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ABSTRACT

On Node and Axial Grid Maps: Distance Measures and Related Topics
by
M.J.Teixeira Kruger
Bartlett School of Architecture and Planning
University College Londen

This work defines, in precise terms, what are node and axial maps used in
space syntax in order 10 reptesent morphological properties of urban form
and, also, explores graph theoretic relations between them.

Relativised distance measures are deduced for node and axial grid maps
such as to minimise size effects when maps with different number of

nodes or axial lines are being compared and allowed to expand in one or
two directions. The paper shows that axial maps, expanding in two
directions, should be standardised by the root of a diamond shape and those
characterised as node maps, expanding in two directions, should be
standardised by the corner of a grid with, respectively, the same number of
axial lines or nodes. ,

If we adopt this procedure for maps representing similar urban
morphological configurations then:

1. they present similar distances amongst their nodes or lines, regardless

of their size.

2. when they are embedded in larger maps they should be placed in such
way that expansion could take place in two directions which means that

the geometrical centr%of larger maps are the preferred !ocatiorl/\for the A g
smaller ones .



ON NODE AND AXIAL GRID MAPS: DISTANCE MEASURES AND RELATED TOPICS
v 1. INTRODUCTION

Since the early seventies.there has been an extensive use of graph theory
to describe morphological properties of architectural and urban form.

March and Steadman(1971) and Tabor(1976 a and b) analyse floor plan
designs, the former in terms of an electrical network analogy in order to
generate systematically floor plans described as mosaics of rectangles
and the later analysing communication and route patterns in terms of
circulation cost based on an Euclidean metric or time dimension.

At the urban scale Kriiger(1977) analyses the relationship between built
form connectivity and urban spatial structure using a graph theoretic
approach to describe how built forms are connected on the surface of earth
in order to generate, in a town, built forms by type of connectivity.

At the same time several studies were made in order to describe distance

measures on polyomino populations (Matela and O'Hare, 1976), as well as in
%\H graphs (Entriger et alli, 1976) and , particularly, on }zhei mean distance,(@ hs

graphs (Doyle and Graver, 1977, 1978 and 1882) . Later Baglivo and

Graver(1983) gave a comprehensive description of these results and

Steadman (1983) describes the state of art about the application of graph

theory in architectural marphology.

Hillier and Hanson(1983) extend these findings to a new form of
description - the axial map - which has been proved to be fruitful in
providing condensed descriptions of urban spatial morphology and, also, of
the spatial organisation of certain forms of complex buildings for health
facilities and research laboratories( Hillier et alﬁf, 1984 and Hillier and

"n
Penn, 1989).

However, when compared with other graph representations of architectural
and urban forms, there is no well defined procedure to describe an axial
map/neitheF its distance measures. been systematically analysed
against the ones derived from the usual graph-theoretic descriptions,

studied by theﬁwmefjauthor?\[ b menbioned above

The aim of this paper is twofold. The first is to give a mathematical
description of the axial map and to analyse the performance of distance
measures, when these maps represent grids, against the traditional grid
graph representation. The second is to explore how these measures behave
if specific procedures are adopted to standardise them in order to

[ The minimise the effect ofmap's size.
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o GENERAL PROPERTIES OF AXIAL AND NODE MAPS

Axial and node maps usually represent different properties of urban form.
Axial maps are made by the fewest longest straight lines which cover;’ali
urban public spaces, i.e. which pass through all urban public spaces
conﬂgur?;’ed as unified places. These axial lines have two properties:
visibility, which is how far one can see, and permeability, which is how
far one can walk in straight line.-

Node maps are made, generally, by a set of points and lines connecting
them. The points can represent, for instance, at an urban scale, road
junctions and the lines network arcs joining them and, at an architectural
scale, rooms and connections or openings between them.

However, a more precise definition ghould be thought)if we want to achieve
an accurate description of these maps in order to explore their properties.
An axial map (AM) consists of a finite nonrempty set L = L(A) of Klines
together with a prescribed set H X of m unordered pairs of lines of L.

Each pair x ={u,v} of lines in X is called a connection (or point) and x is said

to join u and v. We write x=uv and say that u and v are adjacent axial lines;
point x and line u are incident with each other as are x and v.

An axial map with k lines and m connections is called a (m k) mep.

the (0,1) map™a trw;al@represented just by an axial line.
CIse

L2 L1

L3

LS

Fig.1 - An example of a (8,6) axial map.
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For the (8,6) axial map represented in Fig. 1 the set of lines is defined as

being given by L={1 2.3,4,5,6} and the setg of connections as being given by
+ X={1.2}, X,={2,3}, X,={3,4}, X,=(3,6}, X5={3,3}, Xg={4.8}, X,={4,5} and

Xg={1,6}.

A graph G of a (mK) axial map consists of a finite non-empty set V=V(Q)
of Kk vertices together with a prescribed set X of m unordered pairs of

distinct vertices of V. Each vertex in G represents a line of the (m,k) axial ‘
map and each pair y=(r,s} of vertices in G represents a connection of the
axial map. Each pair y={r,s} of vertices in G is an arc of G and y is said to

joinuand v. Agraph G with k vertices and m arcs is called a (k,m) graph.

v2

Fig.2 - A (6,8) Graph of the (8,6) Axial Map of Fig.1.

The (6,8) graph represented in Fig.2 is described by the set of vertices
V={1,2,3,4,5,6} and by the sets of arcs Y,={1,2}, Y,=(2,3}, Y,={3,4}, Y 4={3,6},

Y=(3,5), Yg=(4,6), Y7=(4,5) and Yg=(1.6}.

