Hawkes process naturally produces clusters of events, which are represented

by the branching variables B = (B1, . . . , Bm), where Bi = j if (ti, ri) was

generated by the Poisson process spawned by the event that occurred at time

tj, and Bi = 0 if (ti, ri) was generated by the background process. Consider

the set of background events, i.e those for which Bi = 0. Since these events are

produced by the background process µ, the formation of clusters is governed

by a Poisson process.

For the magnitude of the extreme values we propose two different cluster-

ing models:

1. Each event is classified as a background or child event based on their
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corresponding parent label Bi,

2. A new cluster is formed with each background event.

For the first model two clusters are defined mathematically as

Cbackground = {ri : Bi = 0},

Cchild = {ri : Bi 6= 0},
(4.1)

this model is referred to as the ‘background and child’ model. It allows for

different size of events depending on whether the event is a background event

or a child event and would describe behaviour where the background events

are always larger than the child events. Essentially, this model is learning two

different distributions for the different types of events.

For the second model, events are separated into clusters as follows. First,

for each event tj where Bj = 0 define the corresponding cluster Cj to be the

set of events that occurred between tj and the next background event. More

formally, suppose t(j+1) is the next background event after tj. Then:

Cj = {ri : tj ≤ ti ≤ t(j+1)}. (4.2)

For both models a structure in which each cluster has its own GPD with

distinct parameters ξj, αj is used,

r ∼ GPD(α, ξ),

α = αj if ri ∈ Cj,

ξ = ξj if ri ∈ Cj,

where the clusters are assumed to be exchangeable. The models no longer

requires the ris to be from a stationary distribution and also does not require

an assumption of the time dependence of ris. It is possible that some clusters

consist of just one observation which would reduce the accuracy of the esti-

mates of the parameters for that cluster. The introduction of this clustering

scheme exchanges simplicity in the model for flexibility to adapt to the data.

Fortunately this trade-off can be remedied by using a Bayesian hierarchical
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model which allows for partial pooling across the clusters. Smaller clusters are

no longer treated individually and will be influenced by the prior distribution

that is fit from the pooling of all the data. The full hierarchical model with

priors can be written as

ξj ∼ Gamma(aξ, bξ), αj ∼ Gamma(aα, bα),

aξ ∼ Gamma(2, 2), bξ ∼ Gamma(2, 2),

aα ∼ Gamma(2, 2), bα ∼ Gamma(2, 2).

(4.3)

This use of hyper-priors allows for the clusters with fewer observations to be

influenced by the larger clusters and each set of cluster parameters is drawn

from a common distribution but with enough flexibility to account for the

changes between clusters. The Gamma(2, 2) distribution is chosen to ensure

the stability of the posterior inference and any distribution with larger variance

causes the posterior sampling to diverge.

4.4 Posterior Inference
Posterior inference for the model involves sequentially sampling the parameters

ΘHP = {λ0, κ, h(t),B} of the Hawkes process which governs the extreme value

occurrence times t1, . . ., and the parameters ΘGPD = {α1, ξ1, α2, ξ2, . . .} which

govern the distribution of the extremes ri, along with all associated hyperpa-

rameters. This separation of the model into two separate inference schemes

allows for a more convenient computational approach however, the parameters

of the GPD could easily be sampled alongside the parameters of the Hawkes

process with no changes in the results.

In this application the background rate, λ0, is assumed constant, in the

next chapter this assumption is relaxed to allow for nonstationary background

rates to which can account for seasonality in the occurrence of events.

4.4.1 Sampling for the Hawkes Process

By interpreting the Hawkes process as a branching process a computationally

efficient posterior sampling method is developed. At any time t the Hawkes
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intensity Eq. (2.2) can be viewed as a superposition of multiple Poisson pro-

cesses; a homogeneous Poisson process with intensity µ(t) = λ0
T

and multiple

inhomogeneous Poisson processes (one for each previous event that has oc-

curred ti < t). For each event ti the intensity of this inhomogeneous Poisson

process is κh(t − ti). Therefore for each event, if it can be identified which

Poisson process was responsible then the parameters of its generating inten-

sity can be inferred. This information is contained in the latent branching

structure B which allow the process to be decomposed into the events that are

from the background and the events that are caused by other previous events.

Therefore by using this latent variable the event times can be partitioned into

appropriate sets S0, . . . , Sn

Sj = {ti;Bi = j}, 0 ≤ j < n, (4.4)

where the set S0 contains all the events that are caused from the background

intensity rate λ0
T

and Si where contains the children of event ti which were

hence generated by a Poisson process with intensity κh(t− ti). The likelihood

for a Poisson process with parameters θ and intensity λ(t) is

p(t1, . . . , tn | θ) =
n∏
i=1

λ(ti | θ) exp

(
−
∫ T

0

λ(z | θ)dz
)
. (4.5)

Due to the high level of correlation between the parameters of the Hawkes

process, standard MCMC techniques would prove difficult when using the pos-

terior from Eq. (4.5). Instead, by introducing the branching structure variable

B the likelihood of a Hawkes function can be written as the combination of

both the background intensity and the child intensities after conditioning on

the latent variable B:

p(t1, . . . , tn | θ,B) = exp (−λ0)λ
|S0|
0

n∏
j=1

exp (−κH(T − tj))κ|Sj |
∏
ti∈Sj

h(ti − tj)

 ,

(4.6)

where H(z) =
∫ z

0
h(t)dt. As h(t) is a normalised probability density H(z) is

the cumulative distribution of h(t). If T >> tj∀j then H(T − tj)→ 1 and the

coupling between the kernel h(t) and κ is removed. This allows separation of
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the likelihood and thus all three components of the Hawkes process λ0, κ, h(t)

become independent of each other. By exploiting this conditional independence

an efficient MCMC sampler for the parameters of the Hawkes process can be

built.

The unknown values of the Hawkes model ΘHP = {λ0, κ, h(t),B} are to

be inferred. In all models in this chapter the background rate is assumed to

be µ(t) = λ0
T

and constant. This can be easily extended without any loss

of generality and will be demonstrated in Chapter 5. To sample from the

posterior distribution of these parameters each parameter will be simulated

from its full conditional distribution, as in the Gibbs sampler.

Recall that each event ti has an associated Bi that indicates its parent. A

value of Bi = 0 is indicating that the event was generated by the background

rate and Bi = j indicates that event tj is the parent of event ti. For the ith

event occurring at time ti, the (unnormalised) probability of its origin is (Ross,

2019)

Pr(Bi = 0 | λ0, κ, h(t), ti, Ht) =
λ0
T

λ(ti | Ht)
,

Pr(Bi = j | λ0, κ, h(t), ti, Ht) =
κh(ti − tj)
λ(ti | Ht)

, j = {1, 2, . . . , i− 1}.
(4.7)

These distributions can be sampled from exactly once calculated. This process

allows full simulation of the branching structure of a Hawkes process from the

exact posterior using values of the parameters λ0, κ and h(t). Then conditional

on this branching structure, the other parameters of the model can be simu-

lated. Conditional on B the sets Si can be formed as defined in Eq. (4.4) and

used to estimate the other parameters of the Hawkes model.

The number of events with Bi = 0 allows for a posterior sample of λ0

using the standard sampling procedure for a homogenous Poisson process.

These events are caused from the background rate λ0 and distributed as a

Poisson process as shown from the full likelihood in Equation (4.6)

S0 | B ∼ Poisson(λ0), (4.8)
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a conjugate Gamma(aµ, bµ) prior is used for λ0 as this allows for direct samples

from the posterior distribution

p(λ0 | S0, aµ, bµ,B) ∼ Gamma(aµ+ | S0 |, bµ + 1). (4.9)

The expected number of children events for each event is controlled by κ.

Again, using the full likelihood (Eq. 4.6) it has been shown that the number

of children events from each event Sj, j > 0 is Poisson distributed

Sj | B ∼ Poisson(κ) j > 0, (4.10)

the value of κ can be inferred by using a conjugate gamma(aκbκ) distribution

and sampling from the posterior distribution

p(κ | S, aκ, bκ,B) = Gamma

(
aκ +

n∑
i=1

Si, n+ bκ

)
. (4.11)

Sampling the parameters of the kernel depends on the specification of h(t).

For notational convenience write τj = tj − tparent as the rescaled event times

for all events with Bi 6= 0. The values of τj are then used to sample the kernel

posterior distribution. For a parametric kernel, a prior distribution for the

parameters is specified and then used to sample from the posterior distribution

using the appropriate method. For an exponential or lognormal kernel there

are conjugate prior choices that allow direct sampling of the posterior.

To obtain posterior samples for the nonparametric kernel Algorithm 4

specified by Neal (2000) is used. The algorithm uses the Polya Urn rep-

resentation of the Dirichlet process to assign the τjs into their appropriate

mixture components and then update the components appropriately. The

stick-breaking construction of the Dirichlet process is used to sample from the

posterior distribution of the fitted τjs. It is this posterior draw that functions

as the kernel for the next round of sampling. The parameter α of the Dirich-

let process has a gamma prior (West, 1992) and sampled for each iteration of

kernel fitting. The overall sampling of the Dirichlet process is achieved using

the dirichletprocess package in R (Markwick and Ross, 2018) as detailed

in Chapter 3.
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Combing the structure simulations and posterior parameter samples leads

to the full Gibbs sampling algorithm:

Algorithm 1: Sampling the parameters of the Hawkes model.
Data: Event times t1 . . . tn

Result: S posterior samples of λs0, κs, kernel hs(t) and parent

structure Bs.

Chose starting values λ1
0, κ

1 and h1(t);

for i = 1 to S do
Sample the new parent structure Bi+1 from probabilities

calculated using Eq. (4.7) and λi0, κi, kernel hi(t) ;

Calculate Sj from Bi+1 using (4.4) ;

Sample λi+1
0 using Eq. (4.9) ;

Sample κi+1 using Eq. (4.11) ;

Sample h(t)i+1 using the dirichletprocess R package ;

end

By exploiting the conditional independence of B and the explicit param-

eters of the Hawkes model λ0, κ and h(t) MCMC chains of the parameters

conditional on the data can be built.

4.4.2 Sampling for the GPD

The parameters ΘGPD are sampled from their full conditional distributions.

Conditional on the branching structure B, the extremes r1, . . . , rn are di-

vided into clusters based on Equation (4.2). Suppose there are K such clus-

ters in a given iteration of the Gibbs sampler. Each cluster has a unique

value for the GPD parameters (αj, ξj) for j ∈ 1, . . . , K. Each of these K

parameter sets are independent of the others, so the sampling procedure is

equivalent to performing K completely separate sets of inference for a GPD,

given independent parameters and observations. For each of the parameter

sets, this sampling is performed by using Hamiltonian Monte Carlo as im-

plemented in the Stan programming language (Carpenter et al., 2016). As

such, the algorithm for sampling the GPD parameters can be written as:



4.5. Experiments 111

Algorithm 2: Algorithm for sampling the GPD parameters.
Data: Parent structure samples B

Result: S samples of ΘGPD

for i = 1 to S do
Sample the parameters ΘGPD using the Stan implementation of

(4.3)

end

Overall, sampling from the posterior distribution is achieved in this split

manner, firstly by sampling from the Hawkes process and then using the re-

sulting parameter chains to sample from the GPD model.

4.5 Experiments
The above method is applied to synthetic data to verify that the correct pa-

rameters of the model can be inferred.

4.5.1 Model Checking

Since the primary goal is predicting the occurrence of extreme values in the

future, model performance will be assessed by dividing the data into a training

and testing set. The parameters of the model will be inferred from the training

set before applying the model checking on the test set and the better fitting

model will have greater predictive power on the test set. For checking the

validity of the Hawkes model the Deviance Information Criteria (DIC) (Sec-

tion 2.3.2) will be used 1. This is a likelihood based calculation that penalises

the predictive accuracy of a model by the complexity of such model. As the

Dirichlet Hawkes models can potentially use an infinite number of parameters

it is necessary to correctly penalise overfitting. Furthermore, as the models

are conditional on the history of the process, cross validation methods that

remove events in the time domain cannot be used. The best fitting model is

one with the lowest DIC value. Hawkes processes will also be simulated from

the model parameters to ensure that future forecasts are consistent with what

1Other information criteria could have possibly been used such as the Bayesian informa-

tion criteria.



4.5. Experiments 112

is actually observed.

For the GPD part of the model leave-one-out cross validation (LOOCV)

will be performed using the loo R package (Vehtari et al., 2017). LOOCV

is a method for assessing the pointwise out-of-sample predictive accuracy of

a model and outputs a metric leave-one-out information criteria (LOOIC). It

is computed from the log-likelihood evaluated using the posterior samples of

the parameter values and like the DIC the model with lowest LOOIC value is

preferred.

4.5.2 Synthetic Data

To demonstrate the outlined methodology a synthetic data set from a Hawkes

process with a complex kernel is simulated and used to show that the new

method is able to extract the correct kernel shape. A data set with λ0 = 0.01,

κ = 0.8, h(t) = 1
2
Log-normal(0.7, 0.3) + 1

2
Exp(1) and T = 5000 is simulated

from to form the synthetic data. This resulted in 319 events.

A Hawkes process with Dirichlet mixture of the lognormal distribution

kernel is fitted to the data and the resulting kernel is compared to the true

kernel function. To check for prior sensitivity, four different priors on the

concentration parameter α are compared. A parametric lognormal kernel is

also fitted to the data to enable comparisons between the Dirichlet and single

kernel models.

