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Abstract

Genetic factors are often overlooked in conservation planning, despite their importance in

small isolated populations. We used mitochondrial and microsatellite markers to investigate

population genetics of the adder (Vipera berus) in southern Britain, where numbers are

declining. We found no evidence for loss of heterozygosity in any of the populations studied.

Genetic diversity was comparable across sites, in line with published levels for mainland

Europe. However, further analysis revealed a striking level of relatedness. Genetic networks

constructed from inferred first degree relationships suggested a high proportion of individu-

als to be related at a level equivalent to that of half-siblings, with rare inferred full-sib dyads.

These patterns of relatedness can be attributed to the high philopatry and low vagility of

adders, which creates high local relatedness, in combination with the polyandrous breeding

system in the adder, which may offset the risk of inbreeding in closed populations. We sug-

gest that reliance on standard genetic indicators of inbreeding and diversity may underesti-

mate demographic and genetic factors that make adder populations vulnerable to

extirpation. We stress the importance of an integrated genetic and demographic approach

in the conservation of adders, and other taxa of similar ecology.

Introduction

Population genetics remain overlooked in conservation planning [1], although genetic factors

may lead to population extinction even after other threats have been addressed [2]. Loss of

genetic diversity and inbreeding depression represent the primary genetic threats [3], with the

potential to contribute to an extinction vortex [4].

Tingley et al [5] have stressed the importance of addressing the optimal genetic manage-

ment of small isolated reptile populations. The adder Vipera berus (Linnaeus, 1758) is a terres-

trial snake with an extremely wide geographic range [6], which accounts for its IUCN Red List
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status as “Least Concern”, although with a decreasing population trend [7, 8]. Adders, like

many other temperate snakes, are viviparous with low fecundity, low vagility and high philopa-

try [9, 10], life-history traits that render them vulnerable to local extinction [11, 12]. The nega-

tive outlook for adder populations is exacerbated by snakes being among the least popular

terrestrial vertebrates, more likely to be targets of intentional killing than of conservation man-

agement [13]. The potential risk of inbreeding depression in adders is highlighted by an iso-

lated adder population in Sweden, in which a decline in numbers was associated with

stillbirths and deformities, and a reduction in genetic diversity, all of which responded to the

introduction of adult males from a large outbred population [14–16]. Újvári et al [17] have

similarly reported low juvenile survival and birth deformities with reduced genetic diversity

and increased homozygosity in fragmented populations of the congeneric Hungarian meadow

viper, V. ursinii rakosiensis.
Small population size is an important factor in loss of genetic diversity, exacerbated by bot-

tleneck events. This has led to the concept of a minimum viable population size [18, 19], based

on the inverse relationship between the effective population size (Ne) [20] and the rate of ero-

sion of genetic variation by drift, which is supported by studies of wild populations [21, 22]. Ne

estimates tend to be low in relation to census population size in natural populations [23, 24],

influenced by demographic fluctuation and life-history traits [25, 26]. Both small population

size and genetic erosion render populations more susceptible to stochastic environmental and

demographic adverse events, such as climate change or disease [19, 27, 28]. Small populations

isolated by habitat fragmentation are also at increased risk of inbreeding. However, several

important questions regarding genetic variation and inbreeding depression in natural popula-

tions remain largely unanswered. In particular, it is unclear to what extent mating between

close relatives and loss of genetic diversity contribute to population decline and extinction in

the wild, and thus to how results of genetic studies should influence their conservation man-

agement [29].

We report the results of the UK Adder Genetic Project (UKAGP), a study into the genetic

status of lowland adder populations in southern mainland Britain, where national distribution

surveys have indicated a decline in comparison with historic records [30–33]. A national ques-

tionnaire-based investigation survey of adder populations showed that declines were more

likely to be reported in small sites with fewer than ten adders, whether based on systematic sur-

veys or anecdotal evidence [31]. The subsequent Make the Adder Count (MTAC) initiative,

based on peak springtime adder counts over sequential years, further underscored the

increased risk of decline in small populations [34], flagging threats of habitat loss, public dis-

turbance and predation, especially by cats and birds. To these threats should be added the

potential risk of disease caused by the release of captive non-native snakes onto adder habitat,

especially in view of the recent finding of the causative agent for snake fungal disease (Ophidio-
myces ophiodiicola) in UK adders in the wild [35]. This consistently emerging picture of habi-

tat fragmentation and local decline forms the background for our study, in which we have

used a combination of mitochondrial DNA (mtDNA) and microsatellite markers to investigate

the potential role of genetic factors in their decline of adders in mainland Britain.

The aim of this study was to document population genetic structure and differentiation,

and to estimate indicators of inbreeding and genetic diversity in lowland adder populations in

southern mainland Britain. To assess the ecological and conservation significance of our

study, we interpret our results in comparison with published studies of adder populations in

mainland Europe, and with reference to the size, and thus the likely risk status, of the study

populations.
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Methods

UKAGP study sites and samples

Ethics and animal welfare: the project was reviewed prospectively and approved by the ZSL

Ethics Committee. Sampling was undertaken in concordance with ZSL ethical guidelines. Clo-

acal swabs were collected without anaesthetic from adult snakes, and buccal swabs from juve-

niles [36], by ecologists experienced in snake handling. All snakes were released at the site of

capture. Handling of adult females was avoided after mid-May, to minimise disturbance to

gravid snakes. No study animal was subjected to euthanasia.

Samples were collected from 220 adders at 16 sites in southern mainland Britain between

March and May 2011 (Table 1). No permits were required, as there were no restrictions on site

access, and the adder in the UK has no specific protection status other than against deliberate

injury or killing, or collection for trade (Wildlife and Countryside Act 1981, as amended

1991). For each site, adders were caught over a one to two-day period. Dates and optimal

weather conditions for sampling were determined according to local ecological expertise.

DNA was extracted using a DNeasy blood and tissue kit (Qiagen), following the manufac-

turer’s protocol for swabs.

Mitochondrial DNA (mtDNA) sequencing

We designed primers from a 918-bp mtDNA control region (CR) sequence and a 1043-bp

mtDNA cytochrome b sequence (Cytb) [37], based on high levels of variability across 40 Euro-

pean adder haplotypes, and on consistent flanking region stability. The primer sequences

selected for this study are shown in Table 2A. PCR for both loci was performed in HotStarTaq-

Plus (Qiagen), with an annealing temperature of 55˚C. The same primers were used for

Table 1. Details of sites and samples.