It should be noticed that the mapping of AM to G is a many-to-one relation .

Each axial map has a unique graph representation but Lhe Converse

is heli Grue .

In the axial map each line L can be sub-divided in a set of segments defined ;
by S={X; X}, where X; and X; represent connections belonging to/axial line L. [ the
If each segment S is represented by a line or link and each connection or
pair X={u,v} by a point or node, then we obtain a node map(NM). By
definition, the segments of axial lines which have end-points not incident
Hill other axial lines are not represented in the node map.

A node map with m nodes and n links is called a (m,n) node map. It should
be noticed that the mapping of AM to NM is a one-to-one relation but@
vice—vers@, Each axial map has one node map representation and each node
map has many axial map representations.

the com _verS?
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A (8,10) node map representation of the (6,8) axial map given in Fig.1is
defined by the set of nodes P=(1 23,4,5,6,7,8} and by the seté of links sbeb
Qy={1,2}; Q,={2,3}, Q3={3,4}, Q,={4,5}, Qs={5,6}, Qq=(6,7}, Q;={4,7}, Qg=(3.7},

Qg={7.8} and Q;¢={1,8}.

Fig.3 A (8,10) Node Map representation of
" the (6,8) Axial Map of Fig.1.

Theorem: The number n of links in a node map is given by n = 2m-k, where
m represents the number of connections and k the number of lines of the
corresponding axial mag.

By definition a node map has a numboer of nodes P identical to the number m
of arcs in G or connections in the axial map. The Y; arcs incident with a

vertex v; in G contribute (Yi-1) to n, so as there are k vertices in G then

K

(Y1) = 2 Yk, ),

1 i=1

M;-r

n=

e

But a well known result in the theory of graphs states that the sum of
arcs incident with v, vertices in G is twice the number of m lines in G

(Harary, 1971, pé@.M). Therefore, after simple algebraic
substitution,expression (1) becomes

n=2m-k
q.e.d.




For an axial map the maximum number of connections for a given set of k
lines is given by

. K(K-1)2 (2)

which is identical to the maximum number of lines that a graph G with K

points can have (Harary ,1971, pz{ié.m). In graph theory terminology G is
called a complete graph since every pair of its k points are adjacent. In A A A
similar way we can say that a (Mqaxk) axial map is a complete axial map.

Two different forms of complete axial maps can occur in@e_gggd_s the f‘ﬂwd bo
segmentation of their lines . Their segmentation can be maximal if their

axial lines slice the plane in a maximum number of slices (NS)central 3‘74//"”
polygons, identical to NSmax={K(K+1)/2+1} (Steiner, 1826 and Graham et

ai”, 1989), or minimal, if, when extended, they slice the plane in just
NS, = 2k slices. In Fig.4a the complete axial map with 8 lines slices the

plane in 22 slices and in Fig.4D in 12.

A graph is % said to be connected if every pair of paints can be joined by a
path, i.e. by an alternating sequence of points and lines, in which all points
and lines are distinct and where each line is incident with the two points
immediately preceding and following it. A path is said to be closed if the

first point in it is identical to the last one. For a minimally connected

axial map the corresponding graph G is called a tree, i.e. a connected graph
with minimum number of lines, without closed paths or cycles . In atree

with k vertices there must be k-1 Iinesgthus a lower bound (m_;,) for the 5

number of connections in the axial map is given by k-1.

Given an axial map with k lines the upper bound for the number of nodes in
a node map is identical to the maximum numbper of connections in the axial

map, i.e. Mgy

By definition the end points of an axial map not incident with other lines
are not represented in the corresponding node map . If the maximal axial
map is minimally segmented, then its node map is a trivial one i.e. is @
(0,1) node map. It follows, immediately, that a lower bound for the number
of nodes in a node map is 1 and for the number of links is 0.
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Fig.4 a) A complete axial map with 6 lines and maximurh
segmentation, its graph representation and the corresponding node map.

b) A complete axial map with 6 lines and minimum
segmentation, its graph representation and the corresponding minimal node
map.

c) A minimal axial map with 6 lines, its graph
representation and the corresponding node map.
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Given a set of k axial lines an upper bound for the number of links in a
node map is given by

Nmax = (K2-2K) (3).
Since the number of links in @ node map is identical to expression (1) and
the maximum number of connections in the axial map is given by
expression (2) then, after substitition, we fetitd obtain expression (3).
For the example given in Fig.4 aj i.e. for a complete axial map with 6 lines
and maximum segmentation we j.uerm‘q obtain 24 links for the corresponding
node map.

Axial Map Graph Node Map
Representation

Number [k(k-1)/2} {k(k-2)}
of Lines K m 2m-k
(k-1 (0]
Number {k(k-1)/2} i . {k(k-1)72)
of Points m ko m
[k-1] (1]

Table 1. Summary of the relations between points and lines of the axial,
graph and node map representation. Inside the brackets are the expressions
for the upper {} and lower [] bounds for these variables.

Table 1 summarises the findings obtained on the relations between points
and lines of the axial, graph and node map representation.

Finally it should be noticed g};% the application AM(m,k)—sfor,\iM(zm-k,m) is

non isomorphic, i.e. not only@ rlr%xial map correspondg/just one node map

but to the same node map aLse/\correspondﬁ many axial maps. Alsg the

lower bound [k-1] for the number of connections of the axial map@not Aoes
correspond to the lower bound [1] for points in node maps.

