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Abstract

A regression model is proposed for the analysis of an ordinal response vari-
able depending on a set of multiple covariates containing ordinal and potentially
other types of variables. The ordinal predictors are not treated as nominal-scaled
variables, and neither transformed into interval-scaled variables. Therefore, the
information provided by the order of their categories is neither ignored nor over-
stated. The proportional odds cumulative logit model (POCLM, see McCullagh
(1980)) is used for the ordinal response, and constrained maximum likelihood es-
timation is used to account for the ordinality of covariates. Ordinal predictors are
coded by dummy variables. The parameters associated with the categories of the
ordinal predictor(s) are constrained, enforcing them to be monotonic (isotonic or

antitonic).

A monotonicity direction classification procedure (MDCP) is proposed for clas-
sifying the monotonicity direction of the coefficients of the ordinal predictors, also
providing information whether observations are compatible with both or no mono-
tonicity direction. The MDCP consists of three steps, which offers two instances

of decisions to be made by the researcher.

Asymptotic theory of the constrained MLE (CMLE) for the POCLM is dis-
cussed. Some results of the asymptotic theory of the unconstrained MLE devel-
oped by Fahrmeir and Kaufmann (1985) are made explicit for the POCLM. These
results are further adapted to extend the analysis of asymptotic theory to the con-
strained case. Asymptotic existence and strong consistency of the CMLE for the
POCLM are proved. Asymptotic normality is also discussed. Different scenarios
are identified in the analysis of confidence regions of the CMLE for the POCLM,
which leads to the definition of three alternative confidence regions. Their results
are compared through simulations in terms of their coverage probability. Simi-
larly, different scenarios are identified in the analysis of confidence intervals of the
CMLE and alternative definitions are provided. However, the fact that mono-
tonicity is a feature of a parameter vector rather than of a singular parameter

value becomes a problem for their computation, which is also discussed.



Two monotonicity tests for the set of parameters of an ordinal predictor are
proposed. Omne of them is based on a Bonferroni correction of the confidence
intervals associated with the parameters of an ordinal predictor, and the other
uses the analysis of confidence regions.

Six constrained estimation methods are proposed depending on different ap-
proaches for making the decision of imposing the monotonicity constraints to the
parameters of an ordinal predictor or not. Each one of them uses the steps of the
MDCP or one of the two monotonicity tests. The constrained estimation meth-
ods are compared to the unconstrained proportional odds cumulative logit model
through simulations under several settings.

The results of using different scoring systems that transform ordinal variables
into interval-scaled variables in regression analysis are compared to the ones ob-
tained when using the proposed constrained regression methods based on simula-
tions.

The constrained model is applied to real data explaining a 10-Points Likert

scale quality of life self-assessment variable by ordinal and other predictors.



Impact statement

The contributions in this thesis have an impact on both inside and outside
academia. In academia, this work makes a contribution to the literature about the
analysis and treatment of ordinal variables in regression models. In the regression
analysis literature there are methods for the treatment of either ordinal responses
or ordinal predictors. However, there is no literature about the treatment of
an ordinal response and ordinal predictors simultaneously. This thesis proposes,
among other statistical tools, a method for the treatment of an ordinal response
in presence of ordinal and possibly other types of predictors in regression analysis.
This method and all of its by-products can be extended to any type of response

variable, increasing the value of its potential impact.

The undertaken approach requires assuming monotonic effects of ordinal pre-
dictors, which is also of interest to investigate in its own right. There is also a
surprising lack of literature associated with the analysis of monotonic effects of
ordinal predictors in multiple regression analysis. In this regard, a monotonicity
direction classification procedure is proposed as well as two monotonicity tests.
The former serves as a tool to make informed decisions about the direction to
be used when imposing monotonic effects or even to drop the monotonicity as-
sumption. With respect to the latter, and to my knowledge, the monotonicity
test approaches that have concentrated the main interest of the research com-
munity are related to testing regression monotonicity in non-parametric models,
considering a single (non-ordinal) predictor and/or taking into account only one
monotonicity direction, which this thesis attempts to tackle by proposing two
different monotonicity tests for ordinal predictors where others of any type are
allowed in a parametric model. This helps researchers assess the validity of im-
posing monotonicity constraints or make inference about the association between

some ordinal predictor and the response variable, being a novel contribution.

In general, this thesis demonstrates the application of a constrained regression
model, the monotonicity direction classification procedure and the monotonicity

tests as an effective set of tools to bridge the existing regression methods and



the need of specific treatment of ordinal data that includes ordinal predictors in
the regression models framework, leading to a more informed regression modelling
process. This will probably drive the advancement in the treatment of ordinal
data in models belonging to other frameworks.

Regarding applications of the proposed methods outside academia, they are
useful for regression analyses where monotonic effects of ordinal predictors are
assumed, when these are the main point of interest, or when imposing monotonic
associations between an ordinal predictor and the response variable improves in-
terpretability. For example, in the finance industry they can be used to analyse
the credit rating of bonds, in the public administration industry to study the
country risk, in the education industry to identify the factors affecting the level of
education attained by a given group of interest, etc. The proposed methods can
be applied in any industry where regression models are used to conduct analyses

of an ordinal response with ordinal predictors.
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Chapter 1

Background

1.1 Introduction

The treatment of ordinal data has been subject of a long-standing controversy,
mainly because of the partial agreement on the use of a wider set of permissible
statistics for ordinal-scaled variables that are transformed into variables of interval
scale type. In Section 1.2, this controversy is examined starting from the asso-
ciation proposed by Stevens (1946) between different scale types and the statis-
tics that are allowed for each one of them (the so-called permissible statistics),
which includes the ordinal scale type. This is referred to as the measurement-
statistics association. Thereafter, many other authors have argued for or against
it. For example, Lord (1953), Labovitz (1967, 1970, 1971) argued against the
measurement-statistics association proposed by Stevens (1946), considering it too
restrictive. However, others discredited the analyses with which these authors’ ar-
guments against the measurement-statistics association were built, such as Mayer
(1970) and Vargo (1971), although it did not necessarily mean that they supported
Stevens proposal without special considerations. For instance, Mayer (1970) spec-
ified the type of transformations and permissible statistics that could be used for

variables of ordinal scale type.

In general, there are two common ways to address the treatment of ordinal vari-
ables. These approaches are classified in two cases. The first case is to transform

an ordinal variable into one of interval scale type, which is a common practice that

21



22 Introduction

is done to gain access to a wider range of permissible statistics. The second case
is to use a transformation that does not take into account the order of categories,
then the range of permissible statistics is reduced. In the first case the informa-
tion provided by the order of categories is overstated, i.e. it is assumed that it
allows to compute the distance between categories, but one of the main features
of ordinal variables is that these distances are undetermined. In the second case,
the information provided by the order of categories is ignored. The implications
of these transformations are discussed in Section 1.3.

The methods that transform an ordinal variable into an interval-scaled variable
are called scoring systems. These assign values to the ordinal categories according
to different criteria, of which a subset is presented in Section 1.4. Some of these
systems use information from the ordinal variable itself (see, for instance, Ed-
wards and Kenney (1946), Veenhoven et al. (1993), Bross (1958), Brockett (1981),
Van der Waerden (1952), Lehmann and D’abrera (1975), Blom (1958), Tukey
(1962), Brockett (1981), Agresti (2010), and Sections 1.4.1 to 1.4.6), whereas
others incorporate information from other variables also (see Hensler and Stipak
(1979), Martin and Maes (1979), Young (1981), and Sections 1.4.7 to 1.4.9).

Given that these approaches overstate the information provided by the cate-
gories of an ordinal variable, there are some methods that treat the ordinal vari-
able as it is, without the need of any previous transformation. This is the case of
some regression models that were specially defined for ordinal responses, which is
discussed in Section 1.5.

There is not a unique way of accounting for the order of categories of a response
variable (see Agresti (2007) and Section 1.5.2). Among all the options of regression
models for ordinal responses, one of the most popular ones is the proportional odds
cumulative logit model (POCLM, see Section 1.5.3). The POCLM is part of the
family of generalised linear models proposed by McCullagh and Nelder (1989) (see
Section 1.5.1) and is the regression model to be used throughout this thesis to deal
with the modelling of an ordinal response.

Most of the attention in the literature about ordinal variables has been focused

on the response variable. However, little has been said about the treatment of or-
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dinal predictors (OPs). This is discussed in Section 1.6, where some methods are
examined. For instance, the penalised maximum likelihood approach proposed by
Tutz and Gertheiss (2014) is studied in Section 1.6.1. This approach penalises the
coeflicients associated with the categories of an ordinal predictor (OP) to make
them closer when they violate monotonicity of effects. Given that it uses penal-
isation rather than constraints, an analysis of its implications on the parameter
estimates associated with an ordinal predictor is included as part of Section 1.6.1,
which shows that non-monotonic effects can be penalised but they never get to
be monotonic. Hence, getting monotonic effects for the ordinal predictors turned
to be one of the characteristics to be considered in the proposed models of this

thesis.

An alternative approach to deal with ordinal predictors is isotonic regres-
sion, also known as monotonic regression (see, for example, Dykstra et al. (1982),
de Leeuw et al. (2009), Stout (2015), and Section 1.6.2). This uses order restric-
tions on the parameter estimates assuming a particular direction and the number
of parameters is equal to the number of observations. An important restriction is
that all of the predictors are restricted to be associated with monotonic effects,
which is a characteristic that is not required in the proposed models of this thesis.

The isotonic regression approach will be discussed in Section 1.6.2.

Another contribution to the subject was made by Rufibach (2010), who pro-
posed to use constrained maximum likelihood to estimate the effects of ordinal
predictors with response variables that could be continuous, binary, or repre-
sent censored survival times. This method is discussed in Section 1.6.3. With
this approach, isotonic effects are achieved, but antitonic effects are not allowed.

Therefore, this issue was also considered in the proposed models of this thesis.

It is also possible to assume that an unobserved continuous variable underlies
an ordinal variable. This unobserved continuous variable is called latent variable.
A latent variable model (LVM) for ordinal variables is presented in Section 1.7 (see
Bartholomew et al. (2011)). Moustaki (2000) proposed a class of latent variable
models for ordinal manifest (observed) variables, which is presented in Section

1.7.2. This method will be used later as a dimensionality reduction technique in
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the regression model context to transform a set of ordinal predictors into a single
latent variable representing their information (Section 6.3).
The final section of this chapter, Section 1.9, will outline the structure of the

thesis.

1.2 The controversy on permissible statistics for

the ordinal scale measurement

One of the broadest definitions of measurement is the numeric assignment
to objects or events based on rules (Stevens, 1946). Therefore, different rules
may lead to different scales of measurement. According to Stevens (1946), when
defining a scale of measurement, it is necessary to specify the rules with which the
numeric assignment can be done, identifying the mathematical transformations
after which the scale type remains the same and the statistical operations that
could be applied to it.

Stevens (1946) proposes four types of scales of measurement. They were de-
fined considering what Stevens called the basic empirical operations, which are (1)
determination of equality, (2) determination of greater or less, (3) determination
of equality of intervals or differences, and (4) determination of equality of ratios.
In addition, for each scale type, Stevens assigned a mathematical group structure
and a set of permissible statistics. The mathematical group structure describes
the mathematical transformations that make the scale type to remain unchanged,
which are referred to as invariant transformations. The permissible statistics in-
dicate those statistics that are compatible with an scale type according to its basic
empirical operations.

The scale types are listed in Table 1.1 in ascending order according to the
field “Basic Empirical Operations.” This field associates the operations listed
in it with each scale type in a cumulative way, i.e., for a particular scale type
of interest, the determination of basic empirical operations includes not only the
one(s) associated with it, but also all those corresponding to preceding scale types.
Therefore, the wider the range of basic empirical operations can be determined,

the higher the scale type. For instance, the basic empirical operations of the
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ordinal scale type allow to determine equality and greater or smaller, whereas the
latter two operations are not possible for the nominal scale type. Therefore, in
this sense, the nominal scale type is at a lower level than the one of ordinal-scaled
variables. Correspondingly, interval-scaled variables are at a higher level than

ordinal-scaled variables.

Basic Empirical Mathematical Group Permissible Statistics
Scale Operations Structure (invariantive)
Nominal Determination of Permutation group Number of cases
equality ' = f(x) Mode
f(z) means any Contingency correlation
one-to-one substitution
Ordinal Determination of Isotonic group Median
greater or less ¥ = f(z) Percentiles
f(z) means any
monotonic increasing
function
Interval Determination of General linear group Mean
equality of intervals =’/ = ax + b Standard deviation
or differences Rank-order correlation
Product-moment correlation
Ratio Determination of Similarity group Coefficient of variation
equality of ratios 2 =ax

Table 1.1: Stevens’ classification of types of scales of measurement.

According to Stevens’ proposal, each type of scale allows different sets of statis-
tical operations. The case of the ordinal scale type is a good example to illustrate
the meaning of permissible statistics. Ordinal variables provide information on
the order of their categories only, not on the magnitude of their distances. This
means that statistics like the median and percentiles are suitable for this kind of
scale type because they rely on frequencies and rank order only, whereas other
statistics, such as the mean and standard deviation, are not suitable for ordinal
variables because they do rely on knowledge that is absent in the ordinal scale
type. However, this measurement-statistics association is a source of controversy
as will be discussed later on in this section. Statistics associated with a partic-
ular scale type are considered as “permissible” by Stevens when they fulfil the

criterion of invariance under transformations in the corresponding mathematical
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group, where each mathematical group describes a set of functions associated with
the scale type, decreasing the range of possible transformations for higher scale
types. Note that Stevens uses the term invariant in a wider sense compared to the
same concept defined in some other textbooks, such as in Young and Smith (2005),

«

where “...the statistic ¢ is invariant to the action of the group G if its value does

not depend on whether x or g(z) was observed, for any g € G : t(z) = t(g(x)).”
However, Stevens associates the term invariant to the relative location of every
item instead. For instance, elements at (and lower to) the median of an ordinal
variable x keep their relative location after any transformation belonging to the
isotonic group defined as ' = f(x) with f(x) being any monotonic transforma-
tion; a data point at the mean of an interval-scaled variable will be located at
the mean after any transformation belonging to the general linear group and not
to the groups of transformations of lower level scale types such as the isotonic
and permutation groups. Once again, these statistics are shown in Table 1.1 in
a cumulative way, meaning that each scale type allows its corresponding set of
statistics together with all those of the lower ones. Conversely, each additional set

of statistics considered as “permissible” for each higher scale type should not be

used for variables classified in any lower scale type.

Based on this classification, the additional set of statistics that is made “per-
missible” when increasing the type of the scale from ordinal to interval or ratio
should not be used when analysing ordinal variables (or nominal). This comes
from the fact that the basic empirical operations for ordinal variables are the
determination of equality, and greater or less, which implies that the distance
between any pair of ordinal categories is not determined. When dealing with or-
dinal variables, the use of any of the permissible statistics in the additional set
of statistics for interval and ratio-scaled variables necessarily forces the researcher
to assume that something that is not originally present in the ordinal variable is
being exploited, i.e., it takes features from the ordinal scale type as information
despite the fact that it is not, leading to statistical results that are an artefact.
However, using these types of statistics is a common practice in many applications,

where, for instance, the labels of the ordinal categories are used as numeric values
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(for example, see Pasta (2009), Frederick and Jenkins (2015), Santina and Perez
(2003), and Hren et al. (2004)). By doing so, it would imply that the level of
information contained in ordinal variables is overstated because more knowledge
than the relative rank-order is needed to perform these statistics.

Restricting the number of permissible statistical methods in presence of ordinal
variables is a practice that has been criticised by many authors. In fact, one of
the first opponents to this restriction went even further by supporting the idea of
using statistics for interval data on nominal data. Lord (1953) used an example
where nominal data represented by the numbers that football players had to wear
on their uniform were treated as an interval-scaled variable, making his statement
“Since the numbers don’t remember where they came from, they always behave
just the same way, regardless.” one of the important arguments to be used by
subsequent antagonists to the measurement-statistics association.

Another important opponent to the restrictive use of statistical methods on
ordinal-scaled variables is Labovitz. In Labovitz (1967), the author analysed the
effect on statistical results produced by transforming ordinal data into interval
data. Data from hypothetical subjective responses to two types of therapy were

used (see Table 1.2).

Subjective Response to Therapy
-1 0|+ | ++ Total
Therapy A |12 |18 | 18| 9 57
Therapy B |18 |12 12| 3 45
Total 3013030 12 102

Table 1.2: Labovitz (1967) example: Hypothetical subjective responses to two
types of therapy.

Seven different ways to transform the ordinal responses to therapy (‘—’, ‘07,
‘+’, and ‘++’") into numbers were used to treat the ordinal data as interval data
by arbitrarily assigning numbers to the ordinal categories under the restriction of
being consistent with the original rank order. All of them transformed ‘-’ into
0, “++’ into 10, and the remaining categories ‘0’ and ‘+’ in different arbitrary

ways such as 1 and 2 correspondingly, or 1 and 9, 6 and 8, among others. Several
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statistical results coming from these different transformations were compared, such
as different measurements of correlation and some statistical tests. For example,

one of them was the Point-biserial r,;, correlation, which is defined as

MA—MB nanpg

Tpb = 5

Sp, n?

where M, and Mp are the means of the scoring system for therapies A and B
correspondingly, n4 and ng are their sample sizes, n = n4 + np, and s, is the
overall standard deviation. The Point-biserial r,;, correlation between the two
therapies ranged from 0.161 to 0.221 depending on the transformation that was
used, which was considered as a slight difference and used as evidence to support
the use of scoring systems to gain access to a wider range of statistical methods.

In Labovitz (1967), the impact of using an arbitrary monotonic assignment of
numbers was assessed. If one of the seven monotonic transformations is assumed
to be the ‘true’ one, then the correlation between each transformed variables and
the ‘true’ monotonic transformation can be understood as the degree in which
each transformation method is correct. In addition, significance tests for the dif-
ference between means were performed. Labovitz showed these results to conclude
that no matter the monotonic transformation the researcher choose, it will always
be highly correlated to the unknown but true one. Therefore, statistical analy-
ses should not be affected too much by any arbitrary monotonic transformation,
making it feasible and advisable in order to reach a wider range of “permissible”
statistics.

One of the main Labovitz’s conclusions is that an arbitrary monotonic number
assignment to ordinal categories does not produce an important degree of alter-
ation in statistical analyses results. This supports the use of parametric statistics
after transforming ordinal data to interval data even though strict adherence to
Stevens’ scale types of measurement is not met. Furthermore, it is argued that
being inflexible to scale type transformations may lead to an important waste of
information based on a highly restricted choice of statistical methods and tests.
However, he made such general conclusions based on just one applied example,

making his methodology not particularly convincing.
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Few years later, in 1970, Labovitz published the article “The Assignment of
Numbers to Rank Order Categories”, in which he reinforced the idea of that there
is little difference in the statistical analyses results after transforming ordinal vari-
ables into interval ones by doing arbitrary but monotonic assignments of numbers
to rank order categories (Labovitz, 1970). The relation between the ordinal-scaled
variable occupational prestige and the ratio-scaled variable suicide rates was anal-
ysed to assess to what extent statistical results change when treating the ordinal
variable as interval in several arbitrary ways. The number of occupations was 36
and their prestige scores indicate the rank of each occupation relative to the others,
ranging from 7 to 97. This score was considered as one of the possible transforma-
tions, another one was the assignment of consecutive integers (1-36) and 18 extra
monotonic transformations with (constrained) random values ranging from 1 to
10,000 were generated completing a total of 20 options for the ordinal to interval
arbitrary transformation. The analysis was based on the same methodology as in
Labovitz (1967) explained before. Nevertheless, Mayer (1970) criticised Labovitz’s
analysis by arguing that “all he has shown is that the Pearson r is fairly stable
with respect to non-linear monotone transformations on the numbers assigned to
ranks.” In addition, the sample correlation coefficient is invariant under changes
in scale and location, making unclear how this statistic could serve as a measure to
assess the positive and negative effects of ordinal to interval scale transformation.
Mayer agreed with the fact that the way in which ordinal data is transformed into
interval data is not important as long as it is monotonic and the statistics to be
used are invariant under changes in scale and location. However, when they are
not invariant, arbitrary assignment of numbers to ranks is not adequate for some
statistic analyses, such as multiple regression and discriminant analysis, where the
results are clearly affected by variable transformations. Moreover, Vargo (1971)
discredited Labovitz’s methodology by stating that he did not demonstrate the
benefits of ordinal to interval transformation but proved a strong association be-
tween monotonicity and correlation, which is expected because the latter results
from the construct of the analysis. The high correlations between scoring systems

in Labovitz’s example respond to the combination of (i) monotonicity constraints,
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(ii) their large range differences, and (iii) the large number of ordinal categories.
Therefore, the numbers generation process was forced to be a quasilinear trans-
formation method. In the paper “In Defense of Assigning Numbers to Ranks”
(Labovitz, 1971), the discussion continued by emphasising the virtues of gaining
access to a wider range of permissible statistical methods and by stating that
Mayer and Vargo’s counterarguments were based either on misinterpretations or

extreme counterexamples.

A different approach against Stevens’ proposal is that of stressing the distinc-
tion between measurement theory and statistical theory, questioning the associa-
tion of permissible statistics to scale types. Gaito (1980) discusses the importance
of measurement scales aspects for the use of some statistical methods, emphasising
that the assumptions of a particular statistical method follow from the correspond-
ing mathematical model and not from the measurement scales aspects. In addition,
he argues that the psychological meaning of a variable is not a matter of statistics,
therefore, the link between measurement scales and statistical procedures should
not be regarded as crucial. However, the measurement-statistics relationship has
been used in textbooks and other literature, which, in Gaito’s words, has led to
a misconception. The author concludes totally against this association by stating

that “Statistical procedures do not require specific scale properties.”

Velleman and Wilkinson (1993) discussed the association of measurement scales
to statistics from a conceptual point of view by making an extensive literature re-
view. They claimed that it is problematic to apply Stevens’ rules when determining
the type of statistics that are suitable for the variables at hand, because they do
not always fall exactly into the scale types defined in Stevens (1946). Depending
on the context, a single variable can be treated as ordinal or interval. However,
classifying a variable into only one of the four scale types simplifies the concept
of measurement level so far as to be insufficient. In addition, the authors are in
favour of transforming data because the proper use of statistics depends on model
assumptions and not on variable scale features, and it has proven to be irrelevant

to statistical inference.

This is just part of a long-standing unsettled controversy.
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1.3 Changing the scale of measurement: some

implications

When facing the task of analysing ordinal variables, there is a certain tendency
to either decrease or increase the level of measurement of these types of variables
by transforming them into nominal or interval-scaled variables correspondingly.
However, the proper use of the information provided by ordinality has called little
attention in some areas of statistics such as in regression analysis.

On the one hand, using statistical methods for nominal data when dealing with
ordinal variables leads to waste of information. This becomes palpable by the fact
that results are invariant to permutation of the categories, which means that the
order of the categories is not being exploited as it should. For example, using the
Pearson X? test of independence provides results that may be quite different from
those obtained using methods for ordinal variables (see Agresti (2010)).

On the other hand, using statistical methods for interval data when dealing
with ordinal variables is not advisable in some cases. This kind of applications of
statistical methods demands an ordinal to interval transformation of data. These
transformations are referred to as scoring systems, and defined as systematic meth-
ods for assigning numerical values to ordinal categories (Golden and Brockett,
1987). The ambiguity in the determination of the scores leads to the existence of
several scoring systems, which implies that it is necessary to make a choice that is
not straightforward for cautious analysts, because different scoring systems could
lead to different results (Casacci and Pareto, 2015). Despite the fact that scoring
systems are permissible by Stevens, when they are used in the data pre-processing
step to transform the scale type reaching a higher one (ordinal to interval trans-
formation), subsequent statistical analyses rely on information that is an artefact
of the selected method. Then, it should be of interest to analyse to what extent
the chosen scoring system could affect final results, which in practical applications
is a problem with unclear implications because it could actually produce a sig-
nificant effect or not. However, there are some problems with clear implications

when using scoring systems on a response variable. For example, when using Or-
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dinary Least Squares (OLS) regression on an interval response variable resulting
from the transformation of an ordinal response into a sequence of integers going
from 1 to its number of categories, then, at a given set of values for the pre-
dictors, the prediction will not be a set of estimated probabilities for the original
response categories, and probably it will not even be one of the scores. In addition,
other problems in the same context are associated with the so called “ceiling and
floor effects”, from which one of the most evident is that predicted values from
the OLS regression may fall out of the range of possible category scores (above
or below), which would imply the use of an additional method if the researcher
wants to adjust their range. Despite these limitations, OLS can be useful in this
context depending on the purpose of the analysis, such as the case of identifying
statistically significant effects, or making simple descriptions (see Agresti (2010)).
Therefore, using a scoring system as a way of getting access to statistical methods
that are suitable for interval data is not an indisputable approach when dealing

with ordinal variables.

1.4 Scoring systems

There are several scoring systems for transforming scale types from ordinal
to interval. In this section some of them will be presented, for which common
notation is used when it is possible. Some of these scoring systems will be used
later in sections 6.3 and 6.4.2 in order to compare their results against the ones of
the methods that will be proposed in the following chapters.

Consider an ordinal response variable Y with k categories, a sample size of
n with frequencies ni,ns,....,n; in the categories of Y. The total number of

k .
=1 1 and the sample proportions are

observations can be computed as n = )
denoted as {p; = n;/n}. Assuming that there is at least one observation for each
one of the k categories, then p; > 0 for all j.

The probability of response in category j is denoted as 7;, and the cumulative

probabilities are
P}:P(YSJ):Wl—f——f-?T], j:1,2,,]{7

AsY is an ordinal variable and assuming 7; > 0, then 0 < F} < F, < --- < Fj, =1,
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or

Fj_1<.Fj, j:1,2,...,k37

with Fy5 = 0 and F, = 1. The corresponding cumulative sample proportions are

denoted by {F}}, where

A

The general purpose of a scoring system is to assign numerical values to ordinal

categories, producing scores v; < vy < - -+ < Ug.

1.4.1 Linear score

The most obvious and simplest transformation is to use consecutive natural inte-

gers:
U1:1,U222,...,Uk:]{7, (142)

as the ones used in Likert scales (see for example, Edwards and Kenney (1946)).

The linear score has also been modified in different simple ways. One of them
is the one presented in Kalmijn (2013), where the linear scale is transformed into
a 0-10 scale to meet what Veenhoven et al. (1993) proposed in order to get one
common scale as a measure of happiness. Therefore, a k-points scale going from

1 to k as in (1.4.2) is transformed according to:

i1
v = 10‘17{?, j=1,2, ..k (1.4.3)

which is here referred to as the “Veenhoven” scoring system.
1.4.2 Ridit score

Another simple scoring system that allows to introduce the main one of this section
is based on the distribution of the observed Y. It uses the cumulative sample

proportions defined in Equation (1.4.1), with which the scoring system is:
Ulzpl,l}g:ﬁg,...,vk:ﬁk. (144)

A usual modification of (1.4.4) introduced by Bross (1958) is the average cu-

mulative proportion, also known as ridit. According to Bross (1958), the term
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“ridit” was chosen by analogy with “probit” and “logit”, and its first three letters
stand for Relative to an Identified Distribution. The ridit for category j is the
proportion of individuals or observations in categories 1 to j — 1 plus one half of

the proportion in category j, more formally,

j—1
1
ridit; = Y _pe+ P =12k (1.4.5)
c=1

In terms of the sample cumulative proportions

~ ~

F, 1+ F;
2
WithE:p1+-~-+pj and Fy = 0.
By definition, ridit; for j = 1, ..., k results with the same order as the ordinal

categories and their weighted average with respect to the sample distribution is

k k 7j—1 1 k 7j—1 1 k
> pyridit; = p; (ch + §pj> =D pi) petg ) p;
7j=1 7=1 c=1 7=1 =1 7=1
k k
2 e+ 2y (i p)

2 2

= 0.5,

which guarantees that their weighted average with respect to the sample distri-
bution will always be the same, 0.5, meaning that the transformation affects the
dispersion of the resulting ridits in order to assign numbers to the original cate-

gories.

1.4.3 Midranks

Midranks are averages of the ranks that would be assigned to the observations in
a category if they could be overall ranked without ties. The midrank for category
j is the average between the number of individuals or observations in categories 1
to j — 1 increased in one unit and the number of those falling in categories 1 to 7,
more formally,

(i) + 1+ 300 e
5 ,

midrank; =
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The addition of 1 in the numerator ensures that any midrank; ranges between
1 and n. Whereas midrank scores fall between 1 and n, ridit scores fall between
0 and 1. Their close relation from the conceptual point of view is also true in

mathematical terms,

-1 : - .
midrank; = (e ne) +21] + D ey e _n D o1 Ne/T ‘;‘ ny ) ne/n 05

. (2 S ne/n+ m/n) 05

2

=n X ridit; + 0.5

and, therefore

midrank; — 0.5

(1.4.6)

TZdZt] =
n

which shows a linear relationship between the two scoring systems (Agresti, 2010),

making ridits and midranks equivalent for most tasks.

1.4.4 Normal scores and conditional median scoring

Consider an unobserved continuous latent variable that follows the standard nor-
mal distribution with cumulative distribution function denoted by ®(-), and as-
sume this variable to underlie the ordinal variable Y. Then, normal scores based

on ridits are
v; = & (ridit;), (1.4.7)

where 7idit; is the ridit score for category j defined in equation (1.4.5). This
is also known as the Conditional Median Scoring. It can be thought of as an
approximation of the median of the standard normal distribution for the range
delimited by ®(p;_1) and ®~*(p;), with ®*(py) = —oo and ®~*(p;,) = oco.
Originally, Brockett (1981) proposed this scoring system in a more general
fashion, where the researcher could assume any particular cumulative distribution
G of an unobserved continuous latent variable assumed to underlie Y. The au-
thor showed that the score v; is equal to the conditional median of G~!(z) given

category j under the assumed cumulative distribution G.
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For example, consider the continuous uniform distribution U(a,b) with cumu-

lative density function (CDF)

% fa<z<b
G(x) = (1.4.8)

0 otherwise,

and its inverse
G Hr)=a+(b—a)z. (1.4.9)
If (1.4.9) is used in Equation (1.4.7) instead of ®~!(z) with @ = ridit;, then

’Uj = Gil (Tld’ltj)

=a+ (b— a)ridit;. (1.4.10)

Therefore, for a = 0 and b = 1, v; = ridit;, i.e., ridits can be considered as a

conditional median scoring using a continuous uniform distribution U (0, 1).

1.4.5 Rank-based normalisation procedures

Several scoring systems are based on different ways of determining the probabilities
where ®!(-) is assessed (Agresti, 2010). For instance, normal scores based on

midranks {r;} (defined in Section 1.4.3) are

7"'.
=9 L 1.4.11
b=t (2. (1411)

which are a rank-based normalisation using the Van der Waerden’s formula (see
Van der Waerden (1952) and Lehmann and D’abrera (1975)).
Another scoring system that approximates the percentiles of the standard nor-

mal distribution is

- 0.375
gl (T2 1.4.12
Y ( n+0.25 ) ! (1412)

which is known as the Blom scoring system (see Blom (1958) and Harter (1961)).
Equation (1.4.7) is also known as the rankit scoring system (see Ipsen and

Jerne (1944)), usually expressed as

.~ 0.5
v =0 (Tﬂ ) . (1.4.13)
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Another similar version of rank-based normalisation procedures was proposed
by Tukey (1962), which was declared as a “simple and surely an adequate approx-

imation to what is claimed to be optimum,”:

v = o (%) . (1.4.14)

All these scoring systems use the inverse of the cumulative standard normal
distribution. However, they could be based on the inverse of another cumulative

distribution function.

1.4.6 Conditional mean based on density

Hensler and Stipak (1979) proposed the use of some scoring systems to estimate
interval scale values for survey item response categories. They presented two types
of systems, one based on observed frequencies and distributional assumptions, and
another one based on estimations from criterion variables. Among the scoring
systems of the first type, two were discussed: the ridit score, which was already
presented in Section 1.4.2, and a second one that will be explained in this section.
The scoring system based on criterion variables will be summarised in the next

section.

The second scoring system based on observed frequencies and distributional
assumptions uses the observed category proportions as estimates of areas under the
probability density function of an underlying variable associated with the observed
ordinal variable, which is assumed to be distributed under the standard normal

distribution.

Each cumulative proportion F’J determines two boundaries assuming the in-
verse of the cumulative standard normal distribution ®~!(-), being ®~*(F}) and
®~Y(F;_y), with Fy = 0 and F}, = 1, and therefore ®~'(F) = —oo and &~ (F},) =
oo correspondingly. The idea is to compute an average for each of these paired
values. However, as it is not possible to compute the average for the first and
last pair, e.g., between —oco and —1.96 for a category with a proportion of 5%,

the method uses the ordinates of the probability density function of the standard
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normal distribution, ¢(-). Then, the scores are computed as follows:

b — OO (F1)) — ¢(@7(F))) (1.4.15)
; ” . 4.

This method assigns the mean value for the segment of the density function cor-
responding to category j as its category value. This is why this method is known
as the conditional mean scoring system.

Brockett (1981) showed that the conditional mean scoring system can be gen-

eralised to assume any distribution function using

1 G E)
v; = —/ zg(z)dx (1.4.16)
Pj G=1(Fj-1)
1 [
= —/ G~ (u)du, (1.4.17)
Pj JR_,

where G is an assumed particular cumulative distribution of an unobserved con-
tinuous latent variable that is assumed to underlie the ordinal variable Y, G71(+)
its inverse, and g(z) its corresponding density function.

Both (1.4.16) and (1.4.17) can be thought of as the conditional mean of G7!(-)

for a given category j under the assumed cumulative distribution G.

1.4.7 Estimation from criterion variables

Hensler and Stipak (1979) also proposed the use of other scoring systems under the
assumption that some observed variable(s) provide information about the values
to be assigned to the categories of an ordinal variable. For example, the observed
values of the variable “temperature in celsius degrees” could give some informa-
tion about the values to be assigned to the ordinal variable called “individual
thermal sensation” with categories “low”, “medium”, and “high”. In this context,
the variable that is used to assign values to the ordinal categories is called the
“criterion variable” (temperature) and the ordinal variable is called the “target
variable” (thermal sensation). More than one criterion variable is also possible.
The estimation from criterion variables uses the relationship between the criterion
and target variables.

In the single criterion variable case, the categories of the target variable simply

take the conditional mean value of the criterion variable as their scale given an
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ordinal category. This is the result of fitting a linear regression model with the
criterion variable as the dependent variable and the target variable as the inde-
pendent one in the form of a set of dummy variables as usual. Another example of
this is to treat a “feeling thermometer” used to assess the performance of a pres-
ident ranging from 0 to 100 as interval-scaled and use it as the criterion variable
to define the interval scale of a categorical target variable representing different
levels of assessment: “very good job”, “good job”, “fair job”, or “poor job.”

