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Truncated lognormal distributions and scaling in the size of naturally defined population clusters
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Using population data of high spatial resolution for a region in the south of Europe, we define cities by
aggregating individuals to form connected clusters. The resulting cluster-population distributions show a smooth
decreasing behavior covering six orders of magnitude. We perform a detailed study of the distributions, using
state-of-the-art statistical tools. By means of scaling analysis we rule out the existence of a power-law regime in
the low-population range. The logarithmic-coefficient-of-variation test allows us to establish that the power-law
tail for high population, characteristic of Zipf’s law, has a rather limited range of applicability. Instead, lognormal
fits describe the population distributions in a range covering from a few dozen individuals to more than 1 × 106

(which corresponds to the population of the largest cluster).
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I. INTRODUCTION

Cities are expected to experience enormous growth in the
next decades, but already nowadays they can be considered
in some sense as the largest structures built by humankind.
However, in contrast to other human constructions, cities
develop from social and economic processes combined with
top-down planning. Social and economic processes in their
turn depend on technological and scientific advances. So,
cities are complex systems driven by self-organization, where
their fundamental constituents (the individuals) participate in
a vast number of different types of interactions that keep the
city alive [1]. In fact, the analogy between cities and living
organisms is not just a metaphor but a very deep insight [2].

Probably, the first characterization of any entity is in terms
of its size, and this also holds for complex entities. It is well
known that for cities their size (measured, for instance, in
number of inhabitants) is broadly distributed (there are cities
of vastly different sizes, taking a broad definition of a city
as a “human settlement”). Then, a statistical description is
necessary. Several statistical models for city size have been
proposed, with the most important one being Zipf’s law [3],
which states that, given a country or a large region, the
probability mass function f (s) of city size s is given by a
power-law (PL) distribution:

fPL(s) ∝ 1

sβ
,

with the symbol “∝” denoting proportionality and the expo-
nent β taking values close to 2 (an important requirement is
that the exponent has to be larger than 1). The law should
apply at least to the largest cities, i.e., for the upper tail

of the size distribution, and so one has in mind cities and
towns but not necessarily small villages. It is a remarkable
fact that Zipf’s law seems to hold in many other systems in
which individuals gather into some sort of groups or classes
(companies [4], religions [5], etc.), and where the “individu-
als” can be anything from animals [6] to links in the Inter-
net [7], word tokens in a text [8], or combinations of musical
notes [9].

Nevertheless, there have been authors who have argued
in favor of other models; in particular, for city-size distri-
bution the lognormal model has been proposed as the most
remarkable alternative to Zipf’s law, and some debate has
arisen [10–12]. This debate can be put in the broader context
of the adequacy of power-law fitting procedures [5,13–18], but
is certainly different from the controversy about power-law
relations in “urban metabolism” or urban allometry [2,19,20].
Nevertheless, at the core of both problems is the proper use of
statistical tools, which is in part responsible for the recent, un-
fortunate, and deep problem known as reproducibility crisis,
or replicability crisis [21,22].

In any case, one can realize that there is a degree of arbi-
trariness in city-statistics research, related to the definition of
what a city is. If the usual administrative delimitations (which
were established, in general, following criteria developed
many decades or centuries ago) are used for modern urban
agglomerations, one can wonder to what extent the results
for city-size distributions are just an artifact caused by old
bureaucracy. Clearly, more realistic and scientific definitions
of the concept of city are necessary. This has been attempted
by several authors [23–25], who have introduced the concept
of naturally defined cities; see in particular the citations in
Refs. [19,23,26].
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FIG. 1. (a) Whole data set: Latitude and longitude (dots) of the 7 586 888 inhabitants of Catalonia on January 1, 2013. (b) Zoom of the data
around the Barcelona zone. Notice that we are representing the coordinates of the residence place of each individual, so the high resolution of
the data becomes apparent in this plot. The contour line delimits the municipality of Barcelona.

In the present paper we use population data of high reso-
lution to construct clusters of population, which we identify
with cities, the size distribution of which is scrutinized with
state-of-the art statistical tools. In the next section we describe
the data; in Sec. III we explain several similar procedures
used to construct the population clusters (our definition of
cities); and in Sec. IV we present our statistical study of
the size of clusters, using scaling analysis, the logarithmic-
coefficient-of-variation test, as well as truncated lognormal
and power-law fits of the resulting distributions. We anticipate
that the lognormal distribution is much more suitable than the
power law to describe the cities arising from the analyzed data
set and the city definition introduced. Also, the importance of
spatial correlations in the number of inhabitants to get a broad
cluster-size distribution is clearly established.

II. DATA

Here we approach the problem of city definition and the
validity of Zipf’s law using high-resolution data for the scatter
of a population through a territory. The territory under study
is Catalonia (Catalunya), located in northeast Spain and the
capital of which is the colorful city of Barcelona. Catalonia
has a population of about 7 500 000 inhabitants in a area
of 32 000 km2, which yields an average density around
230 inhabitants per km2 and classifies Catalonia as a highly
populated area. Note that these figures are similar to those
of some small European countries, such as Switzerland, for
example.

In Spain, the municipality councils (ayuntamientos) collect
a population register called Padrón Municipal de Habitantes.
All citizens are required to be registered in some municipality
and actually it is necessary to be registered to access most of
the administrative services like health, education, etc. The co-
ordination of the registers of all municipalities in the country
is done by the Spanish Instituto Nacional de Estadística [27],
which sends the information referred to Catalonia to the
Catalan Institut d’Estadística de Catalunya (IDESCAT [28]).
The processing of the registers is an important step because it
guarantees their high quality: duplicated entries are removed

as are people deceased or registered in a foreign-country
embassy.