In short, an axial map AM(m,k) corresponds to ane graph G(k,m) and to one

node map NM(m,2m-k) but(notvice—versa} bl Couverse 12 wol Grae .
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_ Hillier conjedbures that
Hvaever@r ing to a conjecture of Prof. Bill Hillier,Jan axial map is
topologicayy specified, simultaneously, by its graph representation and by
the corresponding node graph. This conjectureWthe
possibility of extending space syntax methods from the realm of graph

theory, i.e. topology, to geometry.

3. DEFINITION OF DISTANCE MEASURES ON NODE AND AXIAL GRID MAPS

Several distance measures have been proposed in the literature to analyse
the performance of the graph representation of the axial map as well as of
the node map.

In general, we can speak of the distance dij between two pointsiand j in
graph G as being the length of the shortest path joining them, if any;
otherwise d;=e». In a connected graph, distanceMmetric
properties i.e. for all peints i,j and k (Harary, 1971, p%gh.M), the following
set of axioms holds :

1. dij >0, with d-[j=0 if and onl_y if i=j,
2. 4=,
3. G+ di 2 dy

In axial maps the distance between line i and j is, generally, measured by

the numbeh@al lines located on the shortest path joining ﬂ/f/‘flj’ fhot is
them. 17 50y Lhe

In node maps,[speciafiy if they represent road networks,(asjthose used in- like
transportation studies, the distance can be measured in térms of depth but,
generally, it isj_in terms of a generalised cost function which can be

defined as being dependent@thé shortest distance, time and also a Th
monetary cost of locomotion, by a specific mode of transport, between

nod#i and j, which in turn, generally, represent the centroid}{of ;(study % =

area/
n

For the purpose of systematic comparison between node and axial maps we

? répose that distance@measured in terms of depths for both types of be

maps.
Mean depth of line i in an axial map or node i in a node map is defined by

K
MD; = 2. dy/(k-1) ,
=1

where k represents the number of lines in the axial map or the number of
nodes in the node map. !



havy

Mean depth measures how segregated a given line or node i is from the
remaining lines or nodes of each map (called from now on simply?é
graphs). In that sense it can be called a global property of a speci ic[node.

In order to standardise the variation of mean depth between zero and one,
Hillier and Hanson (1983) proposed the following measure, known as the

relative asymmetry of a line or node |

RA, = 2(MD;1)/(k-2) (4),

where the variables present)the usual meaning.

10

LIme or

To obtain expression (4) we need to know the maximum and minimum vaiue){ s

that a node can have in terms of mean depth.

The minimum value is given when node i in a graph G is at minimum depth
trom all other ones, i.e. when it is at depth 1 from all other nodes. In that

case the minimum mean depth is 1, i.e. MD,;,=1.In graph theory terminology

this corresponds to the centre of a star or to the root of a bush.

The maximum value for MD, is given when node i is the end point of a chain

| o of a tree with 2 points incident to 1 line and the remaining (k-2) points
incident with 2 lines .

RA max RA .
a) o)

Fig.5 a) Chain@end point with maximum relative
asymmetry.
b) Star(presenting|centre with minimum relative
asym .

/
ﬂﬂVﬂ’Jﬂ

K)JV’%‘?



11

The total depth of an end point i in a chain is given by the following
expression

K k-1

Z dii = 2 m ,
j=1 m=1

i.e. is identical to the summation of natural numbers, from m=1, which

corresponds to the node j at depth 1 from i, up to k-1, which corresponds

to the deepest node j from i.

The summation of the series of natural numbers, from 1 up to k-1,is given
by k(k-1)/2. Therefore, the mean depth of an end node iina chain is given
by MD__.=K2.

The expression of RA;, defined to vary between 0 and 1,is giveninits
standardised form as

RA; = (MD;-MD )/ (MD 5o MD ) e

Substituting the values of MD,,, and MD,,, in expression (5) we fvould

obtain expression (4) which gives the value of the relative asymmetry of

point i. Values close to 1 represent segregated points in relationship to the
Valats  whole graph and/\close to O represent points integrated in the system.

However, as it stands, expression (4) does not allow us to compare directly

the values of relative asymmetry for points located in mapsifferent 0]//
sizes. In fact, as k increases the mean depth decreases, ceteri;ﬁ,ﬁs paribus, 3//
in proportionate terms. This means that RA measures also decrease in
proportionate terms when the number of axial lines increases:[?eing/ ,( 7
therefore/ impossible to compare systems with different sizes. '

There are two ways in which we can minimise this size effect. Either we
‘FW compare RA valuesach point with a root of a diamond shape or with the
corner of a grid with the same number of points. The reason for adopting
rests o this procedurthe fact that, in both cases, the depths from the
root or from the corner arer approximate!yﬁ normally distnbuted.
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(5) ROOT QF DIAMOND CORNER OF GRD

a) b)
Fig. 6 a) Diamond shape with 22 points .
b) Grid shape with 16 points.

A diamond shape, as a graph, is a special form ofﬁ justified graph .A
justified graph is one in which a point, called the root, "is put at the base
and then all points of depth 1 are aligned horizontally above it, all points
at depth 2 from that point above those at depth 1, and so on until all levels
of depth from that point are accounted for"(Hillier and Hanson, 1983). In a
diamond shape there are k points at mean depth level, k/2 at one level
above and below, k/4 at two levels above and below, and so on until there
h bl is one point at/(thé shallowest(the root) and deepest levels.

In a regular grid all the points are incident with four, three or two lines.

Those points on its border are incident with three or two lines. Of the

points incident with two lines we choose one as being its corner. In a

justified grid there are k points at mean depth level, k-1 at one level

above and below, k-2 at two levels above and below, and so on until there
/( bl is also one pointjat the shallowest(the corner) and deepest levels.

