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Abstract 
Over the past three decades, the number of people globally with 
diabetes mellitus has more than doubled. It is estimated that by 2030, 
439 million people will be suffering from the disease, 90-95% of whom 
will have type 2 diabetes (T2D). In 2017, 5 million deaths globally were 
attributable to T2D, placing it in the top 10 global causes of death. 
Because T2D is a result of both genetic and environmental factors, 
identification of individuals with high genetic risk can help direct early 
interventions to prevent progression to more serious complications. 
Genome-wide association studies have identified ~400 variants 
associated with T2D that can be used to calculate polygenic risk scores 
(PRS). Although PRSs are not currently more accurate than clinical 
predictors and do not yet predict risk with equal accuracy across all 
ethnic populations, they have several potential clinical uses. Here, we 
discuss potential usages of PRS for predicting T2D and for informing 
and optimising interventions. We also touch on possible health 
inequality risks of PRS and the feasibility of large-scale 
implementation of PRS in clinical practice. Before PRSs can be used as 
a therapeutic tool, it is important that further polygenic risk models 
are derived using non-European genome-wide association studies to 
ensure that risk prediction is accurate for all ethnic groups. 
Furthermore, it is essential that the ethical, social and legal 
implications of PRS are considered before their implementation in any 
context.
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Introduction
Type 2 diabetes mellitus (T2D) is a major global health issue.  
Since the 1990s, the number of people with diabetes has more  
than doubled globally, with 439 million people estimated to be 
suffering from the disease by 2030, 90–95% of whom will have 
T2D1. The International Diabetes Federation estimated that as of 
2015, 1 in 11 adults aged 20-79 worldwide had diabetes mellitus2. 
This pandemic, which for many affected people is debilitating  
and ultimately lethal, must urgently be addressed with effective 
public health measures. Diabetes is a major cause of cardiovascu-
lar and renal failure, retinopathy, blindness and limb amputation,  
and is ranked 7th in the top 10 global causes of premature death  
in 20163.

Patients with diabetes have a 15% increased risk of all-cause  
mortality, which is twice as high (30%) in individuals under the 
age of 554. This is particularly concerning considering that T2D 
is increasingly being observed in children and young adults,  
especially in certain ethnic groups5. Heritability of T2D is  
estimated to be between 25 and 40%6; however, it is predomi-
nantly behavioural and environmental changes resulting from  
worldwide socioeconomic shifts that have fuelled this growing  
pandemic. Indeed, two-thirds of all diabetes cases will occur in 
low-to-middle-income countries in 20307, with China recently  
having overtaken India as the global epicentre1.

In recent years, efforts have been made through genome-wide  
association studies (GWAS) to identify genetic variants  
associated with an increased risk of T2D, with the aim of using 
these variants to calculate individualised polygenic risk scores 
(PRSs). These scores represent a weighted sum of the number  
of risk alleles carried by an individual, where weights are defined 
by each allele’s measured effects in GWAS8. Thus, PRS calculate  
the genetic component of an individual’s overall disease risk  
and can be used to describe both a person’s absolute risk as well as  
an individual’s relative risk compared to the rest of a population.  
The potential utility of PRS lies in three main areas. PRS can 
be used to enhance the timeliness and prediction-accuracy of  
disease onset and progression monitoring, to improve therapeutic  
management through the selection of interventions aimed at  
preventing, curing or containing disease, and they can inform 
genetic counselling and family planning.

Although there are wide-ranging potential applications for  
PRS, there remain some significant limitations; PRS are currently 
significantly more accurate in predicting risk for European than  
non-European populations because of bias in the ethnicities of 
GWAS participants. According to the GWAS catalogue, around 
79% of all GWAS participants are European, despite making up 
only 16% of the global population. Polygenic risk models have 
been shown to be inaccurate when applied to populations different 
to those used for their derivation9,10. Considering that the majority  
of diabetics reside in non-European countries4, this data gap must 
urgently be filled before PRS can be reliably used in a clinical  
context. Recent efforts, such as the H3ABioNet in Africa and  
The Slim Initiative for Genomic Medicine in Mexico11,12, have 
aimed to diversify GWAS whilst simultaneously ensuring that  
additional data and insights generated do not solely provide  

benefits to high-income countries. Taken together, it is now  
timely to discuss the potential advantages in deploying PRSs for 
risk prediction and treatment optimisation whilst reflecting on 
remaining challenges related to wide-scale implementation in  
clinical practice as well as socio-ethical implications.

