
REALISATION OF PARALLEL (P,Q) COUNTERS
FOR

HIGH-SPEED ARRAY MULTIPLIERS

BY

BAKRI MADON

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING 

UNIVERSITY COLLEGE LONDON

Submitted in accordance with the requirements 

for the degree of 

Doctor of Philosophy

September 1989



ProQuest Number: 10797676

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797676

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



To my family



ACKNOWLEDGEMENTS

I would like to express my appreciation to the many people who have 
made this work possible. First, and foremost, my sincere gratitude to my 
supervisor, Mr. Chris Guy for his patient guidance and continued 
encouragement throughout the production of this work. Also for his most 
helpful criticism and comments on the earlier drafts of this thesis.

I am most grateful to Hewlett Packard Santa Clara Technology Center 
for giving me the opportunity to participate in the development of the 
HP IX multiplier and the MPC test chip, the use of their SPICE models in 
the research work and for their kind invitation to allow me to pursue my 
work in California. In particular, many thanks to Mr. Patrick Byrne for 
his advice and support during the work on the HP IX multiplier and MPC 
test chip, and his most helpful guidance during the initial stages of the
research work. Also, my sincere gratitude to Mr. William Hillery for his
criticism and continued interest in this work.

I am also greatly indebted to members of the IC Design Centre for 
their constant support, in particular to Mr. Brian Fantini for
persevering with my computing demands.

Acknowledgements are due to the government of Malaysia for providing 
financial support without whom this work might not have been possible.

Last, but not least, I would like to thank my family who has
encouraged me to do my best and provided comfort in times of difficulty.



ABSTRACT

With current trend towards single chip digital signal processors and 
the growing demand for more powerful and real time performance of such
processors, further improvements in speed would need to be made on
conventional iterative carry-save array (CSA) multipliers. Considerable 
increases in the speed of array multipliers can be achieved by adding 
more than one partial product bit at a time by employing higher order
parallel (p,q) counters. This approach heavily depends on an efficient 
realisation of a counter, which ideally should have a delay and
complexity comparable to that of a full-adder.

An iterative array multiplier which employs a (5,3) counter was
recently reported and based on similar techniques, a novel array
multiplier utilising (2,2,3) counter cells was developed in this project. 
The study shows that both the (5,3) counter and (2,2,3) counter
architectures are quite close to conventional array multipliers from a 
VLSI implementation point of view. Assuming the counters operate at a
comparable speed as a CSA full-adder, the (5,3) counter scheme is faster 
than conventional array multipliers by nearly a factor of two, while the
(2.2.3) counter technique offers significant improvements for large
operand wordlength. In this work, the (5,3) counter and (2,2,3) counter 
were studied, principally on the efficiency of operation speed and the
viability of the array architectures in the fast bipolar ECL technology. 
For this purpose, a reconsideration of threshold logic, in view of the 
better IC processes of today as well as the well-proven cascode ECL
technique was investigated. A novel threshold circuit technique based on
partial use of negative weighted inputs is proposed to overcome the
maximum fan-in weight limitation found in traditional threshold circuits.
A method of mapping a logic function onto series gated ECL suitable for 
software implementation is presented. The work also includes the design 
of a 16 x 16-bit Booth-encoded multiplier and a test chip composed of
ring oscillators, using state-of-the-art bipolar technology.

Simulation results show that the most efficient realisation is the
(2.2.3) counter cell implemented in series gated ECL using well-proven
gates. Circuit simulations indicate the (2,2,3) counter to be nearly as 
fast as a CSA full-adder. With such a realisation of the (2,2,3) counter
cell, significant improvements in the speed of the (2,2,3) multiplier
over that of conventional CSA multiplier can be expected, especially for 
large operand wordlengths.
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CHAPTER 1 

INTRODUCTION

1.1. Multipliers in digital signal processing

In the past, most digital signal processing has required that 

digitized signals be recorded and then processed off-line on 

general-purpose computers. In many cases, however, on-line, real-time and

therefore very fast processing is required if digital techniques are to

successfully replace analog techniques. In digital signal processing, a 

sampled point of the analyzed waveform may require one addition and one

multiplication. For example, if the analog signal is quantized into eight 

bits, the required computation is made up of nine additions - one for the 

real addition and eight simulating a multiplication. It is evident that 

if the multiplication speed were to match the addition speed, the 

bandwidth of the signal processor would increase significantly allowing 

more complex functions to be computed in real-time, and thus the ultimate

limitation on performance of digital signal processors (DSP) is

multiplication.

Over the years many multiplication algorithms have been proposed and 

practically used. Major advances in the realizations of multipliers as

monolithic integrated circuits over the past 10 years have done much to 

reduce multiplier delay times, power consumption, size and cost

[1.1-1.3]. Recently many researchers have tried to develop high speed 

multiplier architectures which are suitable for VLSI implementation. As 

the cost of fabrication per transistor on a chip has continually gone

down, parallel algorithms for multiplication become increasingly 

important. Multiplication algorithms based on different number 

representations have also been widely investigated.

Depending on the applications there are various approaches to
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Introduction Page 2

multiplier design. Almost all DSP functions require a considerable amount

of multiplications. Some of these functions require the multiplication to

be performed at a faster rate while others concentrate on less hardware 

and moderate speeds.

The application which aim at hardware simplicity and moderate speeds 

traditionally use in one form or another [1.4-1.14] the add-shift method

for multiplication. For a n x n-bit multiplication, the basic add-shift 

technique adds sequentially, one row at a time, the intermediate result 

to the next row of partial products in a large 2/i-bit accumulator, where

the carry is allowed to propagate full-length. The principle is similar 

to the way one multiplies numbers using pen and paper. This carry 

propagation, along with (n-1) addition times contribute largely to the

slow speed. This type of multiplier was most prominently used in the

early digital signal processors [1.7,1.8]. These ranged from discrete

serial multipliers to a complete integration with other DSP functions

onto a single chip.

Some DSP systems employ serial binary representations of signal 

sequences in highly multiplexed serial applications such as the 

processing of telephone voice and data signals [1.15,1.16], where the

serial approach was found to be efficient in digital filter organization.

The need to rapidly perform multiplications on a stream of numbers packed

closely in time led to the concept of pipeline multipliers [1.16-1.23]. A 

form of the basic shift-and-add algorithm was often implemented in the

early pipeline multipliers [1.17-1.20]. Recent pipeline multipliers are

based on the parallel approach [1.21-1.23] to take advantage of better 

and cheaper VLSI technology.

It has widely been recognised that the traditional shift-and-add 

algorithm of multiplication takes time 0(n) ,  where n is the maximum 

wordlengths of the multiplier and multiplicand. This time can be reduced
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by combinatorial parallel techniques, but at the cost of increasing the

complexity of the circuitry. However, with rapid advancements of VLSI 

technology which brought about reduced cost of fabrication per transistor

on a chip, parallel techniques have become cheaper and more practical. 

Parallel multipliers were first introduced independendy by Wallace

[1.24] and Dadda [1.25]. The architectures proposed were based on a tree 

of full-adder cells to reduce the initial partial product matrix to two 

operands, which are then summed by fast final adders to obtain the final

product. Both Dadda‘s and Wallace‘s scheme are optimum in the sense of 

using a minimum stage of full-adders where the speed is shown as a 

function of 0(log n). Unfortunately, the irregular structure of Wallace* s 

and Dadda* s schemes, especially for large operand wordlengths has

prompted research into iterative array multiplier architectures. Coupled 

with the existence and development of an ever sophisticated suite of IC 

design tools, iterative array architectures have led a more dominant 

role. In contrast with the partial product reduction techniques of Dadda 

and Wallace, iterative array multipliers exhibit speeds as a function of

O(n). Although they are inherently slower, the advantages of the array

approach in terms of hardware regularity and interconnectivity more than 

outweigh the speed advantage of Wallace’s and Dadda*s schemes. Usually,

multiplier recoding techniques like the modified Booth algorithm

[1.30,1.31] and fast final adders [1.32,1.33] are employed in monolithic 

multipliers to boost its speed. A type of array architecture that is

commonly implemented in practical single-chip multipliers is the 

carry-save-array (CSA) [1.26-1.28]. In fact, the architecture lends 

itself well to automatic generation layout tools and has actually been

implemented in silicon compilers [1.29].

A more complete review of parallel multipliers is described in

Chapter 2 of the thesis. Also reviewed in this chapter are techniques
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based on recoding the multiplier bits and recent work on architectures 

employing different binary number representations.

1.2. Silicon vs. GaAs

A majority of the digital multipliers that have been reported were 

implemented in the fast bipolar ECL technology to take advantage of its 

advanced state of maturity. In view of the many recent advances in IC 

technologies there is a tendency to contemplate employing alternative 

higher-speed technologies to improve the multiplication process 

drastically. Indeed, a fair amount of excitement and attention have been 

paid to the inherently faster GaAs technology. Some authors have reported 

the impressive speeds at moderate power levels of GaAs multipliers

[1.34,1.35].

Significant GaAs - silicon ECL differences were observed in the 

following areas :

(i) On-chip gate delay

(ii) Transistor count

(iii) gate fan-in and fan-out

Small on-chip gate delays give GaAs an essential edge over silicon 

for high-performance digital systems. These speed advantages are derived 

from inherent properties such as higher electron mobility and lower 

parasitic capacitances.

However, the present practical level of integration of GaAs is at 

the MSI and LSI level whereas silicon ECL has now reached VLSI 

densities [1.57,1.58]. Transistor count limitations are primarily due to

the poor yield of large GaAs chips. At MSI and LSI densities one must 

therefore ask what advantages can be accrued solely from the short

on-chip gate delays which are already apparent for GaAs and likely to

continue in the future, since very high gate densities will not be
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available in the near term. One possible answer to this would be that a

logic system could be partitioned into small GaAs chips. But, however, it

could be argued that little additional performance beyond that of silicon

ECL would be gained with on-chip gate delays of as low as 20ps at even

LSI device densities, since the chip-to-chip interconnect delays may

remain constant and hence limit system performance.

Low fan-in and fan-out of GaAs gates although not believed to be a

permanent characteristic, nevertheless currently introduce constraints

not found in silicon. Gate fan-out can generally be increased by using

larger transistors, as is done in silicon. However, low gate fan-in is a

serious problem, particularly for NAND gates. This is because an increase 

in the number of inputs to a NAND gate reduces the noise margin, and 

noise margins are very small in GaAs to begin with. In order to achieve

working devices with adequate noise margins, very fine control of circuit

parameters is required, and this is not yet easily achieved.

Table 1.1, 1.2 and 1.3 compare several recent speed-power figures

and delay times of ring oscillators, memory circuits and 8 x 8-bit array

multipliers, respectively of GaAs and silicon ECL compiled from

[1.36-1.55].

Some conclusions could be drawn from the tables and from some recent

papers on bipolar ECL and GaAs [1.56-1.61]. GaAs HEMT, the fastest GaAs

circuit may not be significantly faster than silicon ECL at room

temperature eventhough it operates at a much higher speed at 77K. In 

fact, recent results [1.45] show that the performance of HEMT circuits 

have been shown to be similar to DCFL at 300K. It may require as much

power for near equivalent performance to that of silicon ECL. Although 

many recent papers [1.42,1.53,1.61] have reported impressive speeds of

GaAs, these were mainly achieved through high-power consumption and

complex circuit techniques such as the Buffered- FET logic (BFL). The
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Typical gate 
delay(ps)

power p e r  
ga te(mW )

GaAS DCFL ( 1 p m ,  30 0 K ) 45 0.5

GaAs HEMT ( 0 . 5 p m ,  77 K) 12.8 2.5

S i ECL ( 1 p m ,  300K ) 90 0.59

Si  NTL ( 0 . 5 p m ,  3 00K) 42 0.5

Table 1.1. Speed-power of Si bipolar and GaAs ring oscillators.

Access time 
(ns)

T o t a l  
p o w e r  ( W)

GaAS DCFL (0.5pm, 300K) 2 0 . 5

GaAs HEMT (0.5pm, 77K) 0.9 0 . 4

Si  ECL ( 1pm, 300K) 1
*

N.A .

*
no t a v a i l a b l e

Table 1.2. Speed-power of Si bipolar and GaAs IK RAM.

Multi p 1 i cation 
time ( ns)

T o t a l  
p o w e r  (W)

GaAS DCFL (0.5pm, 300K) 5 . 2 2 . 2

GaAs HEMT (0.5pm,  77K) N. A. N.A .

Si  ECL ( 1pm, 300K) 5 . 2 5 1 . 0

Table 1.3. Speed-power of Si bipolar and GaAs 8 x 8-bit array
multipliers.
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less power-hungry Direct-coupled FET logic (DCFL) have gate delays that

are 2 to 4 times those of BFL for complex logic circuits.

Major breakthroughs in terms of gate counts and yield of GaAs chips

would therefore need to be achieved before it could be considered as a 

serious alternative in the implementation of high performance systems.

This could be a good number of years to come. On the other hand silicon

bipolar technology is continually being improved to achieve and challenge 

GaAs speeds and it is widely considered as the technology of high speed

multipliers for many years to come.

1.3. Research objectives

The advent of VLSI technology has undoubtedly permitted the

integration of more complex digital functions on to a single chip giving

systems that are more compact, faster and reliable. Indeed, these

advantages have prompted the current trend towards single chip

realizations of digital signal processors.

As was identified earlier, the main constraint to higher performance

of DSP is the multiplication speed. Iterative array multipliers such as 

the CSA multiplier has often been recognized by IC designers to be most

suitable for incorporation in single chip DSPs by virtue of its highly

regular structure, ease of design and expandability for larger operand

wordlengths. Although faster multiplication techniques like Dadda* s and

Wallace* s schemes, and the use of multiplier recoding techniques

[1.30,1.31] are feasible, these normally introduce too much complexity 

and irregularities in the already complicated DSP design, occupying a

larger percentage of the silicon area which should otherwise be taken up 

by other DSP functions. However, with growing demands for more powerful 

and real-time performance of single chip DSPs, it is obvious that further

improvements in speed would need to be made on iterative array
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multipliers than that offered by the full-adder CSA architecture.

Dadda first recognized the fact that considerable increases in the 

speed of parallel multipliers can be achieved by adding more than one 

partial product bit at a time by employing higher order parallel (p,q) 

counters [1.25]. This approach heavily depends on a counter which has a

delay and complexity comparable to that of a full-adder. The rather 

complicated and irregular wiring between counters of different sizes in 

Dadda* s scheme has, however hampered the practical use of this approach

in large high-speed multipliers. More often, a serious constraint of 

extending Dadda* s technique to higher order parallel counters has been 

the rather complex and/or slow operation (compared to a full-adder) of

such counters. In the last 20 years many researchers have proposed

schemes to realise parallel counters with different degrees of success. 

These include techniques based on two-level gate network [1.62],

sequential circuits [1.63,1.64], table look-ups or ROMS [1.65], threshold 

logic [1.25,1.66-1.68] and networks of full-adders or smaller counters 

[1.69-1.74].

The aim of this work is to investigate iterative parallel array

architectures based on higher order counters as opposed to the partial 

product reduction techniques proposed by Dadda, suitable for 

implementation in single chip bipolar DSP applications. The large number

of DSP chips that are in the market today are mostly designed in CMOS 

technology, but with the ever growing demand of real-time performance of

DSP applications, especially in image processing, future designs would 

obviously need to be implemented in the inherently faster bipolar ECL 

technology. Improved bipolar processes have evolved recently [1.56-1.58] 

and thus it is appropriate to investigate a more efficient realisation of 

array multipliers in bipolar technology which would ultimately lead to 

more powerful, real-time performance single chip digital signal
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processors.

In fact, little attention has been paid in the past to iterative

array schemes based on larger counters and thus it is necessary to

understand how techniques such as the CSA architecture could be extended. 

Since the viability of the approach is highly dependent on an efficient

implementation of the associated parallel counters, a considerable amount

of work is needed to examine various possible configurations of the 

counters. With todays bipolar technology of smaller size and less 

power-hungry transistors [1.56-1.58], a more combinatorial approach to 

realize the counters in order to achieve significant improvements in the

multiplication speed should be feasible. Bipolar ECL/EFL circuit

techniques and threshold logic, which was shown in the past to be 

efficient in the synthesis of large counters ought to be considered. The 

work, ultimately includes an examination of the counters inherent speed 

in contrast with the fastest full-adder design which would then allow a

critical comparison of the new array scheme with conventional CSA 

multipliers.

1.4. Outline of thesis

Chapter 2 reviews the traditional and most commonly used schemes of

designing parallel high-speed multipliers. The two main techniques of

parallel multipliers - the partial product reduction method of Wallace 

and Dadda, and the iterative CSA architecture are assessed in terms of

speed and their attractiveness for VLSI implementation. Also, multiplier

recoding techniques and multiplication based on different binary 

representations are examined. An introduction to the concept of using 

parallel (p,q) counters to enhance multiplication speed is presented. The 

key areas that require further investigations are then identified and

considered.
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Chapter 3 describes work undertaken to design a high-speed, bipolar 

16 x 16-bit multiplier which was designed in collaboration with Hewlett 

Packard Company, Santa Clara in the IC design Centre, University College 

London. The architectures commonly employed in a typical high-speed 

multiplier are demonstrated through discussions of the chip. Also 

described is a test chip composed of ring oscillators of full-adder cells 

made up of different transistor sizes and load resistors. The chip was 

used to characterize the delay of the full-adder cell in order to get an 

optimum design of the 16 x 16-bit multiplier and also as the basis of 

comparison with larger (p,q) counters.

In Chapter 4, extension of the CSA approach and novel array 

multipliers based on higher order parallel (p,q) counters are first

studied. An iterative array (5,3) counter multiplier recently reported is 

highlighted and a novel architecture based on similar concepts of the

(5.3) counter multiplier but employing (2,2,3) counters are then

presented. These architectures are assessed in terms of speed and their

attractiveness for VLSI implementation.

Chapter 5 describes the implementation of the (5,3) counter and

(2.2.3) counter cells in cascode ECL and threshold logic. The complexity 

and efficiency of operation speed of the two counters using these 

techniques are emphasized. A novel circuit technique which overcomes the

earlier problem of needing high fan-in weight threshold gates is

presented. A technique of mapping a logic function onto series gated ECL 

suitable for software implementation is also described.

Using SPICE circuit simulations, a critical examination of the 

propagation delay of the (5,3) counter and (2,2,3) counter cells

implemented in ECL and threshold logic in comparison with a full-adder 

cell is made in Chapter 6. The novel threshold circuit technique is also 

analyzed to characterize its maximum fan-in weight. A gate level
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simulation is then performed on the optimum novel array multiplier

architecture to evaluate its speed in contrast with conventional CSA

multipliers.

Chapter 7 gives a discussion of the conclusions made and identifies 

areas that require further work.
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CHAPTER 2

APPROACHES TO PARALLEL MULTIPLIER DESIGN

2.1. Introduction

Digital multipliers continue to occupy a position of major

importance in the design and development of general and special purpose 

computers. As one of the key elements in digital signal processors, the

multiplier has traditionally hampered the consideration of the digital 

approach to signal processing owing to high cost, poor speed-power 

performance and inefficient packaging. Major advances in the realization 

of multipliers as monolithic integrated circuits [2.1-2.13] have done

much to reduce delay times, power consumption, size and cost. However,

with the trend towards single chip digital signal processors and the 

increased demand for lower cost, higher speed and higher efficiency 

realizations of digital signal processors [2.14] continued improvements 

in the performance of digital multipliers is needed.

This chapter reviews the traditional and well-known schemes of 

designing monolithic high speed, parallel multipliers commonly employed 

today. The full-adder carry-save array (CSA) [2.15,2.16], Wallace tree

[2.16-2.18], Booth algorithm [2.16,2.19,2.20] and fast final adders

[2.21-2.24] are described. Multipliers based on the full-adder CSA and 

those that employ the Booth algorithm and fast final adders are assessed

in terms of the two main criteria - speed and complexity. The key areas 

that require further investigations are then identified and considered.

Complexity is defined in the context of high-speed multipliers as a 

measure of how regular the architecture is in terms of layout and how 

attractive it is for VLSI implementation. The speed of a multiplier is

conventionally taken to be the worst case delay, which is the maximum

Page 16



Approaches to parallel multiplier design Page 17

number of gate delays that a propagating signal could traverse in the 

architecture, although on average, the computations take less time.

2.2. Traditional approaches to multiplier design

In the development of monolithic high-speed multipliers the classic, 

simple add-and-shift algorithm [2.16] has been superseded by a more 

parallel approach to multiplier design. The rapid development and

advancement of IC technology over the past twenty years has made the 

fabrication of parallel multipliers become economically more feasible and

encouraged many researchers to look at parallel algorithms 

[2.1-2.13,2.15-2.18,2.34-2.53] and those based on different binary number 

representations [2.8,2.53-2.58] which are suitable for VLSI 

implementation.

Multiplication can be done in either signed or unsigned number 

representations. From the arithmetic and implementation point of view, 

two’s complement is the most attractive for signed numbers. Addition is 

straight-forward and significantly faster than say, sign-and-magnitude

and multiplication is easier to understand and implement. Two’s

complement has often been stated in the past to be difficult due to the

need for sign correction with negative operands. However, this is a

hangover from the days of expensive logic and since then many

’correction’ algorithms have been reported [2.42-2.47]. The full-adder 

[2.33] has always been the basic cell used for the implementation of 

parallel multipliers. Irrespective of the technology used, the full-adder 

is easy to design and the associated architectures are simple and regular 

which makes them ideal for VLSI.

There are three basic methods that have been developed over the

years to improve the speed of the simple add-and-shift multiplier. The
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first speeds up the addition of partial products by using parallel 

architectures. Schemes for parallel multiplication are roughly divisible 

into two classes- iterative array of cells [2.1-2.13,2.15,2.16,2.34-2.47] 

and generation of a matrix of partial product terms with subsequent 

reduction of the matrix by means of parallel counters 

[2.16-2.18,2.25-2.28,2.48-2.51]. The second reduces the number of rows of 

partial products by employing multiplier recoding techniques [2.29] like 

the modified Booth algorithm [2.19,2.20]. Lastly fast adders [2.21-2.24] 

are often used at the last stage to add up the final two rows of 

sum-carry pairs.

For the purpose of simple illustration, examples of 5 x 5-bit 

multiplication are given; also dot representation (where each dot is a 

binary bit) of the partial products is used. *

2.2.1. Parallel multiplication schemes

Multiplication is a special case of many consecutive additions.

Under these circumstances it is not necessary to let the carry signals

propagate until all the partial products have been added. Each full adder

bit is a three input device, with two outputs. Thus if these two outputs

are fed to two of the three inputs of appropriately weighted bit

positions for the next addition, a new partial product can be added via

the third input. This type of adder is also known as a Carry Save Adder

since the carry is saved and not propagated. A basic carry-save array

(CSA) multiplier is shown in Figure 2.1 for a 5 x 5-bit multiplier where

an array of these adders are appropriately connected. All the partial

products are formed simultaneously, added and shifted appropriately by

hardware. Lower significant final product bits up to PR  ̂ i.e. the final
n 1product bit of weight 2 are generated automatically by the right-most
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Figure 2.1 Block diagram of a 5 x 5- bit multiplier 
using carry-save technique [2.15].

column cells whilst the higher significant final product bits are

computed by an extra stage of full-adders at the bottom of the array.

For an n x n bit multiplication the array requires 1 stage of half 

adders and (n-1) stages of full adders. The worst-case delay (including 

the AND gate delay for the generation of partial product bits) is given 

by

(2n-l) gate delays (2.1)

since the longest carry propagate chain in the array is through the right

column and bottom edge of the array. Thus this architecture employs one

cell for the main multiplication array, and with the regularity,

modularity and simple interconnections between adders, is ideal from a
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VLSI implementation point of view.

Additional speed can be gained by the use of a Wallace tree

[2.15-2.18] which is a form of matrix generation-reduction scheme. In 

this architecture, a series of full-adders, that operate in parallel, 

combines groups of three bits of the same binary weight to produce a

vector of Sum bits (S) and a vector of Carry bits (C). If more than one C 

and one S vectors are generated from the first stage, these are combined 

again in groups of three in the next stage. This procedure continues 

until one C and one S vector remain. Then a string of full-adders is 

applied to those two vectors to obtain the final result. In general, for 

a n x n-bit multiplication the number of gate delays necessary to reduce 

n partial products to one C and one S vector is given [2.16] by

j" log 3  n j  _ j (2.2)

Figure 2.2 shows a block diagram of a Wallace tree for the multiplication

of 5-bit numbers in the ideal case where all bits of the same binary

weight are under the same column. However, unless a large chip area is

used, this is not the case in an actual design. In a minimum area layout, 

bits of the same binary weight are in different columns, and additional 

wiring is required for the interconnection of the appropriate partial

products resulting in a much more complex and irregular interconnection 

pattern.

Dadda [2.25-2.26] also introduced a similar procedure to the Wallace 

tree for reducing the partial products to two numbers using full-adders.

His procedure is optimum in the sense that it uses a minimum number of 

full-adders. The difference between this technique and Wallace’s 

scheme is in their ways of connecting full adders.

Comparisons between the three architectures on the basis of speed
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Figure 2.2. Block diagram of a 5 x 5-bit multiplier 
using Wallace’s scheme [2.15].

and complexity are discussed in section 2.2.4

2.2.2. Fewer partial products

Another speed-up technique called Booth’s algorithm [2.19], 

increases speed by reducing the number of partial products by half; this

reduces the number of carry-save adder stages, and hence the total

multiplication delay. It requires little hardware without also 

substantially increasing the complexity of the main multiplication array.

Basically, Booth’s algorithm allows the multiplication operation to

skip over any contiguous strings of all Is and all Os, rather than form a 

partial product for each bit. Skipping a string of Os is straightforward, 

but in skipping over a string of Is, the following property is put to

use: a string of Is can be evaluated by subtracting the weight of the

rightmost 1 from the modulus. Thus, the value of the string 11100
5  2computes to 2 -2 = 28. However, in Booth’s algorithm consecutive strings
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of 3-bits of the multiplier word are recoded with the most significant

bit of the string saved for the next higher string to enable us to

remember the previous action. All possible permutations are computed from

Table 2.1. The algorithm works for two’s complement numbers and requires

that the multiplier be padded with a 0 to the right of the least

significant bit (LSB) to detect the start of a string of Is. To work with

unsigned numbers the multiplier must also be padded with Os to the left

of the MSB so that the multiplier will not be treated as a negative

number.

Y i +1 Y i Yi-1 Oper a t i o n

0 0 0 Add z e ro
0 0 1 Add mul t i p 1 i c and
0 1 0 Add mul t i p 1 i c and
0 1 1 Add 2x m u l t i p l i c a n d
1 0 0 S ub t r a c t  2 x mul t ip l i cand
1 0 1 S ub t r a c t  mu l t i p l i c and
1 1 0 Su b t r a c t  mu l t i p l i c and
1 1 1 S ub t r a c t  zero

All operations are followed by a 2-bit shift.

Breaking a 8-bit multiplier into five groups of 3 bits each 

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y -1

Table 2.1. A modified Booth algorithm.

Although one could take and decode more than 3 bits at a time, the 

Booth encoder required becomes more complicated and impractical as a 

vector of three times the multiplicand would need to be generated and 

this cannot be easily obtained by simple shifting of the partial product.
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A full-propagate addition is needed to generate this, limiting the 

effectiveness of the reduction in the number of carry-save additions.

2.2.3. Fast final adders

If we look at the straight full-adder CSA, Wallace and Dadda tree

there is a vector of sum and carry bits (also known as the Intermediate

Product [IP] bits) being added by a string of full-adders in order to

obtain the final higher significant product bits. However, the IP bits

would have settled down to their final values after a gate delay given by

the number of stages of full-adders. The string of full-adders is

basically a ripple-carry adder [2.21] and though is ideal for VLSI 

implementation, it is slow due to rippling of the carry bit. Thus, the

addition of the higher significant IP bits is one of the main

speed-limiting factor of the CSA multiplier and thus calls for a much 

faster adder architectures than the simple ripple carry adder.

Conventional fast adders can be roughly categorized into 2 classes

of algorithms, conditional-sum and carry-look-ahead [2.21].

Conditional-sum was invented by Sklansky [2.21,2.22] and it has been 

considered by Winograd [2.30] to be faster than the carry-look-ahead.

This was evaluated based on an (r,d) circuit, which is a d-valued logical

circuit in which each element has a fan-in at most r and can compute any 

r-argument, d-valued logical function in unit time. Table 2.2. 

[2.21-2.24,2.77] shows the comparisons of addition speed (in gate delays) 

of the two architectures with the theoretical lower bound given by 

Winograd. Other fast adder architectures have been reported over the 

years like the canonic and Ling [2.59] adders but are limited by

implementation problems.

From an implementation point of view, the conditional sum adder is
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Gate delays

Wi nograds l ow er  bound 

Carry- look-a h e a d  

Condit ional  - sum

[lo g , 2nj

4 [loSr nl 

2 + logr + | t f |

Table 2.2. Relative speeds of fast adder architectures

more attractive because of its more regular and simpler layout compared

to the carry-look ahead. Furthermore, the carry-look ahead is plagued by 

high gate fan-in and fan-out requirements for large operand wordlength. 

The conditional-sum adder is thus the most attractive scheme both in

speed and layout. For a much faster addition, a combination of these two 

types of adders could be employed if the area overhead and power

requirements are tolerable. In fact, Winograd showed that with an (r,d)

circuit, the theoretical lower bound (fastest time) of addition of two

operands is nearly achievable with the conditional-sum and 

carry-look-ahead combination algorithm.

2.2.4. Architectural comparisons

The procedure for the reduction of the partial products is the basic

difference between the CSA array, Wallace’s and Dadda’s schemes. In

Wallace’s and Dadda’s schemes, the number of stages increases as the 

logarithm of n whereas in the carry save scheme the number of stages is

linearly dependent on n as shown in equations (2.2) and (2.1),

respectively. Thus Dadda’s and Wallace’s techniques are much faster than

the CSA array for large wordlength n. Both Dadda’s and the CSA array
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approach are optimum in the sense of using a minimum number of full

adders. Wallace’s scheme usually needs more full adders.

In general, matrix generation-reduction schemes are much faster than 

array types since their speed of operation increases with the logarithm

of the wordlength [2.16,2.17]. The array schemes, however are more ideal

for VLSI implementation because of their regular layout and use of one 

basic circuit type. The rather complicated and irregular wiring between

the adders in a Wallace tree has often hampered their practical use in 

high-speed, single chip multipliers.

Thus, for large multipliers like a 32 x 32-bit, the advantages of 

the CSA array in terms of hardware regularity and interconnectivity 

outweigh the speed advantage of the Wallace tree architecture. 

Furthermore, the CSA array architecture is easily expandable by adding

additional rows and columns of full adders to fit the specific

application. However^ if the Booth encoder is to be employed in the design 

this must be accompanied by the use of a fast final adder. Without a fast 

adder the speed of the multiplier is not significantly better than that 

of the straight CSA since the critical path for both schemes is along the 

right column and bottom row of full-adders where the final product bits

are computed.