The resulting posterior mean and credible intervals of the kernel is shown

in Figure 4.2a. The Dirichlet mixture model has correctly adapted to the more

complex true kernel shape. Figure 4.2a also shows very little prior sensitivity

to the Dirichlet process parameter α .

The Kullback-Leibler (KL) divergence for the Dirichlet models and a

Hawkes model with a lognormal kernel can also be calculated as the true

kernel shape is known. All four of the Dirichlet models have an average KL

divergence of 0.06, where as the model with singular lognormal kernel has an

average value of 1. This shows that the Dirichlet kernel mixtures are cor-

rectly identifying the true kernel and fitting to the data better than the single
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(a) Resulting kernels from the synthetic

data with complex kernel, each plot

utilises a different prior parameter for α

of the Dirichlet process. The true kernel

shape is shown with the solid red line.

The posterior mean is the solid black

line with 95% credible intervals as the

grey interval.

ξa ξb

αa αb

0 2 4 6 0 2 4 6

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

Value

D
en

sit
y

(b) Hyper parameter posterior samples

of the GPD model. The solid vertical

line indicates the true value.

Figure 4.2: Results from fitting the model to a synthetic dataset.

lognormal kernel.

For the GPD synthetic data, the clustering of the events is used to group

them appropriately as per Eq. (4.2). Then individual αj, ξj values are drawn

from gamma distributions as per Eq. (4.3) with aξ, bξ, aα, bα = 2 and then sub-

sequent values are drawn from the GPD with these cluster parameters for each

data point. Using the model in Eq. (4.3) the unknown parameters are inferred

using the synthetic data. In Figure 4.2b the density of the hyperparameter

samples are within the distribution of the posterior values and closely centered

around the true value for three out of the four parameters as expected.
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4.6 Application

Given that the fitting procedure has been verified on synthetic data it can

now be used on real data. The Hawkes and GPD model is used to study

the self-exciting nature of extreme terror attacks. For the data source the

RAND Database of Worldwide Terrorism Incidents (RDWTI) 2 is used which

is a publicly available record of all terrorist attacks from January 1968 to

December 2009. The terrorist attacks that occurred in Iraq from 20th of March

2003 onwards are considered as this is the official start date of US led invasion

of Iraq. For each terrorist attack in the database only the day of the event is

recorded. Therefore, on days where multiple attacks occurred the ordering is

arbitrary. To overcome this issue, a random uniformly drawn number between

0 and 1 is added to the time of each of the attacks, this ensures that days with

multiple attacks have unique time stamps. The modelling of terror attack

fatalities has been previously studied in Porter and White (2012).

The threshold level is set at fatalities > 10 which was consistent for EVT

using the mean over threshold theory (Coles, 2001). This subsample consists

of 5% of all the attacks and contained 490 separate events. This is the dataset

used to infer the parameters of the Hawkes and GPD models as per Section 4.4.

Four different Hawkes models are considered, two with parametric ker-

nels and two with Dirichlet mixture kernels. For the parametric kernels the

exponential and lognormal distribution are used and for the Dirichlet kernels

infinite mixtures of exponentials and lognormal distributions. The prior on α

is set as Gamma(2, 4) as from the synthetic analysis little prior sensitivity was

shown in Figure 4.2a.

The first 70% of the attacks are used as the training set with the remain-

ing 30% used as the test set to evaluate model performance. The sampling

algorithm is run for two chains of 5000 iterations, discarding the first 2500

iterations as burnin which is enough for the parameter samples to be well

mixed.

2https://www.rand.org/nsrd/projects/terrorism-incidents/download.html
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Table 4.1: Posterior means and standard deviations for the Hawkes parameter

samples fitted on the terror attack data.

Model λ0 sλ0 κ sκ DIC

Exponential 0.034 0.016 0.86 0.080 753

Lognormal 0.047 0.019 0.81 0.089 755

Dirichlet Exponential 0.032 0.014 0.87 0.074 752

Dirichlet Lognormal 0.033 0.014 0.86 0.075 745

Table 4.1 shows that both models have converged to similar parameter

values for both λ0 and κ. A κ value of 0.86 indicates that there is a high

amount of self-excitation from these extreme terror attacks, on average every

1.16 ( 1
κ
) attacks will see another child attack. Figure 4.3a shows the resulting

kernel shapes fitted from the data and the Dirichlet lognormal kernels have

a different shape to the single lognormal kernel. There is a fast decay before

plateauing out which shows that the Dirichlet lognormal mixture model has

found new structure in the kernel. As the time scale is in days, Figure 4.3a

shows that the majority of self-excitation effect dies out 10 days after the

initial attack with further continual decay until approximately 30 days after

the attack. The main difference between the Dirichlet lognormal kernel and

others is both the presence of the sharp increase after the initial attack followed

by the power-law like decay. This combination of features cannot be achieved

by the single lognormal kernel and the Dirichlet exponential kernel does not

have the flexibility to provide both the peak and slow decay. Therefore this

improvement in the DIC has a physical interpretation evident from comparing

the kernel shapes.

From the DIC values the Dirichlet lognormal model is the best fitting

model. So whilst there is potentially an infinite amount of parameters in this

model, it has shown that the benefit from these parameters outweighs the

increased complexity. Furthermore, as this was fitted on the test set it shows a
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real predictive benefit in using the Dirichlet lognormal model over the simpler

parametric models.
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(a) Kernel shapes for the terrorism

data. The solid black line indicates

the posterior mean, with the dotted

line indicating the 97% credible inter-
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(b) Posterior predictive simulations of

the number of events in the test set.
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number of events. The model is well

calibrated in predicting the correct

number of events.

Figure 4.3: Results from fitting the Hawkes model to the extreme terror attack

dataset.

Figure 4.3b shows the distribution of simulated events across the posterior

parameter samples. The vertical line indicates the true number of events in

the test set and is shown close to the centre of the distribution. The model is

correctly forecasting the number of events for the future, therefore can be seen

as a valid model which can also be confirmed by the improved DIC values.

Given the time component of the terrorist attack has been modelled, the

actual number of fatalities is now considered. The clustering of the Hawkes

process is used to separate the terror attacks into groups; firstly using Eq. (4.1)

and a further model using Eq. (4.2). The baseline model is one in which

the number of fatalities of each event are i.i.d from a GPD. After fitting the

three models the loo package is used to perform Bayesian leave-one-out cross
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Table 4.2: LOOIC values for the GPD models of the number of fatalities.

Model elpdloo ploo LOOIC

Baseline -119.4 0.3 238.8

Background and Child -103.4 0.9 206.8

Full Clustering -343.5 215.4 687.1

validation on the held out test data.

Table 4.2 shows that the background and child hierarchical model is an

improvement on the baseline model. The full clustering model is a very poor

fit due to its large LOOIC value. The parameter ploo is effectively a Bayesian

estimate of the number of parameters in a model and shows the jump from the

background and child model to the full cluster model has introduced over 200

new parameters without an improvement in predictive performance. However,

the increase in predictive performance with modest increase in ploo between the

baseline model and background and child model shows that the hierarchical

GPD model is an improvement in modelling the terror attack fatalities.

4.7 Discussion

This chapter has developed and applied a novel framework for modelling ex-

treme events that relaxes many of the conditions of classic extreme value

theory. I have produced a full posterior simulation algorithm for both the

time component and value of extreme events, with specific contribution of the

Bayesian algorithm for sampling from the Hawkes process. The model offers

an interpretation of the time clustering behaviour of extreme values through

the parameter κ and kernel h(t) of the Hawkes process. By using a nonpara-

metric parameterisation for h(t) a greater degree of flexibility can be used in

the modelling approach. A Dirichlet process mixture model has learnt from

the data and recovered a kernel that has a fatter tail than parametric ker-

nel specifications. The GPD model combined with this clustering from the
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Hawkes process leads to a better predictive performance for the applied exam-

ple of terrorist attacks. This is an improvement on previous approaches where

predictive performance had not been possible (Kottas and Sansó, 2007; Wang

et al., 2011; Kottas et al., 2012).

This framework has been applied to terrorist attacks however it is agnostic

to any extreme event situation. There is scope for further work assessing its

performance in a variety of fields such as financial risk, assessing the clustering

nature of extreme falls in the stock market and the subsequent GPD model.

In conclusion, extreme value theory has been a good introduction to

the application of a nonparametric Hawkes process. I have shown how the

Bayesian Hawkes process can be combined with the Dirichlet process using

the dirichletprocess software package of Chapter 3.



Chapter 5

Hierarchical Bayesian Modelling of

FX Trade Arrivals Using the

Nonparametric Hawkes Process

In the previous chapter there was only one time series of extreme events in con-

sideration but in this chapter, the Hawkes process will be extended to multiple

timeseries which in turn will involve extending the Bayesian Hawkes algorithm

of Chapter 4 to account for the multiple timeseries. The nonparametric com-

ponent will now be applied to the background rate, µ(t), of Equation (2.2) to

model the seasonal pattern of background events throughout the day. In this

chapter a financial dataset consisting of when trades were executed throughout

the day will be used as the application. The general occurrence of trades is

variable throughout the day and by using a nonparametric model to account

for this variation avoids the need to assume a specific form of daily seasonality

where instead it can be learnt from the data.

In recent history financial markets have made a steady march from phys-

ical trading pits to electronic exchanges (Rime and Schrimpf, 2013). Human

traders are now less involved in the submission of trades and instead, algo-

rithmic trading strategies are used to send trade orders to the market. This

electrification has also introduced predatory actors in the market and there

are now trading bots that are attempting to detect such algorithms and profit
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off the pattern of trades other traders make. The distribution of order times

are now going to be more complicated and each trade is unlikely to be inde-

pendent of each other hence each order that arrives in the market will cause

a reaction by other actors who will respond with their own order. This chap-

ter shows how a nonparametric and hierarchical Hawkes model can be used

to model the number of trades throughout the day and can account for the

clustering of orders. Understanding the daily pattern of financial market data
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Figure 5.1: Density histogram highlighting the difference in number of trades

across the weekdays and NFP days. The trades are bucketed into 30 minute

groups.

brings with it a number of interesting modelling problems. The data consists

of observations throughout the day (intraday) across a number of days and
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it is expected to see common, reoccurring patterns - i.e. increases in activity

at market opening and closing times with slight variations in this behaviour

depending on the day. Figure 5.1 shows this type of pattern where there is a

general increase in the number of trades around 08:00 and 14:00 that follows

the opening of the European and American stock exchanges. This type of

pattern is similar for each day of the week, but there are subtle differences

in the peaks of the empirical distributions depending on the day of the week.

For example Wednesday mornings are not as active as the other days of the

week and Friday afternoons have an increased trading amount compared to

other days. Furthermore, by using the Anderson-Darling test we are able to

conclude that the distribution of trade times on each different day of the week

in statistically different, such that this separation into different days of the

week is valid.

This type of difference motivates a model where each day of the week has

an individual background rate and thus a separate Hawkes process depending

on the day of the week

λMonday = µMonday + κMonday

∑
ti<t

gMonday(t− ti),

where each other day of the week would follow the same pattern, but with their

own parameter sets, i.e. λTuesday etc. However, modelling each day individually

eliminates the possibility of the sharing data to find common features amongst

the days of the week, as previously highlighted, there is a common location

in the peaks that should be learnt using all the available data. A Bayesian

hierarchical model, as outlined in Chapter 2, remedies this by allowing for

the sharing information across days whilst retaining individual characteristics

(Gelman et al., 2014).

The background component of the model will be described with a hier-

archical Dirichlet process. By using such a process in a hierarchical manner

the data will separated into appropriate groups and a model for each group

that shares data across groups will be established. In a Dirichlet process this

involves sharing clusters which has been explored with application to textual
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data in Teh et al. (2005) and Zhang et al. (2010). Both works uses a hierarchi-

cal Dirichlet process to cluster the patterns in text data from different sources

and by sharing the clustering across the sources both pieces of work are able

to find common groups in the data. This is a similar goal for this chapter,

to find similarity in diverse groups but also where the differences between the

groups may lie.

The application of such a model will be focused on the times of trades

in the foreign exchange (FX) market. As most financial literature typically

focuses on returns or volatility in equity markets, this will be a new avenue of

exploration. A point process model will be explored and extended to include

both the daily seasonal patterns and clustering behaviour and this type of

model will then provide an ability to forecast future seasonal behaviour and

high frequency changes in market conditions from these trading patterns. In

this case, seasonality refers to the diurnal pattern of market behaviour, where

there is an increase of activity around stock markets opening times but periods

of decreased activity outside of normal trading hours.

Such prediction of the intraday behaviour of FX markets is important for a

number of reasons. Firstly, the cost of trading is directly related to the amount

of liquidity at the point in time. If a trader places a large order at a time where

there is a low amount of volume traded, the price of the trade will be negatively

impacted and executed at a worse price. Therefore, understanding the patterns

in trading behaviour is needed to obtain the best prices of an asset. Secondly,

as the FX market is the largest financial market, the intraday predictions can

cascade through into other markets. Asset managers buying foreign stocks

must also manage their currency positions, therefore every stock trade will be

followed by a FX trade to hedge the currency risk. So whilst they might not

be actively trading a certain currency they can be indirectly influenced and

must be aware of the behaviour of the FX market.