Developing PRSs for T2D
Early disease detection and prevention are fundamental goals 
of any public health strategy. Genetic risk represents the earli-
est measurable alert for potentially avoidable heritable diseases 
in later life and is thus a useful tool for predicting who should 
be actively targeted with preventative interventions. Recent 
studies suggest that, for a subset of diseases, our knowledge of 
underlying genetics is comprehensive enough now to enable 
polygenic risk profiling based on PRS for personal and clini-
cal use8 (Figure 1)�. Considering the condition’s prevalence, it  
is useful to consider whether polygenic risk profiling for 
T2D is currently reliable enough to be introduced into clini-
cal practice or health and life insurance companies’ risk  
underwriting methodologies.

The aim of polygenic risk modelling is to accurately predict  
the probability of an individual developing T2D based on specific 
single nucleotide polymorphisms (SNPs) in their genome. GWA 
studies identify SNPs that are statistically associated with the  
disease, after which algorithms allow selection of the SNPs that 
should be included in the PRS model13. This step is important 
because GWAS don’t exclusively identify causal variants, and 
inclusion of non-causal variants would significantly reduce the  
predictive performance of PRS models10. Subsequently, the  
weights of the selected SNPs are calculated according to their  
corresponding estimated regression coefficients.

GWAS provide limited information on the genetic architecture  
of a disease because the genes or functional DNA elements  
through which detected variants exert their effects on the traits  
predominantly remain unidentified. This is mainly a result of  
linkage disequilibrium (LD), where two SNPs are inherited  
together more commonly than would be expected if they were  
independent and assorted randomly, leading to the inclusion of  
SNPs that are in LD with a causal gene, rather than being  
causal themselves14. Several approaches have been used to resolve 
this issue, most recently by combining summary-level data from 
GWAS with expression quantitative trait locus (eQTL) studies 
to identify genes whose expression levels are associated with a  
complex trait15–18. These methods are based on the idea that if  
the expression level of a gene is influenced by a genetic variant,  
there will be differences in gene expression levels among  
individuals carrying different genotypes of the variant.

As recently as 2013, the degree of T2D heritability explained  
by identified genetic variants amounted to only 10%19. Thus, it 
was assumed that rare variants may yet be undiscovered. However  
large-scale whole genome sequencing initiatives in following  
years covering five ancestry groups did not support the idea that 
rare variants have a major role in predisposition to T2D20. It is  
also important to note that GWAS do not assess intrauterine  
effects, gene-gene or gene-environment interactions, which may 
account for an additional portion of T2D heritability. Nevertheless,  
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Figure 1. Schematic diagram illustrating the process of developing polygenic risk scores, followed by the advantages and 
downsides of their clinical implementation.

as of 2019, over 400 genetic variants were known to account  
for 20% of T2D heritability21, most likely a result of the expan-
sion of GWAS efforts looking at larger and more ethnically  
diverse groups.

Recent efforts have attempted to account for additional heritability 
by including SNPs below the accepted genome-wide significance 
level to form a ‘global extended polygenic score’; however, this 
risks the inclusion of variants not associated with the disease21. For 
example, if there are unaccounted for differences in the population  
structure of the control and diseased populations in a GWAS,  
SNPs included in the model may be linked to population structure 
rather than the disease. Regardless, studies have suggested that  
lowering the SNP significance threshold does not significantly 
increase predictive ability22.

Are PRSs an improvement over traditional clinical 
predictors of T2D?
Clinical predictors, such as age, sex, body mass index, glycaemia 
and family history of T2D, are typically used to predict T2D risk. 
PRS do not currently allow estimation of risk more accurately  
than by these traditional factors, nor does the addition of risk  
scores to these factors significantly improve prediction accuracy8. 
Predictive models of T2D are typically assessed by their area  