When the single criterion (dependent variable) is determined by a target (inde-
pendent) variable and other independent variables, it is advisable to use multiple
regression (or some other method) to estimate the effects of several independent
variables upon the criterion variable, including the target variable represented
by a set of dummy variables. Thus, the dummy variables’ regression coefficients
are treated as category value estimates relative to the zero point defined by the
omitted category.

In the multiple criterion variable case, a criterion index is calculated based on
the weighted sum of the criterion variables. There are two options to compute the
weights: (i) they are arbitrarily determined (e.g., equal weights), or (ii) they are
estimated using canonical correlation analysis (CCA) to maximize the strength of
the relationship of the criterion index with the target variable. Canonical correla-
tion analysis can be seen as a generalisation of multiple regression analysis in the
sense that it uses more than one independent variable, i.e., CCA aims to find a
linear association between two sets of variables (Martin and Maes, 1979).

Sometimes the criterion variables are conceptually homogeneous and highly
correlated, or the researcher decides to equally weight them, then a weighting
procedure is not absolutely necessary. However, in general, the researcher might be
unsure about the conceptual homogeneity of the criterion variables, and therefore
a weighting technique is necessary. Then, CCA is used to simultaneously estimate
weights for the criterion variables and category values for the target variable.

In CCA, two sets of variables are used as input data. In this case, the criterion
variables form one set of input variables, and the other set is formed by k£ —

1 dummies representing the target variable of k categories. CCA estimates a
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canonical variate for each of the two sets. In this application, those are the target
canonical variate and the criterion canonical variate, each of which is a linear
weighted sum of their corresponding set of variables. These weights are chosen to
maximise the correlation between the canonical variates. Therefore, CCA finds
the set of weights for the category dummies that maximise the correlation of the
target canonical variate with the criterion canonical variate, where the weights for

the category dummies are the category values.

1.4.8 An overview of optimal scaling

Optimal scaling (OS) is another technique for scaling ordinal (or nominal) variables
from information provided by interval-scaled variables. This technique aims to
represent each observation of a categorical variable, either nominal or ordinal, by
a parameter. The measurement scale of the variable to be transformed implies the
use of constraints on the estimation of each parameter, e.g., for ordinal categorical
variables, order constraints should be imposed (Young, 1981).

The following overview of the optimal scaling procedure is based on Jacoby
(2015) mainly.

OS is a procedure for obtaining x* from x and y, where x is a qualitative
vector of observations x1, s, ..., T, to be transformed, y is a quantitative vector
with elements y1, s, ..., y,, and x* is the vector of optimally scaled values of x,
to be estimated considering the observed correspondence between x and y.

The vector x* is defined to be maximally correlated with the entries in y,
while taking into consideration the measurement characteristics that are assumed
for x. The term measurement characteristics is composed by three key concepts:
(1) measurement level, (ii) measurement process, and (iii) measurement condition-

ality, which are described as follows:

measurement level: is associated with the level of x. As OS works for categor-

ical x, this vector can be either nominal or ordinal.

measurement process: is associated with x*. It indicates how the observations

within a given category of x must be assigned to x*. These:
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e must be assigned to the same optimally scaled value in x* if the process

is discrete, or

e can be assigned to different values within a closed interval, if the process

is continuous.

measurement conditionality: separates a data set into partitions. Within
each partition it is possible to make meaningful comparisons among ob-

servations and also among scores.

Let’s assume that the measurement conditionality is considered “fixed” because
the vector x comprises a single partition. Therefore, there are only four combina-
tions of measurement characteristics between measurement level and measurement

process.
The nominal level - discrete process case.
The only measurement restriction on the entries in the vector of optimally scaled

values x* is:

=T — T = 1. 1.4.18
J 7 7 ( )

Here, the OS procedure assigns the conditional means of the y;’s given each ob-

servational category of x to the entries in x*.
The ordinal level - discrete process case.

The measurement restrictions on the entries in the vector of optimally scaled values

x* are:

T =T = T =7 (1.4.19)

T <x; = x; <] (1.4.20)

The procedure computes the conditional means as in the previous case and then
applies a monotonic transformation to the conditional means by using a numerical
method proposed by Kruskal with its secondary approach for the treatment of tied
values (see Kruskal (1964)).
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The nominal level - continuous process case.

The measurement restrictions on the entries in the vector of optimally scaled values

X* are:
_ * * K *
Li = Xj xmax,lower < Ly, xj < wmin,higher' (1421)
Where x,,. jower 18 the largest entry in x* that is assigned to any zj # x5, ;, but

that is still smaller than either zj or z;. Conversely, = is the smallest

:(nin,higher
entry in x* that is assigned to any zj, # x;, z;, but that is still greater than either
x; or xj. In other words, categories from x now correspond to intervals of real
numbers in x*.

One option to perform OS in this case, the nominal-continuous, is the two-step

“pseudo-ordinal” procedure (see De Leeuw et al. (1976)):

Step 1 The data are treated as nominal-discrete to obtain ', with which an ordering

of the categories in x is established.

Step 2 The categories are treated as ordinal-continuous (see next section) to obtain

the interval of optimally scaled values for each of the x;’s.

The next section describes the the general treatment for the ordinal-continuous

case.
The ordinal level - continuous process case.

Like in the ordinal-discrete case, the OS transformation for ordinal-continuous
data is performed by carrying out Kruskal’s monotonic transformation, but now
with the primary approach for the treatment of tied values (instead of the second
one), which requires that if y; < y} then z¥ < z¥ for the tie 2; = /. The
transformation is applied to the individual y;’s, rather than to the conditional
means.

According to Young (1981), OS can be seen as a numerical assignment to
observation categories based on the maximisation of the relation between the ob-

servations and the statistical model taking into account the measurement levels

of the data. In fact, it is common to see optimal scaling applications using y
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as a vector of predicted values from a statistical model, for example, as part of
the alternating least square (ALS) algorithm (see, for example, Mair and Leeuw
(2008) for some applications).

Details about these optimal scaling procedures, monotonic transformations and
treatments of tied values can be found in, for example, Kruskal (1964), De Leeuw
et al. (1976), and Jacoby (2015). The OS techniques are presented in general
terms only in this section to include them as part of the methods used to transform
categorical variables into interval scaled-variables. In addition, OS techniques are
also used as part of algorithms such as “alternating least square with optimal
scaling” (see next Section 1.4.9), which extends the use of OS to cases where more
than one categorical variable is being transformed using a multiple regression
model (see the example of Section 1.4.9 using Multiple Optimal Regression via

Alternating Least Squares (MORALS)).

1.4.9 Alternating least square with optimal scaling (AL-
SOS)

The alternating least square algorithm works with two mutually exclusive and
exhaustive subsets of parameters: (i) the parameters of the model; and (ii) the
parameters of the data (or optimal scaling parameters). The general procedure of

the ALS algorithm is to alternate between two steps (Young, 1981):

Step 1 Obtain the least square estimates of the parameters in one subset while
assuming that the parameters in all other subsets are constant. This is called

the conditional least squares estimate.

Step 2 Replace the old estimates of these parameters by the new estimates and

then switch to another subset of parameters to apply step 1 again.

When the first step is performed on a subset of model parameters, it is re-
ferred to as the model estimation phase, and when it is performed on a subset of
parameters associated with the data, it is called the optimal scaling phase.

ALS also allows to perform multivariate analysis by noting that each subset

could be formed of several mutually exclusive and exhaustive subsets, where each
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variable is associated with one of them.
A more detailed description of the algorithm (based on Jacoby (2015)) uses
the following steps:

1. The variables are assigned initial optimal scale values, and the measurement

characteristics are set.

2. Least-squares estimates are obtained for the parameters of the statistical

model (model estimation phase).

3. If model fit has not improved over the previous iteration, terminate the

procedure; otherwise proceed with the following steps.

4. The predicted values from the statistical model are used to generate new

optimal scale values for the variables (optimal scaling phase).

5. Return to Step 2 and re-estimate the model using the updated optimally-

scaled variable values.

One of the main advantages of this algorithm is that the OS phase does not
depend on the type of statistical model used for the model estimation phase.
Therefore, given a specific data analysis situation, it is possible to use any suitable
statistical model in step 2.

An application of ALSOS is the Multiple Optimal Regression via Alternating
Least Squares (MORALS) algorithm, which can be used to fit a multiple regression
model to variables measured at a variety of levels (Young et al., 1976). There are
also many other applications such as ALSOS for nonlinear canonical analysis and
for nonlinear principal component analysis (see De Leeuw et al. (2009) for an R

package to handle these models).
An example of MORALS applied on politics.

An example in Jacoby (2015) has been replicated to show how the ALS algorithm
can be applied to multiple regression analysis with ordinal dependent and ordi-
nal independent variables. The example uses data from the Center for Political

Studies’ 1992 National Election Study (NES), the number of observations is 1,653.
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Consider the dependent variable “Choice” (a measure of relative candidate
preference ranging from —100 to +100) and the following three independent vari-
ables: “Party identification” (from 0 Strong Democrat, through 3 Independent,
to 6 Strong Republican), “Ideological self-placement” (from 1 Extremely Liberal,
through 4 Moderate, to 7 Extremely Conservative), and “Did nation’s economy
become better or worse over past four years?” (from 1 Much Better, trough 3

Stayed the same, to 5 Much Worse).

Optimal Transformation for variable:choice Optimal Transformation for variable:party

Optimally scaled values
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Figure 1.1: Example of Optimal Scores resulting from MORALS.

An ALSOS analysis is used in this illustration as a diagnostic test to determine
whether it is reasonable to treat these variables as of interval scale type or not,
which indeed are routinely treated like this arguing “practical purposes.” There-
fore, all of the variables are considered as measured at the ordinal scale type.
Then, the MORALS algorithm is used to estimate the regression parameters and
optimal scores for the dependent and independent ordinal variables. If the re-

sulting optimal scores for a variable are linearly related to the original scores (see
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Figure 1.1), then nothing is lost if they are treated as interval-level measurement
in this statistical analysis.

The upper-left plot shows the relationship between the original values of the
dependent variable and the ones resulting from its optimally scaled transformation.
Their relationship is clearly non-linear, because the differences in the transformed
values associated with extreme original values are much less strong than the ones
associated with the original values at the middle of their range.

Party identification (see the upper-right plot) shows a non-linear relationship
between its original coding and its optimally scaled values. Original values 1 and
2 are assigned to the same optimally scaled value (1.31), meaning that those who
classify themselves at intermediate categories between ‘0 Strong Democrat’ and
‘3 Independent’ are quite similar to each other in terms of their answers to the
other questions (variables in the model). Something similar happens with original
values 4 and 5, where those between ‘3 Independent’ and '6 Strong Republican’
are relatively similar to each other as well.

Economic assessments (lower-right) seems to produce big differences in the
second half of the scale but not much difference in the first. This means that
people assessing the economy as ‘5 Much Worse’ considerably differs from other in
the second half. In general, differences between adjacent categories decrease while
decreasing in the original coding of the variable (better assessment of economy). In
fact, those assessing the economy as ‘1 Much Better’ do not produce any difference
in its optimal scale value compared to ‘2 Better’.

Ideological self-placement is a special case. It is the only variable that shows
a nearly linear relationship between the optimally scaled scores and its original
coding. Meaning that the differences between the optimally scales values cor-
responding to adjacent original categories are almost the same regardless their
position in the original scale.

Jacoby (2015) concluded this analysis with the statement “these results suggest
that the usual practice of treating feeling thermometers, party identification, and
judgements about the American economy as interval level variables may, in fact,

be problematic.” A missing analysis in Jacoby (2015) is related to testing linearity.
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In some cases it is not that clear whether linearity is not met by the association
between the original scores and the resulting optimally scaled ones. For example,
for party identification (see the upper-right plot of Figure 1.1), and despite the
fact that the sample size is relatively large (n =1653), it could be the case that its
deviation from linearity is not significant at certain significant level, and therefore

linearity would not be rejected.

1.5 Some regression models for ordinal responses

Regression models for ordinal response variables can be considered as exten-
sions of one of the most popular regressions models for binary responses, the
logistic regression. These extensions account for k > 2 ordinal response categories
rather than only & = 2. The general structure of the link function remains the
same, the logit link function. However, there are several ways of defining the log-
its depending on how the category order is taken when determining probabilities.
As logistic regression is a particular model within a broader class of models, the
Generalized Linear Models (GLM), its general framework is the starting point in

this section.

1.5.1 Generalised linear models

Consider a vector of observations y having n components and a matrix X of
dimensions n X p representing the observed values of p explanatory variables for
the n observations. The vector y is assumed to be a realization of a random
response variable Y whose components are independently distributed with means
.

Under this setting, linear models can be defined as
E(Y)=p with p=Xg, (1.5.1)

where the elements of Y ~ N(u,0?), and B is a vector of p parameters to be
estimated from the data.

Generalised linear models (GLM) are used to study the relationship between
a response variable and a set of explanatory variables relaxing the restrictive as-

sumption of normality for the response. GLMs are regarded as an extension of the
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theory behind linear models to the more general case where the response variable
Y follows a distribution belonging to the exponential family of distributions. The
most known member of this family is the Normal distribution, but there are many
others such as the Poisson, Binomial and Multinomial (the last two with fixed

number of trials but unknown probability parameter(s)).

Each element of Y is assumed to have a distribution that belongs to the expo-
nential family, which depends on parameters 6 and ¢, and is defined in McCullagh
and Nelder (1989) as

yb — b(0)

(@) +c(y, 0)], (1.5.2)

fy(y;0,¢) = exp [

where a(-), b(:), ¢(-) are known functions. The parameter ¢ is the dispersion
parameter or scale parameter, which defines a one-parameter exponential family
of distributions when it is known and a two-parameter exponential family if it is
not.

The binomial distribution is of interest when studying the logistic regression.
Therefore, it will be represented in the exponential family form as follows. Let the
random variable Y be the number of “successes” in n independent trials in which
the probability of success, 7, is the same in all trials. Then Y has the Binomial

distribution with probability mass function

Fry;m) = #ﬂﬂ )Y = <Z) (1 — 7)Y, (1.5.3)

The logarithm of (1.5.3) is

o f s ) = 1o () 1
= log (Z) +ylogm + (n —y)log(l — )

= log (n) + ylogm + nlog(l — 7)) —ylog(l — m).
)

Then, applying the exponential function and rearranging to reach an equivalent
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form to (1.5.2)

fy(y;m) = exp |ylogm — ylog(l — ) + nlog(1l — 7) + log (Z)]

::exp_yﬂogﬁ-bgﬂf‘ﬂ7>+7”Og“'_ﬁ)+log(n)}

<

= exp |ylog

(17:—7r> +nlog(l — ) + log (Z)} : (1.5.4)

so that comparing with the structure of equation (1.5.2) we find the parameter of

interest

T
0=1 1.5.5
8T ) (1.5.5)
the well-known logit function.
A GLM consists of three parts or components:
1. The random component: independent observations Y7, ...,Y, with distribu-

tion in the exponential family;

2. The systematic component: the linear predictor of Y;, denoted by n; for the

it" observation (i = 1,...,n), defined as
p
n=>_ xub, (1.5.6)
h=1

with x;, the vector of n observations of the A" variable;

3. The link between the random and systematic components through the use

of a link function g, i.e g(u;) = n; where u; = E(Y;).

Then, for the i-th observation, Y; has some probability distribution belonging

to the exponential family with mean pu;, such that
p
9(pi) = Zﬁhxi,h = 1. (1.5.7)
h=1

The function ¢(-) is assumed to be a monotonic and differentiable function, and
is called the link function. It describes how the expected response is linked to the
explanatory variables. When g(u) = 6 in the exponential family, it is called to be

a canonical link. Therefore, it is sensitive to use (1.5.5), a canonical link function,
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when modelling a response variable that follows the Binomial distribution, as it is
in the well-known logistic regression.

In the following section, several ways of defining 7 of Equation (1.5.5) will
be presented, which allows to deal with more than two categories in an ordinal

response variable.

1.5.2 Logits and ordinal information

When the dependent variable has two categories, one of them is classified as the
event of success and usually the choice of the regression model to be used reduces
to the logistic or probit regression models depending on the type of link function
to be chosen, the logit or probit link functions correspondingly, as shown by (1.5.8)
and (1.5.9) below:

exp{a + S}
PY=1X=2z)= 1.5.8
( | z) 1+ exp{a+ Bz}’ ( )
which results from using the logit function (1.5.5), and
P(Y =1|X = 2) = ®(a + fz), (1.5.9)

with ®(-) being the cumulative density function of the standard normal distribu-
tion.

In both cases, once the category associated with the event of success has been
set, there is no need of making any further decision regarding the definition of
the probability of success to be used in either (1.5.8) or (1.5.9). However, when
there are more than two categories, there are different ways of determining the
probabilities to be used in the logit function.

For the case when the dependent variable has three or more unique values,
such as Christianity, Islam, Hinduism, Nonreligious or Other Religion, then the
researcher should be interested in analysing results from some suitable multicate-
gory models, such as the multinomial logistic regression. Agresti (2007) provides
a thorough review of such models and others for categorical data, including the
logistic regression model, being the main source of literature for this section.

Given that the categories of an ordinal variable are contiguous on the ordinal
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scale type, it is possible to group them without affecting the general order. This
leads to different definitions for the logits.
In general, define £ as the number of ordinal categories and 7; as the probability

of the j™ category of the ordinal variable Y in the population, with j = 1,..., k.
Cumulative logits

The cumulative logits group the k category responses into two sets, ¥ < j and

Y > j. Then, the cumulative logit function is

. . P(Y <) mt. T
logit|P(Y < j)| =1o =lo :
g [ ( _])] gl—P(Yﬁj) gl—(ﬂ-l—i—...-i-ﬂj)
:log 771++7T]’ j:l,,k_l
7rj+1—|—...—|-7rk
(1.5.10)

This can be seen as an ordinary binary logit with exhaustive and contiguous

cumulative probabilities.
Adjacent-categories logits.

Unlike the cumulative logits, the adjacent-categories logits use the information
provided by two adjacent categories only,

T

log
Tj+1

This logit is equal to an ordinary logit that reduces the possible response

outcomes to categories j or j + 1:

PY=jY=jorY=j+1)
1-PY=jY=jorY=j+1)
PY=j3Y=jorY=j+1))/P(Y=jorY =j+1)
PY=j41,Y=jorY=j+41)/PY=jorY=j+1)
PY =45 Y=jorY=j+1))
PY=j+1,YY=jorY=75+41))
P(Y=joY=j+1)[Y=j)PY =)

logit|/P(Y =jlY =jorY =354 1)] =log

= log

= log

=1
BP(Y=jor Y =j+ 1Y =j+ )P(Y = j + 1)
P(Y =
:log—( ,‘7) .
PY=j+1)

The adjacent-categories logits can also be seen as the difference between two
adjacent baseline category logits, which are commonly used to model nominal re-

sponse variables:
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E; :logﬁ—logﬁjﬂ, 7=1,... . k—1.
T

k Tk

log
Tj+1

Continuation-ratio logits.

To some extent, the continuation-ratio logits combine the previous two ways of
defining logits by introducing one single probability in the numerator and a cumu-
lative probability in the denominator. The continuation-ratio logits are defined

as
Ty
)
7Tj+1—|—...—|—71'k

log j=1...k—1

Continuation-ratio logits are generally used when categories of the response
variable are such that they can be reached only successively step by step, which
is covered by sequential models (Tutz, 1991).

In general, if we define

: : T :
Wj:P(YZﬂYZJ):m, j=1... k=1
it

then the ordinary logits of these conditional probabilities are the continuation-ratio

logits:
w - o ™
J o ... +Tg . Tj+...+Tg o i
1Og1—w< —logl_ = — — log e —logﬂ' .+
J Tt +Tk Tt J+ e

The same rationale should be applied when modelling the inverse sequential
mechanism to find alternative continuation-ratio logits:

Tj+1

log —————,
g7T1+...+7rj

j=1,... k-1

In this case, the focus is on the probability associated with observing the response

category j + 1 with respect to the one of observing lower categories.

1.5.3 Proportional odds cumulative logit models (POCLM)

Instead of fitting £ — 1 models separately, ordinal models incorporate the k£ — 1
logits into a single model simultaneously. A POCLM is one example of this.
Let y; be the outcome category for the ordinal response variable Y for the i-th

subject, and x; its corresponding column vector of explanatory variables. The
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model simultaneously uses all £ — 1 cumulative logits, and is defined as

logit[P(Y; < j)] = o + B'%;

=a; + biza + oo + -+ -, (1.5.11)

for j=1,...,k— 1, and with 3 being a column vector of parameters associated
with the explanatory variables.

The logit for camulative probability j has its own intercept, o;, which increases
with j because P(Y < j) are cumulative probabilities. Also, the effects 3 are the
same for each cumulative logit. This is why (1.5.11) is called the “Proportional

Odds” model. The model can also be expressed as

logit[P(Y; < j)] = o + B'%;

PY; <j) :
log ——~—t=J) _ :
Ogl—P(YiSj) a; +B'x
PY;<j) _ :

P(Y; < j) =exp{a; + B'x;} — P(Y; < j)exp{a; + B'%x;}

Py, < j) = Pl £ B} (1.5.12)
' 1+ exp{a; + B'x;}’ o

and for each cell probability,

PY;=j)=PY;<j)-PY;<j—1)

_exp{oy+ 8%t exp{oj + 8%}
1 +exp{a; + 8%} 1+exp{o;_1+ 8%}

(1.5.13)
with ag = —o0 and «aj = +o0.
POCLM: Continuous predictor

Consider the case of a single continuous predictor x and an ordinal response vari-

able with four possible outcomes. Then, the model is
logit[P(Y; < j)] = aj + fizs, j=1,....3.

The parameter effect, i, is the same for the three cumulative logits. Therefore,
there are three different response curves when plotting (z, P(Y < j)), but sharing

the same shape. They only differ in their location. The size of |5| determines how
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quickly the curves react over changes in . When Y is statistically independent of
x, then =0 and P(Y < j) as a function of x is depicted by a horizontal line.
Since the curves have the same shape, it is possible to get one from another

by adjusting the value of z, translating one of the curves towards the other.

P[ch]X:x]:Png]X:a:—l—Oéc;aj forj<ec<k  (15.14)

Hence, the difference between two parameters in {a;} gives a notion of the dis-
tance between their corresponding cumulative distributions, and the parameter [

describes the effect of x.
POCLM: The proportional odds property

In a multivariate setting, consider two different subjects with explanatory variables

vectors x; and x, that have been used to fit the model (1.5.11). Therefore,

P < jlx1)/PY > jlx1)
P(Y < jlx2)/P(Y > jlx2)

logit[P(Y < j|x1)] — logit[P(Y" < j|x2)] = log

=a; + 8% —a; — B'x,

= 5,(X1 - X2)7
which can be rewritten as
P < jlx)/PY >jxi) _
log P < i) /PY > jlxa) = 3'(x; — X2) (1.5.15)
PO < jlx)/P(Y > jix) T
PV < ) [PV > jxy) PG )]
P(Y < jlx1)/P(Y > jlx1) = exp{B'(x1 — x2) } P(Y < j[x2)/P(Y > jlx2).

The odds of Y < j given x; are proportional to the ones of Y < j given x5 in
a magnitude of exp{3'(x; — x3)}. Alternatively, the log cumulative odds ratio in

(1.5.15) is proportional to the distance between x; and x5 in a magnitude of 3.
POCLM: Interpretation

There are several ways to interpret the results of the POCLM. One approach is to
compare predictive values for cumulative probabilities given different values of the
explanatory variable(s). Another approach is to find the maximum and minimum

for P(Y = 1) and P(Y = k) using (1.5.13) over the set of predictor values to
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find those that provide these extremes. Finally, another approach is to use an
approximation for the rate of change of a probability with respect to a change
in an explanatory variable xj,. For the latter, using the expression (1.5.12) and
taking the derivative with respect to zy,
OP(Y <jlx)  fu exp® (1 4 exp®tBX) — B, (exp®t8*)?
Oxy, (1 + expeith'x)2

 Brexp P 43 (exptEX)? — B, (expatFx)?
- (1+ expajJrﬁ’x)z

B eXpaj+I[3’x 1
h (1 + eXpaj—i-ﬁ’x) (1 + eXpOéj"l‘ﬁ,X)
— BUP(Y < jbl1 - P(Y < jlx)]. (1.5.16)

Therefore, the effect on the cumulative probability depends on both the parameter
value (3, and the level of P(Y < j|x). For example, suppose that B, = 0.20 for
the effect of 2, and that P(Y < j) = 0.60. This means that an increase of one
unit in x; while keeping fixed the other predictors corresponds to approximately
a 0.20(0.60)(0.40) = 0.048 estimated increase in P(Y < j). Note that for 8, > 0,
an increase in xj, implies a greater probability of falling in response category Y; or
lower. This could be considered as counter-intuitive because positive parameters
are associated with higher probabilities for lower response categories. For this
reason, some researchers use an alternative representation of the model (1.5.11)

by imposing a negative sign to the parameter vector 3 as follows
logit[P(V; < j)] = a; — B'x. (1.5.17)

However, this alternative version will not be used here, keeping the model (1.5.11)

as the one to be analysed.
POCLM: Model fitting

In order to fit the model, let 4;1, ...,y be the binary indicators of the response,
where y;; = 1 if the response of subject ¢ falls in category j and 0 otherwise.
Define 7;(x;) as the probability of the response of subject ¢ to fall in category
J, P(Y; = j|x;). Under the usual assumption of independent observations, the
likelihood function is based on the product of the multinomial mass functions for

the n subjects:
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To obtain the likelihood equation for an effect parameter (,, differentiate the

1

(2

logarithm of L({c;},8), denoted as ¢({«;},3), with respect to a particular pa-

rameter and equate the derivative to zero, which is

Oég +8'%;) — glaj1 + B'%;)
;;ym ih a ‘I—,@XZ) G(Oéj_l +ﬁ/Xi) - 07

where G(z) = and g(z) =

Ties (1Jf7)2
Iterative methods, such as the Fisher scoring algorithm, are used to solve the

likelihood equations and obtain the ML estimates of the model parameters.
POCLM: Inference

Statistical inference on the parameters is based on the Maximum Likelihood pa-
rameter estimates and their standard errors.

Estimating Standard Errors.

In order to estimate the standard errors of the parameters in the POCLM
the information matrix is used (see Agresti (2010)). The information matrix de-
scribes the curvature of the log-likelihood function. The more highly curved the
log likelihood function at the ML estimates, the smaller the standard errors and
more precise the ML estimates of the model parameters. The information matrix
contains the negative second partial derivatives of ¢({c;}, 3) with respect to the
model parameters. There are two versions of the information matrix that can be

used:

e The observed information matrix: It uses the actual second partial deriva-

tives. The element in row a and column b of the observed information matrix
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18
—0%0({c;}, 8)/0B.0Bs.

The Newton-Raphson algorithm uses the observed information matrix.

e The expected information matrix: It uses the expected values of the second
partial derivatives. The element in row a and column b of the expected
information matrix is

E{—0"((83)/0B.0B}-
The inverse of the expected information matrix is used in the Fisher scoring

algorithm for obtaining the ML model fit.

Either the observed or expected information matrix can be used to estimate the
information matrix by substituting ({&;}, B) The estimated standard errors are
the square roots of the main-diagonal entries of the inverted estimated information
matrix.

Inference About Model Parameters

With the ML estimates, their standard errors, and the maximised likelihood
function, it is possible to perform statistical inference on the model parameters in
the traditional way by using tools such as the Wald confidence interval, the z-test,
the Likelihood-Ratio test, and others.

A 95% Wald confidence interval for a parameter (3 is
B +1.96(SE; ),

where S By, s the standard error of the parameter estimate Bh, which relies on
the Central Limit Theorem (CLT).
According to Agresti (2010), when it is of interest to test the significance of a

parameter, then Hy : 5, = 0 can be tested by using

Z = Bh/SEﬁ

h Y
with the usual interpretations and implications for the resulting z statistic and its
corresponding p-value. More generally, when testing whether (5, is equal to any

other value (Hy : B, = Buo),
- Br — Bro

SE;
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1.6 Some regression models for non-ordinal re-

sponses and ordinal predictors

In the regression model framework there are some models that give special
treatment to ordinal predictors. Some of these are discussed in this section as
an overview of available approaches, although they were designed for non-ordinal

responses.

1.6.1 Penalised maximum likelihood

Tutz and Gertheiss (2014), noted that “in most advanced books on statistical
modelling, ordinal responses are treated but ordinal predictors are, if at all, just
mentioned; and proper treatment is hardly considered.” Therefore, they extended
existing methodology to the framework of generalized linear models to propose
a penalisation method giving ordinal predictors a special treatment other than
transforming its measurement scale. In addition, they presented their penalisa-
tion approach as a method for the selection of predictors and clustering of their
categories.

Apart from using statistical models specifically developed for ordinal data,
these authors also state that there are two common approaches for statistical
modelling when using rating scales as predictors. One of these approaches is to
treat ordinal predictors as metrically scaled variables using a scoring system, and
the other one is to treat them as nominal-scaled variables by transforming each
ordinal predictor in a set of dummy variables.

The first approach leads to the choice of a scoring system. For example, a

model for one ordinal predictor under this approach is
y=00+Ab +e, (1.6.1)

where A is a rating-scaled variable with p + 1 categories, A € {0,...,p}, but
assumed to be measured on metric scale level, and € ~ N(0,?).
The second approach uses p dummy variables to represent the p 4+ 1 ordered

categories of the predictor variable, usually being the first category the baseline,
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which is omitted in the model. For example, a model for one ordinal predictor

under this approach is
y=op+ AP+ ...+ Tapbpy + ¢, (1.6.2)

where x4y = 1 if A = j and z4(;) = 0 otherwise for all j =1,...,p.
Tutz and Gertheiss (2014) allow their model for smooth and monotonic ef-
fects across categories using a penalised version of the model (1.6.2) with their

corresponding tuning parameters A and A, accordingly.
Smooth effects

Consider the case of one ordinal predictor. The data is composed by n observations
of y and A, where y; is the response for the ith observation and A; € {0,...,p}
is its corresponding observed ordinal predictor, (y;, 4;). It is assumed that the
distribution of the response variable is a member of the exponential family, just

as it is in the setting for GLMs. The linear predictor is defined as

M = o + T401),iB1 + -+ Tawp),iBp (1.6.3)

where 41, are dummy variables for the category h and observation i as defined
for the model (1.6.2). The parameter f; that corresponds to x (), is omitted in
equation (1.6.3) as it has been set to 0, indicating the reference category. This
model does not take into account the categories order yet.

Tutz and Gertheiss (2014) proposed to maximise the penalised log-likelihood
for the estimation of the parameters 3y, ..., 3,, recall that 5y = 0, then we max-
imise

lpenar(B) = 1(8) — AJ(B),
where [(3) is the unpenalised log-likelihood, A is a tuning parameter, and J(3) is
a penalty term. For any A > 0, then the fitted model penalises the likelihood if
J(B) > 0. Therefore, if the penalty term is defined as:

p

IB) = (B~ Bu1)”, (1.6.4)

h=1
greater differences between pairs of parameters for adjacent categories, 3, and

Br_1, produce greater penalisation.
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Setting a larger A and using the penalty term (1.6.4) forces the maximisation
procedure to choose a set of parameters in such a way that differences between the
parameters associated with adjacent categories are smaller, resulting in estimating
smoother effects. Also, a larger \ leads parameter estimates to be closer to zero
because By = 0. In the limit A — oo and provided that Sy = 0, all the parameters
tend to be equal, then Bh — 0. The authors state that “the parameter A\ estab-
lishes how important the order information in the predictor is.” However, this
would mean that the more important the order information is, the closer to zero
the parameter estimates are. Therefore, their statement implies that using the
smoothing approach when the order information is highly important increases the
probability of estimating effects f), that are close to zero, which can be considered
as a disadvantage of the penalisation approach based on the penalty term (1.6.4).
This is why they propose a more general one.

A penalty term that allows to avoid estimating Bh — 0 Vh when A — o0 is

p

J(B) =) (A, (1.6.5)

h=d
where A is the difference operator and d is the number of times this difference
operator is used, that is, for d = 1 then A!'f, = B, — Bu_1, for d = 2 then
A?By, = AN By — Br-1) = B — 28p—1 + Br—2, and so on.

Consider the special case when the parameters are linear, 8, = vh. The penalty
term (1.6.5) is > b _, v* if d =1, since B — Bh—1 = vh —y(h — 1) = ~. Then it is
still true that Bh — 0 when A — oo for d = 1. However, if d = 2 the penalty term

18

I(B) =D (A1) =D (Bn— 281+ Bu2)’
h=2 h=2
= (vh=29(h = 1) +~(h - 2))°
h=2

(vh — 2vh 4+ 2y +~vh — 27)2

i
[\o}

I
o

meaning that there is no penalisation for the linear form. Therefore, this approach
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produces unpenalised linear parameter estimates 8, = “h in this case, even if

A — 00.

Monotonicity of effects

In Tutz and Gertheiss (2014) the case of increasing effects of the ordered predictors
is considered only, that is, Sy < f1--- < B,. This is incorporated as an extra
penalty term based on the concept of asymmetric difference penalties, yielding to

the total penalty of the form

p p

A (A8 + Am > un(ABK), (1.6.6)

h=d h=1

where v, are weights defined as v, = 1 if AB, <0 and v, =0 if AB, > 0.

Notice that the weights v, depend on the parameters, which is a problem
because they need to be estimated. However, during the iterative procedure, it
is possible to compute the weights from previous estimates, then the weights are

treated as known.

Given that penalising the differences between parameters associated with ad-
jacent ordered categories decreases ABh Vh in each step of the maximisation pro-
cedure, there is no reason to think that the monotonicity will hold as a final result,
reaching ABh > 0. In the following sub-section the penalisation approach will be
discussed in more detail, analysing to what extent the parameter estimates get

close to be monotonic.