Site Lat Long Alt Size Total (young) Male Female mtDNA msat

Woodbury Common WC 50.68 N 3.37 W 174 large 15 (3) 2 13 13 11

Blackmoor Reserve BM 51.30 N 2.71 W 247 large 26 15 11 12 20

Cranham Common CC 51.81 N 2.15 W 200 small 4 0 4 4 4

Crickley Hill CH 51.82 N 2.12 W 274 small 10 7 3 6 10

Ewyas Harold EH 51.96 N 2.89 W 124 large 11 4 7 7 10

Malvern Hills Swinyard MHS 52.09 N 2.34 W 251 large 20 12 8 5 17

Bradnor Hill BH 52.22 N 3.06 W 292 small 5 1 4 5 7

Bircher Common BC 52.30 N 2.78 W 199 small 9 8 1 6 6

Mortimer Forest MF 52.36 N 2.74 W 87 large 18 (1) 12 6 6 13

Wyre Forest WF 52.41 N 2.32 W 139 large 19 18 1 5 16

Pounds Green Coppice PGC 52.41 N 2.36 W 97 small 7 4 3 5 6

Kinver Edge KE 52.44 N 2.25 W 143 small 6 4 2 4 6

Thundry Meadow TM 51.19 N 0.72 W 55 small 5 2 3 3 5

Holt Lowes HL 52.89 N 1.10 E 66 large 27 24 3 5 20

Martlesham Heath MH 52.06 N 1.26 E 27 small 9 (1) 7 2 6 9

Dunwich DUN 52.26 N 1.62 E 18 large 25 28 1 5 25

The total number of samples for each site is given; the number of samples from young adders (juveniles or subadults) is shown in brackets (included in total).

Lat/long: point GPS coordinates latitude and longitude for site (not for sampling of individual adders); Alt: altitude (metres above sea level) derived from google map for

site coordinates.

mtDNA: number of individuals genotyped for mtDNA; msat: number of samples genotyped for microsatellites at minimum of 6 of 8 loci.

size: allocation to MTAC category [34], according to peak springtime time count > 10 = large,� 10 = small.

https://doi.org/10.1371/journal.pone.0231809.t001
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sequencing reactions. PCR products were cleaned using a QIAquick PCR purification kit (Qia-

gen, UK), and sequenced using ABI BigDye1 chemistry and 3130XL sequencer, following

manufacturers’ protocols. We generated alignments of concatenated Cytb/CR consensus

sequences using MEGA 6 [38]. Individual haplotypes were identified using the haplotype func-

tion of pegas package v0.10 [39], implemented in R v3.4.0 [40]. A haplotype network [41] was

constructed using the median-joining method [42] in NETWORK v4.6.1 (www.fluxus-

engineering.com). Phylogenetic analysis was carried out as described in Supporting Informa-

tion (S1 Table, S1 Fig).

Microsatellite genotyping

In preliminary studies we tested published microsatellite primers that had been developed for

adders (V. berus) [43, 44], selecting five polymorphic loci that we found to amplify consis-

tently, with a minimum of stutter bands. To increase the number of loci, we also evaluated 15

congeneric microsatellite markers which had been developed for meadow vipers (V. ursinii)
[45], selecting three that successfully amplified and demonstrated polymorphism in adder

samples (results not shown). PCR was performed in 10 μl volumes with 20–100 ng DNA, 5 μl

mastermix (HotStarTaq Plus or Multiplex; Qiagen), 5 μmol/L unlabelled reverse primer and

5 μmol/L fluorophore-labelled forward primer (Applied Biosystems). Amplification was per-

formed in simplex with initial denaturation 95˚C 5 min, 60 cycles of 94˚C 60 sec, 57–59˚C 60

sec, 72˚C 60 sec, and final extension 72˚C 7 min, optimized in preliminary studies for each

primer pair. Primer sequences and locus-specific PCR conditions are summarized in Table 3.

Amplified products were resolved by capillary electrophoresis on a 3130xl Genetic Analyser

with a LIZ-500 size standard (Applied Biosystems). Alleles were scored and binned manually,

using PeakScanner 1.0 software (Applied Biosystems).

Microsatellite data analysis

Quality control. Replicates and template negative controls were included in all plates to

confirm reproducibility of results. Results were analysed for genotyping errors and null alleles

in Micro-Checker v 2.2.0.3 [46]. We used FSTAT v2.9.3.2 [47] and pegas [39], implemented in

R, to test for Hardy-Weinberg equilibrium (HWE), and to exclude linkage disequilibrium.

Measures of population structure and differentiation. In this study, we use the term

population to refer to all individuals sampled at a single study site in the sampling time period.

Pairwise FST values between populations were estimated in FSTAT.

To test for isolation by distance [48] we applied the mantel.rtest function of ade4 v1.7–13

[49], implemented in R, with 999 repetitions, using pairwise FST to estimate genetic distance.

Geographic distance was estimated at https://andrew.hedges.name/experiments/haversine

Table 2. Primers used in mtDNA PCR and sequencing.

Locus Primer Amplicon

CR 5’-TGC CCC ATG GAT ATT AAG CCG GA-3’ 349 bp

5’-AAC CAG CGG CCT TGG AAA GGA -3’

Cytb 5’-CCA AAC CAT TAC TGG ATT CTT CC-3’ 265 bp

5’-ATA GCC GAA GAA GGC TGT TGC-3’

Primers were designed for this study as described in methods, based on original sequences from Ursenbacher et al

(2006) [37]. Amplicon: size of PCR product for each locus.

https://doi.org/10.1371/journal.pone.0231809.t002
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(accessed 23 April 2108) using the Haversine great circle method, a measure of the shortest dis-

tance between two points on a sphere [50].

To investigate genetic differentiation, we used STRUCTURE v2.3 [51, 52], using correlated

allele frequencies and admixture models, with or without the locprior option [53]. The initial

alpha was set at 1/n, where n is the number of sample locations, to allow for variation in sample

sizes between populations [54]. We used burn-in of 105, followed by 106 iterations for 10 inde-

pendent replicate runs for values of K from 1 to the number of populations being studied.

Results were uploaded to StructureHarvester [55] to derive mean log likelihood and delta-K as

a function of K, detecting hierarchical levels of structure [56]. Results across replicate runs

were permuted using the greedy function of CLUMPP [57] to derive proportional assignments

to each cluster for supported values of K. We also studied population structure using discrimi-

nant analysis of principal components (DAPC) [58] in adegenet version 2.0.1 [59] imple-

mented in R. DAPC is a multivariate method to identify clusters of genetically related

individuals, which is not based on a predefined model, and makes no assumptions of HWE.

The find.clusters function was applied to determine the optimal number of clusters (k) in each

population, independent of the number of sampling sites. The dapc function was then applied,

using the α- score function to determine the optimum number of principal components to

retain in each analysis. Probabilities of assignment of individuals to each of the different clus-

ters were visualised using the compoplot function of adegenet [59].