under the curve (AUC), which represents the probability that a  
randomly selected individual with T2D will have a higher  
calculated risk than a randomly selected individual without T2D. 
The AUC of clinical models that take into account biomarkers  
as well as nominal factors typically range between 0.7 and  
0.9, whilst the AUC of three published global, extended polygenic 
risk models not adjusted for age and sex reached only between  
0.64 and 0.6621,23–26. Even when two of these models were  
adjusted for age and sex, the AUC increased to only 0.73. Despite 
these findings, a study by Lyssenko et al. that added a 16 SNP 
PRS to clinical risk scores was able to reclassify 9% and 20% 
of Swedish and Finnish subjects respectively to a higher risk  
category, despite the addition of the PRS only increasing the  
AUC from 0.74 to 0.7527. Additionally, the AUC for the clinical 
model decreased for the same individuals over time, while the  
AUC of the genetic risk score increased. Regardless of these  
results, the AUC is not necessarily the most appropriate measure  
of the clinical utility of PRS. The AUC is a measure of the ability  
of PRS to act as a sensitive diagnostic test, or in other words the 
likelihood that the onset of disease will occur in an individual, 
despite the real value of the risk scores lying in prognosis.

In some cases, information on family history may be difficult to 
obtain, either because the individual is not in contact with direct 
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family members or because the individual is young and family  
members may not yet display symptoms of T2D. Regardless,  
considering that the majority of T2D cases are highly polygenic, 
parent and child generations may carry significantly different  
overall risks because only half of their genes will be inherited  
from each parent. Additionally, unlike phenotypic factors, which 
may be subject to confounding effects of disease and treatment, 
PRS are stable and can be used throughout the life course.

Although polygenic risk models do not improve existing predictive  
methods, they may nevertheless be useful in a clinical context. 
Because the effects of BMI and polygenic risk for diabetes are  
additive, they can be used in combination to distinguish risk  
between individuals with similar clinical characteristics. For  
example, an individual with average BMI and a high PRS may  
have the same overall risk as an individual with high BMI and  
low polygenic risk, potentially allowing identification of risk  
factors with cumulative impact as well as factors that can be  
traded-off against one another8. The combination of clinical risk 
factors with PRS may reclassify some individuals to exceed the 
thresholds that justify certain medical interventions.

Partitioned polygenic scores (pPS) for improving 
T2D prediction
Clinical progression to T2D can be caused by multiple pathophysi-
ological processes. For example, some genetic variants increase  
T2D risk by promoting obesity, whilst others impact insulin  
sensitivity, insulin secretion, islet function or incretin signalling. 
Genetic variants associated with T2D can be broadly grouped 
into pathophysiology-based clusters by hierarchical clustering  
and GWAS that test the association between variants and non- 
disease outcomes. For example, early efforts to group variants in 
this way identified a pathophysiological process that contributes  
to T2D risk through co-causing insulin resistance characterised  
phenotypically by lower levels of adiposity28,29. This represents 
a case where pPS may be more effective than clinical factors in  
accurately predicting likelihood of T2D and facilitate earlier  
diagnosis.

pPS information could become especially useful if correlated  
with downstream morbidities and endpoints associated with T2D. 
Indeed, cluster associations linked to insulin resistance have 
been correlated with coronary artery disease, stroke and the renal  
complications of diabetes30–32. Genetic identification of the risk  
of specific diabetes-related complications could direct targeted 
therapeutic preventative interventions and be used to determine  
by which laboratory parameters and how closely an individual’s 
disease progression should be tracked. For example, individuals  
with cluster associations linked to renal complications might  
want to have more frequent serum creatinine and urea, as well  
as urine albumin and glucose tests to detect any deterioration 
in kidney function as early as possible. It may also be useful  
to screen kidney transplants for specific genes before passing  
them on to patients with diabetes currently on dialysis.

As T2D is highly polygenic, it is more useful to strive for a  
graded model of disease risk than distinct categories. Each  
pathophysiological process contributing to the onset and  

deterioration of T2D can be seen as an individual axis, where a 
patient will be positioned at a particular point ranging from high  
to low T2D risk. Although non-genetic factors also contribute to 
T2D risk, the degree of risk across combined pathophysiological  
axes may inform both disease presentation and progression.  
Progression along axes could potentially be tracked in real time 
if process-specific biomarkers were linked to pPS. For example, 
low-density lipoprotein cholesterol is used as a biomarker for  
the influence of genetics and environmental factors on adverse  
cardiovascular event risk33. The rising amount of large pro-
teomic and metabolomic data sets will facilitate further linking of  
biomarkers to pathophysiological processes in future.