This will be a novel approach to point process modelling consisting of

using a Hawkes process with a hierarchical Dirichlet process to learn both the
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pattern of intraday trades and number of trades in each day. Using a unique

dataset provided by BestX 1 the resultant model is able to predict both future

numbers of trades per day and how these trades are distributed throughout the

day. Once again, the approach will be explicitly Bayesian and combining the

flexibility of nonparametric models with the self exciting nature of the Hawkes

model.

This chapter begins by reviewing the relevant literature in Section 5.1 be-

fore exploring the available data and highlighting key features in Section 5.2. I

proceed to build on and extend the mathematical details from previous chap-

ters for both Dirichlet process and Hawkes processes in Section 5.3 before de-

scribing our full model that combines both processes. In Section 5.4 I present

our inference results and analyse the fit of the models. Finally, Section 5.5

discusses these results and the impact they have on predicting the behaviour

of trading a currency.

5.1 Literature Review

Financial time series modelling commonly uses autoregressive type models

(Bollerslev, 1986; Engle, 1982). This framework of modelling is structured

such that the future value of a time series is dependent on the previous values

that have been observed. This dependance can be controlled and extended

by a variety of parameters in the models and similarly, the variance in the

observations can also depend on the previous values which leads to what is

known as a GARCH model (Bollerslev, 1986).

Hawkes processes have also been used to model a wide variety of financial

problems, notably trading activity and the clustering behaviour in markets.

American future contracts trade almost constantly from Monday to Friday and

as such offer a wide range of different periods of high and low trading activity.

Filimonov and Sornette (2012) apply the Hawkes model to the change in mid

price of E-Mini S&P 500 contracts from 1998 to 2010. By fitting the Hawkes

1www.bestx.co.uk
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model (using maximum likelihood estimation) to 2 month intervals across the

12 years they find that the average number of branching events, i.e. events

caused by other events has increased overtime from 0.3 to 0.7. This shows

that the number of changes in price is more endogenous and self-excited than

in the past. This has been attributed to the increase in electronic trading

and rise in algorithmic trading as being able to operate quicker in markets

has led to more trading around events. This shows how the parameters of a

Hawkes process can quantify the changing behaviour of a phenomena and that

by parameterising the Hawkes process correctly there is good interpretation of

the parameters.

Similarly, currency trading is notably volatile as the 2016 EU referendum

in the United Kingdom has shown. Following the result of the election, the

value of the pound dropped by 10% against the dollar over the course of hours.

Untangling internal and external events that drive price changes is desirable

for well functioning markets and helps understand the dynamics of the various

factors that control currency prices. Scheduled macroeconomic news such as

GDP figures and unemployment rates of countries are examples of external

events that will cause a change in volatility in the markets. Rambaldi et al.

(2015) studied the effects of such news and the subsequent market reaction

using the Hawkes process to model the number of market events before and

after macroeconomic information was released. For their Hawkes model an

additional kernel was included to account for the release and subsequent effect

of news on trade intensity. Again, the model was fitted using maximum likeli-

hood and found that the addition of a news kernel did lead to a better fit for

the price changes.

There have been various other studies into volumes of trades in other

financial markets. In the US equity markets, it is found that the volume of

shares traded follows a power law distribution and that there are long range

correlations in the total number of shares traded (Gopikrishnan et al., 2000).

Similarly, Ajinkya and Jain (1989) examine the empirical distributions of daily
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trading volume in stocks listed on the New York Stock Exchange and find that

there is a slight correlation between consecutive days trading activity. There

has been analysis into the behaviour of volume in the bond market (Alexander

et al., 2000) where a linear regression is used to model the trading volume

of different issues of bonds. They find a number of explanatory variables to

help predict the volume traded of bonds per month. However, all three of

these papers do not consider intraday prediction, they are focused with longer

trends in trading rather than the finer minute to minute amount of trades.

This chapter fills the gap in the literature for both the intraday modelling and

application to the FX market.

There is also a variety of literature that links the price or trade intensity

with volatility. In Gerhard and Hautsch (2002) they assess how the time to

observe large enough price change is comparable to the volatility thus the

observed rate of these price changes is directly related to the current volatility.

In Taylor (2004) a similar approach is taken where they again model the time

between transactions to estimate the volatility in returns. Both papers are

applied to the futures market and thus show that understanding the trading

intensity of a financial market can provide information on the current market

conditions.

5.2 The Data

The motivation for studying the FX market is two fold. Firstly, The FX market

trades on average $5.1 trillion USD a day and is the largest financial market

in the world (Moore et al., 2016). However, there are no centralised exchanges

where all transactions must be reported. This contrasts with equities where

all trades of a stock must be reported to the exchange, such as the London

Stock Exchange (LSE) or New York Stock Exchange (NYSE) depending on

where the stock is listed. Secondly, there are no set hours from which you

can place FX trades, instead you can trade at any point of the day regardless

of your local timezone; the FX market opens late on Sunday evening, staying
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open until the following Friday evening. Without daily opening and closing

times, a more natural pattern of trading occurs that is closely correlated with

the various stock exchange opening times around the world. For example, the

currency pair EURUSD, sees large amounts of trades around the opening of the

London Stock Exchange (8am GMT) and at the opening of the NYSE (0930

AM (GMT-5)) with a decrease in observed trading activity between these time.

There is also a slight increase in the number of trades around midnight and

the early hours of the morning (GMT) as the Asian markets start opening. It

is this kind of behaviour that makes the FX market an interesting application

to study and these emergent patterns must be understood by FX traders to

achieve best prices for clients.

Our dataset consists of high frequency data from the 1st of January 2016

to the 31st December 2016 of the currency pair USDCAD. This single currency

provides the necessary information to deduct both the self-exciting nature of

trade occurrences and the seasonal patterns in the data, then using this single

currency behaviour the general model could be extended to other currency

pairs. As USDCAD is a liquid G10 currency, its behaviour can be naturally

extended to other currency pairs, without needing to change the structure of

the model and instead each currency pair would be used to obtain their own

parameters. Each entry of the data contains a timestamp indicating at what

time the trade occurred (rounded to the closest millisecond). As highlighted

in the introduction, Figure 5.1 shows that there are subtle differences in the

patterns on different weekdays. The Anderson-Darling criterion (Scholz and

Stephens, 1987) is used to test whether the five samples are generated from a

common function and it is found that this hypothesis is rejected. Therefore we

can conclude that the intraday profile of trades for each weekday is sufficiently

different for us to justify separate groups for each weekday. Furthermore, we

can visually identify certain differences. Mondays and Tuesdays have a larger

increase in the number of trades at roughly 08:00 (LSE opening time) and

all five days have different behaviours at approximately 14:30 (NYSE opening
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time). The density of trades decreases at different rates for each day after

18:00. From this it can be concluded that there is significant difference in the

day to day behaviour of USDCAD. Furthermore, we would also expect other

currencies to also display their own intraday differences in weekday behaviour

that would be similar to USDCAD. Therefore, if this model were to be extended

to other currencies, there should be sufficient flexibility in the model to allow

for the variations between days of the week.

We are also interested in the market behaviour on special economic event

days. As mentioned previously, the FX market is continuously open through-

out the week and therefore different patterns emerge depending on the nature

of the economic event. A concern of FX traders is both the pattern changes

before and after the event occurs and one such event that will be used in this

work is the Non Farm Payroll (NFP) day. The Non Farm Payroll Employ-

ment statistic is a comprehensive indicator of the US economy and state of the

labour market. It reflects the number of jobs added or lost in the USA over

the last month. The number has a large effect on the value of the dollar and

therefore all currency markets feel its effect. The Non Farm Payroll number is

closely watched by economist, asset managers and speculators who will react

and trade based off its value immediately when it is released. The NFP num-

ber is released every 1st Friday of the month at 08:30 Eastern Time and this

has a large effect on the intraday trade patterns of the majority of currencies

which is shown in Figure 5.1 specifically for USDCAD. NFP days have fewer

trades occurring at London open and all round fewer amount of trades. When

the NFP number is released there is a massive spike in the number of trades

that occur which is when the NFP value is released and reacted upon.

The NFP trading pattern is an excellent example of how daily trading

patterns are similar but remain diverse. There are common features of an

NFP day that is seen in the other weekdays, the London and New York opening

increase but at different magnitudes. There is a large difference in behaviour

but it is still resembles the other weekdays. This suggests that the data is well
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suited to a hierarchical based model.
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Figure 5.2: Empirical trends in the total number of trades per day.

The total number of trades per day has a slight trend, there is a decline

in the number of trades in the summer months that then reverse in Autumn.

Figure 5.2a shows the number of trades per day with a local regression added

to smooth the trend. This long term behaviour must be accounted for in the

model to ensure that the total number of trades per day predicted by the
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Hawkes process is accurate.

The distribution of total number of trades in each weekday is also explored.

Figure 5.2b shows the distributions of the number of trades on each weekday

including NFP days as separate days. Again, by using an Anderson-Darling

test it is found that these distributions are statistically different and the total

number of trades on each day of the week cannot be seen as being drawn from

a common distribution. Mondays and Fridays generally have a lower amount

of trades, whilst the other days have a larger number of trades. NFP days are

less varied in the number of trades compared to the other days of the week.

Therefore it can be concluded that the number of trades per day is significantly

different for each day of the week and NFP day and must be accounted for in

the model.

There are also autocorrelations present in the data. By computing the

autocorrelation function for the number of trades there are a number of lags

where the autocorrelation appears to be significant. Figure 5.2c shows that

the most significant correlations occur at lags of 1 day and at multiples of 5

days. This suggests that Monday’s with significant trading activity lead to the

next Monday in the following week also having significant activity.

In summary, by looking at the empirical results of the dataset there have

been a number features identified that are needed within the model. The

model must be flexible enough to account for different intraday distributions

but must also maintain consistency in peaks across all days for when the stock

markets open. The variation in total trades per day of the week and the slight

trend in the total number of trades must also be present in the model. Both

the intraday and day-to-day predictions must be described by some model

component.

5.3 The Model

From previous work in studying other financial markets (Filimonov and Sor-

nette, 2012; Chavez-Demoulin and McGill, 2012; Rambaldi et al., 2015), it is
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known that the trade arrivals are unlikely to be independent of one another.

There will be clustering effects, self-exciting behaviour and other dynamics

that come into play. Such effects can be modelled using a Hawkes process

which as mentioned throughout, is a type of self-exciting point process with

intensity function, λ(t | Ht), dependent on the history of previous events.

The empirical findings from the data (Figure 5.1 and 5.2) have a number

of features that must be captured: multi-modality due to the UK and USA

stock markets opening, weekday differences and capturing the variance in the

total number of trades per day accurately. This is achieved by using a non-

parametric hierarchical model for the background rate, µ(t), of the Hawkes

process intensity in Eq. (2.2).

The trade arrival times tdi are modelled as if they are generated from

a point process. Under this notation d indexes the day and i indexes each

individual trade during the day, i = 1, . . . , Nd where Nd is the total number

of trades on day d. Each day consists of a window of time from midnight to

midnight the next day.

The intensity function for a single day d can be written as

λd(t | Htdi) = µd(t) + κd
∑
ttd<t

gd(t− ttdi),

where the background rate is decomposed into an amplitude of µd constant

over the day d and a density fd(t) both of which depends on the day of the

week

µd(t) = µdfd(t), (5.1)

and each day of the week has its own set of parameters.

Each day d has a variable D that indicates what day of the week d was.

This variable is used to group the days into their appropriate days of the week
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and thus group the background density functions

fd(t) = fMonday if Dd = Monday,

fd(t) = fTuesday if Dd = Tuesday,

etc,

fd(t) = fNFP if Dd = NFP,

therefore there are six background intensities that must be inferred, for

notational convenience, these six intensities are relabelled as fD(t) where

D = 1, . . . 6, with 1 - 5 labelling Monday to Friday and D = 6 labelling

the NFP days. In summary the amplitude for each day µd controls how many

background events occur on day d and the density fd controls how they are

distributed throughout the day, which depends on the day of the week. The

amplitude, µd, will be used to capture the long-term trends and the autore-

gressive nature of the total number of trades on each day by including different

covariates, such as indicator variables for each day of the week and autoregres-

sive components for the previous days total number of trades. Whereas the

density will describe the intraday seasonality present in the data.

A Dirichlet process mixture model is used to model the intraday behaviour

of the trades. As stated in the previous chapters, a Dirichlet process mixture

model provides an nonparametric method of estimating a density that requires

the specification of a mixing kernel k and a base measureG0. In this application

the occurrence of trades is bounded between midnight and midnight and as

such the generalised beta distribution with mean µ and scale ν is a suitable

specification of k

k(t | µ, ν, T ) =
t
µν
T
−1(T − t)ν(1− µ

T
)−1

B(µν
T
, ν(1− µ

T
))T ν−1

,

where B is the beta function.

The combination of multiple beta distributions will be able to account

for the multi-modality in the data whilst remain bounded in the time window
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under consideration. For the base measure G0 a uniform distribution and

inverse gamma distribution is used for µ and ν respectively. The uniform

distribution is parameterised between 0 and T = 60 ∗ 60 ∗ 24 and the inverse

gamma distribution has α0 fixed at 2 whilst β0 also has a distribution placed

on it such that it can be updated during the fitting process. This provides

a prior distribution on ν that has infinite variance and thus large and small

values can be inferred for the scale of the separate mixture components. The

full model for each background density can be written as

fD(t) =

∫
k(t | θ)dG(θ),

G ∼ DP(α,G0),

G0 = Uniform(µ | 0, T )Inv-Gamma(ν | α0, β0),

β0 = Gamma(1, 0.125).

