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Abstract
Motivation: Analysis of the T cell receptor repertoire is rapidly entering the general toolbox used by 
researchers interested in cellular immunity. The annotation of T cell receptors (TCRs) from raw 
sequence data poses specific challenges, which arise from the fact that TCRs are not germline 
encoded, and because of the stochastic nature of the generating process.
Results In this study, we report the release of Decombinator V4, a tool for the accurate and fast 
annotation of large sets of TCR sequences. Decombinator was one of the early Python software 
packages released to analyse the rapidly increasing flow of T cell receptor repertoire sequence data. 
The Decombinator package now provides Python 3 compatibility, incorporates improved sequencing 
error and PCR bias correction algorithms, and provides output which conforms to the international 
standards proposed by the Adaptive Immune Receptor Repertoire Community. 

Availability and Implementation
The entire Decombinator suite is freely available at: 
https://github.com/innate2adaptive/Decombinator.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 

1.1  The analysis of T cell and B cell antigen receptor sequences is 
challenging because the final somatic DNA sequences from which the 
receptors are transcribed and then translated are produced after a series 

of cell intrinsic recombination events which  irreversibly change the 
somatic genome. Decombinator was one of the early Python software 
packages released to process the rapidly increasing flow of new T cell 
receptor repertoire sequence data, and to infer the precise set of 
recombination events which give rise to each sequence read (Thomas et 
al., 2013).  The strategy underlying Decombinator is to use a finite state 
machine to classify individual TCR sequences using a set of molecular 
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tags uniquely matching individual V and J regions of the T cell locus. It 
is based on the Aho-Corasick algorithm (Aho and Corasick, 1975) which 
remains the fastest way to execute exact multiple key word searches. The 
algorithm uses a pre-constructed key word trie to match a set of queries 
to targets. The speed scales linearly with the number of key words and 
the length of the target string, thus substantially outperforming 
commonly used local alignment algorithms, especially when the number 
of key words becomes large. Decombinator has been freely available on 
GitHub since its original publication, and has been frequently extended 
and modified. The name Decombinator originally referred specifically to 
the Python module which inferred the underlying recombination events 
giving rise to each read. However, the same name has now been 
extended to refer to a whole package of modules, of which the original 
Decombinator is one. The package now incorporates additional modules 
providing multiple sample demultiplexing based on sample-specific dual 
barcoding (Demultiplexor), unique molecular identifier (UMI)-based 
functions to correct for sequencing error and PCR bias (Collapsinator), 
and translation modules to provide CDR and full length TCR amino acid 
sequences (CDR3Translator). Although the package has been used in 
several published studies e.g. (Joshi et al., 2019; Wong et al., 2018; 
Oakes et al., 2017a; Heather et al., 2016; Gkazi et al., 2018), none of the 
changes to the original Decombinator have been formally published. In 
this short report, we document some major changes to the Decombinator 
package, which we have released on GitHub as Decombinator V4 
(https://github.com/innate2adaptive/Decombinator). 

1.2  Decombinator V4 has been ported to Python 3, since support for 
Python 2 ended in 2019. We have redesigned the error correction 
algorithms in Collapsinator,  resulting in significantly improved 
robustness to PCR/sequencing error correction based on UMI clustering. 
This is described in more detail below. Importantly, we have completely 
reconfigured the output of the CDR3Translator module, so the final 
output is now fully compliant with the International Adaptive Immune 
Receptor Repertoire (AIRR) Community recommendations 
(https://docs.airr-community.org/en/latest/). This greatly improves the 
utility of Decombinator, as it ensures the output is compatible with the 
growing number of secondary repertoire analysis tools which are being 
released. 

2. Results and Discussion 

Full details describing installation and use of the four 
Decombinator modules is available on GitHub 
(https://github.com/innate2adaptive/Decombinator), 
together with some test data sets. Instead, we focus 
on evaluation of the most significant development 
since our original publication, the UMI-based PCR 
bias and sequencing error correction function of the 
Collapsinator module, and we briefly outline the 
output fields produced by CDR3Translator. 
We first compared the output of Decombinator on a 
simulated “ground truth” set of TCRs generated 
using IGoR (Marcou et al., 2018) as described in the 
Supplementary Methods. Decombinator V4 correctly 