Microsatellite summary statistics: Baseline indicators of genetic diversity and inbreed-

ing. For each population, we estimated F-statistics [60] and allele richness in FSTAT. Confi-

dence intervals for FIS, a measure of intrapopulation heterozygote deficiency due to

inbreeding, were calculated using the boot.ppfis function of hierfstat package v0.04–22 in R

[61]. Mean allele richness was determined using a rarefaction method [62] in PopGenReport

[63], implemented in R. We used FSTAT to compare populations with respect to allele rich-

ness and F-statistics, using 1000 permutations.

Detection of population bottlenecks. We used BOTTLENECK v 1.2.02 to test for signifi-

cant heterozygosity excess, applying a one-tailed Wilcoxon test with 1000 iterations, using the

two-phase model (TPM) (90% stepwise mutations, variance 10) [64]. A mode-shift test for dis-

tortion of the allele frequency distribution [65] was also implemented in BOTTLENECK. We

Table 3. Microsatellite loci: primers and PCR conditions.

Locus Ref Origin Repeat PCR no alleles

Vu57 a V.ursinii 2 60 MP 8

Vu4 a V.ursinii 3 60 HS 11

CA71 c V.berus 2 60 HS 11

Vb-B’2 b V.berus 2 58 HS 24

CA11 c V.berus 2 60 MP 31

CA3 c V.berus 2 58 HS 19

Vb-B’10 b V.berus 2 55 MP 9

Vu18 a V.ursinii 2 55 MP 9

origin: species for which locus had been developed.

PCR: annealing temperature ˚C and PCR buffer system.

MP: Multiplex mastermix (Qiagen), HS HotStarTaqPlus mastermix (Qiagen).

repeat: size of microsatellite repeat motif in nucleotides.

no alleles: number of alleles for relevant locus in total study dataset.

ref: a) Metzger et al (2011) [45]; b) Ursenbacher et al (2009) [44]; c) Carlsson et al (2003) [43].

https://doi.org/10.1371/journal.pone.0231809.t003
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derived M-ratio statistics [66] using the mRatio function of the strataG package v 2.0.2 [67],

implemented in R.

Effective population size (Ne). Two single sample methods were used for estimation of

Ne. The linkage disequilibrium method [68, 69] was implemented in NeEstimator ver 2.1 [70],

assuming random mating, deriving confidence intervals by jack-knifing (1000 iterations). We

also used the sibship assignment method [71], which estimates the current effective breeding

size of the population, implemented in COLONY 2.0.6.3 [72], using the same input parameters

as detailed below for sibship and parentage analysis. Confidence intervals were obtained by

bootstrapping.

Further investigation of breeding between relatives. We applied the inbreeding function

of adegenet, version 2.0.1 [59] in R, to derive genetic estimates of the pedigree inbreeding coef-

ficient FPED, which denotes the probability that both alleles at a single locus are identical by

descent from a single ancestor [73]. Pairwise relatedness (Rxy) was estimated using a maxi-

mum likelihood method in ML-Relate [74]. To calibrate Rxy values with first degree family

relationships in our data, we simulated genotypes for pairs of individuals with defined relation-

ships (100 pairs for each category of unrelated, half-sibling, full-sibling and parent-offspring),

using the familysim function of the package related v1.0 [75], implemented in R, based on

allele frequency data of observed datasets. Pairwise Rxy between each pair of simulated geno-

types of defined relationships was measured using ML-Relate. Means and confidence intervals

were derived in R. Significance of within-population relatedness was tested using the grouprel
function of related v1.0.

For sibship and parentage analysis we used a full-likelihood method, implemented in COL-

ONY 2.0.6.4 [72], assuming both male and female polygamy. In the absence of known pedigree

structure, all individuals for each study population were treated as a single offspring group.

We used default settings for sibship priors, including small sibship size, with the aim of reduc-

ing false sibship assignments [76]. The outputs of three independent replicate runs, using inde-

pendent seeds for random number generation, were examined to confirm convergence to the

same configuration and log likelihood. The best maximum likelihood cluster configuration

was used to infer half- and full sib dyads and inferred parentage.

Interpretation of results. We compared our results for F-statistics and allele richness

from UKAGP study populations with summary statistics from two published studies of adder

populations in mainland Europe [44, 77], and from a site containing a very large (n >500)

population of lowland adders in northern Belgium ([78], Mergeay & Bauwens unpublished

data). Direct statistical comparison was precluded by only partially overlapping microsatellite

panels between the studies (2/8 loci of our study were in common with Ursenbacher et al [44,

77]; 3/8 loci in common with Bauwens et al [78]).

In the UK, the MTAC survey demonstrated opposite average population trends between

sites with small and large adder populations, the threshold being a mean normalised peak

count of 10 adders, below which there was significant decline over time [34]. This provides an

approach of demonstrated demographic relevance with which to classify and compare popula-

tions according to their likely risk of decline. At eight sites in our study, more than 10 individ-

uals had been sampled on a single visit (range 11–29). The number of adders sampled at the

other eight sites was lower (range 4–10) (Table 1), despite equivalent or higher sampling effort

by an experienced ecologist familiar with the sites. We therefore applied an equivalent thresh-

old to categorise UKAGP study populations as large (presumed lower risk) (count>10, n = 8),

or small (presumed higher risk) (count�10, n = 8) (Table 1), based on the number of adders

sampled, as an approximation of the MTAC criteria. We compared first-line summary statis-

tics, FPED and Rxy between small and large populations defined in this way, using a Wilcoxon

rank sum test implemented in R.
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Although exceeding the MTAC peak count threshold, the springtime counts for the

UKAGP populations in the “large” category were still relatively low, with a maximum of 27. In

the absence of a very large well-characterised UK population for comparison, we analysed 50

genotypes from the Belgian site [78], focusing primarily on indices of relatedness and inbreed-

ing. This 1570 ha site (“Groot Schietveld”, N 51˚ 20–22’–E 4˚ 32–37’), has been used as a mili-

tary exercise zone since 1893, and is separated from neighbouring adder populations by a

minimum of 18km of unsuitable agricultural habitat. The site is transected by a road, con-

structed in 1875 as a narrow cobble road, then transformed in 1982 to its present state as a

two-lane asphalt trunk road, flanked by two asphalt cycle tracks (total width ca. 20 m). In cap-

ture-mark-recapture studies, the road was shown to constitute an effective hard barrier to

adder migration (Claus & Bauwens, unpublished data). The sample of 50 Groot Schietveld

genotypes (GS50) was selected randomly from the total dataset of microsatellite genotypes of

individual adders, which had been sampled from 14 locations within the Groot Schietveld site

between 2011 and 2013, and genotyped for 9 microsatellite loci as detailed in Bauwens et al

2018 [78]. The sample included 18 individuals from the north east (NE) segment of the site,

and 32 from the south west (SW), relative to the transecting road. No mtDNA sequence data

were available for the GS50 sample.

