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ABSTRACT
Bicontinuous interfacially jammed emulsion gels (“bijels”) represent a new class of soft materials made of a densely packed monolayer of
solid particles sequestered at the interface of a bicontinuous fluid. Their mechanical properties are relevant to many applications, such as
catalysis, energy conversion, soft robotics, and scaffolds for tissue engineering. While their stationary bulk properties have been covered in
depth, much less is known about their behavior in the presence of an external shear. In this paper, we numerically study the dynamics of a
bijel confined within a three-dimensional rectangular domain and subject to a symmetric shear flow sufficiently intense to break the material.
Extensive numerical simulations reveal that the shear flow generally promotes the detachment of a sizable amount of particles from the fluid
interface and their accumulation in the bulk. Fluid interfaces undergo large stretching and deformations along the flow direction, an effect
that reduces their capability of entrapping particles. These results are supported by a series of quantitative indicators such as (i) curvature of
the fluid interface, (ii) spatial distribution of the colloidal particles, and (iii) fluid flow structure within the microchannel.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0021016., s

I. INTRODUCTION

Bijel represents a remarkable example of the composite soft
porous material made of bicontinuous domains of two immiscible
fluids (such as water and oil) frozen in a rigid state by a monolayer
of colloidal particles irreversibly trapped at the fluid interface.

Such a material, first predicted by pioneering the lattice Boltz-
mann (LB) simulations1 and then realized in the lab,2–8 has been
proposed for a variety of applications, ranging from energy stor-
age and molecular encapsulation4,6,9 to catalysis and tissue engi-
neering.2,3,8,10 A distinctive property of bijels is the arrested domain
coarsening, a process in which the demix of a binary fluid is inhib-
ited whenever colloidal particles, wetting both liquids, are adsorbed
onto the fluid interface. Since the energy cost necessary to remove
these particles is generally several orders of magnitude higher than
the thermal energy,1,11 the colloidal assembly jams at the interface
and locks the system into an amorphous glassy-like configuration.12

Manufacturing and design of a bijel remains a rather diffi-
cult task since its realization depends on careful control of sev-
eral key physical parameters, such as the size and volume frac-
tion of the particles, their affinity toward the two liquids, and
liquid–liquid surface tension. Numerical simulations are essen-
tial to this scope since they provide direct access to experi-
mental parameters, which can be selectively tuned in order to
explore the kinetic pathway leading to the formation of the
bijel. In addition, the physics of this material can be almost
exclusively investigated by means of suitable computational mod-
els due to the complex structure of the governing equations
involved.

Theoretical studies performed so far have investigated the
routes to achieve a stable bijel in bulk samples1,11,13,14 and only more
recently in a confined region such as the thin fluid film;15–17 whereas
its rheological response under shear has been experimentally exam-
ined in Refs. 18 and 19. In this context, it has been shown that the
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breakup of the structure is achieved through an intermediate step in
which the interface is fluidized and the bijel is allowed to move.19

In this paper, we present new large-scale simulations address-
ing the case where a bijel, confined within a three-dimensional rect-
angular channel, is subject to a symmetric shear flow sufficiently
strong to cause its breakup. The physics is numerically studied by
using LBsoft,20 a recent multiscale lattice Boltzmann (LB) code built
for large-scale simulations of colloidal fluids. Our results show that
the shear is generally capable of removing a considerable num-
ber of colloids from the fluid interface toward the bulk fluid, thus
yielding to further domain coarsening and loss of interfacial area.
Fluid domains are found to preferentially align along the direction
imposed by the shear flow and to attain a size comparable to the
length of the channel. Such dynamics flattens the initial corrugated
interface, and at high shear, it considerably diminishes the global
curvature of the resulting colloidal fluid. Finally, particles favor the
formation of a shear banding arrangement of the flow profile far
from the walls. Those adsorbed at the interface maintain their ori-
entation set by the wetting angle, while those accumulating in the
bulk constantly spin and move around due to coupling with the
surrounding fluid.

This paper is organized as follows. In Sec. II, we outline the
LB approach used to simulate the physics of a bijel by also provid-
ing further details about computational performances. In Sec. III,
we discuss numerical results, considering a bijel confined in a three-
dimensional channel. Its response under shear is quantified in terms
of the structure of the fluid flow, colloidal position, and orientation
in the fluid and curvature dynamics of the fluid interface. Some final
remarks conclude the paper.