Despite the fact that the authors make reference to the tuning parameters A
and A, the order of differences d in the penalty terms (1.6.5) and (1.6.6), is not
referred to as a tuning parameter in Tutz and Gertheiss (2014). Given that d must
be chosen, preferably using an integer greater than one, then it is considered here

as a tuning parameter.
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Some remarks on penalised estimates

Consider the model (1.5.11) for an ordinal response (with three categories) and
one ordinal predictor only,
P1
logit[P(y; < jlx;)] = o + Z B1h Ti1 by
h1=2

= Oéj + ,BXZ', (167)

where p; = 8, hy = 1,...,8, and k = 3, i.e.,, 7 = 1,2. As the aim of the
following analysis is to highlight some aspects of the penalisation approach given
a certain set of unpenalised and unconstrained parameter estimates (UPE), it will
be assumed that the true pattern of the ordinal predictor parameters is isotonic
and an example data set for which its parameter estimates violate this assumption
will be analysed. The data were simulated according to the following setting:
a; = —0.5, ap = 0.1, 3 = (0,0.5,1.3,1.27,1.24,1.18,1.13,1.14), the values of the
ordinal predictor were randomly drawn from its assumed population distribution
of 5% for each of the first two categories and 15% for the remaining six, the sample
size was 2,000 observations. The parameters of the OP were chosen in such a way
to get decreasing monotonicity for an adjacent subset of the UPEs as shown by
those for B4, ..., 1 in Figure 1.2(a), which violates monotonicity.

In order to fit this model, Tutz and Gertheiss (2014) proposed to maximise

lpenal(B) = €(B) — (A D (A A Y vl,hl(Aﬁl,h1)2> (1.6.8)

hi=d hy1=2
where A7 (AYB1n, )2+ Am 20— U1ny (AP, )? is the total penalty term, which
is decomposed into the two sums. Its first part aims to obtain smooth effects, with
A being the tuning parameter and A? a difference operator for adjacent parameters,
ABiny = Bin — Brpa—1, AL, = A(AB1 k) = A(Biny — Bipi—1), and so on. The
second part is related to monotonicity, with \,, being its tuning parameter and,
for the isotonic case, each vy, = 1 if AByy, <0 and vy, = 0 otherwise.

An unconstrained and unpenalised version of the model (1.6.7) was fitted to
obtain the UPEs and their corresponding 95% confidence intervals (CIs) as shown

in Figure 1.2(a). The first two parameter estimates, BLQ and 3173, suggest an
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Figure 1.2: (a) Unpenalised Parameter Estimates and Penalised Maximum Like-
lihood Estimates with \,, = 500 and \,, = 10°. (b) Penalised MLE for different

parameters and the tuning parameter for monotonicity A,,.

isotonic pattern. However, the UPEs for (3 4,...,81s are antitonic. Based on
the analysis of individual CIs, the UPEs are compatible with an isotonic pattern,
because the CI of 31’2 is fully above the one of 31,3 and the remaining ones overlap
with the latter, so it seems to be valid to penalise deviations from an isotonic
pattern.

The method proposed by Tutz and Gertheiss (2014) was applied to obtain the
Penalised Maximum Likelihood Estimates (PMLE) for the model (1.6.7) with no
smoothness penalty, A = 0. Two solutions regarding monotonicity are shown in
Figure 1.2(a). The one with ), = 10° provides an almost monotonic solution (blue
dotted line), whereas the violation of monotonicity by the one with A,,, = 500 (red
solid line) is much clearer. For \,, = 10° the resulting parameter estimates of
P13, -, P18 produce a horizontal line. However, this is just a visual effect because
the PMLE for (3 3 is 0.7552680 and 0.7552072 for (3, g, which is not compatible
with monotonicity neither. In fact, this solution is asymptotic with respect to
monotonicity, as shown in Figure 1.2(b).

If we consider the solution with ), = 10°, then the value of the PMLE for 3, 3,

0.7552680, should be considered as a reference point by the following penalised
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parameter estimates because they belong to the same ordinal predictor and are
assumed to be monotonic (isotonic for this example). Let’s consider the case of
the PMLE for ;4. It starts at 0.868 and decreases as A, increases converging
to a point around the one depicted by the grey dotted line (see Figure 1.2(b)).
This solution converges to monotonicity but it does not reach it for any level of
Am # 00.

Under the current setting of consecutive monotonicity violations, the PMLE
solution produces a cumulative deviation from monotonicity. Note that the last
three UPEs are also violating monotonicity and they all are below the almost
horizontal line describing the final solution with \,, = 10° (blue dotted line in
Figure 1.2(a)). In this case, the solution of the PMLE for §; g is asymptotic with
respect to the one of the PMLE for ;7 as shown in Figure 1.2(b). Therefore, if
we set a not big enough JA,,, not only monotonicity is not achieved but also the
higher the ordinal category, the higher the magnitude of the violation for those

cases were consecutive monotonicity violations are present.

1.6.2 Isotonic regression

The isotonic regression fits an increasing function to a set of observations. In
general, there is no information regarding the true regression function. Therefore,
if the analysis is based on order restrictions, it is necessary to assume a particular
direction of the ordering, ascending or descending. For example, that the value of
the response variable increases as the value of the explanatory variable does. The
isotonic regression is a particular and typical case belonging to a broader class,
the monotonic regression. When a monotonic regression fits a decreasing function
to a set of observations, then it is referred to as an antitonic regression.

A general isotonic regression model was described in de Leeuw et al. (2009) as
follows. A simple linear regression estimates the parameters o and S describing
a linear relationship between a predictor z = (x1,...,z,) and a response y =

(Y1, - - -,Yn) by minimising the loss function

L(a, B) = Z wi(y; — o — f;)?, (1.6.9)
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over o and 3, where w; are some observation weights.

However, in monotonic regression the setting is different because there is no
linear relationship to be fitted between the response and the predictor, but mono-
tonic. Now, let X be the set of the ordered observations of the predictor with no
ties, i.e., {x1,za,..., 2, } with 1 < 9 < -+ < x,. The observed response vector is
y and the vector of unknown response values to be fitted is z = (21,. .., 2i, ..., 2,)
(commonly defined as y under the usual linear regression framework). The or-
dinal predictor does not provide more information than the ordering, then the
loss function (1.6.9) does not hold and y; follows the order of x; after sorting all
the observed pairs (y;, ;) based on ;. The least squares function in monotonic

regression has to be minimised over z and can be stated as

L(z) = sz<yz - z)?, (1.6.10)

which means that the number of parameters is equal to the number of observations
and that, for the isotonic regression, the minimisation has to be done under the
inequality restrictions z; < 29 < -+ < z,. The predictor x; is not explicitly
expressed in (1.6.10). However, it is implicitly playing a role in (1.6.10) because
its ordering affects the one of y;.

The fact that in monotone regression the number of parameters is equal to
the number of observations might suggest that it is possible to reach the perfect
fit. However, the order restrictions on z is an impediment of getting a perfect
solution. Under the isotonic regression scenario, the best fitting monotone function
computation is based on the fact that if y; > y;,1, then Z; := 2;,1. This means that
if one value of y is in descendent order with respect to the consecutive previous
one, then the two corresponding consecutive values for the solution 2z will be equal.

To fit this model, the up-and-down-blocks algorithm used for the Nonmetric
Multidimensional Scaling method developed by Kruskal (see Kruskal (1964)) pro-
vides a numerical method as a solution.

For a non-strict partial order of the predictors, i.e., r1 < x5 < ... < x,, several
algorithms for the treatment of ties can be considered. Different approaches are

grouped in three classes. They all partition the index set {1,2,...,n} into a
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number of tie blocks Iy, Iy, ..., I} with k < n, where a block is defined as a set
of consecutive points with the same value. However, the approaches differ in the

way they treat ties mainly. Consider the tied observations ¢ and ', where x; = x:

1. Primary Approach. Implies that z; does not necessarily equal z;. In turn,
it does imply that if y; <y then 2; < 2y, forcing to hold the monotonicity

condition.

2. Secondary Approach. Requires z; = 2y for the tie x; = x;, regardless

which y-values were observed.

3. Tertiary Approach. For each tie block Iy, I5, ..., I} the unit of analysis
are the weighted means zj,, Zj,, ..., Zr,. Therefore, the tertiary approach
requires only that these means are monotonic across tie blocks, not individual
values. As a consequence, it abandons the monotonicity condition because

y; <y does not imply z; < zy.

Theory and algorithms to solve this kind of isotonic regression problems are
discussed in de Leeuw et al. (2009), in particular, the Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods. However, their proposed solutions
are restricted to one predictor of any scale type that allows “determination of
greater or less” according to Steven’s measurements scales (Stevens, 1946). Beran
and Diimbgen (2010) described active set methods to fit regression models with two
predictors via least squares or least absolute deviations, and some other authors
have proposed isotonic regression for multiple predictors, including an extension
of the work in de Leeuw et al. (2009) developed by Burdakov et al. (2004) (for
other contributions, see Dykstra et al. (1982) and Stout (2015)). Nevertheless,
none of these approaches allows a non-monotonic association between a particular

predictor and the response variable.

1.6.3 Constrained maximum likelihood

Rufibach (2010) proposed an active set algorithm to estimate parameters in gen-
eralised linear models with ordered predictors. Consider an ordinal predictor vari-

able w with ordinal categories, 1,...,k, and a response variable y that may be
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continuous, binary, or represent censored survival times. If we take the first pos-
sible type of y as an example to illustrate what is proposed in Rufibach (2010),
then its corresponding linear model for one continuous response and one ordinal

predictor is

Y = Pow;o + -+ Brwik + €
y = WB+e, (1.6.11)

where the ordinal predictor w introduces & — 1 dummy variables in the model
defining w; ; = 1 if the 7th observed value falls in the jth category and 0 otherwise
forallj =2,...,kandi =1,...,n. The author proposed an algorithm to solve the
problem of maximising the log-likelihood of the model (1.6.11) assuming 8; = 0

and isotonic effects, i.e.,
0< By < ... < By (1.6.12)

The constrained maximum likelihood approach proposed by Rufibach (2010) is

b

based on using “the available knowledge (or our ‘prior belief’)” in order to apply

the monotonicity constraints in certain direction, i.e., in the isotonic form as shown
in (1.6.12).

In general, y and W are given observations. Then it is required to maximise a
criterion function L (e.g. a likelihood function) over the possible values of 3 € RP

to estimate the parameter vector ,B € RP:
L=Ly,W,3):R" x R"”? x R — R. (1.6.13)

The matrix W contains the values associated with any type of predictors, but
they require to be ordered in a specific way. This matrix contains two groups
of columns, the first ¢ columns represent quantitative variables and the second
f = (p — ¢) set of columns are associated with ordinal predictors. In addition
to interval and ratio-scaled predictors, nominal-scaled predictors are assumed to
be part of the ¢ first columns of W in the form of dummy variables. The last f
predictors w. ;, j = c+1,...,p, are ordered factors, each with £; levels. Therefore,

the total number of columns of W is p = ¢+ f. The elements of each ordered
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factor w.; = (w;;)7_; are assumed to be w;; € {1,...,k;}, i =1,...,n, where the
higher the level of the ordered factor, the higher the number w;;. Define two sets
of indices, one denoting the indices of the ordinal predictors F., = {c+1,...,p},
and another one denoting the indices of the ordinal categories for each ordinal
predictor, £; = {2,...,k;} for j € F.,. Based on W, build a new data matrix
X € R? in such a way that the

p
()60
j=c+1

dummy variables represent the levels of the ordinal predictors excluding their first

category.

The new criterion function has the form
L=Ly,X,08):R"x R xR » R (1.6.14)
and the constrained parameter space is

B(c,p, k) ={B € R?: Bi2>0,85001 — B0 >0,2<1<k;—1,5€ Fep},
(1.6.15)

where k = ((0)5_, key1, ..., kp) € RP.
The optimisation procedure takes into account the constraints in B, a criterion
function ¢(3) (e.g., a log-likelihood function or the negative of a loss function),

and B3 as its maximiser. Therefore, the constrained maximisation problem is

A

N = imise £(3). 1.6.17
i = mainiise ((6) (1.6.17)

An active set algorithm was proposed in Rufibach (2010) to solve the constrained
problem (1.6.16) in presence of isotonic relationships between the ordinal predic-
tors and a response variable that could be continuous, binary, or represent censored

survival times.
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1.7 A latent variable approach for ordinal vari-

ables

One of the main objectives of many statistical models is to specify the joint
distribution of a set of random variables. According to Bartholomew et al. (2011),
latent variable models are used when some or all of these variables are unobserv-
able, the so called latent variables.

There are two main reasons why latent variable models are used:

1. Dimensionality reduction. Latent variable models are used to see whether
there are patterns in the interrelationships among a set of variables (e.g.,
answers to a set of questions) by constructing a smaller number of latent
variables that can represent a large amount of the information provided by

the observed variables.

2. Represent a complex construct by numbers. Specially in social sciences, it
is often of interest to analyse certain constructs, for instance, the researcher
could be interested in measuring Self-Assessment of Quality of Life, Business
Confidence or Ideological Self-Placement in politics, but these constructs do
not manifest themselves directly but rather indirectly through other vari-
ables. Each of these constructs can be analysed through the use of a variety
of directly measurable variables that are related to the construct, such as
yes/no answers to a set of questions, multiple choice questions, etc., for which
their analysis is conducted with latent variable models. The latent variables
that are obtained from the model refer to the underlying construct that is
indirectly measured based on the information provided by the variables that

are actually measured, the so-called manifest variables.

From the perspective of the treatment of ordinal covariates in a regression
model context, LVMs can be used as a way of transforming a set of ordinal covari-
ates into a single continuous latent variable that represents them, which works as

a scoring system. The resulting score can be used in the regression model as a
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continuous covariate replacing the set of ordinal covariates. This is the approach
that will be used later and therefore a LVM for ordinal observed variables will
be presented in Section 1.7.2, after an introduction to the general framework of

LVMs is discussed in the next section.

1.7.1 Introduction to the general framework for LVMs

The main source of information for this introduction to the general framework for
LVMs is Bartholomew et al. (2011).

The observed variables are referred to as manifest variables (MVs) and the
ones representing their underlying joint distribution are called latent variables
(LVs). The main interest is in the information generated by the latent variables
after observing the manifest variables, which introduces a conditional probability
approach. This approach is known as the “item response function approach”,
where the whole response pattern is specified by the LVM as will be seen in this
section.

Consider a set of p MVs forming a vector y = (y1,%2,...,Yp) and ¢ LVs
defining the vector z, all these variables are considered to be random. It is of
interest to build ¢ latent variables explaining the interrelationship among the p
manifest variables with ¢ as small as possible, certainly not greater than p. If the
MVs are conditionally independent when conditioning on LVs held fixed, then the
set of latent variables in z explains the dependencies among the manifest variables
y and the set of LVs is said to be complete. Therefore, the number of latent

variables ¢ will correspond to the smallest ¢ that fulfils

9(ylz) = H%(%IZL (1.7.1)

where ¢ is the dimensionality of z.

This is true when the density function f(y) of the manifest variables y is

f(y) = / h(2)g(yz)dz (1.7.2)

z

= /R h(z)Hgi(yi|z)dz, (1.7.3)
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for some ¢, h and {g;}. The main problem is to know about the conditional
distribution of the latent variables in z given the manifest variables in y with ¢ as
small as possible according to (1.7.1). Based on Bayes’ theorem this conditional

probability can be expressed as

h(z)g(y|z)
fly) 7

where k(z|y) is also called the posterior distribution of the latent variables given

k(zly) = (1.7.4)

the manifest variables. In (1.7.4), the only function that can be estimated is f,
which requires to restrict the classes of functions to be considered for h and g.
Given that the LVs in z are a construct, their true distribution is unobservable,
and therefore h is chosen. This is why the density function h(z) is called the prior
distribution. On the other hand, the conditional distributions ¢;(y;|z) are the ones
that are modelled while the smallest ¢ for which (1.7.3) holds is found.
Bartholomew (1983), based on the existing framework of latent variable mod-
els for categorical data, extended these types of models to take into account the
order of categories of the variables. Moustaki (2000) proposed a class of LVMs for
observed ordinal variables where the whole response pattern is the unit of analysis,
making assumptions on the conditional joint distribution of the observed variables
given a set of latent variables, as presented above. This is one of the main char-
acteristics of methods belonging to the “response function approach” for LVMs.
Another general approach is the “underlying variable approach”, which assumes
that each observed variable is generated by an underlying latent continuous vari-
able that is usually assumed to be normally distributed. Both approaches use
underlying variables. However, unlike the “underlying variable approach”, the
“response function approach” does not require to define an underlying variable for
each ordinal observed variable and therefore it does not require to make assump-
tions about the distribution of those variables. The model proposed by Moustaki

(2000) is presented in more detail in the following section.

1.7.2 LV Ms for ordinal manifest variables

Consider the p manifest variables in y, defined in Section 1.7.1, as ordinal-scaled

variables. Define the number of ordered categories for each observed ordinal vari-
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able as m;, with ¢ = 1,2,..., p, and their probabilities as m;1(z), m2(2), . . ., Tim, (2),
which depend on ¢ latent variables in z. As in Moustaki (2000), all variables and
their realisations will be denoted by lower-case letters.

The general form given in McCullagh (1980) of a linear model for the i-th

ordinal variable (also denoted as i-th response) is:
link[kis(z)] = link [P{y; < s|z}]

q
== Y Tz, =12 pis =12, m, (1.7.5)
j=1

where link|k;s(z)] is a function of k;(z) that in the context of GLMs is known as
a link function, and k;4(z) is the cumulative probability of the response falling in
category s or lower of item y;, written as k;(z) = m1(2) + me(2z) + -+ - + mis(2),
with s < m;, where r;s(z) (or for easy of notation simply k) is a function of the
latent variables z in Moustaki (2000).

The probability of the i-th response in category s is:
Tis = Ris — Kis—1, 221,2,,p, 5227...,7711'. (176)

The parameters «;, in (1.7.5) follow the restriction —oco = ayo < @y < @ <

- < ym, = +00, and there is one of them for each category of the MV y;.

The effect of the j-th latent variable in z on the link function of the cumulative

probability for the i-th response is measured by the parameter 7;; Vs. Therefore,
these are considered as factor loadings.

Within the current approach, the item response function approach, the unit

of analysis is the complete response pattern. Consider y as the p-dimensional

response pattern of a randomly selected individual. Its density function f(y) is

+o00 +o00
f(y) = / / 9(yl2)h(z)dz. (1.7.7)

The latent variables z are assumed to be independent, g(y|z) is the conditional
density function and h(z) is referred to as the prior distribution, which in practice
is usually chosen to be the standard normal distribution.

As described in Section 1.7.1, the responses to the p items are conditionally
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independent given ¢ latent variables in z, then Equation (1.7.1) holds, which is

9(yl2) = [ 9:(vilz). (1.7.8)

For each term in the product of the right hand side of (1.7.8) the conditional

probability is

9i(yilz) = H Tis(2)¥"
s=1

= H(I{is — /ii75_1)yis, (179)
s=1
where y;; = 1 if the response of the ¢-th item is in category s and y;s = 0 otherwise.
Define y;; as y;; = 1 if the response of the i-th item falls into category s or
lower, and y;; = 0 otherwise. Therefore, y;, can be thought of as a cumulative
version of y;s. Now, using y;,, Equation (1.7.9) is equivalent to

m;—1 Y5 s Yl sr1 Vi
Ris T Ris+1 — Ris ’ ’
gi(yi|z) = || ( ) (—* ) . (1.7.10)

K K
=1 1,5+1 i,5+1

Taking the log of (1.7.10) results into:

m;—1

* Ris " Ris+1 — Kizs " Ris+1 — Ris
log gi(y:|z) = yi51°g< )‘yislog <—>+y log <—)}
(vilz) ; Vi p— 7 P~ st o~

m;—1 ¢
* Kis * Ris+1
- Z Yi,s log ~Yist1 log ———
—1 L Ris+1 — Kis Ris+1 — Kis
m;—1
=3 [y bz y;sﬂb[e@-s(z)@ , 711)

Il
—

s

where each component of (1.7.11) is in the form of the definition of the exponential

family distribution with parts:

0,4(2) = log ﬁ s=1,2.... m;—1, (1.7.12)

and

b(04(2)) = log _ Rist1

Ris+1 — Ris
Ris+1 — Ris + Ris

= log

Ris+1 — Ris

= log (1 + $>
Ris+1 — Ris

= log (1 + exp{@is(z)}>, s=1,2,...,m; — 1. (1.7.13)
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The parameter 6;, is not a linear function of the latent variable.
Equation (1.7.11) is in the form of a generalised linear model. The maximum
likelihood results for a random sample of size n, are based on using the loglikeli-

hood

n n +o0 +o00
L= Z log f(ym) = Z log/ / 9(ym|z)h(z)dz, (1.7.14)

and the expectation maximisation algorithm.

To score an individual m on the latent dimensions identified by the analysis,
Moustaki (2000) proposes to use the mean of the posterior distribution of the
latent variable z; given the individual’s response pattern E(z;|y,,). In the ¢-th

factor model the posterior mean is given by

E(zjlym) = /R /R (z|ym)dz (1.7.15)
/R /R ym|zm (= )dz, (1.7.16)

where R, with j = 1,...,¢q, denotes the range of values for z; and k(z|y,,) is
the posterior distribution of the latent variables given the observed variables for
individual m.

An extension of these LVMs in order to include explanatory variables affecting

the manifest and latent variables was proposed by Moustaki (2003).

1.8 Conclusion

The discussion about changing the scale of measurement of an ordinal vari-
able in order to carry out statistical analysis has been a never ending controversy.
Several scoring systems have been proposed to do so, including the computation
of scores based on other variables (as seen in Section 1.4.7), which requires to use
multivariate statistical methods. Some of these methods have been extended in
order to take into account a special treatment for ordinal variables. In particular,
there are regression models for ordinal responses, which are part of the framework
of generalised linear models (Sections 1.5 and 1.5.1), from which the proportional
odds cumulative logit model presented in Section 1.5.3 is of special interest be-

cause it serves as starting point for the proposed model in the next chapter. This
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model will be used to deal with the information provided by the order of categories
of the response variable, however the treatment of ordinal predictors still needs to
be explored. There are some regression models for non-ordinal responses that deal
with ordinal predictors (Section 1.6), such as those using penalised maximum like-
lihood, isotonic regression, and regression models based on constrained maximum
likelihood estimation as discussed in Sections 1.6, 1.6.2, and 1.6.3. However, they
do not offer a special treatment of ordinal variables at both sides of the regression

formula simultaneously and allow one monotonicity direction only.

In these regression models, ordinal variables play the role of being either the
response or the predictor(s), i.e., models for both ordinal response and ordinal
predictor(s) have not been explicitly discussed. Therefore, in the next chapter,
a regression model is proposed for an ordinal response, ordinal predictors, and

possibly other types of predictors.

1.9 Thesis structure

The following chapters start with the proposal of a regression model to deal
with an ordinal response and ordinal predictors in Chapter 2. In that chapter, not
only the use of monotonicity constraints on the parameters of ordinal predictors in
a proportional odds cumulative logit model is proposed (see Section 2.3), but also
a monotonicity direction classification procedure is developed (see Section 2.4).
Given that the parameters associated with an ordinal predictor are estimated
under monotonicity constraints, one of the inputs of the model is the pre-specified
monotonicity direction of the parameters of every ordinal predictor (isotonic or
antitonic). The monotonicity direction classification procedure serves as a tool
that allows the researcher to make an informed decision on the direction to be
assigned to the parameters of each ordinal predictor when fitting the constrained
POCLM.

In Chapter 3, the asymptotic theory of the MLE for the constrained POCLM
is developed. Some of the results of the asymptotic theory of the MLE for the
unconstrained POCLM are presented in Section 3.2, particularly the log-likelihood

ratio test (see Section 3.2.1) and confidence regions (see Section 3.2.2), which will
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be used later on. As imposing monotonicity constraints on the parameters as-
sociated with the ordinal predictors affects the parameter space, this is analysed
in Sections 3.3 and 3.4, which allows further analysis on asymptotic monotonic-
ity direction detection and consistency of the constrained POCLM in Section 3.5.
Asymptotic normality of the constrained POCLM is also discussed in Section 3.6.
All of these results provide the foundations to analyse asymptotic confidence re-
gions (see Section 3.7) for the parameters of the constrained model. For finite
n, the use of approximate confidence regions could be considered as problematic
depending on the results of the constrained MLE. Four cases are distinguished and
three definitions of confidence regions are provided. These alternative definitions
are compared against each other based on a simulation study of coverage proba-
bilities in Section 3.7.1. Asymptotic confidence intervals are discussed in Section

3.8.

In Chapter 4, two monotonicity tests are proposed as a complementary tool to
assess the validity of the monotonicity assumption for each ordinal predictor. They
both allow to test whether the parameters associated with an ordinal predictor
follow a monotonic pattern in the population. One is based on the Bonferroni
correction (see Section 4.2) and the other is based on the analysis of confidence

regions (see Section 4.3).

Both the MDC procedure proposed in Section 2.4 and the monotonicity tests
proposed in Chapter 4 provide statistical evidence on the validity of the mono-
tonicity assumption. This can be incorporated in the estimation procedure. In
Chapter 5, different steps of the MDC procedure, together with the monotonicity
tests are used to define five estimation methods. They make the decision about
the ordinal predictors for which their parameter estimates will not be constrained
to be monotonic and then estimate the constrained model. They differ in the way
this decision is made, some being more restrictive than others. Two of them use
different monotonicity tests and the remaining three use the steps of the MDC
procedure in different ways. In addition, the same procedures may also detect
that the data are consistent with zero influence of a variable, in which case the

variable may be dropped, this is treated in Section 5.4.
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In Chapter 6, the model proposed in Chapter 2 and its less restrictive versions
proposed in Chapter 5 are compared against each other, against the unconstrained
POCLM and against some other approaches based on scoring systems for ordinal
predictors presented in Section 1.4. These comparisons will be conducted through
simulations and a real data application.

The six constrained methods and the unconstrained one are compared through
the analysis of the mean-squared error decomposition in Section 6.2 based on simu-
lations. Furthermore, in Section 6.3 the constrained methods are compared against
several models resulting from the unconstrained POCLM using different scoring
systems as the treatment of ordinal predictors. Regarding the real data applica-
tion, the proposed constrained approach is applied to real data from the Chilean
National Socio-Economic Characterisation in Section 6.4 to analyse a quality of
life self-assessment variable using a 10-Points Likert scale considering ordinal and
other predictors. In addition, despite the fact that the transformation of ordi-
nal predictors into interval-scaled variables overstates the information provided
by the order of categories of OPs, the results of using the constrained approach
are compared against methods using scoring systems for the treatment of ordinal
predictors.

Finally, the concluding remarks are presented in Chapter 7, where the main
contributions of this thesis are listed in Section 7.1 together with future work in

Section 7.2.



Chapter 2

A constrained regression model
for an ordinal response with

ordinal predictors

2.1 Introduction

In many situations where regression models are suitable, the relationship be-
tween ordinal responses and ordinal predictors is of interest. However, statistical
modelling for this type of relationship has received little attention. Even literature
for ordinal predictors with any other type of scale of the response variable is scarce
(see, for example, Tutz and Gertheiss (2014), and Rufibach (2010)).

One usual approach to the treatment of ordinal predictors is to treat them
as if they were of nominal scale type, ignoring the information provided by the
order of their categories, and another one is to assign numbers to the ordinal
categories in order to transform an ordinal predictor into an interval-scaled one,
assuming that the categories ordering provides more information than the one that
it actually offers. These two common approaches are discussed in Section 2.2 and
a constrained regression model for an ordinal response with ordinal predictors and
possibly other types of predictors is proposed.

In Section 2.3, the proposed model is developed in detail to obtain both con-

strained parameter estimates for multiple ordinal predictors and unconstrained

78
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estimates for other types of covariates. As the monotonic estimates can be ei-
ther increasing (isotonic) or decreasing (antitonic) as the categories of the ordinal
predictor increase, it is necessary to specify this relation while defining the con-
straints. Also, investigating possible directions of monotonicity for all ordinal
predictors is of interest in its own right. Therefore, a monotonicity direction clas-
sification (MDC) procedure is introduced in Section 2.4 that determines the best
possible combination of isotonic and/or antitonic associations as a way of assisting
the estimation method of the constrained model introduced in Section 2.3. The
way in which the MDC procedure works is discussed in detail through an illus-
tration based on simulated data sets in Section 2.5, where the true parameters’
pattern of different OPs will represent different degrees of monotonicity in order
to explore the results of the MDC procedure for clear and unclear monotonic-
ity directions. Further analyses of the MDC procedure’s performance are left for
Chapter 6, where patterns representing none and both monotonicity directions are
incorporated in a new set of simulations. The contents of the current chapter were

published already in Espinosa and Hennig (2019).

2.2 Ordinal response with ordinal predictors and

possibly others

A regression model for an ordinal response with ordinal predictors and pos-
sibly others is proposed. In order to account for an ordinal response variable,
proportional odds cumulative logit models (McCullagh, 1980) are used here in
presence of multiple predictors allowing for different measurement scales. Special
attention is paid to the treatment of ordinal-scaled predictors. Their parameter
estimates are restricted to be monotonic through constrained maximum likelihood
estimation (CMLE). To begin with, consider for simplicity one ordinal response
variable y with k categories and one ordinal predictor x with p categories. The

corresponding model for this setup is

p
logit[P(y; < jlai)] = o + Y Buiin, (2.2.1)
h=2



80 Ordinal response with ordinal predictors and possibly others

j=1,...,k—=1. o and 3, for h = 2,...p are real parameters. The observations
are (x;,v;), © = 1,...,n. The vector x; contains the z;5, which are dummy
variables defined as z;; = 1 if «; falls in the h-th category of the ordinal predictor
and 0 otherwise, with h = 2, ..., p. Category number one is treated as the baseline
category with 3; = 0; therefore the dummy variable z;; = 1— 22:2 x; p, 1s omitted
and the sum in model (2.2.1) starts at h = 2. Monotonicity on {3} is obtained
by using CMLE. The general model is defined in Section 2.3, which allows for
multiple ordinal predictors and other covariates of different measurement scales.
The monotonic effects approach to the ordinal predictors treatment is con-
ceived here as an intermediate point between two general and common approaches
within the context of regression analysis on observed variables. One of these com-
mon approaches corresponds to an unconstrained version of (2.2.1), treating the
ordinal predictor as if it were nominal. This ignores the ordinal information. The
other common approach treats an ordinal predictor as if it were of interval scale
type, replacing it by a single transformed variable after applying some scoring

method, f. More formally,
logit[P(y; < jlx:)] = oy + B, (2.2.2)

with Z = f(z). This treats f(x) as interval-scaled. Numerous data-based methods
for scaling of ordinal variables have been proposed in the literature, on top of using
plain equidistant Likert scaling (see, e.g., Section 1.4), but ultimately in most
situations the data do not carry conclusive information about the appropriateness
of any scaling f.

The intermediate approach proposed here is defined to achieve a set of linear
estimates described by multiple magnitudes, as in the nominal scale type ap-
proach, but allowing one direction only, as in the interval scale type approach.
The latter is attained by restricting the effects of the model (2.2.1) to be mono-
tonic in either direction. The monotonicity assumption should not necessarily be
taken for granted in regression with ordinal predictor and response. But it has a
special status, similarly to linearity between interval-scaled variables. According

to Stevens (1946) the interval scale type is defined by the equality in the meaning
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of differences between values regardless of the location of these differences on the
measurement range. A linear relationship between interval-scaled variables means
that the impact of a change in the predictor on the response is proportional to the
meaning of the change of measurement at all locations of the measurement scale.
For the ordinal measurement scale, only the order of measured values is mean-
ingful. In this case, monotonic relationships are those that imply that a change
in the predictor of the same meaning (i.e. changing to a value that is higher, or
lower, respectively) at all locations of the measurement scale has an effect of the

same meaning on the response.

Some other regression models for ordinal predictors are also based on the mono-
tonic effects assumption. However, models for ordinal responses have not been
explicitly discussed in this context. Tutz and Gertheiss (2014) used penalisation
methods for modelling rating-scaled variables as predictors (see Section 1.6.1), and
an active set algorithm was proposed by Rufibach (2010) to incorporate ordinal
predictors in some regression models considering the response variable to be con-
tinuous, binary, or represent censored survival times, and assuming isotonic effects
of the ordinal predictors’ categories (see Section 1.6.3). Another related method
is isotonic regression, mostly applied to continuous data (see, for example, Barlow
and Brunk (1972), Dykstra et al. (1982), and Stout (2015), also Section 1.6.2). In
a broader context, there are some other types of statistical models that deal with
ordinal data, such as those in item response theory (IRT) (e.g., Tutz (1990), Bacci
et al. (2014)), latent class models such as the one presented in Section 1.7.2 (see
also, e.g., Moustaki (2000), Moustaki (2003), Vasdekis et al. (2012)), nonlinear
principal components analysis (NLPCA) (e.g., De Leeuw et al. (2009), Linting
and van der Kooij (2012) and Mori et al. (2016)), and nonlinear canonical corre-
lation analysis (NLCCA) (e.g., Mardia et al. (1979) and De Leeuw et al. (2009)).
However, their settings are somewhat different compared to the one corresponding
to modelling an ordinal response with ordinal predictors (and others) in classical
regression. For instance, unlike IRT models and latent class models, classical re-
gression models do not assume latent variables; and in contrast to NLPCA and

NLCCA, classical regression models are not used as a dimensionality reduction



82 Proportional odds with monotonicity constraints

technique and need a single dependent variable, respectively.

The monotonicity constrained regression model discussed here can be used for
several purposes. When the unconstrained parameter estimates associated with
the ordinal predictor are monotonic, then clearly there is no need of a constrained
model. However, when these unconstrained estimates are not monotonic, then
there are some reasons why the constrained model could be useful. It is often of
interest to compare unconstrained and constrained fits in order to decide whether
there is evidence for not monotonic relationship. In case that the unconstrained
version does not provide a clearly better fit, the monotonic fit may be superior
regarding interpretability, and may also lead to a smaller mean-squared error, as

will be shown by simulations and a real data application in Chapter 6.

2.3 Proportional odds with monotonicity con-
straints

2.3.1 Model setting

Consider the unconstrained proportional odds cumulative logit model (POCLM).
Define m;(x;) = Py(y; = j|x;) as the probability of the response of subject i
to fall in category j, where y; and j denote the number of the ordinal category
of the response variable y;,j € {1,2,...,k} and = is the parameter vector for
the probability distribution that will be defined in the end of this section. Let
Yi1, - - -, Yir be the binary indicators of the response for subject i, where y;; = 1 if
its response falls in category j and 0 otherwise. The response vector with these k

binary components for the ith subject is y;. The POCLM for this probability is

mi(x;) = Floy —x;8) — F(ay—1 —x;8), j=1.....k i=1,....n, (23.1)

7 (2

with F(¢{) = (1 + e )™, known as the cumulative logistic distribution function.
In order that these k probabilities are strictly positive and sum up to one, it is

assumed that the intercepts are restricted to be

—o=ap< o << i1 < Q= 00. (2.3.2)
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Model (2.3.1) can also be written in terms of the cumulative probability for

the j-th category of the response variable as
logit[P(y; < jlxi)] = +B%;, j=1,....,k—1,i=1,...,n, (2.3.3)

keeping the restrictions described in (2.3.2).