?ﬂr @an axial map with k lines the general procedure{has been)(see
Hillier and Hanson, 1983) to estimate the D, i.e. the relative asymmetry of

the root of a diamond shape with k paints and to divide the RA value found
for a specific line of the axial map by the value obtained for D, This new

value has been called in the literature (see Hillier and Hanson, 1983) Real
Relative Asymmetry(RRA) and varies above and bel}ow 1. Values well
belfow 1, such as those lower than 0.6, indicate strongly integrated lines
in the axial map and values above 1 more segregated lines.




oY
fgfw LT : :
,ﬁrﬁ'i)’éstlmate, formally, the mean depth of a grid corner as weli as of a diamond

i o
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Alternatively, we could estimate G, i.e. the relative asymmetry of the

corner of a grid with k points and, similarly, g divide the RA value found
by G, The new RRA value, padronised by the RA value of a grid corner, will

7

also vary above and bei/ow 1.

In order to compare the performance of both procedures RA /b SHH d> ”/J;’ig_

values,&Uch as 1o compare)axial maps with different sizes, we need to

rooft.

Let us concentrate first on generalised distance measures for a grid and
1atjer, for the diamond shape.

4. RELATIVE ASYMMETRY OF A GRID CORNER

Let us assume, without loss of generality, a regular node grid with K=N2

points located on a@brtesian coordinate system which ranges from

coordinate (1,1) up to (N,N) (see Fig.7).

The first task is to estimate the distance Dy, between two generic
points with coordinates (i,) and (I,m) given by the following expression:

Dy = Il + lj-ml 6)

which can be called a rectangular or taxi-cab distance (Krause, 1975)
between points with coordinates ij and Im.

Although this distance function differs from the usual Eudidean distance,

defined’; for the same typEM%f coordinate system/ as Di]—lm =\/(i-{)2+(j—m)2,

it obeys all the axioms set in section S@therefore, a metric and f” vides

which can be used to make comparisons tetween points set in this

@ (Cartesian coordinate system.
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Fig.7 A generic grid with k=N? points.

From expression (6) we can estimate the mean depth MDHV of a generic
point ij in the grid, which is given by

N N
1

=1 m=

Substituting expression (6) in (7) we MObtaiﬂ

MD; = ( X % {lial + lml})/ (1) (8),

=1 m=1

14




and expanding the summation signs in (8) we }Loa-ﬁcf have

N N
MD, - (X lHIN + 2 limIN)/(K-1) (9).

=1 m=1

In order to transform the absolute expressions which occur in (9) into a
form more amenable to algebraic treatment, we can expand it into

i j

MD, = (N{2() + (-0} + N{Zm) + 2 mp})/ (K1) (10).

1
|=1 [=i+1 m=1 m=j+1

i j _

As Z |=i(i+1)/2 and Z m=j(j+1)/2 , then, after algebraic manipulation,
|=1 m=1 )
expression (10) becomes

MDij={N[12-i(i+1)/2+(N-i)(N-i+1 2R+ 1)/ 2+ (N-) (N-j1)2] } (K-1)...

For a generalised point, with Gartesian coordinates ij , expression (1 1)
gives its mean depth as a function of the total number of points K(=N2) of
the grid as well as a function of Fhé these coordjnates.

Expression (4) gives the relative asymmetry of a pointiin a graph with k
points. If we adapt this expression for a system with @artesian
coordinates and substitute the mean depth MDﬁ of a generic point in a grid,

given by (11), in expression (4), we Wd obtain

RA, = 2{N(? Ni+NZEN42--Np-(K-1) P (K-1)(K-2)} (12).

19
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The corner of a grid can have the following sets of@artesian coordinates:
(1,1), (1,N), (N,1) and (N,N). If we substitute any of these coordinates in
expression (12) we }#oa-ld end up with G, i.e. the relative asymmetry for

the corner of a grid with k points. Therefore,

G= 2{N(N2-N)-(K-1) }{ (K- 1)(K-2)} (13).

As N=Vk, if we substitute this in (13) then we#e'a-(é have G, as a function
of k Pﬂt{ and (13) transforms into

G, = 2{KVK-2K+1}/{(K-1)(K-2)} (14).

It should be noticed that lim G, = 0, which means that as the number of

Kedng

nodes expands the relative asymmetry of a grid corner tendl\to zero. 15

5. RELATIVE ASYMMETRY OF A DIAMOND ROOT

In order to compare the performance of different procedures to standardise

the relative asymmetry of an axial or node map we need to obtain an

expression for the relative asymmetry of the diamond root asa

function of the numbers of its points,f\as we did for the relative asymmetry U"‘Jf
of a grid corner, given by expression (14).

.

In a diamond shape, exemplified in Fig.8 for 46 points, the total depth from
its root(TD,), in relationship with all other points, is given by the

following expression

ds2 dr2-1
TD.=2,q(29) + 2(d-q)(29) (15),
g=0 g=0

where d represents the maximum depth from the root and g the depth, also
from the root, of the points located@eaoh level. an '
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-~

dr2
The first term (S = 2 q (Zq ) ) on the right hand side of equation (15)
q=0

represents the total depth of the root in relationship to those points
dr2-1

located from depth O to depth d/? and the second term (S, = Z(d—q) (2 q) )
q=0

represents the same in relationship to those points situated at depth

(d/2+1 ) up to maximum depth d from the root.

