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Abstract 1 

The chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in 2 

amphibian populations. While Bd is widespread in southern and central Europe, its occurrence 3 

and distribution in northernmost Europe is mostly unknown. We surveyed for Bd in breeding 4 

anurans in Sweden by sampling 1917 amphibians from 101 localities and three regions in 5 

Sweden (Southern, Northern and Central). We found that Bd was widespread in southern and 6 

central Sweden, occurring in all nine investigated species and in 45.5 % of the 101 localities 7 

with an overall prevalence of 13.8%. No infected individuals were found in the four northern 8 

sites sampled. The records from central Sweden represent the northernmost records of Bd in 9 

Europe. While the proportion of sites positive for Bd was similar between the southern and 10 

central regions, prevalence was much higher in the southern region. This was due to southern 11 

species with a distribution mainly restricted to southernmost Sweden having higher prevalence 12 

than widespread generalist species. The nationally red-listed green toad Bufotes variabilis and 13 

the fire bellied toad Bombina bombina had the highest prevalence (61.4% and 48.9% 14 

respectively). Across species, Bd prevalence was strongly positively correlated with water 15 

temperature at the start of egg-laying. However, no individuals showing visual signs of 16 

chytridiomycosis were found in the field. These results indicate that Bd is widespread and 17 

common in southern and central Sweden with southern species breeding in higher temperatures 18 

and with longer breeding periods having higher prevalence. However, the impact of Bd on 19 

amphibian populations in northernmost Europe remains unknown. 20 

  21 
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1. Introduction 1 

Emerging infectious disease is an important cause of wildlife population declines and loss of 2 

biological diversity (Daszak et al. 2000, Fisher et al. 2012, Scheele et al. 2019). The chytrid 3 

fungus Batrachochytrium dendrobatidis (Bd) originating from eastern Asia infects amphibians 4 

and has during the past few decades caused severe population declines in all continents where 5 

amphibians occur (Berger et al. 1998, Skerratt et al. 2007, Lips 2016, O’Hanlon et al. 2018, 6 

Scheele et al. 2019). Currently, 90 species are presumably extinct and 500 species have declined 7 

due to Bd infection (Scheele et al. 2019). Australia and the Americas are most severely affected 8 

(Skerratt et al. 2007, Lips 2016, Scheele et al. 2019), with some areas in Central America having 9 

lost 40 % of their amphibian diversity after the emergence of Bd (Crawford et al. 2010).   10 

Bd infects amphibian skin and causes the disease chytridiomycosis, which disrupts normal 11 

epidermal function, ultimately leading to loss of skin homeostatic functions and death (Voyles 12 

et al. 2009). However, the response to Bd infection varies significantly between species and 13 

populations, with some species being able to tolerate heavy infection loads without developing 14 

the disease, possibly serving as a reservoir source of infection (Fisher et al. 2009, Gahl et al. 15 

2012, Scheele et al. 2017). Bd comprises of several distinct genetic lineages which differ in 16 

their virulence (Farrer et al. 2011, Rosenblum et al. 2013). Of these, the global pandemic lineage 17 

(Bd-GPL) is responsible for most of the amphibian population declines worldwide (O’Hanlon 18 

et al. 2018).  19 

While Bd is widespread in temperate latitudes in North America and Europe, its occurrence at 20 

high latitudes has received little attention. In North America, amphibians infected with Bd have 21 

been found up to 62 and 53 °N in northwestern and northeastern Canada, respectively (Schock 22 

et al. 2010, D'Aoust-Messier et al. 2015). In northern Europe, environmental niche models for 23 

Bd predict low or intermediate probability of occurrence in most of Scandinavia (Lotters et al. 24 
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2009, Olson et al. 2013, Li et al. 2013, Xie et al. 2016), however, some models predict high 1 

probability especially at higher altitudes (Xie et al. 2016). Empirical studies on the distribution 2 

of the fungus in northern Europe have been few. Positive observations were made in Denmark 3 

(in 2007, Scalera et al. 2008) and Russia (2011, Reshetnikov et al. 2014) but samples collected 4 

in northernmost Finland (Patrelle et al. 2012) were negative. A study of 197 pool frog 5 

(Pelphylax lessonae) samples from central Sweden from late 1990s and early 2000s did not 6 

detect any Bd (Garner et al. 2005). Similarly, Sainsbury et al. (2017) did not detect Bd in a 7 

sample of 367 amphibians from the same area in central Sweden between 2006 and 2008. 8 