Based on the above considerations, the fastest practical realization 

of a high-speed multiplier would incorporate the modified Booth encoder,

carry-save array and a fast adder as shown in Figure 2.3. This

configuration is the basis of many practical, high-speed multiplier 

designs implemented today and was adopted in the design of the HPIX 

multiplier (see Chapter 3). The theoretical speed of a n x n-bit

multiplier based on this configuration can be derived as follows.

The Booth encoder generates a reduced partial product matrix |"n/2]
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Multiplicand

Final product 
( Lower significant b its)Carry-save array

Fast adders

Final product
(Higher significant b its)

Figure 2.3. Block diagram of a typical high-speed multiplier

rows of n-bits each after a delay D[Booth]. With a carry-save array 

employed, the lower significant final product bits up to P would

have been automatically generated by the array after a delay of 

([h/2]-l).D[FA]. This leaves two operands, the intermediate product of 

m-bits to be computed by the fast final adder, where m is given by

m = (2n-2)-[h/Z] = [3n/2J-2 (2.3)

In the last section we have identified the conditional-sum adder to be 

the most attractive approach in terms of speed and VLSI implementation. 

Thus, with this type of adder employed, the maximum delay of a 

Booth-encoded, CSA of full-adders with conditional-sum (CS) adder is 

given by

D[Booth] + ( [h/Z]-1).D[FA] + D[m-bit CS adder] (2.4)

With the delay of a full-adder equal to 1 gate, the delay of a Booth 

encoder consists of 2 gate delays, one to decode the truth-table and the
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other to select the appropriately shifted or unshifted multiplicand. For 

a conditional-sum adder (from Table 2.2) with a typical fan-in of 4 which

is achievable in most proven technologies the delay of a m-bit fast adder

is then given by

4 + |~(m-4)/4] gate delays.

Equation (2.4) thus reduces to

5 + [h/2] + |~(m-4)/4] (2.5)

In cascode ECL technology an estimate of the total gate count, which

also represents the relative total power consumption has been evaluated

[2.60] for the Booth multiplier and the straight CSA multiplier. The 

results are shown in Table 2.3. The speed and gate count of the two

schemes are also shown graphically in Figure 2.4(a) and (b),

respectively.

There is a significant improvement in the multiplication speed with

the Booth algorithm and fast adders employed for large n. This is

achieved with reasonably low increase in the gate count and hence, power 

consumption. It was observed that [2.60] the total number of gates in the

main carry-save array is actually reduced by employing the Booth encoder. 

The overall higher gate count of the Booth multiplier in contrast with 

the straight CSA multiplier is accounted for by the fast final adder 

architectures. Figure 2.4(b) does not truly reflect the relative silicon

M ultip lication  speed 
(gate delays)

Gate count 
(ECL)

Straigh  t CSA 

Booth Mul t i plier

(2n-1)

5 + [h/2] + |~(m-4)/4]

2 ( n - l ) 2 + n 2 + 2(n-l)

(4n + 9) [h/2“| + 7 ( |3n/2J - 2)

Table 2.3. Speed and ECL gate count of straight CSA multiplier 
and Booth-encoded CSA multiplier with fast final adders
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(a) Gate delay
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Figure 2.4. (a) Relative gate delay and (b) ECL gate count of a straight 
CSA multiplier and Booth-encoded CSA multiplier with fast final adders.
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area of the two approaches since this is dependent on the complexity and

regularity of wiring between cells. Furthermore, Table 2.3 was obtained 

assuming the AND gates in the CSA multiplier used to generate the partial 

product bits are comparable to the gates of the full-adders. Bearing in

mind that a more complex and less regular interconnection (in contrast

with the carry-save array) is likely to exist in the fast adder

architectures, the relative silicon area of the two approaches would be 

much worse than that shown in Figure 2.4(b). The main advantage of the

straight CSA is that it is highly regular which makes it attractive for 

VLSI implementation with quick design time and thus is ideal for design

automation systems like silicon compilers [2.86].

A 16 x 16-bit, bipolar ECL Booth multiplier (called the HP1X) was 

designed in the Department of Electronic and Electrical Engineering,

University College London, in collaboration with Hewlett-Packard 

Technology Centre, Santa Clara in California. This is described in

Chapter 3.

2.3. Bounds on multiplication speed

Winograd [2.61] has derived the theoretical lower bound on

multiplication in terms of an (r,d) circuit. It was shown that the

theoretical lower bound t on multiplication speed is the same or slightly

slower than the theoretical lower bound on addition speed where it is

given by

It is interesting to compare the speeds of practical circuits to the 

theoretical lower bounds. In multiplication, the fastest possible 

realization [2.16,2.17] uses Booth encoding and a Wallace tree 

interconnection of full-adders with a conditional-sum/carry-look-ahead

(2.6)
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combination for the final adder. This results in a speed of

2 ["iog3B(n)" ] + M (2.7)

To illustrate this in terms of numbers, assume r=4 (typical on-chip

fan-in) and n=16 bits. The lower bound for addition and multiplication is

then three gate delays, whereas the conditional-sum addition is eight

gate delays and the Booth encoding/Wallace tree multiplication speed is

18 gate delays.

Why is practical addition much closer to the lower bound than 

practical multiplication? The answer is that the conventional binary data

representation is idealized for addition and not multiplication. Brennan

[2.77] states a principle explained by Winograd: any data representation

permitting the lower bound of one operation to be approached cannot 

accomplish the same for the other. This principle is illustrated by the 

slide rule, which can perform multiplication (using logarithms) but not

addition efficiently. This fact has prompted many researchers to look at

multiplication implemented in different binary number system.

Two principal areas that have been studied are the redundant

binary/signed digit (SD) multiplication [2.5,2.53-2.55] and residue 

number multiplication [2.8,2.55,2.56]. The residue number system, relying 

on cells composed of ROMS or PLAs is less promising than the signed digit 

representation for large wordlength multiplication. In a signed digit 

multiplier, because of the redundancy property of the binary numbers,

parallel addition of two n-bit numbers can be performed in a constant 

time independent of n without any carry propagation; n-bit multiplication 

can therefore be carried out in a time proportional to log (n). In a n x

n-bit multiplication [2.53], the partial products are added pairwise by

means of a tree of redundant binary adders. The main drawback of this

approach is the need to convert the conventional binary representation to
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the SD representation and vice-versa - this contributes a significant

percentage to the total multiplication time. However, because its 

computation time is proportional to the logarithm of the wordlength this 

approach has great potential for future practical implementations of 

large, high-speed multipliers. Compared to the straight CSA multiplier,

it was reported that it is about 4 times faster for 32-bit multiplication 

and about 7 times for 64-bit multiplication.

2.4. Approaches to improve the speed

With the trend towards single chip digital signal processors and the

growing demand for higher speed and better efficiency realizations of

digital multipliers, further work is needed in this area. While the Booth 

multiplier is attractive for single chip (especially in CMOS) 

implementation, the employment of this technique for bipolar, single chip

digital signal processors is inhibited to a large extent by high power 

consumption and silicon area. This is evident from the HP1X 16 x 16-bit 

multiplier which consumes a power of around 4W with a silicon area of

approximately 5 x 5  mm2. The large number of digital signal processing 

chips that are in the market today are mostly designed in CMOS

technology, but with the ever growing demand of real-time digital signal

processing applications especially in image processing, future designs 

would need to be implemented in the faster bipolar ECL technology. As

discussed in Chapter 1, the alternative approach of using GaAs technology

to enhance the speed using existing proven architectures is still 

constrained by the low practical level of integration and poor yield of 

large GaAs chips, although GaAs parallel multipliers have been reported

recently [2.64-2.66]. On the other hand, improved bipolar processes have

evolved recently [2.67-2.68] which approached VLSI level of integration
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as a consequence of the smaller and less power-hungry transistors. Thus 

further work is needed to investigate a more efficient realization of

digital multipliers in bipolar technology which would ultimately lead to

more powerful single chip digital signal processors.

It appears that two of the three methods discussed in section 2.2 

i.e. faster addition of partial products and the use of fast final adders 

could be investigated further to improve the speed of the multiplier. The

Booth algorithm cannot be effectively extended to recode more than three 

bits as it is fundamentally limited by the inability to realise higher

multiples of the multiplicand which can be generated by simple shifting.

The use of faster final adders to add the sum-carry pairs is expensive 

in terms of power and silicon area. In fact about 30% of the total power 

consumption and 25% of the total silicon area in the HP1X multiplier are 

taken up by the fast adders. Various architectures of fast adders have 

been exhaustively investigated [2.21-2.24] since the advent of integrated 

circuits and it seems that little progress will be made in this area.

This is added by the fact that Winograd* s theoretical lower bound on

addition is nearly achievable with the combination of conditional-sum and 

carry-look-ahead algorithm. Furthermore, the use of fast adders gives

irregularities and increases design time. Indeed, the major objective of

VLSI designers today is to maximize regularity wherever possible.

Multiplier architectures that have been proposed over the years are

either refinements of the carry-save approach or that based on a

different number representation [2.1-2.13]. A majority of these 

techniques still make use of the 3-input full-adder cell. One of the

major factors which limits the multiplication speed is that only one row

of partial products is added at a time by a full-adder. What is needed, 

in order to increase the speed significantly is to look at ways of adding
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more rows of partial products at one time i.e. to add not just three 

bits, but four or more bits of the same weight. This subject has been 

extensively covered by Dadda [2.25-2.27], who investigated the use of

logic blocks called parallel (p,q) counters to speed up the addition of

partial products.

2.4.1 Generalized counters

Dadda [2.25,2.17] first introduced the notion of a (p,q) counter as

a combinatorial network which receives p bits of equal weight as input 

and produces a q-bit word corresponding to their sum as output. A

full-adder, for example would be termed a (3,2) counter.

The value of the output is

where b. denotes the binary value of bit i of the input column and v 

denotes the value of the q-bit output. The number of output bits must be

sufficient to represent all possible sums of p bits and hence

This class of counters may be extended to include counters which receive 

several successively weighted input columns and produce their sum, taking 

the weighting into account. We denote counters of this type as

(pk - r pk-2’ ,po,q) counters

where k is the number of input columns, p is the number of input bits in 

the column of weight 2 1, and q is the number of bits in the output word.

The value of the-output is

2q-l S: p (2.9)

(2.10)
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( 3 , 2 ) ( 7 , 3 ) ( 5 . 5 , » 0

( 2 , 2 , 2 , 3 , 5 ) ( 3 . 3 . 3 , 3 . 6 )

Figure 2.5. Some generalized counters [2.17].

where b. . denotes the value of bit j in column i. Again q is subject to 

the constraint that

2*1-1
i =0

(2.11)

Examples of several counters are shown in Figure 2.5. The effect of a 

series of counters acting on adjacent sets of input columns is shown in 

Figure 2.6. The inputs to the counters are shown first, followed by an 

equivalent representation of the output. The counters shown ( with the 

exception of the (2,2,2,3,5)) all have complete utilization. Complete 

utilization of counters is not necessary but it is desirable.

Equal column counters are a convenient tool for reducing the regular 

portion of a matrix and are thus more useful. The regularity of these 

counters permits us to make the following observation, which are not
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( 7 , 3 )

( 3 ,? )

( 5 *5 ,•*)

: 'i ’1 1
( 3 . 3 , 3 . 3 , 6 )

Figure 2.6. Effect of a series of adjacent counters [2.17].

necessarily true of unequal column counters. Equal column counters 

consume a rectangular matrix of k columns by r rows where

k - 2
The outputs align themselves such that no more than [q/k] outputs 

contribute to a given column. Hence the number of rows s of the output 

matrix is simply
s = [q/k] (2.12)

The number of resultant output rows has a direct bearing on the number of 

stages of counters needed to reduce a large matrix. The less the number 

of stages required the higher the speed, so it is desirable that the 

number of output rows be small.



Approaches to parallel multiplier design Page 36

If we let

V  = 2k-l
r

denote the maximum possible value of a single input row and

v = 2q-l o
denote the maximum representable output value the constraint on the 

number of input rows may be expressed as

Vo 2q-l , ,  ,~r < —  = ——  (2.13)
r 2 - 1

If q is not divisible by k, the output matrix will be somewhat sparse. It 

is advantageous to produce a matrix of uniform height since it can be 

reduced by a single counter type.

These considerations lead us to the notion of a maximally efficient 

counter as one which produces a uniform output matrix while consuming the

largest possible regular portion of the input matrix i.e. it should have

equal columns with the largest possible number of rows.

Disregarding cases where strings of counters may be stacked and

skewed as in the case previously mentioned, this means that the number of 

output columns should be a multiple of the number of input columns, or 

q = sk .

The counter will consume the largest possible portion of the matrix when 

v = rv .
r

2.4.2 Number of levels for reduction

A matrix r bits high can be reduced to one s bits high through the 

use of one level of counters. We now consider the number of levels of

counters required to reduce a matrix more than r bits in height to one of 

s bits as this will determine the speed of the multiplication operation.

Denote the maximum height of the matrix that may be reduced to s bits



Approaches to parallel multiplier design Page 37

l 2

t,0

{5.5 .**) sequence

I,2
V0

Figure 2.7. Examples of multi-level reduction [2.17].

using j levels of counters as lj. Note 1Q = s ; ^  = r . Knowing F we

may determine 1 by observing that the 1 bits represent the output of

a stack of |_|j/s] counters plus a residue of (1 ) mod. s bits which were

not reduced by counters (Figure 2.7).

The LVsJ counters each consume r bits so

1 = r[ |j/s j + (1) mod s (2.14)

For a (5,5,4) counter the maximum reduction height sequence is

2,5,11,26,65 .

and for a (7,3) counter it is

3,7,15,35,79,......

A rough approximation of the first few terms of the sequence is

s, s(r/s), s(r/s)2, s(r/s)3,.......

Hence the number of levels of counters required to reduce a matrix h bits

high to s rows is roughly
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log (h) levels (2.15)
(r/s)

It is important to note that this reduction method is similar to that 

employed in the Wallace tree [2.18]. For an iterative array type of

interconnections like the carry-save array, in general more stages of

counters would be required which results in a slower speed.

Other sequences may be obtained by combining two or more types of

counters to fit the requirements of a particular matrix. If there is a

need to economize on the number of large counters, a slight improvement 

can be obtained by using smaller counters to reduce underutilized large 

counters wherever possible. The penalty of this technique is a higher

complexity in terms of the interconnections resulting from the irregular

use of counter sizes.

2.4.3 Implementation and synthesis of parallel counters

The (3,2) counter or full-adder is the commonest form of 

implementation of the parallel counters concept, and the use of such

counters in parallel multipliers has been discussed in the preceding

sections. Apart from the synthesis of fast parallel digital multipliers, 

parallel (p,q) counters has been shown in the past to be useful in

multiple operand addition [2.78,2.79], in inner product computation 

[2.80], in fast digital correlators [2.81] and in merged arithmetic

[2.57]. The class of parallel counters were generalised by Meo [2.51] to

accept several columns of multiple operands.

Dadda [2.25] has considered and proposed some schemes for high-speed 

multipliers by employing higher order counters with the reduction 

technique described in the last section. The use of larger counters in

generating the initial partial product matrix has also been thoroughly 

studied by Ferrari and Stefanelli [2.28]. The architectures proposed by
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Dadda and Ferrari lack regularity in terms of the counter size and their

interconnections which makes them' inattractive for VLSI implementation.

However, the practical realization of the higher order parallel counters,

has been the main stumbling block in employing this approach for

high-speed multipliers. The poor device technology at that time has

hampered the use of higher order counters as they were found to be too

complex and slow compared to the full-adder.

Direct synthesis of counters in conventional combinatorial logic is

obviously feasible when the height of the input column p is small as in

the case of the full-adder. As the height increases both the number of

gates and propagation delay grows quite disproportionately and there

would be a stage where it appears to be of no advantage in trying to sum

a lot of bits together.

Many methods have been proposed to implement parallel counters.

Three of the more obvious techniques are two-level network of gates

[2.71], sequentially [2.48,2.49] and ROM [2.26]. To implement an N-input
Ncounter by using a two-level gate network requires (2 -1) logic AND gates

(each with N-inputs) followed by a reduction network that requires M
Nlogic OR gates (each with on the order of 2 - 1  inputs), where M is the

number of outputs from the counter :

M = 1 + [_Log2 N J  (2.16)

The two-level gate network is clearly impractical for most values of N.
NThe ROM approach requires a memory with 2 words of M bits each to

implement an N-input counter. Apart from the slow speed of ROM, the total
Nstorage requirement of M.2 bits is also impractical for most values of 

N. The technique of employing sequential circuits yields a counter that 

is too slow for most high-speed operations although it can handle an 

extremely large number of inputs N with little penalty in hardware cost
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compared with other concepts.

Foster and Stockton [2.72] first proposed a method of implementing 

counters with a network of full-adders. Basically, their design procedure

involves grouping the counter inputs into sets of three lines each. Each

of these sets of lines are reduced by a network of full-adders until one

line of each weight remains. Analysis of this method yields a lower bound

on the number of adder delay times 5 for a N-input counter which is given

by

5 > [_Log3 (N-l) J  + [_Log2 N J  (2.17)

At most N full-adders are required to implement an N-input counter.

Although this approach is more practical, the slower speed which results

is inadequate for most high-speed arithmetic operations.

A variation of the full-adder network counter that uses full-adders

and fast adders was developed by Swartzlander [2.71] which exhibits twice

the speed of the former scheme. However, for parallel multiplier

applications the technique is found to be too costly both in terms of 

hardware and power. Swartzlander also proposed an alternative 

implementation, a quasi-digital (i.e. hybrid) approach that uses analog

summing to generate a voltage proportional to the count of Is and it

appears to be potentially faster than the strictly digital approaches.

The disadvantage with this method besides the high hardware cost, is that

as with all analog or partly analog networks, resistors may have to be

trimmed to meet designed tolerances, stray capacitance and inductance

must be minimized, and noise suppression may be difficult.

Noting the rapid increase in conventional hardware with p, Dadda

suggested the use of threshold logic [2.69,2.70,2.85] for possible 

economy and speed. The logical definition of threshold gates is shown in

Figure 2.8. Counters using threshold logic can be of the non-inverting or
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x1

X 2

o----
X n

1 = WjXj +  W2*2 + .................. +  WnXn

1 <  & ; Y  =  1 Y  =  0
or

1 >  & ; Y  =  0  Y  =  1

inverting non-inverting

Figure 2.8. The logical definition of threshold gate [2.69].

n o

Figure 2.9. A (n,3) counter using inverting threshold logic [2.25].
(where 4 < n < 7)
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inverting type according to the type of threshold gate used. The

advantage of using threshold logic is clearly illustrated in Figure 2.9,

where a counter size (n,3), where 4 < n < 7 could be realised by just

adding extra lines of inputs and without any significant increase in

complexity or propagation delay, assuming the threshold gates have a high

fan-in input weight. The poor device technology at that time has often

hampered this scheme as the circuit depends heavily on a fine control of

the process parameters, primarily the resistor absolute values and

ratios.

Traditional high-speed threshold gates are primarily of the current

mode type [2.82]. However, the employment of this type of circuit in the

synthesis of fast (p,q) counters has been constrained in the past by the

high fan-in weight requirement of the counter’s threshold gates as

evident from Figure 2.9. Furthermore, better control on resistor absolute

values and ratios was needed. Current [2.83,2.84] developed a

four-valued threshold logic approach for implementing parallel counters

which offers significant improvements in hardware cost and wiring

complexity with a slightly better speed than the full-adder network. The 

approach, however is only of great advantage for large parallel counters

of the order of N > 31.

2.5. Further work needed

It is not clear as to what the size of the input column p is before

the combinatorial approach in realizing the counter becomes too 

complicated and with a delay that is too slow to be able to gain any

significant increase in the overall multiplication speed. How much more

complexity is imposed and that which is tolerable depends very much on 

the logical complexity and its fan-in and fan-out requirements. It is not
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expected that large counters such as a (7,3) counter would have a delay 

comparable to that of a full-adder but for a reasonable size counter like 

a (4,3) or (5,3) counter the propagation delay would more likely to

approach that of the full-adder. The maximum counter delay that can be

tolerated before it is no longer useful in terms of the overall 

multiplication speed depends on its architecture, but ideally the counter

delay should be equal to that of the full-adder. An architecture, say 

which is two times faster than that of the full-adder CSA would still be

as fast as the CSA even if its counter delay is slower by a factor of 2. 

Thus, it is important that a counter that is optimized in speed and

complexity must be balanced by an architecture that is faster and a 

complexity which is not significantly higher than the existing full-adder

schemes. Any possible architectures need to address these issues.

The reduction technique on the partial product matrix described by

Dadda gives a delay which is a function of the logarithm of the 

wordlength and is faster than the array technique, whose delay varies

linearly with the wordlength. The application of this technique for

single chip multipliers is however, already too complicated for counters 

of the full-adder size due to the irregular wiring. The problem is 

definitely worsened if higher order counters are employed and this is the 

main reason why the approach is not practical for VLSI implementation. 

Further work is therefore needed to investigate the use of the array 

approach for higher order counters since the advantages of the array in 

terms of regularity, interconnectivity and expandability would outweigh

the speed advantage of Dadda* s scheme.

With todays bipolar technology of smaller transistor size and lower 

power consumption and the evolution of new bipolar circuit techniques it

is perhaps more practical now to realize multiplier-dedicated counters in
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pure combinatorial logic to achieve the high-speed required. Multi-level

current mode logic [2.62] would need to be fully explored again. The 

inherent advantages of EFL could be made full use of in building up the

counters. EFL [2.63] offers an improvement in gate count for some logic 

functions whilst maintaining the speed-power product of ECL. Features

such as high fan-in and fan-out and the ability to wire-OR the outputs 

could be employed efficiently. Since EFL and ECL are fully compatible in 

terms of logic levels, a mixture of them could be used where 

advantageous. Apart from that threshold logic, which depends heavily on

resistor ratios or absolute values would benefit from todays improved

processing technology which would mean a more efficient realization of 

the (p,q) counters in terms of speed and complexity. Thus further work is

needed in these areas.

This project has considered the above issues. Architectures based on

different size counters in an iterative array approach are evaluated in 

terms of speed, hardware costs and regularity of layout. The realization

of counters in conventional combinatorial logic and threshold logic are

reconsidered. These are described in subsequent chapters.

2.6. Summary

This chapter has reviewed the traditional and most commonly-used

techniques for high-speed multipliers. They are compared on the basis of 

speed and their attractiveness for VLSI implementation.

The Wallace tree and Dadda* s technique are shown to be faster than 

the carry-save array approach but are unattractive for VLSI 

implementation. Multiplier recoding techniques like the modified Booth 

algorithm have proved to be a cost-effective method of enhancing the 

speed of the multiplication process but are limited by the number of bits
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that can be coded effectively. Fast adder architectures that are

attractive for incorporation with the Booth encoder multiplier technique 

are assessed in terms of speed and hardware costs. Work done by Dadda on

the concept of parallel (p,q) counters is introduced.

It is found that further investigations is needed in iterative array

architectures based on higher order parallel (p,q) counters that are

ideal for implementation in the fast silicon bipolar technology which

would result in better efficiency realization of high-speed multipliers

in single chip, real-time digital signal processors. With today’s 

improved technology of smaller transistors and lower power consumption, a 

reconsideration of the conventional combinatorial logic and Threshold 

logic for realization of the counters deserves further attention.
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CHAPTER 3

THE HP1X MULTIPLIER AND MPC TEST CHIP

3.1. Introduction

The HP1X 16 x 16-bit multiplier was designed in collaboration with

Hewlett-Packard company at the IC design centre, Department of Electronic 

and Electrical Engineering, University College London, and fabricated in 

Santa Clara using their latest bipolar HP IX process. Also done in 

parallel was an MPC test chip composed of 6 ring oscillators which has

been fabricated and tested successfully. This chip provides a fast and

convenient route to obtain accurate propagation delay of full-adder

cells, verifying the validity of transistor model parameters and allows

us to make final ‘tweaking* of the full-adder cells employed in the HP1X

multiplier.

The appropriate SPICE [3.5] and logic (HILO) [3.6] simulations were 

first performed on the various logic functions of the multiplier to 

characterize their speed-power behaviour. The mask layout was done using

a technology-independent interactive layout editor called CAESAR. It was 

first necessary to adapt CAESAR for the HP IX process by setting up the 

necessary technology files concerned. A design rule-checker called LYRA 

was also modified for the process.

3.2 The HPlX‘s architecture

The multiplier utilizes a carry-save full-adder array to generate 32 

sum-carry pairs which are subsequendy summed by blocks of high-speed

final adders to form a 32-bit product in two’s complement 

representation. Figure 3.1 shows a block diagram of the multiplier. This 

configuration is similar to the typical high-speed multiplier shown in
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Figure 3.1. Block diagram of the HP1X multiplier.

Figure 2.3. The multiplier architecture enables simultaneous loading of

the multiplier and multiplicand word. The X-latch and Y-latch are 16 and 

17-bit input data latches for the multiplier and the multiplicand,

respectively. The output drivers of the Y-latch are able to drive a total 

fan-out of 16 gates. The Booth encoder examines three consecutive bits of 

the multiplier to generate a shift, complement and zero signals. In

essence the three bits are represented by the truth table of 2.1. These

three signals are fed into the partial product generator in the 

carry-save array which is basically composed of a 17 x 8 matrix of 

alternating rows and columns of partial product generators and 

full-adders. The partial product generator takes the three outputs from 

Booth encoder and drives the full-adder which is located directly below
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critical path

PPG

PPG PPG

FA

Figure 3.2. Part of the carry-save array.

it (Figure 3.2). The full-adder takes the output of the partial product 

generator, and the sum and carry output of the appropriate previous 

full-adders. It in turn generates a sum and a carry. The critical path of 

this array is the diagonal path which traverses through eight 

full-adders. The final adders are mainly composed of ripple adders to 

produce the lower significant product bits, and blocks of conditional-sum 

adders of different sizes for the higher significant product bits. In 

order to ease initial testing of the chip, a scan path register is placed 

between the carry-save array and the final adders. This feature enables 

independent testing of the two blocks.

The expected high operation speed of the multiplier ( simulations 

show a total multiplication time of under 5ns for a total power
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Figure 3.3. (a) A simple EFL structure [3.3).

dissipation of around 4W ) owes very much to the bipolar technology and 

the circuit technique used. A 3-level ECL circuit approach [3.1] was

employed to realize most of the logic functions of the multiplier with

the exception of the final adders, which are built up by blocks of the 

simple emitter-function logic (EFL) [3.2-3.4] structure of Figure 3.3. 

Here the EFL cell was found to be attractive in compromising the speed,

power and complexity of conditional-sum adders of different sizes.

Because one of the factors that determines the speed of the

multiplier is the propagation delay of the full-adder, it becomes

necessary to characterize its delay with respect to power. and different

load conditions. Also it is not easy to accurately extract (from the 

layout) the parasitics of bipolar circuits due to the complex geometry of

bipolar transistors and its interconnections. Furthermore, since the HP1X
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process was still at the development stage it was necessary to verify the

validity of the SPICE model parameters evaluated so far. Thus a more

accurate and convenient method of characterizing the on-chip delay than 

that estimated from simulation was required. A ring oscillator provides a

fast and easy route to obtain accurate propagation delay of logic

circuits on a chip as well as verifying the accuracy of the transistor

model parameters. Such a chip was designed and tested; this is discussed

next.

Figure 3.4. Microphotograph of MPC test chip.

3.3. The MPC test chip

The MPC test chip (Figure 3.4) comprises six 20-stage ring

oscillators each of which is made up of 19 stages of non-inverting

full-adders (Sq = ’O’) and one full-adder (Figure 3.5) which can be

switched between the non-inverting and inverting condition. The circuit
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which sets the 19 stages in the non-inverting configuration is called

SET1 ( the schematic is shown in Figure 3.6(b) ). The circuit that allows

switching between the non-inverting and inverting conditions is called

SET2 and is shown schematically in Figure 3.6(c).

If " IN " is left open (unconnected) then TT = *0’ and the full-adder 

will be inverting (states 3 and 7 of Table 3.1) causing the ring

oscillator to be on. In order to stop the oscillation, B is set to *0’

(states 1 and 5 of Table 3.1) which means " IN " will need to be above

set 1 set 1

•et 1 •et 1

set 1 set 1

set 1 set 1

( to p ad s)

set 2

output
buffer

__
(FA)

SEAi
(FA)

 m .__
(FA)

__
(FA)

__
(FA)

 1EA)__
(FA)

JFÂ
FA)

Figure 3.5. A 20-stage ring oscillator.
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Figure 3.6(a). Full-adder schematic.
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Figure 3.6(b). SET1 schematic.
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Figure 3.6(c). SET2 schematic.
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Figure 3.6(d). Output buffer schematic.
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A B c So State

0 0 0 0 1
0 0 1 1 2
0 1 0 1 3
0 1 1 0 4
1 0 0 1 5
1 0 1 0 6
1 1 0 0 7
1 1 1 1 8

Table 3.1. Truth-table of the sum function of a full-adder.

ground by about 200mv.

Thus,

" IN " = -200mv osc. on.

" IN " = +200mv osc. off.

Vcsl controls the current I through the tail current sources and the 

input drivers (SET1 and SET2). Vcs2 controls the current I through the 

emitter follower current sources and the output drivers.

3.3.1. Results

A packaged chip was first mounted and soldered on a copper-clad 

board to provide a good ground plane. Whilst keeping the supply voltage 

of -5.2v constant, each ring oscillator’s frequency was measured as Vcsl

was varied for a fixed value of Vcs2. This procedure was repeated for 

different values of Vcs2. The results were as shown in Figures 3.7 to 

3.12, where they are compared with those obtained from simulations.

As can be seen, the variation of full-adder delay against tail

current is as expected. The usual V-shaped curve of the gate delay can be 

attributed to the variation of logic swing, transistor current gain P and
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junction capacitances variations with collector current as Vcsl and Vcs2 

is varied. The leftmost points in the measured data graphs show the

minimum value of tail current that would give adequate voltage swing to 

switch the gates reliably. The simulated results were obtained using four

stages of full-adder cells with the appropriate SET1 and SET2 circuits. 

As can be seen, the simulated results exhibit the trend of the measured 

ones quite well although their absolute values do not agree reasonably

close. As the HP IX technology is a relatively new process, better 

accuracy of the SPICE results could be expected with the availability of 

an improved SPICE model parameter values in the future.

The results obtained from the test chip were used for the final

’tweaking* of the full-adder cells in the HP1X multiplier. By changing 

the load resistor and/or transistor size and also by selecting a certain

value of current source resistance, the full-adder cell could be tailored

to meet a specific speed-power requirement.

Also, the simulated results were used as the basis for comparison of 

parallel counters described in subsequent chapters.
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(a) Measured

Propagation delay(ps)
500 i

450 -

400 -

350 -

300
0.3 0.5 0.7 0.9 1.10.1

Tail current(mA)

EFcurrent(mA)

0.12 - + -  0.16 0.2 - a -  0.24

(b) Simulated

Propagation delay(ps)
550 -i

500 -

450 -

400 -

350 -

300
0.5 0.70.1 0.3

Tail current(mA)

EFcurrent(mA)

—  0.12 - I — 0.16 0.2 - a -  0.24

Figure 3.7. Propagation delay of ring oscillator 1;
Load resistance = 500Q; Transistor emitter size = 1 x 10|im.