Results

mtDNA haplotypes

Eight different Cytb/CR haplotypes were identified in 97 individuals across the 16 sites (Fig 1).

Six haplotypes were unique to single sites. Three sites had more than one Cytb/CR haplotype.

All 53 individual samples sequenced from a cluster of ten sites in the West Midlands/South

West had the same Cytb/CR haplotype (WMids Haplogroup). As predicted, the UKAGP hap-

lotypes broadly clustered with the mainland Europe Northern phylogenetic clade of V.berus,
as described by Ursenbacher et al 2006 [37] (S1 Fig).

Microsatellites

Quality control. There was no evidence for null alleles, allele drop out or linkage disequi-

librium between loci. No two samples had identical genotypes. Results from duplicate samples

confirmed consistency of genotyping. Samples that failed to amplify at a minimum of 6/8

microsatellite loci were excluded from analysis. In all, 186 samples (84.5%) were retained for

downstream analysis. There was no significant divergence from HWE. Two small populations

TM (n = 5) and CC (n = 4) had missing data for more than one individual at a single locus

(CA71 and Vu4 respectively). For these, genetic diversity was calculated with the omission of

the relevant locus, which had little impact on summary statistics for the other populations (S2

Table).

Genetic substructure of WMids Haplogroup. The WMids Haplogroup includes ten geo-

graphically neighbouring sites, separated by up to 100km (Fig 1, Table 4). All individuals tested

in these sites shared the same mtDNA haplotype, consistent with their origin from a common

ancestor. We therefore investigated this group for evidence of more recent differentiation,

using microsatellite markers. Although this haplotype was found two in other study sites, they

were not included in this analysis, as both showed evidence for additional haplotypes, and

were from less intensively sampled regions, with larger distances between sites.

Genetic differentiation within the WMids Haplogroup is reflected in the pairwise FST

matrix between these sites (Table 4). Mantel testing for isolation by distance was negative

(r = 0.0042; simulated p value = 0.538). In STRUCTURE there was support for hierarchical

clustering [56], both with and without applying the locprior option (Fig 2; S2 Fig). DAPC
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analysis also showed clustering within the WMids Haplogroup, optimal at four clusters (Fig 2).

To evaluate concordance between STRUCTURE and DAPC results we also applied the dapc
function for three and six clusters, the optimum values for K in STRUCTURE using the loc-
prior option. The population proportional assignments to each cluster by each of the two

methods was very similar at the higher hierarchical level of clustering (K = 3), but more diver-

gent for K = 6 (S3 Fig).

Genetic diversity and inbreeding (FIS). FIS values did not differ significantly from zero in

any of the UK study populations (Table 5). This is in line with the findings of the mainland

Europe study, where only 2/16 sites had been reported to have raised levels of FIS, in both cases

attributable to high homozygosity at a single locus [44]. Estimates of genetic diversity (HS or

HE) were at similar levels across the study sites, and broadly equivalent to published results

from European populations [44, 77], including the large Belgium lowland population [78]

(Table 6). Allele richness was in a similar range to that of the large lowland Belgian population,

and of the Belgian, Netherlands and northern France lowland populations in the studies of

Ursenbacher et al [44, 77], although with the caveat of only partially overlapping microsatellite

panels. We found mean allelic richness was lower (p<0.05) in small populations. This was the

only statistic for which small and large populations differed significantly, other than for size

(Table 7).

Effective population size Ne. The single sample LDNe method [69] failed to deliver plau-

sible results, which may reflect small sample size and high levels of relatedness [79]. Results

derived using the sibship assignment method are shown in Table 8. The small populations

again gave very wide confidence intervals. Results for GS50 SW and NE by the sibship assign-

ment method are also shown, generating lower results than expected for the very large number

of adders on the site, discussed further below. Unfortunately, the combination of small sample

size and high relatedness thus prevented us from deriving reliable estimates for effective popu-

lation size, a significant disadvantage in the study of wild populations.

Fig 1. Location of study sites and mtDNA haplotypes. Outline map of southern Britain showing approximate locations of study sites. Site

abbreviations and coordinates are detailed in Table 1. Pie charts illustrate the distribution of the mtDNA haplotypes shown in the mtDNA

CytB/CR haplotype network (top). Lines denote nucleotide differences between haplotypes. The sites sharing the same haplotype (WMids

Haplogroup) are circled.

https://doi.org/10.1371/journal.pone.0231809.g001

Table 4. Genetic differentiation between populations in WMids Haplogroup.

EH CH KE MF WF PGC MHS BC BH

EH (11) 55 69 45 66 61 43 39 32

CH (10) 0.113 107 106 103 104 74 102 105

KE (6) 0.153 0.079 36 4 9 35 40 60

MF (13) 0.105 0.085 0.03 35 28 38 6 24

WF (16) 0.1 0.049 0.071 0.055 8 31 38 58

PGC (6) 0.167 0.082 0.14 0.11 0.082 30 31 51

MHS (17) 0.155 0.164 0.169 0.119 0.104 0.136 35 50

BC (6) 0.155 0.13 0.142 0.09 0.109 0.188 0.108 20

BH (7) 0.15 0.098 0.101 0.052 0.096 0.109 0.168 0.129

Pairwise FST (genetic distance) below diagonal, geographic distance (km) above diagonal. Sample sizes are shown in brackets.

Shaded values are significant at p <0.05 level after 12000 permutations, with Bonferroni correction.

Site abbreviations as in Table 1, geographic locations as in Fig 1. Site CC is excluded, due to its small size and missing data.

https://doi.org/10.1371/journal.pone.0231809.t004
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Population bottlenecks. As small sample size may give rise to false positives in bottleneck

tests, we tested different sample sizes randomly selected from the simulated population of 100

unrelated pairs. A sample of 5 genotypes generated a positive result for both heterozygosity

excess and modal shift. Results for both tests were negative for simulated samples of 10 or 20

(Table 9). In two of the UKAGP study populations with a sample size of�10, both heterozy-

gosity excess and allele frequency modal shift tests generated positive bottleneck results (EH,

WF). Two (BM, CH) was positive for modal shift only. MRatio results did not discriminate

between any of the simulated or study populations, irrespective of size, or results of other bot-

tleneck tests (Table 9).