By using a Dirichlet process for the background rate, the inhomogeneous rate of

background events can be learnt without placing any assumptions of behaviour

on the data and instead, by using an unsupervised algorithm, the model can

learn from the data. This type of specification allows for each day of the week

to develop its own features, as seen in Figure 5.1.

However, treating each day of the week separately is restrictive and there

will be cases where common features in the data, such as the location of the

peaks in intensity, would benefit from including data from the other weekdays.

Therefore it is desirable to introduce some pooling of the data, such that each

background rate can benefit from an increased amount of data whilst retaining

individual characteristics. This motivates the use of a hierarchical model and

specifically a hierarchical Dirichlet process.

5.3.1 Hierarchical Dirichlet Processes

A hierarchical Dirichlet process is an extension to the Dirichlet process where

the base measure G0 is itself a Dirichlet process too (Teh et al., 2005). In

this example, by replacing the base measure with another Dirichlet process,

the individual background rates for each Hawkes model can now be inferred
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together by pooling data. There is a common distribution that links the in-

dividual background rates that provides a mechanism to share data between

the different weekdays. By using a hierarchical Dirichlet process the model

for each weekday is able to learn its own background rate that benefits from

the pooling of the data from the other weekdays which will provide a bet-

ter inference of the underlying distribution than if each weekday was treated

separately.

Hierarchical Dirichlet processes are well suited for data that forms natural

groups. If there are j groups each with observation xji then j labels the

assigned group and i indexes the observation within that group. Each group

requires its own distribution that is drawn from a common distribution of all

groups. This allows both flexibility and cohesion across the groups.

Such a model can be written as

xji ∼ Fj,

Fj =

∫
k(x | θj)dGj,

Gj ∼ DP(αj, G0),

G0 ∼ DP(γ,H),

where αj is the concentration parameter for each Gj, γ the global concentration

parameter and H is the global base distribution. The individual distributions

Fj are drawn from Gj which in turn are linked by the common base measure

G0.

The stick-breaking construction of the Dirichlet process (Sethuraman,

1994) is extended to account for the hierarchy (Teh et al., 2005). Like the

non-hierarchical Dirichlet process, G0 can be represented as an infinite sum of

weights and atoms

G0 =
∞∑
i=1

wiδθi ,

w ∼ GEM(γ),

θi ∼ H,
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as the parameters of Gj are drawn from G0 it also can be written as a sum

over these atoms with weights

Gj =
∞∑
i=1

πjiδθi ,

πji = π′ji

i−1∏
l=1

(1− π′jl),

π′ji ∼ Beta

(
αjwi, αj

(
1−

i∑
l=1

wl

))
,

here the explicit sharing of cluster parameters θi can be seen where each group

of data has its own independent weights πji. This allows datasets to share

cluster parameters θi whilst learning the structure separately. Each group has

its own mixture model that is linked via the global curve G0. For further

details see Teh et al. (2005).

Figure 5.3 demonstrates how a hierarchical Dirichlet process can be visu-

alised. The global curve is G0 and the two dataset curves, are G1, G2 respec-

tively. The two child curves are composed of components of the global curve.

A novel model for the arrival of FX trades can be developed by using a hier-

archical Dirichlet process as the basis of the background rate µd(t) to control

the distribution of trades over the day such that each weekday can develop

its own profile using its own information and that from the other weekdays.

For the total number of trades in a day, the amplitude of the background rate

must be considered.

5.3.2 Hawkes with Covariates

From Fig 5.2b there is variation between the number of trades on each day and

similarly there is also a local trend in the data evident in Fig 5.2a. This type of

behaviour is accounted for by using covariates in the background rate µ(t) must

be used. As illustrated in Equation (5.1) the background rate is decomposed

into an amplitude and a density. The amplitude is modified using various

covariates with both regressive and autoregressive components to model this

change in the number of trades per day. As such, the specific form of µd is
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Figure 5.3: Example of a hierarchical Dirichlet process.

increased in complexity based on the features included in the model. These

regression terms and autoregressive components will be added incrementally

to ensure that overfitting does not occur.

The use of covariates in self exciting point processes has been studied

recently in Pitkin et al. (2018). They use seasonal effects and indicator vari-

ables for various time based features in the data. In this chapter a similar

approach will be used with both indicator variables for the day of the week

and autoregressive terms to capture the local trend.

5.3.3 The Full Model

By combining the Hawkes process with a hierarchical Dirichlet process and a

regression structure the full model can now be written.

Trades tdi are modelled by a Hawkes process with intensity

λd(t | Htdi) = µd(t) + κ
∑
tdi<t

g(t− tdi), (5.2)
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where d indexes the day and i indexes each event during the day, i = 1, . . . , Nd

where Nd is the total number of trades on day d. The kernel g(t) is the

exponential probability distribution function g(t) = η exp(−ηt). This is the

recommended kernel if there are no strong views on the decay of the intensity

(Liniger, 2009) and as this work is concerned with the background seasonality

we have no such views.

Both κ and the kernel g(t) will remain constant across the days of the week

leading to a single κ and kernel parameter to be inferred from the data. This

ensures that the impact of a single trade is constant throughout the day and

the main variation in trading differences is driven by the intraday seasonality

rather than changes in the impact of each trade. Whilst there is potential that

the impact of each trade varies throughout the day and between days of the

week it is more likely that the dominant effect comes from the background

rate and thus keeping these parameters constant provides a way to assess the

average market impact of a trade.

The background function µd(t) is decomposed into two components: an

amplitude µd that controls the total amount of background events on day

d, and fd(t) the density of these background events throughout the day. As

previously mentioned, a hierarchical Dirichlet process will be used to model the

intraday background event density. The days will be grouped into 6 different

classes, indexed by D, based on the day of the week of tdi including NFP

days. Each weekday density will be a Dirichlet process mixture model with

base measure GD with D = 1, . . . , 5 to represent Monday to Friday and D = 6

to represent the NFP day. As the number of background events is bounded

between midnight to midnight the next day, the generalised beta distribution

with mean µ and scale ν is used as the mixing kernel k. The background
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density can be directly specified as

µd(t) = µd · fD(t),

fD(t) =

∫
k(t | θ)dGD(θ),

k(t | θ = {µ, ν}) = Beta(t | µ, ν, T ),

GD ∼ DP(αD, G0),

G0 ∼ DP(γ,H),

H = Uniform(µ | 0, T )Inv-Gamma(ν | α0, β0),

β0 ∼ Gamma(1, 0.125),

where αj is the concentration of each component of the hierarchical Dirichlet

process, γ the concentration parameter of the global Dirichlet process, G0 and

α0 is a prior parameter fixed at the value 2. The parameter T defines the right

boundary of the beta distribution. As each day is modelled separately this is

fixed at 86,400 seconds (24 hours).

5.3.4 Posterior Inference

The algorithm developed in Section 4.4 is extended to account for the hierar-

chical dataset. The hierarchical structure is explicit as each day is a weekday

that consists of its own event times that have been generated from its own

intensity function. The weekdays are grouped together and the parameters of

each of these intensity functions are learnt in a hierarchical manner and for

this, an extra level of notation must be introduced.

At any time t the Hawkes intensity Eq. (5.2) is a superposition of multiple

Poisson processes; one process with intensity µd(t) and multiple inhomogeneous

Poisson processes for every previous event that has occurred tdi < t. For each

event tdi the intensity of this inhomogeneous Poisson process is κg(t − tdi).

Previously in Section 4.4, the latent variable B was introduced. Now this

variable must be extended to account for the multiple days, then the event

times can be partitioned into appropriate sets Sd0, . . . , Sdn for each day

Sdj = {ti;Bdi = j}, 0 ≤ j < n, (5.3)
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the set Sd0 counts all the events that are caused from the background intensity

rate µd(t) on day d and Sdi, i > 0 counts the number of children each event is

responsible for and thus from the Poisson process with intensity κg(t− tdi) on

day d.

The unknown components of the Hawkes model are Θ = {µd, fd(t), κ, η,B}

and must be inferred. Again, to sample from the posterior distribution of these

parameters the branching structure between events must be simulated.

The latent structure variable B is not observed. It must be estimated

which events were immigrants caused from the background rate, µ(t), and

which events were children directly caused by other events. Each event tdi has

an associated Bdi that indicates its parent. A value of Bdi = 0 is indicating

that the event was generated by the background rate and Bdi = j indicates

that event tdj is the parent of event tdi. For the i’th event occurring at time

ti, the probability of its parent event is

Pr(Bdi = 0 | µd(t), κ, η) =
µd(tdi)

λ(tdi | Ht)
,

Pr(Bdi = j | µd(t), κ, η) =
g(tdi − tdj)
λ(tdi | Ht)

j = {1, 2, . . . , i− 1},
(5.4)

therefore to arrive at a value of Bdi this probability distribution must be used

to generate samples. Note that only events on the same day can cause further

events, there is a boundary at midnight where each process starts afresh.

This algorithm allows for full simulation of the branching structure of a

Hawkes process from the exact posterior using values of the parameters µj(t), κ

and η. Then conditional on this branching structure, the other parameters of

the model can be estimated. This removes the need for MCMC sampling of

the structure between each event as used in Rasmussen (2011). Now using a

sample of the structure parameters the sets Sdi can be formed using Eq. (5.3)

and used to estimate the other parameters of the Hawkes model.

The events with Bdi = 0 provide the information to perform a posterior

sample of µd. The total number of background events per day Sd0 is used to
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update amplitude

Sd0 | B ∼ Poisson(µd),

For models where µd is constant and has no regression components, the con-

jugate gamma distribution prior can be used to perform direct samples of the

posterior distributions. In models where there are regression components of

µd the probabilistic programming language Stan is used to sample from the

posterior distribution (Carpenter et al., 2016).

The actual times of the background events are used to update the hier-

archical Dirichlet process model. Define tbgdi as the events with Bdi = 0 and

therefore generated from density of the background rate

tbgdi ∼ fD(t). (5.5)

The overall sampling of the hierarchical Dirichlet process is achieved using the

dirichletprocess package in R as detailed in Chapter 3. It is this posterior

draw of fD(t) that functions as the background density for the next round

of sampling. The parameter αD of the Dirichlet process has a gamma prior

(West, 1992) and sampled for each iteration of fitting.

As before, the κ parameter can be interpreted as the expected number of

children events for each event. The number of children events from each event

Sdj, j > 0 has a Poisson distribution

Sdj | B ∼ Poisson(κ) j > 0.

The parameter κ can be inferred by using a conjugate gamma distribution and

sampling from the posterior distribution

κ | S, aκ, bκ,B ∼ Gamma

(
aκ +

D∑
d=1

Nd∑
i=1

Sdi, n+ bκ

)
, (5.6)

where n =
∑D

d=1 nd and aκ, bκ are the prior parameters.

Inferring the parameter η of the kernel requires the transformation

τdj = tdj − tdparent as the re-scaled event times for all m events with Bdi 6= 0.

The values of τdj are then used to sample the kernel posterior distribution

τdj ∼ Exp(η),
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this can then be sampled directly using the conjugate gamma distribution as

a prior

η | τ ∼ Gamma

(
αη + nτ , βη +

D∑
d=1

nd∑
j=1

τdj

)
, (5.7)

where nτ =
∑D

d=1 nd and αη, βη are the prior parameters.

Combining the structure simulations and posterior parameter samples

leads to the full Gibbs sampling algorithm:
Algorithm 3: Sampling the parameters of the Hawkes model.
Data: Event times tdi

Result: S posterior samples of µsd, f sD, κs, ηs and parent structure

Bs.

Chose starting values µ1
d(t), κ

1 and η1;

for i = 1 to S do
Sample the new parent structure Bi+1

d from probabilities

calculated using Eq. (5.4) and µid(t), κi, kernel hi(t) ;

Calculate Sdj from Bi+1
d ;

Sample µi+1
d and fD(t)i+1 using p(µd | Sd0) and

dirichletprocess ;

Sample κi+1 using Eq. (5.6) ;

Sample ηi+1 using the Eq. (5.7) ;

end

This highlights how the previous algorithm for sampling the parameters

of the Hawkes process in Chapter 4 can easily be extended to account for

multiple timeseries. Furthermore, its modular nature has also been demon-

strated, the nonparametric kernel has been replaced with a parametric form

and now the background rate has been modified to a nonparametric density

with a regression structure on the amplitude.

5.3.5 Model Validation

The above model will be fitted on a subset of the full dataset and the resulting

parameters will be used to assess the performance of the model on days that

follow the training set but were not used in the fitting process.
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To estimate the suitability of the models the predictive likelihood will be

calculated using days that fall outside of the training dataset. The likelihood

will be averaged across the full posterior samples of the parameters to ensure

that it remains a Bayesian metric and the model with the highest average

predictive likelihood is the best fitting model.

A simulation based approach will also be key in validating the models.