Most treatment plans for T2D aim primarily to maintain a  
steady serum glucose level in order to prevent any damage to the 
epithelium of small arteries and capillaries. However, pPS could 
provide additional, potentially more specific, information to  
inform the treatment or preventative measures of T2D patients or 
probable future patients. Indeed, in a study of 14,813 individuals  
with T2D, one-third fell within the top decile of T2D risk for  
at least one cluster, and of these, 75% were placed in the top  
decile for one specific cluster30. This suggests that there is a  
realistic opportunity to improve T2D treatment through targeted  
interventions. However, drugs that target particular pathways, 
for example sulfonylureas and thiazolidinediones, appear to be 
equally effective in individuals with complementary gene clusters 
as in those without34,35. This is likely because the overall accounted  
for heritability of T2D is still too low to predict differential  
therapeutic outcomes.

Using PRSs to inform interventions
PRS for T2D can be used to identify the most suited therapies  
and preventative behavioural interventions. A study by the Diabetes  
Prevention Program Research Group assigned 3,234 nondiabetics  
with elevated fasting and post-load plasma glucose concentrations  
to placebo, metformin or lifestyle modification programme  
groups36. After 2.8 years, the lifestyle intervention had reduced 
T2D incidence by 58%, while metformin reduced T2D incidence  
by 31% compared to placebo. In an intervention like this, PRS 
could be used to more effectively assign individuals to either  
metformin or the lifestyle modification groups. For example,  
those with a high BMI but low PRS could be selectively  
assigned to the lifestyle modification group, whilst those with 
a high PRS might benefit more strongly from taking metformin 
as well as being advised on lifestyle changes. Those with a high  
PRS and therefore lifelong risk may benefit from a longer-term 
interventional programme that comprises preventative pharmaco-
logical as well as lifestyle interventions.

A significant barrier preventing the clinical implementation of  
PRS is the lack of consensus as to whether behavioural interven-
tions aiming to minimize the environmental component of T2D  
risk are adequately effective. As part of a randomized clinical  
trial, individuals with a high phenotypic risk for T2D were  
genetically tested and enrolled in a 12-week US Diabetes  
Prevention Programme (DPP), if they were shown to be in the  
highest or lowest risk quartiles37. Interestingly, the 6-year  
follow-up results suggested a lower diabetes incidence in the  
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control group among patients enrolled in the DPP without prior 
genetic testing. The mixed evidence around the effectiveness of 
behaviour change interventions may be influenced significantly 
by the duration and content of the DPP, but the lack of consensus  
suggests that it will be very difficult to create a T2D prevention 
programme motivated by genetic risk scores.

Recently, attempts have been made to identify SNPs that have  
pleiotropic associations with several phenotypes or diseases. 
Verma et al.38 developed a network of associations from a large  
phenome-wide association study (PheWAS) on electronic health 
record (EHR) derived phenotypes from the Geisinger’s Biobank. 
Whilst previous similar studies relied on EHR summary statistics 
from disparate studies, this research benefitted from utilising a 
single source of EHR data. Associations were identified between 
632,574 common variants and 541 diagnosis codes. Using these 
associations, pairs of diseases were connected based on their  
shared associations with a given genetic variant. This research 
may serve as a basis for more targeted studies to test for  
comorbidities related to specific phenotypes, which would be  
particularly relevant for T2D. Future research to expand these 
network analyses to link genetic variants with laboratory tests  
for biomarkers will also improve the prospects for targeted  
therapeutic interventions and/or treatment.

Identifying effective behavioural interventions is particularly  
useful in T2D because overall risk can be significantly modified 
through physical exercise and a healthy diet. Although a recent 
large-scale meta-analysis found that genetics-based risk estimates 
do not motivate behaviour change39, and behavioural interventions  
aiming to increase physical exercise levels are usually not  
successful in the long term, individuals at high risk of T2D  
could instead be referred to incentive-driven behaviour change 
interventions, which are generally more successful in motivating  
change40. This approach has recently been rolled out in the UK, 
where the South West London Health and Care Partnership  
has joined up with Sweatcoin41, a phone-based fitness app 
that rewards users with vouchers and cash based on their step  
count. Early results from a cohort of 70 individuals show a 90% 
retention rate after three weeks42,43. Another advantage of such  
an incentive-driven intervention approach is its cost-effectiveness.  
The study suggests that the rewards will cost the NHS an  
average of £25 over 10 weeks per patient and will save £3,000 for  
each year that Diabetes onset is delayed42. Individuals who are  
identified before the onset of clinical predictors to have a high  
polygenic risk for T2D could easily be referred to this programme 
as a preventative measure, with a positive return on investment  
for the NHS.

