
Subject Section

Decombinator V4 – an improved AIRR-compliant
software package for T cell receptor sequence
annotation
Thomas Peacock*1,4, James M. Heather*2, Tahel Ronel*3 and Benny Chain1,4,+

1. Division of Infection and Immunity, UCL, UK
2. Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
3. Cancer Institute, UCL, UK
4. CoMPLEX, Department of Computer Science, UCL, UK

* these authors contributed equally to the study

+ To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Analysis of the T cell receptor repertoire is rapidly entering the general toolbox used by
researchers interested in cellular immunity. The annotation of T cell receptors (TCRs) from raw
sequence data poses specific challenges, which arise from the fact that TCRs are not germline
encoded, and because of the stochastic nature of the generating process.
Results In this study, we report the release of Decombinator V4, a tool for the accurate and fast
annotation of large sets of TCR sequences. Decombinator was one of the early Python software
packages released to analyse the rapidly increasing flow of T cell receptor repertoire sequence data.
The Decombinator package now provides Python 3 compatibility, incorporates improved sequencing
error and PCR bias correction algorithms, and provides output which conforms to the international
standards proposed by the Adaptive Immune Receptor Repertoire Community.

Availability and Implementation
The entire Decombinator suite is freely available at:
https://github.com/innate2adaptive/Decombinator.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 The analysis of T cell and B cell antigen receptor sequences is
challenging because the final somatic DNA sequences from which the
receptors are transcribed and then translated are produced after a series

of cell intrinsic recombination events which irreversibly change the
somatic genome. Decombinator was one of the early Python software
packages released to process the rapidly increasing flow of new T cell
receptor repertoire sequence data, and to infer the precise set of
recombination events which give rise to each sequence read (Thomas et
al., 2013). The strategy underlying Decombinator is to use a finite state
machine to classify individual TCR sequences using a set of molecular

© The Author(s) 2020. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the

original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa758/5898187 by U

C
L, London user on 14 Septem

ber 2020

K.Takahashi et al.

tags uniquely matching individual V and J regions of the T cell locus. It
is based on the Aho-Corasick algorithm (Aho and Corasick, 1975) which
remains the fastest way to execute exact multiple key word searches. The
algorithm uses a pre-constructed key word trie to match a set of queries
to targets. The speed scales linearly with the number of key words and
the length of the target string, thus substantially outperforming
commonly used local alignment algorithms, especially when the number
of key words becomes large. Decombinator has been freely available on
GitHub since its original publication, and has been frequently extended
and modified. The name Decombinator originally referred specifically to
the Python module which inferred the underlying recombination events
giving rise to each read. However, the same name has now been
extended to refer to a whole package of modules, of which the original
Decombinator is one. The package now incorporates additional modules
providing multiple sample demultiplexing based on sample-specific dual
barcoding (Demultiplexor), unique molecular identifier (UMI)-based
functions to correct for sequencing error and PCR bias (Collapsinator),
and translation modules to provide CDR and full length TCR amino acid
sequences (CDR3Translator). Although the package has been used in
several published studies e.g. (Joshi et al., 2019; Wong et al., 2018;
Oakes et al., 2017a; Heather et al., 2016; Gkazi et al., 2018), none of the
changes to the original Decombinator have been formally published. In
this short report, we document some major changes to the Decombinator
package, which we have released on GitHub as Decombinator V4
(https://github.com/innate2adaptive/Decombinator).

1.2 Decombinator V4 has been ported to Python 3, since support for
Python 2 ended in 2019. We have redesigned the error correction
algorithms in Collapsinator, resulting in significantly improved
robustness to PCR/sequencing error correction based on UMI clustering.
This is described in more detail below. Importantly, we have completely
reconfigured the output of the CDR3Translator module, so the final
output is now fully compliant with the International Adaptive Immune
Receptor Repertoire (AIRR) Community recommendations
(https://docs.airr-community.org/en/latest/). This greatly improves the
utility of Decombinator, as it ensures the output is compatible with the
growing number of secondary repertoire analysis tools which are being
released.