A Hawkes process will be simulated using the posterior samples for each of

the models described above. By comparing these simulations to the true data

a strong check can be performed to ensure that the model produces realistic

realisations with interest paid to both the number of events that arise from

the simulations and the distribution of these events over the days. Any model

that does not resemble the out-of-sample data can be discarded.

A key driver in using a Hawkes model is the conditional intensity function.

Predictions can be updated using recent market trading activity, such that if

there is a surge in the number of trades in a short period, the Hawkes process

can adapt to this and revise predictions. To demonstrate this, a short interval

will be shown where changes in observed trading intensity will have an effect

on the prediction which is realised in the actual number of trades.

5.4 Results
All models were fitted on 40 days of data: from the 11th of January to the 4th

of March 2016. This subsample of data includes 2 NFP days. The sampling

algorithm used 2,000 iterations with 2 different chains each with dispersed

starting values. The first 1,000 iterations are removed as burnin which is the

required amount of iterations to ensure suitable mixing of the parameters and

the sampling algorithm converges.

5.4.1 Inference

The first model fitted is a Poisson model with a Dirichlet process intensity

function, a variety of Hawkes models are then fitted with each one introducing

a new feature to improve the suitability of such a model. The different Hawkes
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models, each with increasing complexity, are fitted to arrive at a well calibrated

and accurate model. By incrementing the complexities of the model the added

components can be examined to improve the forecast and ensure that there is

not an overfitting of the dataset.

A Poisson Model

The most basic model that can be used for this data is a Poisson process with

inhomogeneous rate. The rate is modelled using a Dirichlet process mixture

model of beta distributions which can be written as:

N ∼ Poisson(λ(t)),

λ(t) =

∫
k(t | θ)dG(θ),

k(t | θ = {µ, ν}) = Beta(t | µ, ν, T ),

G ∼ DP(α,G0),

G0 = Uniform(µ | 0, T )Inv-Gamma(ν | α0, β0).

(5.8)

Without the clustering behaviour this model fits poorly as Table 5.1 shows

that is has the worst predictive likelihood value and all the Hawkes models

improve upon it. However, as it has been highlighted in the literature review,

trades are unlikely to be independent and thus this Poisson model is unlikely

to be a fair baseline.

A Hawkes Model with Constant Parameters

The second model fitted to the data is a Hawkes model with constant param-

eters that does not distinguish between different days of the week. This acts

as a better baseline model but is still expected to fit badly due to the intraday

pattern in trades that are highlighted in Figure 5.1 and the variations between

days of the week as indicated. Constant parameters cannot account for the

dynamic patterns in the data, but, it is important to show that each layer

of complexity added to the model improves on this baseline. Furthermore,

this is the simplest model that can be considered realistic with self-exciting

behaviour.
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This model can be written as

λ(t | Ht) = µ+ κ
∑
ti<t

g(t− ti),

g(t) = η exp(−ηt),
(5.9)

where µ, κ and η are constants across each day of the week and there is no

mechanism to distinguish different days of the week. The algorithm described

in Section 5.3.4 is used to obtain posterior samples of the parameters, µ, κ and

η where uninformative prior distributions are used for all these parameters.

Table 5.1 shows the posterior means of the parameters and the out-of-sample

predictive likelihood value. Again, it is expected that all further models with

nonparametric and regression components will improve on this value.

A Hawkes Model with Dirichlet Background Rate

The above model is extended to account for the inhomogeneous event intensity

by decomposing the background rate µ(t) into an amplitude and density. The

amplitude remains constant and the density is a Dirichlet process mixture

model of beta distributions much like the Poisson model in Eq. (5.8). This

model can now be written as

µ(t) = µ0f(t),

f(t) =

∫
k(t | θ)dG(θ),

G ∼ DP(α,G0),

where k(t | θ) is the beta distribution bounded on [0, T ] and µ0 is a constant.

This type of model accounts for the natural trend in trade behaviour

throughout the day, but generalises to each day behaving the same. It is

expected to improve on the basic Hawkes model Eq. (5.9), but fail on days

where the structure differs from the average behaviour, such as NFP days.

A Hierarchical Dirichlet Hawkes Model

For the next model the background rate is extended to allow for structural

differences between weekdays. From the empirical evidence in Figure 5.1 it

is necessary to account for a change in intensity throughout the day with a



5.4. Results 144

different rate for each day of the week. The advantage of using a hierarchical

Dirichlet process means that extra groups can easily be incorporated. In this

case the data can be partitioned into separate weekdays and an extra group

for NFP days. This leads to a background rate with separate densities for each

day of the week and NFP day leading to six groups in total. The amplitude

of the background rate, µ0 is constant for all days.

Using a hierarchical Dirichlet process, each day of the week and NFP day

has its own density fD and can be written as

µd(t) = µ0fD(t),

fD(t) =

∫
k(t | θ)dGD(θ),

GD ∼ DP(αD, G0),

G0 ∼ DP(γ,H),

(5.10)

where D labels whether the day is Monday, Tuesday etc. The κ and η param-

eters remain constant. There are now 6 individual Dirichlet processes GD and

a global Dirichlet process G0 that must be learnt from the data. Figure 5.4

shows the components of the Dirichlet processes inferred from the data.

From Table 5.1 we can see that the estimated posterior mean of κ decreases

as more of the events are generated from the background rate. The parameter

of the kernel has also increased, which leads to a decrease in the average

impact time scale of the event. Furthermore, Table 5.1 shows an increase

in the predictive likelihood, therefore this is an improvement on the baseline

model.

A Hierarchical Dirichlet Hawkes Model with Regression Covariates

So far the parameter µ0 has remained constant. This parameter controls the

number of background trades in each day and as per Figure 5.2b it is known

that the number of trades can vary significantly based on the day of the week.

Therefore to account for this variation a regression component in the back-

ground amplitude is included and the exponential function is used to ensure
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Figure 5.4: Hierarchical Dirichlet process results from the model defined by

Eq. (5.10).

positivity for the intensity function.

µd(t) = µdfD(t),

µd = exp(β0 + βdxd),
(5.11)

where xd is an indicator variable highlighting whether the day is a Monday,

Tuesday etc. The parameters βd are given an uninformative prior. The hier-

archical Dirichlet process for fD(t) remains the same as the previous model.

Figure 5.5a shows the distribution of the posterior samples for each βd. A

larger average value of βd (Wednesday’s and Thursday’s) indicates that these

days have a greater number of background events and therefore a greater num-

ber of trades in total. This agrees with our empirical findings from Figure 5.2b.

Namely, the number of trades on Wednesday is higher than average and the

number of trades on Mondays and NFP days is lower.

Table 5.1 shows a further increase in the predictive likelihood on both the

baseline model and the previous hierarchical Dirichlet model. Therefore this

addition of regression covariates is a further improvement to the model.
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A Hierarchical Dirichlet Hawkes Model with Regression and Au-

toregression Covariates

The previous models have been static with regards to seasonality in the data.

Figure 5.2a shows that there is a slight trend in the number of trades per day.

To account for this an autoregressive component is included based on the total

number of trades on the previous day

µd(t) = µdfD(t),

µd = exp(β0 + βdxd + βARNd−1),
(5.12)

where Nd−1 is the total amount of trades in the previous day. The total number

of trades is normalised by the mean and standard deviation of the training set

to ensure that the samples of βAR are on a similar scale to the βd values.

Figure 5.5b shows that the AR component of the model has an established

effect as the posterior samples are clearly greater than 0. This means that

days with increased trading activity follow other days of increased activity

and likewise, lower trading levels leads to lower trading levels the next day.

However, when consulting Table 5.1 it is found that this does not improve the

likelihood. The autoregressive effect is not pronounced enough to improve the

out-of-sample criticism.

In the previous analysis of the autocorrelations between the number of

trades per day (Figure 5.2c) there is a peak on multiples of 5 days. The effect

of a large total number of trades on any day increases the total number of trades

for the next week, i.e. a large amount of trades on a Monday also effects the

next Monday. Therefore, it is intuitive to replace the previous autoregressive

component with one dependent on the 5th previous day

µd(t) = µdfD(t),

µd = exp(β0 + βdxd + βAR5Nd−5).
(5.13)

After fitting this model it is found that this leads to the largest and therefore

best predictive likelihood value out of all the models considered. This is the

best model suited to the data at hand.
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Figure 5.5: Posterior sample distributions of the regression parameters.

When comparing the inferred parameters for all models, Table 5.1, the

value of κ for the best fitting all model is centered around ≈ 0.3. This can

be interpreted as that every trade has on average ≈ 0.3 child events, or alter-

natively every 3 trades leads to another child trade on average. Similarly, the

value of η is centered around ≈ 0.05, which means that each events impact on

the intensity lasts for 1
η

= 20 seconds on average. Table 5.1 also shows how

once the background rate is allowed to vary throughout the day more events

are background events and reduces the size of κ. This confirms our previous

assumption that the variation in events through the day is driven by a daily
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Table 5.1: Posterior means and out of sample likelihood values. The param-

eter values are inferred from the training data and the likelihood values are

calculated on the test data.

Model µ κ η Likelihood

Poisson - - - -44619

Constant Hawkes 234 0.655 0.0103 -42747

Dirichlet Hawkes 447 0.342 0.0479 -42246

Day Dirichlet Hawkes 456 0.328 0.0510 -42190

Day Dirichlet Regression 0.322 0.0525 -42159

Day Dirichlet Regression AR 0.321 0.0528 -42165

Day Dirichlet Regression 5 AR 0.317 0.0540 -42148

pattern rather than the κ and kernel parameters. Again, these differences in

log likelihoods are also confirmed with by using out-of-sample predictions using

simulations of Hawkes processes.

5.4.2 Posterior Simulations

Simulating Hawkes processes using the MCMC samples of parameters allows

for the assessment of model suitability. For a good model, the distribution

of simulated events should match the observed events. This is the posterior

p-values approach of model checking as detailed in Section 2.3.2

To highlight the lack of fit of the baseline model, detailed in Eq. (5.9),

Hawkes processes are simulated using the posterior samples of the constant

parameters. Figure 5.6a shows that the occurrence of events is constant over

the time period, which contradicts the observations from Figure 5.1. Therefore

it can be concluded that a Hawkes process with all constant parameters is

unsuitable for the data.

Figure 5.6b is an improvement over the base model (Figure 5.6a), as the

variance in the number of events over the course of one day has now been

captured. However, this is still not sufficient as it is known that there is a
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difference in behaviour across different weekdays (Figure 5.1).

Figure 5.6c shows the resulting Hawkes simulations from the posterior

samples of the model in Eq. (5.10). The different daily empirical pattern is

replicated successfully and shows that the hierarchical density component of

the background rate is sufficient to replicate the intraday behaviour of the

trade times. For the hierarchical Dirichlet process Hawkes models the back-

ground rates in Figure 5.4 show potentially pathological spikes in intensity

which arise from Dirichlet process assigning a cluster with vanishing variance

to this particular time of day because of a large amount of trades timestamped

at that particular time. However, after simulating Hawkes processes with these

background intensities, as shown in Figure 5.6c, theses spikes do not affect the

actual event generation negatively, so whilst the background rate can have an

awkward shape, generating enough simulations remedies this behaviour.

The further models, Eq. (5.11), (5.12) and (5.13), do not effect the intra-

day distribution of the trades and it can be safely assumed that their intraday

distribution is comparable to that of Figure 5.6c. Predictive performance can

now be assessed.

5.4.3 Daily Forecasts

The inferred parameters are used to simulate the next week of data which can

then be compared to the true but unobserved data. Both aspects of the true

data are assessed, the intraday distribution and the total amount of trades

per day. This is both a visual check on model performance and an example of

using posterior p-values as outlined in Chapter 2.

The model with highest predictive likelihood (Eq. (5.13)) is used to sim-

ulate the next week of trading and the next NFP day.

Figure 5.7a presents the predicted intraday behaviour of the number of

trades. By comparing this prediction with the true result (the red line), it is ev-

ident that the predictions from the Hawkes model performs well and rarely does

the true density fall outside the credible interval. Most importantly though,

the structural differences between normal weekdays and NFP days has been
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(c) A Hierarchical Dirichlet process as the background rate

model.

Figure 5.6: Events densities from Hawkes process simulated with posterior

samples of the model parameters. The solid black line indicates the posterior

mean, the shaded region is the 95% credible region.
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Figure 5.7: Forecasts for the next week and next NFP day.
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correctly predicted. The dataset only features two NFP days compared to the

five other weekday groups, therefore, the information sharing ability of the

hierarchical Dirichlet process has enhanced the ability of the model to adapt

to different patterns.

Furthermore, in Figure 5.7b the predictions for the total amount of trades

per day all fall within the predicted distributions of trades. For all days (apart

from Monday ) the true number of trades falls within the 95% credible interval.

For the Monday, it was off by 10 trades. This shows that our model has

predictive power in forecasting the number of trades in a day.

5.4.4 Intraday Forecasts

The advantage of a Hawkes model over a standard Poisson point process is its

ability to adapt and respond to sudden bursts in event numbers. The intensity

function of the Hawkes provides a way for the occurrence of future events to be

influenced by the past history of the same process. This conditional intensity

function provides a direct prediction of the total number of future events. If

a large number of events suddenly occur, the conditional intensity function of

the Hawkes process is able to accommodate this information in predicting the

future number of events. So given all the information up to time t a future

prediction about t̂ some time in the future can be made using the integrated

intensity function from Eq. (2.1) where the time interval is
[
t, t̂
]
.