The predictors are assumed to be fixed and they can be ordinal, for which their
parameter estimates will be constrained to account for monotonicity as explained
later, and/or non-ordinal. The parameters of the ¢ ordinal and v non-ordinal fixed
predictors are contained in 3 = (,Bzord), ,anomrd)) allocating their parameters in
either B,.q4) O B(nonora) correspondingly.

When model (2.3.1) includes ¢ ordinal predictors (OPs), each ordinal predictor
is denoted by the subindex s, with s = 1,..., ¢, and contributes p; —1 dummy vari-
ables to the model representing its ordinal categories {1, ..., ps} assuming the first
one as the baseline category, i.e., 3,1 = 0. The (32'_, (ps—1))-dimensional param-
eter vector B(,,q) contains t vectors B, s = 1,... ¢, each of which has p;—1 compo-
nents representing the parameters associated with the ordinal categories of ordinal
predictor s. Note that differences between the regression parameters belonging to
the ordinal categories are independent of the baseline category. Confidence inter-
vals (CIs) will be used for these parameters, the widths of which can depend on
the baseline category. For ordinal variables, the beginning or end point of the scale
seem elementary choices. Each dummy variable is defined as z; 55, = 1 if the i-th
observation falls in the category hg of the ordinal predictor s and 0 otherwise, with
hs =1,...,ps. The model also allows to include v non-ordinal predictors. There-
fore, X, = (Ti12, -, Titp1s Ti22s - s Ti2poy -3 Lit2y s Litpys Lidy- -, Liy), Where
those variables with three indexes correspond to the observation of an ordinal pre-
dictor category and those with two are observations of other types of covariates.
Hence, the model with ¢ OPs and v non-ordinal predictors is represented as

t qs v
logit[P(y; < jIxi)] = aj+Y > BanTish+ Y Buias j =1, k=1, i=1,...,n,
s=1 ps=2 u=1
(2.3.4)
with restrictions given by (2.3.2). Therefore, the dimensionality of the parameter

space is p= (k— 1)+ Zizl(ps — 1) + v, and putting all the parameters together
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the p-dimensional parameter vector is defined as
7/ — (a/’ IBI)
= (a/’ IB/(ord)’ lB/(’nOTLOTd))
= (alaﬁlla s 7/81,57617 s 7ﬁv)'

2.3.2 Likelihood model fitting

For independent observations, the likelihood function is based on the product of
the multinomial mass functions for the n subjects:

L(vly,x) ﬁ{ﬂ% y”}

7

k
{HP i = Jlxi y”}
7j=1

k

{ I[P < b = Py <5 - 1|xz->1y“}

7=1

. .
3 H: 3 H: 3
= =

{1

eaj*1+2fq:1 Ziz:z Bs,hs Ti,s,hs +ZZ:1 Buxi,u Yij
1 _|_ eaj—l""Zi:l 222:2 Bs,hs‘fi,s,hs +Z:i:1 Buxi,u

t 3
eaj+zs:1 ZiZZQ 5s,hsxi,s,hs +ZZ:1 /Buxi,u

t
1 4 %2 5=1 k5 =2 BshsTiys hs 201 Buis

(2.3.5)

Hence,

t
eaj+Zs=1 :ZZ:Q Bs,hsTi,s,hs +ZZ=1 Bui,u

(%) 1+ e+t 05 ms Bons Tiso ns + 0ot Buivu

t
eaj—l+zs:1 EZSS:Q Bs,hsmi,s,hs +ZZ:1 Buxi,u

_ 2.3.6
1 + eaj*1+22:1 22222 /Bs,hsxi,s,hs +ZZ:1 /Buxz‘,u ’ ( )

and the log-likelihood function for the model is

n k

i=1 j=1
As a constrained version of model (2.3.4) is of interest with the aim of getting
monotonic increasing/decreasing effects for the ordinal predictors, it is necessary
to define the set of constraints to be applied on the t sets of p, coefficients. The

isotonic constraints are

0<Bsp <+ < Bsp,, VseETL, (2.3.8)
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where Z C S, with S = {1,2,...,t}, and fs; = 0. The antitonic constraints are
0 Z /68,2 Z e Z /887p37 Vs € -/4-, (239)

where A C S, and 351 = 0. An estimation method based on a monotonicity di-
rection classification (MDC) procedure will be discussed in Section 2.4, allocating
the ordinal predictors in either of these two subsets, achieving ZU A = S.

These constraints can be expressed in matrix form as CB,,4 > 0. The vector
Bloray i part of the vector 3. The latter contains all the parameters associated
with the t ordinal predictors and their p, — 1 categories together with the v non-
ordinal predictors, 8" = (8,10 Blnonoray)> With Bipay = (B1,...,8;) with s =
L....t, and Bpnoray = (Br,- -+, Bu) with u = 1,... v, where each vector B =
(Bs2y -+ Bsp,) With hy = 2,...,ps. The matrix C is a square block diagonal
matrix of Zizl(ps — 1) dimensions composed of ¢ square submatrices C; in its

diagonal structure and zeros in its off-diagonal blocks as follows,

C, 0 --- 0
o C, 0 O
C= _ , with s =1,...,¢,
0 0
0 - G
where
1 -0
-1 1 0 0
C, = Vs e,
0 .0
0 -1 1
-1 0 --- 0
1 -1 0
C, = Vs € A,
0 )
0 1 -1

and each square submatrix C, has ps — 1 dimensions.

Then, the maximisation problem is

maximise ¢({a;}, B)

subject to CB,,4) > 0, (2.3.10)
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where 0 is a vector of 3.'_ (ps — 1) elements. Now, (2.3.10) can be expressed as

the Lagrangian

LOVA) = () = XCBiry: (2.3.11)

where A is the vector of Zi,:l(ps — 1) Lagrange multipliers denoted by A ..
The set of equations to be solved is obtained by differentiating £(~, A) with
respect to its parameters and equating the derivatives to zero. In order to solve this
in R (R Core Team, 2018), the package maxLik (Henningsen and Toomet, 2011)
offers the maxLik function which refers to constrOptim2. This function uses an
adaptive barrier algorithm to find the optimal solution of a function subject to

linear inequality constraints such as in (2.3.10) (Lange, 2010).

2.4 Monotonicity direction classification proce-

dure

Under the monotonicity assumption for all OPs, an important decision to be
made involves their monotonicity direction, i.e., whether the association between
the values of each ordinal predictor’s set of effects and the ordered categories (also
referred to as pattern), is either isotonic, namely s € Z, or antitonic, s € A.
Also outside the context of parameter estimation, it may be of interest whether a
predictor is connected to the response in an isotonic or antitonic way, or potentially
whether monotonicity may not hold or whether both directions are compatible
with the data.

One possible way to deal with this decision is to just maximise the likelihood,
i.e., to fit 2! models, one for each possible combination of monotonicity directions
for the ¢ ordinal predictors, and then choose the one with the highest likelihood.
However, as the number of ordinal predictors ¢ increases, the number of possible
combinations of monotonicity directions becomes greater, which could lead to a
considerable number of models to be fitted, each involving a large number of
covariates.

Another possible estimation method uses a monotonicity direction classifier

to find the monotonicity direction for each ordinal predictor and then fits only
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one model. This will be based on Cls for the parameters and on checking which
monotonicity direction is compatible with these. In some cases, e.g. when there is
an OP for which its parameter estimates are compatible with both monotonicity
directions, this estimation method may choose a particular set of monotonicity
directions that is not the same as the one of the model with the highest maximum
likelihood among models with different combinations of monotonicity directions,
but in some situations it may be desirable to take into account fewer than 2! but
more than a single model.

The two approaches are put together in a three steps monotonicity direction
classification (MDC) procedure exploiting their best features. Each of the first
two steps uses a decision rule with different confidence levels for the Cls, and the
last step applies the multiple models fitting process described above over those
patterns with no single monotonicity direction established in the previous steps.
Before describing its steps, consider some remarks and definitions.

The parameters’ Cls from an unconstrained model are the main input for the
decision rule proposed here. It is possible to compute the CI defined in equation
(2.4.1) for the parameters of an unconstrained version of the model (2.3.4) (Agresti,
2010). Denote SEB as the standard error of the parameter estimate B, then an

approximate confidence interval for § with a 100(1 — @)% confidence level is
B+ za2(SEp), (2.4.1)

where 25/, denotes the standard normal percentile with probability &/2. The
values for B and SEj; are obtained by fitting the proportional odds model (Mc-
Cullagh, 1980) using the unconstrained model (2.3.4). The R function vglm of the
package VGAM was used here, see Yee (2018).

The first two steps of the MDC procedure provide four possible outcomes for
each pattern of unconstrained parameter estimates associated with an ordinal
predictor’s categories: ‘isotonic’, ‘antitonic’, ‘both’, and ‘none’. The first two
correspond to a classification of monotonicity direction whereas the remaining two
to the case where a single direction is not found because either both directions of

monotonicity are possible or the parameter estimates’ pattern is not compatible
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with monotonicity, respectively. The idea is that the intersections of all Cls for
the parameters of a single ordinal predictor together will either allow for isotonic
but not antitonic parameters, or for antitonic but not isotonic parameters, or for
both, or for neither. Formally, the MDC of the parameter estimates’ pattern is

defined as

(

isotonic if Dyz ={0,1} or D,z = {1}

antitonic if Dyz={-1,0} or Dy; ={—1
dse = =110 =1 (2.4.2)

both if D,z = {0}

| none if Dyz O {—1,1},

where Dyz = {dsp,nc} is defined as the set of distinct values resulting from
(2.4.3) for the ordinal predictor s considering confidence intervals with a 100¢%

confidence level, and

(
1 if Lop,e> Uz
dspopye = —1 i Ugpoo < Lo (2.4.3)
0 otherwise,
\

Vh!, < hs and Yhy € {2,3,...,ps}, where Usﬁs,g is the confidence interval’s upper
bound of the parameter f; 5, associated with the category h, of the ordinal predic-
tor s given a 100¢% confidence level, and INJS,h&g is its corresponding lower bound.
Note that, by definition, the first category of all ordinal predictors is set to zero, so
ES,L& = ~S,175 =0, Vs. (2.4.3) yields 1 when the CI of the parameter [ 5, is fully
above the one of 3, and consequently their Cls only allow an isotonic pattern;
-1 when it is fully below pointing to an antitonic pattern; and 0 when there exists
an overlap, meaning that both monotonicity directions are still possible.

Each result of (2.4.3), denoted as d, n ¢, can be understood as an indicator
of the relative position of the confidence interval of the parameter gs;, compared
to the one of B, VA, < hy and hy € {2,3,...,ps}, belonging to the same ordinal

predictor s and given a 100¢% confidence level. As this is a pairwise comparison,

there exist ps(ps — 1)/2 indicators for each ordinal predictor s. Equation (2.4.2)
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OP 1: Isotonic OP 2: Antitonic

- UMLE and 95% Cls
—e— |sotonic example ;
—e— Antitonic example -4

Parameter values
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I

B11 B1.2 B13 B14 B2.1 B22 B23 B24
OP 3: Both OP 4: None

[

| | | | | | | |
Ba,1 B3,2 B33 B34 Ba,1 Ba2 Bas Ba.a

Figure 2.1: Illustration of particular examples for each possible monotonicity di-

Parameter values
o
]

rection classification.

uses these indicators to classify the monotonicity direction of an ordinal predictor
as a whole at a particular c.

As an illustration, Figure 2.1 shows some arbitrary patterns representing a
particular example for each one of the possible results of (2.4.2). For instance,
OP 1 is classified as ‘isotonic’ because all but one of the results of (2.4.3) are
1, where the only different is dy 43095 = 0, and therefore D; 95 = {0,1}. The
monotonicity direction of OP 2 is clear also, for which the results of (2.4.3) are
-1 except for dya3095 = 0, with which (2.4.2) classifies this OP as ‘antitonic’.
All the individual confidence intervals of OP 3 jointly overlap and contain zero.
Therefore, d3p,p;,005 = 0 Yhy < hg and thus D395 = {0}, classifying OP 3 as
‘both’. Finally, each individual confidence interval associated with the OP 4 is
either fully above or fully below the ones of previous categories belonging to the
same ordinal predictor. In particular, Dyo95 = {—1,1} because, for example,
di21095 =1 and dy 392095 = —1, which (2.4.2) classifies as ‘none’.

The three steps MDC procedure has the following structure:

Step 1 Set ¢ at a relatively high 100¢% confidence level, say 0.99, 0.95 or 0.90,



90

Monotonicity direction classification procedure

and apply the MDC (2.4.2) to assign the subindexes s either to the set Z
or A defined in Section 2.3.2. Therefore, Z; = {s : d;; = isotonic} and
Ay = {s : d;; = antitonic}, where Z; and A; denote the isotonic and
antitonic sets resulting from the step 1 respectively. In addition, define
By = {s:dsz; =both} and N7 = {s : dsz = none}. If (Zy UA;) =S, then all
the ordinal predictors’ monotonicity directions have been decided, and there
is no need to continue with the MDC procedure. Otherwise, the following

step is used for the remaining cases only, (B; UN7).

Step 2 Consider the set of ordinal predictors {s : s € (By UN;)} and apply

the MDC (2.4.2) in an iterative manner while varying the confidence level
100¢%. A decrease/increase of ¢ reduces/enlarges the range of the CIs of the
parameter ;5. Vs € (By UN;) and hg € {2,3,...,ps}. These changes in ¢
produce different effects on the classification depending on whether s € B;

or s € Vi, which must be used as follows:

(a) For each s € By, the second step is to gradually decrease ¢ while apply-
ing the decision rule (2.4.2) using a new confidence level ¢, instead of ¢,
obtaining d, & . The level of ¢, must be gradually decreased until either
a pre-specified minimum confidence level referred to as tolerance level

G5

&* is reached, with 0 < & < ¢, or the ordinal predictor s is classified

as either isotonic or antitonic by d .

(b) Conversely, for each s € Nj, gradually increase ¢ while applying the
MDC (2.4.2) using a new confidence level & obtaining dsz. The level
of &/ must be gradually increased until either a pre-specified maximum

confidence level referred to as tolerance level ¢7* is reached, with ¢ <

~/x

c;* < 1, or the ordinal predictor s is classified as either isotonic or

antitonic by d; .

Finally, Z, = 7, U{s : d, z = isotonic or dz = isotonic} and Ay = A;U{s :
dsz = antitonic or dyz = antitonic}, where the subindex of Z, and A,

denotes results from the second step. After completing the second step, if



Monotonicity direction classification procedure 91

(ZyUAs) = S, then it is not necessary to continue with step 3 and the MDC
procedure ends. If (Zo U Ay) C S, then the third and final step must be

carried out.

Step 3 Fit 2#{s:5¢(Z2UA2)} models accounting for possible combinations of mono-
tonicity directions of the ordinal predictors that were not classified as ‘iso-
tonic’ or ‘antitonic’, i.e., those in the set {s : s ¢ (Zo U Ay)}, and choose
the best model based on some optimality criterion, such as the maximum

likelihood as used here.

In general, the MDC procedure describes two levels of decision. The first one
is provided by step 1, where a confidence level is applied to all ordinal predictors
by the use of a single parameter ¢. This step uses multiple confidence intervals,
which does not necessarily assure that overall confidence levels will be kept. The
analysis of multiple confidence intervals is used in the MDCP as a tool for decision
making based on heuristic ideas. The second levels of decision is in step 2, where
each ordinal predictor s € (B; UN}) is classified based on its own confidence level.
Step 2 allows to classify predictors that were not classified based on the fixed
initial confidence level.

In step 2, classifying more parameter estimates’ patterns with s € B as either
isotonic or antitonic requires a gradual reduction of the confidence level. The
tolerance levels ¢ and ¢* determine the leeway allowed for the confidence levels
in order to enforce a decision. The choice of these may depend on the number of
ordinal variables; if the number is small, running step 3 may not be seen as a big
computational problem, and it may not be necessary to enforce many decisions in
step 2. The tolerance level & should not be too low, less than 0.8, say, because it
is not desirable to make decisions based on a low probability of occurrence.

For those s € N in step 2, the researcher does not face such a trade-off,
because greater confidence levels could increase (not decrease) the number of new
isotonic or antitonic classifications for those s € Nj.

It is important to reduce (or increase) the confidence level in step 2 in a gradual

manner, by 0.01 or 0.005, say, for each iteration. The smaller the distance between
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parameter estimates for adjacent categories of an OP, the smaller the size of the
reduction (or increase). If the chosen intervals in the sequence of confidence levels
to be assessed are too wide without assessing intermediate levels, then, for an
ordinal predictor s € Bj, it is possible to switch its classification from ‘both’
to ‘none’ instead of updating it from ‘both’ to either ‘isotonic’ or ‘antitonic’.
Conversely, the class of an ordinal predictor s € N could change from ‘none’ to
‘both’. The thinner the intervals in the sequence of confidence levels to be assessed
are, the less likely it is to switch from ‘both’ to ‘none’ or ‘none’ to ‘both’. However,
in some specific cases, there still is a probability of having such an undesired class
change.

The researcher may also be interested in exploring other monotonicity direc-
tions rather than those resulting from the MDC procedure proposed here, although
the maximum likelihood attained by the MDC procedure would not be reached.
In this case, the correspondence of each ordinal predictor s to either Z or A should
simply be enforced when constructing C, the matrix of constraints, as described

in Section 2.3.2.

2.5 Illustration of the MDC procedure

In order to illustrate the MDC procedure, consider a particular example of
model (2.3.4) with four ordinal predictors only (¢t = 4 and v = 0), where p; = 3,
po=4,p3=>5,pys =6, and k =4, ie., j =1,2, 3. The parameters are chosen to

be a; = —1, ag = —0.5, and a3 = —0.1; and

B, = (1.0,1.5),

By = (0.1,0.2,0.25),

B5 = (—0.02,—0.04, —0.041, —0.05), and
By = (-0.2,-0.3,-0.31,—0.35, —0.36).

These parameters represent a situation in which all covariates are monotonic, with
the elements of 3, and 3, being isotonic, and those of 35 and (3} antitonic patterns.
Given monotonicity, the higher the distances between adjacent parameters are,

the clearer the monotonicity direction is. In this illustration, these distances were
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Figure 2.2: Distribution of ordinal categories for each simulated ordinal predictor

(OP). OP 1 has 3 categories, OP 2 has 4, OP 3 has 5 and OP 4 has 6.

chosen to make the monotonicity direction clear for the first ordinal predictor only
and less clear for the remaining ones, s = 3 being the most unclear and challenging
case because all of its parameters show little distance between adjacent categories

and consequently from zero.

The 2,000 simulated observations of the ordinal predictors were obtained from

the population distributions shown in Figure 2.2.

Using this simulated data set, an unconstrained version of the model was fit-
ted to obtain the parameter estimates and their standard errors, with which a

confidence interval can be computed for any level of & using equation (2.4.1).

For the first step of the MDC procedure, the confidence level was set at a
high ¢ = 0.99. The resulting confidence intervals allowed to classify the first and
second OP as ‘isotonic’; Z; = {1, 2}, and the remaining two patterns of parameter
estimates as ‘both’, By = {3,4}. Figure 2.3 shows that the latter two ordinal
predictors allowed both directions of monotonicity, which is the reason why they
were not classified as ‘antitonic’. The second step was applied over each ordinal
predictor s € By = {3,4} using the same tolerance level, & = & = 0.8. For

s = 3, it was not possible to classify its pattern as ‘antitonic’ before reaching the

tolerance level. Therefore, it remained as ‘both’. For s = 4, the procedure was
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Figure 2.3: Simulated population parameters used in the data generation process
(blue lines and dots) and unconstrained parameter estimates for ordinal predictors’

categories and their 99% confidence intervals (golden lines and dots).

applied until reaching &, = 0.96, where the fourth OP was classified as ‘antitonic’.
Now, Z, = {1,2} and As = {4}. As no monotonicity direction was identified for
the third OP, two models were fitted in step 3 of the MDC procedure, one treating
the third OP as ‘isotonic’ and the other one as ‘antitonic’. Finally, the model with

the highest log-likelihood was selected as the final one.

The procedure successfully classified the ordinal predictors s = 1,2,3,4 as
‘isotonic’, ‘isotonic’, ‘antitonic’, and ‘antitonic’, respectively, despite the fact that
the unconstrained parameter estimates of the last three are not monotonic. Fur-
thermore, it reduced the number of possible models to be fitted from 17 (the
unconstrained model and 16 constrained models) to 3 (the unconstrained and two
models in step 3) while making decisions based on individual confidence levels of

96% or greater.

As shown in Figure 2.3, it is not easy to classify cases like s = 3 where all
the parameter estimates are close to zero and their confidence intervals are big
enough to make the monotonicity direction classification infeasible for any reason-
able tolerance level. In this case, the tolerance level would have needed to be set

at &5 < 0.53 had we wanted the MDC procedure to classify the third ordinal pre-
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dictor as either ‘isotonic’ or ‘antitonic’. In fact, when doing so, the MDC makes a
mistake and classifies it as ‘isotonic’. This relationship between low tolerance lev-
els and misclassification is the main reason why the procedure needs to start with
a relatively high confidence level ¢4 and then gradually decrease it until reaching

a reasonable tolerance level if necessary.

In cases like s = 3, one option is to remove this variable from the model because
all of the CIs associated with it contain zero even if we choose a tolerance level
lower than 0.80, which we consider too low. Removing this variable would have
allowed us to fit just two models (the unconstrained and one constrained) instead
of three in the whole procedure. This is a valid decision to be made from the
point of view of a variable selection procedure based on the significance of the
parameters associated with the variable. However, the objective of the analysis
should also be considered, which could lead to making a different decision, for
instance, keeping the variable because removing it may not be good if the aim is

to obtain a model with optimal predictive power.

2.6 Conclusions

A constrained regression model for an ordinal response with ordinal predictors
and possibly other type of predictors is proposed in Section 2.3. The ordinal re-
sponse variable is properly treated by using an existing model for ordinal responses,
the POCLM. The ordinal predictors are not treated as nominal-scaled variables
neither they are treated as interval-scaled variables. Therefore, the information
provided by the order of their categories is neither ignored nor overstated. A set
of (ps — 1) dummy variables for each ordinal predictor and constrained maximum
likelihood estimation are used, avoiding transformations of ordinal predictors and

exploiting the information provided by their category ordering.

The proposed model allows the researcher to fit a regression model for an
ordinal response imposing monotonicity constraints on the effects of OPs assuming
any monotonicity direction. This means that the proposed regression model does
not require a tuning parameter. However, the researcher could also be interested

in some method that delivers the monotonicity directions to be imposed, for which
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the MDC procedure defined in Section 2.4 is proposed.

The MDC procedure relies on the analysis of the confidence intervals of uncon-
strained parameters, for which the confidence levels must be set beforehand. The
pattern of parameters associated with an ordinal predictor’s categories is automat-
ically classified as isotonic or antitonic by the MDC procedure after the execution
of its three steps. Intermediate steps (steps 1 and 2), can classify a pattern not
only as isotonic or antitonic, but also as compatible with both monotonicity direc-
tions or none, providing two levels of decision. This feature will be used to define
part of a set of estimation methods proposed in Chapter 5, and also could be used
as a variable selection method, which will be discussed in the same chapter.

Given monotonicity of effects, the MDC procedure delivers the model that
maximises the likelihood among all possible combinations of monotonicity direc-
tions. The results of simulations discussed in Section 2.5 show that steps 1 and
2 of the MDC procedure reduce the number of possible combinations of mono-
tonicity directions to be assumed to obtain the constrained maximum likelihood
estimates, which turns out to be an increasingly valuable feature as the number

of OPs in the model increases.



Chapter 3

Asymptotics of the MLE for the
POCLM

3.1 Introduction

In order to study the asymptotic theory of the constrained MLEs for the
POCLM, some of the unconstrained results are used. The log-likelihood ratio
test and confidence regions for the unconstrained MLE (UMLE) of the POCLM
are presented in Section 3.2 (see Sections 3.2.1 and 3.2.2 correspondingly). The
latter will be considered in the discussion about confidence regions for constrained
MLE (CMLE) in Section 3.7, which is part of the results of the analysis of asymp-
totic theory for the POCLM under monotonicity constraints on the coefficients of
ordinal predictors.

When imposing monotonicity constraints on the effects associated with ordinal
predictors, the parameter space of the UMLE is reduced to the one of the CMLE.
This is analysed in Section 3.3, where, in addition, the likelihood function of the
POCLM and its logarithm are proved to be continuous and differentiable in the
constrained and unconstrained parameter spaces. Openness and convexity of the
parameter space of the constrained POCLM are discussed in Section 3.4.

In Section 3.5, it will be shown that, asymptotically, the true monotonicity
direction classification corresponds to the one of the MLEs with probability one

(see Section 3.5.4) and that consistency holds for the constrained MLEs of the

97
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POCLM (see Section 3.5.5). For this purpose, some other results must be discussed
earlier. Consistency of GLMs with natural link function will be analysed based on
Fahrmeir and Kaufmann (1985) (see Section 3.5.2). However, the link function of
the POCLM is non-natural. Therefore, an extension to the case of the general link
function (natural and non-natural) will be made explicit in Section 3.5.3. Given
that some general setting of the generalised linear models will also be required, it
is presented in Section 3.5.1. Asymptotic normality for the CMLE is discussed in

Section 3.6, as a continuation of the results about consistency.

The definition of asymptotic confidence regions for the CMLE of the POCLM
is analysed in Section 3.7, where four cases are distinguished and discussed de-
pending on whether the UMLE are the same as the CMLE and on whether the
confidence region is compatible with either one combination of monotonicity direc-
tions, multiple combinations of monotonicity directions, or even non-monotonicity.
Three definitions of confidence regions are proposed taking into account the four
cases. For some of them, using asymptotic theory could be problematic. The rea-
sons why they could be considered as problematic and their implications will also

be explored in terms of their confidence regions’ coverage probability (see Section

3.7.1).

Finally, asymptotic confidence intervals for the CMLE of the POCLM are
analysed in Section 3.8. For similar reasons to the ones of asymptotic confidence
regions, approximate confidence intervals could also be problematic. Some or all
of the values that are part of non-monotonic parameter vectors could belong to
individual confidence intervals. Therefore, these values should be removed from
confidence intervals associated with constrained parameters. However, given that
monotonicity is a feature of a parameter vector (not of a single parameter), then
each individual confidence interval does not provide information about monotonic-
ity. This means that it is not possible to identify all those values that are part
of non-monotonic parameter vectors by analysing individual confidence intervals.

This problem is discussed in Section 3.8.



Unconstrained POCLM 99

3.2 Unconstrained POCLM

Before analysing the asymptotic theory of the constrained MLEs for the POCLM,
some unconstrained results are presented. In particular, these are the log-likelihood
ratio test and confidence regions. These will be used in the discussion of one of the

main results of this chapter, the definition of confidence regions for constrained

MLEs for the POCLM in Section 3.7.

3.2.1 The log-likelihood ratio test

Recall the log-likelihood function defined in (2.3.7) for the unconstrained POCLM
using v = ({a;}, 8),

n k

0v) =Y wilogmi(xi), (3.2.1)

i=1 j=1
with 7;(x;) as defined in (2.3.6).
Let the parameter vector of model (2.3.4) belong to a p-dimensional space

called Uy and defined as

Urp = {7 = (&, 81, 8% Blnonoray) € RP 1 —00 <y < -+ < gy < 00},
(3.2.2)

where p =k — 1+ >'_ (ps — 1) + v. The unconstrained maximum likelihood is

(%) = max £(v), (3.2.3)

YeUU M

then 4 is the vector of unconstrained maximum likelihood estimators belonging
to the parameter space Upyyy.

Define r = p—q, with 0 < ¢ < p, as the number of parameter values to be tested
in the log-likelihood ratio test. When conducting a hypothesis test on one, some,
or all of the parameter values, then -~ is partitioned into two components so that
v = (B.,¢"). Denote as Uyyro the parameter space for which the r parameters

of 8, will be tested to be 3, , i.e., B, = B, ,, then the maximum likelihood is

0B, d)=  max_ U(B,.¢). (3.24)

(Br,®)€UUM,0,8,=Br0
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and therefore (2) is the maximum likelihood estimate of ¢ for fixed 8, = 8,4, all
of them in UUM,O'

Given that Uy is a subspace of Uy, then

g(;)/) - g(ﬁw &) > 07

representing the amount by which the log-likelihood decreases as a result of testing
r parameters at specific values. When this difference is large enough, /(%) —
0(B,,¢) > w (with large enough positive w), then the impact of fixing some
values in the parameter space suggests that the model under the null hypothesis
that ({a;},8") € Uy is a poor description of the data. The point now is how
to determine w. Wilks (1938) found that:

w

2[6(3) = (B, )] ~ Xip-g: (3.2.5)

where W is the Wilks’ log-likelihood ratio statistic. Therefore, using a significance

2

(r—a)1—q 18 the (1—a) quantile

level «, the researcher can set w = X? where x

p—q);l—a’

of a x? distribution with (p — ¢) degrees of freedom, and reject Hy : v € Upasp if

200(%) = By, )] > Xp g1 o (3.2.6)

These hypothesis tests can be used to construct confidence regions. In general,
according to Lehmann and Romano (2005), Section 3.5, a confidence region is the
totality of parameter values for which the null hypothesis is not rejected when the
data are observed, which will be used in the following sections. In particular for
the unconstrained version of the POCLM, McCullagh and Nelder (1989), p.473,
includes a discussion of the likelihood ratio for GLMs and presents its use to

construct confidence regions.

3.2.2 Confidence regions

Confidence region for all p parameters

The likelihood ratio test can be used to construct a confidence region for the p-
dimensional parameter vector ({a;},3'). The confidence region is composed of

all those p-dimensional points ({;o}, By) for which their log-likelihood ratio test
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does not reject Hy : ({},8") = ({ajo}, By), namely for those with a log-likelihood
(3.2.3) that is not significantly greater than the maximum log-likelihood (3.2.4).
Formally, a p-dimensional approximate 100(1 — «)% confidence region is usually

expressed in some of the following alternative ways
CRan = { ({0}, B0) : 200({05}, ) — £{as0 k. Bo)] < Xy }

/ L OA‘j 7A 1 2
~{tfasd ) o o < L)

_ s / _L({aj0}7180) e—%xzp d-a
—{({ Jo}ﬁo)-—L({&j},B) > e 2 } (3.2.7)

where the degrees of freedom are p.

In particular, when p = 2

[

2

e 2X@il-a = Q,

and then the border of the 2-dimensional approximate 100(1 — «)% confidence
region is depicted by the contour {({a0},8p) : L({a0}, By) = aL({d;}, B)}.
Confidence region for a subset of parameters

The previous sub-section discussed the use of confidence regions where r, the
number of parameters being set, is p. This section extends the method to construct
a confidence region when 1 <r < p.

Define a vector with r parameters of interest as 3,, then the overall parameter
vector v = ({«;},3') is partitioned as 4" = (8., ¢'), where ¢ is the transpose
of a vector ¢ with the remaining (p — r) parameters. The corresponding (uncon-
strained) MLEs of 8, and ¢ are now denoted as B,, and (Aﬁ accordingly.

The confidence region for the parameter vector 3, can be constructed by:

CRupdated MLE — {/607« : Q[E(Bra QAS) - K(BON é)] S X%r);l—a} (328)

where the degrees of freedom are r because it is the number of parameter val-
ues that are being tested to be 3,,, and ¢ is the vector of maximum likelihood
estimators as a function of the value of 3,,, where ¢ is defined by (B, &) =
MaX(3, ¢)clyr,8,=Bo, L(B,, @) for each value of B,. Therefore, ¢ can be thought
of as the updated MLE of ¢ for each value of 3,,. If r = p, B, is p-dimensional,
the terms ¢, ¢ and @ are omitted and in terms of notation 3 is replaced by ~.
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3.3 Monotonicity constraints and parameter space

When ordinal predictors are treated as of nominal scale type, the parameter
space is the set Uy, defined in 3.2.2 without imposing monotonicity constraints
on any of the ¢ vectors B, s =1,...,t. This is why the subscript UM is used in
(3.2.2), which stands for unconstrained model.

The proposed treatment of an ordinal predictor s is to impose monotonicity
constraints on its p, — 1 parameters. The isotonic constraints for those parameters

are
0< Ben << Bop., Vs€T, (3.3.1)
where Z C S, with § = {1,2,...,t}, and the antitonic constraints are
0> Ben > > Bp, Vs€EA, (3.3.2)

where A C S.

Despite the fact that model (2.3.1) is constrained on its intercepts with (2.3.2),
it will be referred to as the unconstrained model, and the model under monotonic-
ity constraints (3.3.1) and/or (3.3.2) will be regarded as the constrained model and
its parameter space will be studied in this section. In this chapter the asymptotic
theory of the MLEs for the POCLM will be addressed assuming that the true
parameters of each ordinal predictor is strictly monotonic, dropping the equal-
ity sign of constraints (3.3.1) and (3.3.2), keeping their corresponding inequalities
unaltered.

The parameter set of model (2.3.1) under monotonicity constraints on the
parameters of its ordinal predictors with undetermined monotonicity directions is

defined as

Uen =4~ = (e, 8, ... s B4 Blaonordy) € R 1 —00 <y < -+ < gy < 00,
[(ﬁs,Q > 07Bs,hs > 6s,hs—1> or
(Bs2 <0, Bs.n, < Psn—1)] Y(s,hs) €S x{3,...,ps}}. (3.3.3)

When the monotonicity directions are established, then the admissible set of

the parameter space of model (2.3.1) under strict monotonicity constraints on its
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ordinal predictors is defined as

Uon = {7 = (&, 81, 8% Bluonoray) € RP 1 —00 <y < -+ < g < 00,
(Bs2 >0, Bsn, > Bsna—1) Y(s,hs) €T x{3,...,ps},
(Bos < 0, Bon. < Bonot) V(s,hs) € AX{3,....ps}}. (3.3.4)

Therefore, the parameter space with established monotonicity directions, Ugyy,
is a subset of the one with undetermined monotonicity directions, Ucwn, e,
Uenm C Ucr.

The following two propositions analyse the likelihood function and its loga-
rithmic version in terms of their continuity and differentiability at the values of
the parameter vectors in the three different sets presented before: Uyas, Ucn and

Ucm.