II. THE MODEL
The physics of the bijel is simulated using LBsoft,20 an open-

source software developed for solving the hydrodynamics of col-
loidal systems.13,14,21–23 LBsoft essentially couples a Shan–Chen lat-
tice Boltzmann approach,24–26 used to integrate the continuity and
the Navier–Stokes equations for multiple fluid components with
surface tension, with a discrete particle dynamics scheme to solve
the Newton’s equations of momentum and angular momentum,
tracking the dynamics of an arbitrarily shaped rigid body. Here, we
shortly outline the method and refer to Ref. 20 for more details.

In the Shan–Chen model, the two components of a binary fluid
are described by two discrete sets of distribution functions f ki (r, t)
(k = 1, 2) representing the probability of finding a “fluid particle”
on a lattice site r at time t moving at velocity ci along a predefined
set of discrete speeds. LB soft employs a three-dimensional 19-speed
cubic lattice (D3Q19) in which 19 discrete velocities ci (i = 0, . . ., 18)
link mesh points located at distance Δx (first neighbors) and

√

2Δx
(second neighbors). The local density ρk(r, t) of the kth component
and the total momentum of the mixture ρu = ∑kρkuk are given by
the zeroth and the first order moment of the distribution functions,
i.e., ρk(r, t) = ∑i f

k
i (r, t) and ρu = ∑i∑k f

k
i (r, t)ci.

The dynamics of f ki is governed by the following set of discrete
Boltzmann equations:

f ki (r + Δtci; t + Δt) = (1 − ω)f ki (r; t) + ωf eqi (ρ
k
(r, t),u(r, t))

+ Ski (r, t), (1)

in which f eqi are local equilibrium distribution functions computed
as a second order expansion in the fluid velocity u,

f eqi = ωiρ[1 +
u ⋅ ci
c2
s

+
uu : (cici − c2

s I)
2c4

s
], (2)

where cs = 1/
√

3 is the speed of sound, Δt is the lattice time step,
ω = 2c2

s /(2ν − c2
s ) is related to the viscosity ν of the mixture, I is the

unit matrix, and ωi is a normalized set of weights. In a D3Q19 lattice,
one has ω0 = 1/3, ω1–6 = 1/18, and ω7–18 = 1/36.27

Finally, the term Ski is a forcing contribution defined as

Ski (r, t) = f
eq
i (ρ

k,u +
FkΔt
ρk
) − f eqi (ρ

k,u), (3)

in which Fk is an extra forcing accounting for the interaction
between the two fluid components. It is given by

Fk(r, t) = Gcψk
(r, t)∑

i
ωiψk
(r + cit)ci, (4)

where Gc is a coupling constant controlling the interaction strength
between fluid particles. It is set to a positive value to promote phase
separation. Finally, ψk is an effective density term, which coincides
with the physical density of the fluid, ψk(r, t) = ρk(r, t).

Solid particles are modeled by following the approach initially
introduced by Ladd21,22 and further extended by Harting,13,14 in
which a closed curve mimicking the surface of a colloid is imple-
mented by means of stick boundary conditions, bouncing back the
density of the moving fluid and leaving the internal region of the
colloid fluid-free.

Their wettability at a fluid interface is modeled by filling each
solid node of a particle frontier with a virtual fluid density, taken as
the average value at the fluid nodes in the nearest lattice positions
(iNP). The virtual density of the kth component is given by

ρ̄ks (r, t) = (1 + ζ(r))
∑iNP wiρk(r + cit)

∑iNP wi
, (5)

where the factor ζ(r) tunes the local wettability of the solid node
located at r. If ζ is positive, the particle surface prefers the kth fluid
component, whereas if negative, it prefers the other one.

The equations of motion of a colloid of mass mp are then given
by

mp
dup
dt
= Fp, (6)

Ip
dωp

dt
= Tp, (7)

where up is the velocity of the colloid, ωp is its angular momentum,
and Ip is the moment of inertia. Finally, Fp and Tp are the force and
the torque acting on the particle, respectively.