To demonstrate this behaviour it will be shown how a Hawkes model can

forecast trades based on the observed number of trades earlier in the day and

then update a prediction throughout the day. An NFP day will be used to

indicate how the model is able to adapt to perturbations in normal behaviour.

For a set interval throughout the day, the number of trades will be forecasted

using the history of the process so far. The forecast will be repeated for each

posterior sample of the parameters to provide an average and credible interval

to the forecast.

For five minute intervals the Hawkes process is simulated using what was

actual observed in the market as the previous history of the process. This
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produces updated predictions of the number of trades expected in the next

five minutes. Here Figure 5.8 shows that all the actual number of trades fall
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Figure 5.8: Five minute interval on the out-of-sample NFP day. The number

of trades is bucketed into 5 minute intervals.

within the credible intervals predicted. A particular area of note is from 16:30,

the next 3 true amount of trades are higher than the average expected. This

causes the model to forecast a higher amount of trades for the next 3 intervals,

which is then observed. This increase in market activity then reverts, which

causes the Hawkes model to return to the background rate. Given that this

data is part of the test set and unseen in the inference process, it shows that

the Hawkes model is correctly adapting to the history of the process as the

day progresses.

This ability to update predictions based on what is happening in the

market is a key feature of the Hawkes process and by confirming that the

predictions are grounded in what is actually observed makes it a very practical

model for predicting current and future market conditions.

5.5 Discussion and Further Work
We have shown how a nonparametric Hawkes processes can provide good mod-

els for FX trades. The empirical differences in day to day behaviour of trading

can be adequately described using a combination of hierarchical Dirichlet pro-
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cesses and Hawkes processes. Clustering behaviour in the occurrences of trades

can be explained by using a Hawkes process and offers a direct improvement

over a standard Poisson process.

The hierarchical Dirichlet process has provided a method of separately

modelling the days of the week in the data whilst sharing the data amongst

all the groups. This has helped ensure coherence between the predicted trade

densities, i.e. the peaks in intensities are shown to occur at roughly the same

time, whilst the magnitude of the peaks is individual to each day of the week.

This sharing of information is more pronounced in the modelling of the NFP

day where less data is available.

By introducing a regression structure an autoregressive nature has been

shown to exist in the number of days. The number of trades per day is mostly

effected with a term that depended on the previous week activity. This was

shown to have a positive coefficient, therefore, days with high trading activity

lead to further days of high activity and likewise, quiet days follow other quiet

days.

The benefits of this model are twofold. Firstly, a conditional intensity

function has been introduced that can be used to forecast the time of trades

given the history of the trades so far. This can be used to make predictions

about the number of trades likely to happen at whatever timescale necessary.

For practical applications, this means that the market view of the number

of trades can be updated in real time with dynamic forecasts. Secondly, this

model also provides forecasts for the total number of trades per day. Therefore

traders can assess the likely trading behaviour for the next week and plan ac-

cordingly. Traders can improve the prices that they trade on by incorporating

this volume information into their execution strategies.

Further investigation into the variability of κ and the kernel g(t) is also

an avenue to explore as in this work these variables have remained constant.

In practise, trades that happen outside of typical business hours are likely to

have a different impact due to changes in liquidity conditions.
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This chapter has also highlighted how the Bayesian Hawkes process can

be easily adapted to a new application. Chapter 4 used a nonparametric

kernel, this chapter has now used a nonparametric background rate. The

process of sampling from the Hawkes model was not changed significantly

despite the change in nonparametric component. Also, the introduction of

multiple timeseries and hierarchy in the model did not drastically change the

algorithm.



Chapter 6

Bayesian Multivariate Hawkes

Processes with Applications to

Soccer Goals

In both previous chapters the Hawkes process has been applied to a single time

dimension where the events have occurred. In this chapter the Hawkes process

is extended to multiple dimensions where the events can occur and excitation

can exist both mutually and across these dimensions. This type of model is

then applied to the occurrence of goals in a soccer match where the home and

away team occupy their own time dimension.

The Poisson distribution has long been a favoured model for predicting

the number of goals scored in a soccer match. The final number of goals in a

match closely follows a Poisson distribution (Heuer et al., 2010), but the actual

goal times throughout a game is an underexplored topic compared to the final

scorings of a match. The goal scoring rate for both teams in a match is unlikely

to be constant over the time the match is played and there is a high degree

of interaction between both competitors, leading to variable scoring rates over

time. Therefore, the Poisson process needs to be adapted to account for the

correlation between when the goals are scored by the home team and when

the goals are scored by the away team. In this chapter a bivariate self-exciting

process is proposed which provides a conditional scoring rate for both the home
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and away teams in a soccer match.

Understanding the dynamics of goals in a soccer match is an area of great

importance. Goals win games and understanding how a team reacts both

when they score a goal and when they conceded a goal can help shed some

light on a teams strengths and weaknesses. For coaches, identifying periods

of vulnerability after scoring can indicate where training efforts or tactical

improvements can be made. For sport bettors, understanding how the betting

market responds to goals can help traders judge whether price movements are

reasonable and then take advantages of any mispricing.

As shown in the previous chapters, the Hawkes process provides a time

varying intensity function that is conditional on the history of the process.

This function can then be used to explain clustering between events as the

multivariate Hawkes process is an extension where there are multiple dimen-

sions that cause excitations both in their own dimensions and across the other

dimensions. Multivariate Hawkes processes have been used in finance (Em-

brechts et al., 2011) and molecular biology (Carstensen et al., 2010) where

both works examine the influence of events on the further occurrence of more

events of both the same and different types. In Embrechts et al. (2011) two

dimensions are used to look at the interaction between +10% and -10% re-

turns in stock indexes. The positive and negative returns form two time series

where an event occurs when there is a large price movement. The multivari-

ate Hawkes process allows for a large price movement that can influence the

probability of both another movement in the same direction and an extreme

movement is the opposite direction thus allowing for the interaction between

these two type of events. Similarly, Carstensen et al. (2010) use eleven di-

mensions to model the interaction between different elements in a gene. The

interaction between different elements in a gene can be difficult to untangle

and deduce what specific element lead to a certain result. The Hawkes process

helps separate out the elements and build a better picture of their interactions

and subsequent occurrences. Both of these works show how the multivariate
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Hawkes process is a very general model for the case of interacting events and

therefore it is logical to take a similar approach to modelling soccer goals.

This chapter begins by reviewing the available literature before proceeding

to explore the data and highlighting the need for a point process model. Then

the background from Chapter 2 is extended to account for multiple variables

in the Hawkes process. The new model is then applied to a large dataset of

soccer matches from a wide range of European competitions. After training

the model and assessing model performance it is demonstrated how the model

could be used in a live context by comparing the changing predictions of a

match to the predictions derived from a betting market.

6.1 Literature Review

Sports betting is estimated to be worth approximately £500 billion a year,

of which 70% is believed to be wagered on soccer matches (Keogh and Rose,

2013). A bookmakers success and profitability depends on their ability to

correctly price a soccer match and adjust these prices as necessary throughout

the match. If the bookmakers odds are incorrect they might find themselves on

the wrong side of a bet and risk losing money depending on the outcome of the

match. Alternately, the odds that the bookmaker sets could be uncompetitive

and a better price could be found elsewhere, therefore they lose market share

to the better bookmakers. A bookmaker must offer correct and competitive

odds so that they can minimise their risk whilst still making a profit.

The seminal work in soccer modelling is Dixon and Coles (1997) which

analysed three years of English league and cup football data. They use a mod-

ified Poisson distribution to model the goals scored by each team, where each

team scores at a rate equal to their attack parameter minus the opposition

defense parameter. The Poisson distribution is then modified to account for

low-scoring matches. Under this model they are able to show that a profitable

strategy can be executed in the betting markets when comparing their calcu-

lated probabilities compared to the bookmakers implied probabilities. How-
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ever, this work is focused on the total number of goals in a game and is not

concerned with when the goals occur.

The occurrence of goal times has been studied empirically in Armatas et al.

(2007) where it was found that goals are not uniformly distributed throughout

the match and that more goals are scored both in the second half and in the

last 15 minutes of a match. In this study the data consisted of the 192 matches

of the 1998, 2002 and 2006 World Cups and shows that both the total number

of goals and when the goals are being scored has to be taken into consideration.

A survival analysis approach has also been applied to the effect of goals.

In Nevo and Ritov (2013) they examine the relationship between when the

first and second goal occur in a soccer match and conclude that there is a

such a relationship that is time dependent. It is also found that goals are

self-exciting which is further evidence that the Hawkes process is well suited

for both modelling and predicting soccer goals.

In Heuer et al. (2010) the suitability of a Poisson process is used to assess

the occurrence of goals. They find that a teams strength remains constant

over a season and conclude that the number of goals scored by each team is

mostly Poisson - with a slight disagreement around the 0-0 score. Again, this

provides more evidence that when goals are scored be modelled with a point

process.

In terms of multivariate approaches, a composite Poisson model has also

been used in Everson and Goldsmith-Pinkham (2008). They decompose a

teams goal scoring rate by both their ability to score and concede goals plus

the effect of playing at home or in a neutral stadium. Then conditional on the

total number of goals scored, they are able to infer these latent parameters. A

bivariate Poisson model has also been studied by Karlis and Ntzoufras (2003).

The model allows for correlation between the two scores and thus they are no

longer independent and this model includes parameters such as team strength

and the home effect. The correlation parameter depends on each individual

team playing the match. Each of these papers find that their specified multi-
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variate models improve on the modelling of the final scores of the match, but

none provide in-play predictions of the scoring rate of a team.

Overall, there is an opportunity to marry two themes of the literature;

predicting the total number of a goals in a match and when these goals will

occur. This chapter demonstrates how a multivariate Hawkes process can be

used to achieve this goal.

6.2 The Dataset
The data consists of 12,347 soccer matches from multiple European competi-

tions from 2012 to 2018. The competitions include: both German professional

leagues, the Bundesliga (D1) and Bundesliga 2 (D2), the top two English com-

petitions, the Premier League (E0) and Championship (E1), the top French

League, Ligue 1 (F1), the top Italian league, Serie A (I1), and the top Spanish

league, La Liga Primera (SP1).

0

1000

2000

D1 D2 E0 E1 F1 I1 SP1
Competition

C
ou

nt

(a) Frequency of competitions in the

dataset. The letter corresponds to the

country and the number the competi-

tion level.

Home Away

0 25 50 75 100 0 25 50 75 100
0

500

1000

1500

Goal Time

C
ou

nt

(b) Distribution of goal scoring time

for both the home and away team.

Figure 6.1: Empirical distributions of variables in the dataset.

Figure 6.1a shows the occurrences of the competitions in the dataset. Each

competition has a similar amount of game data except for the Bundesliga 2
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matches.

The distribution of goal times is also shown in Figure 6.1b, it extends

beyond 90 minutes due to stoppage times for each match. More home goals

are scored than away goals which is a known phenomena and has been well

studied previously (Pollard, 1986). Similarly, there are more goals scored in

the second half of the match compared to the first.
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Figure 6.2: Time differences between goals.

Figure 6.2a shows that most goals occur 10-20 minutes after a previous

goal has been scored. If the time at which goals were scored follows a Poisson

process then the difference between goal times would be exponentially dis-

tributed. This can be quantified by using the time-rescaling theorem (Brown

et al., 2002) to check the if the goals are from an independent Poisson pro-

cess. If they were from such a process, the actual quantiles would fall on the

straight line indicated in Figure 6.2b. This is clearly not the case and suggests

the goals are not generated i.i.d from a Poisson process which motivates the

use of a more flexible process.

The number of goals a specific team will score in a match will also be

directly influenced by their strength on that day and their opponents strength.

Rather than model this strength directly for each match a proxy for their
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strength can be derived from the match outcome probabilities. Therefore, the

times of goals in each match are also joined with the Pinnacle Sports closing

odds of the match. This is the last recorded price before a match starts for

the 1X2 market, i.e. whether the home team will win (1), the draw (X),

or the away team will win (2). As Pinnacle Sports is a trading exchange,

bettors are matched with each other, rather than against a bookmaker. This

means that there is a market clearing mechanism in place and bettors with

better knowledge and more information on the match will find odds that are

mispriced, trade these odds, causing them to move to the true price that

represents the new information. Therefore, the last traded price before the

match starts is likely to represent the true probability of the outcome of the

match. This has been studied systematically in Franck et al. (2010) and it was

found that a positive return could be extracted by exploiting the difference

between exchange and bookmarker prices. Similarly, the in-play odds move

towards to the true outcome efficiently based on the in game events (Debnath

et al., 2003).

6.3 Method
The background outlined in Chapter 2 is built upon, again taking the standard

Hawkes process and extending it to multiple variables, one for the occurrence

of home goals and another for the occurrence of goals scored by the away team.

6.3.1 The Bivariate Hawkes Process

Equation (2.3) is used with m = 2 as we are modelling two types of event; the

goals scored by the home team and the goals scored by the away team. This

leads to a 2 × 2 matrix K for the κij parameters and a 2 × 2 matrix G for the

kernel parameters. Therefore, for two dimensions of the Hawkes process there

are four κ values and four kernel parameters that can be assigned.