In the last years, IDESCAT has undertaken the task of
georeferencing each individual’s postal address present in
the register, by means of the geocoding web service of the
Institut Cartogràfic i Geològic de Catalunya [29], which
assigns geographical coordinates to each postal address. The
complete procedure including the imputation for missing data
is detailed in Ref. [30].

The data that we have used for our paper are of the geo-
referenced population of Catalonia on January 1, 2013, with
a total population of M = 7 586 888 inhabitants in 989 997
places of residence (i.e., domicile buildings), and with a
7.6% error in the georeferencing for which the procedure of
imputation is applied [30]. This register can be considered as
high-resolution population data, even of higher resolution than
the data used in Refs. [31,32] (which were 100 and 200 m,
respectively; ours is about a few meters, corresponding to the
minimum distance between places of residence). The spatial
distribution of the complete data set is displayed in Fig. 1.

III. CLUSTERS OF POPULATION

A. Grid approach

In order to construct our aggregations of population, we
first work using a simple (equirectangular) projection of longi-
tude and latitude into Cartesian coordinates, which introduces
very little distortion due to the small extent of the territory.
We cover the resulting projection by a grid composed by
identical square cells, each of fixed width � in degrees and
projected area � × �, aligned with the longitude-latitude axes.
In a second, more refined approach, we transform longitude
and latitude into distances (using that 1◦ in latitude is equal
to 111.1 km and 1◦ in longitude is about 83 km at latitude
41◦), and introduce again a square grid. We call these two
approaches grid-in-degrees and grid-in-km, respectively. We
advance that both of them will lead to essentially the same
results.

Note that a square in longitude-latitude is equivalent to a
rectangle in distance, and vice versa, so, in terms of distances,
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FIG. 2. (a) Empirical probability mass functions f (h) of number
of inhabitants h per cell, for several values of cell width �, in the grid
approach, using the grid-in-km procedure. (b) Corresponding empir-
ical probability densities of population density per cell. Observe the
enormous variability, from less than 0.1 inhabitant per km2 to more
than 105. One can conclude that the concept of average density has a
rather limited value. Unpopulated cells are not considered.

our two types of grids are rectangles (with fixed aspect ratio)
and squares, respectively. When we report the width � of a
cell in degrees it is implicit that we are dealing with the first
approach, and when � is in meters or in km we will follow the
second one.

The next step is counting the number of inhabitants h
in each cell. For reasonable values of the cell width (for
instance, � = 0.001◦) the resulting h turns out to be broadly
distributed, from one inhabitant per cell to many thousands
(we will disregard unpopulated cells, for reasons that will
become clear later). For the sake of illustration, we display
the corresponding probability mass function f (h) in Fig. 2(a)
for different values of the cell width � for the grid-in-km
approach, confirming the broadness of the distribution [depen-
dence of f (h) on � is obviated in the notation]. The population
density in each cell can be calculated straightforwardly as ρ =
h/�2, and its probability density f (ρ) (the probability density
of the population density) is shown in Fig. 2(b), in units of
km2. It is obvious that, for the same �, both distributions, f (h)
and f (ρ), have the same shape, with the only difference of the
scale factor �2. The fact that we consider f (h) as a probability

mass function and f (ρ) as a probability density is not relevant,
and comes from the consideration of h as a discrete variable
and ρ as a continuous one, but this difference does not carry
any deep meaning.

Under the present grid approach, our definition of city is
based on the aggregation of adjacent occupied cells. This is
a natural definition, previously used in Ref. [23]. We will
consider a cell as occupied if its population is greater than
or equal to a threshold value, and unoccupied otherwise. Nat-
urally, the most immediate value for the population threshold
is 1 [23], but other prescriptions are possible; the advantage
of our high-resolution data is that the threshold can be made
as small as desired, in contrast, for instance, to Ref. [19].
For this reason, the occupation threshold is equal to 1
in this paper.

More concretely, as in the problem of site percola-
tion [33,34], a set of nearest-neighbor occupied cells sur-
rounded by nonoccupied nearest neighbors defines a (con-
nected) cluster [23]. These clusters will constitute a proxy for
cities (we identify the clusters by means of a variation of the
classic Hoshen-Kopelman algorithm), and we may generically
refer to clusters of population. As in this framework the
definition of what a cluster (or a city) is depends on �, and
there is no a priori way to find an optimum �, different
values of this parameter will be considered, in order to test
the robustness of the results.

The size s of a cluster is defined as its total population (do
not get confused with its total area), i.e., for a cluster i,

si =
∑
∀ j∈i

h j, (1)

where the sum runs for all cells j that are part of cluster i (ob-
viously, the cluster definition implies that no cell can belong
to more than one cluster). Note that the cluster sizes can range
from 1 to the whole population of the territory (depending on
the spatial location and on the selected value of the underlying
cell width �). Then, one should not find it strange in this
context to talk about cities with just one inhabitant, although it
is more proper to refer to them as size-1 clusters. Table I pro-
vides, for different values of �, the total number of clusters and
the size of the largest one (in terms of numbers of inhabitants)
resulting from applying our procedure. As an example, Fig. 3
shows part of the largest cluster arising in the case of cell
width � = 0.002◦.