The former one is, in turn, the sum of five different contribu-
tions accounting for (i) the force Fl ,p acting on the particle due to
momentum transfer of the surrounding fluid, (ii) the forces Fd ,p and
Fc ,p due to the change of a lattice node from fluid to solid (destruc-
tion of fluid) and from solid to fluid (creation of fluid), (iii) a repul-
sive force Frep, which inhibits interpenetration of pairs of colloids
as well as between colloids and walls, and, finally, (iv) a lubrication
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force Flub necessary to model the fluid flow effects between two par-
ticles when their distance falls below the lattice resolution. These two
terms are, respectively, given by

Frep,i =

⎧
⎪⎪
⎨
⎪⎪
⎩

−
∂

∂∣rij ∣
[K(2R − ∣rij∣)5/2

]
rij
rij

, ∣rij∣ < 2R

0, ∣rij∣ ≥ 2R
(8)

and

Flub,i =

⎧
⎪⎪
⎨
⎪⎪
⎩

−6πη R2

4 (
1
h −

1
hn
)(up,i − up,j) ⋅

rij
∣rij ∣

, h < hn
0, h ≥ hn,

(9)

where K is an elastic constant, rij = rj − ri is the distance between
i-th and j-th particles of radius R, h = |rij| − 2R, and hn is the cutoff
distance.

Similarly, the torque is the sum of three different terms, Tl ,p,
Td ,p, and Tc ,p, accounting for the angular momentum transfer of
the surrounding fluid and for the destruction and creation of fluid
due to particle motion over the lattice. Further details are given
in Ref. 20.

A. Numerical setup
Simulations are run over a three-dimensional domain of size

Lx = 128, Ly = 128, and Lz = 1024 under periodic boundary condi-
tions along the mainstream axis z [see Fig. 2(a)]. Flat walls are set
along the yz planes at x = 0 and x = Lx, and along the xz planes
at y = 0 and y = Ly. Here, no-slip conditions hold for the veloc-
ity field, and neutral wetting is set for the phase field ϕ = ρy−ρb

ρy+ρb
(ranging between −1 and 1), where ρy and ρb are the densities of
the two components. In addition, we have set Gc = 0.65, K = 20, and
hn = 1. The wall-particle repulsion has the same functional form of
Eq. (8) and is switched on when the distance between the center of
mass of particle and the wall is <7.5 lattice units.

We initialize the system in a mixed state with a small uni-
formly distributed noise with −0.1 < ϕ < 0.1 and with walls at
rest, and include N = 3600 solid spheres, of radius r = 5.5 lattice
units, randomly dispersed in the channel. Their wetting angle is θ
= 100○ (i.e., the angle where the Shan–Chen force is maximum),
which is assumed to be equal for all particles. Such a configuration
corresponds to a volume fraction,

φ =
VpN
VB
=

4
3πr

3
× 3600

128 × 128 × 1024
≃ 15%, (10)

a value sufficiently high to form a stable bijel at the steady state.
Thereafter, the walls at y = 0 and y = Ly are moved along the

opposite directions, the former with speed −u leftward and the latter
with speed u rightward, while walls at x = 0 and x = Lx are kept at
rest. This sets a shear rate γ̇ = 2u/Lx. Once a quasi-stationary state is
achieved, the shear force is turned off and the mixture is let to relax
toward its new equilibrium state.

The dynamic scheduling essentially consists of three separate
stages. In stage (1), after ∼1.5 × 105 time steps, a bijel is formed,
and this configuration is used as a starting point for the stage (2),
in which a symmetric shear, lasting for t = 5 × 105 time steps, is
applied. Finally, the shear is switched off and the simulation is run
for further t = 5 × 105 times steps.

The behavior of the bijel is then inspected by varying the speed
of the walls in the range 0.005 < uw < 0.02, corresponding to a shear

TABLE I. Run (wall-clock) time in seconds per single time step iteration, ts. Top three
rows: timings for the 128 × 128 × 1024 grid used in the article. Bottom three rows:
Timings obtained on a 256 × 256 × 2048 grid (for weak scaling analysis).

np ts (s)

128 0.29
256 0.19
512 0.12
128 2.30
256 1.22
512 0.65

rate γ̇ ranging from ∼4 × 10−5 to ∼1.5 × 10−3. If not otherwise
stated, parameters of the model are set equal to the ones reported
in Appendix D of Ref. 20.

B. Computational performances
All simulations have been performed on the UK Archer super-

computing facility composed of a cluster of 4920 computing nodes
each with two 2.7 GHz, 12-core Intel E5-2697 v2 (Ivy Bridge) CPU,
and 64 GB of RAM. The nodes are connected by using a Cray Aries
network, with a DragonFly topology with a peak bisection band-
width of over 19 013 GB/s over the whole system. We have used the
Intel fortran compiler v18 with an optimization level of −O3.