Digital approaches to T2D prevention have a number of  
advantages over face-to-face behavioural interventions. To be  
successful, face-to-face interventions require sustained active  
input over long periods of time. This may be difficult for people 
with long working hours or care commitments to sustain, and for 
some there may be stigma associated with ‘needing’ behaviour  
change counselling, potentially prompting them to drop out 
of lifestyle modification programmes. Moreover, face-to-face  
programmes are labour-intensive and thus expensive, particularly  
when implemented on a large scale, in contrast to digital  

programmes. In response to these challenges, the NHS is now  
trialling five digital intervention programmes to combat T2D,  
combining phone calls, automated prompts, digital support groups 
and digital activity monitoring44. In future, if proven effective,  
routine polygenic risk testing could become the basis for  
assigning high-risk individuals to bespoke combinations of  
cost-effective behavioural intervention programmes. Moreover,  
direct-to-consumer genetic testing companies that provide  
information on T2D risk could develop new service lines  
directing high-risk individuals to suitable self-help digital  
applications.

Using PRSs to optimise treatment of T2D
As well as being used to inform preventative therapeutic  
interventions, PRS can be leveraged to optimise treatment after the 
onset of disease. T2D has two major underlying pathophysiologies. 
One involves impaired insulin secretion, whilst the other involves 
downstream insulin resistance. GWAS has identified variants  
distinctly associated with dysregulation of both of these  
pathways45. Using pPS, an individualised ‘palette’ can in theory  
be generated to quantify the level of genetic risk affecting each  
of these two pathways. Drugs that are currently prescribed to  
treat T2D individually target these specific pathways. For  
example, sulfonylureas and meglitinides stimulate insulin 
release while metformin and thiazolidinediones improve insulin  
sensitivity.

Additionally, individual variants revealed by polygenic risk  
assessment could also be used to direct treatment. If the function  
of an individual exonic SNP is known, its pathophysiological  
effects can be pharmacologically targeted. However, in practise,  
linking T2D SNPs to their mechanistic functions has been  
difficult and has yielded mixed results. For example, the human 
mutation SLC30A8 protects against T2D, whilst it is associated 
with an increased risk of disease in mice46. On the other hand, a 
variant in the ADRA2A gene has been identified as impairing  
insulin secretion in GK rats through the over-expression of the 
α2A-adrenergic receptor in islet cells47,48. Humans carrying the 
variant were subsequently treated with yohimbine, an inhibitor  
of the receptor, resulting in a dose-dependent improvement in  
insulin secretion48.

However, specific pharmacological targeting is not straightfor-
ward. It is likely that during clinical progression of T2D, one 
primary pathophysiological pathway modulates the other. For 
example, an inherited increased resistance to insulin may result 
in epigenetic regulation to increase the production of insulin, 
thereby skewing the ‘palette’ and reducing the effectiveness of 
targeted therapies. This idea is supported by evidence that sul-
fonyureas initially overcome insulin resistance reflected in a sig-
nificant HbA1c  decline, but subsequently HbA1c levels gradually 
rise again, possibly as a result of the drug’s acceleration of β-cell 
failure49. Moreover, the long-term modifying effects of pharmaco-
logical treatments on underlying physiology becomes increasingly 
complicated when a patient is being treated with several medica-
tions, as multimorbidity is common in patients with T2D. Regard-
less, the low accounted for heritability of T2D means that it is 
unlikely that treatment targeted to one pathophysiological pathway  
will cause detectable improvements in treatment outcomes.
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In recent decades in affluent health systems, T2D patients have 
increasingly been enrolled in structured disease management  
programmes (DMPs) comprising a broad range of elements, such  
as disease awareness and self-monitoring training, lifestyle  
behaviour-change programmes, therapy-compliance monitoring  
and motivational prompts, medical appointment scheduling,  
and/or even reward schemes for positive risk-reducing behaviour.  
Such programmes have been shown to increase the number of  
T2D patients effectively medicated with stable HbA1c levels  
within the healthy range, reduce the number of necessary  
hospital admissions, and delay the onset of T2D complications50. 
However, the capacity of health systems to fund and deliver  
such DMPs is obviously limited due to cost.