B. Ball approach

An alternative approach to define clusters of population can
be done using the CCA (city clustering algorithm [23]); this
percolation method has been previously employed by one of
the authors (see Ref. [26]). Its implementation can be done
using a DBSCAN algorithm (density-based spatial clustering
of applications with noise [35]), changing the distance at each
iteration. The approach is based on considering “balls” of a
fixed radius �, centered on each individual; given a radius
value �, a cluster is defined as the set of all balls that overlap
with (or touch) at least another ball in the cluster. This means
that any individual in the cluster is at a distance smaller than
(or equal to) 2� of at least another individual in the cluster.
The distance is measured in meters over the Earth’s surface.
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TABLE I. Population-cluster properties obtained from the grid-in-degrees, grid-in-km, and ball approaches (N and smax); results from the
logarithmic-coefficient-of-variation test (sPL and nPL), together with a power-law fit (β); and results from the lognormal fit. N is the total number
of clusters, smax is the size of the largest one (always associated to Barcelona), sPL is the cutoff value for the power-law tail, nPL is the number
of clusters in that tail, sln and nln are the equivalent for the lognormal fit, r is the number of orders of magnitude of that fit [r = log10(smax/sln)],
μ and σ are the selected lognormal parameters, and p is the p value of the lognormal fit. The last row for each approach corresponds to the
aggregation for different � of the rescaled variable s/〈s〉. The results for municipalities are also included, using data from IDESCAT on January
1, 2016. The values of sln swept are 50 per order of magnitude and the p value is computed from 1000 Monte Carlo simulations.

Approach � N smax sPL nPL β sln r nln μ σ p

Grid-in-degree 1◦ 8376 1.98 × 106 6893 134 1.95 52.5 4.576 2450 2.120 3.102 0.21
2◦ 4465 2.48 × 106 10216 91 1.95 13.2 5.275 2571 3.138 2.975 0.23
4◦ 2976 3.05 × 106 13033 57 1.83 8.3 5.565 2082 3.643 2.869 0.40
8◦ 1827 4.06 × 106 1473 203 1.72 5.2 5.888 1470 3.933 2.814 0.25
16◦ 694 6.00 × 106 1462 101 1.69 2.1 6.458 635 4.665 2.653 0.33
32◦ 102 7.27 × 106 236 61 1.47 14.5 5.702 82 6.426 2.415 0.25

1 to 8◦ 17644 2.18 × 103 0.02 5.059 7998 −4.735 3.064 0.44

Grid-in-km 111 m 10258 1.94 × 106 7468 125 1.96 50.1 4.587 2810 1.542 3.176 0.23
222 m 4966 2.11 × 106 9763 92 1.90 10.5 5.304 2972 2.772 3.062 0.26
444 m 3209 3.05 × 106 6913 98 1.82 12.0 5.404 2047 3.604 2.866 0.21
889 m 2095 3.62 × 106 1462 228 1.72 6.3 5.758 1613 3.980 2.788 0.32
1778 m 922 6.00 × 106 1462 123 1.71 3.0 6.298 814 4.532 2.615 0.32
3556 m 159 7.18 × 106 635 70 1.59 22.9 5.496 126 6.598 2.131 0.27

111 to 889 20528 2.62 × 103 0.03 4.998 8458 −4.843 3.076 0.27

Ball 100 m 10263 1.88 × 106 6731 135 1.95 26.3 4.853 3875 0.957 3.305 0.28
200 m 5029 2.41 × 106 9764 95 1.95 14.5 5.222 2833 3.131 2.921 0.32
400 m 3363 2.66 × 106 11263 74 1.86 7.6 5.545 2358 3.466 2.937 0.23
800 m 2262 3.38 × 106 2736 163 1.74 6.3 5.729 1744 3.997 2.782 0.39
1600 m 1059 5.08 × 106 1492 148 1.71 3.0 6.226 941 4.578 2.640 0.30
3200 m 220 7.14 × 106 486 93 1.61 251. 4.454 129 3.959 2.824 0.27

100 to 800 20916 2.54 × 103 0.02 5.085 9622 −4.749 3.051 0.21
Municip. 947 1.60 × 106 10870 110 2.01 100 4.205 919 6.445 2.178 0.23

The cluster population is obtained again as the sum of
individuals contained in the cluster. One could still use Eq. (1),
but then hi has to be interpreted as the number of individuals
in the center of each ball and the sum has to run for all balls
j associated to cluster i. We refer to this procedure as the
ball approach, and it has some advantages with respect to
the grid approach, as it is not affected by the arbitrariness
of setting an origin of coordinates for the grid and avoids
problems in defining a grid over a sphere (mainly if one
hypothesizes to extend this kind of analysis to much larger
regions). Nevertheless, the grid approach can be more useful
for other purposes, as we will see below. The properties of the
clusters resulting from this approach are included in Table I.
The spatial location and shape of the top ten clusters (in terms
of population) can be appreciated in Fig. 4 for four different
values of �. Once the population has been computed for each
cluster, the cluster-size distribution follows immediately; this
will be shown in the next section.

Note that both the ball approach and the grid approach
use a definition of city based on where people live (and we
assume people live in the places they are registered). An
alternative definition of cities could be based, for instance, on
where people work. It would be extremely interesting to get
working places of citizens in high resolution to compare those
results with the ones presented here. Unfortunately, we do not
have access to such data.

IV. ANALYSIS AND RESULTS

In order to investigate the validity of Zipf’s law for the
clusters of population, we consider, as in Ref. [5], the point
of view of the distribution of sizes (in contrast to using
the rank-size relation [36,37], which can lead to confusing
interpretations [38]). The advantages of this choice are dis-
cussed in Ref. [39] (see also Ref. [8]). Figure 5 displays
the corresponding cluster-size distributions in terms of the
empirical probability mass function f (s), for different values
of � (the notation obviates the dependence on �) and for the
three approaches (grid-in-degrees, grid-in-km, and balls). For
the sake of comparison, some of these results appear also in
the Appendix using the more popular rank-size representation.