In Table I, we report the wall-clock time measured as a function
of the number of cores for two lattices of size 128 × 128 × 1024 (top,
used in our simulations) and 256 × 256 × 2048 (bottom), to show the
weak scaling behavior of the code. Simulations were run using 128
cores for 1 × 106 time steps, resulting in 3.5 days of running time for
each case.

III. NUMERICAL RESULTS
The kinetic route as well as the mechanical properties to real-

ize a well-formed and stable bijel is rather well established and is
known to generally depend on surface tension of the mixture as
well as on the size, volume fraction, and wetting angle of the col-
loids. The structural integrity of the material is ensured, for exam-
ple, with colloids of size larger than the width of the interface,
at a volume fraction higher than 15%, and with a wetting angle
around 90○.11,28–31

Numerical simulations performed so far1,13,14 have studied
bijels within cubic lattices under periodic boundary conditions, but
only, more recently, in a confined region, such as a thin fluid film.15

In Fig. 1 (left), we show a typical example of such structured fluid in
a three-dimensional cubic box of linear lattice size L = 128, obtained
by dispersing N = 450 particles of radius r = 5.5 lattice sites (which
sets a volume fraction of ∼15%) adsorbed onto the interface and
wetting both components of a bicontinuous fluid. The characteris-
tic bulged soft porous matrix results from the arrest of the domain
coarsening due to irreversible particle adsorption and occurs after
approximately t = 2 × 105 time steps, in good agreement with
previous works.1,14,20

Recent experiments have investigated the response of this mate-
rial to an external solicitation, such as an oscillatory shear stress,19
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FIG. 1. A bijel results once a dense monolayer of colloidal particles adsorbs onto
the interface of a binary fluid and arrests the phase separation. It is equilibrated
after t ≃ 2 × 105 time steps within a periodic cubic lattice of linear size L = 128.
The volume fraction of the colloids is ϕ ≃ 15%. The green isosurface represents
the fluid interfaces, and the bulges indicate the colloids.

and have found that the bijel essentially undergoes a two-step yield-
ing process: in the first one, interfaces are fluidized by the shear flow
and destabilize the structure, while in the second one, the material is
permanently broken.

In Sec. III A, we focus precisely on the dynamics observed after
the breakup and provide a selected number of statistical indicators
to quantitatively assess the mechanical properties.

A. Confined bijel under shear
In Fig. 2, we show, for example, the evolution of a confined bijel

under a symmetric shear (γ̇ ≃ 3 × 10−4, vw = 0.02) in a dynamic
cycle. The shear is turned on once the bijel is close to its equilib-
rium (a) (a weak domain coarsening still occurs, see Fig. 6), and it is

turned off when the material resulting after rupture attains a quasi-
stationary state (c). Note, in particular, that the morphology of the
equilibrated bijel in the channel (a) is characterized by bicontinu-
ous fluid domains mixed with discrete ones stabilized by spherical
colloids, and closely resembles those reported in Ref. 15, in which
a detailed study of shapes obtained in the thin fluid film has been
reported.

Due to the high shear rate, two concurrent effects take place.
While highly anisotropic fluid domains, of size approximately half
of the channel length, form and align along the flow, a fraction
of colloids, initially sequestered at the fluid interface, detaches and
migrates away dragged by the fluid flow (b). This promotes con-
tacts among interfaces and allows for domain coalescence, favored
by the detachment of particles accumulating in the bulk of the
fluid. At the steady state, a single highly stretched fluid domain
lies along the channel, while colloids ceaselessly spin and travel
around transported by the fluid (c). Once the shear is turned off,
the relaxation only mildly affects the shape of the remaining fluid
domain, while particles progressively slow down, until the whole
mixture equilibrate (d). The tenuous differences between sheared
(c) and un-sheared (d) state suggest that the mixture has been
driven toward a long-lived configuration stable over weak per-
turbations, likely, a further minimum of the complex free energy
landscape.

In the following, we quantitatively characterize the dynamic
properties of such complex processes in terms of (i) fluid structure
and velocity profile within the channel, (ii) particle position and
orientation, and (iii) curvature dynamics of the fluid interface.