(a) Measured, and (b) Simulated.
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(a) Measured

Propagation delay(ps)
400 -|

350 -

300 -

250
0.1 0.3 0.5 0.7

Tail current(mA)

EFcurrent(mA)

0.12 ~ 1 ~  0.16 ~ 0. 2 0.24

(b) Simulated

Propagation delay(ps)
500 n

450 -

400 -

350 -

-a

300
0.1 0.3 0 .5 0 .7

Tail current(mA)

EFcurrent(mA)

—  0.12 H — 0.16 0.2 —B -  0.24

Figure 3.8. Propagation delay of ring oscillator 2;
Load resistance = 500Q; Transistor emitter size = 1 x 5|im.

(a) Measured, and (b) Simulated.
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(a) Measured

Propagation delay(ps)
400 -i

350 -

300 -

250
0.7 0.90.50.3

Tail current(mA)

EFcurrent(mA)

——  0.16 H — 0.28 0.4 - s -  0.44

(b) Simulated

Propagation delay(ps)
400 -i

350 -

300 -

250 -

200
0.5 0.7 0.90.3

Tail current(mA)

EFcurrent(mA)

0.16 -1 — 0.28 0.4 - B -  0.44
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Figure 3.9. Propagation delay of ring oscillator 3;
Load resistance = 250f2; Transistor emitter size = 1 x 10|im.

(a) Measured, and (b) Simulated.
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(a) Measured

Propagation delay(ps)
500 i

450 -

400 -

350 -

300 -

250
0.4 0.6 0.8 1 1.2 1.4

Tail current(mA)

EFcurrent(mA)

—  0.16 0.2 0.24 - B -  0.28

(b) Simulated

Propagation delay(ps)
400 -|

350 -

300 *

250
0.4 0.6 0.8 1 1.2 1.4

Tail current(mA)

EFcurrent(mA)

—  0.16 —I— 0.2  0.24 - B -  0.28

Page 64

Figure 3.10. Propagation delay of ring oscillator 4;
Load resistance = 250£2; Transistor emitter size = 1 x 5jim.

(a) Measured, and (b) Simulated.
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(a) Measured

Propagation delay(ps)
600 -i

550 -

500 -

450 -

400 -

350 -

300
0.1 0.3 0.5 0.7 0.9

Tail current(mA)

EFcurrent(mA)

—  0.12 0.16 0.2 - a -  0.28

(b) Simulated

Propagation delay(ps)
650 n

600 -

550 -

500 -

450 -

400
0.1 0.3 0.5 0.7 0.9

Tail current(mA)

EFcurrent(mA)

——  0.12 —t— 0.16 0.2 - a ~  0.28

Figure 3.11. Propagation delay of ring oscillator 5;
Load resistance = 750Q; Transistor emitter size = 1 x 10p.m.

(a) Measured, and (b) Simulated.
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(a) Measured

Propagation delay(ps)
550 -i

500 -

450 -

400 -

350
0.7 1.30.1 0.3 0.5 0.9 1.1

Tail current(mA)

EFcurrent(mA)

—  0.12 -H— 0.16 0 .2  0.24

(b) Simulated

Propagation delay(ps)
550 -i

500 -

450 -

—a

400
0.1 0.3 0.5 0.7 0.9

Tail current(mA)

EFcurrent(mA)

——  0.12 - + -  0.16 0 .2  0.24
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Figure 3.12. Propagation delay of ring oscillator 6;
Load resistance = 7500; Transistor emitter size = 1 x 5pm.

(a) Measured, and (b) Simulated.
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CHAPTER 4

ARCHITECTURES FOR ITERATIVE ARRAY MULTIPLICATION

4.1. Introduction

The multiplication operation is one of the most vital operations in 

many digital signal processing and computer applications. Because of the 

inherent complexity of the operation, the execution speed of 

multiplication tends to be the dominant factor in the entire processing

time [4.1-4.4]. With the advent of VLSI technology, which brought about 

the reduced cost of fabrication per transistor on a chip, parallel 

algorithms for multiplication become increasingly important.

Schemes for parallel multiplication are roughly divisible into two 

classes - iterative array of full-adder cells [4.1,4.18-4.41] and 

generation of a matrix of partial product terms with subsequent reduction 

of the matrix [4.1,4.5-4.8,4.42-4.45]. Compared to the linear delay of

the iterative array multiplier, matrix reduction is faster, especially

for large wordlength n as it is a function of 0(log n). For VLSI 

implementations of a single chip multiplier, however, the reduction 

technique, requiring a large number of irregular interconnections between 

different types of cells, is at a major disadvantage over the iterative 

array algorithm, which has a more regular layout. Since the current

trend is towards single chip digital signal processor, the importance of 

a regular architecture becomes more urgent as a strategy to cope with the

increased complexity. With the growing demand in real-time digital signal 

processing, better array multiplication speed than can achieved by the

full-adder carry-save array (CSA) architecture is needed.

As discussed in Chapter 2, considerable increases in the speed of

digital multipliers can be achieved by adding more than one partial
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product at a time [4.5-4.17] by employing higher order parallel (p,q)

counters. This approach largely depends on a counter which has a delay

and complexity comparable to that of a full-adder. Chapter 2 also 

describes previous techniques employed to synthesize such counters.

In this chapter, extension of the CSA approach and novel array 

multipliers based on higher order parallel counters are first studied. An 

iterative array (5,3) counter multiplier architecture recently reported

is highlighted and a novel architecture based on (2,2,3) counters that

was developed in this project is then presented. These architectures are 

assessed on the basis of speed and their attractiveness for VLSI 

implementation, and are critically compared with their full-adder 

counterparts. Emphasis is put on the complexity of wiring between

modules, the regularity of distribution of partials products in the array 

and the expandability of the architecture for longer wordlength. Also,

for comparison purposes the implementation of the counters in the matrix 

reduction technique employed by Dadda is evaluated to determine how well 

it fares against the array technique in terms of speed. Examples of 8 x

8-bit multiplication are given for simple illustrations.

The study shows that both the (5,3) counter and (2,2,3) counter

architectures are quite close to conventional array multipliers from a

VLSI implementation point of view. In terms of speed, assuming the said

counters operate at a comparable speed to a full-adder the (5,3) counter 

architecture offers a speed enhancement of nearly a factor of 2 whilst 

the (2,2,3) counter architecture is found to give a significant

improvement for large operand wordlength.
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4.2. Extension of the CSA technique

The advantages of the full-adder CSA multiplier architecture are 

well-understood and it is the most commonly-used technique in monolithic 

multipliers and digital signal processors due to its inherent regular

structure and ease of design. A study of the concept of parallel (p,q)

counters, first introduced by Dadda [4.5] leads one to the question of

whether the CSA technique could be extended to higher order counters in

order to achieve better speeds.

4.2.1. (4,3) counter multiplier architectures

A full-adder or (3,2) counter is basically a combinatorial network

which takes in three bits of the same weight and produces a 2-bit output

word, whose individual bits are commonly called the sum and carry bits.

The next higher order counter is a (4,3) counter, the extra output bit is

required as a consequence of equation 2.9. The employment of this cell

(Figure 4.1(a)) in a CSA scheme results in the architecture shown in

Figure 4.1(b) for a 8 x 8-bit multiplication. It can be observed that the

(4,3) counter does not offer any significant improvement in speed over 

the full-adder CSA. In fact the number of stages and the total number of

cells is the same as the full-adder CSA. The reason behind this is not

difficult to see - except for the first two stages, only one row of

partial products could be added at each stage as a consequence of the

three output lines needed to be computed from the previous stage.

If we use the reduction algorithm employed by Dadda (see section

2.4.2), the maximum reduction height sequence is

3,4,5,6,8,10,13,17,.......

and compare this to that of the full-adder case whose maximum height

sequence is
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CY, Sz

Figure 4.1(a). A (4,3) counter cell.
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Figure 4.1(b). A 8 x 8-bit (4,3) counter CSA multiplier.
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A B c D s CY1 CY2

0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 1 1 01 1 0 0 0 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 0
1 1 1 1 0 0 1

S = A © B ' © C © D

C Y 1 = ABC + BCD + ACD + ABD + BCD + ACD 

CY 2 = ABCD

Table 4.1. Truth-table of a (4,3) counter.

2,3,4,6,9,13,19,28,.......

In this configuration, the (4,3) counter approach would probably offer a

better speed (bearing in mind the high-speed required of the counter)

especially for large wordlength. Unfortunately, the irregular layout of 

Dadda* s scheme prohibits its practical use.

The main conclusion that can be drawn from observation of the (4,3) 

counter array architecture is that in order to attain any possible speed 

improvements in the array approach, at least two rows of partial products

should be accommodated at each stage taking into account the number of 

output lines produced and which have to be computed at the next level. It

is interesting to note that a 3-bit output word, as shown by equation 2.9
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could code up to a maximum of 7-bits of the same weight. Obviously, with 

a (4,3) counter the full range of the output word is not efficiently 

utilised. These considerations leads one to the case of the (5,3) 

counter.

4.2.2. (5,3) counter multiplier architectures

Figure 4.2(b) demonstrates a multiplier architecture based on an 

array of (5,3) counters. Here, the counters, being able to sum two 

partial product bits at each stage are more efficient in reducing the 

number of stages in the array. For a 8 x 8-bit multiplication, there are 

3 fewer stages compared to a full-adder CSA. In general, for a n x n-bit

n > 4. For even n, this would give almost the same speed as the Booth 

multiplier (if the same fast final adder is employed for both) providing 

the (5,3) counter has a delay comparable to that of a full-adder.

Using Dadda* s algorithm, the maximum reduction height sequence is

Thus, for 8 x 8-bit multiplication the number of stages required is just 

one less than the array approach, but the scheme is clearly more 

effective for large wordlength.

However, like all good things, the (5,3) counter introduces more 

complexity (as Table 4.2 suggests) and it might be more difficult, 

compared to the (4,3) counter to achieve a counter speed that would 

approach the full-adder’s. It is seen that the distribution of partial 

product terms in the array is less regular than the full-adder CSA and 

also there would be unused counter inputs if the homogeneous nature of 

the array in terms of counter size is preserved.

multiplication, the number of counter stages is given by + 1 for

3,5,7,11,17,27,
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sCY,'2

Figure 4.2(a). A (5,3) counter cell.

HA

HA HA

HA

HA

’l5 P 14 P 13 P 12 P 11 P 10 P fl P 8 P ?  P 6 P 5

Figure 4.2(b). A 8 x 8-bit (5,3) counter CSA multiplier.
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A B c D E s CY1 CY2

0 0 0 0 0 0 0 00 0 0. 0 1 1 0 00 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 0
0 0 1 0 1 0 1 0
0 0 1 1 0 0 1 00 0 1 1 1 1 1 00 1 0 0 0 1 00 1 0 0 1 0 1 00 1 0 1 0 0 1 00 1 0 1 1 1 1 00 1 1 0 0 0 1 00 1 1 0 1 1 1 00 1 1 1 0 1 1 00 1 1 1 1 0 11 0 0 0 0 1 01 0 0 0 1 0 1 01 0 0 1 0 0 1 01 0 0 1 1 1 1 01 0 1 0 0 0 1 01 0 1 0 1 1 1 01 0 1 1 0 1 1 01 0 1 1 1 0 11 1 0 0 0 0 1 01 1 0 0 1 1 1 01 1 0 1 0 1 1 01 1 0 1 1 0 0 11 1 1 0 0 1 1 01 1 1 0 1 0 0 11 1 1 1 0 0 0 11 1 1 1 1 1 0 1

s = A © B © c © D © E

CYj = A (BCD + CDE + BDE + BCD +B D E )
+ A (BCE + BCD + BCE + CDE + CDE) 
+ BCDE

CY2 = BCDE + ABDE + ABCE + ABCD + ACDE

Table 4.2. Truth-table of a (5,3) counter.
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It is important to note that assessing the speed of the array

architecture on the basis of number of counter stages required is

misleading. It can be observed that the critical path of the (5,3)

counter array architecture (as well as the (4,3)) is along the right-most

column and bottom row of the array which, for a n x n-bit multiplication

is given by (2n-2) counter delays. This figure is the same as the

critical delay of the full-adder CSA (or worse since the (5,3) counter is

likely to be slower than the full-adder) as shown by equation 2.1

(excluding the AND gate delay for the generation of partial product

bits). Although the number of stages are reduced, the generation of the

final product bits at the edge of the array becomes the speed-limiting

factor. An obvious answer to this would be to use fast adders as is

commonly considered, but this adds complexities and irregularities in the

array. Thus, in order to obtain better speeds in an array multiplier, the

employment of a higher order counter, which reduces the number of stages

required must be accompanied by a corresponding improvement in the delay

due to the generation of the final product bits at the edges of the

array. This should be achieved, as far as possible through preservation

of the homogeneous nature of the array in terms of the size of the

counter cell, their interconnectivity and the distribution of partial

product terms, in order to render the architecture ideal for VLSI

implementation. These factors presents an enormous challenge to VLSI

designers.

However, a recent (5,3) counter architecture reported by Nakamura

[4.30] appears to have all the features required of an array multiplier

and is found to be quite close to that of the conventional CSA

multipliers; this is discussed next.
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4.3. An optimum (5,3) counter array multiplier

Nakamura [4.27,4.30] has reported an optimum (5,3) counter iterative 

array multiplier architecture that has a high . degree of regularity

without substantially increasing the total hardware complexity. It was

claimed that the operation speed is nearly twice as fast as the

conventional array multiplier providing the (5,3) counter has a

comparable delay to that of the full-adder* s.

In this scheme, the array of partial products can be collated in a

square form, as shown in Figure 4.3 for a 8 x 8-bit multiplication, where 

i is the ith row from the bottom and j  is for the yth column from the

left. The coordinates are arranged so that at the location (ij) the

weight for the partial product a.bj  is 2I+A It is clear that all partial 

product bits of the same weight in the square array are placed along in a

diagonal direction from upper left to lower right. By the same

coordinates used in Figure 4.3, we denote the cell at the (ij) position 

as C.j. If the square matrix is folded into a triangular shape at the

main diagonal line of i = j , as shown in Figure 4.4, each C - (n > i > j

> 0), contains two partial products of aJbj and ajb-t and on the main

diagonal C.. (n > i > 0), contains only one partial product of a-b-. The

multiplier architecture is based on this triangular array. In Figure 4.4,

the connections for the sum and carrys are obvious; by assuming the flow

of additions from left to right, the sum and carrys should be chained 

along on the equally weighted diagonal (incrementally weighted 

horizontal) direction.

The entire interconnection of the input and output lines of the

counter cells in a 8 x 8-bit multiplier results in the architecture shown

in Figure 4.5(b). In general for a n x n-bit multiplication, the scheme 

has interconnections defined as follows :
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0 1 2 3 J  4 5 6 7

7 a 7 bo 3 7 b i 3 7 b 2 3 7 b 3 a 7 b4 37 b s a 7 b 6 a 7 b 7

6 36 bo a 6 b i a 6 b 2 3 6 b 3 a 6 b4 a 6 b s 3 6 b 6 a 6 b 7

5 a 5 bo a 5 b-i a 5 b 2 a 5 bs a 5 b4 a s b 5 a 5 b 6 a 5 b 7

4 a 4 b 0 a 4 b 1 3 4 b 2 3 4 b 3 a 4 b 4 a 4 b s a 4 b 6 3 4 b 7

3 a 3 b 0 a 3 b i 3 3 b 2 a 3 b 3 a 3 b4 a 3 b 5 a 3 b 6 a 3 b 7

2 a 2 b 0 ^ b . a 2 b 2 a 2 b 3 3 2 b 4 a 2 b s a 2 bg a 2 b 7

1 a i bo a i b i a i b 2 a i b 3 31 b 4 a i b 5 a i b 6 a i b 7

0 a 0 b 0 a o bi a o b 2 a o b 3 3o b4 3 0 b 5 a o bg a o b 7

4.3. A 8  
[4.27]

X 8 -b i t  c o l la t e d sq u a r e array <o f  p a rt ia l p r o d u c t

0 1 2 3 j  4 5 6 7

7 a 0 b 7 
a 7 bo

a i b 7 
a 7 b i

3 2 b 7
a 7 b 2

a 3 b 7 
a 7 b 3

a 4 b - j

3 7 b 4
a 5 b 7
a 7 b 5

3 6 b 7 a  
a 7 be

7 b 7

6 a 0 b 6
36 bo

a i b 6 
a 6 b i

a 2 be 
ag b 2

a 3 b 6
36 b 3

a 4 b 6
a 6 b 4

3 5 b 6 
a 6 bs

3 g b 6

5 a 0 b 5 
a s b 0

a i b 5 
3 5 b i

a 2 bs
a 5 b 2

a 3 b 5
a 5 b 3

a 4 b 5
a 5 b 4

a 5 b 5

4 3 0 b 4 
3 4 b 0

a i b 4 
3 4 b i

a 2 b 4
a 4 b 2

a 3 b 4
a 4 b 3

a 4 b 4

3
3o b 3
a 3 bo

a i b 3
a 3 b i

a 2 b 3 
a 3 b 2

a 3 b 3

2 a 0 b 2 
a 2 bo

a i b 2 
a 2 b i

a 2 b 2

1
3 0 bi
31 bo

a i bi

0 3 0 b 0

Figure 4.4. A 8 x 8-bit folded triangle array o f . partial product bits 
[4.27].
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(i) For i j  > 0 and i + j  < n, C.. has inputs from product terms a b .  and
V  * J

ab^. The A, B, and C input lines are connected to ^i j -P

C. j j  j  cells through their S, CYj and CY2 output lines, respectively.

The S, CYj and CY2 lines of C.. are connected to the

C. r • j through their input lines A, B and C, respectively.i+lj+1
(ii) The input lines A, B and C of the leftmost column cells C . q are 

connected to 0.

term ab-. Here the cells are designed as (3,2) counters and in addition, 

another stage of n modified full-adders. These diagonal full-adders are 

slightly different from the normal full-adder in that there are four 

inputs instead of three. The reason is that two of the four inputs have a 

positional weight of 1/2 since both bits ANDed together gives a carry 

bit. Thus, the sum and carry output of the diagonal cells are defined as

products is speeded up since such a modified full-adder with four inputs 

is simpler and faster than a (5,3) counter. As seen later, a combination

of the EX-OR gate and the modified full-adder is basically a (2,2,3)

counter and is the basis of a novel array architecture developed in this 

project.

The total number of (5,3) counters, half-adders, modified full-

adders and EX-OR gates required for a n x n-bit multiplication is summar­

ized in Table 4.3 (excluding AND gates for partial product generation).

As shown in Figure 4.5(b), a carry propagates from left to right and 

the longest delay for a n x n-bit multiplication is (n + 1) counter

(iii) The diagonal cells C ~ where i = j, have only one partial product

S = sum(w,x,y,z) = w © x © (yz)

C = carry(w,x,y,z) = wx + wyz + xyz

where w = S of x = CY^ of C. . j ,  y = S of C^. j ,  and z = CYj

of C B y  employing these cells, the computation of the final
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Number of cells

n  - 1

( 5 , 3 )  coun t e r  s i x
X =  1

H a l f -  adder s (HA) n

M o d i f ie d  FA n

EX-OR gate (n -l)

Table 4.3. No. of counters for a n x n-bit (5,3) counter multiplier.

delays. Some minor improvements in speed and hardware savings can be made 

by replacing the Oth column cells C. q by half-adders. If the delay of a 

single (5,3) counter is equal to that of a full-adder* s, the new

algorithm is nearly twice as fast as the old one. Apart from that, the

multiplier is very close to the full-adder CSA since the advantages of

this array architecture are obvious; there is a regular interconnection 

of counters. Although there are more wires running in between the cells

and more than one type of cell employed compared to the full-adder CSA, 

the wiring between the different types of cells are still regular, and

all the interconnections between cells are made between either nearest

neighbours or next nearest neighbours. This property is vital for VLSI 

implementation because wiring in integrated circuits occupies a lot of 

silicon area. The architecture is also easily expandable by adding extra

rows of counters to fit the specific application. Furthermore, there is a

regular distribution of the partial product terms in the array as 

illustrated by Figure 4.6, and no counter inputs are unutilised. These
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Figure 4.6. Distribution and wiring of partial product terms.

factors make the architecture ideal from a VLSI implementation point of 

view.

The major issue in this array multiplication algorithm is the delay 

and complexity of a single (5,3) counter cell. The attractiveness of the 

architecture in terms of speed and VLSI implementation of single chip 

multipliers and digital signal processors makes it worthwhile to 

investigate possible schemes to realise a (5,3) counter which would give 

a delay comparable to that of the full-adder without incurring too much 

complexity. According to the complexity measure estimated by Nakamura 

which is based on the table look-up operation on ROM [4.8], the (5,3) 

counter is three times more complex than the full-adder. This comparison, 

however, is based on a particular implementation method which may not
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give practical values for certain logic families with different 

implementation methods.

In practical applications of hardware algorithms, one of the

problems we often face is the fact that the efficiency of the implemented 

hardware depends not only on the algorithm but also on the technology

that implements the design. Indeed, in many cases the implementing

technology has a dominant effect on the efficiency of design. Therefore,

in this project the (5,3) counter multiplier is discussed in a different 

perspective, namely the efficiency of operation speed of the (5,3) 

counter and the viability of the architecture based on a particular 

technology - bipolar, since this is the fastest silicon technology that

has reached an advanced stage of maturity. This subject is thoroughly 

described in subsequent chapters.

4.4. Novel iterative (2,2,3) counter multiplier architecture

The folded triangle array of partial products proved to be one of

the key factors which gives the optimum (5,3) counter architecture its

regular structure in terms of the interconnections between cells, the

even distribution of partial products and the complete utilisation of the

counters. In addition, the employment of the modified full-adder for the

diagonal cells enhances the speed of the critical path in the array by a 

possible factor of nearly 2. These features are made use of in the 

development of the (2,2,3) counter multiplier architecture described

below.

Attempting to extend the optimum (5,3) counter architecture based on 

single input column, higher order counters i.e. (6,3), (7,3) and so on,

using the folded partial product array would not result in any 

improvement in the critical delay. The employment of these counters would
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merely reduce the sum delay path while the carrys delay paths remained

unaffected, which means that there would still be the same number of 

cells in the y-direction (and hence the same speed) as the (5,3) counter 

multiplier. Furthermore, the distribution of the partial product terms

would no longer be regular since the higher order counters would depend

on a partial product array that has more than two terms paired together

regularly and this is difficult, if not impossible, to obtain. Besides,

as Table 4.1 and Table 4.2 suggest, the logical functions of higher order

counters increases quite disproportionately that there is no advantage in 

trying to extend the architecture larger than the (5,3).

It can be observed that, ideally, any attempt to improve the

critical delay of the (5,3) counter multiplier should concentrate on ways

of reducing the number of cell delays in both the i and j  direction .

This entails summing four neighbouring pairs of partial product terms in 

a delay time of at worse, two full-adder delays to be able to maintain

the speed advantage. Such a counter required to sum the four pairs of

partial product terms (a total of eight input variables) would be far too

complicated and impractical. A compromise is, however possible and this 

stems from the fact that the delay due to the generation of two

consecutive final product bits can be achieved in a unit counter delay 

with the help of the diagonal cell combination of an EX-OR gate and the

modified full-adder. What is more important is reducing the delay across 

the array i.e. in the j-direction and this could be implemented with the

same EX-OR gate and modified full-adder combination.

Using the concept of counters which successively receive several

input columns introduced in Chapter 2, the EX-OR gate and modified

full-adder composed together is really a (2,2,3) counter as illustrated

in Figure 4.7. The logic function of the three outputs are as defined in
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B1 A1 B0 A0

Ex-OR
Gate

(2,2,3)
Counter

CY1 Suml SumO

Figure 4.7. A (2,2,3) counter cell.

Modified
Full-adder

B1 A 1 B o Ao CY1 Suml SumO

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 0 0

1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 0

SumO = Aq © Bq

S u m l  = Aj © Bj © (AqBq)

CY 1 = AjB j + A j AqBq + Bj AqBq

Table 4.4. Truth-table of (2,2,3) counter.
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Table 4.4. Notice that equation 2.11 is satisfied with a 3-bit output 

word. The realisation of the modified full-adder, with only four inputs,

in principle, could be achieved with a delay between that of a

full-adder’s and a (5,3) counter’s. It is seen that the SumO output

propagation delay, being dependent on only two input variables would be 

faster than both the Suml and CY1 outputs. These considerations lead us

to the (2,2,3) counter array multiplier architecture shown in Figure 4.8 

for a 8 x 8-bit multiplication.

4.4.1. Architectural description of (2,2,3) counter multiplier

The (2,2,3) counter multiplier differs from the (5,3) counter

multiplier in that two consecutive partial product pairs of adjacent

weights in the folded square matrix are summed together simultaneously.

Since this operation produces 3 output lines of different weights, a

network of (2,2,3) counters and full-adders are interconnected to form

megacells to add up the partial product bits with the output lines from

previous stages. In Figure 4.8, each box with partial product bits is a

megacell composed of (2,2,3) counters and full-adders whereas the

diagonal cells are solely half-adders or (2,2,3) counters. The

interconnection of the megacells and diagonal cells are similar to the

(5,3) counter architecture except that there is now a fourth output line

(the highest carry) possible from each megacell, depending on the number

of partial product bits present as well as the number of output lines

from previous stage cells (taking their relative weighting into account).

Using the coordinates shown in Figure 4.8, this occurs for cells C- q and

C - . (where i * j; i * n-1 and j  & 0). This highest carry line of such
*

megacell, say C .j  has to go to the cell to the right of it i.e. cell

C i  j + j  in order to maintain the same number of output lines from each
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a,bi (2,2,3) 
, Counter ,

a i ^  CTl  a i 0

(2,2,3)
Counter

CT2

SO;i+1,0

C2.0 C1.0 Slii0 S0.0

Figure 4.9(a) Composition of megacell C. q.

Half
Adder

(2,2,3)
Counter

CT2

Counter 0 .
cti ^

Cln-lj-l

-Figure 4.9(b). Composition of megacell Cn
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Full
Adder

Full
Adder

(2,2,3)
Counter

C T 2

a2j+ibi (2*2,3) a2jbi
alb2j+I Co™ter a.b,

C ^ j- !
S O i+ ij

SI if i j -1

C1,j S1i.j so..1J

Figure 4.9(c). Composition of megacell C .
i j

aibi

Full
Adder

Full
Adder

S lu

C2i,i-1
SOj+ij

Clu-1
S l i + 14-1

Figure 4.9(d). Composition of megacell C. ..
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megacell at subsequent stages. Furthermore, if the highest carry is 

instead connected to cell C .+j  j+j as is similarly done in the (5,3)

counter multiplier, a more complicated and slower megacell would result 

The main disadvantage of connecting the highest carry this way is that,

it rules out the possibility of using the same network of EX-OR gate and

modified full-adder for the diagonal cells as implemented in the (5,3)

counter architecture, in the computation of the final product bits. A 

slightly more complicated but, still regular network of half-adders and

(2,2,3) counters for the diagonal cells is needed in this architecture.

The composition of the megacells are shown in Figures 4.9(a)-(d). In 

general for a n x n-bit multiplication, there are (n-1) rows and n/2

columns of megacells, which are divided into four classes as described

below :

(i) For cells in the leftmost column i.e. C- q (where 1 < i < (n-1)),

each cell is made up of a (2,2,3) counter CT1, which initially reduces

the two adjacent pairs of partial product terms and another (2,2,3)

counter CT2 as depicted in Figure 4.9(a). One of the lower significant 

inputs to CT2 is a propagating input, which comes from the SO output of

cell Cj+j o* The propagation delay of this megacell is one (2,2,3) 

counter delay for the SI, Cl and C2 outputs whilst the SO line do not

suffer any further delay.

(ii) The composition of the topmost row megacells C 1 . (where j  > 0) is

similarly illustrated in Figure 4.9(b). A fourth output line C2 is not 

possible in this case since the full-range of the 3-bit output word is 

adequate to code the two pairs of partial product terms plus the bit due

to propagating input Cl from cell Cfl j .

Some minor improvements in speed and hardware savings could be

achieved by replacing CT2 in cell C .n and CT2 in cell C , . with ai, 0  n - l , j
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(1,2,3) counter.

(iii) For megacells C. . (where i j, i *  n-1 and j  *  0), the presence
* v

of two pairs of input lines of adjacent weights from the previous stage 

necessitates the use of two blocks of full-adders to add them with the

summed partial product bits. This is shown in Figure 4.9(c).

(iv) Figure 4.9(d) shows the composition of megacells C. •, where i is 

even and there is only one partial product term present Notice again 

that the three output lines are sufficient to code the addition of the

two pairs of input lines of adjacent weights from the previous stage,

with the single partial product bit.

The propagation delays of the appropriate outputs of the four types 

of megacells are summarized in Table 4.5 by making the assumption that 

all the logic blocks could be realised with a unit gate delay. It must be 

stressed that in all the megacells except C . i n  principle the SI

output’s propagation delay would be faster than the higher carry 

output(s) since logically, SI is merely an EX-OR function of two

variables as illustrated in Figure 4.7.

The diagonal cells differ from those of the (5,3) counter 

architecture as a result of the presence of the fourth output line C2. A

slightly more involved, but regular network is needed to compute the

final product bits. This, however does not actually worsen the critical 

delay resulting from generation of the final product bits. Figure 4.10 

illustrates this where the delay paths near the neighbourhood of the

diagonal cells of part of a n x n-bit array are shown after taking into

account the different propagation delays of the outputs of the megacells 

as summarized in Table 4.5. In fact, the sum and carry delay paths

through the megacells is effectively equalised by the delay path 

resulting from generation of the final product bits (dotted arrow) by



Architectures for iterative array multiplication Page 92

me gacell
Propagation delay (unit  gate delay)

C2 Cl SI SO

C/ ,0

Cn - l J

C i , i /2

1 1 1 0  

2 2 1 

2 2 2 1 

2 2 1

Table 4.5. Propagation delays of megacells

Figure 4.10. A network of half-adders and (2,2,3) counters 
for the diagonal cells.
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No. of megacells /cells

even n odd n

c ,-,0

'n-1 J

c u

c u

H al f-adder s

( 2 , 2 , 3 )  counters

n-1

-1

n / 2 - 2

I  2x
x  =  1

n

n
2

*n-4

n-1

| 5 J - 1

In/2 I -2
I  (2x+l)

x  =  0

n
2

n
1

-5

Table 4.6(a). No. of megacells/cells of a (2,2,3) counter multiplier.

Number of counters

Even n Odd n

2 -input EXOR 

2 -input AND 

F u l l  -adde r s (FA)

M od i f i e d  FA

n / 2 - 2  .  .
1  4x + ( i j i i - 9 )

X = 1
n / 2 - 2

Y 8x + ( 7 n -  8)
X =1 

n /  2 - 2
Y 4x + ( n - 2 )

x =1

n / 2 - 2  Q
Y 4x + ( ^ n - 8 )

X = 1

L" / 2 j f  ( 4X . 2 )  +  ( U ^ 1)
x = 0 

| n /2 1 -2Y (8x + 4) + (7n-10)
x = 0 

1 n / 2 1 - 2
- T  (4x+2) + (n-1)
x = 0

I 5 / 2 J - 2  Q n -17Y (4x+ 2) +  r-V- )
x = 0

Table 4.6(b). Total no. of parallel counters of a (2,2,3) counter
multiplier
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employing a network of half-adders and (2,2,3) counters for the diagonal 

cells.