Level N.Points Depth

.t g9 0
2 2! ‘
3 22 2
— 2 3

s 24 4
s 2 5
S 6
_ g 2 7
5 & 8

Fig.8 Diamond Shape with 46 points and 9 levels of depth.

n
As, in general, 2.q(29) = (n-1) (2{”*'”) + 2 (see Graham et al,[,1989)
q=0

then the first term in the right hand side of expression (15) becomes Sy=

(d/2-1 ) (2‘”2“)4-2. For the second term, after expansion, it becomes S;=

dr2-1 drz2-1

qZ_;jd(z‘q) -qzzoq(zﬂ.



Substitution of these expanded terms S, and S, in (15) gives the following

result
dr2 dr2-1 d/e-1
TD, = S,+ 8, = 2.q(29) + 2a(29) + 2.d(29) (18).
g=0 q=0 g=0

The first two terms in the right hand side of expression (16) partially
cancel out giving the following result

dr2-1

TD, = (d/2) 292+ X.d 24 (17)
q:O

n

But, in general, as Za xK = (a-a x™*1)/(1-x) then, developing the second
k=0

‘term in the right hand side of expression (17), we P@u&éfobtain

TD, = (3/2) d 292 - d (18). -

Expression (18) gives the total depth of a root of a diamond shape as a
_ function of d i.e. as a function of the maximum depth from that root.

As in a diamond shape (see Fig.8) d/2=n, where n in expression 2n

represents the depth of the diameter of a ndiamond i.e. of the diamond's

Aﬁ\& level with[\greatest number of points and 2 represents the number of
points at that level. Then, if we substitute this result in (18) we pould
obtain, after algebraic manipulation, for the total depth of a diamond

TD, =2n (3-2(0"1)-1) (19).




Expression (19) gives the total depth of a diamond root as a function of its
diameter depth.

The total number k of points in a diamond shape can be given as a function
of its diameter depth i. e. as a function of n,by the following expression

n-1

Keons2 D 2 ,

i=0

where the first expression in the right hand side represents the number of
points at diameter level and the second one the number of points at all

other levels.
n
As, in general, > 2i= (1-200+1))/(1-2) then, after algebraic manipulation,

i=0
the last equation for K could pe transformed, by substitution, into’

K = 3427 -2 ~(20).

If we substitute (20) in (13) we fmsHJ.ef obtain an expression for the root
total depth as a function of the number of diamond points (K) as _well asa

function of its diameter level (n) , i.e. simply as

-

TD, = K*n (21).

Then the mean depth of a diamond root (MD,) can now be given by

MD, = (Ken)/(K-1) (22).

19
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If we substitute expression (22) in (4) we i.a.@uldobtain the relative
asymmetry of a rootof a diamond (D,) as a function of the number of

points k and the depth of its diameter n, i.e. by

D, = 2{k(n-1)+j}/{(k-1)(k-2)} (23).

However, from expression (20) we can estimate n as a function of K, which
is given by

n = Ig,((K+2)/3) (24).

If we substitute the value of n, given by expression (24), in (23) we }&e&d
finally obtain the relative asymmetry of a diamond root simply as a
function of the number of its k points i.e. as

D, = 2{K(ig,((K+2)3)-1)+1}/{ (k-1 (-2} (25).

The corsennerces

We are now able to compare what means to standardiselthe relative o} shanda 2{ Y
asymmetry either by the corner of a grid (expression 14) or by the root of a

diamond shape (expression 25), since both are given just as a function of
the total number k of its points.

We have already seen that the relative asymmetry of a grid corner, i.e. Gy
tends to zero when k tends to infinity. The same happens with expression
(25) where lim D, = 0. However, the limit, as k approaches higher

K= 0o

values, is higher for G, than for D,, being proporticnal to (Vk/K) in the
former case and to {log,(k)/K} in the latter.

NY/KJIS' }5
It remains to be seen with axial and node grids, with k lines or nodes, Ahe
performance of the real relative asymmetry measure when standardised
either by G, or Dy.

J



-

6. REAL RELATIVE ASYMMETRY OF AN AXIAL GRID

A regular (m,k) axial grid is, by definition, composed @k lines and [b)} d

m= (k/2)2 connections, where each of its k/2 lines intersects all the
remaining k/2 lines. Its graph representation is called a bipartite graph,
i.e. a graph whose point set can be partitioned in two subsets such that
every line joins one subset with the other one. Furthermore, a graph
representation of a regular axial grid is a complete bipartite graph since 1T
contains every line joining the two subsets.

a) b)

Fig.9 a) A (36,12) Axial Grid . b) A (12,36) complete bipartite
graph.

In a graph we say that a closed path or cycle is a triangle if it is made by

three distinct points. In bipartite graphs there are no triangles (Konig,
19386, p.170) the closed paths made,@clgéitﬁiﬂfour points. This
means that in the corresponding axial map atlosed path has, at least, four

connections.

21
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Estimating the mean value of the Real Relative Asymmetry of an axial grid
means that we need to know first the mean depth of a generic line .

Each line in the axial map (see Fig.9) is at depth 1 in relationship to k/2
lines and at depth 2 in relation to the remaining (k/2-1) lines . Then the
mean depth MD; for line i is given by

MD, = { (k2-1)2+k/2}/{k-1} (26),

which, after simple algebraic manipulation, gives
MD; = (3k-4)/(2k-2) (27).

If we substitute (27) in (4) we immHobtain an expression for the relative
asymmetry of line i in an axial grid map, with k lines, given by

RA; = 1/(k-1) (28).