Health inequality risks of PRSs
As a result of a strong European bias in the ethnicities of  
GWAS participants, current PRS models are significantly more 
accurate in predicting disease risks in European populations than 
other ethnicities. When prediction accuracy for 17 traits was 
assessed across an ethnically diverse population sourced from  
the UK Biobank using European summary statistics, genetic  
prediction was on average 1.6-fold lower in South Asians, 2-fold  
lower in East Asians and 4.5-fold lower in Africans than in  
Europeans51. The same study also found that prediction accuracy 
is consistently higher when using GWAS summary stats from an 
ancestry-matched population.

In the case of T2D, the lack of predictive accuracy is particularly 
concerning considering that three quarters of the global burden 
of the disease falls in low- and middle-income counties52, and the  
diabetes-related mortality rate is more than twice as high in  
low- and middle-income countries compared to high-income 
countries53. Moreover, the prevalence and incidence of T2D varies 
considerably by ethnicity, with significantly higher rates observed 
among people of South Asian, Indigenous Australian, and African 
origin1,54.

The lack of non-European participants in GWAS affects the  
quality of PRS for Europeans as well as non-Europeans. Previous  
studies have shown that GWAS derived from non-Europeans  
contribute a disproportionally high number of GWAS associations  
compared to Europeans51. Furthermore, non-Europeans may  
carry some gene variants of large frequency or effect that have a 
relatively low frequency or effect in Europeans. For example, the 
SIGMA Type 2 Diabetes Consortium identified SLC16A11 as a 
novel locus associated with T2D that is present at ~50% frequency  
in Native American samples and ~10% in East Asian samples,  
but is rare in European and African samples55.

Differences in T2D risk related to ethnicity mean that the  
absolute ranges of risk categories depend essentially on the  
reference population. An absolute score which in one population 
indicates a very high risk may in another population represent a 
much lower risk. A study by Reisberg et al.56, which developed a 
polygenic risk model for T2D and tested it on different populations,  
found that when the absolute genetic risk cut offs from the  
European population were applied to individuals with African  
ancestry, all these individuals were identified as having an  

extremely high genetic risk. Although T2D incidence does vary 
by ethnicity, the difference in rates does not explain such a large  
variability in PRS distributions.

One way to tackle this issue is to simply recalculate absolute  
PRS distribution cut-offs for the assessed population by using  
only data from a matched ethnic population. This would solve  
the problem relatively easily for a homogenous population. In 
admixed populations, however, where individuals tend to have 
a mixed set of SNPs originating from multiple ethnicities, no  
appropriate reference population is likely to be found. In such 
cases, one would in theory first have to identify each individual’s  
personal ancestry and then adjust risk scores accordingly.  
However, this requires a complicated trans-ethnic understanding  
of disease-associated SNPs supported by extremely large data 
sets56.

Carlson et al.57 argue that such high-risk scores are observed in  
non-European populations because of the LD in GWAS. 
LD between causal and associated SNPs varies in different  
populations, and because the majority of available GWAS  
data is based on Europeans, current models will mainly include 
non-causal variants that reflect European patterns of linkage  
disequilibrium. This means that the effect size of approximately  
a quarter of SNPs will be overestimated in non-European  
ancestries57. This clearly illustrates the predictive inaccuracy 
of PRS in their current state; incorrectly defining an entire  
population as having an extremely high risk of disease would  
likely lead to stigma and exacerbation of existing health  
inequalities.

The prevalence of overweight or obesity is generally lower in  
most Asian than white populations, and Asian individuals tend  
to develop T2D at a lower BMI than Europeans, suggesting that  
the overall risk of developing T2D in Asians is higher compared  
with Europeans at any given BMI level1. The attenuated  
predictive power of PRS in non-Europeans should urgently be 
addressed by researchers as T2D risk in Asian populations is  
clearly more difficult to predict using clinical factors than in  
European populations. In the UK, where the implementation of 
PRS currently appears most feasible following the UK Health  
Secretary’s outlined plans for a ‘genomic revolution’58, 7.5%  
of the population in 2018 was Asian and 3.3% was Black (African  
and Caribbean), meaning that rolling out polygenic risk models  
in their current forms would risk exacerbating ethnic health  
inequalities and disadvantaging those who are likely to have the 
highest T2D risk based on their ethnicity.