Table 4.6(a) summarizes the total number of different types of 

megacells including the diagonal ones for a n x n-bit multiplication. In

Table 4.6(b), the total number of counters of different sizes after

flattening the hierarchy of the megacells are given.

4.4.2. Critical delay path

The last section shows how the delay due to the generation of the

final product bits could be equalised to the sum and carry paths through

the megacells by using a slightly more complicated network of half-adders

and (2,2,3) counters for the diagonal cells. In order to identify the

critical path of the multiplier, it is thus necessary to look for the sum

and/or carry path through the megacells which gives the largest delay. In

this architecture, the sum delay path of any weight w, where 2^ < 2W < 

2^n~* comprises alternate gate delays of 1 and 2 ( except for the first

two column of megacells where the sum delay is a unit gate delay )

corresponding to the SO and SI output delay, respectively for each 

addition of a pair of partial product terms. One would suspect then that

the longest delay path through the the megacells is in the vicinity of

the path which has the largest number of partial product bits and this 

occurs for the path whose partial product weight is 2n.

Since, in principle, the modified full-adder part of a (2,2,3)

counter is slower than the 2-input EXOR gate, the actual critical path

through the megacells starts from the top left cell Cn  ̂q and follows a

" staircase " path traversing through alternate SO and Cl paths as

illustrated in Figure 4.11 (shaded area) where the diagonal cells have 

been deleted for the sake of clarity. Using the notation IP^, for the
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i f t -1

r x  x  Tx x
X

'W r x x \ ©

■® ' ®

Figure 4.12. Diagram demonstrating possible paths where IP^ ends.

intermediate product bit (IP) of weight w, such a delay path results in

the intermediate product IP^, whose weight is 2 having the largest delay 

through the array of megacells (c = 9 for the 8 x 8-bit multiplication).

For w > c, the delay of the intermediate product bits is equal to or less 

than the delay of IP^ (this is proved in section 4.4.2.2) which verifies

that the " staircase " path that results in IP^ does represent the 

critical path through the megacells. For a n x n-bit multiplication, the

value of c is derived in the next section.

4.4.2.I. Derivation of the weight of the critical intermediate product 
bit

Because of the slight irregularities of the megacells neighbouring

the diagonal cells over two rows, determining the value of c and

characterising the delay behaviour of IP^ directly would be rather

awkward. Instead, observations were made on IP^ over a range of n and 

these are summarized in Figure 4.12, which shows the possible paths where
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the critical path of IP^ could end, depending on the nature of n. Path 1

would result for IP^ where n has the property that (n-1) is a multiple of

3. Path 2 and path 3 applies when n and (n-2) respectively is a multiple

of 3. Table 4.7 tabulates c and the total gate delay of IP over a

certain range of n. From Table 4.7, it can be seen that for every

multiple of 3, c increases by 1. Hence,

c -  n + I n-41 (4.1)n + I n-41
LTJ

The delay of IP^, d can be generalised as follows:

(a) If (n-2) is a multiple of 3 then

d = n-2 (4.2)

(b) or else

d = n-1. (4.3)

Wordlength n c Total gate 
de 1 ay d of IP

5 5 3
6 6 5
7 8 6
8 9 6
9 10 8

10 12 9
11 13 9
12 14 11
13 16 12
14 17 12
15 18 14
16 20 15

Table 4.7. The weight and delay of the critical intermediate product bit 
over a range of wordlength.
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4.4.2.2. A proof that the higher significant intermediate product bits 
have a delay not more than the delay of IP^

The delay of the outputs of the topmost row cells Cn unlike the

megacells in the bulk of the array is not affected by the presence of a 

slower propagating input bit and this results in a faster delay (by one 

gate) for the outputs concerned. This, in turn sets the delay of the

megacells of the following stages resulting in a delay pattern which 

increases linearly down the array by a unit gate delay for a given column

of cells in the part of the array above the critical path of IP^. Thus, 

above the array where IP^ ends, Figure 4.13 results for the case where 

(n-2) is not a multiple of 3 and where the delay of IP^ is given by

(d-1). It can be seen that there is a linear increase in the delay of the

same outputs of the same column of megacells as we move down the array.

The same delay pattern can also be observed at the part of the array

above the critical delay path of IP^, for any other appropriate multiple

of n corresponding to the paths shown in Figure 4.12.

h - 1 u +1

i 1 + 2

/ -j +7

h

H-l

i y 2

C+7

C+6

Figure 4.13. Part of an array above the critical delay path IP̂ .
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From Figure 4.13, for each column of megacells added for the 

computation of the next higher significant intermediate product bit, the 

extra gate delay required per intermediate product bit is actually 

compensated by the lower delay (by one gate for each row) of the carry 

signals Cl and C2 from the previous column.

Thus, the total gate delay of the intermediate product bits higher 

than IP^ cannot be greater than the delay of IP^.

In order to determine the total worst case delay for a n x n-bit 

multiplication it is necessary to note the following two observations :

(i) It can be seen from Figure 4.13 where (n-2) is not a multiple of 3, a 

further 2 gate delays is needed to obtain and Pc+j in addition to the 

delay d of IP^ by using the network of half-adders and (2,2,3) counters. 

Thus, the number of remaining final product bits greater than Pc+  ̂ is 

given by

For the case where (n-2) is a multiple of 3, the same observation can be 

made except that P^+j cannot be obtained simultaneously with P^ by using 

the same diagonal (2,2,3) counter. This gives the number of remaining 

higher significant final product bits greater than P^ as

(ii) The total delay d of IP^ is dependent on whether (n-2) is a multiple

of 3 or not, as derived in equations 4.2 and 4.3, respectively.

The total worst-case delay of the architecture can now be evaluated,

first, for the case where (n-2) is not a multiple of 3. An assumption is

made that the (2,2,3) counter has a unit gate delay. In order to compute

the higher significant final product bits P , where (2n-l) > w > (c+1),

it can be observed that every two consecutive final product bits can be

obtained in one gate delay by using the same network of diagonal cells

( 2 n - l )  - ( c + 1 ) (4.4)

( 2 n - l )  - c (4.5)
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throughout the array. These higher significant final product bits can be 

obtained in a further delay totalling

(2n-l) - (c+1) (4.6)

The worst case delay D is then equal to the total delay of (and Pc+p  

and the delay due to the computation of the higher significant product

bits, P ; this is given by w
D = (n-i) + 2 + = 3n . i n-4

~ T (4.7)n ' 211 2

The same argument as above can be applied for the case when (n-2) is 

a multiple of 3 where it is found that
( n . i _ i \  ' i  1 (  i _ /i

(4.8)D = (n-2) + 2 + (2n-l) - (c+1)

Equations 4.7 and 4.8 can be generalised to give

Dn = <n+1> + U J (4.9)

4.5. Architectural Comparisons of (5,3) and (2,2,3) counter multipliers

A comparison of the (2,2,3) counter and (5,3) counter array 

multipliers are shown in Figure 4.14(a) with the conventional CSA 

multiplier in terms of speed against the operand wordlength where it has 

been assumed that the (5,3) counter and (2,2,3) counter has a propagation 

delay equal to that of the full-adder. The relative hardware costs of the 

three schemes could be roughly estimated by assuming a single cascode ECL 

gate that could implement a logic function of up to five variables. The 

total ECL gate count of the straight CSA multiplier has been calculated 

in Chapter 2 (section 2.2.4) and an estimation of the hardware cost of 

the (5,3) counter and (2,2,3) counter multipliers are summarized in Table 

4.8 including the AND gates for generation of partial product terms. 

Figure 4.14(b) illustrates the relative hardware costs of the three
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T otal ECL gate count

(2 ,2 ,3 ) 
Counter 

mul t ip l i e r

even n odd n

n/2-2 *-j
£ (28x) + ( - j n -37)

X = 1
^ /2“^ 2(28x+ 14) + (4l5^Z2)

x = 0

( 5 , 3 )  counter 
mul t ip l i e r

" ' 1
Y ( 3 x )  + n  + (5n-4)

X = 1

Table 4.8. ECL gate count estimate of (2,2,3) counter 
and (5,3) counter multiplier.

different array techniques. Figure 4.14(a) demonstrates clearly the 

superior speeds of array multipliers through employment of higher order 

parallel counters. The (5,3) counter multiplier is faster than the 

conventional CSA multiplier by nearly a factor of two whilst the (2,2,3) 

counter array scheme has a speed between that of the CSA and (5,3) 

counter technique but is obviously more effective for large operand

wordlength. It is interesting to note that the (5,3) counter architecture

is about as fast as the Booth-encoded CSA multiplier with fast final

adders (see Figure 2.4(a)).

In terms of the relative hardware costs, the (5,3) counter scheme is 

better than the CSA technique while the (2,2,3) counter architecture has

a total gate count about 20%-35% more than the CSA multiplier. It must be 

emphasised that these figures give a rough estimate of the speed and

hardware cost trade-offs of the three schemes implemented in ECL

technology based on the assumptions that functions of up to five 

variables can be implemented with a single ECL gate with equal
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Figure 4.14. A comparison of different array multiplier schemes,
(a) Relative gate delay, and (b) ECL gate count.
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propagation delay. This may not give actual figures for practical ECL 

circuits and for certain logic families with different implementation 

methods since it depends among many things, on the maximum fan-in and 

fan-out, and tolerable noise margins under standard operating conditions.

A fan-in of 4 is typical in most proven technologies which suggests that 

the curve of the (2,2,3) counter (which has four input variables) in 

Figure 4.14(b) would more likely to approach that for practical circuits.

From a VLSI implementation point of view both the (5,3) counter and

(2,2,3) counter architectures are quite close to the conventional CSA 

multiplier although there are more than one type of cell used and 

slightly more wiring between them. The employment of the folded array of 

partial product bits which gives the (5,3) counter architecture a regular 

structure in terms of counter size and distribution of partial product 

terms, is retained in the (2,2,3) counter technique. Both the 

architectures are easily expandable to larger wordlengths by adding extra 

rows of cells to fit the specific application.

It is interesting to note that in all the megacells except C. • of 

the (2,2,3) counter architecture, the SI output’s propagation delay, in 

principle would be faster than the higher carry outputs (Cl and C2)

since logically, SI is merely an EX-OR function of two variables as 

illustrated in Figure 4.7. The implication of this is that, because the 

delay path through the megacells traverses a majority of alternate logic 

blocks of full-adders and (2,2,3) counters, the likely slower delay of

the modified full-adder component of a (2,2,3) counter would be 

compensated by the faster EX-OR gate of the (2,2,3) counter of the next 

stage. This makes the (2,2,3) counter multiplier a more attractive 

proposition than the (5,3) counter architecture since the speed 

requirement on the (2,2,3) counter is less stringent than the (5,3)
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counter. Besides, the (2,2,3) counter, having four input variables as

opposed to five for the (5,3) counter could be designed in practice with

a faster propagation delay.

For those multiplications which are based on signed binary numbers,

the conversion from unsigned multiplication to signed two‘s complement is

simple for both architectures. For instance, by applying the usual

technique of two‘s complement addition [4.46], a two‘s complement (5,3)

counter multiplier can be realized, without disturbing the regularity of

the array simply by inverting the partial product terms in the topmost

row cells [4.30]. A similar type of conversion can be made for the

(2,2,3) counter multiplier since the distribution pattern of the partial 

product bits is retained.

In this project the (5,3) counter and (2,2,3) counter architectures 

are studied in a different perspective, principally the efficiency of 

operation speed of the counters and the viability of the architecture in

the fast bipolar ECL technology. Several methods for realising the

counters both at the logic and circuit level are investigated for speed,

noise immunity and ease of implementation for VLSI. This subject is

discussed in subsequent chapters.

4.6. Summary

Extension of the conventional full-adder CSA approach to higher 

order parallel (p,q) counters has been studied in this chapter. A novel

iterative (5,3) counter multiplier recendy reported is highlighted and

from this a (2,2,3) counter developed in this project are assessed in

terms of speed and their attractiveness for VLSI implementation.

The study shows that both the (5,3) counter and the (2,2,3) counter

architectures are quite close to conventional array multipliers from a
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VLSI implementation point of view. Although more than one type of cell is 

involved in the architectures, there is a regular interconnection between 

cells and distribution of partial product bits, and both the 

architectures are easily expandable. In terms of speed, assuming the 

counters operate at a comparable speed as a full-adder the (5,3) counter 

architecture offers a speed enhancement of nearly a factor of 2 whilst 

the (2,2,3) counter architecture is found to give a significant 

improvement over that of conventional CSA multiplier for large operand 

wordlength.
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CHAPTER 5 

REALISATION OF PARALLEL COUNTERS

5.1. Introduction

Large higher order parallel (p,q) counters, having a multitude of

inputs are very useful in realising various kinds of parallel arithmetic 

operations [5.18-5.23]. The concept of employing higher order parallel

(p,q) counters [5.1-5.5] to enhance the speed of iterative array 

multipliers has been studied and demonstrated in the last chapter.

Assuming the counter cells operate at a comparable speed to that of a

full-adder, the (5,3) and (2,2,3) counter multiplier schemes are shown to

offer significant speed improvements over conventional carry-save array

(CSA) multipliers. Thus the main issue now is how such a counter could be 

designed in the fast bipolar ECL technology.

A full-adder [5.6] can be considered as a (3,2) counter (it is the 

’smallest’ one). Irrespective of the technology used, the full-adder is

easy to design by purely combinatorial logic techniques and the

associated multiplier architectures are simple and regular which makes 

them ideal for VLSI implementation. However, the complexity involved in 

implementing higher order counters is well-known [5.7]. Considerable

attention has been paid to methods of synthesizing large parallel

counters in the past. Previous work has concentrated on using look-up 

tables or ROMs [5.2], sequential circuits [5.8,5.9], networks of 

full-adders or smaller counters [5.7,5.10-5.15] and threshold logic

[5.1,5.4,5.16,5.17,5.24-5.26,5.49,5.51]. These methods however, result in

counters that are too costly and too slow to gain any significant

improvement in the speed of digital multipliers. A more detailed review

of previous methods of synthesizing parallel (p,q) counters has been
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discussed in Chapter 2 (see section 2.4.3).

In this chapter two forms of parallel counters, the (5,3) and

(2,2,3) counter are examined with emphasis on a more combinatorial

approach of implementation. Two different techniques based on 

series-gated ECL and threshold logic were investigated. The complexity

and efficiency of operation speed of the two counters using these

techniques are stressed. A novel circuit technique which overcomes the 

earlier problem of needing high fan-in weight threshold gates is

presented. Also described is a technique of mapping a logic function on

to series-gated ECL suitable for software implementation.

5.2. Design considerations of the (5,3) and (2,2,3) counters

The viability of the (5,3) counter and (2,2,3) counter multiplier

architectures described in Chapter 4 depends heavily on the efficiency of 

operation speed and the complexity of a counter cell. Ideally, the

counter cell should have a delay and complexity comparable to that of a 

full-adder cell in the fast bipolar ECL technology [5.27].

In order to achieve a fast implementation of the (5,3) and (2,2,3)

counter cell a more combinatorial approach rather than the inherently

slower methods reviewed in Chapter 2 is considered. At the logic design

level considerations, the speed of a combinational circuit can be 

described by the number of gate levels, or the height of the circuit, and

the complexity can be represented by the number of gates and inputs. In

this sense, a circuit realised by a sum-of-products form or its

equivalent forms, such as NOR/NAND form, should have the fastest speed. A 

full-adder, realised in the sum-of-products form requires a total of 12 

Boolean gates with three NOT, three two-input NOR, five three-input NOR, 

and one four-input NOR. The speed of such a cell can be three gate
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delays, assuming no complemented inputs are available. A similar straight 

forward realization of the (5,3) counter and (2,2,3) counter, however, 

results in a cell of enormous complexity. For the (5,3) counter, a total 

of 44 gates with one 16-input NOR, two 10-input NOR, 16 five-input NOR, 

ten four-input NOR, and ten two-input NOR are needed. The speed, on the 

other hand, is still the same three gate delays. Therefore, at the logic 

design level, (5,3) counter cell design with the comparable speed of a

full-adder is not difficult. This suggests that for those logic families 

with low impedance switching elements in which the increased 

fan-in/fan-out does not penalize speed, a fast (5,3) counter multiplier 

is possible with certain drawbacks in the hardware complexity. In many

practical logic families, however, their performance in speed depends not 

only on the height of the circuit but also on the maximum fan-in and

fan-out numbers.

In other words, the number of connections to a (p,q) counter, the 

complexity of the interconnection pattern, and the fan-in and fan-out

capability present some limitations to the circuit and logic designer. 

The reduction in hardware complexity is crucial to realise a fast

parallel counter. Thus, it is important to assess all the high speed

’tricks’ available, how complex functions could be realised with little 

increase in complexity and power consumption, and how they can be 

utilised to design a parallel counter of reasonable complexity.

Two different techniques of implementing fast (5,3) and (2,2,3) 

counters are considered. The first looks at their realisation in the 

well-proven high-speed ECL technology to challenge the speed of a similar 

realisation of the fastest full-adder cell. Threshold logic, which is

known to be efficient in synthesizing higher order parallel counters with 

minimum increase in speed and complexity is reconsidered in view of the
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5.2.1. Emitter-coupled logic

Emitter-Coupled logic (ECL) is one of the fastest silicon technology 

and is commonly employed in high performance integrated circuits. 

Although it has the disadvantage of high power consumption, ECL offers 

good logic functional complexity compared to other logic families. The 

fastest practical implementation of a full-adder in bipolar technology, 

or in silicon technology for that matter, is with a series gated ECL

(Figure 3.6(a)). Any design of a (5,3) and (2,2,3) counter need to be

critically compared with this.

In ECL, there are five different ways of getting multiple levels of

gating, with essentially just one level of propagation delay. Three of

these are series gating, emitter dotting (wire ORing) and collector

dotting (wire ANDing). The fourth is the property that because of the

differential nature of the ECL structure, a signal and its complement are 

both available as the gate’s outputs. Other technologies require at least

one other level of delay (an inverter) to obtain the complement. The

fifth is the ability to parallel input transistors to create the OR/NOR 

function with little additional delay.

Series gating (cascode or stacked logic) [5.28] is a cost effective

and convenient way to obtain NAND/NOR functions in ECL. In series gating 

one current source is used to drive two or more levels (corresponding to

the number of variables of the function) of differential pairs forming a

transistor tree. This permits a better speed-power product since the same 

current may be used several times per logic decision. An emitter follower 

is normally employed to give a high fan-out capability.

It is interesting to note that the delay behaviour of a series gated
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ECL gate is dependent on the complexity of the transistor tree and at any 

given time is set by the number of steady input signals and propagating

input signals which then determines the number of levels of differential

pairs that are forced to switch. An analysis of the parameters that

contributes to the differential pair delay has actually been studied

thoroughly by Bama [5.36,5.37] where factors such as the the effects of

collector-base capacitances are characterized, with about 30-40% 

accuracy. A more convenient and fast route to characterize differential

delays accurately is to use computer circuit simulations such as SPICE

[5.53]. However, as a rule-of-thumb the more complicated the transistor

tree and the more levels of differential pairs are forced to switch, the

higher the propagation delay. Thus to get as high a speed as possible,

the transistor tree is normally minimized to eliminate redundant

differential switches with the steady signals fed to the lowest levels in 

order to reduce the number of levels of differential delays that can be 

forced to switch.

In the next section, a simple technique of mapping a logic function 

on to series gated ECL with minimization of the transistor tree suitable

for software implementation is given.

A repartitioned form of ECL called emitter-function logic (EFL)

[5.27,5.30-5.34] gives an increase in logic function complexity at

minimum increment in the device and circuit complexity. This is achieved 

without additional power consumption in comparison to the single function 

current switch. The technique was initially considered in the synthesis

of parallel counters. Although it gives the advantage of minimizing the 

complexity of parallel counters through modularity of the design, it was 

found that because the differential pairs are driven in a single-ended 

fashion the actual delay of the counters, which would require at least
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two levels of EFL gates is actually worse than the cascode ECL

full-adder. In addition, the need to have a reference voltage for the 

single-ended differential switch would further complicates the design.

5.2.I.I. A technique for mapping a logic function on to cascode ECL

A top-down approach is employed in this technique. Rather than using

the minimized Boolean equation as the mapping specification the technique

looks at the truth-table of the function and works its way down the 

transistor tree in order to arrive at its minimized form.

Each differential switch can be visualized as a branch with three

nodes (Figure 5.1). The coupled emitters can be thought of as an input 

node through which current can flow in, while the two collectors are

considered as output nodes where the current can flow out. Which

collector node the current will flow through is determined by which logic

input (A or A) is higher. If A is higher than A then current is steered 

through the collector node of A and vice-versa. Thus a tree of

differential switches can be built up as shown in Figure 5.2(a) for a 

3-variable function.

Current can be thought of as flowing from a reference node

(corresponding to a current source node), through a path determined by

A >

Figure 5.1. A differential switch equivalent symbol.
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Figure 5.2(b). Equivalent electrical schematic.



Realisation of parallel counters Page 116

the states of the inputs, up to either node 0 or node 1. The broken lines 

in Figure 5.2(a) shows the possible paths where the current can be

steered. Each path represents the possible states of the logic inputs

e.g. the path A-B-C corresponds to state 0 of a 3-variable function. For 

an n-variable function there are 2n possible states, thus there are 8 

possible paths for a 3-variable function as shown in Figure 5.2(a). As we 

show later, the broken lines are links that can be broken in the process 

of minimizing the tree.

At the top level, each output node can be connected either to node 1 

or node 0 depending on what the output F corresponding to that state is. 

If F=*r then connect the appropriate output node to node 1 else if F=’0’ 

then connect it to node 0. Nodes 0 and 1 are actually equivalent to the 

electrical nodes of the two resistors R0 and Rl, respectively (Figure 

5.2(b)). This is true since if the current is steered to node 1, the true

logic output of the gate is high and if it flows to node 0 the true logic 

output is low.

Thus there are two main steps involved in the mapping and synthesis

of the tree. First, a full-blown realisation of the tree is done by

connecting the highest level differential switches output current nodes 

to node 1 or 0 as defined by the output column of the truth-table of the

function. Next, redundant differential switches are eliminated starting 

from the highest level down to the lower levels in order to obtain a

minimized tree of the same function. An example is shown in Figure 5.3(a) 

for the Suml output of a (2,2,3) counter whose truth-table is illustrated 

in Table 4.4. Figures 5.3(b) and 5.3(c) illustrate the minimization 

process of the tree of four variables by eliminating redundant

differential switches.
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Figure 5.3(a). A full-blown tree of the Suml function of a (2,2,3)
counter.
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Figure 5.3(b). Identification and elimination of redundant switches.
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Figure 5.3(c). A minimized tree of the same function.

There are 2 types of redundant differential switches :

(i) Differential switches at any level whose two output nodes are 

connected both to node 1 or both to node 0. What this means logically is 

that the output of the differential switch is independent of the logic

input concerned. Thus all such switches can be eliminated altogether and 

the lower level output nodes can be connected directly to node 1 or 0.

(ii) Beginning with the highest level, differential switches which have 

their two output nodes connected to node 1 and 0 in the same

configuration i.e. the true output node of each switch is connected to

node 1 and the complement output node connected to node 0, or vice-versa. 

In this case all but one of these differential switches at the level

concerned can be eliminated. The appropriate lower level output nodes are 

then connected to the input current node of this remaining differential
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switch. This process can be repeated at the lower levels by noting the

equivalence of the differential switches at these levels as far as the 

path to node 1 or node 0 is concerned.

Verification of the minimized tree can be done by looking at each 

state of the inputs and its corresponding output bit from the truth-table

of the function and then looking at the tree to see the existence of a

path for the current from the reference node to node 1 or 0 accordingly.

Notice that in order to get a simple tree, a long series of 0’s and/or 

l ’s or frequent occurrences of 01 or 10 in the output column of the

truth-table of the function are necessary. For certain functions such as

the (2,2,3) counter with input bits of different weights, depending on 

which variables are mapped to the various levels, differing transistor

trees can be obtained since the output column of the truth-table of the 

function would change. The higher level differential switches are 

inherently faster than the lower levels in switching the gate’s logical

output and thus a computer program implementation of the technique should 

prove useful in order to fully explore the trade-offs between speed and

complexity for the gate of such functions. As we have shown above the

algorithm to do this is fairly simple with the steps clearly well-defined

and thus the technique can be efficiently implemented in software.

5.2.2. Threshold logic

Threshold logic [5.16-5.18,5.24-5.26,5.35,5.38-5.52] is of great 

interest since they are known to have the edge over conventional Boolean 

realisations in terms of reduced numbers of components, improved speed 

for higher logic complexity and are versatile. Furthermore, these gates 

are compatible with normal digital LSI technology.

A threshold gate has binary inputs and outputs just like any other
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logic gate. The difference however, is that in the threshold gate the 

inputs are weighted, and eventually, a binary decision made as to whether 

the total weight is more or less than some reference (see Figure 2.8). 

This principle of weighting and summing the inputs rather than simply 

noting the presence of all inputs as high (as in an AND gate) or one 

input high (as in an OR gate) is the reason that a threshold gate can 

tell more about the state of the inputs, thus providing greater "logic 

power".

The attractiveness of using threshold logic is clearly illustrated 

in Figure 2.9. The technique is of great interest since a counter size of 

up to a (7,3) could be realised by just adding extra rows of inputs and 

without any significant increase in gate count or propagation delay, 

assuming the gates have a high fan-in weight. Apart from that it has none 

of the irregular and complex wiring of equivalent function Boolean gates, 

and as such is ideal for VLSI implementation because wiring occupies a 

lot of silicon area. However, the implementation of fast parallel 

counters in threshold logic is often hampered by the need to have a high 

fan-in weight threshold gate. This is evident from Figure 2.9 where a 

gate with a total fan-in weight of 9 and 11 is required for the CY^ and S 

functions, respectively of a (5,3) counter. The maximum practical fan-in 

weight of traditional threshold gates is limited to about 7 [5.38,5.39]

as a consequence of the need to have adequate noise margin and to avoid 

the transistors from saturating which would degrade their propagation 

delay. In section 5.3.2 a novel circuit technique is proposed which 

overcomes this maximum fan-in problem through the partial use of negative 

weighted inputs.
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5.3. (5,3) counter cell

In the design of the (5,3) counter cell it is important to note that

out of the five input signals to the counter, two of the signals are

partial product terms aJbj and ab ^  which are steady while the rest are

propagating signals from the outputs of previous stage cells. This

property of the signals has great implications on the efficient design of

the counter cell.

5.3.1. ECL implementation of a (5,3) counter

Nakamura [5.29] has come up with an optimised design of the (5,3)

counter at the logic level by separating the signal? of the two partial

product terms aJbj and ajb. associated with each cell from the input

signals A, B and C from the outputs of the previous stage (see Figure

4.5(a)). Inputs A, B and C are referred to as propagating signals since

they are ready only after the completion of operations in the previous

stage cells. The other two inputs aJbj and ab .  are considered as steady

signals because once the primary input operands a and b to the multiplier

stabilise, ab-  and ab .  are ready right after one AND gate delay, and
i J J i

there are no propagation delays associated with them. This property of

the signals is fully utilised to give an optimized design for the (5,3)

counter cell. The circuits for the steady signals do not have to be

extremely fast because this part only adds a constant delay for the

entire multiplication speed. The other part, which is most sensitive to

speed, has to be designed by fast, flat circuits; but with only 

propagating signals, this part can be much simpler and faster than the

straightforward, brute force realisation of the (5,3) counter.

Consider all possible combinations of values on the steady signals

ab j  and ab .  and the effect of each of the states on the outcome of the
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counter’s outputs S, CYj and CY2 (see Table 4.2, noting that here aJbj = 

D and a b .  = E). Examination of Table 4.2 as similarly considered by 

Nakamura yields Table 5.1, which represents a simple, minimized form of 

the (5,3) counter where :

S° = sum function of a full-adder 

C° = carry function of a full-adder 

C1 = AC + BC + AB 

C2 = ABC

The equivalence of row 2 and 3 of Table 5.1 is expected since the outputs 

depend on the weight of the steady signals i.e. the number of l ’s.

An optimized logic design of the (5,3) counter is illustrated in

Figure 5.4(a). This is similar to the logic design of the (5,3) counter

developed by Nakamura for implementation in CMOS technology except that, 

in ECL, as we shall see later the abj  and ab^ need not be reduced to 

one select signal for the multiplexers (Figure 5.4(b)). The problem thus 

reduces to the efficient design of logic functions C1, C2 and the

multiplexer circuits.

Logic functions C1 and C2 could be realised in series-gated ECL as

a ibj ajbi s CYl CY2

0 0 s° c° 0

0 1 s° c 1 c 2

1 0 s° c 1 c 2

1 1 s° c° c °

Table 5.1 Minimized logic function of a (5,3) counter
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B
C

Full
Adder

CY,

CY9

as bj a] bi

Figure 5.4(a). An optimized logic design of a (5,3) counter.

C° o

MX1

MX3

MX2 CY,

CYo

Figure 5.4(b). Multiplexers for the (5,3) counter.
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commonly implemented for the full-adder cell with the same propagation

delay and complexity. The circuits to realise these are shown in Figure

5.5(a) and 5.5(b). A high-speed design of the multiplexer circuits MX1,

MX2 and MX3 are similarly implemented in series-gated ECL and are 

schematically shown in Figure 5.5(c), 5.5(d) and 5.5(e), respectively.

Bearing in mind that each of the logic blocks has the delay of a

full-adder, this suggests that the (5,3) counter has twice the delay of a

full-adder. However, it must be stressed that the propagation delay 

behaviour of a cascode ECL gate depends to a large extent on the number 

of levels of differential switches in the transistor tree that are liable

to switch. In other words, the delay is dependent on the number of steady 

and propagating signals. The multiplexer circuits, having two steady 

signals aJbj and a b .  at the two lowest levels of the transistor tree 

should be faster than a full-adder having all three inputs changing.

Because the two steady signals of the partial product bits set the

current path of the two lowest level of the transistor tree at the very

early stage of each computation, the input signals to each multiplexer

just pass through with only one level of differential delay. This implies 

that the (5,3) counter may have a delay between one and two times the

delay of a full-adder. Thus, a closer examination of the number of steady 

signals and propagating signals of the (5,3) counter multiplier needs to 

be done and critically compared to the signals of a full-adder CSA

multiplier before a true, accurate measure of the cell delay could be

obtained; this would then reflect any improvements in the speed of the

(5,3) counter multiplier over the conventional CSA scheme. Besides, the 

critical delay path of the (5,3) counter multiplier is also determined by

the delay of the modified full-adder diagonal cells which is basically a

critical component of a (2,2,3) counter. Thus, a characterization of not
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R3R2R4
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R lRO

R3R2R4
EE

(b)

Figure 5.5. ECL implementation of the various logic blocks of a (5,3)
counter: (a) C1 gate, (b) C2 gate (c) MX1 gate, (d) MX2 gate, and (e) MX3 
gate.
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Figure 5.5. (continued)

just the (5,3) counter delay but also the delay of the modified 

full-adder component of a (2,2,3) counter is required before the 

efficiency of operation speed of the (5,3) counter multiplier could be 

reliably evaluated. The results are discussed in the next chapter. In 

terms of complexity, the (5,3) counter is about three times more complex 

than a full-adder.