2. Results and Discussion

Full details describing installation and use of the four
Decombinator modules is available on GitHub
(https://github.com/innate2adaptive/Decombinator),
together with some test data sets. Instead, we focus
on evaluation of the most significant development
since our original publication, the UMI-based PCR
bias and sequencing error correction function of the
Collapsinator module, and we briefly outline the
output fields produced by CDR3Translator.
We first compared the output of Decombinator on a
simulated “ground truth” set of TCRs generated
using IGoR (Marcou et al., 2018) as described in the
Supplementary Methods. Decombinator V4 correctly

annotated 92.7 +/- 0.5 % (mean +/- standard
deviation) of the sequences. CDR3 sequences were
correctly identified in 98.1 +/- 0.5 % of the
sequences. The majority of miss-annotations
occurred in relation to very similar sub-families of V
region (e.g. TRBV6-1, TRBV6-2, TRBV6-3; or
TRB12-1, TRBV12-2) between which the
Decombinator tags do not distinguish.
A pseudocode description of the Collapsinator
module is shown in Fig 1, and is discussed in more
detail in the Supplementary Methods. We evaluated
the error correction performance of Collapsinator by
simulating PCR amplification and Illumina
sequencing of the “ground truth” TCR repertoires,
and then measuring how well Collapsinator
recovered the sequences and their abundances
present before PCR (see Supplementary Methods).
From 10,000 sequences present before
PCR/sequencing, all but 2 +/- 1 (mean +/- standard
deviation) were recovered by Collapsinator. A small
number of sequences (109 +/- 15) were introduced
by PCR or sequencing error and were erroneously
retained by Collapsinator even after error correction.
The correlation coefficient between the abundances
of the original set of sequences, and the output of
Collapsinator was 0.97 +/- 0.7. By comparison,
Collapsinator V3 (the previous version) introduced
5855 +/- 335 new “error” sequences, and the
correlation coefficient was 0.86 +/- 0.006.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa758/5898187 by U

C
L, London user on 14 Septem

ber 2020

https://github.com/innate2adaptive/Decombinator

Article short title

Fig 1. Pseudocode outlining the main functionality of
the Collapsinator script. TCR data in the
Decombinator format is read into the program and
initially grouped by barcode. Each of these groups
undergo pairwise comparison, whereby the barcode
(bci) and the most frequent TCR sequence (TCRi) of
group i is compared to the barcode (bcj) and the
most frequent TCR sequence (TCRj) of group j. If
barcodes bci and bcj are similar relative to the
barcode threshold (th_bc), and sequences TCRi and
TCRj are similar relative to the sequence threshold
(th_tcr), then groups i and j are merged. The merged
groups are here referred to as clusters. Similarity
measures are taken as the Levenshtein distance for
barcodes, and a percentage based Levenshtein
distance for TCR sequences (Levenshtein distance
weighted by length of sequence). The two thresholds
are user-configurable. Once every group has been
clustered, the TCR identifying classifier (V gene, J
gene, no. of V deletions, no. of J deletions, insert
sequence) of each TCR in the biological sample is
output to file, accompanied by the number of times
that TCR was found in the sample (TCR count) and
the mean cluster size (BC count) associated with
that TCR.

The CDR3Translator module has also been
substantially rewritten. The output is a tab separated
file, in the AIRR Community format (Vander Heiden
et al., 2018), in which each row represents a unique