Further investigation of breeding between relatives. Estimated inbreeding coefficient

FPED results showed little variation between populations, irrespective of size (Table 7). The

mean population FPED was 0.233 (95% CI 0.218–0.248), although some populations had indi-

vidual outliers with FPED >0.50 (Fig 3). We found a similar pattern of FPED results for the

GS50 sample, again with occasional outliers FPED >0.50. FPED results did not differentiate

between simulated populations of 100 pairs of defined relationship, whether unrelated, half- or

full sibling (Fig 3).

Intra-population mean Rxy estimates ranged from 0.135 to 0.377 (mean 0.220, 95% CI

0.188–0.252), with no significant difference between large and small populations (Fig 3;

Table 7). All UKAGP study populations showed significant within-population relatedness (S3

Table). For the GS50 sample, the mean Rxy between individual samples from the same side of

Fig 2. Hierarchical genetic substructure of the WMids Haplogroup. (A) STRUCTURE: graphs for posterior probability L(K) and deltaK showing highest probability

for K = 3 and K = 6 (with locprior option). (B) DAPC: graph of BIC, showing a clear elbow at K = 4. (C) STRUCTURE: bar charts showing proportional membership

coefficients of individuals to each of the inferred clusters for K = 3 and K = 6, grouped according to their study population. Each colour represents a different cluster. (D)

DAPC: scatterplots of individuals and inertia ellipses in four clusters, defined according to the clustering algorithm in adegenet.

https://doi.org/10.1371/journal.pone.0231809.g002
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the transecting road (intra-SW, intra-NE) was significantly higher than for pairwise Rxy across

the road (SW-NE) (Fig 4). As expected, and in contrast to FPED, mean Rxy differed signifi-

cantly between simulated pairs of defined relationship (Fig 3).

Rxy frequency distribution curves of simulated pairs show clear differences between the

defined relationships, with a dominant density peak at Rxy = 0 in the unrelated pairs, and a

progressive right shift of the curve for the simulated half-sib and full-sib pairs (Fig 5). The Rxy

frequency distribution curves for the individual UKAGP study populations showed variable

right shift of the curve, in association with and blunting or loss of the unrelated peak at

Rxy = 0. An equivalent pattern was apparent in the GS50 SW and NE populations (Fig 5). The

GS50 populations were analysed separately, as mean Rxy is affected by genetic structure within

a sample.

Family structure and parentage analysis in COLONY. Fig 5 illustrates networks of indi-

viduals linked by first degree relationships (inferred full or half-sibship) in representative

UKAGP study populations, based on the best maximum likelihood configurations in COL-

ONY, shown with their respective Rxy frequency distribution curves. Rxy distribution curves

for simulated unrelated, half-sib and full-sib pairs are shown for comparison. These networks

are characterised by extensive linkage at the inferred half-sib level in all populations. In some

study populations, especially those with a right shift of the Rxy frequency distribution curve,

networks show dominant inferred half-sibships, some very large, sharing the same inferred

parent.

When the GS50 sample was analysed as a single group in COLONY, the patterns of inferred

parentage differed between individuals from the SW and NE sampling sites (Fig 4), providing

further evidence that the dividing road acts as a barrier to gene flow. The network of COL-

ONY-derived sibships in the GS50 NE and SW samples also showed a loose pedigree linked at

Table 5. Summary statistics for individual study populations.

n Ar Ho Hs FIS FST

EH 11 2.42 0.63 0.64 0.02 0.03

CH 10 2.75 0.70 0.73 0.05 -0.03

WC 11 2.79 0.79 0.73 -0.08 0.04

KE 6 2.67 0.67 0.76 0.11 -0.10

MF 13 2.73 0.66 0.73 0.09 0.02

BM 20 2.61 0.71 0.69 -0.03 0.00

WF 16 2.75 0.75 0.73 -0.02 0.04

MH 9 2.60 0.61 0.69 0.12 0.03

PGC 6 2.61 0.65 0.72 0.10 -0.02

DUN 25 2.60 0.70 0.69 -0.02 0.00

HL 20 2.72 0.73 0.72 -0.02 0.01

MHS 17 2.60 0.62 0.69 0.10 -0.03

BC 6 2.43 0.65 0.67 0.04 -0.03

BH 7 2.61 0.77 0.68 -0.13 0.08

TM� 5 1.99 0.46 0.50 0.09 0.16

CC�� 4 2.36 0.68 0.59 -0.15 0.06

no: number of samples genotyped at a minimum of 6/8 loci.

TM�: 7 loci, excluding CA71; CC��: 7 loci excluding Vu4.

Ar: allele richness; Ho: observed heterozygosity; Hs: gene diversity (expected heterozygosity); n: sample size.

site abbreviations as in Table 1.

https://doi.org/10.1371/journal.pone.0231809.t005
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the half-sib level, with occasional larger inferred shared-parent sibships, and rare inferred full-

sib dyads (Fig 5).

Concordance between COLONY and DAPC cluster membership. We found no evi-

dence for intra-population substructure or admixture on STRUCTURE analysis of the individ-

ual UKAGP populations (not shown), nor in the GS50 SW or NE samples, consistent with the

low FST results for individual sites. By contrast, DAPC analysis revealed clustering within the

all individual study populations, including GS50 (S4 Fig), despite the low FST results. We

hypothesised that patterns of relatedness might underlie this within-population clustering. We

Table 6. Comparison of mean summary statistics between UK study and sites from mainland Europe.

UK AGP no Ar Ho Hs FIS FST Comment

mean 11.63 2.58 0.67 0.69 0.02 0.02 current study

SE 1.58 0.05 0.02 0.02 0.02 0.01 16 pops; lowland

Ursenbacher 2009 [44] no Ar Ho He FIS FST

mean 24.50 2.98 0.50 0.52 0.01 Mainland Europe

SE 4.09 0.02 0.02 0.14 0.02 16 pops; montane

Ursenbacher 2015 [77] no Ar Ho He FIS FST

MC mean 16.60 3.62 0.61 0.26 Massif Central

SE 1.00 0.13 0.02 0.01 10 pops; montane

JM mean 23.67 2.70 0.44 0.36 Jura Mountains

SE 2.32 0.26 0.05 0.03 6 pops; montane

AC mean 18.33 4.06 0.67 0.23 Atlantic Coast

SE 0.88 0.01 0.01 0.01 3 pops; lowland

NE mean 17.56 2.46 0.39 0.40 NE France, Belgium, NL

SE 2.29 0.19 0.05 0.03 9 pops; lowland

Bauwens 2018 [78] no NeA Ho He F FST

mean 599.00 2.50 0.52 0.55 0.08 Belgium

SE na 0.26 0.07 0.07 0.03 single pop; lowland

Means and standard errors (SE) for equivalent summary statistics between groups of populations from different studies, except Bauwens 2018, where results are from a

single large population.

Shaded cells denote no comparable information available.