We clearly observe the broadness of the distributions,
ranging from population 1 to more than 1 × 106 (more than
six orders of magnitude). The smoothness of the distributions
is also apparent, with no change of behavior for all the range,
except, perhaps, in the transition from one inhabitant to two,
where the probability of the former value (1) is decreased with
respect to the latter (in a sense, one could speculate that a
fundamental unit of human population could be the couple,
instead of the single individual). In contrast, the usual distri-
bution of population for the municipalities (also included in
the plot) shows a clear transition around population 200; thus,
the presence of villages with population below this value is
greatly diminished. With our definition of population clusters,
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FIG. 3. Part of the cluster associated to the Barcelona urban area (in red diamonds), for cell width � = 0.002◦. The cluster, which is the
largest one for this �, includes part of other municipalities in addition to Barcelona, but there are parts of the Barcelona municipality not
included in the cluster. Part of the second-largest cluster (in green crosses) is also shown. Smaller clusters are not highlighted.

instead, the broadness and smoothness of the distributions
do not allow us to find discontinuity points to distinguish
between cities and towns, and between towns and villages
(except for the change of behavior between clusters of size
1 and 2, as just mentioned). In addition, the proximity of
the distributions to a straight line in log-log representation
suggests a power-law behavior. However, it is misleading to
use visual information of linear behavior in log-log plots as an
indication of power-law behavior [5,13]. Rigorous statistical
tools are required [5,15,17,18].

A. Scaling analysis

As a first step before moving to more quantitative meth-
ods, we apply scaling analysis to the distributions (do not
get confused between scaling and power-law behavior; the
distinction will become clear in what follows). When one has
several broad distributions, which depend on some parameter
(� in our case), scaling analysis can be a very informative
tool [40]. At this point we are interested in the behavior of the
distributions for small sizes; in particular, we will consider
that they can have a power-law shape. We will denote the

corresponding exponent as α, in order to distinguish it from
the tail (large-size) power-law exponent β. In other words, the
distributions can have two power-law regimes, one for small s
and another one for large s, but we do not assume anything in
between these two regimes.

Let us assume that, for different values of the cell width
�, the cluster-size distributions f (s) scale with some scale
parameter θ (which depends on �) as

f (s) � K

θ
G

( s

θ

)
,

where K is a normalization “constant” (which could depend
on θ ) and G is the scaling function (which is the same no
matter the value of θ , i.e., of �). It turns out that when,
for small arguments, G does not behave as a power law, or
behaves as a power law with exponent α smaller than 1, the
scaling law can be rewritten as

f (s) ∝ 1

〈s〉G

(
s

〈s〉
)

,
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FIG. 4. Top ten clusters following the ball approach. The maps show the result of the percolation on the position of the portals (households),
at different distance thresholds. At 100 m the red cluster shows a high overlap with Barcelona.

due to the fact that the mean 〈s〉 scales linearly with θ and the
constant K is a true constant (K and the constant relating 〈s〉
to θ are absorbed into G).

However, when for small arguments G diverges as a power
law with exponent α greater than 1 (but smaller than 2), the
previous scaling law is not valid and one instead has

f (s) ∝ 1

θ

(m

θ

)α−1
G

( s

θ

)
∝ 〈s〉3

〈s2〉2
G

( 〈s〉s
〈s2〉

)
, (2)

as 〈s〉 ∝ θ2−α and 〈s2〉 ∝ θ3−α , with m the minimum value of
s [below which f (s) is zero] and 〈s2〉 the second moment of
the distribution (see Ref. [40]). In fact, this new scaling law is
also valid in the other case (α < 1 or absence of power law),

due to the trivial scaling 〈s〉 ∝ θ and 〈s2〉 ∝ θ2 there, but the
reciprocal is not true.

Therefore, estimating the moments from the sample and
plotting, for different values of the cell width, 〈s〉 f (s) versus
s/〈s〉 as well as 〈s2〉2 f (s)/〈s〉3 versus 〈s〉s/〈s2〉, one will be
able to check not only if a scaling law holds, but if for
small arguments the distribution has a power-law shape with
exponent in the range 1 < α < 2. This is done in Fig. 6
for the three representations (grid-in-degrees, grid-in-km, and
balls); the data collapse for all analyzed � indicates that both
scaling laws are indeed fulfilled, and this implies that the
power-law behavior (with α > 1) can be discarded. The data
collapse also shows that for different cell width � all analyzed
cluster-size distributions have (roughly) the same shape, but
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FIG. 5. Empirical probability mass functions f (s) of cluster size s (in number of inhabitants) for several values of cell width �, using
square grid in longitude-latitude (grid-in-degrees, bottom curves), square grid in distance (grid-in-km, y axis multiplied by a factor 10, for
clarity sake), and ball approach (y axis multiplied by a factor 100). Results for the usual approach based on municipalities are also included,
for the sake of comparison. Continuous lines are truncated lognormal fits.

at different characteristic scale, and this shape is not a power
law (with α > 1), at least for small s.

B. Residual logarithmic coefficient of variation

Still it could happen that we had a power law not for small
s but for the tail. In order to investigate this we apply the test
proposed in Ref. [12] to compare the performance of a lognor-
mal tail versus a power-law tail. By tail we mean the part of
the distribution that is above an arbitrary threshold value scv

of the random variable; in other words, the tail is given by the
domain s > scv . We expect scv to be relatively large. The test
proceeds by computing the (residual) coefficient of variation
cv of ln(s/scv ), which is

cv = 1√
ncv − 1

√∑
i(ln si − ln s)2

ln s − ln scv
, (3)

with ln s = n−1
cv

∑
i ln si, the sums comprising only the values

si above scv (the “residual” values), and ncv counting the
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FIG. 6. (a) Empirical probability mass functions f (s) rescaled by their mean value 〈s〉 for some values of � in the grid-in-degrees, grid-in-
km, and ball approaches. The curve is the fit corresponding to the ball approach, as shown in the table. (b) Same probability mass functions
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rules out the existence of a power law with α > 1 for small s. This could be made more quantitative using the collapse algorithm of Ref. [41].
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number of data fulfilling this condition (in practice, scv is set
equal to an empirical value, which is excluded then from the
tail, due to the strict inequality s > scv).