In the proposed design in ECL, the process of computing the steady 

signals before the propagating signals reach the cell yields a cell of 

low complexity and delay since the critical part of the circuit sensitive 

to the performance in speed can be made simpler and faster. Therefore, 

the larger the number of steady signals and the less the number of 

propagating signals of a cell, the faster the speed of the cell. In this 

sense, the (5,3) counter cell design is advantageous against the
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c* sp s CY1 CY2

0 0 s° c° 0

0 1 s° c 1 c2

1 0 s° c° c°

1 1 s° c 1 c 3

Table 5.2 Logic table of a (6,3) counter.

C2 Cp sp s CY1 CY2

0 0 0 s° c° 0

0 0 1 s° c 1 c 2

0 1 0 s° c° c°

0 1 1 3° c 1 c 3

1 0 0 s° c° 1

Table 5.3. Logic table of a (7,3) counter.

full-adder design because the ratio of the number of steady signals and 

propagating signals for the (5,3) counter is 2/3, while the ratio for the 

full-adder is 1/2. The same three-input and three-output propagation 

signals per cell can accommodate not only two steady signals but also 

three or at most four steady signals, corresponding to a (6,3) counter
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and (7,3) counter, respectively. A similar study of the dependence of the 

outputs of these counters on the weight of the steady signals of the 

partial product bits yields Table 5.2 and Table 5.3, where :

C3 = A + B + C,

and Sp, C? and (?, which represent the select signals of the multiplexers 

are the sum and carries obtained from the addition of the steady partial 

product bits (only C? is possible in the (7,3) counter which has four

partial product bits). The computation of the steady partial product 

signals to give Sp, Cp and Cp is necessary to reduce the complexity and 

delay of the multiplexers to give the same counter speed as the (5,3).

However, in terms of cost-effectiveness the (5,3) is the most attractive 

since the (6,3) and (7,3) counters require more gates for the computation 

of Sp, Cp and Cf, although they have the same propagation delay.

5.3.2. Threshold logic implementation of a (5,3) counter

A circuit technique which overcomes the maximum fan-in problem 

through partial use of negative-weighted inputs is proposed. In threshold 

logic the same logic function could be accomplished through the inversion 

of an input variable and the sign of its weight along with an offset in

the threshold value [5.35]. Therefore, if input x- is inverted, the sign 

of its weight w. must be changed, and the threshold t must also be offset

to (t-w.) in order that these changes may still express the same logic 

function. Using this formula, an alternative logic for the (n,3) counters 

could be formed as shown in Figure 5.6.

Assume a general threshold gate of threshold T which has as positive 

weighted inputs Xp....,Xn of arbitrary weights ^ x r ' ‘" ’̂ x n ’ 

respectively and negative weighted inputs Yj,....,Yp of arbitrary weights 

-W j,....,-W , respectively (Figure 5.7). The novel circuit to
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o —

CY

Figure 5.6. Alternative threshold logic realization of a (n,3) 
(where 4 < n < 7).

XI

Xn

-O f- W Yi

counter

Figure 5.7. Threshold gate symbol with positive and negative weighted 
inputs.
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functionally realise threshold gates with negative weights is illustrated 

in Figure 5.8. The circuit technique is similar to traditional threshold

circuits except that the negative weighted inputs are separated from the

positive weighted ones by two distinct ECL circuits.

Each input feeds a differential switch that serves the dual purpose

of :

(1) deriving a weighted current (by virtue of a emitter degenerated

current source)

(2) making a binary decision as to the state of the input.

The positive weighted inputs whose differential switches establish the 

node voltage V+ effectively codes the total weight of its inputs. The

node voltage V- sets the threshold level of the circuit depending on the

weight of the negative weighted inputs. V+ and V- are called the summing

nodes of the positive weighted inputs and negative weighted inputs,

respectively. Thus, unlike traditional threshold gates whose threshold

level is fixed, the threshold in this case is varied according to the

total weight of the negative-weighted inputs. This variation of the

threshold level, in essence, realises the negative nature of the weight 

of these inputs. The logic decision of the output is carried out by

another differential circuit which compares V+ and V- to give the

required output. If V+ is greater than V- (in magnitude) the output goes 

high, otherwise it goes low. The summing nodes can be fed to emitter

followers to provide high drive capability for the comparator circuit.

Each positive weighted input (or negative weighted input) that is in 

a high state i.e. above the reference Vref2’ draws a number of units of 

current, corresponding to the weight of the input through a summing

resistor RO (or Rl). For an input X. of unit weight (W- = 1), the unit

weight current Iu is generated through a unit weight resistor Ru, where
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VEE '  Vrefl '  Vbe (5.1)
Iu

This pulls down the node voltage V+ (or V-) by Vu volts, where Vu = IuR0 

(note that Rl = RO). For an arbitrary weight i.e. 1  ̂ = W^Iu, the

negative weighted input, sets the threshold level to its lowest value 

when all the negative weighted inputs are logically low. The term V , 

known as the unit weight voltage is an important parameter and as will be 

discussed next, determines the maximum fan-in of the circuit for 

high-speed applications.

Let m and 1 be the total weight of the positive weighted inputs and 

negative weighted inputs that are high, respectively. Then

The maximum value of m and 1, which in fact represents the maximum fan-in 

weight of the positive weighted and negative weighted inputs, 

respectively depends on how far V+ or V- can be reduced. For high-speed 

operation, the lowest value that V+ and V- can be pulled down to occurs 

when all the differential input transistors just enters into saturation. 

This, in turn depends on the lowest value of Vrefl that is sufficient to 

give a well-controlled current source for the weighted currents. With the 

lowest value of V+ and V- determined under normal operating conditions, 

in order to get a high fan-in, Vu should be as small as possible without 

degrading the noise margin of the differential pair which compares V+ and 

V -.

current source resistor required is given by The current source
t>

with resistor value u/(T-0.5) which is not under the influence of any

(5.2)

(5.3)
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No. of high 
inputs

V- ( w hen C \£ ■ 'O’ )

2 _

3 _

4 _

V- ( w hen  CYg = ‘1’ )

6 -

7 -

Figure 5.10. Graph showing the ideal characteristics of V+ and V- vs. no.
of high inputs, of the the CY^ gate*

The attractiveness of using this technique is illustrated in Figures

5.9(a), (b) and (c), which realises the three functions of the (5,3)

counter. The fan-in problem has been eliminated by separating the inputs

into positive weighted and negative weighted inputs through the use of

two distinct ECL gates. Here, the summing nodes are first fed to emitter

followers to provide a high drive capability. There is an added advantage

of using this technique; the positive weighted inputs need only be summed

once to obtain V+ at the first stage and this is fed to the next two

stages to compute CY^ and S. If traditional threshold gates are employed

to implement the entirely positive weighted inputs, these inputs have to

be computed for each of the functions of the counter thus increasing the

fan-out and wiring complexity of the counter.

The operation of the circuit is best understood by looking at the

CYj function of the (n,3) counter. The value of the parameters Iu, Ip
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l2» RO, and R1 are chosen such that the ideal characteristics of the

circuit as shown in Figure 5.10 is obtained in order to accomplish the

correct functionality of the gate. Here, ideally

I jR j = 1.5IuR0

(Ij + y R j  = 5.5IuR0.

Notice that when V+ is at least 21 RO with CY0 = ’0’ and at least 61 ROU ^  U
when CY2 = * 1 * the output goes high as required since the threshold of 

the gate is 2.

The technique should thus prove useful in applications where high 

fan-in weight threshold gates are needed. One good advantage is that

since the threshold gate is basically a current mode type of circuit, 

they can be mixed where advantageous with normal Boolean ECL gates under 

the same bipolar process.

In terms of speed, the worst-case delay of the counter is three

threshold gate delay suggesting a speed worse than that of a CSA full-

adder. However, the scheme is of great importance since a higher order 

counter up to a (7,3) could be realised without any significant increase 

in delay and complexity by just adding extra lines of inputs. Such higher 

order counters could be useful in the inherentiy faster matrix

generation-reduction architectures of Wallace and Dadda.

An analysis of the circuit technique based on SPICE simulation 

results is discussed in the next chapter to characterize the maximum

fan-in weight, minimum unit weight voltage and the propagation delay of 

the circuit under standard operating conditions.

5.4. (2,2,3) counter cell

The (2,2,3) counter is basically composed of a 2-input EX-OR and a 

modified full-adder which are used for the diagonal cells of the (5,3)
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counter multiplier (Figure 4.5(b)). The main issue of this counter is the 

delay and complexity of the modified full-adder since the 2-input EX-OR 

gate could be designed, in principle with a delay and complexity lower 

than a full-adder. An efficient fast design of the modified full-adder is 

not only important for the viability of the (2,2,3) counter multiplier 

but also for the (5,3) counter scheme since it is one of the diagonal 

cells which lie in the critical path of the multiplier.

5.4.1. ECL implementation of a modified full-adder

In three of the megacells of the (2,2,3) counter multiplier (see 

Figures 4.9(a)-4.9(c)), the second stage (2,2,3) counter (CT2) is the

most critical part of the cell. The first stage (2,2,3) counter (CT1) 

which reduces the two pairs of partial product bits to three output lines 

need not be very fast since they settle to their final value after one

counter delay. Thus a simpler and slow (2,2,3) counter could be

implemented for this like a network of full-adders as proposed by Foster 

and Stockton [5.10]. To realise a high-speed design of the second stage

(2,2,3) counter (or rather the modified full-adder) it is necessary to

note that the input(s) which come directly from the first stage (2,2,3)

counters are steady signals while the rest are propagating signals. The 

property of these signals are utilized in the implementation of the

modified full-adder in cascode ECL.

Two different circuit techniques are proposed for the implementation

of the modified full-adder in ECL as illustrated in Figures 5.11 and

5.12. The first scheme uses a single cascode ECL gate of four levels of

differential pairs. The tree of differential switches in the first

technique is obtained by mapping the truth table of the (2,2,3) counter

using the mapping technique described in section 5.2.1.1. In the second
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Sum1

3 P

(a)

(b)

Figure 5.11. Implementation of the modified full-adder of 
counter by 4-level series gated ECL. (a) Suml gate, and (b) CY1 gate.

Sum1

CY1

a (2,2,3)
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RO RO

Vref
SumlSuml

R4 R2 R3 Vref
VfeE

R2 R3R4

(a)

RO R1 U R1RO

Vref
CY1CY1

R4 R2 R3 Vref

R3R2R4

(b)

Figure 5.12. Implementation of the modified full-adder of a (2,2,3)
counter by using AND gate and normal full-adder. (a) Suml function, and
(b) CY1 function.
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-0.25v ( Ê j = "1")

( ^  = "1") -0.8v B 0 n-

- 1 .6v (always)
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( B, = "1") -2.4v B p
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-4.0v(always) 

Vref= -3.8vD

7 Arr
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q  A !  -3.45v ( A, = "0")

Figure 5.13. A 4-level transistor tree showing node voltages.

method, a two-input AND gate with its output fed to a normal full-adder 

are employed which, in essence realises directly the Boolean equations 

defined in Table 4.4.

For a given power supply there is a limit to the number of levels 

that could be accommodated in a series-gated ECL gate in order to 

maintain high-speed operation of the circuit. To prevent saturation of 

the transistors, a voltage of is normally required between the bases

of input transistors of adjacent levels. The use of differential inputs 

allows a logic swing of 250mv (this swing was shown to be workable for 

the MPC test chip) and sets the emitter voltage of a differential switch 

that is turned on, to a fixed value. With = 0.8v, the total voltage

required for the four-level switching tree is -4.0v, making possible the
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use of a standard supply of -5.2v. Figure 5.13 demonstrates this point

clearly. Notice that Vref can be set to around -3.8v to give adequate

control of the current source without degrading the speed of the circuit

since the base-collector junction, being forward-biased by 0.2v, would

not be sufficient to cause heavy saturation of the transistor concerned. 

To achieve compatibility between the input and output levels,

collector-base connected transistor diodes in the emitter followers are

used to level-shift the outputs to the appropriate level.

It is seen that by feeding the output from the first stage (2,2,3)

counter of the megacells to the lowest input level, three levels of

differential switches in the transistor tree are under the influence of

the propagating signals and this represents the maximum propagation delay 

of the counter.

In the second method (Figures 5.12(a) and (b)), two distinct ECL

gates are employed. The first computes the AND function of the lower 

significant bits of the counter whose output is then fed to the highest 

level of a normal full-adder. The method suggests that the modified

full-adder could be slower than a normal full-adder; but looking at the 

input signals in the context of steady and propagating signals implies

otherwise. With the output from the first stage (2,2,3) counter fed to 

the lowest input level of the normal full-adder, the modified

full-adder* s propagation delay can be nearly as fast as a normal 

full-adder. The reason is that although there are four propagating

signals, the signal at the second input level of the full-adder would 

have switched the current to its probable path by the time the output of

the AND gate starts to switch the current at the highest level to its 

final path. It is interesting to note that even if the modified

full-adder is not as fast as a normal full-adder, as discussed in the
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last chapter, the delay path through the megacells of the (2,2,3) counter

array architecture traverses a majority of alternate logic blocks of 

full-adders and (2,2,3) counters. This means that the slower delay of the

modified full-adder component of a (2,2,3) counter would be compensated 

by the faster EX-OR gate component of the next stage (2,2,3) counter

giving an average propagation delay of one full-adder per (2,2,3) counter

cell. Compared to the first method, the second method is slightly more

expensive in terms of power since two separate ECL gates are employed.

Better multiplication speed and hardware savings could be achieved

by replacing the second stage (2,2,3) counters in megacells C . q and 

Cn j . with a (1,2,3) counter. Such a counter with three input variables

allows the modified full-adder to be designed with a single cascode ECL 

gate with the same delay, power and complexity as a normal full-adder.

A series of SPICE simulations runs and circuit analysis are carried 

out on the two forms of modified full-adder ECL implementation in order 

to characterize the tradeoffs in speed, power and noise immunity under 

standard operating conditions. The results are presented in the next 

chapter.

5.4.2. Threshold logic implementation of a modified full-adder

A threshold logic realization of the modified full-adder is shown in

Figure 5.14. Here, traditional threshold gates with a maximum fan-in 

weight of 7 could be reliably employed. However, for better savings in 

hardware and a reduction in fan-out and wiring complexity the novel 

circuit technique of using negative weighted inputs can be applied. In 

terms of speed, the worst case propagation delay is two threshold gate 

delay or worse since a AND operation , AqBq is necessary for one of the 

inputs. Thus, this method is not as fast as the ECL implementation.
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Suml*o

Figure 5.14. Threshold logic realization of a modified full-adder.

Unlike the (n,3) counters where the threshold implementation could 

be extended to a (7,3) counter with little increase in delay and 

hardware, the (2,2,3) counter threshold implementation cannot be 

similarly adapted to larger number of inputs without significantly

increasing the hardware complexity and delay, due to the fact that the

inputs are of different weights.

5.5. Summary

The efficiency of operation speed of the (5,3) counter and (2,2,3)

counter have been investigated in bipolar technology using series gated

ECL and threshold logic. A novel threshold logic circuit technique using 

negative weighted inputs to overcome the maximum fan-in weight problem of 

parallel counters is proposed. Also given is an attractive approach of
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mapping a logic function on to series gated ECL for software 

implementation.

It is shown that the series gated ECL (5,3) counter has a delay

between one and two full-adder delays with an increase in complexity of a 

factor of 3 compared to the full-adder. Although the threshold 

implementation of the (5,3) counter gives a delay that is about three

full-adder delays, the scheme is of great interest since a counter of

size (7,3) could be realised with little increase in hardware and delay. 

The modified full-adder component of a (2,2,3) counter designed in series 

gated ECL gives a cell that is potentially as fast as a full-adder with

about the same degree of complexity.
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CHAPTER 6 

SIMULATION RESULTS

6.1. Introduction

Various schemes for realising the (5,3) counter and (2,2,3) counter 

have been discussed in the last chapter. The efficiency of operation

speed of the counters have been investigated for the two techniques in

bipolar technology, that is using series gated ECL and threshold logic 

which are shown to offer promising tradeoffs in speed and complexity.

In this chapter, the propagation delays of the (5,3) and (2,2,3) 

counter when connected in their multiplier architectures are critically 

compared with that of a full-adder. For this purpose, a series of SPICE

[6.1] simulations were carried out on the various logic cells of the

(5.3) and (2,2,3) counter. The propagation delay of the full-adder cell 

under different load resistors, bias currents and transistor sizes have

been simulated and compared with the actual figures obtained from

measurements of the MPC test chip (see Chapter 3). The HP1X transistor 

model used in the test chip simulations, although shown to have a certain 

degree of inaccuracy, is, however, representative of state-of-the-art 

bipolar technology and is employed in the simulations of the (5,3) and

(2.2.3) counter for comparison purposes.

SPICE simulations were performed on the counters under the same

operating conditions with all gates having the same load resistors of

25012, transistor emitter size of 1 x 10|im, and emitter follower stages 

(for both the true and complement signal) to give differential outputs. 

Also all inputs are driven differentially. Simulation results of the

(5.3) counter synthesized in threshold logic are first presented. The

worst-case delays of series gated ECL realization of the (5,3) and
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(2,2,3) counter are then given. A general evaluation and characterisation 

on the delay behaviour of series gated ECL gates are then determined 

which allows us to make assumptions and develop delay models (for HILO) 

of the various logic blocks. Using this ECL delay behaviour a logic

simulation using HILO [6.2] is performed on the (2,2,3) counter 

architecture for a 8 x 8-bit multiplication and compared with an

equivalent conventional CSA multiplier.

The results show that the (2,2,3) counter offers a significant speed

improvement over the CSA multiplier whilst the (5,3) counter multiplier

gives no increase in speed.

6.2. (5,3) counter cell

Two techniques were proposed in the last chapter for synthesis of

the (5,3) counter. The first, which is better in terms of speed is to use

blocks of series-gated ECL multiplexers. The second method, implemented 

in threshold logic, although do not have the potential to offer any 

significant speed improvement in the (5,3) counter multiplier, is of

great interest since a counter of size up to a (7,3) could possibly be

designed with the same delay and with only a marginal increase in

complexity. Such a counter should be useful for the Wallace tree type

multipliers and in applications where a large parallel (p,q) counter with 

low complexity is of prime importance.

6.2.1. (5,3) counter realised in threshold logic

A novel threshold logic circuit technique to overcome the maximum 

fan-in limitation was proposed in the last chapter. The technique has the

potential to improve the maximum fan-in by a factor of two by the partial 

use of negative-weighted inputs.
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This section presents the results obtained from SPICE simulation

runs on the threshold gates and from this, their delay behaviour are

characterised. An analysis of the circuit to estimate the desired minimum

logic swing, unit weight voltage and current, and maximum fan-in 

attainable under worst-case conditions are first discussed. Although the

analysis is done on a specific type of circuit function, it is 

representative of the novel circuit technique and should be applicable to

any other circuits of different functions.

6.2.1.1. Analysis of novel threshold circuit

Resistor values for the emitter degenerated current sources are

first determined to give the required current weighting for each of the 

inputs. The resistor value for a given input weight current is given by 

equation 5.1. Ideally, to achieve high-speed switching of the circuit,

unit weight current should corresponds to the region of maximum cut-off 

frequency, / .  For the HP IX process, a collector current of around 0.5mA

flowing in a npn transistor of emitter size 1 x 10 Jim lies in the region

of maximum f {, this value is taken as the unit weight current in our

simulations.

In order to obtain a high fan-in weight, the reference voltage Vrefl

should be as low as possible so that saturation of the transistors are 

avoided, but without degrading the output impedance of the current

sources. With I = 0.5mA, a Vrefl of -3.8v is found to give adequate

control of the current sources. A 50mv change in Vrefl causes only about

40|iA change in Iu, from SPICE simulations.

Hence, with 1  ̂ = 0.5mA and Vrefl = -3.8v, a unit weight resistance,

R = 120012 u
is required for the unit weight current sources. Other inputs with
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different weightings are given resistances which are scaled accordingly

as illustrated in Figures 5.9(a)-(c). For the comparator circuits, the

required tail current and load resistors which sets the differential

voltage swing is determined in the next section.

In the design of the circuits, it is clearly seen that the correct

operation of the circuit depends heavily on controlling and keeping the

voltage levels of V+ and V- to their ideal values under circuit parameter

variations and other sources of noise. The design should thus allow for

power supply, reference voltage, transistor and resistor parameter

variations when the circuits are committed on to silicon. This can be

achieved by having an adequate separation between V+ and V- to ensure

that there is enough voltage swing for each comparators differential

pair to completely switch after taking into account such variations. This

value, Vdiff where

is essentially directly related to the unit weight voltage Vu as shown in 

Figure 5.10, where it is apparent that

Thus, the maximum fan-in weight achievable in a given design situation is 

a function of both the minimum value of Vu that can be used reliably, and 

the total voltage swing available at the comparators inputs. The desired

minimum value of Vu is crucial since a small Vu would render the 

comparator circuits ineffective whilst a large Vu would seriously limit

the maximum fan-in weight of the circuits. Thus a compromise needs to be

determined.

The desired minimum value of Vu can be evaluated by doing a

statistical analysis of the circuits as a function of component 

tolerances and various design constraints, as similarly done by Baugh and

Vdiff = |V+ - V-| (6.1)

Vdiff = 1 V (6.2)
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Wooley [6.2] on their threshold circuits. However, such an analysis,

although reliable, comparatively accurate and represents an optimistic

view of the circuit, is quite an involved and complicated process.

Nevertheless, an estimate on Vu could be made to a first order for the

case when V+ and V- approach closest to each other under worst-case

conditions due to extreme power supply, reference voltage, transistor and

resistor parameter variations.

6.2.I.2. Estimation of unit weight voltage and maximum fan-in weight

To determine the worst-case variation of Vdiff i.e. its minimum

value, assumptions are made on various circuit parameters to simplify the

analysis. The transistors in the proposed threshold circuit are assumed

to be nominally identical where Vbe is assumed to be the only parameter

to vary significantly. All resistors in the circuit of Figures 5.9(a)-(c) 

are implemented as series combinations of a basic resistor with the same

variation. This results in the best possible matching and, together with 

the differential approach, provides for minimum circuit sensitivity to

processing and operating environment. Where an input with a weighting w 

(where w > 1) is required in the circuit, this is implemented with w unit 

weight current sources which are all switched by this common input.

Within a circuit chip, the power supply and reference voltage of the

current sources are assumed to be evenly distributed with the same

variation throughout. Since the power supply variations considered here

correspond only to variations within a single chip, it is expected that

they are kept quite small. The current sources reference voltage is

assumed to be driven from a single reference circuit where the effects of

component variation in the reference circuit is reflected entirely in the

variation of Vrefl. A very low resistance in the interconnection



Simulation results Page 154

metallization is assumed when the circuit is laid out onto silicon.

A convenient criterion for establishing the minimum usable value of

Vu is

m injvdiffl = Vffl + (AV- + AV+) (6.3)

which provides a margin of (AV- + AV+) deviation against the voltage V , 

where Vm is chosen to ensure nearly complete switching of each

comparator's differential pair.

Assume V+ to be higher than V-, where V+ and V- are given by

equations 5.2 and 5.3, respectively. Due to variations of VEE, Vrefl, Vbe

and resistor ratios RO/Ru, V+ is offset by AV+, where it is given by

AV+ = njAVEE - AVrefl - AVbesj-A(RO/Ru) + AVbef (6.4)

where n is the total input weight, AVbes and AVbef are the variations in 

Vbe of the current source transistors and emitter follower transistor,

respectively.

The maximum value of AV+ occurs when both AVrefl and AVbes are offset 

extremely in the negative sense along with an equivalent positive offset

on AVEE, AVbef and A(R0/Ru). It is apparent from equation 6.4 that the

influence of the various parameters can be minimised by increasing the

emitter degeneration resistance of the current sources. However, for a

given unit weight current, this would imply a higher Vrefl is needed

which then further limits the maximum fan-in weight. Typically (for the

HPIX process),

AVEE = +1%

AVbef = +5%

ARO/Ru = +2%

AVrefl = -4%

AVbes = -5% .
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Figure 6.1. Differential output as a function of differential input
driving the comparators switch.

With VEE = -5.2v, Vrefl = -3.8v, Vbe = 0.8v, RO = IK and Ru = 1.2K, AV+ * 

60mv for a fan-in weight of 7. By a similar argument, V- would be offset, 

at worse, by 60mv in the opposite direction. This gives a total deviation

of 120mv for Vdiff. Figure 6.1 provides a basis for choosing Vm in

equation 6.3. With Vm = 120mV, at least 99% of the current in the

differential switches is ensured to flow through the ON side of the

switch. Thus, from equations 6.2 and 6.3, a unit weight voltage of 0.5v

would prove sufficient to accommodate the possible variations of power 

supply, reference voltage, transistor and resistor parameters, and other

possible environmental sources of noise. In terms of its variation with 

temperature, both V+ and V- should track fairly well because of their 

equal dependence on most circuit parameters. As a result, Vdiff should be 

well maintained under any temperature variations. In fact SPICE 

simulation shows that the circuit could operate reliably up to fairly

high temperatures.
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For a unit weight voltage of 0.5v, a tail current of 0.5mA is

employed in the comparator circuits with a load of 1K£2. For the purpose 

of simulations collector currents of 1mA are used for the comparators 

emitter follower output stages.

With Vu = 0.5v, the lowest that the summing nodes of the resistors 

corresponding to V+ and V- can be pulled down to without saturation of

the input transistors is -2.5v and -3.0v (of the S gate), respectively 

for a (5,3) counter. In the comparator differential pairs, load resistors 

of 50QQ, are used to give a differential output swing of 250mv. Three 

diode collector-base connected transistors in the emitter followers are 

actually needed to level shift the differential outputs to -3.2v for a 

logic high and -3.45v for a logic low, thus avoiding saturation of the 

input transistors. Although this means that the base-collector junction 

of the current sources transistors are forward biased slightly by 0.2v, 

the effect of this is minimal, since a bias of around 0.6v is normally 

required to bring the transistors into heavy saturation. It follows that

for a fan-in weight of 7, the base-collector junction of the differential 

pair transistors would be forward-biased by only 0.3v which thus shows 

that a maximum fan-in weight of 7 should be practical to allow a reliable

design of higher order counters up to a (7,3).

6.2.1.3. SPICE Results

The (5,3) counter was simulated to verify its functional correctness 

(Table 6.1) and also to determine its worst-case propagation delay. The 

gates were switched exhaustively under all possible input transitions 

taking into account that two of the five inputs are steady signals of the 

two partial product bits; delays and voltages were measured. A 

Bandgap reference source [6.6] was also included in all the simulations
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No. of high inputs c y 2 CY1 s

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

Table 6.1. Truth-table of (5,3) counter in terms of no. of high inputs.

to model as precisely as possible the actual conditions under which the

circuits are expected to operate.

Worst-case propagation delay, at first thought, occurs when V+ and

V- are furthest from each other before they switch over which corresponds

to a maximum input voltage swing to each comparator. However, it was 

found that the worst case delay happens when V+ and V- of the S gate

switches level relative to each other, causing multiple logic transitions

at its output before the eventual output state is attained. Since the 

threshold level of the S function is determined by both the CY2 output

and CYj output, which in turn is also controlled by the CY2 output, 

changes in these due to transitions of the propagating inputs A, B and C

from previous stage counters would cause the threshold level V- of S to 

switch over momentarily relative to V+ (because the CY2 output changes

earlier than the CY^ output) until such a time when the CY^ output

eventually switched to its final state. This is further aggravated by

changes in V+ itself. Thus, during this time the logic output of S would 

have changed unnecessarily several times due to relative changes in V+

and V- which worsens its propagation delay. This is best illustrated in 

Figure 6.2. Table 6.2 summarizes some of the input transitions which

cause this type of delay to occur.



(J9;unoo£S 
:3

[H
) 

909 
[IH

6-IH
S] H31NI100 

(£ 
*5)

Simulation results Page 158

Fi
gu

re
 

6.2
. 

W
or

st-
ca

se
 

de
lay

 
ch

ar
ac

te
ris

tic
s 

of 
th

re
sh

ol
d 

log
ic 

(5
,3)

 
co

un
te

r



Simulation results Page 159

Input change Propagation delay(ps)

0 HI ------> 5 HI 1975
1 HI ------> 5 HI 1945
4 HI ------> 2 HI 1970
5 HI ------> 2 HI 1990

Table 6.2. Worst-case delays of a threshold (5,3) counter.

One way to alleviate this problem is to interchange the two inputs 

to the S gate which comes from the partial product bits with the CYj 

output as shown in Figure 6.3. Notice that the outputs and their

weightings concerned have been appropriately changed to obtain the same

function. Since the partial product bits would have setded to their 

final values after one AND gate delay, the threshold of S is only

affected by changes to the CY2 output. Thus, any transitions in A, B or C

from previous stage counters would only cause the threshold of S to 

change once to its eventual level. This reduces the critical delay to the 

case when only V+ momentarily changes its level once due to transitions 

in A, B or C until such a time when the CY^ output starts to switch to 

its final state. Using the logic configuration of Figure 6.3, simulations 

show an improvement of about 300ps to 400ps. The penalty for designing 

the counter this way is .that more devices and power are needed since the 

V+ of the S gate ~ is no longer identical to the other two functions as 

Figure 6.3 suggests.

Compared to the fastest full-adder cell, the (5,3) counter 

implemented in this technique has a worst-case delay which is several 

times slower although the high fan-in weight requirement has been solved. 

Clearly, such counters would be of little use in the (5,3) counter array
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Figure 6.3. Alternative Threshold logic configuration of a (5,3) counter
to improve propagation delay.

multiplier. However, in the inherently faster architectures of Wallace

and Dadda, and in applications where a large counter needs to be designed 

with little increase in complexity, this technique should prove

favourable.

It is apparent that extreme excursions of V+ and V- determine the

worst-case delay of the (5,3) counter since this corresponds to a

relatively high voltage swing at the comparator's inputs and cause

unnecessary changes at the logic outputs. Unless an efficient method of

limiting V+ and V- like clamping them to a certain value is employed, the

circuit is not expected to rival equivalent Boolean ECL gates in terms of

speed. Some attempts were made to clamp both V+ and V- but without much 

success.
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6.2.2. (5,3) counter implemented with ECL multiplexers

The separation of the inputs to the (5,3) counter in terms of steady 

and propagating signals have led to a potentially efficient and fast

realization of the counter where it was estimated that the propagation 

delay lies between one and two full-adder delay (see Figure 5.4). The

steady signals i.e. the two partial products bits serve as the control

inputs to three multiplexers which then selects the correct output under 

a given input state.

The worst case delay clearly occurs when the C input to the counter 

changes state; this corresponds to all three differential levels of the

full-adder, cells C1 and C2 to switch. Since the two lower level inputs

to the multiplexers are steady signals of the partial product bits, these

cells only introduce one further level of differential delay which then 

gives roughly a total worst-case delay of four differential delays.