Proposition 3.1. L(v|y,x) and its logarithm are continuous at v € Uyns, Ucns

or UCM- [ |

The proof of Proposition 3.1 is based on the following continuity rules presented

in Haggarty (1993):
e Sum rule: If f and g are continuous at xg then f + ¢ is continuous at xg.
e Product rule: If f and g are continuous at zy then f - g is continuous at x;.

e Reciprocal rule: If f is continuous at xy and f(zg) # 0 then 1/ f is continuous

at xg.

Proof. Since ' = (&', 3'), the likelihood function (2.3.5) can be rewritten as

k ) /. ) . Yij
I1 v PR e ] } (3.3.5)

{ 1+ eatBxi ] 4 eoj-1tB'x
i=1 j=1

Consider the function z(a;, B|x;) =

::]:

L(v|y,x)

o 8% . .
1oty B Given x;, the exponential func-
eJ 4

tion is continuous in =, therefore the numerator is continuous. By the reciprocal

rule, the inverse of (1 + eo‘ﬁﬁlxi) is also continuous. Therefore, by the product

rule, z(a;j, B|x;) is continuous. Analogously, so it is z(a;_1, 3|x;). By the sum
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rule z(oy, B|x;) — z(aj_1, B|%;) is also continuous and the result of the remaining
operations in (3.3.5) is continuous by the product rule.
Given that the logarithmic function is continuous, then log L(v|y,x) is also

continuous at v € Uy, Ucar or Ucy. [ |

Similarly, it can be shown that the likelihood function of the POCLM and its

logarithm are differentiable at v € Upar, Ucar or Uy

Proposition 3.2. L(v|y,x) and its logarithm are differentiable at v € Uyar, Ucns
or UCM- [ |

The proof of Proposition 3.2 is based on the following differentiability rules
presented in Haggarty (1993):

e Sum rule: If f and g are differentiable at xy then f + ¢ is differentiable at

Zg.

e Product rule: If f and g are differentiable at zy then f - ¢ is differentiable at

Zg.

e Reciprocal rule: If f is differentiable at zy and f(zo) # 0 then 1/f is differ-

entiable at x.

Proof. Since v/ = (a’,3'), the likelihood function (2.3.5) can be rewritten as in
Equation (3.3.5).

eaj +B"x;

Consider the function z(a;, B|x;) = . Given x;, the exponential func-

14e®i TA'xi
tion is differentiable in -y, therefore the+numerator is differentiable. By the re-
ciprocal rule, the inverse of (1 + %) is also differentiable. Therefore, by the
product rule, z(«;, B|x;) is differentiable. Analogously, so it is z(c;_1, 8|x;). By
the sum rule z(«;, B|x;) — z(oj_1, B|%;) is also differentiable and the result of the
remaining operations in (3.3.5) is differentiable by the product rule.

Given that the logarithmic function is differentiable, then log L(~|y, x) is also
differentiable in . [ |

A useful result about continuity is stated by the next theorem:
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Theorem 3.3. If f is differentiable at xo then [ is continuous at xg.

See Haggarty (1993), p.169, for its proof. Theorem 3.3 will be referred later
when statements about continuity of L(«|y,x) or its logarithm at v € Upyy,
Ucnr or Ugyy are made. Given that Proposition 3.2 proves that L(~|y,x) and
its logarithm are differentiable at v € Upyy, Ucar or Uoyy, then, by Theorem 3.3,
continuity also holds for those functions at those «v. Also Proposition 3.2 addresses

differentiability.

3.4 Parameter space of the constrained POCLM

The development of asymptotic inference for the unconstrained POCLM dis-
cussed in Fahrmeir and Kaufmann (1986) assumes that the parameter set Uy,
is in RP, nonvoid, open, and conver. Uyys is constrained by (2.3.2), which oper-
ates on the intercepts only. Asymptotic inference for the constrained POCLM,
which also constraints the coefficients associated with the ordinal predictors, is
discussed under strict monotonicity assumptions, dropping the equality sign in
(3.3.1) and (3.3.2). Openness and convexity will be discussed under the context
of the constrained MLE for the POCLM in the following subsections.

3.4.1 Openness of the parameter space of the constrained

POCLM

In order to prove that the parameter space Ugys of model (2.3.4) is still an open
set after imposing monotonicity constraints on its ordinal predictors, the following

definitions taken from Protter et al. (2012) will be used:

Definition 3.4 (Metric space, Distance function). Let S be a set and suppose d
is a function with domain consisting of all pairs of points of S and with range in
RY. That is, d is a function from S x S into R'. We say that S and the function

d form a metric space when the function d satisfies the following conditions:
(i) d(z,y) >0 for all (z,y) € S x S; and d(z,y) = 0 if and only if z = y.

(ii) d(y,z) = d(z,y) for all (z,y) € S x S.
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(iii) d(zx,z) <d(z,y) + d(y, z) for all z,y,z in S. (Triangle inequality.)

The function d satisfying conditions (i), (ii), and (iii) is called the metric or

distance function in S. Hence a metric space consists of the pair (5, d). |

Definition 3.5 (Open ball, closed ball). Let vy be an element of S, a metric
space, and suppose 7 is a positive number. d(v,vp) is assumed to be the Euclidean
distance between v and vy. The open ball with center at vy and radius r is

the set B(vg,r) given by
B(vg,r) ={v € S :d(v,v) <r}.
The closed ball with center at v, and radius r is the set B(vg,r) given by
B(vo,v) = {v € S :d(v,v) <7}
|

Definition 3.6 (Open set, closed set). A set A in a metric space S is closed if
and only if A contains all of its limit points.

A set A in a metric space S is open if and only if each point py in A is the
center of an open ball B(pg,r) which is contained in A. That is, B(pg,r) C A. It

is important to notice that the radius » may change from point to point in A. W

The only difference between the parameter space of the unconstrained model
and the one of the constrained model lies in the parameter space of the parameters
associated with the ordinal predictors, which are assumed to be restricted under
strict monotonicity with a pre-determined monotonicity direction for each ordinal

predictor s.

Proposition 3.7. The set

Uon = {7 = (&, 81, B4 Bloonoray) € RY 1 —00 <y < -+ < g < 00,
55,2 > 07 5s,h5 > ﬁs,hsflv<s7 hs) S I X {37 o 7]95}7
53,2 < Oa 65,}15 < Bs,hsflv<87 hs) € -’4 X {37 L 7ps}}-

15 open. |
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Proof. Take any v, € Ucys as the center of an open ball B(y,, ). If the radius r is
set at some fraction (say 1/2) of the minimum distance between adjacent param-
eters belonging to av and B, Vs € Z U A, then the open ball B(v,, ) is contained
in Ucn. More formally, setting » = min(rq, rg) with ro = minjegp  r—13([og0 —
aj_10]/2) and rg = ming p)ezua)x(2,..ps} ([Bs,hs0 = Bshe—1,01/2), With Bs10 = 0
Vs € TU A, allows to get B(v,,7) C Uy for any v, € Uoyy as required, so Ucpy

is open. |

3.4.2 Convexity of the parameter space of the constrained

POCLM

In Section 3.3, two constrained parameter sets were defined, Ugy in (3.3.3) and
Ucn in (3.3.4). The former does not require to allocate the monotonicity direc-
tions of the effects for each ordinal predictor, and the latter refers to the case when
the monotonicity directions are pre-established. It will be shown that the param-
eter space for the model under monotonicity constraints is not convex when the
monotonicity directions are undetermined (see Remark 3.9), and it is convex when
these directions are determined (see Proposition 3.10). The following definition

taken from Rudin et al. (1976) will be used:
Definition 3.8 (Convex set). A set S C R" is convex if

X+ (1=-NyesS (3.4.1)
whenever x € S,y € S, and 0 < A < 1. |

The parameter set of model (2.3.1) under monotonicity constraints on the
parameters of its ordinal predictors with undetermined monotonicity directions is

denoted as Ugy; and defined in (3.3.3).
Remark 3.9. The parameter set Ugyy is not convex.
Proof. Consider a model with one ordinal predictor and take 44,4, € Ucy for

which the parameter vector of the ordinal predictor s = 1 of the point 7, is in the

“isotonic” set (with constraints (8120 > 0, Bin.0 > Bin-10) Yhs € {3,...,p1})
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and the parameter vector of the ordinal predictor s = 1 of the point 7, is in the
“antitonic” set (with constraints (31,271 < O,Blhs,l < 517h3_171) Vhs € {3,...,p1}).
Consider 45, = My, + (1 — M)A, with A € (0,1). The third subindex (0, 1, or 2)
indicates the point (7,, 4, or ¥,) to which the parameter belongs to. To prove
that Ucay is not convex, it is enough to show that some component of v, violates
some of the restrictions defined in Ugyy for some A € (0, 1).

The first component of the parameter vector of the ordinal predictor s = 1 of

the point 4, (k-th component of 4,) is

5)1,2,2 = )\31,2,0 +(1— )\)51,2,17

which can take any real value, violating its corresponding restriction in (3.3.3),
for example, when 31’2,2 = 0 for the case BLQ’O = —5172,1 and A = 0.5. Therefore

v, ¢ UCM and UCM 1S not convex. m

However, it will be shown in the proof of Proposition 3.10 below, that both the
isotonic and antitonic subsets of the parameter space of an ordinal predictor are
convex separately. Therefore, when each vector of parameters associated with the ¢
ordinal predictors, 3, Vs = 1,...,t, is constrained under a particular monotonicity

direction, then the parameter set of the constrained model is convex.

Proposition 3.10. The set

Uon = {¥ = (&, 81, -, Bt Blnonoray) € RY : =00 < ap < -+ < gy < 00,
5372 > 07 65,]7,5 > Bs,hs—lv(sa hs) €l x {37 cee aps}v
55,2 < 07 Bs,hs < /Bs,hs—lv(87 hs) € A X {37 e 7ps}}'

18 convez. [ ]

Proof. Take 4,7, € Ucy and consider v, = Ay, + (1 — Ay, with A € (0,1).
For Uy to be convex, it must be proved that v, € Ugys for all A € (0,1), which
is equivalent to show that every component of the vectors contained by ~, =
(ah, B9 B2 Blronoray2) fulfils its corresponding restriction stated in Ucas.

The last subindex (0, 1 or 2) will indicate the point to which the vector/component

belongs to (v, Y1 Or vs).
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e Regarding the components of au:

The first component of s is a1 9 = Aag o + (1 — A)ay 1, then it follows that
a1 > —oo VA € (0,1). For the subsequent components of auw, i.e., oj o with
j=2,...,k—1,

ajo = Aajo+ (1 —Nay,
and given the strict monotonicity (isotonic) restriction, each of these com-

ponents can be rewritten as
Oéj}g = )\(ajflyo + (5]‘7170> + (1 — )\) (ozj,l,l + (53;171)
= )\ijfl,o + (1 - )\)Oéjflg + )\5];170 + (1 - )\)5j7171
= aj_172 + [>\5j—1,0 + (1 - )\)5]'_171],
where §;_10 > 0 and d;_11 < oo Vj € {2,...,k—1}. Therefore, a2 > —00,
ajo > 12 V) €{2,...,k—1}, and aj_12 < 00 as required.
e Regarding the components of 3, Vs € I:

The first component of B, , is Bs22 = AMBs20 + (1 — A)Bs 2,1, then it follows
that 822 > 0 VA € (0,1). For the subsequent components of 3, 5, i.e., Bsn, 2
with hy = 3,...,ps,

ﬂs,hs,Q = ABs,hs,o + (1 - /\)65,’13717

and given the strict monotonicity (isotonic) restriction, each of these com-

ponents can be rewritten as

Bshe2 = A Bs 1,0 + On—10) + (L = X)(Bshe—1.1 + Ons—11)
= Mshe—1,0 + (L = A)Bsn,—11 + Adp,—10 + (1 = A)dp,—11
= Bope1,2 + [Aon,—1,0 + (1 = A\)0n, 1.1,
where 6p,—10,0n,-11 > 0 VYhy € {3,...,ps}. Therefore, fs22 > 0 and
Bshez > Bsho—12 Y(s,hs) € T x{3,...,ps} as required.
e Regarding the components of 3, , Vs € A:

By analogous arguments to those used in the previous point, it is shown that

Bs22 <0 and Bsp, 2 < Bsn,—12 V(s,hs) € Ax{3,...,ps} as required.
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e Regarding the components of 3

nonord),2"
Every component of B ,,on0ra)2 18 Buz = ABuo+ (1 —A)Buy withu=1,... v
and B0, Bu1 € R, then f,2 € R VA € (0,1) as required.

As none of the components of v4 = (ay, 31, - -, B2 Blronoray2) Violates its

corresponding restriction in Ugyy, then v, € Usys and therefore Ugyy is convex.

3.5 Asymptotic monotonicity direction and con-

sistency

The two main objectives of this section are to show that, when the set of

parameters associated with each ordinal predictor is strictly monotonic,

(0.1) the true monotonicity direction classification of the set of parameters asso-
ciated with each ordinal predictor is indicated by the MLEs when n — oo

with probability one, and
(0.2) asymptotic consistency of the MLEs holds for the constrained POCLM.

These two objectives will be finally addressed in Sections 3.5.4 and 3.5.5 accord-
ingly. Previous sections will discuss the necessary aspects to build up the connec-
tion between asymptotic theory for unconstrained generalised linear models with
natural link functions and some topics of asymptotic theory for the constrained
POCLM, which is a particular case of constrained generalised linear models with
non-natural link function. The first objective, (O.1), is achieved by Corollary 3.18,
which is associated with Theorem 3.17, both of them in Section 3.5.4. The second
objective, (0O.2), is achieved by Theorem 3.19 in Section 3.5.5.

Section 3.5.1 presents the general setting of GLMs that will be used in sub-
sequent sections. Asymptotic theory for unconstrained generalised linear mod-
els with natural link functions is discussed explicitly in Fahrmeir and Kaufmann
(1985). In particular, its Theorem 2 will be presented in Section 3.5.2 as Theorem
3.11. Relevant parts of its proof will be highlighted because they will be used in

further sections.
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An explicit extension of Theorem 3.11 from unconstrained GLMs with natural
link functions to unconstrained GLMs with general link functions (including the
non-natural ones) is addressed as a first step leading to the case of the constrained
POCLM. This extension is included in Theorem 3.16, Section 3.5.3. The proof
of Theorem 3.16 requires some arguments that are stated and proved earlier, in
Propositions 3.14 and 3.15. Proposition 3.14 is of special interest because it will
also provide the key arguments in order to achieve (O.1) later. All of these are
contained in Section 3.5.3.

As mentioned before, (O.1) will be achieved in Section 3.5.4. There it will be
shown that when n — oo, the monotonicity direction of the set of parameters
for each ordinal predictor is correctly established by the constrained MLEs of the
POCLM with probability one, which allows to allocate each ordinal predictor s into
either Z or A. In order to formalise this statement, Corollary 3.18, a special case
of Theorem 3.17, will be stated in that section and their corresponding proofs will
be given in detail. Theorem 3.17 extends the scope of Proposition 3.14 in the sense
that the monotonicity constraints of ordinal predictors and other considerations
are taken into account.

Finally, (O.2) will be achieved in Section 3.5.5, where asymptotic existence
and strong consistency of the MLEs for the constrained POCLM will be stated
by Theorem 3.19 together with its proof. Theorem 3.19 is an extension of Theo-
rem 3.16 because it incorporates the monotonicity constraints of the parameters

associated with ordinal predictors.

3.5.1 The GLM setting

Fahrmeir and Kaufmann (1985), p.345, characterise the generalised linear models

GLMs) using the following structure:
( g g
(i) The {y,} are k-dimensional independent random variables with densities

f(yn]0n) = c(yn) exp(@,y, —b(0,)), n=1,2 ..., (3.5.1)

of the natural exponential type, with the parameter vector 8,, belonging to

©°, the interior of the natural parameter space © of all natural parameters
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0 associated with a density function belonging to the exponential family

(3.5.1). Eg, (yn) = 0b(8,)/00,, = u(8.,,).

(ii) The matrix X,, influences y,, in form of a linear combination n, = X!~

where 7 is a p-dimensional parameter.

(iii) The linear combination is related to the mean (@) of y, by the injective
link function g : M — R*, m,, = g((0,,)), where M is the image pu(0°) of

©°. These functions will be referred to as general link functions.

As a remark, Fahrmeir and Kaufmann (1985), p.345, indicates that for theoret-
ical purposes, it is more convenient to relate n,, = X/~ to the natural parameter
0, by the injective function u = (go p)™!, ie., 6, = u(X/~). Natural link
functions are defined as g = p~!, u = id, obtaining a linear model 0, = X/~
for the natural parameter. Natural link functions are special cases of general link
functions.

Regularity assumptions (Fahrmeir and Kaufmann (1985), p.346)

(i) The admissible parameter set is open in R?,
(i) X,y €g(M),n=1,2,..., for all 4 in the admissible parameter set,
(ili) g resp. u is twice continuously differentiable, det(du/dn) # 0,

(iv) > X; X! has full rank for n > ny, say.

The score function and the Fisher information matrix of the first n observations

are

sn(y) = Olog L(V|yn, X3) /0, (3.5.2)

F,(v) = covys, (7). (3.5.3)

The negative derivative of the score function yields

H,(v) = —0*1og L(¥|yn, Xs) /0707, (3.5.4)
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The matrix H,, () can also be expressed as H,(v) = F,(v) — R, (), with the
matrix R, (v) given by,

n k

R.(v) = Z Z XiWir (7) X5 (yir — pir (7)) (3.5.5)

i=1 r=1

where W,.(v) = 0%u,(X}v)/0non’, and u,(X!7), yir, pir(7y) are the components
of u(X!vy), yi, t; (). In general, E,[H,(v)] = F,(v), and in particular for natural
link functions, H, (v) = F,.(¥).

3.5.2 Consistency of GLMs with natural link function

Theorem 2 in Fahrmeir and Kaufmann (1985) (see Theorem 3.11 below) establishes
the asymptotic existence and strong consistency of the MLEs in generalised linear
models with natural link functions.

The notation Ayin[Fr ()] denotes the minimum eigenvalue of the matrix F,, ()
and Apax|[Fn(7)] denotes its maximum eigenvalue.

Define the sequence Na ,(7,) of neighbourhoods of the true parameter vector

Yo, With A > 0, as

Naa(vo0) = {7 : [IF7*(v0) (v = 70)l| < A} (3.5.6)

Theorem 3.11 (Fahrmeir and Kaufmann (1985), p.349). If the following assump-
tions hold,

(D) Divergence: Myin[Fn(vo)] = 00, and

(Sa) Boundedness of the eigenvalue ratio: there is a neighbourhood N C Uy of

Yo such that
Min[Fa (V)] 2 cQmaxFa(70))2H2, v €N, n2my,
with some constants ¢ > 0, A > 0, ny,
then there is a sequence {%,,} of random variables and a random number ny with
(i) P{s,(¥,,)) =0 Vn>ny} =1 (asymptotic existence),

(i) 4, <=3 ~, (strong consistency).
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The proof of Theorem 3.11 is given by Fahrmeir and Kaufmann (1985), p.351-
352, and requires that, given some arbitrary € > 0 with K.(v) = {v : [|[7—!|| < €}
contained in the neighbourhood N of condition (Sa), and with a random number

na,

Py {log L(vo|yn, Xn) > log L(y|yn, Xn) Vv with ||y —¢|| = €,Vn > ny} =1,
(3.5.7)

namely, v, is the parameter vector that maximises the log-likelihood with proba-
bility one among all those v that are at a distance of € from ~, for all n greater
than or equal to some random number ny, with log L(7,|yn, X,) being the value
of the log-likelihood function for the first n observations.

Theorem 3.11 holds for generalised linear models with natural link functions.
However, the link function of the model of interest, the POCLM, is non-natural.

This requires to modify Theorem 3.11, which is discussed in the next section.

3.5.3 Consistency of GLMs with general link function

To see that the link function of the POCLM is non-natural, consider the multino-
mial model for an unordered response to compare its link function against the one
of the POCLM. Both models use the multinomial distribution, which is part of the
exponential family. 5(0) in (3.5.1) is sometimes referred to as the natural parame-
ter. When the link function g is chosen to be of the form of the natural parameter,
then g is called the natural (or canonical) link function (see Agresti (2007)). For
a categorical response variable with k& unordered categories it is common to use

the link function

10%[7Tj(xi)/7Tk(Xi)] =o; + X;ﬁja with j =1,...,k, Wj(Xi) = P—y{yi = j’Xi}a
(3.5.8)

which turns out to be the natural link function (see Fahrmeir and Kaufmann
(1986), p.182).

When the response variable is ordinal, the link function is different to (3.5.8)
because it has to take into account the order of its categories. For a categorical

response variable with & ordered categories the proportional odds cumulative logit
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model defined in (2.3.6) uses the link function (2.3.1), which is non-natural (see
Kaufmann (1988), p.296, and Fahrmeir and Kaufmann (1986), p.182).

For generalised linear models with non-natural link functions H, (v) # F,.(7),
making consistency and normality more difficult to be established since the unique-
ness of the MLEs cannot be guaranteed for every non-natural link function (Fahrmeir
and Kaufmann (1985), p.360). Wedderburn (1976) considers different link func-
tions for four models, including some non-natural ones. These are the normal,
Poisson, binomial, and gamma models. The existence and uniqueness of the MLEs
is established for them. However, the multinomial model is not considered.

In Fahrmeir and Kaufmann (1985) p.360, a side remark indicates that Theorem
3.11 remains true for non-natural link functions under (S} ), a modified version of
its condition (Sa), which involves Apin [H ()] > c(Amax[Fn(70)])Y/?*2 rather than
Amin [Fn(7)] > ¢(Amax[Fr(70)]) /272, without stating a new theorem explicitly. As
this version is of interest for the case of the POCLM, it is made explicit in Theorem
3.16 below for general link functions. The proof of Theorem 3.16 will require an
argument about the value of the log-likelihood function for the true parameter
vector and its comparison against the value of the log-likelihood function for some
other parameter vectors fulfilling some conditions. This will be formally stated and
proved in Proposition 3.14. Therefore, the latter will be analysed before stating
Theorem 3.16. The proof of Proposition 3.14 is based on part of the concise
arguments used in the proof of Theorem 2 in Fahrmeir and Kaufmann (1985),
so it extends them in detail and incorporates the corresponding modifications to
make it hold for general link functions. It also makes reference to Wu (1981)’s
Lemma 2 (see Wu (1981) p.504), some results of the Rayleigh quotient (see Meyer
(2000), p.550-551), and the Cauchy-Bunyakovsky-Schwarz inequality. Therefore,
they are presented below as a list of resources to be used in the proof of Proposition

3.14.

Lemma 3.12 (Wu (1981), p.504). Let {X;} be a sequence of independent random
variables with E[X;] = 0 and Var[X;] = o7 and

%

no_2V1/24A
A, — oo, lim sup (2im 77)

n—oo ATL

< oo for some A > 0. (3.5.9)
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Then,

Z?:l Xi

A —0 as. (3.5.10)

Meyer (2000), p.550-551, presents some properties of Hermitian matrices in
terms of their smallest and largest eigenvalues, which are based on the Rayleigh
quotient. The Rayleigh quotient also holds for real symmetric matrices since real
symmetric matrices are special cases of Hermitian matrices. The eigenvalues \;[A]
(1=1,2,...,n) of a real symmetric matrix A, y, are real, so they can be ordered
as AM[A] < M[A] < -+ < A\, [A]. The largest and smallest eigenvalues can be
described as

M[A] = \|§\I|1\iri1 XNAX and )\, [A] = nax XA (3.5.11)

This characterisations often appear in the equivalent forms

XNAX XA

M[A] = 222 and \JA] = ity 5.12
\[A] and A, [A] = max S (35.12)

min
[IAll2%0

Consequently, A\[A] < (NAX) < A\, [A] for all A # 0. The term ANAX/N'A is
referred to as the Rayleigh quotient. In this case, the class of squared complex

Hermitian matrices is a generalisation of the class of real symmetric matrices, such

as the case of F,,(7) and H,, (7).
Theorem 3.13 (Cauchy-Bunyakovsky-Schwarz inequality).

X'y| < |Ix]| [lyl] for allx,y € R™. (3.5.13)
Equality holds if and only if y = ax for a = X'y /x'x.

Lemma 3.12, equations (3.5.11) and (3.5.12), and Theorem 3.13 will be used
in the proof of Proposition 3.14.

Proposition 3.14. If the following assumptions hold,

(D) Divergence: Apin[Fn(7vo)] = 00, and
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(SA) Boundedness of the eigenvalue ratio: there are some constants ¢ > 0, A > 0,
ny, and there is a neighbourhood N C Uyns of 7y, such that ¥y € N, and

vn Z ni,
Aumin[Hi (7)] = ¢(Amax[Fan(70)])'*2
holds almost surely,

and considering for some arbitrary € > 0 with K. (vy) = {v : [|lv — Yol < €}
contained in the neighbourhood N of condition (Sy) the event

Qny = {((x1,¥1), (x2,¥2), - -) : og L(7o|yn, Xn) > log L(7¥[yn, Xn),
YV with ||y — vol| = €,Vn > no}, (3.5.14)

then, with a random number ny depending on the sequence {y,},
Py {Qn,} = 1. (3.5.15)
[ |

Proof. We now consider v with || — 7,|| = € as holds for the elements of Q,,.
We start with the Taylor expansion of the log-likelihood, which is

0),810g L('Y’Ym Xp)

1OgL(7|ynvxn) :logL(70|Yn7Xn) + (7 - 8’7

0),0 log” L(Y|yn, Xn)

* Ovov'

(Y = 70), (3.5.16)

Y=

(v -

1
2
where 7 lies between v and -y,, allowing the use of the equality sign. Letting
A = (v — vo)/€ and using the score function (3.5.2) and the negative second

derivative of the log-likelihood defined by (3.5.4), then an alternative expression
to (3.5.16) is

/ 1 !/ ~
log L(Y|¥n, Xn) — log L(vo|¥n, Xn) = €X'sp(7yy) — 562)\ H,(¥)A. (3.5.17)

Note that A = (v —4,)/€ and ||y — v,|| = ¢, then

_ 2 _ 2
N\ = (71 270,1) 4 (72 270,2) TR .
€ € €

€

M] 1 (3.5.18)
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Based on the event Q,,, the left hand side of (3.5.17) is negative, and therefore
its right hand side fulfils

Nsn () < %)\’Hn(’y))\ with  n > n,. (3.5.19)

For the application of Wu (1981)’s Lemma 2 it is convenient to divide (3.5.19)
by (Amax[Fn(¥0)])/?*4 and, according to (3.5.18), to use A’A = 1, from which we
get

AH, ()

A'sn (7o) €
2 (Amax[Fn (7)) /242

(Amax[Fn (70)]) /214

<

with XA =1, n>n,.
(3.5.20)

Furthermore, (3.5.20) is equivalent to the inequality of the event @,,,, which follows
from (3.5.17) and (3.5.19).

The left hand side of (3.5.20) will be analysed separately from its right hand
side. It will be shown that the left hand side of (3.5.20) converges almost surely
and uniformly to zero, whereas the right hand side of (3.5.20) is bounded from
below by ce/2 if n > ny, and therefore the event @, has probability one.

For the left hand side of (3.5.20), define

N'su (7o)
()‘max [Fn (70)])

where v, (7o) = $u(Vo)/ Amax[Fn(7)]) /22, Given that F,,(v,) is the var-cov

727 = A Va(%0); (3.5.21)

matrix of s,(7,), each component of s,(7,) has a variance less than or equal
t0 Amax|Fn(7o)]- This is true because using (3.5.11) we get Apax|Fn(7vo)] =
max|x|l,=1 AFn(70) A-

A component-wise application of Wu (1981)’s Lemma 2 (see Lemma 3.12) will
be used to show that s,(vy)/(Amax[Fn(70)])/2™ <2 0 on the left hand side of
(3.5.20). Lemma 3.12 states that

Zzz—l —0 as. (3.5.22)

for a sequence {X;} of independent random variables with E[X;] = 0 and Var[X;] =

o? and

no_2V1/24A
A, — oo, lim sup (2 97)

n—o0 ATL

< oo for some A > 0. (3.5.23)
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Now, given that the score function s, () is the first derivative of the log-likelihood
function (2.3.7), then the score function at -, can be written as the sum of n
contributions defining

"I yilogmi(xi) &
sn(70) = Z = aiyo : - Z Sni(Yo)
i=1 1=1

with 3[2] 1 Yiilog i (x:)] /0o = sni(7Y). Taking expectations we obtain Els,(v,)] =
Yo Elsni(7v,)], where E[s,(7,)] = 0. Each s, ;(v,) can be understood as the
score function at 7y, for the ith observation, therefore Els, ;(7y,)] = 0.

To see this, consider the likelihood function for the i-th observation given by

I I y
n 1 7|yZ7XZ 7Tj Xz K

_HP i = %)Y (3.5.24)

and the corresponding log-likelihood function for the i-th observation

v) = Zyij log 7;(x;), (3.5.25)

where y; and j denote the number of the ordinal category of the response variable
vi,j € {1,2,...,k}; via,- ..,y are the binary indicators of the response for the
i-th observation with y;; = 1 if the response falls in category j and 0 otherwise;
and y; is the response vector with & binary components for the i-th observation.

Hence, the expectation of the score function for the i-th observation is

k
910g Ln—1(7o|i, X .
Elsua)] = 3 SRRSO by i
0

j=1

_ Z OLn=1(70lyi, %) /0, Ply;

j|Xi)
Ln 1(’70‘}’17 Xz)

7=1

. Z OLn—y '70|YMXZ)
97

LTL 19 (2
0702 1 (Yolyi %)

=0, (3.5.26)
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as previously stated.

Now, the term X; of Lemma 3.12 is defined in this proof as some component of
Sn,i(Vo), 1.6, Xi = snpi(vo) Vr € {1,...,p}. In addition, let Var(s,i(v,)] = 02,
As Els,i(7vy)] = 0, then E[sy.i(v)] = 0 Vr € {1,...,p} as required by Lemma
3.12.

Next it will be shown that the remaining conditions in (3.5.23) are fulfilled.
Let A, = (Amax[Fn(70)])?t2 and consider Aoy [Fp(7,)] — 00 by assumption (D)
and A > 0 by assumption (S%). Then it follows that (Apax[Fn(v,)])* — co.
The second part of the conditions in (3.5.23) follows because it has been seen that
the variance of each component of s,(v,) is less than or equal to Apax[Frn(7)]-
Therefore, given independent observations,

n %"'A 3ta
lim sup M = lim sup M < oo, Vredl,...
n—o0 /\max [Fn<70)] n—oo /\max [Fn(70>]

Then, by Lemma 3.12 it follows that s, (vg)/(Amax[Fn (7)) /272 <=5 0 holds.
As this result addresses v, (7,) only, it still remains to analyse the full term of
(3.5.21), A'v, (), which is discussed next.

By the Cauchy-Bunyakovsky-Schwarz (CBS) inequality (also known as Cauchy-
Schwarz inequality), it will be shown that the left hand side of (3.5.20) converges
to zero a.s. and uniformly for all A'A = 1.

By the CBS inequality, we can write

[IN'80(70)/ Amnax [Fa (76)) 2721 < INI] I8 (v0) / Amax [F (70)) /2721, (3.5.27)

a.s.

Using Wu’s Lemma it has been seen that s,(~,)/(Amax[Fn (7)) /272 22 0. Its
Euclidean norm also converges almost surely to zero, and given that ||A|| = 1,
then the right hand side of (3.5.27) converges almost surely to zero and therefore
its left hand side too. Furthermore, this is true uniformly over all X with ||A]| =1
because A is constant and there is a number n > ns so that for every arbitrarily
small € > 0, the left hand side of (3.5.27) is smaller than €, namely it converges
almost surely and uniformly for all A with [|A|| = 1, which is used later in order

to show (3.5.15).
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Next, the right hand side of (3.5.20) is discussed.
From condition (S} ), the right hand side of (3.5.20) is bounded from below by

ce/2 if n > ny for the following reason. From (S%) we can write

)\mian
< ™) (3.5.28)

N (Amax [Fn (70)])1/2+A .

By (3.5.11) it follows that Ay H,(v) < AH, (). In addition, 4 is between ~

and 7,. Therefore, from condition (S%), (3.5.28) also holds for 4 in place of ~,
and multiplying both sides by €/2 we get

AH, ()

2 ()‘max [Fn (70)])1/2+A .

2

c < (3.5.29)

Thus, it has been shown that the right hand side of (3.5.20) is bounded from
below by ce/2 if n > ny.

Hence the event (3.5.20), and respectively (3.5.14), have probability one, which
completes the proof. [ |

It will be shown that the use of Proposition 3.14 allows to prove asymptotic
existence and strong consistency of the parameter estimates as stated by Theorem
3.16.

We now analyse the case where for every n large enough, the sequence {4, }
cannot leave a compact set Na(7,), as it will also be required to prove Theorem

3.16.
Proposition 3.15. If the following assumption holds,

1. there is a number ny, so that ¥Yn > ny the relative frequency of every combi-

nation of possible values for x,, is larger than r*, with r* > 0,

then, there is a large enough A > 0 so that for every n > ny the sequence of global

mazxima {7, } cannot leave the compact set Na(y,) defined in (3.5.6). [ |

Proof. Consider the mean log-likelihood function for the model:

n k
1, (4) = 2 im1 2 j-1Yii 108 ”J'(Xi)‘ (3.5.30)

n n
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It will be shown that the sequence of mean log-likelihood functions for the true
parameter vector 4, is bounded by some constant c¢* whereas for a divergent
sequence of 4, tends to —oo, i.e. ||9,|| — oo. This means that a divergent
sequence of 4, cannot correspond to one of maximum likelihoods for each given

n, and therefore the sequence of global maxima {4, } cannot leave a compact set.

In order to show that the mean log-likelihood function for «, is bounded by
some positive constant ¢*, set 7y in (3.5.30) at the true parameter vector 7y, which
belongs to a compact set Na(,). Given that the values for x,, are bounded and
v, is fixed, then the term 7;(x;) in (3.5.30) is also bounded for every i =1,...,n
and 7 = 1,...,k because some components of the parameter vector are strictly
isotonic (see (2.3.2)), which prevents 7;(x;) to be zero, and its definition (2.3.6)
makes it to be smaller than one. Define ¢, with ¢ > 0, as the lower bound of
m;(x;) Vi,j for a given true parameter vector v,. Therefore, every logm;(x;) is
bounded from below Vi, j by c¢*, with ¢* > —oo. As there is a single y;; = 1 for
every ¢ = 1,...,n, then the term Zle yi;log mj(x;) is also bounded from below
by c¢*. Now consider the sequence of the mean log-likelihood function for ~y,:

%en(%) _ Zi Xy loam Ga). (3.5.31)

n

As in (3.5.31) the term Z?Zl yi; log mj(x;) is also bounded from below by ¢* for

each i,
1
ﬁfn('yo) > ", (3.5.32)

and then the mean log-likelihood function for «, is bounded from below by ¢* too.