It is a fundamental fact that this residual “logarithmic”
coefficient of variation (3) is a decreasing function of the like-
lihood ratio between the truncated lognormal and the power
law [42], so a “large enough” likelihood ratio corresponds to
a “small enough” cv and this is what allows one to replace the
likelihood ratio by cv in the test (which has the clear advantage
that one avoids the maximum-likelihood estimation of the
parameters). Note also that the distribution of cv does not
depend either on the value of the exponent or on the value of
scv; it only depends on ncv (this property will be very helpful
in simulations).

As the power law can be considered a particular instance
of a truncated lognormal (one with μ − ln scv → −∞ and
σ 2 → ∞, with μ and σ 2 the mean and variance of the asso-
ciated untruncated normal distribution, which leads to power-
law exponent β = 1 + |μ − ln scv|/σ 2; see Refs. [12,42]), the
likelihood ratio in this case will correspond to that of nested
distributions, i.e., the power law is nested into the lognormal,
which constitutes then a more general distribution than the
former. So, it should be clear that a truncated lognormal will
fit a tail at least as well as a power law. The point is if the
improvement given by the lognormal is significant or not.
Note that this test constitutes the uniformly most powerful
unbiased test for testing the power law hypothesis against
truncated lognormality [12,42]. Considering different values
of scv we will be able to determine if there is a transition
between a power-law tail (cv close to 1) and a lognormal tail
(cv significantly below from 1) as the tail domain is increased,
in other words, at which value of scv a hypothetical power-law
tail starts. We refer to such a value, if it exists (the value
for which scv crosses the critical line given by the percentile
corresponding to the desired confidence level), as sPL. More
details are given in Ref. [17].

Table I and Fig. 7 incorporate the results of this approach.
For the critical values of the test we take the 5th and 95th
percentiles of the distribution of cv , which leads to a 90%
confidence that the tail is a power law, and a 95% confidence
that the tail is a power law in front of the lognormal. The
reason behind this is that, given the null hypothesis that
the distribution is a power law, if the alternative is that the
distribution is not a power law, the test is two-sided (rejection
when cv is significantly far from 1); however, if the alternative
is that the distribution is lognormal, the test is one-sided
(rejection when cv is significantly below 1). Note that the
percentiles can be computed from Monte Carlo simulations of
a simple (unit-scale parameter) exponential distribution [42].
We observe in the table that, except for the largest considered
cell width �, the cutoff value of the hypothetical power-law
tail sPL is in a range from 1500 to 10 000 (inhabitants). The
number of population clusters (cities) covered by that range
(number of points in the tail, nPL) turns out to be rather small,
from 60 to 230, roughly.

We can use a variation of the logarithmic-coefficient-of-
variation test (in fact, its original linear form, essentially) to
rule out that the distribution of cluster size has an exponen-
tial tail, as was claimed in other contexts [43] (and already
criticized in Refs. [44,45]). If we compute the usual residual
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FIG. 7. Empirical value of the “residual logarithmic coefficient
of variation” cv of the cluster population as a function of the number
of residual points in the tail of the distribution, ncv . Several examples
are shown, corresponding to our three approaches. The solid lines
correspond to the simulated 5th and 95th percentiles of the distribu-
tion of cv under the power-law null hypothesis. In all cases the first
crossing below the fifth percentile takes place for ncv around 100,
which corresponds to nPL in Table I. Note that the horizontal axis is
reversed, to display the tail on the right side.

coefficient of variation of the cluster size (just dividing the
standard deviation and the mean of the difference between
s and a lower cutoff s′

cv , i.e., s − s′
cv) and compare with the

results expected for an exponential variable [42], we get that
cv turns out to be above the 95th percentile, which rules
out the exponential tail for any value of s′

cv . Thus, the tail
of the cluster-size distribution is not exponential. Similar
conclusions are reached if one uses as a test statistic the mean
of s − s′

cv divided by its maximum [46].

C. Lognormal fits

As the existence of a power-law tail does not rule out the
existence of a lognormal tail, and due to the low range of the
power-law tail, and due also to the fact that we have ruled
out the existence of a power law for small s, as a next step
we explore the performance of a lognormal fit. Concretely,
a lower-truncated lognormal (ln) distribution is given by a
probability density

fln(s) =
√

2

π

[
erfc

(
ln sln − μ√

2σ

)]−1 1

σ s
exp

(
− (ln s − μ)2

2σ 2

)
,

(4)

defined for s above the lower cutoff sln, with erfc the comple-
mentary error function, and μ and σ the mean and standard
deviation of the associated untruncated normal distribution
[eμ turns out to be the scale parameter θ of fln(s) and σ its
shape parameter].

We fit this truncated lognormal distribution to our popu-
lation data extending to lognormals the method introduced
in Refs. [15,47] for (continuous) power laws, consisting in
maximum-likelihood estimation plus a Kolmogorov-Smirnov
goodness-of-fit test [17]. Although in recent years the recipe
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Fit to aggregated data
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FIG. 8. Empirical probability density of rescaled cluster sizes
(s/〈s〉) aggregated for diverse values of � (100, 200, 400, and 800 m),
in the ball approach. The axes have been transformed to evaluate
the goodness of the lognormal fit (Table I, continuous line). Note
that both axes are doubly logarithmic. Data are the same as those in
Fig. 6(a) for the ball approach.

of Clauset et al. [5] has become very popular for power-law
tails, we prefer the more intuitive approach of Refs. [15,17,47]
(the reasons for our choice derive in part from the results
of Refs. [14,18] and also from the present research). The
extension of the method to lognormals has also been used in
Ref. [17]. At the end, we arrive to optimal values of the three
parameters sln, μ, and σ , which are included in Table I.