However, the true delay, as was discovered, was much worse than two CSA 

full-adder delays.

Two stages of the counter were simulated under all possible input

states for each of the outputs to verify its functionality and determine

its worst case delay. Figure 6.4(a) shows the relative worst-case delay

of the full-adder, gates C1 and C2, whilst Figure 6.4(b) depicts the

propagation delay introduced by the multiplexers MX1, MX2 and MX3, as a 

function of tail current for a fixed value of emitter follower current.

These results were obtained under the same operating conditions where

load resistors of 250f2 and transistors of emitter sizes 1 x 10|im were 

employed, and under actual loading conditions. The multiplexers delays

were obtained with the outputs of MX3, MX2 and MX1 driving the lowest, 

middle and highest input level of the logic gates of the following (5,3) 

counter, respectively. Such connection between the outputs and inputs of



Simulation results Page

(a) 1st stage cells

Propagation delay(ps)
350 i

300 -

250 -

200
1.51 1.250.5 0.75

Tail current(mA)

EFcurrent=0.42nnA

— S°output — C°  output

—«— c 1 output ~ 1 CXOUtpUt

(b) Multiplexers MX1, MX2 and MX3

Propagation delay(ps)
350 i

300 -

250 -

200 -

150
0.5 1.25 1.50.75 1

Tail current(mA)

EFcurrenU0.42mA 

——  MX1 - 4 -  MX2 MX3

Figure 6.4. Critical delay of various gates of a ECL (5,3) counter,
(a) 1st stage cells, and (b) Multiplexers MX1, MX2 and MX3.
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adjacent (5,3) counters was made based on observation that with a fanout

of 1, the multiplexer MX3 is inherently faster than MX2, which in turn is

slightly better than MX1. To minimise the delay, it is thus appropriate

to feed the lowest input level of the following gates with the fastest

propagating output signal from previous stage.

The inherently better performance of gates C1 and C2 compared with

the full-adder can be attributed to their simpler transistor tree. The

eventual significantly slower speed of multiplexer MX2 and MX3 compared

to MX1 is due to the need to have level shifting diodes at their emitter

follower stages where each of them is required to drive three gates of 

the following stage.

It is thus apparent from examination of Figures 6.4(a) and (b) that

the critical delay path of the (5,3) counter is through the S° gate and 

multiplexer MX2. If a comparison is made with a full-adder cell connected

in a CSA multiplier, under the same operating conditions (see Figure

3.9(b)), the critical delay of the (5,3) counter is more than two times

the full-adder* s, mainly due to two factors. Each output of a (5,3)

counter has to drive three gates of the following stage as opposed to two 

for a CSA full-adder. Also all three differential levels of the first

stage cells i.e. S°, C°, C1 and C2 are liable to change compared to two 

for a CSA full-adder cell (see Figure 2.1) and this is further worsened 

by delays imposed by 2 level shifting diodes in the emitter followers of 

MX3. Note that only one level-shifting diode at most, is needed to

connect successive stages of the main array full-adder cells in a CSA

multiplier. Typically, each level-shifting diode introduces 20-50ps 

depending on the fanout.

It is important to note that the results in Figure 3.9(b) were

obtained for a fan-out of 1. When connected in a CSA multiplier, each
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gate of a full-adder would be driving two gates of the following stage. 

Simulations show that there is an increase of around 20-40ps for each 

fanout increment. However, even if this figure is added to each curve of 

Figure 3.9(b), the (5,3) counter speed is nowhere significantly better to

justify the increase in complexity put into designing the (5,3) counter 

multiplier. It is also interesting to note that if the diagonal cells

i.e. the modified full-adder and 2-input EX-OR gates are as fast as a CSA

full-adder, it is not expected that there will be any considerable

improvement in the overall multiplication speed without the (5,3) counter

being quite as fast, since a majority of the possible critical paths in

the multiplier architecture traverses a number of (5,3) counter cells. 

Thus, in these respects, the (5,3) counter multiplier scheme is worse 

than a full-adder CSA.

6.3. (2,2,3) counter cell

The critical component of the (2,2,3) counter is the modified

full-adder cell in which two techniques in series gated ECL were proposed

in the last chapter. The two input EX-OR gate should, in principle be 

faster than a CSA‘s full-adder cell. Figure 6.5 clearly illustrates the

superior performance of this gate (for fanout = 1) compared to a

full-adder. The first technique uses four-level ECL gates to direcdy 

implement the functions of the modified full-adder whilst the second 

method employs two gates, a two-input AND gate followed by a normal

full-adder.

A discussion of the 4-level ECL gates will first be given followed

by the AND gate-normal full-adder combination and a comparison of the two 

implementions is then presented.
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Propagation delay(ps)
2 1 0  -i
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160
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——  0.33mA —1— 0.42mA — 0. 5mA

- e -  0.58mA 0.67mA

Figure 6.5. Critical delay of a 2-input EXOR series-gated ECL 
gate (Fanout=l).

6.3.1. Modified full-adder implemented with 4-level ECL gates

It was shown in the last chapter that it is theoretically possible 

to implement the two functions of the modified full-adder component of 

the (2,2,3) counter in a 4-level series gated ECL gate with a standard

power supply of -5.2v. Figure 5.13 clearly demonstrates this point.

The worst-case delay obviously occurs when all four levels of the 

gates are forced to switch. The results are shown in Figure 6.6(a)-(b) as 

a function of tail current and emitter follower current. Although all

four levels of the transistor tree are liable to switch it should be

noted that this happens only in megacells C. q for each operation of the

multiplier. However, in megacells C . . and C. • the first stage (2,2,3) 

counter CT1 which adds the partial product bits does not lie in the

critical path and thus only the second stage (2,2,3) counter CT2 needs to

be addressed. Since the lowest level input to the second stage counter is
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(a) Sum1 gate

Propagation delay(ps)
450 -i

4 2 5 -

400 -
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1.51.250.75 10.5

Tail current(mA)

E-Follower current

——  0.33mA 0.42mA ~ 0 . 5 m A

- e -  0.58mA 0.67mA

(b) CY1 gate

Propagation delay(ps)
450 -i

400 -

350 -

300
1.25 1.50.5 0.75 1

Tail current(mA)

E-Follower current

—  0.33mA 0.42mA ~ 0 . 5 m A

- e -  0.58mA 0.67mA

Figure 6.6. Worst-case delay of a modified full-adder implemented with
4-level series gated ECL when all four differential levels switch
(Fanout=l). (a) Suml gate, and (b) CY1 gate.
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(a) Sum1 gate

Propagation delay(ps)
375
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275 -
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Tail current(mA)

E-Follower current 

—  0.33mA —+ ~  0.42mA — 0. 5mA
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(b) CY1 gate

Propagation delay(ps)
350 -|

325 -

300 -

275 -

250
1.50.750.5 1 1.25

Tail current(mA)

E-Follower current

0.33mA 0.42mA ~ 0 . 5 m A

0.58mA 0.67mA

Figure 6.7. Worst-case delay of a modified full-adder implemented with
4-level series gated ECL when three differential levels switch
(Fanout=l). (a) Suml gate, and (b) CY1 gate.
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a steady signal produced from counter C77, at worse, the propagation 

delay roughly corresponds to three differential delays. The speed of the 

modified full-adder of counter CT2 in megacells Cn_j . and C . . for this

type of delay are presented in Figure 6.7(a)-(b). Both the results shown 

in Figures 6.6(a)-(b) and Figures 6.7(a)-(b) were obtained for a fanout 

of 1 and with their outputs appropriately level-shifted by three and two

diodes, respectively.

A comparison in speed and the practicality of this technique is made 

in section 6.3.3. with the AND gate-normal full-adder implementation.

6.3.2. Modified full-adder implemented with AND gate-normal full-adder

The AND gate-normal full-adder combination of the modified

full-adder component of the (2,2,3) multiplier was similarly simulated as 

described in the last section.

It is apparent from Figures 5.12(a)-(b) that based on the number of

differential delays, the possible critical delay path occurs when either 

input Bq to the AND gate or input B^ to the normal full-adder changes 

state. The results of simulations are shown in Figure 6.8(a)-(b) and 

Figure 6.9(a)-(b) for changes at input Bj and B q ,  respectively. These

results were obtained for a fanout of 1.

It can be seen that the actual worst-case delay is due to changes in

input Bj i.e. when all three differential levels of the normal full-adder 

are switching. Although changes at input Bq gives the same number of 

differential delays, the actual smaller delay resulting from changes at 

input Bq can be attributed to the inherently better performance of the 

2-input AND gate, which by design has a relatively simple transistor tree

and only needs to drive one gate without being level-shifted any further.

Figure 6.10 demonstrates the superior speed of the 2-input AND gate. In
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(a) Sum1 gate

Propagation delay(ps)
350 -i
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- B -  0.58mA 0.67mA

(b) CY1 gate

Propagation delay(ps)
325 -i

300 -

275 -

250
0.5 0.75 1 1.25 1.5

Tail current(mA)

E-Follower current

—*— 0.33mA — 0. 42mA -  0.5mA

- a -  0.58mA 0.67mA

Figure 6.8. Worst-case delay of a modified full-adder implemented with 
AND gate-normal full-adder when input to full-adder changes
(Fanout=l). (a) Suml gate, and (b) CY1 gate.



Simulation results Page 170

(a) Sum1 gate

Propagation delay(ps)
300 -i
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250 -
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0.750.5 1 1.25 1.5

Tail current(mA)

E-Follower current
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(b) CY1 gate

Propagation delay(ps)
300 i

2 7 5 -

250 -

225
0.75 1 1.25 1.50.5

Tail current(mA)

E-Follower current

— -  0.33mA - + -  0.42mA - * ~  0.5mA

- e -  0.58mA 0.67mA

Figure 6.9. Worst-case delay of a modified full-adder implemented with
AND gate-normal full-adder when input Bq to AND gate changes (Fanout=l).
(a) Suml gate, and (b) CY1 gate.
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Propagation delay(ps)
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Figure 6.10. Worst-case delay of a 2-input AND series gated ECL 
gate (Fanout=l).

fact, it is sufficient to use one AND gate to drive both the sum and

carry functions of a normal full-adder without any considerable loss of

speed. Compared to a full-adder, under the same operating conditions, the

AND gate‘s worst-case delay is about lOOps better than a CSA full-adder. 

Furthermore, if a comparison is made, say for an emitter follower current 

of 0.4mA, the propagation delay of the modified full-adder resulting from 

changes at the AND gate is nearly as fast as a CSA full-adder (compare 

the curves of Figure 6.9(a) with those of Figure 3.9(b)). Note that the

Sum function of a normal full-adder is inherently slower that the Carry

function and so it is only necessary to compare the Sum gate‘s 

propagation delay.

If we examine its implementation in the megacells of the (2,2,3)

counter multiplier, during each operation of the multiplier, the

worst-case delay of a modified full-adder resulting from changes at the
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Bj input would only occur once in megacell C -q. However, in megacells

C , . and C. . where the lowest level input to the modified full-addern-1 j  i j  r
component of counter CT2 is a steady signal from counter CT1, the

critical delay of the modified full-adder in CT2 would thus corresponds

to changes at the Bq input of the AND gate. As evident from Figure 6.9(a)

this is nearly as fast as a CSA full-adder cell. Although each modified 

full-adder has to drive three gates (this can be reduced to two by using

a single AND gate for both functions of a modified full-adder) of the

next stage as opposed to two for a CSA full-adder, any slight increase in 

the delay of the modified full-adder due to the extra fanout would be

more than compensated by the faster EXOR gate of the following stage. 

Thus, in this respect the modified full-adder can be assumed, on average

to be as fast as a CSA full-adder.

6.3.3. Comparisons of the two implementations of a modified full-adder

The results show that there is better performance in the propagation

delay of the AND gate-normal full-adder configuration in megacells Cfl  ̂ . 

and C. • compared to its implementation in 4-level ECL gates. The reason

is not difficult to see; with the lowest level input being a steady

signal, the arrival of three propagating inputs gives a maximum number of

three differential delays for the 4-level ECL implementation. However, 

the AND gate-normal full-adder configuration is far better than the

4-level ECL implementation, since at most only three differential delays 

are liable to switch, whether caused by changes at input Bq or input B^. 

This also means that in megacells C. q of the (2,2,3) counter multiplier,

the implementation of the modified full-adder in the AND gate-normal

full-adder configuration would give a far superior speed than the 4-level

ECL configuration.
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In fact, when used in the diagonal cells of the multiplier

architecture, the AND gate-normal full-adder combination, in general, 

would prove to be significantly better in terms of speed since at most

two diodes drops are required in the emitter followers to level shift the 

outputs compared to three for the 4-level ECL gates. Each level shifting 

diode in the emitter follower, as found from simulations, typically adds 

about 45ps (for a fan-out of three) to the propagation delay. This 

becomes crucial especially in the diagonal cells of the (2,2,3) counter 

multiplier where a series of (2,2,3) counter cells are connected.

Furthermore, with the AND gate-normal full-adder configuration of 

the modified full-adder, the total number of different types of logic 

gates required is the same as a CSA multiplier scheme. These are the sum

and carry functions of a full-adder and half-adder, which is basically

composed of a 2-input EXOR gate and a 2-input AND gate.

Although SPICE shows that the 4-level ECL gate implementation 

appears workable for a power supply of -5.2v, the practical

implementation of 4-level gates is questionable since no known designs

have been fabricated with such gates. There are some major factors that

still need to be addressed and investigated. For one thing, a logic swing

of 0.25v although proven to work for the 3-level gates of the MPC test

chip, might not be adequate for the 4-level gates. It was observed from

SPICE that there was some degree of attenuation of the bias current

through the transistor tree as we go from the lower level input to the

highest level, and also of the output voltage through the level shift 

network used to get from the collector output down to the base input

With variations expected in the on-chip circuit parameters, the degree of

attenuation might be worse which thus calls for a much higher logic

swing. A higher logic swing unfortunately increases the possibility of
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the transistors to saturate heavily and increases the propagation delay.

Also, the reference voltage Vref has to be tightly controlled to -3.8v 

since any deviations would probably caused the onset of heavy saturation 

or limit the noise margin across the resistors of the current sources. In 

fact some ringing in the output was observed as Vref was reduced to 

-3.85. This is probably due to coupling of the signal across the 

collector-base of the current source transistor. Since the reference 

generator has some finite impedance (it is not unusual for this impedance

to appear inductive depending on the design of the reference), the 

coupling could caused the reference voltage to be modulated and therefore

give rise to ringing of the current sources connected to it which might 

then degrade the speed. Thus, for a power supply of -5.2v, the 4-level 

transistor tree might prove to be a bit of a squeeze when actually

designed on silicon. The seriousness of the above problems could not be

determined unless the 4-level gates are fabricated and as yet, no data is 

available from any known designs.

The three-level ECL gates for a power supply of -5.2v, on the other 

hand are well-proven in previous designs such as the MPC test chip. 

Thus, based on available data from known designs and from SPICE

simulation results, in terms of speed, reliability and practicality of 

design under standard operating conditions, the AND gate-normal 

full-adder would prove superior than the 4-level gate implementation.

In Chapter 4, it was evaluated that if the (2,2,3) counter is as

fast as a CSA full-adder, a considerable improvement in speed can be

achieved with the (2,2,3) counter multiplier compared to a CSA

multiplier, for large operand wordlength. The degree of improvement over

a conventional CSA multiplier will first be determined for a 8 x 8-bit

multiplication under true operating conditions taking into account
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effects such as fanout on the delays of the series gated ECL gates. This 

will allow us to determine the validity of equation 4.9, which describes 

the speed of a n x n-bit multiplication based on the assumptions made and 

thus an evaluation of the speed improvement of a n x n-bit (2,2,3) 

counter multiplier over the CSA multiplier can then be done. This is 

discussed in the next sections.

6.4. Speed comparison of the (2,2,3) counter and conventional CSA 
multiplier

Because of the slightly irregular structure of the (2,2,3) counter 

multiplier architecture in terms of counter size and interconnection 

pattern, a straight-forward estimate of their critical delay cannot be

made based on one type of cell, unlike the highly regular full-adder CSA

multiplier. This is further complicated by the fact that in the (2,2,3)

multiplier there are four types of megacells with different number of

steady signals (partial product terms) and propagating signals.

Ideally, to get as accurate a comparison as possible, a SPICE 

simulation has to be performed on the whole multiplier architecture. This 

is obviously not practical with the available VAX11/750 minicomputer. 

However, a fairly good estimate could be determined by doing a gate-level 

simulation using HILO where the gates concerned are given delays as 

obtained from SPICE simulation results. Although the exact behaviour of 

ECL gates is not built in HILO, their delay characteristics could be

modelled using the avaiable HILO gate primitives.

6.4.1. Delay characteristics of ECL gates

The delay of ECL gates is basically divided, to a first order, into

three parts. The bulk of the propagation delay is accounted for by the

number of differential levels that are forced to switch. This is followed
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by the emitter follower delay which also includes the delay due to any

diode drops needed to level shift the outputs. The third factor which

determines the delay is the fanout.

From the simulation results obtained on the full-adder cell and the

4-level ECL gates, roughly the delay for a given gate is proportionately 

dependent on the number of differential levels in the transistor tree

that are forced to switch. The less than ideal linear behaviour can be 

attributed, among many factors, to the different wiring capacitances at 

the collector nodes of each differential pair since the number of wires 

that connects adjacent levels varies according to the function of the 

gate. An analysis of the parameters that determines a differential pair

delay has actually been widely studied by Bama [6.4-6.5].

The emitter follower, which serves to give a high drive capability

and as a level shifting network normally adds a small percentage to the

total delay depending on the fanout and switching current. Each level

shifting collector-base connected diode in the emitter follower typically 

adds around 25-45ps (for the HPIX process) depending on the bias current 

and fanout.

A comparison in speed of the (2,2,3) counter multiplier and CSA 

multiplier is made for a given value of tail and emitter follower

current. Within a circuit chip the reference voltage is assumed to be

generated by a single reference circuit and distributed throughout the 

chip so it is appropriate to consider the tail and emitter follower

current sources to be controlled by the same reference. A single AND gate

is employed to drive both the sum and carry function of a modified

full-adder since this is found to be adequate without any significant 

degradation in its speed, and also to make some savings in the number of 

gates (and, hence power) required. By doing this, it can be noticed that
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the fanout of any gate at any level of the hierarchy in both the (2,2,3)

counter multiplier and the conventional CSA multiplier is two which would

greatly simplify the design process of the multipliers and make 

comparisons in their relative speeds more precise. A reference voltage of 

-3.8v is employed by virtue of the fact that adequate control of the 

current sources could be attained with fairly high value resistors

(meaning high output impedance of the current sources) for a given

current. All the gates are given load resistors of 250C2, transistors of 

emitter size 1 x 10pm, and resistances of 600Q and 1.2KQ for the tail 

current sources and emitter follower current sources, respectively.

Gate

No. of levels switching 
(ps)

Further delays due to 
le v e l-sh if t diodes(ps)

1 2 1 2

2-in put AND 103 144 34 62

2-input EXOR 122 181 26 53

Table 6.3. Delays of a 2-input AND and 2-input EXOR gate for fanout = 2 
(Tail current = 1mA; Emitter Follower current = 0.5mA).

Ga t e

No. of levels switching 
(ps)

Further delays due to 
leve l - sh i f t  diodes(ps)

1 2 3 1 2

Sum 122 200 266 41 60

C a r r y 117 179 242 47 79

Table 6.4. Delays of sum and carry function of a full-adder for fanout=2 
(Tail current = 1mA; Emitter Follower current = 0.5mA).
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The results of propagation delay of all the gates employed in both

multiplier schemes are summarized in Table 6.3 and Table 6.4, as a

function of number of differential levels switching and level-shifting

diodes used for a fanout of two. The tables show only the actual fanout,

number of differential levels that can switch and level-shifting diodes

needed by each gate in both multipliers.

6.4.2. Modelling the delay behaviour of ECL gates in HILO

The delay due to a change at any input level is modelled into HILO

by using the buffer primitive elements which are given the appropriate

delays as obtained from SPICE, before the actual definition of the gate‘s

function. The delays embedded in these buffers include the total

differential delays plus the delay due to an emitter follower stage

without any level shifting diodes, driving the number of gates

encountered by the function in either the CSA multiplier or (2,2,3)

counter multiplier. As identified in the last section all the gates

throughout the hierarchy of the (2,2,3) counter multiplier have a fanout

of two by employing just one AND gate in the modified full-adder which 

then gives the same fanout as the gates employed in the CSA multiplier. 

Where level shifting diodes are required, their contribution towards the 

total delay is also modelled with buffer primitive elements, but

connected at the output of the function. HILO primitive gates which

define the function of the cells are set with zero delays in order to

preserve the actual delay of the function as obtained from SPICE. The

HILO input description and schematics of the various cells used in the

logic simulation of a 8 x 8-bit (2,2,3) counter and conventional CSA 

multipliers are illustrated in Appendix B. The large plot of the (2,2,3)

counter multiplier demonstrates clearly the regularity of the
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architecture. The CSA multiplier has the same interconnections as that 

shown in Figure 2.1 for a 5 x 5-bit multiplication with extra rows and 

columns of cells added to give a 8 x 8-bit multiplier.

The procedure to model the gates in HILO was done mostly using 

Computervision‘s schematic capture design package. This allows quick data 

entry and gives us the capability to explore and exercise many special

features of HILO easily and interactively.

6.4.3. HILO simulation results

The results of simulation runs on a 8 x 8-bit CSA multiplier and an 

equivalent (2,2,3) counter multiplier are shown in Table 6.5 and Table 

6.6, respectively for some random input vectors. In Table 6.5, simulation

(b) exercises one of the critical path of the CSA multiplier which shows

a worst-case delay of 2743ps. This path corresponds to the diagonal sum 

path from the top left cell to the bottom right cell and through the 

carry path of the bottom row cells.

In Table 6.6, simulation (a) and (c) demonstrates the variation of 

the sum delay path through the megacells of the (2,2,3) counter 

multiplier. Simulation (d) and (f) illustrates some of the longest delay 

encountered when all of the final product bits change states; these, 

however do not actually exercise the critical path of the multiplier.

From discussions in section 4.4.2, the critical path is the "staircase"

path which traverses alternately along the Cl output and SO output of 

megacells C. ft, C. . and C . ., and through the half-adders and (2,2,3)

counters (the carry path) of the diagonal cells. Attempts were made to

determine the input vectors which truly exercises the critical path of

the multiplier but this was found to be difficult. Instead, calculations 

were made based on observations of HILO and SPICE simulation results
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Parameters=printfile,displayfile,initfile, scratch,coresize=1000 Kbytes 
Computervision Corp.
CDS3000 version - Fault Free Simulator.

HILO MARK 3.11.5 - 23-JUN-1989 13:07

(C) GenRad, Inc. 1987
*rsf multrun
END OF SUBFILE
8 OF PPGENl
8 OF PPGEN
4 8 OF PPGEN2
7 OF HADDER
42 OF FADDER
7 OF FADDR1
7 OF EXOR2
Delayscale = NS
Time to load 3.38 cpu secs.
MULTCSA LOADED OK
Initialisation complete cpu secs = 0.66 (total = 0.66)

FFFFFF 
FFFFFFFFFFPPPPPP 

AAAAAAAA BBBBBBBB PPPPPPPPPP[[[[[[
[[[[[[[[ [[[[[[[[ [[[[[[[[[[Him
01234567 01234567 0123456789012345 
] ] ] ] ] ] ] ]  ] ] ] ] ] ] ] ]  ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

-TIME---

0 11111111 00000001 0000000000000000

513 11111111 00000001 0000000000000010
532 11111111 00000001 0000000100000010
839 11111111 00000001 0000000111111110

5000 11111111 10000001 000000011111 110
5178 11111111 10000001 100000011111 110
5385 11111111 10000001 110000011111 110
5626 11111111 10000001 111000011111 110
5867 11111111 10000001 111100011111 110
6108 11111111 10000001 111110011111 110
6349 11111111 10000001 111111011111 110
6590 11111111 10000001 111111111111 110
6850 11111111 10000001 111111101111 110
7057 11111111 10000001 111111100111 110
7158 11111111 10000001 111111100011 110
7275 11111111 10000001 111111100001 110
7392 11111111 10000001 111111100000 110
7509 11111111 10000001 1111111000000110
7626 11111111 10000001 1111111000000010
7697 11111111 10000001 1111111000000011
7743 11111111 10000001 1111111000000001

Table 6.5. HILO simulation results of a 8 x 8-bit CSA multiplier.
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10000 11111111 00100000 1111111000000001 (c)
10178 11111111 00100000 0111111000000001
10385 11111111 00100000 0011111000000001
10448 11111111 00100000 0011111000000000
10513 11111111 00100000 0001111000000010
10532 11111111 00100000 0001111100000010
10626 11111111 00100000 0011111100000010
10736 11111111 00100000 0011111110000010
10839 11111111 00100000 0011111100111110
10937 11111111 00100000 0011111100000000
11737 11111111 00100000 0011111101000000
12044 11111111 00100000 0011111111000000

15000 11111111 01000000 0011111111000000 (d)
15292 11111111 01000000 0111111111000000
16901 11111111 01000000 0111111110000000

20000 10101010 01000000 0111111110000000 (e)
20492 10101010 01000000 0101111110000000
20974 10101010 01000000 0101011110000000
21456 10101010 01000000 0101010110000000
21875 10101010 01000000 0101010100000000

25000 00111100 01000000 0101010100000000 (f)
25251 00111100 01000000 0001010100000000
25974 00111100 01000000 0001110100000000
26456 00111100 01000000 0001111100000000
26716 00111100 01000000 0001111000000000

30000 01010101 10001000 0001111000000000 (g)
30385 01010101 10001000 0101111000000000
30754 01010101 10001000 0101101000000000
30852 01010101 10001000 0101100000000000
30988 01010101 10001000 0101100100000000
31015 01010101 10001000 0101000100000000
31255 01010101 10001000 0101000000010000
31422 01010101 10001000 0101000010010000
31497 01010101 10001000 0101001010010000
31562 01010101 10001000 0101001011010000
31617 01010101 10001000 0101001111010000
31850 01010101 10001000 0101001011010000

35000 00001111 00011000 0101001011010000 (h)
35344 00001111 00011000 0001001011010000
35713 00001111 00011000 0001011011010000
35811 00001111 00011000 0001010011010000
35826 00001111 00011000 0000010011010000
36214 00001111 00011000 0000010111010000
36254 00001111 00011000 0000010111011000
36349 00001111 00011000 0000000111011000
36378 00001111 00011000 0000000101001000
36412 00001111 00011000 0000000101101000
36496 00001111 00011000 0000000001101000
36536 00001111 00011000 0000000000101000

Table 6.5. (continued).
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36803 00001111 00011000 0000000001101000
36850 00001111 00011000 0000000101101000

40000 10111101 00011011 0000000101101000 (i)
40472 10111101 00011011 0001100101101000
40513 10111101 00011011 0001101101101010
40532 10111101 00011011 0001101001101010
40736 10111101 00011011 0001101011011010
40825 10111101 00011011 0001101011011011
40837 10111101 00011011 0001101011001011
40871 10111101 00011011 0001101011001001
40954 10111101 00011011 0001110011000001
41071 10111101 00011011 0001110011000101
41074 10111101 00011011 0001110111000101
41080 10111101 00011011 0001110101110101
41178 10111101 00011011 0001110100100101
41195 10111101 00011011 0001111100100101
41238 10111101 00011011 0001111101100101
41315 10111101 00011011 0001111001100101
41378 10111101 00011011 0001111011110101
41476 10111101 00011011 0001111010111101
41593 10111101 00011011 0001111010111001
41762 10111101 00011011 0001111011111001

finish at 50000
finish simulation cpu secs = 1.56 (total = 2.22)
*quit

HILO END OF RUN 23-JUN-1989 13:07

Table 6.5. (continued).
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Parameters=printfile,displayfile,initfile,scratch,coresize=1000 Kbytes 
Computervision Corp.
CDS3000 version - Fault Free Simulator.