annotated 92.7 +/- 0.5 % (mean +/- standard 
deviation) of the sequences. CDR3 sequences were 
correctly identified in 98.1 +/- 0.5 % of the 
sequences. The majority of miss-annotations 
occurred in relation to very similar sub-families of V 
region (e.g. TRBV6-1, TRBV6-2, TRBV6-3; or 
TRB12-1, TRBV12-2) between which the 
Decombinator tags do not distinguish. 
A pseudocode description of the Collapsinator 
module is shown in Fig 1, and is discussed in more 
detail in the Supplementary Methods. We evaluated 
the error correction performance of Collapsinator by 
simulating PCR amplification and Illumina 
sequencing of the “ground truth” TCR repertoires, 
and then measuring how well Collapsinator 
recovered the sequences and their abundances 
present before PCR (see Supplementary Methods). 
From 10,000 sequences present before 
PCR/sequencing, all but 2 +/- 1 (mean +/- standard 
deviation) were recovered by Collapsinator. A small 
number of sequences (109 +/- 15) were introduced 
by PCR or sequencing error and were erroneously 
retained by Collapsinator even after error correction. 
The correlation coefficient between the abundances 
of the original set of sequences, and the output of 
Collapsinator was 0.97 +/- 0.7. By comparison, 
Collapsinator V3 (the previous version) introduced 
5855 +/- 335 new “error” sequences, and the 
correlation coefficient was 0.86 +/- 0.006.  

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa758/5898187 by U

C
L, London user on 14 Septem

ber 2020

https://github.com/innate2adaptive/Decombinator


Article short title

Fig 1. Pseudocode outlining the main functionality of 
the Collapsinator script. TCR data in the 
Decombinator format is read into the program and 
initially grouped by barcode. Each of these groups 
undergo pairwise comparison, whereby the barcode 
(bci) and the most frequent TCR sequence (TCRi) of 
group i is compared to the barcode (bcj) and the 
most frequent TCR sequence (TCRj) of group j. If 
barcodes bci and bcj are similar relative to the 
barcode threshold (th_bc), and sequences TCRi and 
TCRj are similar relative to the sequence threshold 
(th_tcr), then groups i and j are merged. The merged 
groups are here referred to as clusters. Similarity 
measures are taken as the Levenshtein distance for 
barcodes, and a percentage based Levenshtein 
distance for TCR sequences (Levenshtein distance 
weighted by length of sequence). The two thresholds 
are user-configurable. Once every group has been 
clustered, the TCR identifying classifier (V gene, J 
gene, no. of V deletions, no. of J deletions, insert 
sequence) of each TCR in the biological sample is 
output to file, accompanied by the number of times 
that TCR was found in the sample (TCR count) and 
the mean cluster size (BC count) associated with 
that TCR.

The CDR3Translator module has also been 
substantially rewritten. The output is a tab separated 
file, in the AIRR Community format (Vander Heiden 
et al., 2018), in which each row represents a unique 

DNA sequence defined by Decombinator. Since the 
same amino acid sequences can be coded for by 
different DNA sequences, the amino acid sequences 
encoded by each row are not necessarily unique. 
Mandatory AIRR columns include V and J gene, 
using IMGT nomenclature (but note that the current 
Decombinator version does not distinguish alleles),  
the CDR3 sequence (or more specifically the 
“junction” rather than CDR3, which includes the 
conserved bracketing C and F residues (Lefranc, 
2014), and the number of times the TCR was 
recorded in the initial dataset. Additional columns 
include CDR1 and CDR2 sequences, as defined by 
IMGT, and the complete DNA and protein sequence 
excluding the leader sequences. A False/True flag 
identifies all the non-productive sequences identified, 
which are included in the output file by default. The 
format permits additional non-required fields, which 
we use to output information such as the traditional 
five-part Decombinator classifier, facilitating 
comparisons with the output of previous versions. 
Finally, each TCR is associated with a mean cluster 
size (BC count, see fig 1) , which can be used to 
estimate the robustness of the data for that particular 
sequence.
In conclusion, we report the release of Decombinator 
V4 for the rapid and accurate annotation of TCR 
sequence data. Although designed to work optimally 
on data obtained by the experimental pipeline library 
preparation protocol we developed (Uddin et al., 
2019; Oakes et al., 2017b), Decombinator is broadly 
applicable to a variety of TCR sequencing protocols. 
Furthermore, compliance with AIRR Community 
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output standards will ensure that the data produced 
by Decombinator can be readily used by the growing 
number of TCR analysis tools now available to the 
Immunological community.
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