However, in 2010 anurans infected with Bd were found at several sites in southernmost Sweden 9 

(Hallengren 2012, see also Kärvemo et al. 2018, Kärvemo et al. 2019). These observations may 10 

indicate a recent invasion of Bd in Sweden and highlight the need for a large-scale survey of 11 

Swedish amphibians. 12 

The Swedish anuran fauna can be divided into two groups: cold-adapted widespread generalist 13 

species with a distribution that ranges from southernmost Sweden up to at least the Arctic Circle 14 

in the north, and warm-adapted southern species with their main distribution in Central Europe 15 

and a limited distribution restricted to southern and central Sweden (Sillero et al. 2014). Most 16 

of the rare species also have a population history with periods of low population numbers and, 17 

in some cases, translocations and reintroductions, a history not shared with the widespread 18 

species. Importantly, populations at the edge of their range have been shown to have lower 19 

genetic variation, which may render them more vulnerable to disease (e.g., Savage & Zamudio 20 

2011, Zeisset & Beebee 2014, Dufresnes & Perrin 2015, Cortázar-Chinarro et al. 2017). 21 

Here, we investigated the occurrence and prevalence of Bd in amphibians from southern, central 22 

and northern Sweden. To investigate if biogeography was associated with Bd infection, we 23 

classified the study species as 1) widespread generalist species adapted to low temperatures, or 24 

2) southern species adapted to warmer climates and higher spawning temperatures with 25 
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restricted distribution in Sweden. Our sampling covered nine of the eleven anuran species 1 

occurring in Sweden, including four species that are currently included in the Swedish red list 2 

(SLU Artdatabanken 2020). Our objectives were to asses i) How common is Bd in Sweden? ii) 3 

Do the regions differ in Bd occurrence pattern? iii) Do the species differ in Bd prevalence, and 4 

more specifically iv) Are there differences between the regionally rare southern species and the 5 

widespread generalist species? 6 

2. Methods 7 

2.1 Field sampling 8 

The study was conducted in three regions of Sweden, in the counties of Scania, Blekinge and 9 

Kalmar in the south where Bd was found in 2010 (Hallengren 2012), in the counties of 10 

Stockholm and Uppsala in central Sweden, and close to Luleå in Norrbotten county in northern 11 

Sweden (Fig. 1). There were no previous records of Bd from central or northern Sweden (but 12 

see Kärvemo et al. 2018, 2019, 2020). Here, southernmost Sweden is of special importance 13 

since it harbors all Swedish amphibians (13 species). In Scania, sampling sites were chosen by 14 

using the three earlier known sites of Bd occurrence (Hallengren 2012) as starting points and 15 

radiating outwards. In all three regions, ponds with previously known amphibian populations 16 

were sampled and when needed additional ponds were located from satellite maps. In addition, 17 

Scania, Kalmar and Blekinge county boards provided us with samples from sites 30-32 and 75-18 

80 (Table S1). 19 

Bd samples were collected between March and June in 2015-2018 (Fig. 1) following the 20 

swabbing method described in Hyatt et al. (2007). Forty-one sites were visited in southern, 56 21 

in central and four in northern Sweden. Samples were collected from nine anuran species of 22 

which three, Rana arvalis, R. temporaria and Bufo bufo, are widespread generalists with 23 

distributions reaching up to (and in the case of R. temporaria beyond) the Arctic Circle (Sillero 24 
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et al. 2014). The remaining six species; Bufotes variabilis, Epidalea calamita, Bombina 1 

bombina, Pelobates fuscus, Pelophylax esculentus and P. lessonae, are regionally rare species 2 

with distribution restricted to southernmost Sweden, with the exception of P. lessonae, which 3 

has an isolated population in central Sweden (Sillero et al. 2014). The number of individuals 4 

caught at each site varied from one to 103, and the number of species sampled from one to five 5 

(Table S1). In total, we sampled 1917 individuals. Anurans were mainly caught at breeding 6 

sites and kept in separate containers until sampling of all individuals had been completed, after 7 

which they were released at the same time to avoid resampling. Individuals were swabbed with 8 

either cotton swabs (2015) or fine-tip rayon swabs (Dryswab™, MWE MW110; 2016-2018). 9 