NeA = number of effective alleles; Ho: observed heterozygosity; Hs: gene diversity (expected heterozygosity); F = fixation index.

MC: Massif Central; JR: Jura Mountains; AC: Atlantic coast; NE: north east France, Belgium and Netherlands (NL); na: not applicable.

https://doi.org/10.1371/journal.pone.0231809.t006

Table 7. Comparison of results between small and large study populations.

Size mAr Ar Hs (He) Ho Ho:He FIS FST Rxy FPED

Small Large Small Large Small Large Small Large Small Large Small Large Small Large Small Large Small Large Small Large

min 4 11 2.45 2.74 1.99 2.42 0.50 0.64 0.46 0.62 0.88 0.90 -0.15 -0.08 -0.10 -0.03 0.17 0.14 0.18 0.19

max 10 25 2.97 3.03 2.67 2.79 0.76 0.73 0.77 0.79 1.15 1.08 0.12 0.10 0.16 0.01 0.38 0.27 0.28 0.27

mean 6.14 15.89 2.72 2.92 2.47 2.66 0.66 0.71 0.64 0.70 0.97 0.99 0.03 0.01 0.03 0.01 0.25 0.19 0.24 0.23

SE 0.72 1.74 0.05 0.04 0.04 0.04 0.01 0.01 0.02 0.02 0.04 0.02 0.04 0.02 0.03 0.01 0.02 0.02 0.01 0.01

wcox p <0.001 <0.05 0.09 ns 0.24 ns 0.17 ns 0.35 ns 0.41 ns 0.53 ns 0.10 ns 0.54 ns

Comparison of results between the eight small and eight large study populations (as detailed in Table 1).

mAR: mean allele richness; Ar: allele richness; Ho: observed heterozygosity; Hs: gene diversity; He: expected heterozygosity.

Rxy pairwise relatedness within population; FPED: genetic estimate of inbreeding coefficient.

wcox p: p value from comparison between small and large using Wilcoxon test in R; ns: not significant (p value >0.05).

https://doi.org/10.1371/journal.pone.0231809.t007
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therefore compared individual cluster membership in DAPC with inferred sibship and parent-

age results from COLONY, shown in S5 Fig. The individual membership of large, dominant

half-sibships sharing the same inferred parent in COLONY showed striking concordance with

that of DAPC clusters. By contrast, for larger populations with looser first-degree relationship

networks in COLONY there was poor concordance between COLONY and DAPC cluster

membership, illustrated by the results for the large HL population.

Discussion

The aim of our study was to investigate the genetic status of lowland adders in the UK, in

response to concerns about declining numbers, especially affecting small, fragmented popula-

tions. We initially adopted a standard panel of microsatellite-based summary statistics, includ-

ing genetic diversity and the standard FIS measure of inbreeding, to allow comparison with

published studies of adders in mainland Europe. We also applied the MTAC criterion of a

threshold peak count to categorise study sites into small or large, predicted to be at high or low

risk of decline respectively [34]. This initial panel of genetic tests generated a similar pattern of

results across all the UKAGP study sites, irrespective of size, although there was a modest

decrease in mean allele richness in small populations relative to large. This is likely to have

been influenced by the inevitably small sample size, illustrating the difficulty inherent in ana-

lysing the unavoidably small sample sizes of the most vulnerable populations.

The interpretation of genetic results requires a biologically relevant comparator, especially

for single time-point samples. Estimates of allele richness in the UKAGP study populations

Table 8. Estimate of effective population size by sibship assignment method.

Assuming random mating Assuming non-random mating

n Ne CI 95(L) CI 95 (H) Ne CI 95(L) CI 95 (H) alpha

all 186 186 150 240 120 93 154 0.19

WMHg 96 86 62 116 53 37 80 0.2

BC 6 15 6 >>> 12 5 >>> 0.08

BH 7 7 3 26 7 2 30 0.01

BM 20 14 7 33 11 5 28 0.12

CC 4 8 2 >>> 19 6 >>> -0.19

CH 10 4 8 25 6 2 21 0.13

DUN 25 18 9 36 13 7 31 0.15

EH 11 10 5 30 7 3 28 0.14

HL 20 25 14 30 19 11 42 0.09

KE 6 9 4 96 7 2 487 0.08

MF 13 12 6 30 8 3 28 0.16

MH 9 16 7 64 10 4 43 0.2

MHS 17 16 8 35 10 5 27 0.22

PGC 6 9 4 56 6 2 49 0.13

TM 5 40 8 >>> 26 5 >>> 0.17

WC 11 10 5 28 9 4 26 0.03

WF 16 22 11 54 17 8 41 0.1

GS50 SW 32 14 8 30 12 6 26 0.07

GS50 NE 18 12 6 30 9 4 24 0.12

Effective population size using sibship assignment full likelihood method, with 95% confidence intervals.

all: entire UKAGP dataset; WMHg: WMids Haplogroup; n: sample size; >>>: > 10^9.

https://doi.org/10.1371/journal.pone.0231809.t008
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were similar to those of the large Belgian population [78], and of populations of lowland adders

in Belgium, NE France, and the Netherlands [77], despite the only partially overlapping panels

of microsatellite markers used in the different studies. The mtDNA haplotypes of our study

populations places them within the Northern phylogenetic clade of European adders [37].

They are therefore likely to have been part of the same post-glacial recolonization process as

their counterparts in north-eastern France, in which a central-marginal effect on genetic diver-

sity has been described [77].

Table 9. Testing for population bottlenecks.

Individual Heterozygote excess Mratio

Populations Number TPM 10/90 SMM Mode shift Mean 95% L 95% H

CH 10 0.32 0.37 shift 0.43 0.26 1.00

EH 11 0.03 0.19 shift 0.63 0.25 0.99

MF 13 0.27 0.32 normal 0.43 0.20 0.66

MHS 17 0.37 0.77 normal 0.53 0.29 0.77

BM 20 0.16 0.27 shift 0.49 0.27 0.71

WC 11 0.32 0.42 normal 0.48 0.27 0.69

DUN 25 0.32 0.42 normal 0.43 0.27 0.60

HL 20 0.63 0.84 normal 0.42 0.27 0.57

WF 16 0.00 0.01 shift 0.44 0.30 0.58

simulated dataset

sim UR 200 200 0.77 0.99 normal 0.44 0.23 0.74

sim UR 20 20 0.41 0.81 normal 0.49 0.38 0.61

sim UR 10 10 0.53 0.68 normal 0.36 0.20 0.61

sim UR 5 5 0.10 0.27 shift 0.32 0.16 0.51

Top panel: results of tests using three methods (heterozygote excess, mode shift of allele frequency distribution curve, and Mratio) for populations with sample size�10.

Positive results are shaded.