If we standardise expression (28) either by G, or by D (given, respectively

by expressions 14 and 25) we }.uo&leb obtain the real relative asymmetry of
a line in an axial grid map. :

It is important to study the behaviour of these measures as the number of
k lines expands, since this P@e&djlanowﬁus to compare maps @diﬁerent L5 of
sizes.

There are now two possibilities for the expansion of an axial map. It can

[&-:Ttﬁe_r?g;g_agd)in one or two directions, i.e. the two subsets of k/2 lines can

either expand theiﬁrrﬂmwultanecusly, or one at @time@ G

the other sub-settonstant.

Let usan axial grid map with two subsets of lines

where there are s lines in the first subset and k-s=r in the second and

where s>k-s. Furthermore, without loss of generality, let uthat /M
line i belongs to the set of s lines. This means that (k-s)=r lines are at

depth 1 fromiand (s-1) lines are at depth 2 from i.
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Then, the mean depth from i is given by

MD; = {2(s-1)+(k-5)}/{k-1} (29),

and the relative asymmetry by

1

RA = {2(s- 1)} {(-Dk-2)} (30).
Let us substitute K by r+s in expression (30). Then we woulghave I
RA = {2(s-1)}/{(r+s-1)(r+s-2)} (31).

It is clear, from expression (31), that lim RA =0, lim RA;=0 and

[—o0 §—00

lim RA, =0, i.e. either expanding the axial map in just one direction

r—o0

§—300
(r—soo OF S—3e0) OF N both (r—e and s—e=) We }muk:’ end up with a relative
“asymmetry tending to 0. '

The mean values for the relative asymmetry of an axial grid map are given
for regular grids by

K
RA__=(2, RA)K = 1/(k-1) (32),
i=1

mean —

and for axial grids with two subsets of axial lines with different
cardinalships i.e. with one subset with s lines and the other one with (k-s)

lines, we would obtain

K

RA o = (2 RAVK = {20} {2} (33).

=1

i
It is now worth{vh#é-‘fd Ioot{a?similar expressions for node grid maps in
order to compare their behaviour as k expands.
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7. REAL RELATIVE ASYMMETRY OF A NODE GRID MAP

In order to estimate the mean relative asymmetry of a node grid map we
should recall expression (12) which gives the mean relative asymmetry of
a generic paint with@artesian coordinates ij.

The mean relative asymmetry RA_..,0f a grid is given by the following
expression :

N N
RAnean = (2 2 RAy)/k (34).

i=1 j=1

If we substitute the value of RA; given by expression (12) in (34), expand

it and cancel out identical terms, we }.ueu-id end up with an expression for

RA. .., Whichis a function of the number of nodes in the grid, given by

RA. ... = (4¥k-6)/(3(k-2)) (35).

From these results it can be easily proved that for a grid node map ,as x

expands, we Wd‘ obtain the following result : lim RA ., = 0. :
K—oo

We have seen that expression (11) allows us to estimate the mean depth

of a generic point and (35) the mean depth of all the points in a grid node
map. However, we admitted that its@artesian coordinates could run from

(1,1) up to (N,N), i.e. we supposed that the grid's shape was tadrangular. fimﬂrg

In order to extrapolate these results to grids of a more general kind, i.e. to
grids with rectangular shape, we need to estimate an expression which
enables us to calculate the mean depth of a point with Cartesian
coordinates running from (1,1) to (r,s). We assume that res=k and, without

loss of generality, that r>s.

The specification of the distance between two points with Cartesian ‘
coordinates was already given in expression (6). Frorriit is possible to This
define the mean depth of a paint with coordinates ij as being given by

s T

mD; = (X Z{lil+li-ml})/ (k1) (36),

=1 m=t

where grid coordinates run from 1 to s and from 1 to r (see Fig. 10).
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Fig. 10 A node grid map with k( = rs) points.

‘Expression (36) can be expanded into the following F[me}
i

MD; = (r{Z(i-l)+z(l~i)}+s{z:(j—m)+2(m-j)})/ (k-1) | (37),

=1 l=ied m=j+1

which, in turn, can be expanded and compressed, by cancelling out identical
terms, into

MD; = (2ri24rs2-2sri+2si2esr2-2sr+2sr)/ (2(k-1)) (38).

If we substitute the expression (38) in (4) we #A@&H obtain the relative
asymmetry RAH- of a node with @ar’tesian coordinates ij which can now be

used in expression (34) to obtain the mean relative asymmetry RA an0f 2
grid node map with k(=r+s) nodes . The final result, assuming that K=rs,
after these substitutions, is given by

RA_. = (2Ks+res+2Kre8)/(3(k-1)(k2))  (39).

mean —
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As r=k/s/if we substitute this value in (39) then, as K expands and s

remains constant, we fveid obtain lim RA_q,, = 2/3s, which means that

K—yo0
Mz ontinuously,the node grid map In one direction its mean

relative asymmetry will tend to a value inversely proportionally related to
the other direction's highest coordinate value. In other words, the higher
the latter coordinate for one direction the lower the mean relative
asymmetry value for a grid node map expanding in the other direction.

8. SUMMARY OF FINDINGS AND RESULTS

Table 2 summarises the findings obtained for the mean relative asymmetry
(RA_ .., of axial and node grid maps assuming expansion either in both
directions or just in one direction. For the latter case variable s

represents the highest Cartesian coordinate in the fixed direction.