Now consider the sequence {%,,}, for which one or more of its elements diverge,
meaning that [|9,|| — 00. At a certain value of x;, later it will be shown that
the log 7j(x;) — —o0 as ||¥,|| = oo when n — oco. By assumption 1, there are
more than r*n values of x; of this type. Therefore, log7;(x;) — —oo for more
than r*n observations. Define I* as the set of indexes 7 belonging to these type of

observations, I* = {i : log7;(x;) — —o0 as |7, || = oo and n — oo}, so that the
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sequence of mean log-likelihood for 7, is

n

k ~
1 5 Z Zj:l Yij log ()

0 (A ) =
~la(Yn) 2 n
k A k 7
v log i (x; —1 Yij log (X
_sz1yj g ( )+ZZ]1?JJ g7 ( ) (3.5.33)
ieI* i¢r*

Given that |I*| > r*n, then we can write the limit of (3.5.33) as n — oo as

k .
Z Zj:l Yij log 7j(x;)

1 _
lim —¢,(%,) < rn— + lim

n—oo 1, n n—00 n
it I+
. S i log 5(xs)
= —00+ 71151010 ';I* - . (3.5.34)

As Z§=1 yij log 7;(x;) in (3.5.34) always take a non-positive value for each 4, then

1
—ln(¥,,) = —00 as n — o0. (3.5.35)
n

Therefore, for n large enough, the likelihood of the 4,,, with ||%,|| — oo, is
smaller than the likelihood for a value of « that is in a compact set, meaning that
the sequence {#,,} cannot be of global maxima, and therefore {%,,} cannot leave
the compact set Na (7).

It still remain to be shown that log 7;(x;) — —oo as |7, || = oo when n — oo,
which is discussed next.

Using 4, in (2.3.6) defines 7,(x;) and log7;(x;) — —oo is equivalent to
7i(x;) = 0 as |4, = oco. Define 4}, = (& B Bru Bluonorayn)- An
increasing sequence of ||9,,|| is analysed according to the different vectors of {#,,}
and two cases are considered. Case A is when only one of the components of 4,
diverges, and Case B is when more than one component of 4, does it.

Case A: If &y, — —00 or g1, — o0, then 7(x;) — 0 or Tx(x;) — 0
respectively. The cases where & ,, — oo and ¢&j_;, — —00 are left to the analysis
of Case B because they imply that more than one component of &,, diverge. If one

of the components of ﬁs’n or B( diverge, then (2.3.6) tends to 0 regardless

nonord),n

of the values that other components take as long as they do not tend to infinity

or negative infinity as n — oo, which is also left to the analysis of Case B.
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Case B: If &;,, = oo with j = 1,...,k — 2, then every &; , with 7/ = j +
1,...,k — 1 also tends to oo because of their isotonic restriction according to
(3.2.2). Therefore, all those subsequent probabilities 7;/(x;) with 7' =j+1,...,k
converge to 0. Similarly, if a component &;, — —oo, j = 2,...,k — 1, then
the preceding components of of &, also tend to —oo and all those probabilities
7(x;) with 5/ = 1,...,j converge to 0. Based on their isotonic restriction, if
some components of &, diverge in opposite directions, these arguments remain
the same for each direction accordingly. If more than one component of stn
and /or B(nomrd),n diverge, then, by assumption 1, for some of the i’s the sums
DD DA BahonTish, + 301 Buntiv) in (2.3.6) tend to either —oo or oo, and
both the first and second term on the right hand side of (2.3.6) tend to 0 or 1
correspondingly. Based on an analogous argument but using the sums (&;, +
St dohs Bahontisn, + S BunTin) in (2.3.6), if one or more components
of &, diverge together with one or more components of Bs,n and/or B(mmrd),m
by assumption 1, 7;(x;) will also tend to 0. The same happens if any subset of
components of 4,, diverge in opposite directions (—oo or +00) among each other,
then they cannot cancel each other out because every one of these parameters
applies for different values of the predictors and finally, by assumption 1, 7;(x;) will
also tend to 0 anyway. Therefore, log 7;(x;) = —o0 as |9, || = co when n — oo
regardless of the direction (—oo or +00) and number of diverging components of

the parameter vector +,,. |

Now Propositions (3.14) and (3.15) are used to prove the following theorem
about asymptotic existence and strong consistency of the MLEs for unconstrained
GLMs with general link functions, from which the unconstrained POCLM is a

particular case.
Theorem 3.16. If the following assumptions hold,
(D) Divergence: Mpin[Fn(v,)] = 00, and

(SA) Boundedness of the eigenvalue ratio: there are some constants ¢ > 0, A > 0,

ny, and there is a neighbourhood N C Uynr of 7y, such that ¥y € N, and
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vn Z ni,

Amvin[H (9)] 2 e[ F (70)]] 272
holds almost surely,
then there is a sequence {7,,} of random variables and a random number ny with
(i) P{s,(¥,,) =0 ¥n>ny} =1 (asymptotic existence), and
(i) 4, 23 ~, (strong consistency).

Proof. As conditions (D) and (S} ) of this theorem are the same as the ones for
Proposition 3.14, then Proposition 3.14 holds, meaning that given some arbitrary
e > 0 with K.(vy) = {7 : |lY — Yol| < €} contained in the neighbourhood N of

condition (S} ), and with a random number ny depending on the sequence {y,},

Py {log L(volyn. Xn) > log L(y|yn, X)) Vo with ||y — v,|| = €,Vn > ny} = 1.
(3.5.36)

By Proposition 3.2 and Theorem 3.3, the log-likelihood function (2.3.7) is con-
tinuous and differentiable at v € Uyy,. For continuous functions in a compact
set, the existence of its supremum and infimum is guaranteed (see Theorem 6.30
in Protter et al. (2012), p159). Consider a sequence of global maxima of the log-
likelihood function given by the sequence of parameter vectors {4, } contained in
the compact set N of condition (S}). By definition of a compact set (see Prot-
ter et al. (2012)), {#,} has a subsequence denoted as {+/} such that 4/ =% &
with 4 € N. Let € be the distance of 4 from =,. Given that the sequence
of parameter vectors {7, } is the one that maximises the log-likelihood, then
log L(¥|yn, Xn) > log L(7o|yn,Xn) ¥ > ne, which is a contradiction to (3.5.36).
Therefore, there is no bounded sequence of 4, that are global optima that does
not converge to y,, from which (i) follows.

Given that the log-likelihood function of the POCLM is differentiable at v &
Uy (see Proposition 3.2), 7, is in the interior of the compact set N (see (3.5.6)),

and the sequence {%,,} is a sequence of global maxima of the log-likelihood function
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of the POCLM, then s, (%,,) = 0, from which asymptotic existence stated in (7)
follows.

So far we have considered the case where the sequence {%,} € N. For the
case when ||7,|| = oo, it has been shown in the proof of Proposition 3.15 that
for every n large enough, {#,,} cannot leave a compact set N, and therefore the

sequence {7, } cannot diverge to infinity. [ |

3.5.4 MLEs and monotonicity direction of the effects of
the ordinal predictor(s)

Theorem 3.16 showed that asymptotic existence and strong consistency of the
MLEs hold for non-natural link functions as the one of the POCLM. It states
that the log-likelihood associated with any ~ belonging to the neighbourhood N
of condition (S%) and with || — || = € is lower than the one resulting from
the true parameter vector v, with probability one as n — oo. However, we are
interested in the case of the POCLM with monotonicity constraints, for which it
will be shown that the log-likelihood supplied by any < belonging to the wrong
monotonicity direction is lower than the one provided by the true parameter vector
~o, 1.e., this holds for all those « for which || — 7,|| > € when € defines, in
some way that will be discussed later, the boundary between the right and wrong
monotonicity direction. In addition, the sequence of neighbourhoods is defined as

follows to take into account the monotonicity restrictions,

N (o) = {7 [FE2 (o) (v — 7o)l < A,y € Uenr}- (3.5.37)

The following theorem states that, asymptotically, the MLE of the constrained
POCLM is in the right monotonicity direction.

Theorem 3.17. If the following assumptions hold,
(D) Divergence: Apin[Fn(7vo)] = 00, and

(SA) Boundedness of the eigenvalue ratio: there are some constants ¢ > 0, A > 0,

n1, and there is a neighbourhood N* C Ucys of Yo, such that Vv € N*, and
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vn Z ni,

Ammin[Ho ()] = ¢Omax [ Fn(70)]) V22

holds almost surely,

and considering for some arbitrary € > 0 with K.(v,) = {7 : |7 —Yol| < €,77 €
N*} the event

Qny = {((x1,¥1), (x2,¥2), - -) : log L(7o|yn, Xn) > log L(¥[yn, %n),
Yy with ||v — ol = €,Vn > ny}, (3.5.38)

then, with a random number ny depending on the sequence {y,},

Py {Qny} =1. (3.5.39)

Proof. This proof follows the same line of arguments used in the proof of Propo-
sition 3.14 with some exceptions that will be mentioned as needed.

Instead of using « with ||y —~,|| = € as in Proposition 3.14, we now consider
~ with ||y — .|| > € as holds for the elements of Q.

Based on the arguments of the first part of the proof of Proposition 3.14, we
get

1
log L(Y|yn; Xn) — log L(7Yo|yn, Xn) = eX's, (7o) — 562)\’Hn(’y))\, (3.5.40)
where 7 lies between v and «,, allowing the use of the equality sign.
Given that (3.5.39) holds for all those v with ||y — .|| > €, then now

_ 2 _ 2 . 2
A\ = (n 2’70,1) i (72 2’70,2) Tt (7 ;Yo,p)
€ € €

M] 51 (3.5.41)

€

Based on the same arguments of the proof of Proposition 3.14, we can express

the right hand side of (3.5.40) as

N's,, (7o)
()‘max [Fn (70)] ) VAN

XNH,(7)A

6 .
5 D F (VAN VIRAAZ L =,

<

(3.5.42)
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where (3.5.42) is equivalent to the inequality of the event (3.5.38).

In the proof of Proposition 3.14 there is a similar expression to (3.5.42) (see
(3.5.20)). The differences are based on the fact that in (3.5.42) A’ > 1 whereas
in (3.5.20) XA = 1.

Now we analyse the left hand side of (3.5.42). Letting v,,(vo) = Sn(Yo)/ (Amax[Fn (o)) /22
and using the same arguments as in the proof of Proposition 3.14 regarding v,,(7,),
we get that s, (vg)/(Amax[Fn(7o)) /2™ %2 0 holds for the corresponding factor
in the left hand side of (3.5.42). The full term, A'v,(v,)/X A, is discussed next to
show that the left hand side of (3.5.42) converges to zero a.s. and uniformly for
all A’A > 1 using the Cauchy-Schwarz inequality.

By the CBS inequality, we can write

XSn('Yo) sn(Yo)
< |[IA 3.5.43
)‘maX[Fn(VO)]l/ZJFAX)‘ N || || )‘maX[Fn(70>]l/2+A>‘/>‘ ( )
or equivalently, using [|A|| = VA,
XSn(’Yo) sn(Yo) 1
< . 3.5.44
Mo F (Yo JVZANA| = || X P (o) 7275 | TV (3:5.44)

The left hand side of (3.5.44) converges almost surely because, as it has been
seen in the proof of Proposition 3.14, s,(vo)/(Amax[Fn (o)) /22 25 0, its Eu-
clidean norm also converges almost surely to zero, and A does not depends on n.
Furthermore, this is true uniformly over all X with A’A > 1 because X is constant
and there is a number n > ny so that for every arbitrarily small € > 0, the left
hand side of (3.5.44) is smaller than e, namely it converges almost surely and
uniformly for all A with A’A > 1, which is used later in order to show (3.5.39).

Next, the right hand side of (3.5.42) is discussed.

Based on condition (S} ) and following the same arguments as in the proof of
Proposition 3.14 but using Apin[H, ()] < % with A’A > 1, which follows

from (3.5.12), and given that ¥ is between ~ and =, therefore we can write

ANH,(7)A
“ Dol 1o ) ZANA (3:5:49)

Thus, by (3.5.45), the right hand side of (3.5.42) is bounded from below by

ce/2if n > ny, ie.,
€ A'H, (7))
2 (Amax[Fn(V())])l/Z—i_A)‘,)"

¢ < (3.5.46)

DO | ™
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Hence, the event (3.5.42), and respectively (3.5.39), have probability one. [ |

Corollary 3.18. Given a true parameter vector v, € Ucnr, where each set of
parameters associated with each ordinal predictor belongs to either T or A, the
mazimum likelihood estimators are in the right monotonicity direction with prob-

ability 1 as n — o0.

Proof. Given that Ucy; € Ucys and v, is in the interior of Ugsys because, by
Proposition 3.7, Ucyy is open, there exists a value for €, denoted as €*, for which
there is a set K (7,) where every ~ belonging to the parameter space associated
with the wrong monotonicity direction, v € Us v \Ucar, is not in K« (). There-
fore, Corollary 3.18 follows from Theorem 3.17 with large enough A and given
€=¢€". |

3.5.5 Consistency of the constrained POCLM

In Section 3.5.3, Proposition 3.14 was used to prove asymptotic existence and
strong consistency of the MLEs for the unconstrained version of the POCLM as
shown in Theorem 3.16. In Section 3.5.4, Proposition 3.14 was extended to hold
for the constrained POCLM stating Theorem 3.17 and to address the monotonicity
classification of effects of ordinal predictors when n — oo by Corollary 3.18.

This time the sequence of neighbourhoods considers the monotonicity restric-

tions associated with the true parameter vector ~, as follows,

NZ(Yo) = £y T IFE2 (vo) (v — vo)l| < A,y € U} (3.5.47)

In the current section, Theorem 3.17 is also used to prove asymptotic existence
and strong consistency of the MLEs for the constrained version of the POCLM as

stated in the next theorem.
Theorem 3.19. If the following assumptions hold,
(D) Divergence: Ayin[Fn(7v,)] = 00, and

(SA) Boundedness of the eigenvalue ratio: there are some constants ¢ > 0, A > 0,

ny, and there is a neighbourhood N** C Ucyr of 7y, with N** defined by
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(3.5.47), such that ¥y € N**, and ¥n > ny,

Amin [Hy (7)] > ¢max|[Fn (7)) /24

holds almost surely,
then there is a sequence {7,,} of random variables and a random number ny with
(i) P{sp,(7,) =0 Vn>ny} =1 (asymptotic existence),
(1) 4, <23 ~, (strong consistency).

Proof. The statement and assumptions of this theorem are the same as the ones
for Theorem 3.16, except for only one difference in assumption (S} ), where Ugys
is used instead of Upyys. The constrained space Ugyy is a subset of Upy,. Differ-
entiability and continuity of the log-likelihood function for all v € Ugy, stated
in Proposition 3.2 and Theorem 3.3 also hold, and, by Propositions 3.7 and 3.10,
Ucy is still open and convex. This means that, for n large enough and with
probability one, N** contains both 7, and also a small enough ball of center ~,
and radius €, with € > 0, defined as K.(7,), just as in Theorem 3.16. Given that
v, is assumed to be in the constrained space, then there is a small enough € so
that K (7,) belongs to both the unconstrained and constrained space. Therefore,
Theorem 3.19 holds with probability one for large enough n and small enough e
based on Theorem 3.16. |

For not large enough n, s,(%,,) = 0 does not guarantee that 4, is a global
optimum of the likelihood. It could be the case where the global optimum is on

the border of the constrained space, which means that s, (%,,) # 0.

3.6 Asymptotic normality

As seen in Section 3.5.5, when the true pattern of parameters associated with
the ordinal predictors is monotonic, then asymptotic existence and strong consis-
tency of the MLEs was proved for the constrained POCLM. In terms of asymp-
totic normality, Fahrmeir and Kaufmann (1985) show it for the unconstrained

POCLM. The only difference between the unconstrained and constrained version
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of the POCLM is related to their parameter spaces, Uy versus Ugys correspond-
ingly (defined in (3.2.2) and (3.3.4)). The parameter space Ucyy is a subset of the
one of the unconstrained model, Uy, and, by Propositions 3.7 and 3.10, Ugy, is
still open and convex. Therefore, for large enough n and with probability one, the
unconstrained MLEs are in the constrained space, and because of that the uncon-
strained MLEs will be equal to the constrained MLEs, which also means that their
asymptotic distribution (normality) will be the same. Because of this, theorems
about asymptotic normality in Fahrmeir and Kaufmann (1985) still hold for the
constrained POCLM under the additional assumption that the true pattern of

parameters associated with the ordinal predictors is monotonic.

3.7 Asymptotic confidence regions

Confidence regions for the parameters of the unconstrained POCLM were de-
fined in Section 3.2.2. Based on Sections 3.5 and 3.6, asymptotic theory indicates
that when the effects of ordinal predictors are monotonic, the asymptotic proper-
ties of the unconstrained and constrained MLEs are the same. This means that,
asymptotically, for every arbitrarily small A > 0 there is a large enough n so that
the UMLE and the CMLE belong to a small ball around the true parameter -,
defined as

Ba(vo) = {7 [[(v —v)ll £ A} (3.7.1)

Now assume that Ba(7,) is in the true monotonicity region, meaning that the
monotonicity directions of the parameters associated with the ordinal predictors
of every parameter vector belonging to Ba(7y,) are the same as those of the true
monotonic parameter vector. Then it is possible to choose n large enough so that
the UMLE and the CMLE belong to Ba/2(7,) and, at the same time, that the
confidence region is in Ba/2(¥) (note that Ba/s(%) is a ball around the estimator
with radius A/2). The size of a confidence region normally decreases as n increases.
Therefore, it is guaranteed that the confidence region belongs to the ball around
the true parameter vector 7., Ba(7,). Therefore, asymptotically, the approximate
confidence region for the constrained parameters is the same as the one for the

unconstrained ones.
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For finite n, the quality of the approximation of a confidence region for the
constrained parameters is unclear. Four cases are distinguished depending on
whether the parameter estimates from the constrained and unconstrained model
are the same or not, and, for the first three cases, they also depend on the location

of their confidence region:

Case 1: If the UMLE is the same as the CMLE and their confidence region is fully
in the constrained parameter space Ugys with monotonicity directions indi-
cated by the parameter estimates (also referred to as monotonicity region
of the parameter estimates), then using the results of the asymptotic the-
ory discussed in previous sections should not be problematic, because only
monotonic patterns that share the same monotonicity direction for each or-
dinal predictor would be compatible with their confidence region. This is
possible when the vector of parameter estimates is in the the monotonicity
region of the parameter estimates and far away enough from the border of
it, and when n is large enough to make the confidence regions small enough

so that only monotonic patterns are compatible with them.

If this is not the case, then there are some situations for which using the asymptotic
theory could be problematic. The reasons why they are considered as problematic
are discussed in the next cases and their implications will be explored in the next

section.

Case 2: If the UMLE is the same as the CMLE and there is just one combination
of monotonicity directions in the confidence region (only one monotonicity
direction for each ordinal predictor), but in addition there are not monotonic
parameter vectors in it, then using the results of the asymptotic theory
discussed in previous sections is problematic because, according to it, the
confidence set should not contain parameter values belonging to a parameter
set that violates some monotonicity constraints. This situation calls into
question the validity of the approximation resulting from the asymptotic
theory. The reason of this problem could normally be that n is not yet large

enough so that the confidence set is not small enough to be fully in the
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Case 3:

Case 4:

monotonicity region of the parameter estimates and/or that the vector of
parameter estimates is not far away enough from the border of it (which is

again associated with n).

If the UMLE is the same as the CMLE but the confidence region for the
parameters associated with some ordinal predictors is compatible with more
than one combination of monotonicity directions, then using the approxi-
mations resulting from the asymptotic theory discussed in previous sections
could be problematic because confidence regions compatible with more than
one combination of monotonicity directions indicate that the finite n situa-
tion is different from the one on which the asymptotic theory is based. In
this case the point constrained MLE scenario is the same as the one on which
asymptotic theory is based, but the estimator of variation is too large for
the finite n case. Therefore, there is some doubt about the quality of the
approximation of the confidence region. It is also important to notice that
when more than one combination of monotonicity directions are compati-
ble for the same ordinal predictors, then normally there are also parameters
that do not fulfil any monotonicity constraint in the confidence region. This
scenario is possible when the vector of parameter estimates is in the con-
strained parameter space but close to the border of it, and when n is not
large enough so that the confidence region is large enough to allow more
than one combination of monotonicity directions for the parameters of the
same ordinal predictors. Because of this, constrained parameter estimates
can switch from one monotonicity direction to the other, potentially pro-
ducing a multimodal distribution of parameter estimators, which is not well

approximated by the normal distribution obtained in the asymptotic theory.

If the UMLE is different from the CMLE, then this means that the mono-
tonicity constraints were active when fitting the CMLE and therefore the
UMLE does not even belong to the constrained parameter space. Hence,
because this situation is different from what is required in the asymptotic

theory, it is unclear why the approximation resulting from it should be good,
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and therefore, theoretically there is no strong argument in using confidence
regions for the constrained MLE based on the asymptotic theory discussed
in the previous sections. However, this will be analysed by means of a simu-
lation study in Section 3.7.1 in order to assess whether it is still reasonable
to use a confidence region based on the asymptotic theory discussed in the

previous sections, which will be defined in the following discussion.

In practice, for Cases 2, 3 and 4 the quality of the asymptotic approximation
of a confidence region defined by the formula of the confidence region for the un-
constrained parameters (3.2.8) could be under doubt. If the UMLE and CMLE
are the same, then, for cases 2 and 3, those parameter values that make a pa-
rameter vector violate monotonicity must not be included in the confidence region
of the constrained parameters. If the UMLE and CMLE are different, then, in
addition to excluding non-monotonic values, a clear ambiguity is which estimator
will be the centre of the confidence region. Therefore, some possible definitions of

confidence regions are proposed:

1. One possibility is to use (3.7.2) defined below, a constrained confidence re-
gion that is based on the formula of the confidence region for the uncon-
strained parameters (3.2.8) but uses the results of the constrained POCLM,
i.e., the CMLE. For the reasons discussed at the beginning of this section,
this is fully correct for Case 1, but it could be doubtful for the other cases.

For a vector with r parameters of interest, 3,, the overall parameter vector
~' = (/,3) is partitioned as (3., @), where ¢ is a vector with the remaining
(p — r) parameters. The constrained MLE is now denoted as (3',,,¢'.)

accordingly.

A tentative confidence region for the parameter vector 3, in the context of

the constrained POCLM can be constructed by:

CCR = {/307‘ : 2[£(Bc,r7 (Aﬁc) - g(ﬁOra gbc)] < X%r);lfcwﬁ[)r S 0CM} (372)
where the degrees of freedom are r because it is the number of parameter

values that are being tested to be 3,,, and (}C is the vector of maximum like-

lihood estimators as a function of the value of B,,, where ¢, is defined by
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UBors @) = maXg o, deton.8,=8,, LB, @), with Ucn being the mono-
tonicity region of the CMLE (,BA'CJ, #'.). Therefore, ¢, can be thought of as

the updated constrained MLE for each value of B, and it guarantees that
there is no other best option for the values of the components of ¢ for given
By, If r =p, B, is p-dimensional, the terms ¢, g;bc and (}C are omitted, and
in terms of notation 3 is actually . The tentative confidence region defined
in (3.7.2) is referred to as CCR (constrained confidence region) because it

uses the constrained MLEs to build the confidence region.

Because of the potential problem described in Cases 2, 3 and 4, the confi-
dence region (3.7.2) might contain parameter values that violate the mono-
tonicity constraints, in which case it can still be adjusted by dropping all
the non-monotonic parameter values included in it. Whether this is a good
option or not will be analysed in the next section by means of a simulation

study together with other possibilities that will be discussed.

This possibility guarantees that the confidence region will contain constrained

parameters because it is centred at the constrained MLE.

2. Another possibility is to use the confidence region (3.2.8) defined in Section
3.2.2, i.e., the confidence region centred at the UMLE resulting from the
unconstrained model, and modify it by not including those parts of the
region that violate the monotonicity assumption. Formally, the confidence

region for the parameter vector 3, is:

UCR = {/60’!‘ . Z[E(Bm &) - g(ﬁ(}r?é)] < X%r);l—a’ﬁOr S UCM} (373)

where the degrees of freedom are r because it is the number of parameter
values that are being tested to be 3,,, and (~ﬁ is the vector of maximum

likelihood estimators as a function of the value of B,,, where ¢ is defined

by 4(B,,, ) = MaX(3, ¢)elyar.8,=Bo, 0(B,,¢). Again, if r = p, then the im-

plications on notation are the same as the ones for (3.7.2). The confidence
region defined in (3.7.3) is referred to as UCR (unconstrained confidence
region). The term unconstrained is in “UCR” because it uses the uncon-

strained MLEs to build the confidence region, but it is still constrained
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because it excludes those parts that violate monotonicity with the condition
/807’ E UCM

A disadvantage of using (3.7.3) is that if the UMLE is non-monotonic for
the ordinal predictors, then UCR can be empty.

3. An additional option is to define the confidence region as the union of those

resulting from the two previous approaches.

The performance of these three approaches will be analysed by means of a

simulation study in the next section.

3.7.1 Confidence regions and coverage probability

The coverage probabilities (CPs) will be compared under different scenarios in
order to assess the results of the three possible definitions of a confidence region
presented in the previous section, as suggested in Morris et al. (2019) for the
assessment of confidence intervals. In addition, given that Case 4 can be distin-
guished from Case 1, 2 and 3 by assessing whether the UMLE and CMLE are
different or not, this comparison will also be analysed.

Consider model (2.3.4) with four ordinal predictors with 3, 4, 5, and 6 ordered
categories each, one categorical (non-ordinal) predictor with 5 categories and one
interval-scaled predictor. For every ith observation, each of the four ordinal pre-
dictors (s =1,...,4) is represented in the model by dummy variables denoted as
Tish,, With hy = 2,...,¢s and where ¢ = 3, @2 = 4, ¢3 = 5, and ¢4 = 6; the
nominal predictor is denoted as x;5 5, with hs = 2,...,5; and the interval-scaled
predictor as x;;. The first category of the categorical variables is considered as

the baseline so they are omitted. Thus, the model is

3 4 5
logit[P(y; < jlx;)] = oy + Z By Tig,hy T Z B2,y Ti2 by + Z 3,13 74,3,k

h1=2 ho=2 hy=2

6 5
+ Z BahaTiah, + Z Bs,hsTi5,hs + B1i 1, (3.7.4)

hy=2 hs=2
where the number of categories of the ordinal response is k = 4, i.e., 7 = 1,2, 3.

This model was fitted for 500 data sets that were simulated as described in Section
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Figure 3.1: True parameter values for the simulation of coverage probabilities.
Different line formats represent different distances between adjacent ordinal cate-

gories: Large, Medium, Small.

2.5 using the following true parameters: for the intercepts ay = —2, oy = 2, and
a3 = 5.5; for the non-ordinal categorical predictor 35 = (0.7,1.4,—0.3, —1.2); and
for the interval-scaled predictor 7 = 0.3. The values of the ordinal predictors
were drawn from the population distributions used in Section 2.5. The simulated
values for the non-ordinal categorical predictor were drawn from the following
population distribution: 0.2, 0.2, 0.3, 0.1, 0.2 for its corresponding categories 1,
2, 3, 4, and 5. The interval-scaled covariate x; was randomly generated from the

normal distribution N(1,4).

Given that in simulations studies the results correspond to the design of spe-
cific scenarios (see Morris et al. (2019)), then the current simulation design offers
12 different scenarios depending on two factors: (i) distances between adjacent
ordinal categories and (ii) sample sizes. The true parameter vectors of the ordi-
nal predictors where chosen to represent three different levels of distances between
their adjacent ordinal categories as shown in Figure 3.1. In addition, four different

sample sizes were considered: n = 50, 100, 500, and 1,000.
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Table 3.1 shows the results in terms of frequencies and coverage probabilities
(CPs) of the three confidence regions defined in the previous section. Different
scenarios were considered according to two factors: (i) the distance between the
parameter values of adjacent ordinal categories representing three different degrees
of monotonicity and (ii) four sample sizes, resulting in 12 scenarios. Factor (i)
separates Table 3.1 in three sections, each one corresponding to a different level:
“Small”, “Medium”, or “Large”. For each one of the 12 scenarios, the three
definitions of confidence regions explained in the previous section were considered:

UCR, CCR and their union (the latter denoted as “Union”).

In order to include the comparisons of cases where the unconstrained and
constrained MLE are equal or not, two categories were defined: “Same MLE” and
“Different MLE”. The former corresponds to the group of cases 1, 2 and 3 of those

discussed in Section 3.7 whereas the latter is equivalent to Case 4.

Within each one of the 12 scenarios and for each one of the three definitions
of confidence regions, the frequency of cases was recorded separately depending
on whether the true parameter was in or out of each confidence region. In Table
3.1, the former case is referred to as “True In” and the latter as “True Out”. The
confidence regions were computed using a significance level of o = 0.05 and all

the parameters (r = p).

The factor “distances between adjacent ordinal categories” with levels small,

medium and large will be referred to as “monotonicity degree”.
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n 50 100 500 1000

Conf. Region | UCR CCR Union | UCR CCR Union | UCR CCR Union | UCR CCR Union
Distances between adjacent ordinal categories: Small

Same MLE, freq.

True In 2 7 187 331

True Out 0 1 4 8

Total 2 8 191 339
Different MLE, freq.

True In 445 418 484 446 467 477 282 291 291 136 139 139
True Out 53 80 14 46 25 15 27 18 18 25 22 22
Total 498 498 498 492 492 492 309 309 309 161 161 161
Coverage probability, %.

Same MLE (100) (87.5) 97.9 97.6
Different MLE | 89.4 83.9 97.2 | 90.7 94.9 97.0 91.3 942 942 | 84.5 86.3 86.3
Total 89.4 84.0 97.2 | 90.6 94.8 96.8 93.8 95.6 95.6 | 93.4 94.0 94.0
Distances between adjacent ordinal categories: Medium

Same MLE, freq.

True In 8 76 406 464

True Out 0 1 21 29

Total 8 7 427 493
Different MLE, freq.

True In 463 440 488 379 394 402 61 62 62 7 7 7
True Out 29 52 4 44 29 21 12 11 11 0 0 0
Total 492 492 492 423 423 423 73 73 73 7 7 7
Coverage probability, %.

Same MLE (100) 98.7 95.1 94.1
Different MLE | 94.1 89.4 99.2 | 89.6 93.1 95.0 83.6 84.9 84.9 | (100) (100) (100)
Total 94.2 89.6 99.2 | 91.0 94.0 95.6 93.4 93.6 93.6 | 94.2 94.2 94.2
Distances between adjacent ordinal categories: Large

Same MLE, freq.

True In 11 89 460 476

True Out 0 0 23 22

Total 11 89 483 498
Different MLE, freq.

True In 471 426 485 390 388 395 13 13 13 2 2 2
True Out 18 63 4 21 23 16 4 4 4 0 0 0
Total 489 489 489 411 411 411 17 17 17 2 2 2
Coverage probability, %.

Same MLE (100) 100 95.2 95.6
Different MLE | 96.3 87.1 99.2 | 949 944 96.1 | (76.5) (76.5) (76.5) | (100) (100) (100)
Total 96.4 87.4 99.2 | 95.8 95.4 96.8 94.6 94.6 94.6 | 95.6 95.6 95.6

Note: Parentheses indicate that the coverage probability was calculated on a total number under 20.

Table 3.1: Frequencies and coverage probabilities for different sample sizes, defi-

nitions of confidence regions, distances between adjacent ordinal categories, and

cases according to whether the unconstrained and constrained MLE are the same

or not. For the block “Same MLE, freq.” the row “Total” shows the total num-

ber of cases with the same MLEs of which rows “True In” and “True Out” refer

to cases where the true parameter was in or out of the corresponding confidence

region accordingly. The same structure holds for the block “Different MLE, freq.”.
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In order to assess whether the coverage probabilities that are smaller than the
confidence level of 95% are too low or not, it should be kept in mind that the
0.05 quantile of the binomial distribution with n = 500 (the number of simulation
replicates) and p = 0.95 is 467. Based on a one-sided 5% test, this means that the
coverage probabilities under 93.4% (467/500) are significantly smaller than the
confidence level of 95%. Then 93.4% is considered as the threshold with which
this assessment is done. On the other hand, if the coverage probabilities are too
high, this is not a problem in itself but an indication that the confidence region is

less precise than it could be, and therefore not totally desirable.

By construction, the CP resulting from Union is always higher than or equal
to the one of UCR or CCR. It is shown in Table 3.1 that when the sample sizes
are small (n=>50, 100) the coverage probabilities for the totals are much higher
for Union than for UCR or CCR, and even higher than the confidence level of
0.95 regardless of the monotonicity degree. For UCR and small sample sizes,
the CPs are not significantly smaller than 95% when the monotonicity degree is
medium or large, and significantly smaller (89.4% only) when the monotonicity
degree is small. For CCR the CPs are all significantly smaller than 95% for n=50,
ranging from 84.0% to 89.6%. In particular, when the sample size is 50, the
CPs of CCR are worse than those of UCR. This is one of the implications of
misclassification resulting from the MDC procedure, meaning that for some data
sets the confidence region is centered around some parameter estimates that are
in the wrong monotonicity direction compared to the one of the true parameter,

and therefore the latter is more likely to be out of CCR than of UCR.

For the greater sample sizes, n=>500, 1000, the CPs for the totals range be-
tween 93.6% and 95.6% for Union, meaning that none of them is significantly
smaller than the confidence level. Only two scenarios show a CP higher than 95%
though, these are the ones of (i) small monotonicity degree and n=>500, and (ii)
large monotonicity degree and n=1000. For Union, the CPs of the largest sample
size are smaller than those for n=50 or 100, because a larger n decreases the con-
fidence region up to the point that the CPs decrease too much to capture the true

parameter value, despite the fact that asymptotically the parameter estimates get
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closer to the true parameters. To see this, consider increasing n from 50 to 1000

for two extreme scenarios according to the monotonicity degrees:

Small:

Large:

The initial (n=50) CP of Union is 97.2%. The proportion of cases where
the UMLE and CMLE are the same (“Same MLE”) increases from 0.4% to
67.8%. Therefore, the CP of 97.2% when n=>50 corresponds almost com-
pletely to the case “Different MLE”. When n=1000, for “Same MLE” the
CP is 97.6% and for “Different MLE” is much lower, 86.3%. This means
that when the MLEs are different, the confidence region is not large enough
to include the true parameter value in almost 14% of the cases. Putting
“Same MLE” and “Different MLE” together, the CP for n=1000 is below
95%, being 94.0%, which is still considered here as good enough taking into
account the threshold of 93.4% discussed earlier and that this situation is

not close to the one on which the asymptotic theory is based.