In this chapter both types of excitations are allowed in the K matrix and

have directly interpretable effects. Firstly, self-excitations (κii for i = 1, 2)

represent the ‘momentum’ a team can experience after scoring a goal where
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they go on to score another goal. Secondly, the cross-excitation terms (κij for

i 6= j) represents a teams attempt to reply to the conceded goal, either by

working harder to score a goal or the other team relaxing after scoring and

subsequently committing errors leading to conceding a goal.

The kernel functions gij(t) of the matrix G follow the same interpretation,

diagonal elements control the decay of the self-excitation and off diagonal ele-

ments control the decay of the mutual excitations.

The matrix K and its associated κij values will be the main focus of this

chapter. For the kernel matrix G an exponential distribution will be used,

where each element is independent of each other

gij(t) = βij exp(−βijt),

where βij is unknown and must be estimated. This is the standard kernel

specification of the Hawkes process and provides a decreasing impact over

time for each goal that is scored.

Bivariate Hawkes processes have been previously used to study the buy

and sell orders of stocks in Muni Toke and Pomponio (2011) where there is

excitations between the buy and sell orders as well as self-excitation. Likewise

in Bowsher (2003) a bivariate Hawkes model is used to model both the timing

of executed trades and the change in mid price of a stock.

The general intensity is given by Eq. (2.3) and a number of extensions

are proposed to account for the dynamics of a soccer match. The algorithm

used in Chapters 4 and 5 for sampling from the Hawkes process is updated to

account for multiple event types.

6.3.2 Extending κ

Due to the nature of football, the impact of scoring a goal is unlikely to be

constant over time. If a team scores early on in the match there is still the

majority of the game left to play in which time the other team could score. In

contrast, scoring close to the end of a match means that that the opponent will

be unable to fight back due to the finite length of the match. There is also the
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effect of scoring close to halftime, football folklore would have you believe that

this is the best time to score a goal due to the psychological boost of being in

the lead at the break.

To account for this variation a time component is used for the κ parameter

in the K matrix

log κ(t) ∝ f(t),

where f is some function of t. The degree of dependence of t will be explored

in this work and the choices for f(t) will be considered later. The logarithm is

taken to ensure positivity of the κ(t) function which is necessary for posterior

inference.

6.3.3 Accounting for Team Strengths

It is inaccurate to assume that each team will score a goal at the same rate. The

total expected number of goals in a match will be dependent on the strength

different between the two teams. This information needs to be incorporated

into the model to account for what team is likely to score more goals and win

the match. To account for this, the odds of each team winning the match and

the odds of the draw will be used as covariates in the background rate.

The Pinnacle Sports closing odds for each match taken from

www.football-data.co.uk will be used. The closing odds are believed to be

the markets true opinion on the probabilities of the outcome of the match and

ultimately a model-free estimate of the match outcome probabilities. This

strategy also appeals to the efficiency of betting markets which has been stud-

ied in Franck et al. (2010) and Debnath et al. (2003). The changes in the

betting odds will reflect the current information available about the outcome

in the match and thus the last price before the match starts indicates the

markets and thus best opinion on the outcome of the match.

For each team, the background rate depends on the odds of themselves

winning, the other team winning, the odds of a draw and an indicator showing

whether they are at home. For team i playing team j the background rate can
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be written as

log µij = µ0 + αxi + βxj + δxdraw + γxihome, (6.1)

where µ0 is the intercept, xi is the odds of team i winning, xj is the odds of j

winning, xdraw is the draw odds and xihome is the indictor parameter for team

i playing at home. The parameters µ0, α, β, δ and γ are unknown and must be

estimated.

6.3.4 Posterior Inference

By interpreting the Hawkes process as a branching process a computationally

efficient algorithm for sampling from the posterior distribution of the param-

eters can be derived. This algorithm has been detailed in the Section 4.4 and

it is now extended further to account for multiple dimensions.

For a total of Nd events in d dimensions each event is labelled by tdi.

The first index indicating what dimension the event occurs and second index

indicates the ith event in that dimension. As previously stated, the background

rate is as a d× 1 vector of parameters, K and G are d× d matrices. Using the

clustering representation each event can be assigned a tuple which indicates

the parent event and the dimension of the parent. For example, if event tdi

has parent tej then

Bdi = (e, j).

If the event is caused by the background rate and has no identifiable parents

then Bdi = (d, 0) as a background event in dimension d can only be caused by

its own background rate. By using the parent labels, the branching structure is

simulated and the unknown parameters of the Hawkes process inferred, namely

the background rates µi, κ matrix K and kernel matrix G.

To simulate the branching structure, the probability of each events parent
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event must be calculated

Pr(Bdi = (d, 0)) =
µd(tdi)∫
t
λ(t)dt

,

Pr(Bdi = (d, j)) =
κddgdd(tdi − tdj)∫

t
λ(t)dt

,

Pr(Bdi = (e, j)) =
κdegde(tdi − tej)∫

t
λ(t)dt

,

then by sampling from these probabilities each event can be attributed with a

parent and then given the parent labels, Bdi, the rest of the Hawkes parameters

can be sampled.

The algorithm must also be applied hierarchically as there are multiple

timeseries that are being used to infer the unknown parameters. As such,

another indexm is included to account for each time series. Within the dataset

there areM matches and thus an additional index for both the event times, tmdi,

and the parent labels Bm
di . By using the parent labels across all the matches,

the posterior distributions of the parameters can be simulated from.

The number of child events that each event is responsible for and what the

child event belonged to is used to infer the κ parameter. For this calculation

we define a matrix N child
ij of the same dimension as K where each element of

N child
ij is a row vector of length equal to the number of events in dimension i.

Each element of the row vector counts the number of children events event tjl

is responsible for

N child
ijl =

Ni∑
k=1

1 (Bik = (j, l)) ,

N child
ijl ∼ Poisson(κij),

this likelihood depends on the form of κ. In the case of a constant κ model,

this is a simple posterior sample step. A conjugate prior is used to arrive at

the posterior distribution

κij ∼ Gamma(ακ0 , β
κ
0 ),

κij | N child
ijl ∼ Gamma

(
ακ0 +

Ni∑
l=1

N child
ijl , βκ0 +Ni

)
,
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which allows for direct sampling from the posterior distribution. For more com-

plicated forms of κ the R package rstanarm is used. This allows for different

forms of κ and then sampling the resulting posterior distribution numerically

using Hamiltonian Monte Carlo (Goodrich et al., 2018).

A similar structure is used for the kernel update procedure. For each event

with a parent event, define the shifted event time as

τij = til − tjk if Bil = (j, k),

where τij is the element of the matrix that contains the values used to update

the kernel parameters in gij(t). This means that each τij is a vector of length p.

In this work the exponential kernel is used for g(t) which allows for a conjugate

sampling step

τij ∼ Exp(βij),

βij ∼ Gamma(αβ0 , β
β
0 ),

βij | τij ∼ Gamma

(
αβ0 + p, ββ0 +

∑
p

τij

)
,

this posterior distribution is easily sampled from given the parent labels B.

6.3.5 Background Covariates

The background events are used to infer the background rate parameters

Nbg
d =

M∑
m=1

1(Bm
d,i=0),

Nbg
d ∼ Poisson(µd).

(6.2)

If µd is constant, then a new sample can be taken by directly drawing from

the posterior where µd has a Gamma(αbg
0 , β

bg
0 ) prior distribution.

µd | Nbg
d , Bdi ∼ Gamma(Nbg

d + αbg
0 ,M + βbg

0 ).

In reality the background rate µd is used with a regression structure as

specified in Eq. (6.1) in which case sampling from the posterior is more in-

volved. This regression is estimated using rstanarm which provides simple

Bayesian inference for the parameters in question and thus allows easy updat-

ing of the background rate for each match.
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6.4 Results
The data provides the times of goals of both the home and away teams. As

the goals are recorded to the closest minute, we modulate each goal occurrence

with a randomly drawn uniform value between 0 and 1 which prevents any goal

from occurring on the same time stamp.

The model is trained on 9264 matches and uses 3083 matches as the test

set. The training data is randomly selected from all the data and consists of a

varied mixture of European competitions: the top divisions in England, Ger-

many, Spain, Italy and France. The second divisions of England and Germany

are also included. The time range is from the 12/13 season up to the 17/18

season. The remaining data that is not used in the training set makes up the

test set.

For all the fitted models the posterior samples of the parameters will

be used to calculate the predictive likelihood of the matches in the test set

and the best performing model will have the largest value of the likelihood.

Also, simulations of a Hawkes process with samples of the parameters from

the posterior distributions will be used to further check the models validity.

Firstly, full matches, from start to finish, will be simulated to ensure that

the final scores are inline with true match outcomes. This provides a check

to ensure that our model is correctly specified. Then a toy match will be

simulated to demonstrate how live information from when a team scores can

be used to forecast the future scoring rates of teams in the match. Finally,

the Hawkes model will follow a real match, updating the predictions based

on when the goals are scored. These predictions will be compared to the live

in-play odds of that match taken from a bookmaker.

6.4.1 Null Model

For the null model it will be assumed that both the home and away goals are

generated from a Poisson process, each with independent parameters. These

rates will be structurally identical to the background rates of the Hawkes

process - taking into account the strength of the teams by using the Pinnacle
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Sports closing odds. In each match team i is at home playing team j and the

number of goals is Poisson distributed

Nij = Poisson(µij),

Nji = Poisson(µji),

where µi is defined at Eq. (6.1).

This model has no interaction between the teams or even time varying

behaviour over the course of the match, therefore it is expected to perform

poorly. From Table 6.1 the out-of-sample likelihood is much smaller than the

Hawkes models and thus shows that the Hawkes models improve on this model.

This type of baseline model is common to the previous works (Everson and

Goldsmith-Pinkham, 2008; Karlis and Ntzoufras, 2003).

6.4.2 Constant κ

For the most basic Hawkes model the κ and kernel matrices are kept constant.

This can be interpreted as a model where the impact of scoring a goal is

constant throughout a match. This model is the equivalent to the null model

but with an added clustering mechanism.

From the κ parameters in Table 6.1 it suggests that the self-exciting im-

pact is less than that of the cross excitations therefore, a goal being scored

increases the probability of the other team scoring more than their own scor-

ing rate. Both κ12 and κ21 are very similar in value which shows that there is

an equal cross-excitation effect for both the home and away team. The average

impact of any goal is about 11 ( 1
βij

) minutes and there is very little difference

in the length of time the impact lasts based upon who scored it.

6.4.3 Linear κ

The time of the goals is now used as a covariate in the number of children

events.

N child ∼ Poisson(κ(t)),

log κ(t) = β0 + β1t.
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Table 6.1: Posterior means of the unknown parameters in the models. The

training set 9264 matches and the test set is 3083 matches.

Parameter Constant κ Linear κ Quadratic κ Null

µ0 0.240 0.237 0.227 0.234

α -0.120 -0.129 -0.131 -0.100

β 0.080 0.074 0.073 0.085

δ 0.007 0.009 0.009 0.005

γ 0.048 0.025 0.013 0.045

κ11 0.032 - -

κ12 0.038 - -

κ21 0.040 - -

κ22 0.029 - -

β11 0.086 0.052 0.058

β12 0.085 0.046 0.052

β21 0.082 0.048 0.050

β22 0.089 0.052 0.059

Likelihood Out of Sample -20529.97 -12261.99 -7792.331 -45326.11

This now allows for the impact of a goal on the intensity function to change

over time. The logarithm is taken to ensure that κ(t) remains positive.

Figure 6.3 shows that the impact of scoring a goal decreases with time

for each element of K. There is a fairly large difference in the responses early

on in the match, until roughly 50 minutes in, where the impacts converge to

the same rate. This suggests that there is different behaviour in the response

to home and away goals in the first half of the match. The largest impact is

from the κ12 element which indicates that after the away team scores the home

team is likely to score. In contrast, the smallest impact is the self-exciting of

away team goals κ22, therefore away teams do not capitalise on their scoring

by scoring further goals. However, forcing the form of κ(t) to be linear is
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Figure 6.3: Linear κ(t) results.

overly restrictive, instead more degrees of freedom are needed to show how

this impact changes over time.

6.4.4 Quadratic κ

The complexity of κ is increased by including a second order term which allows

for a more flexible shape in κ(t). The linear model is extended with just the

one additional term

N child ∼ Poisson(κ(t)),

log κ(t) = β0 + β1t+ β2t
2,

again, the logarithm is taken to ensure positivity.

Figure 6.4 shows that there is a more complicated behaviour with κ(t) and

each term peaks close to halftime (t = 45). Interestingly, more independent

behaviour is observed for each of the terms, each peak at slightly different

locations and at different values. The κ12 parameter remains the largest as

seen in the linear results and κ22 the smallest.

All three Hawkes models have shown that there is self-exciting behaviour

and cross excitations between the goals scored by the home and away teams.

When comparing the out-of-sample log likelihood values in Table 6.1 all three

Hawkes models outperform the null model and the best fitting Hawkes model is

that with quadratic dependence in the form of κ. The shapes of the quadratic
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Figure 6.4: Quadratic κ(t) results.

κ models agree with intuition that goals scored shortly before half time have

the greatest impact on the total amount of goals in the game.

6.4.5 Posterior Simulations

To check the validity of our model a Hawkes process is simulated for each

match in the test set. By comparing the resulting scores to the true scores the

suitability of the model can be assessed.