AXIAL MAP NODE MAP
RA ean 1 4vk-6
Expansion (k-1) 3(k-2)
im Two
Directions  lim RA .45 -0 0
K—roo
RAvean 2fs1)__ 2Kstres+2Kr+6
Expansion (k-1)(k-2) + 3(k1)(k-2)
in One -
Direction  lim RA .., 0 2
K—00 ‘ 3s

ben
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Table 2. Summary of results obtained for the mean relative asymmetry

(RA_oaq) Of axial and node grid maps.

If we divide each of the RA__, . values given in table 2 either by Gy or D, we
{a.te-uldlobtain the mean real relative asymmetry (RRA_.,) for axial and

node grid maps standardised, respectively, by the real asymmetry of a grid
corner or by the diamond root. -
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If, in these new found expressions for RRA_,,,, we allow k to approach
infinity then we would obtain, in the limit, the results given in table 3.

AXIAL MAP NODE MAP
lim RAmean 0 2/3
Expansion K== G
in Two
Directions  |im RAmean 0 oo
Koo Dk
lim BAmean 0 =
Expansion k== Gy
in One
Direction  |im RAmean 0 -
K—ro0 Dk
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Table 3. Summary of results obtained for the mean real relative asymmetry
(RRA ., of axial and node grid maps i.e. of their mean relative asymmetry

(RA ., Standardised either by the relative asymmetry of a grid corner
(G,) or a diamond root (D,) when K, i.e. the number of their points or lines,
is allowed to approach infinity.

Several comments can be made‘on these results but what is remarkable is
the constancy of the values obtained for axial maps, when they are either
standardised by G, or by D,, which always approach zero when K approaches

infinity. That means that some sort of "edge effect” is still present in
axial maps, even when we standardise their RA_.,, with either G, or D,.

However, at a more realistic scale, where k runs from one hundred units of

observed Iinesguf to thirteen hundred, f-has-been-verified a constancy for

RRA ., Values/in the @of London. In other words, for several studies \f:/@/

made in central London jt(has been empirically observed|a constant value
for RA hen standardised by D, (Hanson, 1989).

mean
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The question now is to choose a standardisation procedure for axial maps
in order to get acceptable results, @as to obtain values for the RRA_ .., 50
which do not vary considerably, regardless{the size of the axial map but Vi

assuming a constant spatial morphology, Jras happens to beLcase@axiai Kﬁ& 7[6,),
grid maps as well as the urban axial maps of central London.

Letus that we have one axial (or node) grid map with K lines (or
nodes) which is expanded up to K+AK lines (or nodes), maintaining, in both
cases, the same grid morphology. Let us define the auxiliary parameter
given by B = (1+AK/K). Then, if we estimate the limit of the relationship

between RRA oani and RRAqqaqp¢ S AK—K and K—== i.e. if we estimate

the following limit

im (RRAmeank)) (40),
aK - K ( RRAmean(ﬁk) )
Ko o

where RRA, in both cases, can be either standardised by G, or ADK, we {vede’

obtain the relative increase of the mean RRA when we allow the number of
lines (or nodes) in a map, firstly/ to double its size and, secondly/to

_ approach/in the limit/ an infinite value..

Table 4. summarises the results obtained when expression
applied to¥axial or node maps, being standardised either by Gy or Dy and the

allowed expansion of the grid being developed*in one or two directions.

Several conclusions can be drawn based on the results so far obtained. If

we look at Table 2 we can see that in all cases, except one, i.e.

axial or grid maps expanding in one or two directions the RA values

decrease as the number of lines(for axial maps) or nodes (for node maps)
increases, approaching zero if we allow these lines or points(approach ;( bo
infinity. The only exception is for node maps expanding continuously in one
direction. In this case the limiting value for RA is inversely proportional

to the fixed size of the node map grid.

These results show us the importance of developing some systematic
procedure in order to compare maps with different sizes.



STANDARDISATION AXIAL MAP NODE MAP

5t R
Expansion Gk VB 1
in Two )
Directions Dk | 1 1AB
Expansion Ok BVB (sVB)/B
in One
Direction Dy B 2s/B

Table 4. Summary of results obtained for lim  ( RRAmean(k )
AK - K ( RF{Arnaan(fﬂ«))

K— oo

where s represents the fixed size of a grid that expands in
just one direction, AK represents the number of expanded

lines (or paints) in the axial (or node) map, f is an auxiliary
coefficient given by (1+AK/K) and G, or D, means that

mean RA were standardised, respectively, by mean RA of a
grid corner or a diamond root.

S'LJH -‘5{43}' '
The results obtained , as K is allowed to expand to infinity, ,éhcw:{ (see
Table 3) fhat it does not matter if we standardise RA values either by the
root of a diamond shape or by a corner of a grid, since the results obtained
wpfere similar for axial maps, on the one hand,.and for node maps, on the
other hand.

The only exception found is when the node grid map is allowed to expand in
both directions and the mean RA values are standardised by the mean RA of
a grid corner with the same number of K points.

Apart from that exception, we can see that mean RA values for axial grid
maps tend to zero when K expands to infinity and for the case of node grid
maps their mean RA values tend, in similar conditions, to infinity. In shon,
axial and node grid maps present opposite behaviour/when they expand,
regardless of the number of directions (one or two) for expansion.
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However if we look for the ratio of RRA mean values at the limit (see
Table 4.) we are able to(detectjthe following conclusions: Araw

Firstly, a general pattern emerges from the previous findings. For axial
maps, as the number of axial linés increases the limit of the relation
between mean RRA values for maps with k and Bk lines also increases and
vice-versa for node maps.