Cotton swabs were stored in 70% ethanol until DNA extraction. Rayon swabs were kept dry 10 

and stored at 4 °C. To avoid contamination, nitril gloves were used and all equipment was 11 

sterilized with Virkon ® S (1% solution, DuPont) between each individual.  12 

To avoid possible effects of differences in sampling effort and swabbing technique, we 13 

excluded sites 30-32, 71-74, 93, 94 and the northern sites (89-92) from all statistical models. 14 

These sites were only used for calculating presence and prevalence of Bd. P. lessonae 15 

individuals from sites 71-74 and 93-94 were caught using the methods described in Kärvemo 16 

et al. (2020) in order to investigate temporal changes in infection patterns. Only the results from 17 

the first sampling occasion for each individual were used in the present study. Samples from 18 

sites 30-32 and 75-80 were sent to us by the County Administrative Boards in Skåne, Blekinge 19 

and Kalmar and were thus swabbed by other field workers than the rest of the samples. 20 

2.2 DNA extraction and qPCR analysis 21 

DNA was extracted from swabs using the Qiagen DNeasy Blood and Tissue kit (Qiagen, ref. 22 

69506) following the standard protocol with modifications suggested in Kosch and Summers 23 

(2013). Presence of Bd was assessed by amplifying the internal transcribed spacer (ITS)-5.8S 24 
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rRNA region (Boyle et al 2004). 25µl reactions containing 12.5µl 2X Taqman Master Mix 1 

(Applied Biosystem, ref. 4318157), 2.25µl 10µM each of forward and reverse primers, 0.625 2 

µl 10µM MGB probe and 5µl of DNA (diluted x10 in water) were run. Each sample was run in 3 

triplicate. To avoid false negatives because of inhibitors an exogenous internal positive control 4 

(IPC; Hyatt et al. 2007) was added to one well in each triplicate (1µl 10XExo IPC master mix 5 

and 0.5µl 50XExo IPC DNA to each sample; VICTIM dye, Applied Biosystems ref. 4304662).  6 

The qPCR assays were run on a Biorad CFX96 Real Time System machine using amplification 7 

conditions described in Boyle et al. (2004) with standards of 0.1, 1, 10 and 100 genomic 8 

equivalents (GE) (2016-2018 samples) or a positive control of approximately 1-10 GE (2015 9 

samples). An individual was recorded as positive if at least one of the triplicate samples 10 

exhibited a positive signal (i.e. an exponential amplification curve). If the IPC showed signs of 11 

inhibition, negative samples were rerun once before the sample was assigned as not scoreable 12 

(NA) and removed from the data set.  13 

2.3 Data analyses 14 

All analyses were conducted in R 3.5.2 (R Core Team 2018). Occurrence, the proportion of 15 

positive sites, was calculated for each region. A site was recorded as Bd positive if at least one 16 

individual from the site showed a positive signal for Bd. Prevalence, expressed as the proportion 17 

of individuals positive for Bd, was calculated for each region, species, site and species-site 18 

combination. The difference in occurrence and prevalence between the two regions was 19 

compared using χ2-tests. Infection intensity was calculated as the mean number of genomic 20 

equivalents (GE) among triplicates. This was only possible for a smaller subset of individuals 21 

(Table 3). 22 

We used generalized, binomial mixed-effects linear models (glmer function in the lme4 23 

package, Bates et al. 2014) to test for the effect of region (Southern or Central Sweden) and 24 
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species group (widespread generalist or restricted southern species) on the presence of Bd at 1 

individual level. Region and group were set as fixed effects and site was included as a random 2 

effect. We used the data on B. bufo, as this species has a distribution covering both regions and 3 

we had a large enough sample from both southern and central Sweden, to analyse differences 4 

in Bd prevalence between years. This was done for the years 2015 and 2016 when a large 5 

enough number of individuals was sampled in both regions. The difference between years was 6 

compared using a χ2-test. 7 

We tested for the effect of spawning temperature on prevalence of Bd among the species with 8 

linear regression using spawning temperature as the explanatory variable (lm function). We 9 

used temperatures at start of breeding found in the literature (Obert 1975, Banks and Beebee 10 

1987, Höglund and Robertson 1987, Sjögren et al. 1988, Elmberg 1990, Fog et al. 1997, Hettyey 11 

et al. 2009, Kinne et al. 2004, Sicilia et al. 2006). 12 

 13 

3. Results 14 

Bd was widespread in two of the three study regions with individuals showing a positive signal 15 

for the chytrid at 46 out of 101 sites (45.5%; Fig 1). Eighteen of 41 (43.9%) and 28 of 56 (50%) 16 

sites were positive for Bd in southern and central Sweden, respectively. There was no significant 17 

difference in occurrence between the two regions (χ2 = 0.15, df = 1, p = 0.7). No infected 18 

animals were detected in the northern sites. Overall prevalence for all sites and all species was 19 