The initial (n=50) CP of Union is really high, 99.2%. The proportion of
cases where the UMLE and CMLE are the same increases from 2.2% to
99.6%. When n=1000, these cases show a CP of 95.6%, which is the same
CP for the total (“Same MLE”+ “Different MLE"). Despite the fact that
there is a decrease of the CP as n increases, the final CP is still higher than
95% because of the high proportion of “Same MLE”, which indicates that
it is more likely to be in a situation that is close to the one on which the

asymptotic theory is based.

In general, the results of the simulations are consistent with the asymptotic the-

ory discussed in previous sections. Given the monotonicity degree, as n increases

throughout the whole set of sample sizes that were considered in the simulation,

the three confidence regions tend to the same coverage probability. In fact, given a

monotonicity degree, they all reach the same value when n = 1000, except for the

case when the monotonicity degree is small, because the one for UCR is smaller

than the others. The latter is because under a small monotonicity degree a larger

n is needed by the CMLE and UMLE to belong to the same monotonicity region.

Figure 3.2 shows, for each monotonicity degree, the CPs of the three confidence
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regions without making further distinctions (“all cases”, depicted by solid lines)
and also those for the case when the UMLE and CMLE are different (“different
MLEs”, dashed lines). When comparing the CPs of “all cases” against those of
“Different MLE” for n=>50, they all start almost at the same point in Figure 3.2
because the proportion of “Different MLE” for any monotonicity degree is 97.8% or
greater for this sample size. For larger sample sizes, the CPs for “Different MLEs”
are much lower that those of “all cases”. Furthermore, they increase their distance
as n increases. However, the class “Different MLEs” decreases its frequency as n
increases as shown in Table 3.1, reducing their proportion from 99.6% when n=50
to 32.2% when n=1000, and therefore reducing the impact of their low CPs on
the total CPs.
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Figure 3.2: Coverage probabilities of confidence regions for different monotonic-
ity degrees ((a) Small, (b) Medium, and (c) Large). Solid lines represent general
results and dashed lines represent the results when the CMLE and UMLE were
different.

Note: Points corresponding to coverage probabilities based on total numbers

smaller than 20 were removed from the plot.

In terms of monotonicity degrees, the smaller the distance between adjacent
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categories of the ordinal predictors, the higher CPs of the confidence regions de-
fined as the Union compared to others. If a smaller (more precise) confidence
region than Union is preferred, then the CPs of CCR are higher than those of
UCR, except for n=50, despite the fact that the ones of UCR are still consistent
with the asymptotic theory on which it is based. In addition, the CPs of CCR are
not significantly smaller than 95% for n > 100. When n = 50 the approximation
of any of these two confidence region shows a CP significantly smaller than 95%
for the case of small monotonicity degree, whereas for higher monotonicity degrees

the CPs of CCR only are significantly smaller than 95%.

Some of these results can be expected to generalise to other settings than the
specific ones considered here. One of them is that as n increases, the CPs of
UCR and CCR are expected to get closer, and consequently their union (Union)
too. This is because as n increases, then the unconstrained and constrained MLEs
get closer and, for large enough n and with probability one (see Section 3.6), the
unconstrained MLEs are in the constrained space, and therefore their UCRs are
expected to approximate the CCRs. Another result that could be generalised is
that the larger the monotonicity degree of the parameter estimates of OPs, the
faster the CPs get closer to each other as n increases. This is because when the
monotonicity degree is large enough, the unconstrained MLEs require a relatively
small sample size in order to belong to the constrained space, and therefore the

UCR and CCR get closer.

The individual identification of Cases 1, 2 and 3 for which it is needed to
diagnose whether the confidence region is either in one monotonicity region only or
it also contains non-monotonic parameters or it allows more than one combination
of monotonicity directions for the parameters of the ordinal predictors will be left

for future work.

3.8 Asymptotic confidence intervals

In this section asymptotic confidence intervals are discussed for individual pa-
rameters, although there is still a connection with asymptotic confidence regions.

As discussed in Section 3.7, asymptotic existence, strong consistency and asymp-
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totic normality of the MLE for the constrained POCLM hold in the same way
as they do for the unconstrained POCLM when the true parameter values asso-
ciated with the ordinal predictors are monotonic. Therefore, asymptotically and
as in the case of confidence regions, for every arbitrarily small A > 0 there is a
large enough n so that the UMLE and the CMLE belong to a small ball around
the true parameter v, defined as in Equation (3.7.1). Following the same line of
argument that was used in Section 3.7 for confidence regions but now applying
it into the analysis of individual confidence intervals for individual parameters,
assume that Ba(7,) is in the true monotonicity region. Then, for large enough
n both the UMLE and the CMLE belong to Ba/2(7,) and, at the same time,
the confidence interval belongs to the ball around the parameter estimate with
radius A/2, Bass(%). This is possible because the range of a confidence interval
decreases as n increases, and then it will belong to an arbitrarily small Ba j2(¥) if
n is chosen to be large enough. Therefore, asymptotically, the confidence intervals
for the parameters of the constrained POCLM are the same as the ones for the

unconstrained POCLM defined in (2.4.1), Section 2.4.

In practice, for a given data set and finite n, the approximate confidence in-
tervals could be problematic because of the same reasons discussed in Section 3.7.
Values of non-monotonic parameter vectors should be removed from the confidence
interval of a constrained parameter. However, each single confidence interval does
not provide information to do this, because monotonicity is not a feature of a single
parameter, but of a parameter vector. This is because whether a value contained
in a confidence interval is monotonic or not depends on the values of parame-
ters belonging to other confidence intervals. For instance, a particular value of a
confidence interval could be part of a monotonic pattern for a given set of other
parameter values, but it could also be part of a non-monotonic pattern for a given
set of different parameter values. Therefore, the identification of those parts of
the confidence intervals that are not compatible with monotonicity cannot be a
result of analysing individual confidence intervals separately. This means that
multivariate correlation must be taken into account, leading back to the analysis

of confidence regions described earlier in Section 3.7.
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Within a confidence interval, and even for apparently clear monotonic patterns,
it is not possible to identify all those values that are part of non-monotonic param-
eter vectors by analysing individual confidence intervals. For example, consider an
isotonic pattern of parameter estimates for one ordinal predictor with large dis-
tance between the borders of adjacent confidence intervals, but the first confidence
interval allows some negative values, which violate monotonicity. These negative
values belong to the first confidence interval given “other parameter values” be-
longing to other confidence intervals, which already converts the one-dimensional
analysis into a multidimensional one. If those “other parameter values” belong to
their corresponding confidence intervals given positive parameter values of the first
confidence interval too, then removing the negative ones from the first confidence
interval would not produce modifications on the the range of other confidence in-
tervals. However, this again requires a multidimensional analysis rather than the
analysis of the first individual confidence interval only. Furthermore, this multi-
dimensional analysis should not rely on the analysis of confidence regions because
there is not direct relationship between confidence regions and confidence intervals
as the latter may not be projections of the former. This is because the limits of an
individual confidence interval for a parameter at a given significance level do not
take into account the distribution of other parameters, whereas confidence regions
do it. This makes it possible that, for the same confidence level, a parameter value
that is on the border of a confidence region might not be part of its corresponding
confidence interval and vice versa. On the other hand, removing negative values
from the first CI is inappropriate under the scenario that the “other parameter
values” belong to their corresponding confidence intervals given that the parame-
ter values of the first confidence interval are negative only. In this case, removing
the last ones disable the “other parameter values” to be part of their Cls. How-
ever, these cannot be identified analysing their individual confidence intervals and,
consequently, they cannot be removed, meaning that the range of the confidence
intervals of other parameters would be overestimated. In general, the conclusion
is that it is not possible to identify whether a value of a confidence interval belongs

to a non-monotonic parameter vector by analysing confidence intervals separately.
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The computation of confidence intervals for the constrained parameters is still
of interest despite the fact that the whole set of parameter values that belong to
the confidence intervals and violate monotonicity cannot be identified by analysing
individual confidence intervals. If the UMLE and the CMLE are the same, there
certainly is a reason to believe that the asymptotic approximations given by a
confidence interval as defined in (2.4.1) (Section 2.4) are more reasonable than
when they are not the same, although the quality of the approximation still de-
pends on how close the estimates are to the border of the monotonicity region.
For instance, if they are too close, it is likely that part of some confidence inter-
val(s) will belong to a different monotonicity direction compared to the one of the
parameter estimates, or even they could belong to a non-monotonic region, then
it implies that there are parameter values of the confidence interval that belong to
parameter vectors that violate monotonicity, bringing with it the problem related
to their identification discussed earlier. If the UMLE and the CMLE are not the
same, this indicates that the situation is certainly different from the one on which
the asymptotic theory discussed in previous sections is based, calling into question
the quality of the approximation of the confidence interval. Then, in addition to
the identification problem, a clear ambiguity is which estimator will be the cen-
tre of the confidence interval. Therefore, some possible definitions of confidence

intervals are proposed:

1. One possibility is to use (3.8.1) defined below, a constrained confidence in-
terval that is based on the formula of the confidence interval for the un-
constrained parameters defined in (2.4.1), Section 2.4, but now it uses the
results of the constrained POCLM, i.e., it is centred at the CMLE and uses
its corresponding standard errors. Thus, the approximate confidence interval

of v is defined as follows:
’A)/ﬂ:Zd/Q(SE:Y), (381)

where 25/, denotes the standard normal percentile with probability &/2 and
4 can be any component belonging to either ¢, B(Ord), or B(nonord). The

values for all 4 are obtained by fitting the constrained POCLM and the values
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for their corresponding SE; are the result of computing the square root of
the diagonal of the negative inverse of the Hessian matrix (see Appendix A

for partial derivatives).

For the reasons discussed earlier in this section, (3.8.1) holds when the UMLE
and CMLE are the same and they are in the interior of a monotonicity region,
far away enough from the border, so that the situation is the one on which
asymptotic theory is based. Otherwise, the quality of the approximation
of the constrained confidence interval (3.8.1) could be doubtful because it
could contain parameter values that are members of parameter vectors that

violate monotonicity constraints.

This definition of a confidence interval for the parameters of the constrained
POCLM guarantees that all the confidence intervals will contain constrained

parameters.

2. Another possibility is to use the confidence intervals resulting from (2.4.1),
the unconstrained model. However, some values in the confidence interval
could be members of parameter vectors that are non-monotonic. Further-
more, if all the parameter values belonging to these confidence intervals are
members of parameter vectors that are non-monotonic, then, if they were

removed, the resulting adjusted confidence intervals would be empty.

3. An additional option is to define the confidence intervals as the union of

those resulting from the two previous approaches.

3.9 Conclusions

In Section 3.3 it is shown that the likelihood function L(7y|y,x) and its loga-
rithm are continuous and differentiable at v € Uyyy, ﬁCM or Ucys (see proofs of
Propositions 3.1 and 3.2 correspondingly). These properties together with open-
ness and convexity of the constrained parameter space Ucys (see proofs of Propo-
sitions 3.7 and 3.10 in Section 3.4) are part of the arguments to show consistency

in Section 3.5.5.
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When n — oo and the set of parameters associated with each ordinal predictor
is strictly monotonic, then the true monotonicity direction classification of the set
of parameters associated with each ordinal predictor is indicated by the one of the
MLEs with probability one (see Corollary 3.18) and asymptotic consistency of the
MLEs holds for the constrained POCLM (see Theorem 3.19).

In order to achieve these results, asymptotic existence and strong consistency
of the unconstrained MLE in generalised linear models with natural link functions
is explicitly extended to the case of non-natural link functions, as the one result-
ing from the POCLM, by Theorem 3.16. Next, as the interest is in the case of
the POCLM with monotonicity constraints, Theorem 3.17 states that the MLE of
the parameters of the constrained POCLM is in the right monotonicity direction,
where Corollary 3.18 is a special case with v, € Ugp. In Section 3.5.5, Theo-
rem 3.19 states asymptotic existence and strong consistency of the MLEs for the
constrained version of the POCLM based on results previously proved.

Regarding asymptotic normality for the MLE of the constrained POCLM, the
reasons why theorems about asymptotic normality in Fahrmeir and Kaufmann
(1985) still hold are discussed in Section 3.6 when the true parameters associated

with the ordinal predictors are monotonic.

All of these results allowed to analyse confidence regions for the parameters
of the constrained POCLM in Section 3.7. Asymptotically, the approximate con-
fidence region for the constrained parameters is the same as the one for the un-
constrained ones. However, for finite n the quality of the approximation of a
confidence region is unclear. Four cases are distinguished, for the first three the
UMLE is the same as the CMLE whereas for the fourth case they are different.
The first three cases differ in terms of what is inside of their confidence region. It
is either (i) fully in the constrained parameter space Ucyy, or (ii) indicates only
one combination of monotonicity directions but it also has non-monotonic param-
eter vectors in it, or (iii) allows multiple combinations of monotonicity directions.
For (i) the use of the results of the asymptotic theory discussed in Sections 3.5
and 3.6 is not problematic, however this is unclear for cases (ii) and (iii). For

the fourth case, where the UMLE is different from the CMLE, the situation is
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different from what is required in the asymptotic theory and therefore there is no
strong argument in using confidence regions for the constrained MLE based on
the asymptotic theory discussed in Sections 3.5 and 3.6.

Three alternative definitions of a confidence region for the constrained MLE
of the POCLM are proposed: the constrained confidence region (CCR) defined in
Equation (3.7.2), the unconstrained confidence region (UCR) defined in Equation
(3.7.3), and the third definition is the union of these two. Their performance is
analysed in terms of their coverage probability in Section 3.7.1. By construction,
the third proposed definition performs better than the others or at the same level
because it is the union of the first two, keeping or increasing their maximum
coverage probability. In general, comparisons between UCR and CCR according
to Table 3.1 and Figure 3.2 show that when the sample size is small (n = 50) the
UCR performs better than the CCR, however, for larger sample sizes (n > 100),
the coverage probability of CCR is greater than or equal to the one of UCR.

Asymptotic confidence intervals are discussed in Section 3.8. Like in the case of
confidence regions, asymptotically, the confidence intervals for the parameters of
the constrained POCLM are the same as the ones for the unconstrained POCLM.
These are defined in (2.4.1), Section 2.4. However, for finite n, the computation of
an approximate confidence interval for parameters under monotonicity constraints
is problematic because ClIs do not allow to identify those parameter values that
belong to a parameter vector that violates monotonicity. Each single confidence
interval does not provide information to do this, because monotonicity is not a fea-
ture of a single parameter, but of a parameter vector. However, the computation
of approximate confidence intervals for the constrained parameters is still of inter-
est, for which three alternative definitions are proposed. Similarly to the case of
the confidence region, they all hold when the UMLE and CMLE are the same and
they are in the interior of a monotonicity region, far away enough from its border.
However, when the situation is different from the one on which asymptotic theory
is based, the quality of the approximation of the constrained confidence intervals

could be doubtful.



Chapter 4

Monotonicity tests

4.1 Introduction

The discussion about the problem of testing monotonicity in the context of
regression analysis is abundant in the literature. However, the solutions that
have been proposed are different from what is required for the regression models
discussed here because of two reasons: (i) the existing monotonicity tests hold for
a single independent variable, or, when compatible with the multiple regression
framework, (ii) the monotonicity test is not designed to take into account ordinal
predictors. To my knowledge, there is no monotonicity test for regression models
with ordinal predictors.

Several authors have proposed monotonicity tests in the framework of non-
parametric regression models, see, for instance, Bowman et al. (1998), Hall and
Heckman (2000), Gijbels et al. (2000), Ghosal et al. (2000), Durot (2003) and
Chetverikov (2019). Many of them represent the regression model as Y = f(X)+e,
where Y and X are scalar real valued random variables, f is an unknown smooth
function, and the error term ¢ is independent of X with F(e¢) = 0. They all
share the drawback of testing whether f(-) is non-decreasing only, restricting the
analysis to one monotonicity direction only, enforcing a redefinition of f(-) in case
testing the opposite direction is required. More importantly, these monotonicity
tests work for models with a single independent variable, which is not compatible

with the current context of multiple predictors. The latter was addressed by van
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Beek and Daniels (2014), who proposed a non-parametric monotonicity test for
what they called “partial monotonicity” in multiple regression models, but their
approach is still restricted to test whether f(-) is non-decreasing only. On the
other hand, Doveh et al. (2002) proposed a monotonicity test in the framework of
parametric setting. However, it still holds for a single independent variable and it
also test for a non-decreasing association only.

Despite the fact that all of these monotonicity tests work in the regression anal-
ysis context, none of them considers ordinal predictors in a multivariate context,
which is addressed in this chapter.

Depending on the data set, the pattern of parameter estimates for an ordinal
predictor resulting from fitting the unconstrained model (2.3.4) might indicate a
clear monotonic association between an ordinal predictor and the ordinal response.
This is the case when the differences between parameter estimates of adjacent
ordered categories of the ordinal predictor are large enough and all positive or
negative. On the other extreme, the pattern could also show a clear non-monotonic
association, i.e., when the differences between adjacent parameter estimates of an
ordinal predictor are all large but some of them are positive and others negative.
However, the unconstrained parameter estimates could also show patterns that
are not so clear in terms of their monotonic association. For instance, for an
ordinal predictor of 10 categories, just one of its unconstrained parameter estimates
could indicate non-monotonicity, which could be attributable to random variation
of the sample. Therefore, the researcher would face the need of using a formal
monotonicity test to obtain evidence about whether a pattern could be considered
as monotonic or not.

The MDC procedure assists the decision on the choice of an appropriate mono-
tonicity direction assumption for each OP when fitting model (2.3.4), but it is not
a formal monotonicity test. It relies on the analysis of multiple pairwise compar-
isons of confidence intervals with flexibly chosen confidence levels without caring
about the simultaneous error probability. Hence, two formal monotonicity test are
proposed.

One of the two monotonicity test proposed in this chapter is based on the Bon-
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ferroni correction, which was published already in Espinosa and Hennig (2019).
The confidence intervals of the parameters of an ordinal predictor are used si-
multaneously to construct a monotonicity test based on the Bonferroni correction
(see Miller (1981), p. 67, and Bonferroni (1936)). This test does not take into
consideration the correlation between parameter estimates and its simultaneous
significance level decreases as the number of categories of the OP increases. Al-
though none of these reasons undermine the validity of the test, its results could
be considered as too conservative. Hence, in order to provide a less conservative
alternative test, a monotonicity test based on confidence regions is proposed in
Section 4.3.

The choice of the base category for categorical variables is one of the decisions
to be made by the researcher. The elementary choice for ordinal variables is the
first or last categories. Then, given that there is not a unique valid alternative,
the invariance under change of base category of the monotonicity test based on
confidence regions is explored in Section 4.3.1.

Finally, an alternative definition of the monotonicity test based on confidence
regions is analysed in Section 4.3.2. This alternative definition uses reparametri-
sation, with which it is possible to obtain estimates of the difference between
adjacent parameters of an ordinal predictor, and it will be shown that its results

are equivalent to the ones of the original proposal.

4.2 A monotonicity test based on Bonferroni cor-

rection

When analysing the monotonicity assumption on the parameters associated
with an OP s, the Bonferroni correction method can be used to construct a for-
mal monotonicity test for an OP. This monotonicity test was published already
in Espinosa and Hennig (2019). The Bonferroni correction method allows to com-
pute a set of confidence intervals achieving at least a 100(1 — )% confidence
level simultaneously (see Miller (1981), p. 67, and Bonferroni (1936)), which is
the probability that all the parameters are captured by the confidence intervals

simultaneously. For a given ordinal predictor s and a pre-specified o, if each one
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of the p, — 1 confidence intervals is built with a 100(1 — o /(ps — 1))% confidence
level, then the simultaneous confidence level will be at least 100(1 — a*)%.

The null hypothesis “H : The parameters {fsp, : hs = 1,2,...,ps} are either
isotonic or antitonic” (0 < fso < fs3--+ < B, (isotonic) and 0 > fFgo >
B3+ > Bsp, (antitonic)) is tested against the alternative “H; : The parameters
{Bsh, : hs =1,2,...,ps} are neither fully isotonic nor fully antitonic” for a given
OP s, and setting 3,1 = 0 as in previous sections.

For a given ordinal predictor s, and taking advantage of the ordinal information
provided by its categories, it is then checked whether all the confidence intervals
simultaneously are compatible with monotonicity.

In order to identify whether there are pairs of confidence intervals of S,
that are incompatible with monotonicity, a slight modification of equations (2.4.2)
and (2.4.3) is used. Now, instead of the confidence level ¢, those equations use
b=1—a*/(ps —1). Therefore, the monotonicity test for an ordinal predictor s is

reject Hy if D,; O {-1,1}
T,; = ? (4.2.1)

not reject Hy otherwise

where D j = {d, ), , 3} is defined as the set of distinct values resulting from using
Equation (2.4.3) for the ordinal predictor s considering each confidence interval
with a 1006% confidence level (instead of 100é%) in order to achieve a simultaneous
confidence level of at least 100(1 — a%)% for the parameters associated with the
OP s. The Bonferroni correction adjusts the individual confidence level of (p; —1)
confidence intervals associated with an OP s in order to obtain a simultaneous
confidence level of at least 100(1 — af)% for the set of (ps — 1) individual Cls.
Those adjusted individual confidence intervals are the ones to be used in Equation
(2.4.3), which involves ps(ps — 1)/2 comparisons of the CIs’ limits in order to find
the ps(ps—1)/2 indicators of relative positions of the adjusted individual confidence
intervals that define D_j.

If T; = reject Hy, then the parameters associated with the ordinal predic-
tor s are not compatible with the monotonicity assumption with a simultaneous

confidence level of at least 100(1 — a*)%.
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When applying this monotonicity test to the four ordinal predictors of the
illustration discussed in Section 2.5 and using a pre-specified af = 0.05, all the

ordinal predictors were found to be compatible with the monotonicity assumption.

For a given pre-determined significance level of o (say 0.1, 0.05 or 0.01), the
Bonferroni correction will often be very conservative, and it will be the more con-
servative the higher the number of ordinal categories involved in the monotonicity
test is. A higher p, implies larger ranges of the intervals, making the test more

likely to not reject Hy.

In order to show some results for the monotonicity test with ordinal predic-
tors for which their association with the response variable is truly non-monotonic,
consider a setting for model (2.3.4) with two OPs only (¢ = 2 and v = 0), where
pr =4, po =5, and k =4, ie., j =1,2,3. The parameters for the intercepts are
a; = —1, as = —0.5, and ag = —0.1; and the true sets of parameters of the ordinal
predictors 1 and 2 represent non-monotonic associations, being 37 = (0.4,1.7,0.8)
and By = (—0.25,—0.70, —0.05,0.40). The distributions among categories of or-
dinal predictors 1 and 2 are the same as the ones shown in Figure 2.2 for OPs
2 and 3 correspondingly, and the number of observations is 2,000. This setting

corresponds to the one that was published already in Espinosa and Hennig (2019).

e —— OP 1and 2. Rejection rates: 84.9% and 84.5%
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Figure 4.1: True parameter patterns simulating non-monotonicity with different

rejection rates of the monotonicity test based on Bonferroni correction.
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After fitting the new unconstrained model on 1,000 simulated data sets and
testing for monotonicity, the rejection rate was analysed, as suggested in Morris
et al. (2019) for the assessment of a hypothesis test. The null hypothesis was
rejected in 84.9% of the data sets for the OP 1 and in 84.5% for the second OP, in
both cases with o} = 0.05. Figure 4.1 shows the patterns of these non-monotonic
ordinal predictors together with additional patterns with which rejection rates of

around 5% are obtained (4.5% and 5.5% respectively).

4.3 A monotonicity test based on confidence re-

gions

Consider the confidence region (3.2.8) for the parameters of the unconstrained
POCLM model (2.3.4). The aim of the monotonicity test is to establish whether
a point that is compatible with monotonicity is in this confidence region or not.
Among all those points compatible with monotonicity, the one obtained through

MLE is chosen, i.e., the MLE under monotonicity constraints.

Assume the base category b is chosen to be the first category of an ordinal
predictor s, and consequently 3, = 0, and that we want to test whether the pa-
rameters of the ordinal predictor are monotonic in some particular direction, e.g.,
isotonic. Then, from the parameters ({«;}, B) of the model (2.3.4), the parameter
vector associated with the set of predictors 3 is partitioned as 8" = (8%, B(,.0n0ra))»
where 3, is a vector with (p; — 1) parameters of the ordinal predictor s, and
B nonora) 18 composed of all the parameters associated with the remaining pre-
dictors. The unconstrained parameter estimates are obtained by MLE of model
(2.3.4). Similarly, the constrained parameter estimates are also obtained by MLE
but under monotonicity constraints, which need to be defined. To set the max-
imisation problem of the constrained model, and following the same reasoning as
in Section 2.3.2 but now with the aim of making the choice of the base category

flexible, we define an (ps — 1)-dimensional square matrix depending on the value
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of b, the choice of the base category, which in this case is assumed to be b = 1:

1 0 -0
; -1 1 0 0

Cs - Cs,b - O O (431)
0 -1 1

The way in which this matrix is defined for any choice of b is discussed below,

without affecting the maximisation problem:

maximise (({a;}, 3)

subject to C;8, > 0, (4.3.2)

where 0 is a vector of p;—1 components. (4.3.2) can be expressed as the Lagrangian

L({a;},8,A) = L({a;}, B) — NC,p,, (4.3.3)

where A is the vector of p, — 1 Lagrange multipliers.
Under the current scenario, the null hypothesis is “Hy: the parameters of
ordinal predictor s are isotonic” (0 < [0 < fs3 < -+ < f,.) and we set a

significance level a. Then, the decision rule is:

reject Hy if 2[0({a;}, B) — (({&;}, B)] > X3 —1)1—a (4.3.4)

where {¢&;} and B are the maximum likelihood estimators of the unconstrained
model (2.3.4), and {&;} and B are obtained by solving (4.3.3), the constrained
MLE version of the model (2.3.4) assuming an isotonic pattern for ordinal predictor
s. Thus, ¢({@,},3) will be the closest to £({d;},3) under Hy, and therefore any
other choice of {&;} and B will make the left hand side of the inequality in (4.3.4)
to be even greater than the boundary of the confidence region, X%ps—l);l—oc‘

In order to make the choice of the base category more flexible, for instance
choosing the last category as the baseline, it could be of interest to define the base
category of an ordinal predictor s as any of its categories rather than the first

one only, in which case the matrix C[; defined in Equation (4.3.1) for testing an

isotonic pattern is replaced by an (ps—1)-dimensional square matrix with elements
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for each i-th row and j-th column defined as

;

1 ifi=j>bori+1=7<b
clyis=q-1 ifi=j<bori=j+1>b (4.3.5)
0 otherwise,
\
for some base category b with 1 < b < mg and i, =1,...,ms; — 1. For example,

for an ordinal predictor s with 4 categories, the corresponding matrices C |, CI,,

C!; and CI, for the different possible choices of the base category are

1 00 ~1 00 1 10 11
-1 10|, o tol],|] o-1to0],] 0 -1 1
0 -1 1 0 -1 1 0 0 1 0 0 -1

Hence, if the researcher is testing whether the pattern of parameters is isotonic
with base category b, Equation (4.3.3) uses the matrix Cg’b with elements defined
in (4.3.5) to obtain the parameter estimates to be used in the decision rule (4.3.4).
If the monotonicity direction to be tested is antitonic, then use C; = Céb = -Cl,
instead of C, = CI .

Rejecting Hy means that the pattern of parameters is not compatible with the
particular monotonicity direction used in the null hypothesis with a significance
level a. However, the other monotonicity direction could still be compatible.
Therefore, the test should be used twice in order to establish either a specific

monotonicity direction, both or none.

4.3.1 Invariance under change of base category

The monotonicity test discussed in Section 4.3 is based on comparing the uncon-
strained model (2.3.4) against the same model under monotonicity constraints,
from which the corresponding log-likelihoods ¢({d;},3) and £({a;}, 3) are used
in the decision rule (4.3.4). To show that the results of the monotonicity test are
invariant against changes of the reference category, we show that each of these
log-likelihoods is the same regardless of the base category choice.

Consider the model (2.3.4) with v = 1 non-ordinal predictor and ¢ = 1 ordinal

predictor composed of p; = 4 categories. Assuming the choice of base category as
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b =1, the model is

logit[P(y; = j|xi)] = aj + Brox12 + P31z + fratia + Bz, (4.3.6)
where (121, is usually omitted because 817 = 0. A different choice of the base
category can be understood as a reparametrisation of model (4.3.6).

Assume a the change of base category from b =1 to b = 3. Given that

xi,s,b =1- Z mz‘,s,ly (437)

VIs€{L,....ps }\{b}

the reparametrised model (4.3.8) below can be re-written in the form of model

(4.3.6) as follows

logit[P(y; = jlxi)] = o + B %11 + 81 oTin2 + B 4Tia + Bizia, (4.3.8)
=a;+ 11 (1 —Tine — %13 — Tina) + BlaTing + BraTina + Bizig,
=a; + 0+ (ﬁf; - 5;,1)%‘,1,2 — Bl1Tinz + (514 - ﬁf,l)xi,1,4 + B
(4.3.9)
Therefore, the change of base category from b = 1 in model (4.3.6) to b = 3 in

model (4.3.8) is just a reparametrisation of (4.3.6) because

o = Oz;f + 5;17 P2 = BT,Q - 5;,17 B3 = _Bila Bra = 5;,4 - ﬁil and f; = .
(4.3.10)
The parameters affected by the reparametrisation are those associated with the
intercepts and the ordinal predictor of interest. The remaining parameters are
not affected. This is the case for any change of base category. Thus, for an
unconstrained model, £({&,},8) = (({ash, B).
When monotonicity constraints are imposed on both model (4.3.6) and its

reparametrised version (4.3.8), any change of base category does not affect the
log-likelihood either. Assume that the monotonicity constraints on the ordinal

predictor of model (4.3.6) are isotonic. Then, the constraints are 0 < 15 <
P13 < Bra, or
P12 >0
Bi3—Pi2=>0 (4.3.11)

Bia— P13 >0,
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whereas for model (4.3.8), the constraints are 8}, < 87, <0 < 3y, or

Bro—Bri 20
—Biy >0 (4.3.12)

51‘(,4 2 07

which, using (4.3.10), can be re-written as

B2 >0
Bis— P2 >0 (4.3.13)
Bia— P13 >0,

which are exactly the same as (4.3.11), i.e., a change of the base category not
only leads to a reparametrisation of the model but also the isotonic constraints
on models (4.3.6) and (4.3.8) are equivalent. Therefore, £({d;}, B) = E({dj},é*),
and consequently the log-likelihood ratio used in decision rule (4.3.4) is invariant

against changes in the choice of the base category.

4.3.2 A note on reparametrisation and the monotonicity

test

In Section 4.3 we use monotonicity constraints on the parameters of ordinal pre-
dictor s when fitting model (2.3.4) to estimate the p-dimensional vector ({&;}, 3)
and test whether this point is in the p-dimensional confidence region of the pa-
rameters resulting from the unconstrained model (2.3.4), i.e. it is compatible with
the monotonicity direction established in the null hypothesis, or not.

Rather than estimating the effects of the parameters associated with the cat-
egories of an ordinal predictor, a researcher could be interested in estimating the
differences between adjacent parameters associated with the categories of an or-
dinal predictor. This can be addressed by taking an alternative approach, which
is to use a reparametrised version of model (2.3.4) to obtain estimates of the dif-
ference between adjacent parameters of an ordinal predictor s (s, — Bs,—1 with
ls =2,...,ps). For the isotonic case, all these differences must be non-negative,

regardless of the choice of the base category. Therefore, to test the hypothesis of an
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isotonic pattern, the reparametrised model is constrained to obtain non-negative
differences and Hj is rejected if the constrained result is out of the confidence
region of the parameters of the unconstrained reparametrised model.

To see how the reparametrisation works, consider the following model for an
ordinal response variable with k categories and one ordinal predictor with p; = 4

categories for which different choices of the base category are examined:

Base category b = 1: in this case ;1 = 0 and the general model is

logit[P(y; < j|x;)] = o + Bioxine + Bi3Tins + Bra%iia, (4.3.14)

with j =1,...,k —1 and where x; is a vector of p; — 1 components for each
1th observation representing p; — 1 dummy variables associated with the

categories of the OP, excluding the one corresponding to the base category.
Model (4.3.14) is reparametrised through the following:

logit[P(y; < j|x;)] = aj + 6;2(531,1,2 + T3+ Tina) + ﬁf,g(iﬂi,l,s +2i14) + BT 4Ti14-
(4.3.15)

Therefore, 519 = 15, B13 = 012+ 513 and Pra = 815+ 513+ f7 4, which is

easy to see if we re-write model (4.3.15) as

logit[P(y; < jlxi)] = o + By o(®in2 + Ting + Tina) + B 3(Tins + Tina) + Bl aTina
=+ BiaTing + (Bia+ Bis)Tins + (Bia+ Bis+ B14)Tira
(4.3.16)

and, more importantly, 57y = 812, 813 = B13— iz and 8], = B1a— P13, e,
the parameters 0, represent the difference between adjacent parameters of

the original model (4.3.14), 87, = Bs1, — Bst.—1 with [, =2,... p,.

Base category b = 2: if the second ordinal category is assumed to be the base-

line, i.e., 812 = 0, the original model is

logit[P(y; < jlxi)] = o + Brazing + Pr3Tins + BraTina, (4.3.17)
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and the reparametrised one is
logit[P(y; < jlxi)] = o — Bioming + By 3(Tin3 + Tina) + B 4Tina
= o) = PlaTita + Biatins + (Bs + Bla)vita (4.3.18)

from which we find that 57, = —fi1, 873 = B3 and 87, = B4 — P13
Againa ﬁ;,ls = ﬂs,ls - Bs,ls—l with ls = 27 -+ Ps-

Base category b = 3: in this case ;3 = 0 and the original model is

logit[P(y; < j|x;)] = o + Biaxina + Praine + Bra%iia, (4.3.19)

and the reparametrised one is

logit[P(y; < j|x;)] = Oé; - 5?2%‘,1,1 - 5;,3(331',1,1 +2i12) + 514331,1,4
= 04; - (5i2 + 5?,3)%1,1 - 5?31},1,2 + 5;,4%1,4 (4.3.20)

fI'OIIl Wthh we ﬁl’ld that 6;:2 = 61,2 — 51,1, 6?73 = —61’2 and BTA = 51’4.
Again7 B:,ls - ﬂs,ls - Bs,ls—l with [, =2,...,ps.