However, a remarkable exception occurs. For axial grid maps, standardised
by the mean RA of a diamond root, and for the node grid maps,
standardised by the mean RA of a grid corner, when the expansion runs, in
5 both cases, in two directions, we are able to identify a limiting constant

o] @to 1, which means that, in the limit, mean RRA values are

0{ independent(in relationship tojthe initial number of lines or points in the

¢/  mapand aIsothe number of lines or paints in which
expansion takes place. In all other cases the limit is proportional to B

coefficient and/or to the size s of the fixed direction in the expansion.

For the remaining cases in axial grid maps as B = (1+AK/K) the(biggeathe - gre Sber
expanded values AK the(biggehthe limiting value and, vice-versa, forthe  9rtsber
remaining node grid maps (see Table 4).

What is important to retain is that we only obtain a limit(dentical to\1
when, for axial and node grids, the expansion occurs in two directions.
From that follows the following postulates:

1. When axial grid or node maps are embedded in larger maps they should be
placed in such way that-expansion could take place in two directions. The
geometrical centre of the larger maps is the preferred location for the

smaller ones, since that correspondkto similar rates of expansion in both
directions.

=
(VN

2. Axial grid maps should, in general, be standardised by the mean RA for a
root of a diamond (D,) and node grid maps should be standardised by the

mean RA of a grid carner (G ) in order@the ratio of these mean RA[ for A valngg

$o ,/: approach a constant limit, identical to 1, remaining, as far as possible,
independent of the initial and expanded number of axial lines or nodes.
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In réiationship to the axial and node maps of urban areas, axial and node
grid maps are highly improbablepure form. In general,
in urban grids the graph representation of the axial map is not a bipartite
graph neither‘iits node maéfjia node grid map.

The classical casesof L}F} urban grid:s like Cerda's Barcelona or Taylor's New
York, @nade by orthogonal lines intersected by diagonals, in order to
introduce shortest paths which wouldmlonger on a taxi-cab
geometry. :

In fact, we could say that in the majority of real urban situations the

graph of an axial map representing an urban grid is neither itself a grid
neither a bipartite graph but a deformed grid i.e. cne where only some
propﬁ-e?ties of axial grid maps are present.In we need to develop a
strategy in order to standardise RA values in real urban maps and, in
particular, in real urban grids.

When a G(k,m) graph representation of an AM(m k) axial map is a (k,m) Node

Grid Graph we say that the Axial Map and the Node Map are duals (see
Fig.11). In thaflcase the RA values of the lines of the axial map should be

standardised by the mean RA values of a grid corner and not by the diamond

root since all the properties, in terms of depth, of a complete bipartite
graph are lost and we are only in the presence of a grid graph.

31
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8) b)
Fig.11 a) A (112,64) Axial Map and b) The corresponding (64,112)
Graph representation. In that particular case the graph
representation is a (68,112) Node Grid Map and the Axial Map
and this Node Grid Map are said to be dual.
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SmﬁL 2
v However, that clear relationship between the graph representation of the

axial map and a node grid map is unlikely to occur in reality. What is

]”"’f’[y probablgito occur is, for certain axial maps/ to have a graph representation
slesor  (FGTe clos)to a bipartite graph, and fer others (ore closg)to a node grid closer
map.
? conbeyk

In that sense, in order to generalise postulate 2 not just axial grid  to
maps but to all kind of axial maps we need to introduce the notion of

quasi-axial map.

A quasi-axial map has a graph representation close or approximate to a

node grid graph. The degree of closeness can be given by several statistics

but one that is possible to deﬁne@the mean RA of the (m,k)  /heelves
Ihj axial map and compar@it not only with the mean RA of a (k,m) node grid %‘t’m”ﬁ”’ﬂ

map given by expression (35) but also with the mean depth of a complete

bipartite graph, with k nodes, given by expression (28).

Knowing the standard deviation of these maps it is possible to compute the
t-Test statistic to estimate, with 2K-2 degrees of freedom, at what
significance level the RA means are equal and choose the one, either
b7 related(withrthe bipartite graph or@node grid map, which presents the o The
smallest critical region.
s whigh
%@f:ﬂe’/&igre gigﬁiffééntj ésp{he t—TestSto compare the mean RA of the axial
map of a deformed grid to @acHone of these forms - node grid or bipartite

graph - mje‘f'n the,RA values of the lines of the axial map should be

ra/

¢ifhor
Lyl
A fgf, standardisae{cf.ll/\mgr'g significant in relation to the mean RA of a node grid
b5t map then we are in presence of what was called a quasi-axial map,which
IS means that it should be standardised by the mean RA of a grid cornerand if e Yesf
r{/,, rel>577, more significant/to the mean RA of a bipartite graph/then it should be

standardised by the mean RA of a diamond root.

this W3y
In that sense we can@E;W, the property related with the
| limit for the ratio of mean RRA values, given in Table 4, as the axial map
expands. As the ratio between these RRA values approaches 1 as k
increases, it means that, in the initial axial map as well as in its expanded
form, we are able to find some underlying pattern which allows us to

compare RRA values for specific lines in axial maps with different sizes,

U“’C{:ﬂﬁ,jyam similar morphological configurations and approximate mean RRA values.




-

In short, in order to compare RA values of axial maps with different sizes
they should be standardised either by the root of a diamond or by the
corner of a grid, according to the significance level of the difference of
their mean RA, respectively, to the mean RA of a bipartite graph or a node
grid/ with the same number k of axial lines or nodes.

For the same purpose RA values of node grid graphs should always be
standardised by the grid corner.

A subsequent paper will describe empirical results obtained from
condensed descriptions of the real urban world, in order to evaluate the
preliminary findings already developed.
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