13.8% with the highest site-specific prevalence at positive sites reaching 100% (Vikhög, n = 2, 20 

Pelobates fuscus) and 95.5% (Norra Hamnen, n = 22, Bufotes variabilis) (Table S1). Prevalence 21 

in the southern region was 19% and in the central region 8.1% (Table 1). There was a significant 22 

difference in prevalence between southern and the central region when all individuals and 23 

species were considered (χ2 = 44.3, df = 1, p < 0.001). When including only B. bufo, region had 24 
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no significant effect on infection at individual level (χ2 = 3.04, df = 1, p = 0.081, Table 2), 1 

although prevalence tended to be higher in central Sweden. There was no significant difference 2 

in prevalence between the years 2015 and 2016 (χ2 = 1.18, df = 1, p = 1, Table 2). 3 

Bd was found in all species with a prevalence varying from 1.9% in R. temporaria to 61.4% in 4 

B. variabilis (Table 1). The prevalence in the three widespread common species was lower 5 

(6.20 ± 6.19%) than in the six southern species (40.47 ± 14.75%; Fig. 2). In general, the rare 6 

southern species, except P. fuscus, had prevalence higher than 30%, whereas all common 7 

generalist species had prevalence lower than 15%.  Species group had a significant effect on 8 

infection (χ2 = 74.63, df = 1, p = 0.001). Spawning temperature was strongly positively 9 

correlated with Bd prevalence (F1,7 = 52.18, p <0.001, R2 = 0.88), all species with prevalence 10 

higher than 30% breeding when water temperature raises over 12 °C (Fig.2). The available data 11 

on infection intensities suggested that infection intensity, estimated as GEs, was very low in the 12 

two common species (R. arvalis and B. bufo), whereas the southern species, and especially B. 13 

variabilis, showed significantly higher infection intensity (F1,60 = 25.94, p < 0.001; Table 3). 14 

 15 

4. Discussion 16 

We found Bd at 45.5% of the sites sampled, indicating that the fungus is widespread in southern 17 

Scandinavia, and providing the northernmost observations of this emerging pathogen in Europe 18 

(site 89, Lillträsket, Table S1). This result contrasts with studies in the turn of the millennium 19 

using material from central Sweden, where no Bd positive individuals were found in the 197 20 

(Garner et al. 2005) and 367 (Sainsbury et al. 2017) mainly P. lessonae samples. In 2017-2018, 21 

prevalence in P. lessonae within the same area was 31 % (Table S1). We found no differences 22 

in Bd occurrence between the southern and central Swedish sites when looking at the common 23 

species occurring at both regions. Similarly, region had no significant effect on prevalence 24 
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when data were analyzed on B. bufo, for which we had large enough sample sizes at both 1 

regions.. As the earlier studies only cover one region, we cannot with any certainty say when 2 

Bd has colonized Sweden, and the fungus can have gone unnoticed for a long time. However, 3 

considering records from other European countries (Bosch et al. 2001, Garner et al. 2005, 4 

Federici et al. 2008, Ohst et al. 2013, O’Hanlon et al. 2018), Bd becoming more common in 5 

central Sweden during the early 2000s seems a feasible scenario, broadly agreeing with studies 6 

elsewhere in Europe.  7 

We found a strong difference in prevalence between the southern and central regions when 8 

comparing all anuran species. This difference can be explained by the fact that most of the 9 

species with high prevalence were only found in the southern region. There was no difference 10 

in prevalence between years when looking at the data on B. bufo only, suggesting that the 11 

difference between the regions was not explained by yearly fluctuations in Bd prevalence. 12 

However, we note that Bd prevalence has been shown to vary at the same site between years 13 

(e.g., McMillan et al. 2020). For logistic reasons we were not able to sample the same ponds 14 

during consecutive years and more data on inter-annual variation in Bd prevalence are needed 15 

to fully explore this topic. 16 

While we found infected individuals in all nine investigated species, prevalence differed 17 

strongly among the species, with the regionally rare southern species showing significantly 18 

higher prevalence than the common widespread species. Several ecological and behavioural 19 

characters differ between these two groups. The widespread generalist species aggregate in the 20 

breeding ponds at lower water temperatures (below 10 °C), whereas the rare southern species 21 

require higher temperatures and typically start breeding activities when water temperature 22 

reaches 15 °C or more (Obert 1975, Banks and Beebee 1987, Höglund and G.M. Robertson 23 