HILO MARK 3.11.5 - 23-JUN-1989 17:45

(C) GenRad, Inc. 1987
*rsf multrun
END OF SUBFILE
68 OF PPGEN
40 OF COUNTER223
7 OF MCELLIO
7 OF HADDER
3 OF MCELLII
6 OF MCELLIJ
3 OF MCELLN1J
47 OF EXOR2
40 OF MODFADDER
58 OF FADDER
Delayscale = NS
Time to load 5.33 cpu secs.
MULT223 LOADED OK
Initialisation complete cpu secs = 0.95 (total = 0.95)

FFFFFF
FFFFFFFFFFPPPPPP

AAAAAAAA BBBBBBBB PPPPPPPPPP111111

’IME---

01234567 01234567 0123456789012345

0 11111111 10000000 0000000000000000

144 11111111 10000000 1000000000000000
385 11111111 10000000 1100000000000000
566 11111111 10000000 1110000000000000
747 11111111 10000000 1111000000000000

1007 11111111 10000000 1111100000000000
1088 11111111 10000000 1111110000000000
1339 11111111 10000000 1111111000000000
1568 11111111 10000000 1111111100000000

5000 00000000 00000000 1111111100000000
5103 00000000 00000000 0111111100000000
5344 00000000 00000000 0011111100000000
5525 00000000 00000000 0001111100000000
5706 00000000 00000000 0000111100000000
5966 00000000 00000000 0000011100000000
6047 00000000 00000000 0000001100000000
6298 00000000 00000000 0000000100000000
6527 00000000 00000000 0000000000000000

Table 6.6. HILO simulation results of a 8 x 8-bit (2,2,3) counter
multiplier.
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10000 11111111 00000001 0000000000000000
10940 11111111 00000001 0000000000000100
10955 11111111 00000001 0000000000000110
11289 11111111 00000001 0000000000001110
11328 11111111 00000001 0000000000011110
11399 11111111 00000001 0000000000111110
11469 11111111 00000001 0000000001111110
11475 11111111 00000001 0000000101111110
11592 11111111 00000001 0000000111111110

15000 11111111 10000001 0000000111111110
15144 11111111 10000001 1000000111111110
15385 11111111 10000001 1100000111111110
15566 11111111 10000001 1110000111111110
15747 11111111 10000001 1111000111111110
16007 11111111 10000001 1111100111111110
16088 11111111 10000001 1111110111111110
16339 11111111 10000001 1111111111111110
16568 11111111 10000001 1111111011111110
16658 11111111 10000001 1111111001111110
16710 11111111 10000001 1111111001011110
16804 11111111 10000001 1111111000011110
16922 11111111 10000001 1111111000011100
16928 11111111 10000001 1111111000010100
16931 11111111 10000001 1111111000010000
16991 11111111 10000001 1111111000000000
16996 11111111 10000001 1111111000000001

20000 00000000 00000000 1111111000000001
20103 00000000 00000000 0111111000000001
20344 00000000 00000000 0011111000000001
20525 00000000 00000000 0001111000000001
20706 00000000 00000000 0000111000000001
20899 00000000 00000000 0000111000000101
20946 00000000 00000000 0000111000000100
20966 00000000 00000000 0000011000000100
21047 00000000 00000000 0000001000000100
21209 00000000 00000000 0000001000000000
21287 00000000 00000000 0000001000010000
21298 00000000 00000000 0000000000010000
21428 00000000 00000000 0000000001010000
21597 00000000 00000000 0000000001000000
21681 00000000 00000000 0000000000000000

25000 01000000 00000010 0000000000000000
26502 01000000 00000010 0000000100000000

30000 01000101 10010010 0000000100000000
30385 01000101 10010010 0100000100000000
30941 01000101 10010010 0100100100000000
30992 01000101 10010010 0100100100000100
31088 01000101 10010010 0100110100000100
31370 01000101 10010010 0100110100010100
31493 01000101 10010010 0100110100110100

( c )

<d)

( e )

(f)

<g>

Table 6.6. (continued).
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31568 01000101 10010010 0100110000110100
31700 01000101 10010010 0100110001110100

35000 00000000 00000000 0100110001110100
35344 00000000 00000000 0000110001110100
35900 00000000 00000000 0000010001110100
35992 00000000 00000000 0000010001110000
36047 00000000 00000000 0000000001110000
36370 00000000 00000000 0000000001100000
36452 00000000 00000000 0000000001000000
36543 00000000 00000000 0000000000000000

40000 01111111 00000010 0000000000000000
40935 01111111 00000010 0000000000001000
41033 01111111 00000010 0000000000001100
41158 01111111 00000010 0000000000101100
41411 01111111 00000010 0000000000111100
41477 01111111 00000010 0000000010111100
41502 01111111 00000010 0000000110111100
41552 01111111 00000010 0000000111111100

45000 01111111 10000010 0000000111111100
45385 01111111 10000010 0100000111111100
45566 01111111 10000010 0110000111111100
45747 01111111 10000010 0111000111111100
46007 01111111 10000010 0111100111111100
46088 01111111 10000010 0111110111111100
46339 01111111 10000010 0111111111111100
46568 01111111 10000010 0111111011111100
46604 01111111 10000010 0111111010111100
46665 01111111 10000010 0111111000111100
46735 01111111 10000010 0111111000011100
46852 01111111 10000010 0111111000001100
46909 01111111 10000010 0111111000001000
47014 01111111 10000010 0111111000000000
47098 

Lsh at

01111111

50000

10000010 0111111000000010

(h )

(i)

(j)

finish simulation cpu secs = 1.36 (total = 2.31) 
*quit

HILO END OF RUN 23-JUN-1989 17:45

Table 6.6. (continued).
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in which the worst-case delay path of each of the megacells and the

diagonal cells were determined in HELO and then verified by equivalent

SPICE simulations. Logic simulation shows that the worst-case delay of

megacell C- q  occurs when there is a change in partial product a-b^ and

not due to propagating input S0.+j q (refer to Figure 4.9(a) and Appendix

B-3) as assumed in section 4.4.2. The total delay of output Cl. q when

this happens is 695ps. For megacell C. •, changes at input Cl- • 1
I J  K r-1

introduce a delay of 122ps for the SO. . output whilst input SO- * •

causes output Cl. • to change after a delay of 388ps. In megacell C. • a

change at the SO-+j . input gives a delay of 179ps at its Cl. • output

For the diagonal cells, transitions at the AO input of a (2,2,3) counter 

introduce a delay of 220ps at the CY1 output while the half-adder

contributes a delay of 103ps to its carry output. Adding up all the

delays introduced by the cells in the critical path, a worst-case delay

of 2249ps was obtained for the (2,2,3) counter multiplier. SPICE

simulations done on each of the megacells and diagonal cells actually

verify their worst-case delay paths to within ± 70ps. Although this means 

the HILO descriptions do not accurately model the ECL gates, the logic

simulation results should give a fairly good estimate of the relative

speeds of the (2,2,3) counter and CSA multiplier since the same type of 

gates, which have identical fanout are used in both (ignoring effects of

different wiring parasitics).

It can thus be observed that for a 8 x 8-bit multiplication, the

(2,2,3) counter multiplier is better than the CSA multiplier by 494ps

which represents about 18% improvement over the CSA multiplier. In

contrast, if we use equations 2.1 and 4.9 to estimate their relative

speeds, the (2,2,3) counter multiplier is faster by four unit gate delays

which is about 26.7% of the CSA multiplier's speed. The difference can be
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attributed to two related factors. In equation 4.9 we have assumed that

the (2,2,3) counter has a unit gate delay comparable to a CSA full-adder 

cell. While the results show this to be true when a comparison is made

with all but the bottom row full-adder cells of the carry-save array, it

is not exactly valid when compared with the bottom row full-adder cells. 

Essentially, the bottom row full-adder cells are ripple adders with the

carry propagating across the cells. Each pass through these cells

introduce only one differential delay as opposed to two in the main array

cells and from SPICE simulation this is about 65% of the delay of the

main array full-adder cell. On the other hand, each diagonal (2,2,3)

counter cell which serve the same purpose as the bottom row cells of the

CSA, is slightly faster than two passes through the bottom row CSA. To

get a much better assessment of the relative speeds of the CSA multiplier 

and (2,2,3) counter multiplier, a more involved analysis that would take 

into account the above factors is obviously needed. However, equations

2.1 and 4.9 can be used to give a first order estimate of both

multipliers. As evident from Figure 4.14, greater improvements in

multiplication speed can be expected for large operand wordlength. For a 

16 x 16-bit multiplication, equation 4.9 shows a faster speed over the

CSA multiplier by about 29%, which in numbers is about 800ps. It is 

interesting to note that the speed of a (2,2,3) counter multiplier lies 

between that of a straight CSA multiplier and a Booth-encoded CSA 

multiplier incorporated with fast final adders. Some minor improvements 

in speed and hardware savings can be achieved for the (2,2,3) counter

multiplier by replacing the second stage (2,2,3) counter (CT2) in 

megacells C. q and Cn_j . with a (1,2,3) counter although this would mean

adding a different type of gate in the implementation of the multiplier.

Table 4.6(b) and Table 4.8 illustrates the relative gate count and
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power consumption of both schemes based on the assumption that any single 

logic function of up to five input variables can be implemented with a 

single cascode ECL gate. However in the eventual implementation, each 

modified full-adder is composed of three gates, a 2-input AND and the two 

gates of a normal full-adder. Thus, the factor contributed by the AND 

gate for each modified full-adder in Table 4.6(b), is given by

n / 2l ~ 2 ^
£ 4x + (^n-8) for even n.

X =  1

I n / 2 I -2 q i
[  (4x+2) + (—j —) for odd n.

x=0

Using Table 4.8 and the AND gate contribution given above, for a n x

n-bit multiplication, the total ECL gate count can be summarized in Table

6.7 where it is compared with that for a CSA multiplier.

For a 8 x 8-bit multiplication, the total gate count required for

the (2,2,3) counter multiplier is about 56% more than the CSA multiplier,

Total ECL gate count

( 2 , 2 , 3 )  
Count e r  

mul  t i p l ier

even n odd n

n/2-2
V (32x) + (28n-45)

X = 1

In/ 2j -2
V (32x+16) + (28n-48)

x = 0

CSA 
mul t i p l ier 2 (n -1 )2 + n 2 + 2(n- l )

Table 6.7. Total ECL gate count of (2,2,3) counter multiplier (where 
modified full-adder is implemented with AND gate-normal full-adder) and 
conventional CSA multiplier.
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whilst for 16 x 16-bit multiplication, the figure is 46% more. These 

figures would give the relative power consumption of both schemes if all 

gates are driven with the same tail current and emitter follower current. 

However, a much lower power consumption can be achieved for the (2,2,3) 

counter multiplier without any appreciable loss of speed by driving the

relatively large number of gates such as the first stage (2,2,3) counters 

in the megacells which do not lie in the critical path of the multiplier, 

at lower power dissipation.

6.5. Summary

The results show that the (2,2,3) counter multiplier has a

significant improvement in speed over the CSA multiplier by implementing

the modified full-adder with a AND gate-normal full-adder configuration, 

which has a comparable delay to that of a CSA full-adder. It was

determined that the 4-level ECL implementation of the modified full-adder 

is worse in terms of speed, reliability and practicality of design. For a 

8 x 8-bit multiplication, simulations show that the (2,2,3) counter is 

faster than the CSA multiplier by about 18% and is expected to give 

higher improvements for larger operand wordlengths.

The (5,3) counter cell implemented by the multiplexer approach, 

shows a speed larger than twice the delay of a CSA full-adder which means 

a multiplication speed worse than the CSA multiplier. Using the novel 

threshold logic circuit technique, it is feasible to design higher order 

counters as large as a (7,3); however the propagation delay was much 

worse than expected due to unnecessary and extreme transitions of the

threshold levels of the gates.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1. Background

As one of the basic components of digital signal processors (DSP),

general and special-purpose computer applications, the digital multiplier

is often one of the most vital elements, and because of the inherent 

complexity of the operation, the execution speed tends to be the dominant 

factor in the entire processing time. With the advent of VLSI technology 

which brought about reduced cost of fabrication per transistor on a chip, 

parallel algorithms for multiplication has become increasingly important.

Schemes for parallel multiplication are roughly divisible into two

classes - iterative array of full-adder cells such as the full-adder

carry-save array (CSA) approach [7.1], and generation of a matrix of

partial product terms with subsequent reduction of the matrix e.g. Dadda 

and Wallace tree [7.1-7.4]. Compared to the linear delay of the iterative

array multiplier, matrix reduction method is faster, especially for large

operand wordlength n as it is logarithmically dependent on n. For VLSI 

implementations of a single chip multiplier, however, the reduction

technique, requiring a large number of irregular connections between 

different types of cells is at a major disadvantage over the iterative 

array approach, which has a highly regular structure. Because of this,

the iterative array technique such as the CSA multiplier lends itself

well to automatic generation design tools like a silicon compiler [7.5]

and is usually employed in single chip DSP. Often multiplier recoding 

techniques like the modified Booth algorithm [7.6] and fast final adders

[7.7,7.8] are incorporated with the iterative array technique to boost

its speed. This method, usually employed in most single chip multiplier

applications is, however, more complicated and normally would occupy a

Page 191
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relatively large area of silicon and power consumption apart from the 

fact that it takes considerably longer to design, and thus, is unsuitable 

for implementation in single chip DSP applications.

With current trends towards single chip digital signal processors 

and the growing demand for more powerful and real-time performance of

such processors, it is obvious that further improvements in speed would 

need to be made on the full-adder based CSA multiplier architecture. 

Considerable increases in the speed of array multipliers can be achieved

by adding more than one partial product bit at a time by employing higher

order parallel (p,q) counters [7.4]. This approach largely depends on a 

counter which has a delay and complexity comparable to that of a 

full-adder.

Attempting to extend the CSA approach to higher order parallel (p,q) 

counters results in architectures that is actually worse than the 

full-adder CSA scheme in terms of speed and its attractiveness for VLSI 

implementation. No significant reduction in the number of counter stages 

needed in the array could be attained and also it was observed that there 

is an uneven distribution of partial product bits and incomplete 

utilisation of some counter cells if the homogeneous nature of the array

were to be preserved. Considerable attention has been paid to methods of 

synthesizing large parallel counters in the past. This includes

techniques based on look-up tables or ROMs [7.9], sequential circuits

[7.10,7.11], networks of full-adders or smaller counters [7.12,7.13] and

threshold logic [7.3,7.14]. These methods, however, result in counters 

that are too slow, costly and impractical to gain any significant

improvement in the speed of digital multipliers.
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7.2. Research summary

An iterative array multiplier based on a (5,3) counter cell was

recently reported by Nakamura [7.15,7.16] and it was claimed that, 

assuming the counters operate at a comparable speed as a CSA full-adder, 

the architecture is faster than the conventional CSA multiplier by nearly

a factor of two. A novel array architecture based on a (2,2,3) counter 

was developed in this project as an extension of the (5,3) counter scheme 

and it was shown to offer significant enhancement in speed for large 

operand wordlength. The study shows that both the (5,3) counter and

(2.2.3) counter architectures are quite close to conventional array

multipliers from a VLSI implementation point of view. The folded collated

square matrix of partial product terms introduced by Nakamura proved to

be one of the key factors which gives the optimum (5,3) counter and

(2.2.3) counter multiplier architectures its regular structure in terms 

of interconnections between cells, the even distribution of partial

product terms and the complete utilisation of counter inputs.

In this work, the (5,3) counter and (2,2,3) counter were studied, 

principally on the efficiency of operation speed and the viability of the

array architectures in the fast bipolar ECL technology. For this purpose

a reconsideration of threshold logic, in view of the better processes of

today as well as the well-proven series gated ECL technique was 

investigated.

Two techniques were employed to realise the (5,3) counter . In the

proposed design in series gated ECL, the process of computing the steady

signals before the propagating signal reach the cell yields a counter 

which is basically composed of logic blocks of full-adder and some other

functions corresponding to the possible output state of the counter that

were then selected by multiplexers. It is also possible to extend this

technique to a (7,3) counter but in terms of cost-effectiveness the (5,3)
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counter is better since the higher order counters require more gates and

without any possible enhancement in speed. In the second method, a novel 

threshold circuit technique based on partial use of negative weighted

inputs was proposed to overcome the maximum fan-in weight limitation

found in traditional threshold circuits which would make it more feasible 

to synthesize a (5,3) counter of low complexity. Although, it was 

observed that the technique might not be as fast as an equivalent series 

gated ECL full-adder cell, it is of great interest since higher order 

counters up to a (7,3) could be designed with little increase in 

complexity and propagation delay. Such large counters should be useful in

the inherently faster architectures of Wallace* s and Dadda* s [7.2,7.3]

and in applications where a large counter needs to be designed with

little increase in complexity.

The (2,2,3) counter is composed of a 2-input EXOR gate and a 

modified full-adder which are basically the diagonal cells of the (5,3)

counter multiplier. The critical component of this counter is the 4-input 

modified full-adder since a 2-input EXOR gate can be designed, in

principle with a lower propagation delay than a normal full-adder. Two 

techniques were proposed to synthesize the modified full-adder. The first

method uses four levels of series gated ECL to realise each of the

functions of the modified full-adder. In theory, it was observed that it

is feasible to accommodate four levels of differential switches for a 

standard power supply of -5.2v without causing the transistors to

saturate which could seriously degrade the speed. An efficient method of 

mapping a logic function onto series gated ECL suitable for software 

implementation was introduced. In the second method, a 2-input AND gate

and a normal full-adder are employed to realise the modified full-adder.

Both methods suggest a modified full-adder that is potentially as fast as

a normal full-adder without a considerable increase in complexity.
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SPICE simulations were carried out to characterize the propagation 

delay behaviour of the various cells of different techniques and to make 

a critical comparison of their relative speeds with a CSA full-adder

cell. These were performed for a given load resistance, transistor size

and as a function of tail current and emitter follower current.

7.3. Conclusions and discussions

The results show that for the (5,3) counter implemented with the 

novel threshold logic circuit technique the maximum fan-in weight is 

effectively double that of traditional threshold circuits by separating 

the inputs to negatively weighted and positively weighted inputs. This 

allows a reliable design of the (5,3) counter and can be extended to

higher order counters up to a (7,3). However, the critical propagation

delay of the circuits was found to be much worse than expected. Extreme 

excursions of V+ and V- of each threshold gate determine the worst-case

delay since this corresponds to a relatively high voltage swing at the 

comparators differential pair, and since the threshold of one gate is

controlled by the output of a previous gate, momentary changes at the

counters outputs can occur which seriously degrades its propagation 

delay. Although some improvements can be made by changing the threshold 

logic configuration slightly to reduce this effect, the (5,3) counter is 

still several times slower than a CSA full-adder. Unless an efficient 

method of limiting V+ and V- under extreme input states can be made like

clamping them to a certain maximum value, the circuit is not expected to 

rival equivalent Boolean ECL gates in terms of speed.

The (5,3) counter implemented with multiplexers show a critical 

delay worse than two times the delay of a CSA full-adder. The need to 

drive three gates of the following stage (5,3) counter along with the

requirement to level shifts the outputs by two diode drops has actually
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considerably degraded the speed of the multiplexers although they can be 

observed to introduce only one further differential delay. This is

further aggravated by the fact that all three differential levels of the 

first stage logic gates of each (5,3) counter are liable to switch. With

such counters which has a delay twice that of a CSA full-adder, the (5,3) 

counter multiplier architecture is not expected to be faster than the 

conventional CSA multiplier.

Simulations show that the 4-level gates of a modified full-adder has 

a worst-case delay between one and two times the delay of a CSA 

full-adder. Although SPICE simulations suggest that the 4-level ECL 

implementation of a modified full-adder appears workable for a standard

power supply of -5.2v, it was determined that problems could arise when 

the circuits are actually fabricated. A much higher logic swing than that

employed for 3-level ECL gates might be required for the gates which 

would accordingly reduce the number of levels that can be accommodated if 

saturation of the transistors were to be avoided. This implies that a 

higher supply voltage of more than -5.2v might be required which would 

then seriously complicates the design of the circuits. No known designs

of a 4-level series gated ECL gate has been reported in the past. In

contrast, the AND gate-normal . full-adder configuration of the modified 

full-adder which are well-proven in previous known designs such as the 

MPC test chip, proved to be superior than the 4-level ECL implementation 

not only from the point of view of reliability and practicality of design 

under standard operating conditions, but also in terms of speed. The 

speed of the modified full-adder when implemented in all but megacell 

C. q of the (2,2,3) counter multiplier is nearly as fast as a CSA

full-adder. Any marginal increase in speed is also more than compensated 

by the faster EXOR gate of the following stage megacell, since the delay 

path through the megacells traverses a majority of alternate blocks of
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full-adders and modified full-adder. Thus based on available data from

previous designs and from SPICE simulation results, in terms of speed,

reliability and practicality of design under standard operating 

conditions, the AND gate-normal full-adder configuration of the modified

full-adder proves to be superior than the 4-level ECL implementation.

A gate-level logic simulation (using the HILO package) was performed

on both the (2,2,3) counter multiplier and the conventional CSA

multiplier to assess their relative speeds. This was done based on SPICE

results obtained with all gates having the same load resistors,

transistor size and for a given value of tail current and emitter

follower current. The results show that for a 8 x 8-bit multiplication,

the (2,2,3) counter multiplier is faster than the conventional CSA

multiplier by a factor of more than 18% with an increase in gate count of

about 56% (and hence, power consumption if all gates are assumed to be

biased with the same tail current and emitter follower current).

In general, for a n x n-bit multiplication, the worst-case delay Dn

of a (2,2,3) counter multiplier (including the delay due to generation of

partial product terms) can be approximated in terms of unit gate delays

given by

Dn = (n+1) +

whereas the critical delay for a conventional CSA multiplier is given by 

Dn = (2n -1).

It is interesting to note that the speed and gate count of a (2,2,3) 

counter multiplier lies between that of a straight CSA multiplier and a 

Booth-encoded CSA multiplier incorporated with fast final adders. For a 

16 x 16-bit multiplication, it is estimated that the (2,2,3) counter is 

faster than the CSA multiplier by about 29% with a hardware increase of 

46%. Thus, the (2,2,3) counter is more cost-effective for large operand
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wordlength, as also evident from Figures 4.14(a)-(b). Reduction in the

power consumption of the (2,2,3) counter multiplier can be achieved

without any loss of speed by operating a large number of gates which do

not lie in the critical path, at lower tail current and emitter follower

current.

In terms of VLSI implementation, the (2,2,3) counter multiplier is

as attractive as the CSA multiplier. Although, observation of the (2,2,3)

counter architecture at the highest level of the hierarchy suggests that

there are more types of cells involved, the same type of gates as used in

the CSA multiplier i.e. the two functions of a half-adder and full-adder 

are actually needed in the (2,2,3) counter scheme. Eventhough the (2,2,3)

counter architecture is not as regular as a CSA multiplier, this should

not be a serious constraint, since, once a layout has been made for a

given size multiplication, the scheme can be easily extended by adding

extra rows and columns of cells to fit the specific application.

The (2,2,3) counter array multiplier should thus be attractive for 

future implementations of high-speed multipliers, particularly, in single

chip real-time digital signal processors, where a much faster but yet

regular array multiplier is often needed to cope with the increased 

complexity of such chips, and where a multiplier is required which can be

designed quickly.

7.4. Recommendations for future work

Future work will concentrate on fabricating a prototype (2,2,3)

counter multiplier and a conventional CSA multiplier for a small size 

multiplication, say, for a 8 x 8-bit, using state-of-the-art bipolar 

technology such as the HPIX process. Since the same type of gates are 

employed in both architectures, this will enable us to address the 

relative wiring complexity, ease of design, a more accurate speed-power
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product, and also this will give some figures of the total silicon area 

heeded by the (2,2,3) counter multiplier in comparison with a CSA

multiplier. In terms of gate count, the results show that for a 8 x 8-bit 

multiplication, the (2,2,3) counter scheme, in contrast with the CSA

multiplier, is larger by a factor of about 56%, whilst for a 16 x 16-bit

multiplication, it is 46% more. These figures, however, do not reflect

accurately the relative total silicon area occupied since it depends to a 

large extent on the complexity and regularity of wiring between cells.

Furthermore, these figures were obtained based on the assumption that all

gates i.e. the 2-input EXOR and AND gate, and the full-adder gates are

identical in all respects. It is also interesting to find out how far the

(2,2,3) architecture can be expanded for larger wordlength before the 

power consumption and silicon area needed becomes a constraint. It was

identified that some of the gates in the megacells of the (2,2,3) counter 

multiplier which do not lie in the critical paths of the multiplier can

be operated at lower power consumption without any loss of speed

incurred. Some work should therefore be done to investigate on how much 

power can be saved by this treatment. These work will then allow a more

complete assessment on the attractiveness of the (2,2,3) counter

multiplier architecture for incorporation in single chip digital signal

processors. In the long term, it is hoped that a program will be written

which will generate automatically the layout of a (2,2,3) counter

multiplier for a given size wordlength. This is quite feasible, since,

once the layout of the various cells/megacells have been designed for a

small size multiplication the architecture can be easily expanded like 

the CSA multiplier, by adding extra rows and columns of cells to fit the

specific application. Such program should prove useful in automatic 

generation design tools such as silicon compilers [7.5].

The viability of the (2,2,3) counter multiplier architecture in
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other technologies such as MOS technology will need to be investigated.

Indeed, a majority of the digital signal processors that are available in

the market today are MOS chips. This is not surprising since MOS 

technology offers higher packing density and lower power consumption

which allows more complex DSP functions to be integrated onto a single

chip. A higher performance array multiplier architecture would 

undoubtedly enhance the computation speed to compensate the inherently

higher propagation delay of MOS circuits. The efficiency of operation

speed and the complexity of a modified full-adder would need to be

investigated. In fact, Nakamura [7.16] did not address the implementation

of a modified full-adder in MOS technology, and thus it is appropriate

that future work will need to look at the viability of the (2,2,3) 

counter array scheme in this technology.

Several other important areas can also be identified where further

work would prove salutary. These are summarized below.

(i) It was shown that it is feasible to overcome the fan-in weight

constraint found in traditional threshold circuits by using the proposed

novel threshold circuit technique. Indeed, the analysis suggests that the

circuit should be able to accommodate counters as large as a (7,3)

counter, which might be useful in the inherently faster architectures of 

Wallace's and Dadda‘s. The feasibility of using such higher counters in

these multiplication schemes would need to be fully investigated. The

speed of the threshold circuits was found to be limited by extreme

excursions of the summing node voltage V+ and threshold level V-. Unless 

an efficient method of limiting V+ and V- to a certain value is employed 

it is unlikely that such circuits will rival equivalent Boolean ECL

gates. Thus some work is needed to investigate at ways of clamping V+ and 

V- efficiently. Also a more accurate analysis of the minimum unit weight 

voltage is needed than the worst-case approximation treatment presented
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in this work. Ideally, a statistical analysis of the threshold circuits

would need to be done along with an equivalent Monte Carlo simulation to 

verify the analysis. This then gives a more optimistic view of the

circuits operation and thus better evaluation of the maximum fan-in

weight possible can be made.

(ii) A method of mapping a logic function onto series gated ECL was

proposed where it was shown to be suitable for software implementation.

Such a program would prove beneficial for IC designers to speed up their 

design process.

(iii) It is apparent that the key to the fast operation of the (2,2,3)

counter multiplier is the inherent high-speed of the modified full-adder 

cell. Some work should therefore be undertaken to investigate the

attractiveness of employing such cells in other arithmetic operations 

such as in high-speed binary additions and divisions.

(iv) Multiplier array architectures based on different binary number 

representation have received relatively little attention in the past. One

potential area is the signed digit (SD) number system [7.17,7.18], which

was shown to be attractive for future VLSI implementations of large

multipliers. It was estimated that it can be much faster than equivalent 

conventional array multipliers since their critical delay behaviour

depends logarithmically on the wordlength n (similar to the matrix

reduction techniques of Dadda and Wallace), and yet can be as regular as 

conventional array multipliers. Array architectures should therefore be 

investigated based on such number representation.
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** SPICE model parameters for HP1X transistor of emitter size 1 x 5pm ** 
.MODEL C1005 NPN
+IS=1.12E-16 BF=150 NF=1.08 VAF=15 IKF=3.65E-3 ISE=5F NE=2.2 
+BR=1.0 NR=1.0 VAR=2.0 IKR=2M ISC=1F NC=2.6 RB=126 
+IRB=14.3E-6 RBM=71 RE=28 RC=18 CJE=19.0F VJE=.338 MJE=289 
+TF=9.0E-12 XTF=6.5 VTF=3.0 ITF=4.28E-3 aC=51.8F VJC=.441 MJC=.20 
+XCJCX45 TR=.25N CJS=109.5F VJS=.33 MJS=.12 XTB=1.5 EG=1.11 
+XTI=3.0 FC=.70

** SPICE model parameters for HP1X transistor of emitter size 1 x 10pm ** 
.MODEL C1010 NPN
+IS=2.65E-16 BF=230 NF=1.08 VAF=25 IKF=4.0E-3 ISE=5F NE=2.2 
+BR=1.0 NR=1.0 VAR=2.0 IKR=2.0E-3 ISC=1F NC=2.6 RB=110 
+IRB=20.0E-6 RBM=50 RE=5 RC=18 CJE=29.0F VJE=.338 MJE=.289 
+TF=8.0E-12 XTF=6.5 VTF=3.0 ITF=10.0E-3 OC=29.0F VJC=.441 MJC=.20 
+XaC=.45 TR=.25N aS=100.0F VJS=.33 MJS=.12 XTB=1.5 EG=1.11 
+XTI=3.0 FC=.70

** SPICE model parameters for HP1X transistor of emitter size 1 x 20pm ** 
.MODEL C1020 NPN
+IS=5.35E-16 BF=240 NF=1.09 VAF=28 IKF=4.2E-3 ISE=15F NE=2.9 
+BR=1.0 NR=1.0 VAR=2.0 IKR=2.5E-6 ISC=1F NC=2.6 RB=85 
+IRB=34.0E-6 RBM=38 RE=4.8 RC=10 CJE=50.0F VJE=.338 MJE=.289 
+TF=7.0E-12 XTF=6.5 VTF=3.0 ITF=20.0E-3 aC=49.0F VJC=.441 MJC=.20 
+XCJC=.45 TR=.25N O S =120.OF VJS=.33 MJS=.12 XTB=1.5 EG=1.11 
+XTI=3.0 FC=.70

** SPICE model parameters for HP1X transistor of emitter size I  x 50pm ** 
.MODEL C1050 NPN
+IS=2.0E-15 BF=200 NF=1.12 VAF=5.5 IKF=12.0E-3 ISE=59.6F NE=3.73 
+BR=1 NR=1 VAR=2 IKR=12.9U ISC=69.9F NC=2.48 RB=65 
+IRB=38U RBM=22 RE=4.5 RC=4 CJE=105F VJE=.384 MJE=.352 
+TF=5.0P XTF=12 VTF=7 ITF=40M aC=114F VJC=.554 MJC=.299 
+XaC=.45 TR=.25N aS=260F VJS=.42 MJS=.18 XTB=1.5 EG=1.11 
+XTI=3.0 FC=.81
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Appendix B-l HILO subfiles of CSA multiplier
Parameters=printfile,displayfile,initfile,scratch,coresize=1000 Kbytes 
Computervision Corp.
CDS3000 version - Fault Free Simulator.

HILO MARK 3.11.5 - 23-JUN-1989 13:33

(C) GenRad, Inc. 1987 
*dis ppgen

1 :
2 : CCT PPGEN (PP,XP,YP);
3 : AND (0,0,0,0,0) G1 (PP,W4,W3);
4 : BUF (144,144,0,0,0) G2 (W4,YP);
5 : BUF (103,103,0,0,0) G3 (W3,XP);
6 : WIRE W3;
7 : WIRE W4;
8 : WIRE PP;
9 : WIRE YP;

10 : WIRE XP;
11 : .

* * * *  j

*dis ppgen 1

afê esfeile ^

1 : CCT PPGEN 1 (PP,XP,YP);
2 : AND (0,0,0,0,0) G1 (PPLS,W4,W3);
3 : BUF (144,144,0,0,0) G2 (W4.YP);
4 : BUF (103,103,0,0,0) G3 (W3,XP);
5 : BUF (34,34,0,0,0) G4 (PP,PPLS);
6 : WIRE W3;
7 : WIRE W4;
8 : WIRE PPLS;
9 : WIRE PP;

10 : WIRE YP;
11 : WIRE XP;
12 : .

* * * *  j

*dis ppgen2

1 : CCT PPGEN2 (PP,XP,YP);
2 : AND (0,0,0,0,0) G1 (PPLS,W4,W3);
3 : BUF (144,144,0,0,0) G2 (W4,YP);
4 : BUF (103,103,0,0,0) G3 (W3.XP);
5 : BUF (62,62,0,0,0) G4 (PP,PPLS);
6 : WIRE W3;
7 : WIRE W4;
8 : WIRE PPLS;
9 : WIRE PP;

10 : WIRE YP;
11 : WIRE XP;
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**** j
*dis exor2

sfe s|e sfe ^

1 : CCT EXOR2 (A,B,0);
2 : BUF (122,122,0,0,0) BFA (W1,A)
3 : BUF (181,181,0,0,0) BFB (W2,B)
4 : AND (0,0,0,0,0) G1 (W5,W2,W3)
5 : AND (0,0,0,0,0) G2 (W6,W4,W1)
6 : OR (0,0,0,0,0) G3 (Q,W5,W6);
7 : NOT (0,0,0,0,0) G4 (W3,W1);
8 : NOT (0,0,0,0,0) G5 (W4,W2);
9 : WIRE W3;

10 : WIRE W4;
11 : WIRE W5;
12 : WIRE W6;
13 : WIRE Wl;
14 : WIRE W2;
15 : WIRE Q;
16 : WIRE B;
17 : WIRE A;
18 : .

**** j
*dis hadder

**** j
1 : CCT HADDER (B,A,CARRY,SUM);
2 : EXOR2 GT1 (A,B,SM);
3 : AND (0,0,0,0,0) GT2 (CARRY,W4/W3);
4 : BUF (26,26,0,0,0) GT5 (SUM,SM);
5 : BUF (103,103,0,0,0) GT3 (W3,A);
6 : BUF (144,144,0,0,0) GT4 (W4,B);
7 : WIRE W3;
8 : WIRE W4;
9 : WIRE CARRY;

10 : WIRE SUM;
11 : WIRE B;
12 : WIRE A;
13 : WIRE SM;
14 : .