From Figure 6.5 is can be seen that the model is allocating sufficient

mass around the correct scores (indicated by the red dot). Even match 5, a

high scoring 3-2, falls within the predicted scores of the model. However, the

Hawkes model is not primarily designed to predict the final score of a match,

instead, it provides a way of predicting the future response of teams after

goals are scored. This allows for a ‘live’ model, where the subsequent changes

in intensities can be updated as a goal is scored.

When comparing the Hawkes intensities for the different three models over

a fictional game subtle differences emerge in the jumps of intensity due to the

goals. Figure 6.6 shows the simulated intensities for the second half of a match

where both teams scored in the first half. The home team scored early and the

away team scored just before half time. From the constant model it can be

seen that there is little difference in intensity spikes and the resulting simulated

events in the second half are fairly uniform until the end of the match, the
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intensity decays back to the base rate. For the linear model a large spike is

observed due to the early goal, and a much smaller spike due to the second.

The simulated intensity shows a heightened intensity early in the second half

but steadily decays as no other goal is scored. For the quadratic model in

Figure 6.6 there is a larger spike in intensity for the away team than the home

team when the home team scores a goal and this type of difference is not seen

in the other models. For the second goal, both increases in intensity are larger

as expected from the curves found in Fig 6.4 as the κ parameter is larger at the

45 minute mark. For the simulated intensities, there is an expected increase

in activity at the start of the half, with a larger increase for the home team,

but again this decays back down to the end of the match. Overall, Figure 6.6

highlights the differences in the models and how the structure of κ can change

the overall behaviour of the system.

6.5 In-play Odds

It has been demonstrated how the Hawkes model responds to goals and the

probability of a team scoring will change on the previous goal times. This

can now be compared to live betting odds using historical data provided by

Betfair. By observing the change in odds throughout a match the probability

of a team winning a match can be calculated and a good model will produce

similar odds to the market.

The match in question is a Champions League group stage on 01-11-

2017 between Tottenham Hotspur (Spurs) and Real Madrid. Notably, this

match is very different from our training set. Tottenham were playing at

Wembley whilst their new home stadium was built, therefore their home effect

was uncertain. The match was also a group game in the Champions League

contrasting the training set games as they were normal league competitions.

However, despite these differences, the Hawkes model performs well in

replicating the behaviour of the match odds. In the match there were 4 goals,

Tottenham scored three goals at 24, 56 and 65 minutes. Real Madrid scored
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Figure 6.5: The density of scores for 10 matches in the test set. The red dots

indicate the true outcome of the match.
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Figure 6.6: Live forecasting the intensity for the second half of a toy match

where the home team scores one goal early in the first half and the away team

scores a goal just before half time. The goals are indicated by the red dots.
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Figure 6.7: In-play odds. The black dots indicate the last traded price on

Betfair which have been converted into a probability. The red dots are the

estimated event probabilities from the Hawkes model. The lack of red dots

betweeen 20:30 and 20:45 is due to half-time where prices are still traded but

the Hawkes model prediction does not change.
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a single goal in the 80th minute. At each of these goals the Hawkes model

produces jumps that are comparable to the real jumps in the betting market.

To forecast the game probabilities the quadratic Hawkes process is used

to simulate the match. Each simulation is computed with a different posterior

sample of the parameters from the fitted model. Using the multiple simulations

a probability that either team won or the draw occurred could be calculated

with standard errors. The game is broken into 2 minute intervals and each

probability is reported every two minutes. When a goal is scored, the sim-

ulations incorporate this new information by including the time of the goal.

The outcome of the match is now forecasted including the goal and subsequent

self-exciting effects from the Hawkes process. In the 90th minute it was re-

vealed that 4 minutes of extra time would be played and thus the simulation

was continued until the match was completed.

From Figure 6.7 we can see that after each Spurs goal there is a jump

in the probability of them winning. Likewise, Real Madrid’s probability of

winning decreased with each goal conceded. There was a slight increase in the

80th minute when they scored a consolation goal. Similarly for the draw, the

probability was increasing as the score remained 0-0, seeing a decrease with

each subsequent goal being scored, but increased slowly in the periods between

goals up until Spurs’ third goal. This increase in draw probability during this

period reflects the higher chance of a draw in a low scoring game. Interestingly

though, there was a 3% increase when Real Madrid scored compared to the

Hawkes 1% increase. This quickly decreased to zero as the match reached its

conclusion.

It should be noted that the starting odds for the match winner being

either team are quite different from the Betfair model in Figure 6.7. This is

expected, as the prices are continually moving from when the market became

available before the match to trade. Predicting how the market will move from

the market opening to the match starting is another problem in itself and not

within the scope of this chapter.
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6.6 Conclusion

Overall a generative model has been built for the occurrence of goals in a

soccer match. The multivariate Hawkes process is used such that goals can

excite both their own scoring rate and the opposing teams scoring rate. This

leads to behaviour where a team scoring a goal can cause a temporary increase

in the probability that they will score again, plus there is also an increase

in the probability that the opposing team will score. Both the size of these

increases and the length of time they last for are free components of the model.

Multiple models were explored where the actual impact of a goal being scored

is a function of what time in the match that the goal is scored.

The model was fitted on a dataset of football matches across Europe.

The best fitting model had a quadratic form of κ over time which produced a

general shape where the maximum impact of a goal occurs around 45 minutes

and each impact of a goal lasts for roughly 12 minutes.

To assess model performance, the log likelihood was calculated on a test

set of data that was unseen in the training process. The quadratic model

outperforms other Hawkes models and also improves on a null model without

self-exciting behaviour. Using the posterior samples of the estimated param-

eters of the model, unseen matches are simulated and it is found that they

produce sensible predictions for the final score.

It is also demonstrated that the model can be used to produce ‘live’ pre-

dictions of a match as it is being played. For this a Champion’s League match

between Tottenham Hotspur and Real Madrid is examined and the probabil-

ity of either team winning, plus the draw is forecasted. After each goal is

scored, the forecast is updated and it is shown that the Hawkes model is able

to replicate market behaviour.

In conclusion, this work provides a Bayesian model that agrees with mar-

ket behaviour. The multivariate Hawkes process shows that there is a change

in team scoring rates both as goals are scored and conceded. Again, using the

same type of algorithm for the previous chapters, the flexibility and extensi-
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bility of the Hawkes approach has shown an improvement on modelling a new

application.



Chapter 7

Discussion

This thesis has proposed and demonstrated a Bayesian method for estimating

the parameters of a general Hawkes process. This algorithm exploits the con-

ditional structure of the process to arrive at an efficient implementation that

is independent of the form of the Hawkes process. From this algorithm, nu-

merous extensions have been made to the standard Hawkes process including

a nonparametric method for both the background rate and the kernel plus an

extension into multiple variables. This work has improved both the statistical

methodology in parameter inference of the Hawkes process and how using such

inferences can be applied to a wide variety of situations.

Chapters 4 and 5 both used nonparametric forms of the kernel and back-

ground rate respectively which required different specifications of the Dirichlet

process. This led to the development of the dirichletprocess package and

Chapter 3 outlined the features of this R package, showing how it can accom-

plish many different nonparametric tasks. The main aim of the package is to

provide a interface for users to build their own Dirichlet process models with-

out needing to understand the mathematics or algorithms needed to fit such

models. This has been achieved and the package enjoys a moderate success,

receiving a citation in Koenker and Gu (2019) and roughly 15 downloads a

month.

For the first application, Chapter 4, the Hawkes process was used to ac-

count for nonstationarity in the occurrence of extreme events. This type of
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model provided an easy method for clusters to appear in the timings of extreme

events by using the self-exciting property of the Hawkes process. This was

extended further to include a nonparametric kernel which, by using a Dirich-

let process, was an easy incorporation to the Bayesian estimation framework.

When used on synthetic data it was able to recover a difficult predetermined

shape and then when applied to a real dataset of extreme terror attacks the

estimated kernel was particularly heavy tailed. Furthermore, the number of

fatalities of these extreme terror attacks (the magnitude of the extreme event)

was modelled using a GPD hierarchically based on their cluster allocation from

the Hawkes process. It was found that partitioning the main and child events

into different groups that were modelled hierarchically using a GPD provides

a better model than one where all the fatalities are from a common GPD.

Overall, the Hawkes process was able to show that terror attacks do display

clustering and self-exciting behaviour.

The Hawkes process was then applied to predict trades in the foreign

exchange market in Chapter 5. In the trading of currencies there are a number

of phenomena that can be explained using a Hawkes process that is combined

with a nonparametric model of the background rate. This time, by using a

hierarchical Dirichlet process, the background rate of the Hawkes process was

modelled nonparametrically across the different days of the week. The clear

grouping in the data by day of the week meant that a hierarchical approach

worked well as different days of the week were able to develop their own shape

whilst pooling information to aid the inference of days where there was less

data. The trades were also found to be self-exciting and the Hawkes process

with a number of regression and autoregressive components in the background

rate was the best performing model when fitted to the high frequency dataset.

The conditional structure of the Hawkes process was able to adapt to changing

market conditions and this was demonstrated when predicting the number of

trades in five minute intervals on a selected day.

Chapter 6 involved extending the Hawkes process to include multiple vari-



182

ables and analyse how events occurring in a dimension can influence the events

in both their own and other dimensions. This was another example of how

the Hawkes inference algorithm can be used and flexibly extended into more

than one dimension. This was applied to goals in a soccer match and in this

case there are two dimensions, one for the home goals and one for the away

goals. A multivariate Hawkes process allowed for the occurrence of a home

goal to also affect the probability of an away goal. Different types of κ func-

tions were explored which allowed the impact of a goal being scored by either

team to vary over time. After fitting the model to a large data set of soccer

matches it was found that a quadratic dependence on time for κ was the best

fitting model. This specification indicated that the largest impact of a goal

occurred around the halftime mark (after 45 minutes have been played) for

both the home and away teams. The suitability of the model was also assessed

by comparing the live probability of a team winning as the match was played.

The true probability was calculated from the available betting odds and the

predicted probability was calculated by simulating a Hawkes process and up-

dating the prediction after each goal was scored. The Hawkes model was found

to move in agreement with the market probability and suggests that the model

is well suited in explaining the occurrences of goals.

The key advantage of these Hawkes models has been their flexibility. In

each case, the model has started from the general intensity function, Eq. (2.2),

before modifying a different component depending on the problem at hand.

Then given this new intensity function, the inference algorithm is modified to

account for these new components. Likewise, using the inferred parameters to

make predictions is also consistent across the applications. Simulating forward

and updating predictions based on the occurrences of events is the designed

behaviour of a Hawkes process. Each prediction comes from a posterior distri-

bution of parameter samples and therefore uncertainty around the prediction

is obtained without any further work necessary highlighting the advantage of

using a Bayesian model.
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7.1 Future Work

Throughout this thesis the possible extensions and further investigation path-

ways have been highlighted in each chapter. These are now summarised.

The work in this thesis has demonstrated how the driving component of

a Hawkes process can differ from application to application. In Chapter 4 it

was the kernel that controlled the expressiveness of the model, in Chapter 5 is

was the background rate controlling the variation due to the intraday patterns

in the data and finally in Chapter 6 the κ parameter was explored due to the

low individual activities of each match. There is further work to be done in

understanding what types of data benefit most from the different variations in

the Hawkes process and how the best forecasts can be obtained from selecting

the correct model with the correctly adjusted component. This would then

pave the way to a systematic model selection process that could correctly

select the both the correct model specification of the individual components

and the combination of the Hawkes components.

There is still much to be explored for Hawkes based models with multiple

research areas where a Hawkes process could explain the clustering behaviour

between events. One particular area of interest is cyber security. Internet ser-

vices are built up of networks and consist of information requests being passed

between networks and therefore a point process is well suited for modelling the

arrival times between connection events. All three extensions to the Hawkes

process discussed in this thesis could be applied to cyber security data to give

insight into the clustering nature of attacks. Specifically, by using a multivari-

ate Hawkes process to represent different network areas and the large amount

of interacting processes the contagion between components of a network could

be investigated and used to predict the likely spread of attacks.

The method of Hawkes process inference used in this thesis is also well

positioned to benefit from the new frontiers of statistical and machine learning

techniques. As it has been demonstrated, each iteration of inference involves

partitioning the event times into parent and child, calculating the number
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of children events and the relative time of events. The parameters of the

model are then inferred from this partitioned data. It has been shown how

both simple parametric models and more complicated Dirichlet process models

can be used but this could be extended even further. Methods like Gaussian

processes, neural networks or even deep learning could be used to infer the

necessary component structure which makes the Hawkes process a model that

can easily be updated to move with the direction of research.

The dirichletprocess package is at an advantage where future devel-

opment directions can be aided by users and current discussions indicate that

Indian buffet processes and their applications are a required feature. The In-

dian buffet process (IBP) is an extension to the Dirichlet process where the

datapoints can belong to multiple clusters. It is a natural inclusion to the

software package and thus makes it an easy goal for future development. In a

wider context IBPs allows for more complex hierarchical models and feature

based approaches to modelling.

Finally, the majority of the code used to perform the analysis in each

chapter can be released as a general Hawkes package. It would compliment

the dirichletprocess package and provide functionality to fit both the simple

Hawkes models used and the more complex nonparametric models. There is

also a gap in the market for a general package for performing Bayesian analysis

of the Hawkes process as the current offering implement frequentist techniques.
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