1987, Sjögren et al. 1988, Elmberg 1990, Fog et al. 1997, Kinne et al. 2004, Sicilia et al. 2006, 24 

Hettyey et al. 2009). This means that the regionally rare southern species gather for breeding at 25 
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temperatures closer to the optimum for the fungus (17-25 °C; James et al. 2015), whereas the 1 

widespread common species start breeding at temperatures that are at the lower end of chytrid 2 

temperature tolerance (Piotrowski et al. 2004, Woodhams et al. 2008, Fernández-Beaskoetxea 3 

et al. 2015). In addition, the southern species occur at the northern edge of their range in 4 

southern Sweden and encounter temperatures that are likely at the lower end of their thermal 5 

tolerance (Gutierrez-Pesquera et al. 2016), while summer temperatures in these ponds largely 6 

fall within the optimum of Bd (Piotrowski et al. 2004). This thermal mismatch between 7 

pathogen and host tolerances (Nowakowski et al. 2016, Cohen et al. 2017) may make the 8 

southern species more susceptible to Bd and explain the high prevalence observed in these 9 

species.  10 

The widespread common species group also consists of explosive breeders which spend only a 11 

few days in the breeding ponds, while the rare southern species group consists of prolonged 12 

breeders which often spend several weeks at the breeding sites (Wells 1977). This suggests that 13 

these regionally rare species may run a higher accumulated risk of interactions with infected 14 

individuals, as well as a higher risk of obtaining the infection from the water. Clearly, additional 15 

studies are needed to disentangle the reasons behind the high prevalence in the locally rare 16 

southern species. 17 

Bd-GPL, the pandemic Bd strain which emerged in the mid-20th century and caused the 18 

worldwide amphibian decline, was isolated from Swedish B. variablis in 2016 (O’Hanlon et al. 19 

2018). However, while we found high prevalence in many of our study sites, we did not find 20 

signs of chytridiomycosis in any of the individuals and where we had intensity data, such were 21 

low. This can be because of properties of the host immune system being able to keep the 22 

infection at constant low levels or even clear the infection (Kärvemo et al. 2020), or the 23 

environment being inhospitable to the fungus. The generally low infection intensities found in 24 

the present study support this notion, however, we note that our data set on infection intensity 25 
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was very limited. While the infection intensities were generally low, those in B. variabilis were 1 

significantly higher, in accordance with the high prevalence found in this species. 2 

So far, no cases of chytridiomycosis or unexplained population declines have been reported in 3 

Sweden. The lack of population declines seems to follow the European-wide pattern where 4 

strong Bd-linked population declines are rare and biased towards certain taxonomic groups 5 

(Tobler & Schmidt 2010, Balaz et al. 2014, Lips 2016), but we note that some of the species 6 

included in this study show high mortality in experimental infection studies (B. bufo: Garner et 7 

al. 2009, Meurling 2019, B. variabilis: Bengtsson 2018). Several studies suggest that in cool 8 

climates Bd can persist in a host community at relatively low prevalence affecting a subset of 9 

species when environmental conditions are - or become suitable for - the fungus (Spitzen-van 10 

der Sluijs et al. 2017, Mosher et al. 2018). Alternatively, individuals might be able to clear the 11 

infection and therefore not develop the disease (Briggs et al. 2010, Kärvemo et al. 2020). Such 12 

recovery has been reported in several other species (Murray et al. 2009, Kinney et al. 2011, 13 

Sapsford et al. 2015, Daversa et al. 2018). However, long-term data on population trends of 14 

Swedish amphibians are limited and mostly focused on Bd-tolerant Ranid species (Woodhams 15 

et al. 2012, Bielby et al. 2015). The available studies show no clear pattern, as increasing, stable 16 

or decreasing population trends have been found (Loman and Andersson 2007, Nyström et al. 17 

2007, Almkvist and Söderman 2016). 18 

Importantly, the changing climate is likely to improve the conditions for Bd in northern Europe. 19 