*dis fadder

1 : CCT FADDER (SUM,CARRY,DPA,IPB,IPC);
2 : BUF (122,122,0,0,0) BFA (W4,IPA);
3 : BUF (200,200,0,0,0) BFB (W5,IPB);
4 : BUF (266,266,0,0,0) BFC (W10,IPC);
5 : BUF (41,41,0,0,0) BFS (SUM,SM);
6 : NOT (0,0,0,0,0) G1 (W6,W4);
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7 : OR (0,0,0,0,0) G10 (SM,W14,W15);
8 : AND (0,0,0,0,0) G il (W20,W18,W17);
9 : AND (0,0,0,0,0) G12 (W21,W19,W18);

10 : AND (0,0,0,0,0) G13 (W22,W19,W17);
11 : OR (0,0,0,0,0) G14 (CARRY,W20,W21,W22);
12 : BUF (117,117,0,0,0) G15 (W17,IPA);
13 : BUF (179,179,0,0,0) G16 (W18,IPB);
14 : BUF (242,242,0,0,0) G17 (W19,IPC);
15 : NOT (0,0,0,0,0) G2 (W7,W5);
16 : AND (0,0,0,0,0) G3 (W8,W5,W6);
17 : AND (0,0,0,0,0) G4 (W9,W7,W4);
18 : OR (0,0,0,0,0) G5 (W11,W8,W9);
19 : NOT (0,0,0,0,0) G6 (W13,W10);
20 : NOT (0,0,0,0,0) G7 (W12,W11);
21 : AND (0,0,0,0,0) G8 (W14,W10,W12);
22 : AND (0,0,0,0,0) G9 (W15,W13,W11);
23 : WIRE W6;
24 : WIRE W7;
25 : WIRE W5;
26 : WIRE W4;
27 : WIRE W8;
28 : WIRE W9;
29 : WIRE W12;
30 : WIRE W13;
31 : WIRE W14;
32 : WIRE W15;
33 : WIRE W10;
34 : WIRE Wll ;
35 : WIRE W18;
36 : WIRE W17;
37 : WIRE W19;
38 : WIRE W20;
39 : WIRE W21;
40 : WIRE W22;
41 : WIRE CARRY;
42 : WIRE SUM;
43 : WIRE IPC;
44 : WIRE IPB;
45 : WIRE IPA;
46 : WIRE SM;
47 : .

**** j
*dis faddrl

1 ; CCT FADDR1 (SUM,CARRY,IPA,IPB,IPC);
2 : BUF (122,122,0,0,0) BFA (W4,IPA);
3 : BUF (200,200,0,0,0) BFB (W5,IPB);
4 : BUF (266,266,0,0,0) BFC (W10,IPC);
5 : NOT (0,0,0,0,0) G1 (W6,W4);
6 : OR (0,0,0,0,0) G10 (SM,W14,W15);
7 : BUF (47,47,0,0,0) BFLS1 (CARRY,CY);
8 : BUF (60,60,0,0,0) BFLS2 (SUM,SM);
9 : AND (0,0,0,0,0) G il (W20,W18,W17);

10 : AND (0,0,0,0,0) G12 (W21,W19,W18);
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11 : AND (0,0,0,0,0) G13 (W22,W19,W17);
12 : OR (0,0,0,0,0) G14 (CY,W20,W21,W22);
13 : BUF (117,117,0,0,0) G15 (W17,IPA);
14 : BUF (179,179,0,0,0) G16 (W18JPB);
15 : BUF (242,242,0,0,0) G17 (W19,IPC);
16 : NOT (0,0,0,0,0) G2 (W7,W5);
17 : AND (0,0,0,0,0) G3 (W8,W5,W6);
18 : AND (0,0,0,0,0) G4 (W9,W7,W4);
19 : OR (0,0,0,0,0) G5 (W11,W8,W9);
20 : NOT (0,0,0,0,0) G6 (W13,W10);
21 : NOT (0,0,0,0,0) G7 (W12,W11);
22 : AND (0,0,0,0,0) G8 (W14,W10,W12);
23 : AND (0,0,0,0,0) G9 (W15.W13.W11);
24 : WIRE W6;
25 : WIRE W7;
26 : WIRE W5;
27 : WIRE W4;
28 : WIRE W8;
29 : WIRE W9;
30 : WIRE W12;
31 : WIRE W13;
32 : WIRE W14;
33 : WIRE W15;
34 : WIRE W10;
35 : WIRE Wll ;
36 : WIRE W18;
37 : WIRE W17;
38 : WIRE W19;
39 : WIRE W20;
40 : WIRE W21;
41 : WIRE W22;
42 : WIRE CARRY;
43 : WIRE SUM;
44 : WIRE IPC;
45 : WIRE IPB;
46 : WIRE IPA;
47 : WIRE SM,CY;
48 : .

**** j
*dis mult8x8

1 : cct multcsa (fp[0:15],a[0:7],b[0:7],gnd);
2 : ppgen 1 ppg0[0:7] ({fp[0] ,pp0[ 1:7]} ,a[0:7] ,b[0]);
3 : ppgen ppgl[0:7] (ppl[0:7],a[0:7],b[l]);
4 : ppgen2 ppg2[0:7] (pp2[0:7],a[0:7],b[2])
5 : ppg3[0:7] (pp3[0:7],a[0:7],b[3])
6 : ppg4[0:7] (pp4[0:7],a[0:7],b[4])
7 : ppg5[0:7] (pp5[0:7],a[0:7],b[5])
8 : ppg6[0:7] (pp6[0:7],a[0:7],b[6])
9 : PPg7[0:7] (pp7[0:7],a[0:7],b[7]);

10 : hadder hadd0[l:7] (pp0[l;7],ppl[0:6],wc0[l:7],{fp[l],ws0[l:6]));
11 : fadder faddl[l:7] 

({fp[2],wsl[l:6]},wcl[l:7],wc0[l:7],{ws0[l:6],ppl[7]},
pp2[0:6])
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12 : fadd2[l:7]

({fp[3], ws2[ 1:6]} ,wc2[ 1:7] ,wc 1 [ 1:7], {wsl [ 1:6] ,pp2[7]}, 
pp3[0:6])

13 : fadd3[l:7]
({fp[4], ws3 [1:6]}, wc3 [1:7], wc2[ 1:7], {ws2[ 1:6] ,pp3 [7]}, 
pp4[0:6])

14 : fadd4[l:7]
({fp[5], ws4[ 1:6]} ,wc4[ 1:7], wc3[ 1:7], {ws3[ 1:6] ,pp4[7]}, 
pp5[0:6])

15 : fadd5[l:7]
({fp[6] ,ws5[ 1:6]} fwc5[ 1:7], wc4[ 1:7], {ws4[ 1:6] ,pp5 [7]},
pp6[0:6])

16 : fadd7[l:7]
(fp[8:14], {wcy [ 1:6] ,fp[ 15]}, {gnd,wcy [ 1:6]} ,wc6[ 1:7], {ws6[ 1:6], 
pp7[7]});

17 : faddrl fadd6[l:7]
({fp[7], ws6[ 1:6]} ,wc6[ 1:7], wc5[ 1:7], {ws5[ 1:6] ,PP6[7]}, 
pp7[0:6]);

18 : wire fp[0:15] ,a[0:7] ,b[0:7] ,ppO[ 1:7] ,pp 1 [0:7] ,pp2[0:7] ,pp3 [0:7];
19 : wire pp4[0:7],pp5[0:7],pp6[0:7],pp7[0:7];
20 : wire

ws0[l:6],wsl[l:6],ws2[l:6],ws3[l:6],ws4[l:6],ws5[l:6],ws6[l:6];
21 : wire

wc0[ 1:7], wc 1 [ 1:7], wc2[ 1:7], wc3 [1:7], wc4[ 1:7], wc5 [ 1:7], wc6[ 1:7];
22 : wire wcy[l:6],gnd
23 : .

**** j
♦quit

HILO END OF RUN 23-JUN-1989 13:34
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Appendix B-2 HILO subfiles of (2,2,3) counter multiplier
Parameters=printfile,displayfile,initfile, scratch,coresize=1000 Kbytes 
Computervision Corp.
CDS3000 version - Fault Free Simulator.

HILO MARK 3.11.5 - 24-JUN-1989 12:23

(C) GenRad, Inc. 1987 
*dis ppgen

**** j
1 : CCT PPGEN (PP,XP,YP);
2 : AND (0,0,0,0,0) G1 (PP,W4,W3);
3 : BUF (144,144,0,0,0) G2 (W4,YP);
4 : BUF (103,103,0,0,0) G3 (W3,XP);
5 : WIRE W3;
6 : WIRE W4;
7 : WIRE PP;
8 : WIRE YP;
9 : WIRE XP;

10 : .

**** j
*dis exor2

1 : CCT EXOR2 (A,B,Q);
2 : BUF (122,122,0,0,0) BFA (W1,A)
3 : BUF (181,181,0,0,0) BFB (W2,B)
4 : AND (0,0,0,0,0) G1 (W5,W2,W3)
5 : AND (0,0,0,0,0) G2 (W6,W4,W1)
6 : OR (0,0,0,0,0) G3 (Q,W5,W6);
7 : NOT (0,0,0,0,0) G4 (W3,W1);
8 : NOT (0,0,0,0,0) G5 (W4,W2);
9 : WIRE W3;

10 : WIRE W4;
11 : WIRE W5;
12 : WIRE W6;
13 : WIRE W l;
14 : WIRE W2;
15 : WIRE Q;
16 : WIRE B;
17 : WIRE A;
18 : .

**** j
*dis hadder

1 : CCT HADDER (A,B,CARRY,SUM);
2 : EXOR2 GT1 (A,B,SUM);
3 : AND (0,0,0,0,0) GT2 (CARRY,W4/W3);
4 : BUF (103,103,0,0,0) GT3 (W3,A);
5 : BUF (144,144,0,0,0) GT4 (W4,B);
6 : WIRE W3;
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7 : WIRE W4;
8 : WIRE CARRY;
9 : WIRE SUM;

10 : WIRE B;
11 : WIRE A;
12 : .

**** j
*dis fadder

1 : CCT FADDER (CARRY,IPA,IPB,IPC,SUM);
2 : BUF (122,122,0,0,0) BFA (W4,IPA);
3 : BUF (200,200,0,0,0) BFB (W5,EPB);
4 : BUF (266,266,0,0,0) BFC (W10,IPC);
5 : NOT (0,0,0,0,0) G1 (W6,W4);
6 : OR (0,0,0,0,0) G10 (SUM,W14,W15);
7 : AND (0,0,0,0,0) G il (W20,W18,W17);
8 : AND (0,0,0,0,0) G12 (W21,W19,W18);
9 : AND (0,0,0,0,0) G13 (W22,W19,W17);

10 : OR (0,0,0,0,0) G14 (CARRY,W20,W21,W22);
11 : BUF (117,117,0,0,0) G15 (W17,IPA);
12 : BUF (179,179,0,0,0) G16 (W18JPB);
13 : BUF (242,242,0,0,0) G17 (W19,IPC);
14 : NOT (0,0,0,0,0) G2 (W7,W5);
15 : AND (0,0,0,0,0) G3 (W8,W5,W6);
16 : AND (0,0,0,0,0) G4 (W9,W7,W4);
17 : OR (0,0,0,0,0) G5 (W11,W8,W9);
18 : NOT (0,0,0,0,0) G6 (W13/W10);
19 : NOT (0,0,0,0,0) G7 (W12/W11);
20 : AND (0,0,0,0,0) G8 (W14,W10,W12);
21 : AND (0,0,0,0,0) G9 (W15,W13,W11);
22 : WIRE W6;
23 : WIRE W7;
24 : WIRE W5;
25 : WIRE W4;
26 : WIRE W8;
27 : WIRE W9 ;
28 : WIRE W12;
29 : WIRE W13;
30 : WIRE W14;
31 : WIRE W15;
32 : WIRE W10;
33 : WIRE W ll;
34 : WIRE W18;
35 : WIRE W17;
36 : WIRE W19;
37 : WIRE W20;
38 : WIRE W21;
39 : WIRE W22;
40 : WIRE CARRY;
41 : WIRE SUM;
42 : WIRE IPC;
43 : WIRE IPB;
44 : WIRE EPA;
45 : .
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*dis modfadder

1 : CCT MODFADDER (A0,A1,B0,B1,CY1,SUM1);
2 : BUF (103,103,0,0,0) BUFA0 (W2,A0);
3 : BUF (144,144,0,0,0) BUFB0 (W3.B0);
4 : FADDER FA1 (CY1,W1,A1,B1,SUM1);
5 : AND (0,0,0,0,0) G1 (W1,W3,W2);
6 : WIRE W2;
7 : WIRE W3;
8 : WIRE W l;
9 : WIRE CY1;

10 : WIRE SUM1;
11 : WIRE Bl;
12 : WIRE B0;
13 : WIRE Al;
14 : WIRE A0;
15 : .

**** j
*dis counter223

1 : CCT COUNTER223 (A0A1,B0,B1,CY1,SUM0,SUM1);
2 : EXOR2 G1 (A0,B0,SUMO);
3 : MODFADDER MFA1 (A0,A1,B0,B1,CY1,SUM1);
4 : WIRE CY1;
5 : WIRE SUM1;
6 : WIRE SUMO;
7 : WIRE Bl;
8 : WIRE B0;
9 : WIRE Al;

10 : WIRE A0 ;
11 : .

**** j
*dis mcelliO

1 : CCT MCELLIO (OPC1,OPC2,OPSO,OPS1,PSO,AO,A1,AI,BO,B1,BI);
2 : COUNTER223 CNT1 (W1I,W1K2,W1J2,W1L2,W6,W7,W5);
3 : COUNTER223 CNT2 (W5,W6A,PSO,GND,W10,OPS1,OPC1);
4 : BUF (47,47,0,0,0) DRP1D1 (W6A,W6);
5 : BUF (26,26,0,0,0) DRP1D2 (OPSO,W7);
6 : BUF (47,47,0,0,0) DRP1D3 (OPC2,W10);
7 : BUF (34,34,0,0,0) DRP1D4 (W1J2,W1J1);
8 : BUF (34,34,0,0,0) DRP1D5 (W1K2/W1K1);
9 : BUF (62,62,0,0,0) DRP2D1 (W1L2,W1L1);

10 : PPGEN PPG1 (W1I,A0,BI);
11 : PPGEN PPG2 (W1J1,AI,B0);
12 : PPGEN PPG3 (W1K1,A1,BI);
13 : PPGEN PPG4 (W1L1,AI,B1);
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14 : WIRE W6A;
15 : WIRE W10;
16 : WIRE W7;
17 : WIRE W ll;
18 : WIRE W6;
19 : WIRE W5;
20 : WIRE W1J1;
21 : WIRE W1J2;
22 : WIRE W IKI;
23 : WIRE W1K2;
24 : WIRE W1L1;
25 : WIRE W1L2;
26 : WIRE Al;
27 : WIRE OPS1;
28 : WIRE OPSO;
29 : WIRE Bl;
30 : WIRE B0;
31 : WIRE A l;
32 : WIRE A0;
33 : WIRE PS0;
34 : WIRE OPC2;
35 : WIRE OPC1;
36 : WIRE Bl;
37 : SUPPLY0 GND;
38 : •

**** j
*dis mcellnlj

1 : CCT MCELLN1J (OPC1,OPC2,OPSO,OPS1,PC1,A2J,A2J1,AN1,B2J,B2J1,BN1);
2 : COUNTER223 CNT1 (W1I,W1K2,W1J2,W1L2,W9,W5,W8);
3 : COUNTER223 CNT2 (W12,W11,W10,GND,OPC2,W15,OPC1);
4 : BUF (26,26,0,0,0) DRP1D1 (W6,W5);
5 : BUF (41,41,0,0,0) DRP1D2 (W10,W8);
6 : BUF (47,47,0,0,0) DRP1D3 (W11,W9);
7 : BUF (26,26,0,0,0) DRP1D4 (OPSO,W14);
8 : BUF (26,26,0,0,0) DRP1D5 (OPSl,W15);
9 : BUF (34,34,0,0,0) DRP1D6 (W1J2,W1J1);

10 : BUF (34,34,0,0,0) DRP1D7 (W1K2,W1K1);
11 : BUF (62,62,0,0,0) DRP2D1 (W1L2/W1L1);
12 : HADDER HA1 (PC1,W6,W12,W14);
13 : PPGEN PPG1 (W1I,A2J,BN1);
14 : PPGEN PPG2 (W1J1,AN1,B2J);
15 : PPGEN PPG3 (W1K1,A2J1,BN1);
16 : PPGEN PPG4 (W1L1,AN1,B2J1);
17 : WIRE W5;
18 : WIRE W6;
19 : WIRE W8;
20 : WIRE W9;
21 : WIRE W10;
22 : WIRE W ll;
23 : WIRE W12;
24 : WIRE W14;
25 : WIRE W15;
26 : WIRE W ll;
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27 : WIRE W1J1;
28 : WIRE W1J2;
29 : WIRE W IKI;
30 : WIRE W1K2;
31 : WIRE W1L1;
32 : WIRE W1L2;
33 : WIRE A2J1;
34 : SUPPLYO GND;
35 : WIRE OPS1;
36 : WIRE OPSO;
37 : WIRE PCI;
38 : WIRE B2J;
39 : WIRE A2J;
40 : WIRE OPC2;
41 : WIRE OPC1;
42 : WIRE BN1;
43 : WIRE B2J1;
44 : WIRE AN1;
45

* * * * }

*dis mcellij

sfesfcsfeafe

1 : CCT MCELLU 
(OPC1,OPC2,OPSO,OPS1,PC1,PC2,PSO,PS1,A2J,A2J1,AI,B2J,B2J1

2 : ,BI);
3 : COUNTER223 CNT1 (W1,W3D,W2D,W4D,W7,W5,W6);
4 : COUNTER223 CNT2 (W13,W15,W12,W10,W19,W17,OPC1);
5 : BUF (47,47,0,0,0) DRP1D1 (W13,W11);
6 : BUF (47,47,0,0,0) DRP1D2 (W15/W14);
7 : BUF (26,26,0,0,0) DRP1D3 (OPSl,W17);
8 : BUF (47,47,0,0,0) DRP1D4 (OPC2,W19);
9 : BUF (34,34,0,0,0) DRP1D5 (W2D/W2C);

10 : BUF (34,34,0,0,0) DRP1D6 (W3D,W3C);
11 : BUF (53,53,0,0,0) DRP2D1 (W8,W5);
12 : BUF (60,60,0,0,0) DRP2D2 (W9,W6);
13 : BUF (79,79,0,0,0) DRP2D3 (W10,W7);
14 : BUF (62,62,0,0,0) DRP2D4 (W4D,W4C);
15 : FADDER FA1 (W11,PC1,PS1,W8,OPSO);
16 : FADDER FA2 (W14,PS0,PC2,W9,W12);
17 : PPGEN PPG1 (W1,A2J,BI);
18 : PPGEN PPG2 (W2C,AI,B2J);
19 : PPGEN PPG3 (W3C,A2J1,BI);
20 : PPGEN PPG4 (W4C,AI,B2J1);
21 : WIRE W5;
22 : WIRE W6;
23 : WIRE W7;
24 : WIRE W8;
25 : WIRE W9;
26 : WIRE W10;
27 : WIRE Wll;
28 : WIRE W12;
29 : WIRE W13;
30 : WIRE W14;
31 : WIRE W15;
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32 : WIRE W17;
33 : WIRE W19;
34 : WIRE W l;
35 : WIRE W2C;
36 : WIRE W2D;
37 : WIRE W3C;
38 : WIRE W3D;
39 : WIRE W4C;
40 : WIRE W4D;
41 : WIRE Al;
42 : WIRE A2J1;
43 : WIRE PC2;
44 : WIRE OPS1;
45 : WIRE PCI;
46 : WIRE OPSO;
47 : WIRE B2J;
48 : WIRE A2J;
49 : WIRE PS1;
50 : WIRE PSO;
51 : WIRE OPC2;
52 : WIRE OPC1;
53 : WIRE B2J1;
54 : WIRE Bl;
55 : .

**** j
*dis mcellii

1 : CCT MCELLII (OPC1,OPSO,OPS1,PC1,PC2,PSO,PS1,AI,BI);
2 : BUF (47,47,0,0,0) DRP1D1 (OPCl,W9);
3 : BUF (41,41,0,0,0) DRP1D2 (OPSO,W7);
4 : BUF (62,62,0,0,0) DRP2D1 (W1D/W1C);
5 : FADDER FA1 (W4,PC1,PS1,W1D,W7);
6 : FADDER FA2 (W9,W4,PSO,PC2,OPS1);
7 : PPGEN PPG1 (W1C,AI,BI);
8 : WIRE W4;
9 : WIRE W7;

10 : WIRE W9;
11 : WIRE W1C;
12 : WIRE W1D;
13 : WIRE Al;
14 : WIRE PC2;
15 : WIRE OPS1;
16 : WIRE PCI;
17 : WIRE OPSO;
18 : WIRE PS1;
19 : WIRE PSO;
20 : WIRE OPC1;
21 : WIRE Bl;
22 : .

**** j
*dis mult8x8
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1 : CCT MULT223
(FPO,FP 1 ,FP2,FP3 ,FP4,FP5 ,FP6,FP7 ,FP8 ,FP9,FP 10,FP 11 ,FP 12,FP 13

2 : 
,FP14,FP15,FP16,GND,N1J1,N1J2,N1J3,N1J4,A0,A1,A2,A3,A4,A5,A6,A7,B0,B1,B2

3 : ,B3,B4,B5,B6,B7);
4 : PPGEN Cl (FP0,A0,B0);
5 : COUNTER223 C2 (W22A,W22B2,W12A2,W32A2,W122C1,FP6,FP7);
6 : MCELLIO C3 (W10C,W10D,FP1,FP2,W20A,A0,A1,A1,B0,GND,B1);
7 : COUNTER223 C4 (W10C,W21A,W20B,W10D,W11C1,FP3,FP4);
8 : HADDER C5 (W21B,W11C2,W12A1,FP5);
9 : COUNTER223 C6 (W32,W42B1,W122C2,W32C2,W233C1,FP8,FP9);

10 : MCELLIO C7 (W20C,W20D,W20A,W20B,W30A,A0,A1,A2,B0,B1,B2);
11 : MCELLII C8 (W21C,W21A,W21B,W20C,W20D,W31A,W30B,A2,B2);
12 : HADDER C9 (W31B,W21C,W22B1,W22A);
13 : COUNTER223 CIO (W43A,W43B2,W233C2,W53A1,W343C,FP10,FP11);
14 : MCELLIO C ll (W30C,W30D,W30A,W30B,W40A,A0,A1,A3,B0,B1,B3);
15 : MCELLU C12

(W31C,W31D,W31A,W31B,W30C,W30D,W41A,W40B,A2,A3,A3,B2,GND,B3
16 : );
17 : COUNTER223 C13 (W31C,W42A,W41B,W31D,W32C1,W32A1,W32);
18 : COUNTER223 C14 (W343C,W63B2,W53B2,W53C2,W454C,FP12,FP13);
19 : MCELLIO C15 (W40C,W40,W40A,W40B,W50A,AO,A1,A4,BO,B1,B4);
20 : MCELLU C16 

(W41C,W41D,W41A,W41B,W40C,W40,W51A,W50B,A2,A3,A4,B2,B3,B4);
21 : MCELLU C17 (W42C,W42A,W42B,W41C,W41D,W52A,W51B,A4,B4);
22 : HADDER C18 (W52B,W42C,W43B1,W43A);
23 : COUNTER223 C19 (W454C,W64B2,W64A2,W73C1,FP16,FP14,FP15);
24 : MCELLIO C20 (W50C,W50D,W50A,W50B,W60A,A0,A1,A5,B0,B1,B5);
25 : MCELLU C21

(W51C,W51D,W51 A,W51B,W50C,W50D,W61 A,W60B,A2,A3,A5,B2,B3,B5
26 : );
27 : MCELLU C22

(W52C,W52D,W52A,W52B,W51C,W51D,W62A,W61B,A4,A5,A5,B4,GND,B5
28 : );
29 : COUNTER223 C23 (W52C,W63A,W62B,W52D,W53C1,W53A,W53B1);
30 : MCELLIO C24 (W60C,W60D,W60A,W60B,W70A,A0,A1,A6,B0,B1,B6);
31 : MCELLU C25

(W61C,W61D,W61A,W61B,W60C,W60D,W71A,W70B,A2,A3,A6,B2,B3,B6
32 : );
33 : MCELLU C26 

(W62C,W62D,W62A,W62B,W61C,W61D,W72A,W71B,A4,A5,A6,B4,B5,B6
34 : );
35 : MCELLU C27 (W63C,W63A,W63B1,W62C,W62D,W73A,W72B,A6,B6);
36 : HADDER C28 (W73B,W63C,W64B1,W64A1);
37 : MCELLIO C29 (W70C,N1J1,W70A,W70B,GND,A0,A1,A7,B0,B1,B7);
38 : MCELLN1J C30 (W71C,N1J2,W71A,W71B,W70C,A2,A3,A7,B2,B3,B7);
39 : MCELLN1J C31 (W72C,N1J3,W72A,W72B,W71C,A4,A5,A7,B4,B5,B7);
40 : MCELLN1J C32 (W73C,N1J4,W73A,W73B,W72C,A6,A7,A7,B6,GND,B7);
41 : BUF (47,47,0,0,0) DRP1D1 (W11C2,W11C1);
42 : BUF (26,26,0,0,0) DRP1D10 (W64A2,W64A1);
43 : BUF (34,34,0,0,0) DRP1D2 (W12A2,W12A1);
44 : BUF (26,26,0,0,0) DRP1D2B (W32A2/W32A1);
45 : BUF (47,47,0,0,0) DRP1D3 (W122C2.W122C1);
46 : BUF (47,47,0,0,0) DRP1D4 (W233C2,W233C1);
47 : BUF (41,41,0,0,0) DRP1D5 (W42B1,W42B);
48 : BUF (34,34,0,0,0) DRP1D6 (W43B2/W43B1);



Appendix B-2 HILO subfiles of (2,2,3) counter multiplier
49 : BUF (41,41,0,0,0) DRP1D7 (W63B2,W63B1);
50 : BUF (41,41,0,0,0) DRP1D8 (W53B2,W53B1);
51 : BUF (34,34,0,0,0) DRP1D9 (W64B2,W64B1);
52 : BUF (79,79,0,0,0) DRP2D1 (W32C2,W32C1);
53 : BUF (53,53,0,0,0) DRP2D2 (W53A1,W53A);
54 : BUF (62,62,0,0,0) DRP2D2A (W22B2,W22B1);
55 : BUF (79,79,0,0,0) DRP2D3 (W53C2,W53C1);
56 : BUF (60,60,0,0,0) DRP2D5 (W73C1/W73C);
57 : WIRE W70A;
58 : WIRE W70B;
59 : WIRE W70C;
60 : WIRE W60A;
61 : WIRE W60B;
62 : WIRE W60C;
63 : WIRE W60D;
64 : WIRE W50D;
65 : WIRE W50A;
66 : WIRE W50B;
67 : WIRE W50C;
68 : WIRE W40A;
69 : WIRE W40B;
70 : WIRE W40C;
71 : WIRE W40;
72 : WIRE W30A;
73 : WIRE W30B;
74 : WIRE W30C;
75 : WIRE W30D;
76 : WIRE W20A;
77 : WIRE W20D;
78 : WIRE W20C;
79 : WIRE W20B;
80 : WIRE W10C;
81 : WIRE W21A;
82 : WIRE W10D;
83 : WIRE W11C1;
84 : WIRE W11C2;
85 : WIRE W21B;
86 : WIRE W21C;
87 : WIRE W31A;
88 : WIRE W31B;
89 : WIRE W41A;
90 : WIRE W31C;
91 : WIRE W31D;
92 : WIRE W42A;
93 : WIRE W41C;
94 : WIRE W41B;
95 : WIRE W51A;
96 : WIRE W51B;
97 : WIRE W41D;
98 : WIRE W51C;
99 : WIRE W52A;

100 : WIRE W61A;
101 : WIRE W61B;
102 : WIRE W51D;
103 : WIRE W62A;
104 : WIRE W61C;
105 : WIRE W61D;

Page 218
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106 : WIRE W71A;
107 : WIRE W71B;
108 : WIRE W71C;
109 : WIRE W72A;
110 : WIRE W72B;
111 : WIRE W72C;
112 : WIRE W62D;
113 : WIRE W62C;
114 : WIRE W73A;
115 : WIRE W12A1;
116 : WIRE W22A;
117 : WIRE W52B;
118 : WIRE W42C;
119 : WIRE W52C;
120 : WIRE W52D;
121 : WIRE W62B;
122 : WIRE W63A;
123 : WIRE W12A2;
124 : WIRE W22B1;
125 : WIRE W22B2;
126 : WIRE W32A1;
127 : WIRE W32A2;
128 : WIRE W42B;
129 : WIRE W42B1;
130 : WIRE W32C1;
131 : WIRE W32C2;
132 : WIRE W43B1;
133 : WIRE W43B2;
134 : WIRE W53A;
135 : WIRE W53A1;
136 : WIRE W343C;
137 : WIRE W63B1;
138 : WIRE W63B2;
139 : WIRE W53C1;
140 : WIRE W53C2;
141 : WIRE W53B1;
142 : WIRE W53B2;
143 : WIRE W63C;
144 : WIRE W73B;
145 : WIRE W454C;
146 : WIRE W64B1;
147 : WIRE W64B2;
148 : WIRE W64A1;
149 : WIRE W64A2;
150 : WIRE W73C;
151 : WIRE W73C1;
152 : WIRE W32;
153 : WIRE W122C1;
154 : WIRE W122C2;
155 : WIRE W233C1;
156 : WIRE W233C2;
157 : WIRE W43A;
158 : WIRE N1J3;
159 : WIRE N1J2;
160 : SUPPLYO GND;
161 : WIRE N1J1;
162 : WIRE FP9;
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163 : WIRE FP8;
164 : WIRE FP7;
165 : WIRE FP6;
166 : WIRE FP5;
167 : WIRE B7;
168 : WIRE FP4;
169 : WIRE B6;
170 : WIRE FP3;
171 : WIRE A7;
172 : WIRE B5;
173 : WIRE FP2;
174 : WIRE A6;
175 : WIRE B4;
176 : WIRE FP1;
177 : WIRE A5;
178 : WIRE B3;
179 : WIRE FPO;
180 : WIRE A4;
181 : WIRE B2;
182 : WIRE A3;
183 : WIRE Bl;
184 : WIRE A2;
185 : WIRE BO;
186 : WIRE Al;
187 : WIRE AO;
188 : WIRE FP16
189 : WIRE FP15
190 : WIRE FP14
191 : WIRE FP13
192 : WIRE FP12
193 : WIRE FP11
194 : WIRE FP10
195 : WIRE N1J4
196 # #

*quit

HILO END OF RUN 24-JUN-1989 12:25
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