We see in the table how, in contrast to the power-law tail,
the lognormal fit covers a considerable range of data, with
a rather small value of sln (from 2 to 50 inhabitants, which
leads to fits valid for more than four orders of magnitude
in population) and a relatively large nln (either nln � N or
nln > 2000). Inadequacy of the lognormal to fit the smallest
values of s is expected due to the fact that the lognormal is a
continuous distribution and s is a discrete variable.

The performance of the fits can be visually appreciated
from Fig. 5; however, in order to stress the lognormal be-
havior, we apply a transformation which should lead to a
linear plot in the lognormal case (see Fig. 8). This consists
in representing

− ln{ln[eμ fln(eμ)] − ln[s f (s)]} versus ln ln
s

eμ

(restricted to s > eμ, to avoid the overlap with the branch
s < eμ) or, equivalently, {ln [eμ fln(eμ)] − ln [s f (s)]}−1 versus
ln s − μ in additional logarithmic scale on each axis. Note that
f (s) refers to the empirical estimations of the density whereas
fln(eμ) refers to the theoretical distribution evaluated at s = eμ

(so, both μ and σ need to be estimated from data); note also
that both axes are doubly logarithmic. Indeed, from Eq. (4) we
get

− ln ln

[
eμ fln(eμ)

s f (s)

]
= −2 ln ln

s

eμ
+ ln(2σ 2),

which is a straight line with slope −2, in the variables defined
above. We see in Fig. 8 how the straight behavior is more

apparent than in the usual log-log plot of f (s) versus s (Fig. 5),
so we have an additional visual support for the lognormal
fit in front of the power law. In fact, an additional shift
by 2 ln ln〈s〉 is applied in the figure, in order to collapse
the different distributions, which are merged into a single
one.

D. Scaling to fix the lognormal parameters

From Table I one also realizes that the lognormal scale
parameter eμ increases with the grid or ball size � but the
shape parameter σ keeps constant, roughly (from 2.5 to 3,
except for the largest �). We now take advantage of the
fact that the cluster-size distributions display scaling [at least
approximately; see Fig. 6(a)]. Therefore, for the different data
sets (corresponding to different �) we can rescale s as s/〈s〉
(as in Fig. 8), and then merge the different data sets into a
single one, to which we can fit the lognormal distribution. The
results in Table I confirm that a single lognormal can fit the
rescaled distributions corresponding to different �. Denoting
the new value of the parameter μ as μ′ (corresponding to
the rescaled data), and taking into account the simple relation
between the original and the rescaled data, we can express
the value of μ of the original (not rescaled) distributions as
μ = μ′ + ln〈s〉, which shows indeed that μ increases with
�, as 〈s〉 increases with �. Summarizing, and approximating
the results from the table, we can write eμ � 〈s〉/e4.8 and
σ � 3. For the dependence of 〈s〉 on �, using the data-collapse
optimization method explained in Ref. [41], we find 〈s〉 ∝
�0.8; nevertheless, the uncertainty of this exponent is rather
large.

E. Power-law fits and comparison with lognormal

If one insists in fitting a power law to the tail of the
distribution (taking advantage of the fact that the tail of a
lognormal becomes asymptotically a power law, the tail being
understood as the power-law tail defined by the logarithmic-
coefficient-of-variation test as calculated above) we find ex-
ponents roughly close to but below β = 2 (Zipf’s value;
see Table I); nevertheless, for the reasons mentioned above,
we consider the power-law fit as anecdotic and prefer the
lognormal fit, valid for a much larger range (Table I).

In fact, we can make a quantitative comparison between
power-law and lognormal fits. For the power-law tail one
already knows that the lognormal fit has to yield a likelihood
at least as large as the one given by the power law (when
both are fitted over the same range), but this difference is not
significant (this is what the cv test is about, allowing one to
define the power-law tail in the range s > sPL). In this sense,
the power law always wins over the lognormal. However, we
are interested in fitting not just a short power-law tail, but as
much as possible of the bulk of the distribution (including the
tail). So, on the one hand we have (model 1) the lognormal
fit, in the range s � sln, and on the other hand (model 2)
we have to consider the power-law tail complemented by
the lognormal fit from sln to sPL. Note that model 2 yields
four parameters (μ and σ plus sPL and β, considering sln as
fixed), whereas model 1, the single lognormal, only has two
parameters (μ and σ ). In mathematical terms, the two models
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TABLE II. Model comparison between single lognormal fit
(model 1, with two parameters) and lognormal bulk plus power-law
tail (model 2, with four parameters). Differences are computed as
model 2 minus model 1. The outcome always favors the simpler
model 1, lognormal. Results for the chi-squared test explained in the
text (see also [11]) applied to model 1 are also included and confirm
that the lognormal fit cannot be rejected.

� 	 ln L̂ 	AIC 	BIC χ 2 Model 1

1◦ −1.269 6.538 18.15 0.0012
2◦ −1.105 6.209 17.91 0.0009
4◦ −0.632 5.264 16.55 0.4684
8◦ −1.381 6.761 17.35 0.8624
16◦ −1.603 7.207 16.11 0.9272
32◦ −0.610 5.220 10.03 0.8631
111 m −1.152 6.305 18.19 0.0006
222 m −1.380 6.760 18.75 0.2616
444 m −1.158 6.316 17.56 0.6692
889 m −1.446 6.893 17.66 1.2255
1778 m −2.179 8.358 17.76 0.6197
3556 m −1.221 6.441 12.11 0.0000
100 m −1.030 6.060 18.58 0.1532
200 m −1.413 6.826 18.72 0.0147
400 m −1.346 6.692 18.22 0.2874
800 m −1.364 6.728 17.66 1.3501
1600 m −1.492 6.983 16.68 0.5327
3200 m −1.658 7.317 13.04 0.3306
Municip. −1.559 7.118 16.76 0.0054

can be expressed as f1(s) = fln(s) for s � sln and

f2(s) =
{

fln(s) for sln � s � sPL

fPL(s)nPL/nln for s > sPL,

where the factor nPL/nln ensures normalization [note that we
do not impose continuity of f2(s) at s = sPL, that would reduce
the likelihood of the resulting fit].