For example, niche modelling (Xie et al. 2016) predicts that Bd range will shift towards higher 20 

latitudes and altitudes in the northern hemisphere leading to colonization of new regions. Higher 21 

temperatures may also change the relative patterns of host and pathogen optima in relation to 22 

the environment and alter the vulnerability of the host species (Nowakowski et al. 2016, Cohen 23 

et al. 2017). In the face of this emerging pathogen, conservation of Scandinavian amphibian 24 

populations requires special attention. Due to the limited amount of genetic variation at range 25 
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edges (Hewitt 2000), populations of both the regionally rare species in southern Sweden and 1 

the edge populations of the widespread species in northern Sweden may be especially 2 

vulnerable to disease, as reflected in the limited genetic variation in immune genes in these 3 

populations (Zeisset and Beebee 2014, Cortazar-Chinarro et al. 2017, Meurling 2019; see also 4 

Savage & Zamudio 2011). This calls for an increased awareness for conservationists managing 5 

high-latitude anuran populations, especially in the face of a changing climate. We propose 6 

surveillance and monitoring system for conservation and management of populations of the rare 7 

species so that enhanced awareness could catch any change in the current presence, prevalence 8 

and distribution of Bd as well as any declines in population numbers. Furthermore, urgent data 9 

on the occurrence of Bd in northern Scandinavia is needed to assess threats on boreal and 10 

subarctic amphibian populations. 11 
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 1 

Text Figures  2 

Fig. 1.  3 

Map of Sweden showing the sites where breeding anurans were sampled for 4 

Batrachochytrium dendrobatidis (Bd) in 2015-2018. The white part of each circle indicates 5 

the Bd- negative and black the Bd-positive proportion of individuals at each site.  6 

Fig. 2. 7 

Relationship between water temperatures at spawning in the studied anuran species and the 8 

species level Bd prevalence  9 
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Table 1. Bd prevalence for each species, region and the total prevalence for all sampled 1 

individuals expressed in percent. Numbers in parenthesis describes the number of positive 2 

individuals out of the total number sampled. If no individuals of a certain species were 3 

sampled in a region, this is marked with a dash. 4 

 5 

Species Regional prevalence (%) Total prevalence 
(%) 

95% CI 
(Wilson) 

  South Central North     

Rana arvalis 13.9 (23/165) 17.1 
(21/123) 0 (0/42) 13.3 (44/330) 10.1-17.4 

Rana temporaria 1.5 (3/201) 3.4 (2/58)  -  1.9 (5/259) 0.8-4.4 
Bufo bufo 1.5 (5/341) 4.5 (27/600)  -  3.4 (32/941) 2.4-4.8 
Pelophylax lessonae 63.6 (14/22) 28.4 (19/67)  -  37.1 (33/89) 27.8-47.5 
Pelophylax esculentus 38.9 (7/18)  -   -  38.9 (7/18) 20.3-61.4 
Bombina bombina 48.9 (22/45)  -   -  48.9 (22/45) 35-63 
Bufotes variabilis 61.4 (86/140)  -   -  61.4 (86/140) 53.2-69.0 
Epidalea calamita 39.8 (33/83)  -   -  39.8 (33/83) 29.9-50.5 
Pelobates fuscus 16.7 (2/12)  -   -  16.7 (2/12) 5-45 

All species per region 19.0 
(195/1027) 

8.1 
(69/848) 

0.0 
(0/42)     

95% CI (Wilson) 16.7-21.5 6.5-10.2 0-6.1     
Total prevalence       13.8 (264/1917) 12.3-15.4 

 6 

  7 



28 
 

Table 2. Bd prevalence for the Bufo bufo subset for the south and central regions and for the 1 

years 2015 and 2016. Prevalence expressed in percent and the numbers in parenthesis 2 

describes the number of positive individuals out of the total number sampled.  3 

 4 

  
  Prevalence 

(%) 
95% CI 

(Wilson) 

Region 
South 1.5 (5/341) 0.6-3.4 
Central 4.5 (27/600) 3.1-6.5 

Year 
2015 3.3 (8/244) 1.7-6.3 
2016 3.5 (10/284) 1.9-6.4 

 5 
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Table 3. Infection intensity expressed in mean Genomic Equivalents for the subset of all 1 

sampled individuals. 2 

Species n Mean GE 95% CI 
Rana arvalis 21 0.274 0.0922-0.931 
Bufo bufo 2 0.002 0.0004-0.002 
Epidalea calamita 12 0.87 0.229-3.01 
Bufotes variabilis 21 17.6 6.03-42.8 
Pelophylax esculentus 6 2.31 0.562-7.27 

 3 
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