DNA sequence defined by Decombinator. Since the
same amino acid sequences can be coded for by
different DNA sequences, the amino acid sequences
encoded by each row are not necessarily unique.
Mandatory AIRR columns include V and J gene,
using IMGT nomenclature (but note that the current
Decombinator version does not distinguish alleles),
the CDR3 sequence (or more specifically the
“junction” rather than CDR3, which includes the
conserved bracketing C and F residues (Lefranc,
2014), and the number of times the TCR was
recorded in the initial dataset. Additional columns
include CDR1 and CDR2 sequences, as defined by
IMGT, and the complete DNA and protein sequence
excluding the leader sequences. A False/True flag
identifies all the non-productive sequences identified,
which are included in the output file by default. The
format permits additional non-required fields, which
we use to output information such as the traditional
five-part Decombinator classifier, facilitating
comparisons with the output of previous versions.
Finally, each TCR is associated with a mean cluster
size (BC count, see fig 1) , which can be used to
estimate the robustness of the data for that particular
sequence.
In conclusion, we report the release of Decombinator
V4 for the rapid and accurate annotation of TCR
sequence data. Although designed to work optimally
on data obtained by the experimental pipeline library
preparation protocol we developed (Uddin et al.,
2019; Oakes et al., 2017b), Decombinator is broadly
applicable to a variety of TCR sequencing protocols.
Furthermore, compliance with AIRR Community

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa758/5898187 by U

C
L, London user on 14 Septem

ber 2020

K.Takahashi et al.

output standards will ensure that the data produced
by Decombinator can be readily used by the growing
number of TCR analysis tools now available to the
Immunological community.

Acknowledgements

We are grateful to Rob de Boer, Peter de Greef and Bram Gerritsen for
helpful discussions especially in respect to the error correction algorithm,
and for careful reading of the manuscript.

Funding

This work was undertaken with support from the Cancer Immunotherapy
Accelerator Award (CITA-CRUK) (C33499/A20265), CRUK's Lung Cancer
Centre of Excellence (C5759/A20465), The National Institute for Health
Research UCL Hospitals Biomedical Research Centre, Kidney Cancer UK, the
Royal Free Charity and a Cancer Research UK (CRUK) Project Grant to BC.
Conflict of Interest: none declared.

References

Aho,A. V and Corasick,M.J. (1975) Efficient String Matching: An Aid
to Bibliographic Search. Commun. ACM, 18, 333–340.

Gkazi,A.S. et al. (2018) Clinical T Cell Receptor Repertoire Deep
Sequencing and Analysis: An Application to Monitor Immune
Reconstitution Following Cord Blood Transplantation. Front.
Immunol., 9, 2547.

Heather,J.M. et al. (2016) Dynamic perturbations of the T-Cell receptor
repertoire in chronic HIV infection and following antiretroviral
therapy. Front. Immunol., 6.

Vander Heiden,J.A. et al. (2018) AIRR Community Standardized
Representations for Annotated Immune Repertoires. Front. Immunol.,
9, 2206.

Joshi,K. et al. (2019) Spatial heterogeneity of the T cell receptor repertoire
reflects the mutational landscape in lung cancer. Nat. Med., 25, 1549–
1559.

Lefranc,M.-P. (2014) Immunoglobulin and T Cell Receptor Genes:
IMGT® and the Birth and Rise of Immunoinformatics. Front.
Immunol., 5, 22.

Marcou,Q. et al. (2018) High-throughput immune repertoire analysis with
IGoR. Nat. Commun., 9.

Oakes,T. et al. (2017a) Quantitative Characterization of the T Cell
Receptor Repertoire of Naïve and Memory Subsets Using an
Integrated Experimental and Computational Pipeline Which Is Robust,
Economical, and Versatile. Front. Immunol., 8, 1267.

Oakes,T. et al. (2017b) Quantitative Characterization of the T Cell
Receptor Repertoire of Naïve and Memory Subsets Using an
Integrated Experimental and Computational Pipeline Which Is Robust,
Economical, and Versatile. Front. Immunol., 8.

Thomas,N. et al. (2013) Decombinator: A tool for fast, efficient gene
assignment in T-cell receptor sequences using a finite state machine.
Bioinformatics, 29.

Uddin,I. et al. (2019) Quantitative analysis of the T cell receptor
repertoire. Methods Enzymol., 629, 465–492.

Wong,Y.N.S. et al. (2018) Urine-derived lymphocytes as a non-invasive
measure of the bladder tumor immune microenvironment. J. Exp.
Med., 215, 2748–2759.

.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa758/5898187 by U

C
L, London user on 14 Septem

ber 2020