We can compute the difference in log-likelihoods of both
models as

	 ln L̂ = ln L̂2 − ln L̂1 =
nln∑
i=1

[ln f2(si) − ln f1(si )]

(we only number the clusters with s � sln, and, in increasing
order, s1 � s2 � · · · � snln ); however, as the two models coin-
cide in the range sln � s < sPL, the comparison of likelihoods
only needs to be done at the tail, s � sPL, and thus

	 ln L̂ =
nln∑

i=nln−nPL+1

[ln fPL(si; β, sPL) − ln fln(si; μ, σ, sPL)],

where we have made explicit the dependence on the param-
eters. Note that for the lognormal we have replaced its lower
cutoff sln by sPL; this is what allows us to eliminate the factor
nPL/nln that multiplied fPL(s) as in this way both distributions
are normalized in the range s � sPL.

As expected, this difference of log-likelihoods turns out to
be negative (see Table II), which means that model 1 (single
lognormal) would be favored; however, this comparison does
not take into account the different number of parameters. If
we introduce the Akaike information criterion, AIC = 2k −

2 ln L̂, where k is the number of parameters, we get 	AIC =
4 − 2	 ln L̂, which is positive, favoring more clearly the
lognormal model (Table II again). The Bayesian information
criterion, BIC = k ln nln − 2 ln L̂, leads to 	BIC = 2 ln nln −
2	 ln L̂, with the same conclusion. In any case, the lognormal
fit is preferred.

Note that when only the tail is compared the power law
has one parameter whereas the lognormal has two, which
favors the former; however, considering the whole range s �
sln, the situation is reversed, as the power-law tail combined
with the lognormal bulk has four parameters, which favors
the single lognormal, despite the fact that the difference in
log-likelihood does not change. Note also that the difference
in AIC does not depend on the number of data in the fit,
whereas 	BIC does; in fact, the more data, the better the
simple (lognormal) fit.

Finally, in order to allow some comparison, we apply the
same test as in Ref. [11], which is Pearson’s chi-squared test.
We consider just two classes, sln � s < sPL and s � sPL, and
compute x2 = ∑2

k=1(Ek − Ok )2/Ek , where Ok is the observed
number of clusters in the kth class (either nln − nPL or nPL) and
Ek is the expected number of clusters from the lognormal fit,
which is either (1 − qtail )nln or qtailnln, with qtail the probability
that the lognormal fit assigns to the tail. This is calculated as

qtail = erfc

(
ln sPL − μ√

2σ

)/
erfc

(
ln sln − μ√

2σ

)
.

The results, included in Table II, show that the values of x2 are
in all cases too smalle to reject the lognormal fit.

F. Dragon-king effect

A remarkable fact is that, although the cluster associated to
the city of Barcelona could be considered to have the status
of a dragon king (in Sornette’s sense of a very large outlier
in s [48]), with a population much larger than that of the
second largest cluster (at least fivefold larger, depending on
�), with a clear deviation therefore with respect to Zipf’s law
in terms of the rank-size representation, this does not cause
the rejection either of the lognormal fit or of the power-law
tail for the cluster-size distribution. In other words, in terms of
the distribution of sizes, the presence of the dragon-king effect
does not preclude the validity of the lognormal and power-law
fits (whereas, in terms of the rank-size representation, those
fits should be rejected, due to the incompatibility of the sizes
for rank equal to 1 and 2).

We can go one step further and study the influence of the
largest cluster on the distribution, just removing it. Starting
with the lognormal fit, the results show very little change,
with very small variation in the parameters sln, μ, and σ with
respect the original case (dragon king not removed). This is
not unexpected, as the lognormal fits contain a large number
of data (nln is high) and the influence of the dragon king is
in any case small. If we try to fit a power law for the tail of
the distribution of sizes using the same initial range as the
original case (s > sPL), the power-law fit is not rejected, but
the values of the parameters show some change (typically the
change in the exponent β is smaller than 0.1, but in one case it
gets larger than 0.3, not shown). This is also expected, as the
power-law range is much smaller than the lognormal range,
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FIG. 9. Comparison of the original distribution of cluster sizes
f (s) with the distribution of cluster sizes obtained when the values
h of the population of each cell are randomized between occupied
cells. The less interesting case in which the values of h are ran-
domized between all cells (occupied and unoccupied) is also shown.
The example shown corresponds to the grid-in-km approach, with
� = 222 m. Data in the y axis multiplied by integer powers of 10, for
clarity sake.

so in the power-law fit the weight of the dragon king becomes
larger.

Nevertheless, if we apply the logarithmic-coefficient-of-
variation test to the data with the dragon king removed we
obtain a rather different picture. The removal of the largest
cluster decreases the variability of the distribution, which
yields a smaller coefficient of variation, which causes the
coefficient to cross to the significance region before (i.e., with
much less data in the tail). So, the data with the dragon king
removed have a shorter power-law tail (the new value s∗

PL
becomes larger than the original sPL, and the number of data
in the tail verifies n∗

PL < nPL). The shorter power-law range
leads to a larger value of the exponent, which is an indication
in fact of the curvature of the tail and an additional support for
the superiority of the lognormal fit.