TPM: two phase model; SMM: stepwise mutation model (see methods for details). Results for heterozygote excess are shown as p values (one-tailed Wilcoxon, 1000

iterations).

Bottom panel: results of tests applied to different sample sizes of simulated populations, comprising individual genotypes drawn randomly from 100 simulated unrelated

pairs, based on the total UKAGP dataset (for which bottleneck tests were negative with all methods), showing false positive results for sample size of 5.

https://doi.org/10.1371/journal.pone.0231809.t009

Fig 3. Inbreeding and pairwise relatedness. Box and whisker plots of genetic estimates of FPED (A), and for pairwise relatedness Rxy (B) for the study populations

(open box) GS50 SW and NE (light shading), and for 100 simulated pairs of genotypes of defined relationship (dark shading). Individual outliers are shown as open

circles.

https://doi.org/10.1371/journal.pone.0231809.g003
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Notably, FIS levels were not significantly above zero in any of the UKAGP study popula-

tions, irrespective of size, indicating retention of heterozygosity, despite the clear risk of

inbreeding depression in fragmented, isolated populations. Our findings are again consistent

with published studies of remnant adder populations of varying sizes in mainland Europe [44,

77]. In small isolated populations of species with high philopatry and low vagility, like the

adder, mating opportunities will inevitably be biased towards relatives [80, 81], and total

avoidance of consanguineous mating could rapidly lead to population extinction [82]. We

therefore investigated other measures of consanguinity, a very valuable comparison for the

effect of size being provided by the Belgian adder population, isolated but thriving, well-stud-

ied, and very much larger than the UKAGP study populations [78].

Identity by descent: Genetic legacy of population demographic history

In all the UK study populations, genetic estimates of the mean inbreeding coefficient FPED

were at a level consistent with the degree of genetic identity expected in the offspring of a one-

off mating between half siblings [73]. However, the nature of the defined relationship of simu-

lated pairs of genotypes, whether unrelated, full-sibling or half-sibling, did not appreciably

influence FPED estimates. This is in keeping with FPED estimates being a measure of cumula-

tive identity by descent, the embedded genetic legacy of long-standing consanguineous breed-

ing. In the WMids Haplogroup, for example, the shared mtDNA haplotype provides evidence

for a historic common ancestor, which could date back to as early as post-glacial colonisation.

Fig 4. GS50: Dividing road acts as barrier to gene flow. (A) Bar chart of inferred parentage of individuals of GS50 sampled from NE and SW of the transecting road.

The best-supported cluster in COLONY for the full GS50 sample inferred a total of 10 parents of one sex (parent A), and 12 of the other sex (parent B). The bar charts

show the number of individuals (“offspring”) from the NE (blue) and SW (orange) assigned to each inferred parent. The difference in inferred parentage is in keeping

with the road acting as a barrier to gene flow. (B) Significantly lower mean pairwise Rxy sampled from different sides of the dividing road (SW to NE (shaded)) than

between individuals sampled from the same side of the road (intra SW, intra NE), again consistent with the road acting as barrier to gene flow.

https://doi.org/10.1371/journal.pone.0231809.g004
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The Belgian site similarly represents a relict population, probably isolated for more than a cen-

tury [78].

Identity by state: Reflection of contemporary relatedness

By contrast pairwise relatedness in simulated pairs of genotypes was significantly and predict-

ably influenced by the defined relationship, providing a very useful template against which to

interpret Rxy results for the study populations. We found a range of patterns of relatedness,

with variable loss or blunting of the modal unrelated peak seen in the simulated unrelated

pairs of genotypes, and right shift of the Rxy distribution curve seen in the half- or full-sibling

simulated pairs. Pairwise Rxy thus generated the most informative results in our study, with

the potential caveat that results may be influenced by cryptic genetic differentiation within the

sample. Repeat studies will be necessary to determine trends and timescales in changing pat-

terns of relatedness.

COLONY results, like Rxy, provide a snapshot estimate of contemporary relatedness

between individuals within the sample, but in the format of best maximum likelihood combi-

nations of inferred genotypes of sibling and parent-offspring dyads. This approach generated

dramatic networks of inferred half-sibships in our study populations. However, in the absence

of pedigree data to inform COLONY analysis, loose networks of inferred half sibships may

Fig 5. Networks of inferred sibships and frequency distribution curves of pairwise relatedness. Network of related individuals at study sites with sample size�10

and for GS50 NE and SW subsamples, according to best maximum likelihood configuration in COLONY. Individuals are shown as a filled circle. Inferred half-sib dyads

are linked by single lines, full-sib dyads by double lines. Individuals with no inferred first-degree relationships are shown as unlinked circles. The proportional frequency

distribution of pairwise relatedness (Rxy) are shown next to the network for that population. Proportional frequency distribution curves of Rxy for simulated pairs of

defined genotypes are shown for comparison.

https://doi.org/10.1371/journal.pone.0231809.g005
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simply reflect identity by state, rather than true first-degree relationships, especially for

inferred half sibships in larger populations [76]. While we sought to minimise this phenome-

non by applying stringent parameters for sibship assignment in COLONY, it is likely to have

been exacerbated by the presence of a high level of background relatedness, as well as by the

relatively limited number of genetic markers. This high level of relatedness is also the likely

explanation for the unexpectedly low estimates of Ne by the sibship method for the GS50

populations.

We found the membership of inferred dominant large sibships in small populations to be

concordant with the assignment of individuals to clusters in DAPC, in keeping with DAPC

clusters reflecting allele frequency patterns driven by a polygynandrous mating system in a

small population, rather than discrete panmictic subpopulations. An equivalent phenomenon

of clustering in DAPC, but not STRUCTURE, has also been described in the Prairie rattle-

snake (Crotalus viridis) [83]. This is an important consideration when DAPC is used to investi-

gate cryptic genetic structure within consanguineous populations.

Inbreeding depression: Protective effect of polyandry

As a single year snapshot, our study is only a starting point, and inevitably limited by population

size, and thus sample size, especially in the study of the most vulnerable populations. We have

nevertheless exposed a previously undocumented degree of consanguinity in wild adder popula-

tions, despite their showing no increase in homozygosity to suggest inbreeding depression. In

models of inbreeding, a system of half-sib mating is more likely to maintain heterozygosity than

one of maximum avoidance of inbreeding [84, 85]. Polyandry, which is widespread in taxa of

live-bearing snakes [86], including the adder [87–89], may thus represent a protective mecha-

nism against inbreeding [82, 90]. Interestingly, Mourier et al (2013) described a very similar net-

work pattern of extensive pairwise relatedness between individuals of the sicklefin lemon shark

(Negaprion acutidens) in French Polynesia [91]. Despite the biological differences, there are

clear similarities in the reproductive ecology between the taxa, the lemon shark also being vivip-

arous, of low female fecundity, with a polyandrous mating system and limited distribution [91].