B. Fluid structure and velocity profile
In Fig. 3, we show a three-dimensional cross section of the

velocity field within the microchannel for γ̇ ≃ 3 × 10−4. The bidi-
rectional flow is higher near the walls and gradually weaker toward
the center of the device. Green rounded regions identify the instan-
taneous position of the colloids (whose interior is fluid-free), located
both in the bulk and close to the fluid interface. A typical velocity
profile, computed at different positions along the channel and medi-
ated along the y-direction, is provided in Fig. 4. It is “smoothed” over

FIG. 2. (a) Near-equilibrated bijel in a
rectangular box with colloidal volume
fraction ϕ ≃ 15%. (b) Once a symmetric
shear (here γ̇ ≃ 3 × 10−4, vw = 0.02)
is imposed, fluid domains progressively
stretch along the flow, which tears the
particles out of the interfaces and favors
domain coalescence. (c) At the steady
state, some colloids remain stuck at the
interface of a single elongated domain
while others are dispersed within the
bulk of the fluid. (d) Once the shear is
switched off, colloids move essentially by
diffusion and produce only weak modifi-
cations to structure of the domain. Snap-
shots are taken at (a) t = 0, (b) t = 105, (c)
t = 5 × 105, and (d) t = 106. Color map
ranges from −1 (blue) to 1 (yellow).
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FIG. 3. Three profiles of the velocity of
the fluid at different values of z along the
channel for γ̇ ≃ 3 × 10−4 (vw = 0.02)
at time t = 5 × 105. The z-direction is
periodic, while flat walls are set along
the x and y directions. In particular, the
wall at x = 0 moves leftward, the one at
x = Lx moves rightward, while walls at y
= 0 and y = Ly are both at rest. Arrows
indicate the direction of the fluid, while
the color denotes its magnitude. Green
circular regions represent colloids whose
interior is fluid-free.

the particle location, or, in other words, it is reconstructed by using
the truncated Fourier method, which cuts high frequencies of the
Fourier transform of the phase field emerging in the surrounding of
each colloid. Such a technique proves useful to unveil a clear shear
banding-like signature in the middle section of the channel, where
the speed decreases, while it correctly captures the rapid increase in
the velocity near the walls. This effect is very much likely due to the
colloids, whose presence prevents the formation of a fully developed
linear profile, such as the one of a single fluid under Couette flow.
Indeed, the shear banding effect persists as long as particles obstruct

FIG. 4. Left axis: Velocity profile of the fluid averaged along the y direction at three
different positions along the z axis (the same as the ones of Fig. 3), at time t = 5
× 105. Profiles are smoothed in regions where colloids are present since the fluid
in their interior is absent. The dotted line represents a linear profile observed at
the steady state of a colloid-free single fluid component. Right axis: Distribution of
particles at z = 500. Higher peaks are approximately located where the velocity
profile displays local deviations.

the flow (far from the walls) and exhibits local deformations facing
the peaks of PN(x), capturing the position of the colloids.

This picture suggests that colloids play a crucial role in control-
ling the mechanical response of a bijel (and of the resulting sheared
colloidal fluid), subject to an externally applied forcing. Hence, there
is a significant scope for monitoring their dynamics, in particular,
position and orientation at the fluid interface and in the bulk of the
mixture.

C. Particle positions and orientation
In Fig. 5, we show a typical arrangement of colloids under shear,

both at the interface (in green) and in one of the fluid components
(in dark).

As discussed in Sec. III A, an intense shear flow favors the
detachment of a relevant fraction of particles initially stuck at the
fluid interface and their migration toward the bulk of the fluid. This
dynamics can be quantitatively monitored by the cumulative distri-
bution of colloids CN in the mixture, defined as CN(ϕ) = ∫N(ϕ, r)dr

FIG. 5. Typical arrangement of particles in the fluid. Particles sequestered at the
fluid interface (in green) have their reference axis (along x) approximately per-
pendicular to the interface, whereas the ones located in the bulk are randomly
oriented. The vector n indicates the normal at the local fluid interface.
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(see Fig. 6). If γ̇ = 0, such a process is very mild. Indeed, the initial
sigmoidal profile undergoes mild modifications over time, since a
weak domain coarsening still occurs and a few particles move toward
the bulk (where ϕ ≃ ±1). In the presence of shear, the detachment
is enhanced as γ̇ increases, and the profile of CN significantly sharp-
ens, becoming essentially “digitized” for high values of the shear rate.
Once the shear is turned off, particle migration proceeds, which is
driven only by domain growth, except where the high shear rate has
led the mixture to a stable state, such as the one in Fig. 2(d).