Recently, various public health initiatives have been launched to 
expand genomic testing and research capacity in low- and middle- 
income countries especially focussing on those populations  
currently disadvantaged by this lack of predictive ability. In 2010, 
the US National Institute of Health (NIH) and the Wellcome Trust 
established a partnership to support population-based genetic  
studies in Africa. The Human Heredity and Health in Africa  
Project (H3Africa) received more than $216 million to study  
common non-communicable disorders (including Diabetes) 
using genetic, clinical and epidemiological screening tools. The 
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project has already resulted in the discovery of novel variants  
associated with stroke, as well as mapping the regional variation 
of cardio-metabolic disease-related risk factors59. In the same  
year, a second similar initiative was launched in Mexico. The  
Slim Initiative for Genomic Medicine, a collaboration between 
Mexico’s National Human Genome Research Institute and the  
US Broad Institute is enabling researchers to study Latin  
American populations12. These two international projects will  
hopefully yield valuable new insights greatly increasing the  
applicability of T2D PRS in the future.

How feasible is the implementation of PRSs?
Thus far, we have covered the advantages of using PRSs for  
T2D intervention. The use of PRSs in a clinical setting is not  
without challenges. First, there is an issue on the cost effectiveness 
of PRS.

Whether or not to integrate and promote the use of PRS in T2D  
prevention and treatment decisions is ultimately a question of 
whether PRS can be made accessible to genetic counsellors,  
physicians and of course, patients in a cost-effective and timely 
manner, and can provide equal or better predictive accuracy than 
relying solely on clinical predictors for T2D. In some respects,  
the price of genetic testing reflects the predictive power of  
polygenic risk models and whether PRS are reliable enough 
for clinical use, in so far as prices will go down faster the more  
testing is performed. Second, the proposed application of PRS  
warrants significant ethical and social considerations. The poten-
tial for psychological harm resulting from T2D risk prediction is  
supported by evidence that 52% of Americans with T2D report 
experiencing stigma60. Furthermore, 57% of low-income African 
American diabetics reported at least one experience of stigma  
from a family member61. Within the group reporting stigma,  
incidence was strongly linked to BMI60, suggesting that negative  
psychological effects associated with T2D prediction could be 
linked to a fear of being/becoming overweight rather than of  
T2D itself.

Conclusions
There is little evidence that PRS currently enable more accurate  
prediction of T2D risk in adults than relying on traditional  
clinical factors. But as GWAS cohorts become more diverse, and 
large samples become more easily “correlatable” with patient 
journey data through accurately codified EHRs, it is by no  

means unlikely that over time this may change. Additionally,  
there is a rationale to further develop and track the accuracy  
of PRS-based predictions for all non-communicable diseases  
over longer periods of time in light of the NHS’ commitment to 
moving towards personalised, genomics-based medicine. More 
research should also therefore be conducted on pPS, genetic  
clusters that could predict T2D complications based on relation-
ships between genetics and EHRs, to inform better monitoring  
(in combination with new biomarker discoveries) or choice of 
therapeutic interventions. Furthermore, PRS could potentially be 
deployed  to assign those with highest genetic risk to effective 
DMPs, and direct-to-consumer testing can also steer high-risk 
individuals to effective DMPs, incorporating digital interventions,  
which are cheap and effective especially if supported by  
compliance-enhancing tools and incentive schemes.

Despite their potential, the implementation of PRS face signifi-
cant challenges. PRS are not yet as accurate at predicting risk 
in non-Europeans as in Europeans. More GWAS are needed in  
low- and middle-income countries, especially as the number of 
individuals with diabetes is growing most rapidly in many Asian 
and African countries. However, in these countries available  
healthcare funding is predominantly focussed on acute care  
needs of the population. Therefore, GWAS initiatives should be 
combined with efforts to improve research infrastructure and  
scientific training in many affected but underrepresented regions  
of the globe. In addition, internationally agreed policies  
accompanied by effective enforcement controls should be called  
for in projects to expand GWAS to low- and middle-income  
countries.

Finally, despite the multitude of potential uses for PRS, imple-
mentation is ultimately a trade-off between their clinical validity  
and utility, and their cost effectiveness. Health systems with  
constrained budgets are forced to make difficult ethical decision 
to set a price limit for each quality-adjusted life-year they are  
willing to gain from an intervention or medication, and existing 
peer-reviewed frameworks must be deployed to assess whether  
the overall benefit of a genetic test outweighs its costs. Under  
current guidelines, PRS have a significant way to go before they 
fulfil the criteria for widespread implementation.

Data availability
No data are associated with this article.
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