G. Origin of the large variability in city sizes

Our approach allows us to investigate the origin of the
broadness of the distribution of the size of population clusters
(i.e., the size of cities, in our definition). In the grid approach,
the distribution f (s) arises from the sum of the number of
inhabitants h of each cell [with a distribution given by f (h)]
along each cell; so, f (s) depends both on f (h) and on the
distribution of the number of cells per cluster (directly related
to cluster area); nevertheless, this is not enough, as one needs
to take into account that the values of h are not independent
from cell to cell, i.e., there are spatial correlations in the values
of h (highly populated cells tend to be surrounded by highly
populated cells, and reciprocally). This is in fact an obvious
fact, but we can demonstrate the relevance of correlations in
the values of h eliminating these correlations and looking for
the resulting f (s).

We eliminate the correlations just reshuffling the values of
h among occupied clusters; this keeps the distribution f (h)

and the spatial extent of clusters unchanged. The results are
displayed in Fig. 9, showing that the resulting randomized
f (s) is less broad than the original f (s); in particular, no sign
of an approximate power-law tail with exponent close to 2
is found, leading to the conclusion that the main cause of
the large variability in city size (and the cause of the rough
Zipf-like behavior) is spatial correlation. This means that the
(fractal) shape of cities (in a two-dimensional projection)
is not enough to explain their population distribution. Note
also that in both cases (original clusters and clusters with
population in cells randomized) the distribution of cluster
areas is the same. Above we mentioned the advantages of
the ball approach over the grid approach; however, notice
that this reshuffling procedure can only be performed under
the grid approach, so both approaches can be considered as
complementary.

V. CONCLUSIONS

Population data of high spatial resolution allow one to
locate individuals in space and to build spatial clusters of
them. If the locations of individuals correspond to their res-
idence place (as it is in our paper), these clusters constitute a
natural definition of human settlements or, broadly speaking,
cities. We have scrutinized the distribution of the number of
individuals in the clusters obtained in this way (natural-city
size) with up-to-date data-analysis tools.

On the one hand, scaling analysis allows us to rule out the
existence of a power-law size distribution with exponent α >

1 for the smallest cities; on the other hand, the logarithmic-
coefficient-of-variation test shows that a power-law tail has
a very limited range of applicability. Instead, a lognormal fit
holds for a considerable part of the data and does not only
yield a higher likelihood than a model joining a lognormal part
in the bulk plus a power-law tail, but also has less parameters,
which makes the lognormal to be clearly supported by model
comparison using AIC or BIC.

Obviously, we do not dispute that the U.S. population
distribution, as measured from its census, is better described
by a power law than by a lognormal at its tail, as claimed in
other studies [11,12]. But it could be that the bad performance
of the lognormal at the tail of the U.S. city distributions is
due to the fact that it is a pure (untruncated) lognormal which
is fitted, and not a truncated one, as used here. In any case,
our example shows clearly that other data sets and/or other
definitions of cities can lead to a better characterization by
(truncated) lognormal distributions. This implies that univer-
sality [49] does not seem to be a characteristic of city-size
distributions, as also found for other complex systems, for
instance, wildfires [17,50].

Our spatial-grid based approach also allows us to stress
the importance of spatial correlations in the broadness of the
city-size distribution; in other words, knowledge of the area
occupied by cities together with the distribution of individuals
in small grids does not allow us to explain the number of
inhabitants in cities. Finally, we have seen how, although our
largest cluster (associated to the city of Barcelona) has the
status of a dragon king, it does not have an important influence
on the city-size distribution. The reason is that, under the
distribution-of-sizes representation (in contrast to the rank-
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size approach), the largest cluster counts just as one single
realization of the random variable (in contrast to more than
1 × 106 counts of individuals from that cluster in the other
approach), and, thus, it has a very small statistical weight.

In a further step, one can fit to the data a power law
truncated also from above (a power law defined in a range
spl1 � s � spl2, where these parameters are optimized by the
fitting [15,17]). This leads to exponents α in the range 1.6 to
1.8, valid for several orders of magnitude (between 3 and 4),
starting at values of s around 500 or higher. In some cases, the
upper truncation point turns out to be above smax (the largest
cluster), which means that the fitting method is not able to dis-
tinguish the power-law tail (which has a somewhat different
power-law exponent β). In any case, the lognormal fit turns
out to be valid in a wider range, and it is thus preferred.

In a future work one could compare the performance of
the lognormal with that of a double power law [17], which
has been proposed for other Zipf-like systems [51,52]. We
believe that, although our results have been obtained for a
single region (due to the availability of high-resolution data),
their validity is much more general (there is nothing special
about Catalonia, the region under study). However, at this
point this is just a conjecture that needs to be confirmed when
other high-resolution data sets become available.
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APPENDIX

For comparison of visualization procedures, part of the
results in Fig. 5 for the distributions of cluster sizes are shown
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FIG. 10. Same results as in Fig. 5, represented in terms of the
rank-size relation. The size (vertical axis) has been multiplied by
integer powers of 10, for the sake of clarity. Continuous lines are the
truncated lognormal fits translated into the rank-size representation
(the mathematical expression is not lognormal anymore but involves
the inverse of the error function).

here in terms of the rank-size representation (see Fig. 10).
The fits shown are the same as in Fig. 5, translated into the
rank-size representation; so, the cluster-size distribution is
fitted (and not the rank-size relation). Notice that a good fit
for the cluster-size distribution (p value above 0.20) also looks
good in the present representation, except for the lowest ranks
(largest sizes). The reason is that, when fitting the cluster
sizes, the largest cluster (for instance) is just a single point,
and does not influence very much the resulting fit (it does not
change very much if the largest cluster has size 1 × 106 or
2 × 106, roughly). However, in the rank-size representation,
changes of several thousand (compared to populations of
1 × 106) are critical and can lead to the rejection of any fit.
Essentially, to fit the rank-size relation (taking the rank as
the random variable instead of the size) one would need one
parameter for each value of the rank (for its smallest values,
which are the ones containing more statistics). See Ref. [39].
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