Such complex dynamics also significantly affects the orienta-
tion of the particles in the mixture. In Fig. 5, we show, for instance,
a typical configuration of colloids both at the fluid interface and in
the bulk, each one with a local frame of reference. While, for the
particles segregated at the fluid interface, it is fixed (i.e., the local x-
axis is essentially parallel to the normal n at the interface), for those
in the bulk it looks randomly oriented, since it generally depends
on the complex coupling between the local transfer of momentum
and torque of the surrounding fluid to the particle. This behavior is
nicely captured by the “eyeball” scatterplots shown in Fig. 7, where
the cosines of the angles formed between each axis ri (i = 1, 2, 3) of
the reference frame of a particle and the normal to the fluid inter-
face n are reported. The angles are defined as cos(αi) = ri ⋅n

∣ri∥n∣
, where

r1 = (1, 0, 0), r2 = (0, 1, 0), and r3 = (0, 0, 1). If the alignment is
perfect, α = 0, hence, cos(α) = 1.

The red spot in the lower right part of the eyeball indicates that
the x-axis of the particles located at the fluid interface lies approx-
imately parallel to n, since cos(α1) ≃ 1, cos(α2) ≃ 0, and cos(α3) ≃
0 (see also Fig. 5), while those located in the bulk distribute more
uniformly on the sphere. The progressive shrinking of the spot for
increasing values of the shear rate suggests, once again, that a signif-
icant fraction of colloids move from the interface toward the bulk,

although the orientation of the former ones, set by the wetting angle
θ = 100○, remains essentially unvaried under shear.

The results discussed so far outline a picture in which the com-
plex interplay between solid particles and fluid interfaces dramati-
cally influences the topological properties of the material. The lat-
ter ones are also critically controlled by the fluid interface, which
exhibits a rather complex dynamics under shear. Further insight
about its behavior can be gained by tracking the evolution of its
interface curvature over time and for different values of shear rates.
Section III D is dedicated to elucidate this point.

D. Interface curvature dynamics
Previous studies on colloidal mixtures32 have shown that the

probability distribution function (pdf) of the local curvature p(k)
provides a further indicator capturing features such as fluid domain
coarsening, inhomogeneities in the local particle volume fraction,
and the underlying dynamics of the fluid interface.

In Fig. 8, we investigate the dynamics of the magnitude of the
unsigned curvature, defined as k = ∣∇ ⋅ ∇ϕ

∥∇ϕ∥ ∣. In order to provide
an approximate global evaluation of k in the system, we recon-
struct the interface in regions occupied by solid particles through
a truncated Fourier method. This allows us to remove inevitable
artificial effects due to the corrugated structure of the particles,
which would overestimate the contribution of higher curvatures and
to smooth the profile, thus providing an easier assessment of its
trend.

In the absence of shear, the curvature undergoes negligi-
ble modifications over time, indicating that, although a weak
domain coarsening still occurs, the bijel is overall stable within the
temporal window investigated. Increasing the shear rates favors a

FIG. 6. Cumulative distribution of col-
loids within the bijel at different simula-
tion times for (a) γ̇ = 0, (b) γ̇ ≃ 8×10−5,
(c) γ̇ ≃ 2×10−4, and (d) γ̇ ≃ 3×10−4. In
(b), (c), and (d) the shear force is applied
from t = 0 to t = 5 × 105, while it is
switched off at t ≥ 5 × 105. A gentle
sigmoidal profile at lower shear rates is
replaced by a sharper one at higher val-
ues of γ̇ since a larger shear favors the
detachment of particles from the inter-
faces and their accumulation in the bulk.
Once the shear force is turned off, such
a process proceeds, which is driven by
domain coarsening, except in (d) where
domain growth is terminated.
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FIG. 7. Scatter plot of cosines of the
angles α1, α2, and α3 formed between
the normal at the fluid interface and each
axis of the frame of reference of a parti-
cle, taken at t = 6.5 × 105 for (a) γ̇ = 0,
(b) γ̇ ≃ 8 × 10−5, (c) γ̇ ≃ 2 × 10−4, and
(d) γ̇ ≃ 3 × 10−4. Color bar represents
the fluid phase around the particles.
Reds spots (i.e., particles at the fluid
interface) squeeze for increasing shear
rates and accumulate where cos(α1)
≃ 1, cos(α2) ≃ 0, and cos(α3) ≃ 0,
meaning that their x-axis is parallel to the
normal at the interface.