Inbreeding depression: Size matters

While polyandry may delay, it will not prevent the eventual loss of heterozygosity in isolated

populations, where movement of adders is prevented by loss of connectivity between patches

of fragmented habitat. It is therefore interesting to compare the large, thriving Belgian site,

with high levels of relatedness but no loss of heterozygosity, with the well-documented Swedish

population of adders with unequivocal evidence for inbreeding depression [14–16]. Both sites

have been isolated for more than a century by agricultural landscape, are situated some 20km

from neighbouring adder populations [15, 78], and both would fulfil the MTAC definition of a

large population [34]. However, at 1570ha, the Belgian site is significantly larger than its 20ha

Swedish counterpart, which provides the likely explanation for the difference in inbreeding.

As the Belgian site has more recently been subjected to asymmetric fragmentation by the trun-

cating road, it will be especially interesting to monitor the genetic status of the smaller NE frag-

ment in comparison with its larger SW counterpart unless gene flow can be restored across the

truncating road.

Safety in numbers: Demographic vulnerability of smaller adder

populations

“Unfortunately, the best way to find tipping points so far has been to cross them–a dangerous

proposition” [92]. Our findings suggest that genetic factors are unlikely to be the direct cause
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of the observed decline in small populations of adders. Instead, small populations may already

be “doomed to extinction by demographic factors before genetic effects act strongly” [93], rep-

resenting the “living dead” [94, 95], where continuation of a population or metapopulation

becomes demographically impossible. For example, the reproductive ecology of adders renders

small populations profoundly vulnerable to stochastic sex bias [96–98]. In adders, males are

the actively mate-seeking sex [99, 100], with only a short interval of female sexual receptive-

ness, and thus limited time available for mating, while female adders have low lifetime fecun-

dity, with high fitness costs of reproduction [101, 9, 10], suggesting particular vulnerability of

small adder populations to a limiting number of females. Conversely, a relative reduction in

males would be predicted to impact on any protective effect of polyandry against inbreeding.

Sampling over a limited period precluded an accurate field assessment of sex ratios in our

study, but we are addressing this question of breeding sex ratios in ongoing work.

Future studies

We are using radio-telemetry of adult snakes to inform habitat management, especially with

respect to connectivity [100], in combination with ongoing genetic monitoring of study popu-

lations. This will allow us to investigate the reproductive success of potential mating connec-

tions, generating very interesting data with respect to the breeding system in this secretive

species, including assortative mate choice, overt or cryptic. Pedigree information will also

enhance the interpretation of results in COLONY, including estimates of the effective numbers

of breeding adults.

We plan to use genomic sequencing to increase the number of informative markers avail-

able, especially important for genetic diversity and pedigree studies. In addition, the develop-

ment of a genomic SNP panel will help to increase consistency and comparability across sites

and laboratories, currently hampered by the limited numbers of microsatellite markers, and

potential inconsistencies in their application [102–104]. This will be especially important in

decision making and post-release monitoring in any future adder translocations, whether for

reasons of mitigation or conservation [105–107]. A panel of genomic SNPs will also allow the

investigation of heterozygosity affecting different loci [104], facilitating the study of inbreeding

at the whole genome level. In addition, the pattern of runs of homozygosity [108–112] will

help to elucidate the demographic history of this fascinating species, as well as the identifica-

tion of potential targets of selection [113].

Conclusions

Our results suggest that the most immediate threat to small adder populations is demographic

rather than genetic. For larger populations high levels of relatedness indicate that genetic factors

are likely to represent a real threat, albeit less imminent, but also less visible and thus more

insidious [22]. Continuing monitoring will be essential to determine the urgency and nature of

intervention. Our study thus underscores the need for a systematic, evidence-driven approach

in conservation planning for adder populations, whether healthy or declining, integrating popu-

lation genetics and traditional ecology [33]. In this the “true cost of loss and degradation of hab-

itat” [13] should not be neglected, including public engagement to reduce persecution by

changing the public perception of snakes [114]. Attempts at genetic or demographic rescue may

be similarly doomed unless such underlying factors can be addressed [115].
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S1 Fig. Phylogenetic tree of UKAGP showing mtDNA haplotypes relative to European

clades. Bootstrap consensus tree of UKAGP concatenated Cytb/CR haplotypes (500 replicates)
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relative to homologous sequences in Genbank.

(PPTX)

S2 Fig. Effect of locprior on STRUCTURE results. Bar charts showing proportional member-

ship coefficients of individuals to each of the inferred clusters for K = 3–6, grouped according

to their study population, with locprior option (left) and without (right). Hierarchical cluster-

ing is apparent with both approaches. The colour schemes differ between bar charts.

(PPTX)

S3 Fig. Concordance between STRUCTURE and DAPC. Pie charts for each population of

the WMids Haplogroup, showing the proportion of group membership assigned probabilisti-

cally to K = 3 or K = 6 clusters in analysis applying the locprior option. In each panel the popu-

lations are superimposed on a Venn diagram of overlapping circles according to their broad

proportional membership of the three clusters inferred in STRUCTURE for K = 3. The colour

schemes are independent for STRUCTURE and DAPC. Top left panel: pie charts for K = 3 in

STRUCTURE. Top right panel: pie charts for K = 3 in DAPC. Bottom left panel: pie charts for

K = 6 in STRUCTURE. Top right panel: pie charts for K = 6 in DAPC.

(PPTX)

S4 Fig. DAPC clustering in individual populations. DAPC scatterplots (K = 3) for individual

study populations with sample size� 10, including GS50 SW and NE, showing clearly sepa-

rated clusters.

(PPTX)

S5 Fig. Concordance between COLONY and DAPC. For each population, the network of

COLONY-inferred sibship dyads is shown, together with a table (upper) of inferred parentage

for each individual, and their assignment to one of the clusters of individuals linked at a mini-

mum of half-sibling level. Dominant hypothetical parents are highlighted in the parentage

table and network. The lower table for each population shows bar plots of the probability of

assignment of each individual (in same order as in COLONY) to DAPC clusters. For popula-

tion CH (top left), the assignment of individuals to K = 2 clusters in DAPC is concordant with

the COLONY-defined clusters, assignment of individuals to the largest of K = 3 clusters in

DAPC is concordant with the hypothetical dominant parent of the inferred family structure in

COLONY. Different patterns of concordance are evident in populations MHS, BM, EH and

MF. By contrast, for the larger population HL (bottom right), the membership of DAPC clus-

ters shows poor concordance with the inferred parentage of the larger, looser COLONY net-

work.

(PPTX)
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