transition from the initial broad-shaped structure toward a more
localized distribution at lower values of curvature, since the shear
stretches and flattens the interface along the flow direction (z in our
simulations). A perfectly flat interface would result in a Dirac-like
distribution centered in k ∼ 0. Once the shear is turned off, the pdf
only mildly shifts toward lower values of k, except for the case shown

in Fig. 8(d) in which a long-lived stationary state has been already
attained under shear and no further relevant shape modifications
occur.

It is finally worth noting that the late time unsheared pdfs can
be best fitted by a stretched exponential function whose exponent is
generally higher than 1, regardless of the presence of a shear force.

FIG. 8. Normalized probability distribu-
tion function of the curvature k at differ-
ent simulation times for (a) γ̇ = 0, (b)
γ̇ ≃ 8 × 10−5, (c) γ̇ ≃ 2 × 10−4, and
(d) γ̇ ≃ 3 × 10−4. In (b), (c), and (d),
the shear force is applied from t = 0 to
t = 5 × 105, while for t ≥ 5 × 105, it
is switched off. In the absence of shear
flow (γ̇ = 0), the interface curvature
undergoes negligible modifications over
time, and p(k) gently decays from low
values of k toward high ones. Increas-
ing γ̇ flattens the interface and raises the
peak of p(k) at low values of k. Once the
shear is turned off, the relaxation dynam-
ics only mildy affects the interface curva-
ture, especially the one resulting from a
high shear rate. At late times, p(k) is best
fitted by a stretched exponential function
∼ e−(k/A)

B
, where the exponent B is

always larger than 1.
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A similar trend has been also reported in unbound bicontinuous
colloidal mixtures in which dumbbells (modeled by the immersed
boundary method) are confined at the interface. Here, however,
unlike the bijel, the exponent of the steady-state interfacial curva-
ture was found sensibly lower than 1. Although we currently lack a
fully convincing explanation, a potentially relevant reason giving rise
to such a difference may lie in the fact that the colloidal–dumbbell
mixture was not found to exhibit any arrested phase separation,
thus, probably allowing for an alternative dynamic evolution of the
fluid interface. In addition, the presence of confining walls, as well
as different wetting angles and shapes of colloids, may also partially
influence the relaxation of the interface.

IV. CONCLUSIONS
In summary, we have numerically investigated, by means of

large-scale lattice Boltzmann simulations, the dynamic response of a
bijel confined within a three-dimensional rectangular channel, sub-
ject to a symmetric shear sufficiently intense to induce the rupture
of the material.

Our results show that the shear flow promotes the “melting” of
the material by suppressing the arrested coarsening (the mechanism
leading to the formation of the bijel), essentially because a sizable
fraction of the colloidal particles fails to stick to the interface. While
particles detach from the fluid interface, coarsening proceeds and
domains stretch and elongate along the shear direction, attaining a
steady-state of size comparable with the longest dimension of the
channel. Such an effect is increasingly prominent at higher rates.

The complex dynamic behavior of the material is studied in
terms of a series of quantitative indicators, such as the fluid struc-
ture in the channel, the spatial distribution of colloids, and the
curvature of the fluid interface. The fluid flow exhibits a character-
istic shear-banding-like signature, basically due to colloids, which
hinder the formation of a linear velocity profile. Particles also
display distinctive features. While those sequestered at the inter-
face, perhaps counterintuitively, maintain their orientation (essen-
tially set by the wetting angle) even under shear, the ones in the
bulk, whose number increases at higher shear rates, spin around
due to the momentum and torque transfer from the surrounding
fluid. These processes produce significant modifications of the fluid
interface, which turns from a highly corrugated entangled arrange-
ment with large curvature to a smooth and rounded one with low
curvature.

Our work sheds light on the mechanical response of a con-
fined bijel subject to shear flow capable of jeopardizing the structural
integrity of the material. A route for preventing such a dramatic
event, already partially explored in stabilized monojels,33 may con-
sider the use of attractive colloids (or a combination of attractive and
repulsive ones), which could potentially suppress the melting of the
material by providing further resistance to shear deformations.
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