Base category b = 4: finally, for 3,4 = 0 the original model is

logit[P(y; < jlxi)] = o + Biaxina + Praine + B13%i13, (4.3.21)

and the reparametrised one is

logit[P(y; < j|x;)] = Oé; - 5;,2%1,1 - ﬁi:a(xi,l,l + Ti12) — ﬁi4($z’,1,1 + Tino+ Ti13)

=a; — (Bio+Bi3+Bia)miin — (Bis+ Bia)Tine — BlaTias
(4.3.22)

fl"OHl Wthh we ﬁIld that 5;:2 = 51,2 — 61’1, ,Bik’g = 51,3 — /81’2 and Bik,4 = —61’3.
Again7 B:,ls = 6s,l5 - 5s,l5—1 with ls =2,... y Ps-

In general, the reparametrised version of model (2.3.4) for the differences be-
tween adjacent parameters associated with an ordinal predictor s uses a partition
of both parameters and predictors. We define the parameters ({aj},3"), from

which the parameter vector B* is partitioned as B* = (ﬁ:',ﬁ’fnonord)'), where



162 A monotonicity test based on confidence regions

By = (B52- -+, B5,p,) is associated with the ordinal predictor s, and B(,,,0.q) 18
composed of all the parameters associated with the remaining predictors, which
could contain parameters of other ordinal predictors different from OP s in which
case they are treated as of nominal scale type. Correspondingly, the vector of pre-
dictors for the i-th observation x; is partitioned into x; ; and X; (nonord), Where x;
contains (ps — 1) components, excluding the one associated with the base category

b. For instance, ngs = (Xis1, Tis2, Tisa) for an ordinal predictor with 4 categories

and base category b = 3. Then, the reparametrised model is defined as

loglt[P(yl < j‘x’bﬂ = Oé; + X;,SRS,IJ/BZ + Xfi,(nonOTd)ﬁ?nonOrd)? (4323)

where R ;, is a square (ps—1)-dimensional matrix that allows the reparametrisation
of the parameters of ordinal predictor s when the b-th category is chosen as the
base category with 1 < b < p,, whose elements for each i-th row and j-th column

are defined as
.

1 if 7> 7and j>b
Tepij=4—1 ifi<jandj<b (4.3.24)
\0 otherwise,
with 7,7 = 1,...,ps — 1. For example, for an ordinal predictor with 4 categories,

the corresponding matrices Ry1, Rs2, Rs3 and R,y for the different possible

choices of the base category are

1 00 -1 0 0 -1 -1 0 -1 -1 -1

11 0], 0101, 0 —1 0|, 0 -1 -1 1{,

111 011 0 01 0 0 -1
respectively.

Model (4.3.23) can be re-written as

loglt[P<y’L S j‘X;k)] = Oé; + X;'k,s,/@: + X:,(nonOrd)//g?nonOrdﬁ (4325)

* !/ *

where X;/ = (Xi,s 7Xi,(non0rd)/) with X: = X RSb and X nonOrd)/ = Xi,(nonOrd)/7
which is in the same form of model (2.3.4), and therefore, based on (3.2.1), the
likelihood function is

(({a}}. 87 ZZ%J log 7 (x (4.3.26)

=1 j5=1
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The unconstrained MLEs of the reparametrised model (4.3.25), ({ol}"},f‘fk)7
are obtained by fitting the POCLM. Each resulting parameter estimate in B:
corresponds to the difference between adjacent parameter estimates associated
with the ordinal predictor resulting from fitting the original (not reparametrised)
unconstrained model (2.3.4), i.e., BA;‘,ZS = ﬂAS’lS — BASJS_I with [, =2,...,ps.

Given that in the reparametrised model (4.3.25) 8% represents the differences
of adjacent parameters associated with ordinal categories, the monotonicity con-
straints to be imposed on 3} enforces its components to be non-negative or non-
positive if the ordinal predictor s is assumed to be isotonic or antitonic respectively.

Assuming an isotonic pattern for the parameters of OP s, the maximisation

problem for the constrained reparametrised model is

maximise £({c}}, B7)

subject to 3% > 0, (4.3.27)

where 0 is a vector of p; — 1 components. (4.3.27) can be expressed as the La-

grangian

where A is the vector of p; — 1 Lagrange multipliers.

For the isotonic case, and according to the monotonicity test based on confi-
dence regions proposed in Section 4.3, the null hypothesis is “Hj: the parameters
of ordinal predictor s are isotonic” at some significance level . Then, the decision

rule is:

reject Hy it 210({a},8°) — €@}, B7)] > o —1y1a (4.3.29)

where {a}} and 3" are the maximum likelihood estimators of the unconstrained
reparametrised model (4.3.23), and {&;} and B* are obtained by solving (4.3.28),
the constrained MLE version of the reparametrised model (4.3.25) assuming an
isotonic pattern for ordinal predictor s.

If the monotonicity direction to be tested is antitonic, then reverse the direction
of the inequality in the constraints of the optimisation problem (4.3.27) and modify
(4.3.28) accordingly. The decision rule (4.3.29) remains the same.



164 Conclusion

Rejecting Hy means that the pattern of parameters is not compatible with the
particular monotonicity direction used in the null hypothesis with a significance
level . However, the other monotonicity direction could still be compatible.
Therefore, the test should be used twice in order to establish either a specific

monotonicity direction, both or none.

4.4 Conclusion

Two monotonicity tests are proposed, one based on the Bonferroni correction

and another on the analysis of confidence regions.

The former allows to make inference about the monotonicity of a pattern
of parameters associated with an ordinal predictor with a simultaneous confi-
dence level of at least 100(1 — «%)%, which results from the analysis of individual
100(1 — o /(ps — 1))% confidence intervals. Therefore, the higher the number of
ordinal categories of an ordinal predictor s, the more conservative the result of
the monotonicity test. The null hypothesis states that the pattern of parameters
associated with an ordinal predictor s is monotonic.

The latter uses the analysis of the confidence region associated with the pa-
rameter estimates of a given ordinal predictor in order to establish whether a point
that is compatible with the monotonicity direction used in the null hypothesis is
in the confidence region or not with a 100(1 — a)% confidence level. The null hy-
pothesis states that the pattern of parameters associated with an ordinal predictor
s follows a specific monotonicity direction.

The invariance under change of base category is discussed for the monotonicity
test based on confidence regions, and it is shown that the results of the monotonic-
ity test are invariant against changes of the reference category as the log-likelihoods
are the same regardless of the base category choice.

In addition, when differences between adjacent parameters associated with an
ordinal predictor s are of interest, then a reparametrised version of model (2.3.4)
is proposed together with a version of the monotonicity test based on confidence

regions discussed in Section 4.3.

The performance of these tests is investigated further under different settings
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(simulated and real data sets) later in Chapter 6.



Chapter 5

Further estimation methods and

variable selection

5.1 Introduction

In addition to the constrained method described in Section 2.4, which uses the
three steps of the MDC procedure, another method that imposes monotonicity
constraints on all of the OPs is described in Section 5.2, which chooses the model
with the highest maximum likelihood over a set of models that are built according
to all possible combinations of monotonicity directions. However, dropping mono-
tonicity constraints could also be of interest. Therefore, five estimations methods
will be proposed to take into account the possibility of not imposing the mono-
tonicity constraint on some of the ordinal predictors. The five methods differ in
the way they make the decision about the ordinal predictors for which their pa-
rameter estimates will not be constrained to be monotonic. Two of them consider
the results of the monotonicity tests proposed in Chapter 4, one based on the Bon-
ferroni correction and the other based on the analysis of confidence regions. They
are discussed in Section 5.3.1 and Section 5.3.2 correspondingly. The remaining
three proposed estimation methods discussed in Section 5.3.3 rely on the results
of the steps of the MDC procedure previously proposed (see Section 2.4). Not
imposing the monotonicity constraint on any of the ordinal predictors is the same

as fitting the usual unconstrained POCLM proposed by McCullagh (1980).
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Section 5.4 discusses the fact that the MDC procedure can also be used for
variable selection. The first two steps of the MDC procedure are based on the anal-
ysis of confidence intervals. Therefore, when they classify the pattern of parameter
estimates of an OP as ‘both’; it does not only mean that both monotonicity di-
rections are compatible with the estimated pattern, but it also means that all
of the parameter estimates are not statistically significant at the corresponding
confidence level of step one or two. The use of this information as a reference for

variable selection will also be discussed.

Those estimation methods based on the MDC procedure and the one that uses
the monotonicity test based on the Bonferroni correction were published already

in Espinosa and Hennig (2019).

5.2 Monotonicity direction classification by Max-
imum Likelihood over all possible combina-

tions

When a monotonicity constraint is imposed on the effects of an OP, there are
two options from which only one has to be chosen according to the monotonicity
directions, ‘isotonic’ or ‘antitonic’. Given t OPs, then there are 2° combinations
of monotonicity directions to choose from. The method of monotonicity direction
classification by Maximum Likelihood over all possible combinations makes this
choice by fitting 2¢ constrained models, where each model differs from the others
just because of the monotonicity directions that are used to impose the monotonic-
ity constraints on the effects of the ¢ ordinal predictors. Once the 2! constrained
models have been fitted, then the one that delivers the highest likelihood is se-
lected and its combination of monotonicity directions is found, resulting the best

option in terms of likelihood.

For scenarios where the number of OPs is high, this approach could be com-
putationally demanding, for instance, for ¢ = 6 there are 64 models to be fitted.
The number of combinations of monotonicity directions rapidly increases as the

number of OPs t gets greater, making the method of monotonicity classification
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by Maximum Likelihood over all possibilities slower.

Another important factor to be considered is that this method does not take
into account the possibility of not imposing monotonicity constraints on some
or all of the OPs. In some situations, the unconstrained parameter estimates
of an ordinal predictor indicate that its association with the response variable is
not monotonic. If those kind of effects are constrained to be monotonic anyway,
the parameter estimates of the remaining OPs will also be affected, which could
even lead to misclassification of monotonicity direction as will be seen in Section
6.2.1. This is the main reason why methods that assist the researcher in making
the decision of dropping monotonicity constraints for some or all of the OPs are

proposed in the following section.

5.3 Dropping monotonicity constraints

The method of monotonicity direction classification by Maximum Likelihood
over all possible combinations and the monotonicity direction classification pro-
cedure impose monotonicity constraints on all of the sets of parameters of the
OPs. These methods do not incorporate the option of dropping monotonicity
constraints. This means that, when using these methods, the researcher is forced
to impose monotonicity constraints on all of the OPs, which is not a problem
when the effects of all the OPs are monotonic. However, these methods are not a
good approach to deal with OPs whose unconstrained effects indicate that there
is a non-monotonic association with the response variable. This shows the need
of more flexible methods. Therefore, five methods are proposed in this respect.
Some of them are more conservative than others, requiring very strong evidence
against monotonicity to determine that the monotonicity constraint should not be
imposed on a set of parameter estimates of an OP. Another difference among them

is that some are based on monotonicity tests and others on the MDC procedure.
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5.3.1 Using the monotonicity test based on Bonferroni cor-

rection

The MDC procedure described in Section 2.4 implies that the parameter estimates
of all ordinal predictors are restricted to be monotonic. However, the researcher
may want to drop monotonicity constraints on ordinal predictors in case that there
is clear evidence against monotonicity.

The monotonicity test proposed in Section 4.2 can be used as a complemen-
tary tool to the MDC procedure in order to assist the estimation process. If the
researcher is open to the possibility of not imposing the monotonicity constraints
on some ordinal predictors, then he/she could first test monotonicity on each one
of them, then drop the monotonicity constraints on those ordinal predictors for
which the null hypothesis was rejected, and finally perform the MDC procedure
imposing monotonicity constraints on all the remaining ordinal predictors. Un-
der this scenario, in case that monotonicity is rejected for an OP, it would be
more prudent to fit unconstrained estimates on the parameters associated with it.
Therefore, such an OP should not be part of S, the set of OPs to be constrained,

but rather part of the non-ordinal predictors, treating it as nominal-scaled.

5.3.2 Using the monotonicity test based on confidence re-
gions

Similarly to the estimation method described in Section 5.3.1, an alternative com-
plementary tool to the MDC procedure in order to assist the estimation process
is the monotonicity test based on confidence regions proposed in Section 4.3 when
the researcher is open to not impose monotonicity constraints on some OPs. Then,
like in the previous section, the first step is to test monotonicity on each one of
the ordinal predictors and drop the monotonicity constraints on those for which
the null hypothesis is rejected. The parameter estimates associated with those
OPs are now considered as unconstrained estimates. Therefore, those OPs are
removed from the set S, the set of OPs to be constrained, and treated as part

of the non-ordinal predictors, treating them as nominal-scaled variables. Finally,
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the MDC procedure is performed imposing monotonicity constraints on all the

remaining OPs only.

5.3.3 Using the MDC procedure

When dropping the monotonicity constraint for some of the OPs is considered as
a feasible option, then not only the approach introduced in Section 5.3.1 could
be used, but also three alternative ones that are proposed in this section. As
in the previous section, consider the case where the researcher might also want
to explore whether the monotonicity assumption holds for all of the OPs or for
a subset of them, but now using a less conservative (i.e., dropping constraints
more easily) approach than the one based on the monotonicity test. We propose
three additional methods. Two of them are based on the first and second steps of
the MDC procedure correspondingly (‘CMLE MDC S1’ and ‘CMLE MDC S2’),
and another one is based on a slight modification of the MDC procedure (‘CMLE
filtered’).

CMLE MDC S1

Both monotonicity constraints and monotonicity directions are established using
the first step of the MDC procedure. Once it determines Z; and A;, the monotonic-
ity constraints are dropped for the remaining ordinal predictors {s : s ¢ (Z;UA;)},
namely {s: s € (B;UN])}. Therefore, there is no need of executing further steps.

The model is fitted imposing monotonicity constraints on ordinal predictors
{s:s € (Z;U.A;)} using their corresponding monotonicity directions, and treats
ordinal predictors {s : s € (B; UN;)} as nominal-scaled variables.

This method is the least conservative one because it assumes that if a mono-
tonicity direction is not established without adjustment of the confidence level

100¢%, then the monotonicity constraint has to be dropped.
CMLE MDC S2

This method follows the same structure as the previous one but executing the
MDC procedure until the end of its second step. Therefore, the third step is not

executed and the model is fitted imposing monotonicity constraints on ordinal pre-
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dictors {s : s € (ZyU.A3)} only, using their corresponding monotonicity directions
according to Zp and A, and treating the ordinal predictors {s: s & (Zo U Ay)} as

nominal-scaled variables.
CMLE filtered

An adjusted version of the MDC procedure described in Section 2.4 allows to drop
the monotonicity assumption for some OPs. There are only two adjustments to
be made by this approach, one in step 2.b and the other one in step 3. The first
one is to set &@* = ¢, i.e., the tolerance level for each OP s € N is set to be the
same as the confidence level chosen in step 1. Therefore, the second step is not
performed on any ordinal predictor s € N;. The second modification is to apply
step 3 over the possible combinations of monotonicity directions of the ordinal
predictors that were classified as ‘both’ by the end of step 2, i.e., the number of
models to be fitted is now 27540} ingtoad of 2#{s:s¢(@2042)}  Thig implies
that &, the set of OPs to be constrained, must be updated excluding each ordinal
predictor s € N, from the set of monotonicity constraints. Finally, the model
should be fitted treating these OPs as nominal-scaled variables.

These adjustments are equivalent to considering the first step of the MDC
procedure as a filter of OPs to be constrained, where those that are classified as
‘none’ by the end of this step are removed from S and excluded from steps 2 and

3.

5.4 MDC procedure and variable selection

The parameter estimates’ patterns classified as ‘both’ at the end of the second
step of the MDC procedure are also of interest. ‘Both’ refers to an ordinal predictor
for which all of the parameters associated with its categories have Cls containing
zero. Therefore, if this is true even for the Cls evaluated at the tolerance level,
an option is to remove such an ordinal predictor from the model of interest and
apply the MDC procedure again using the new model. If more than one OP is
classified as ‘both’ and there is appetite to drop such variables, then it is advisable
to do it in a stepwise fashion such as backward elimination, while checking the

results of the MDC procedure in each step, because dropping an OP could affect
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the monotonicity direction classification of another OP. We will not investigate
this in detail here, assuming that the data is rich enough so that variable selection

is not required.

5.5 Conclusions

If the researcher is open to the possibility of not imposing monotonicity con-
straints on some or all of the ordinal predictors and treat them as of nominal
scale type, then the monotonicity tests and the steps of the MDC procedure are
proposed as tools to help her/him make the decision of dropping the monotonic-
ity constraint on the parameters of a given ordinal predictor. By construction,
the method ‘CMLE MDC S1’ will indicate to drop the monotonicity constraint
with the same or higher frequency than ‘CMLE MDC S2’ and ‘CMLE filtered’.
Similarly, ‘CMLE Conf. Reg.” is less conservative than ‘CMLE Bonferroni’.

The methods ‘CMLE MDC S1’ and ‘CMLE MDC 52’ do not use step 3 at all.
The methods ‘CMLE filtered’ and the one described in Section 5.4, i.e., dropping
monotonicity constraints for those ordinal predictors s € N; and dropping ordinal
predictors {s : d; g+ = both}, reduce the number of models to be fitted in step 3.
If these last two methods are used simultaneously, then step 3 is avoided.

Comparisons among the results of the five estimation methods, the fully con-
strained estimation method of Section 2.4, and the unconstrained one will be
discussed in Section 6.2. In Section 6.2.1 the differences between the two more
restrictive methods will be analysed, i.e. monotonicity classification by Maximum
Likelihood over all possible combinations and the monotonicity direction classifi-
cation procedure. The differences among the results of using constrained methods
against the use of scoring systems for the treatment of ordinal predictors will be
analysed in Section 6.3. In the real data application, all of these methods will be
used, however, it will be seen that one of them is the best according to the context

of the analysis (see Section 6.4).



Chapter 6

Models results

6.1 Introduction

In Chapter 2 a constrained regression model for ordinal data was proposed
assuming that the effects of every ordinal predictor are constrained to be mono-
tonic in some direction (isotonic or antitonic). This assumption was relaxed in
Chapter 5, where not imposing monotonicity constraints on the effects of some
ordinal predictors is allowed. Five constrained methods were proposed in order
to offer flexibility on the way the decision of dropping monotonicity constraints is

made.

The results of the constrained methods proposed in Chapter 2 and Chapter 5
may differ in the classification of the parameter estimates of an ordinal predictor
among the possible outcomes of monotonicity directions (‘isotonic’, ‘antitonic’,
‘both’ or ‘none’) and, consequently, in the value of their parameter estimates. A
simulation study is conducted in Section 6.2 to analyse those differences. Ac-
cording to Morris et al. (2019), “simulation studies will often involve more than
one data-generating mechanism to ensure coverage of different scenarios”. This is
why the performance of several methods is compared considering different factors
such as sample sizes, number of predictors, monotonicity directions of the ordinal
predictors’ effects, and correlation among predictors. The first simulations setting
uses two uncorrelated ordinal predictors with monotonic effects. For each combi-

nation of type of model, ordinal predictor, and sample size, an empirical distribu-
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tion of the classes of monotonicity direction classification is computed (‘isotonic’,
‘antitonic’, ‘both’ and ‘none’). These are shown in Table 6.1. The proportions
of ‘isotonic’ and ‘antitonic’ are compared among constrained models using a set
of McNemar hypothesis tests for differences between two dependent proportions
(for an example of the process see Table 6.2). For the smallest sample size of
the simulation setting (n = 50), the monotonicity direction classification shows
a high rate of misclassification, regardless of the constrained method. However,
for n=100 or larger, the classification improves significantly for the constrained
methods, showing proportions of correct classification of 88.9% or higher, even
when the true monotonic pattern is not that clear (OP 1), except for ‘CMLE
MDC S1’ and ‘CMLE MDC S2’ for which this conclusion still holds for n > 500.
All of these results also provide insights about the degree of conservativeness of
each method regarding the decision of dropping monotonicity constraints, being
‘CMLE Bonferroni’ the most conservative method and ‘CMLE MDC S1’ the least

conservative one.

The results of the constrained methods are compared between each other and
against the ones of the unconstrained MLE in terms of their mean-squared errors.
Again, pairwise comparisons are of interest, which leads to an elevated number
of hypothesis test (840) because of the multiple factors to be considered (number
of models, ordinal predictors, categories, and sample sizes), and therefore their
analysis is addressed as an exploratory exercise (see Table 6.3 for an example
of the process). Table 6.4 shows the results in terms of MSE (averaging the
results associated with the categories of each OP). In general, given monotonicity
of effects of ordinal predictors, the constrained methods perform better than the
unconstrained one in terms of MSE.

All the analyses mentioned above were replicated after introducing correla-
tion between the ordinal predictors, generating a new set of simulation settings.
It will be seen that the results are affected but the general conclusions remain
approximately the same.

The previous two simulation settings (two OPs with and without correlation)

were built using monotonic patterns of effects for each OP. In order to analyse the
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performance of the proposed constrained methods in a more complex context, a
new pair of simulation settings was conducted and analysed. Both of them use four
ordinal predictors instead of two, each one of them representing a different class of
monotonicity direction (‘isotonic’, ‘antitonic’, ‘both’ and ‘none’). The difference
between these two new simulation settings is that one of them does not impose
correlation among its OPs whereas the other does. Further analysis of these new
scenarios are left to be discussed in the body of Section 6.2 and part of Section

6.6.

In Section 6.3 the constrained methods were compared against models using
the POCLM for the treatment of an ordinal response and different scoring sys-
tems to transform ordinal predictors into interval-scaled variables. This analysis
was made based on simulated data sets. The scoring systems are some of those
presented in Section 1.4. In addition, a researcher could be interested in con-
verting a set of ordinal predictors into a single interval-scaled variable. For this
purpose, a latent variable model for ordinal data is used as a dimensionality reduc-
tion technique an is incorporated in the analysis (see Section 1.7.2). As in Tutz
and Hechenbichler (2005), where different methods for an ordinal response were
compared, the performance of these methods is assessed based on three measures
of accuracy, despite the fact that they are not specially designed for ordinal data:
the misclassification rate (MR), the mean absolute prediction error (MAPE), and
the mean-squared prediction error (MSPE). In general, given that the true pat-
tern of an OP is non-monotonic, the less conservative constrained methods show
a better performance than the ones using scoring systems for the treatment of

ordinal predictors, even when the sample size is small.

Finally, in Section 6.4 a real data application is used to illustrate in practice
how the proposed methodologies work, analysing the association between a qual-
ity of life self-assessment variable (10-point Likert scale) and ordinal and other
predictors from a Chilean survey, the National Socio-Economic Characterisation
2013 (CASEN). This application shows that the constrained methods are superior
in terms of interpretability. In addition, all of the constrained methods were used

in the context of the real data application and also some of the approaches using
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scoring systems were used to compare their results against the constrained ones

(see Section 6.4.1 and Section 6.4.2 correspondingly).

6.2 Constrained versus unconstrained POCLM
The model (2.3.4) with two ordinal and two interval-scaled predictors,

4

logit[P(y; < jlx;)] = o + Z B,k Ti 1,1y
h1=2

6
+ Z B2,hoTi2,he + B1Ti1 + B2 2, (6.2.1)
ha=2
where &k = 5, i.e., 7 = 1,2,3,4, was fitted for 1,000 data sets simulated as de-
scribed in Section 2.5 using the following parameters: for the intercepts a; = —1.4,
as = —0.4, a3 = 0.3, and ay = 1.1; for the ordinal predictors’ categories
B = (0.3,1.0,1.005), and B, = (—0.2,—1.5,—1.55, —2.4, —2.41); and for the
interval-scaled predictors f; = —0.15 and $; = 0.25. The parameter vectors
B, and B3, were chosen to represent isotonic and antitonic patterns respectively.
Several sample sizes were considered: n =50, 100, 500, 1000, 5000. The ordi-
nal predictors were drawn from the population distributions used in Section 2.5 of
those covariates with the same number of ordinal categories, 4 and 6. The interval-
scaled covariates x; and z9 were randomly generated from normal distributions,
N(0,1) and N(5,4) correspondingly.
For each one of the 1,000 data sets and for every sample size, model (6.2.1) was
fitted following one unconstrained estimation method and six different constrained

methods:

1. UMLE (unconstrained MLE).

2. CMLE: constrained MLE based on the MDC procedure with ¢ = 0.90 in
step 1, ¢ = 0.85 and ¢* = 0.999 for s = 1,2 in step 2, with versions using
some or all of the steps of the MDC procedure:

a) MDC S1 as described in Section 5.3.3,

b) MDC S2 as described in Section 5.3.3,
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¢) MDC 83 as described in Section 2.4, imposing monotonicity constraints

on all OPs.

3. CMLE Bonferroni: dropping monotonicity constraints on those ordinal pre-
dictors for which the null hypothesis of monotonicity was rejected as de-
scribed in Section 5.3.1 and using the monotonicity test based on Bonferroni

correction proposed in Section 4.2, with a} = 0.05, for s =1, 2.

4. CMLE Conf. Reg.: dropping monotonicity constraints on those ordinal
predictors for which the null hypothesis of monotonicity was rejected as de-
scribed in Section 5.3.2 and using the monotonicity test based on confidence

regions proposed in Section 4.3, with a = 0.05.

5. CMLE filtered as described in Section 5.3.3, ¢ = 0.90.



SLT

True pattern OP 1: Isotonic OP 2: Antitonic
Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000
Isotonic 395 579 984 100 100 | 3.1 29 0.0 0.0 0.0
MDC S1 Antitonic 56 2.0 0.1 0.0 0.0 |39.1 821 98.1 985 99.7
Both 54.8 398 14 0.0 0.0 | 569 13.2 0.0 0.0 0.0
None 0.1 03 0.1 0.0 0.0 09 18 1.9 1.5 0.3
CMLE Isotonic 475 655 99.2 100 100 | 5.3 56 0.0 0.0 0.0
DC S Antitonic 76 38 02 0.0 0.0 | 44.8 872 100 100 100
M 2 Both 449 30.7 0.6 0.0 00 499 72 0.0 0.0 0.0
None 0.0 00 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
MDC S Isotonic 69.2 929 998 100 100 | 9.1 57 0.0 0.0 0.0
3 Antitonic 308 7.1 0.2 0.0 0.0 {909 94.3 100 100 100
Unconstrained 0.0 00 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
CMLE Bonferroni MDC S Isotonic 69.2 929 99.8 100 100 9.1 5.7 0.0 0.0 0.0
3 Antitonic 308 7.1 0.2 0.0 0.0 {909 94.3 100 100 100
Unconstrained 82 4.9 1.5 0.7 0.0 | 12.1 102 2.2 1.7 0.4
CMLE Conf. Reg. MDC S Isotonic 68.1 899 985 993 100 | 3.2 09 0.0 0.0 0.0
3 Antitonic 23.7 52 0.0 0.0 0.0 | 84.7 889 978 98.3 99.6
Unconstrained 01 03 0.1 0.0 0.0 09 18 1.9 1.5 0.3
CMLE filtered MDC S Isotonic 69.1 92.6 99.7 100 100 | 85 46 0.0 0.0 0.0
3 Antitonic 308 7.1 0.2 0.0 0.0 |90.6 93.6 98.1 985 99.7

Table 6.1: Classification of monotonicity direction of two OPs based on six methods with 1,000 simulated data sets, different sample

sizes and independent covariates (%).
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Table 6.1 shows the resulting proportions of monotonicity directions and uncon-
strained cases, for each sample size and OP within each one of the six constrained
estimation methods discussed here. It is reasonable to consider the analysis of
whether the differences between those proportions can be explained by random
variation. This implied to conduct 300 hypothesis tests in total (15 comparisons
for a given monotonicity direction, ordinal predictor and sample size). The anal-
ysis of the whole set of tests will be addressed as an exploratory exercise and
comments about it will be focused on some selected subsets of comparisons. The
type of hypothesis test, the number of tests and the way they will be interpreted

are discussed next.

Given that the methods are fitted on the same data sets, the two-sided Mc-
Nemar test was used, which is appropriate for differences between two depen-
dent proportions (see Agresti (2007) Section 8.1.1), where the null hypothesis
(Ho : 7y, = Tm,) is that the probability of classifying the pattern of parameters in
one of the monotonicity directions (isotonic or antitonic), for a given ordinal pre-
dictor and sample size using one of the six constrained methods (denoted with the
subindex m;), is the same as the probability of classifying the pattern of param-
eters in the same monotonicity direction for the same setting (ordinal predictor
and sample size) using one of the remaining constrained methods (denoted with

the subindex m;).

A high number of tests were ran on paired comparisons of proportions. For each
combination of ordinal predictor, sample size, and monotonicity direction (isotonic
and antitonic), there are six constrained methods to be compared, leading to 15
paired differences of proportions for each setting. Table 6.2 is an example of the

p-values that were obtained for a single setting (OP 1, n =500, and ‘isotonic’).

As shown in Table 6.2, the p-value when testing Hy : Type s3 = TeMLE  Bonferroni
is 1 because ‘CMLE Bonferroni’ did not drop the monotonicity constraint for OP
1 in any of the data sets, and therefore there is no difference between ‘MDC S3’
and ‘CMLE Bonferroni’. Those p-values 1 of other comparisons in Table 6.2 are
based on the fact that the corresponding methods differ in their monotonicity

classification in only one case among the 1,000 simulations.
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MDC MDC CMLE CMLE CMLE

S2 S3 Bonferroni Conf. Reg. filtered

MDC S1 0.0133 0.0005  0.0005 1.0000 0.0009
MDC S2 - 0.0412  0.0412 0.1456 0.1306
MDC S3 - - 1.0000 0.0009 1.0000
CMLE Bonferroni - - - 0.0009 1.0000
CMLE Conf. Reg. - - - - 0.0015

Table 6.2: Example of the p-values of the McNemar tests with null hypothesis

Hy : mp, = T, for OP 1, sample size n = 500 and ‘isotonic’.

As there are two ordinal predictors, five sample sizes, and two monotonicity
directions, the total number of tests is 300. Strict interpretations of the p-values
would need to take into consideration the whole set of tests using some multi-
ple testing procedure, such as Bonferroni correction. Therefore, the analysis of
the whole set of 300 two-sided paired proportions tests will be addressed as an ex-
ploratory exercise, focusing the attention on some selected subsets of comparisons,
and using either direct reference to the p-value or some of the two following signif-
icance levels in order to call the results of the tests significant: (i) the ‘Bonferroni
level” of v = 0.05/300 = 1.67E-04, or (ii) the ‘0.01 level’ o = 0.01.

This method of comparison between two dependent proportions will also be
used for the analysis of other tables about proportions in the current section.

The MDC procedure was performed as part of the constrained approaches. Its
first, second, and third steps (‘MDC S1’; ‘MDC S2’ and ‘MDC S3’ in Table 6.1)
correctly classified OPs 1 and 2 in nearly 100% of the cases when the sample size
was at least 500. For smaller sample sizes, ‘CMLE MDC S2’ showed significantly
better results than ‘CMLE MDC S1’ as expected, and the third step allowed to
finally classify OP 1 as ‘isotonic’ in 69.2% of the cases when n = 50, which rapidly
increased to 92.9% when n = 100 and improved even more for larger sample sizes.
Regarding OP 2, better results were obtained even with small sample sizes.

‘CMLE Bonferroni’ performed in exactly the same way as ‘CMLE MDC S3’ be-

cause the null hypothesis of monotonicity was not rejected in 100% of the data sets
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for both OPs with o = 0.05 and for any sample size. Therefore, the monotonicity

constraints were not dropped.

Regarding the ‘CMLE Conf. Reg.” approach, the null hypothesis of mono-
tonicity was rejected with a confidence level of 95% (a = 0.05) in at least 4.9%
of the cases for OP 1 and 10.2% for OP 2 when n < 100, indicating that this ap-
proach is much less conservative than ‘CMLE Bonferroni’ for small sample sizes.
For these sample sizes and except for one setting (OP 1, n=50, and ‘isotonic’), all
the pairwise comparisons of proportions between ‘CMLE Conf. Reg.” and ‘CMLE
Bonferroni’ for ‘isotonic’ or ‘antitonic’ show significant differences, being ‘CMLE
Bonferroni’ more accurate. Within those cases where the monotonicity constraints
where imposed, the monotonicity direction classification was more accurate com-
pared to the one of other constrained methods. For sample sizes larger than 100,
the null hypothesis of monotonicity was rejected in at most 2.2% of the cases,
making the results of ‘CMLE Conf. Reg.” similar to those of ‘CMLE Bonferroni’
or ‘CMLE filtered’ in terms of misclassification. However, when comparing ‘CMLE
Conf. Reg.” against ‘CMLE Bonferroni’ or ‘CMLE filtered’ (excluding n = 5000
where no significant difference exists), the proportions of ‘isotonic’ for OP 1 are
significantly smaller for ‘CMLE Conf. Reg.” (although with a minimum accurate
rate of 98.5%), whereas for OP 2 there is no significant difference between the

proportions of ‘CMLE Conf. Reg.” and ‘CMLE filtered’.
The results of ‘CMLE filtered’ are similar to the ones of both ‘CMLE MDC

S3” and ‘CMLE Bonferroni’ for OP 1. In fact, none of the pairwise comparisons
of proportions shows significant differences. This is because the monotonicity
constraints were dropped in at most 0.3% of the cases, which hardly affected the
final monotonicity direction classification of this ordinal predictor compared to
‘CMLE MDC S3’ or ‘CMLE Bonferroni’. However, for OP 2, ‘antitonic’, and n
between 100 and 1000 the differences between ‘CMLE filtered” and either ‘CMLE
MDC S3’ or ‘CMLE Bonferroni’ are statistically significant, which is produced by

the rejection of monotonicity in at least 1.5% of the cases for these sample sizes.

In general, smaller sample sizes provide less information to any method, in-

creasing the misclassification rate of the monotonicity direction, or, for ‘CMLE
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Conf. Reg.’, indicating non-monotonic patterns. However, given a monotonic
association, when the value of the parameter estimate associated with the last
category is further away from zero, there is less probability of misclassification
irrespective of the sample size. This is the case for OP 2 (see Figure 6.1 as an
example when n = 500), for which its last category is further away from zero than
the corresponding one of OP 1. In fact, it was correctly classified in more than
90% of the cases by all of the methods but ‘CMLE Conf. Reg.’, even when the
sample size was as small as 50.

Consider one of the 1,000 data sets as an example to illustrate the case of

imposing monotonicity constraints.
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Figure 6.1: An example of unconstrained MLE and constrained MLE for a par-

ticular data set from simulations with 2 independent OPs and n = 500.

As shown in Figure 6.1, some unconstrained parameter estimates are incompat-
ible with the monotonicity assumptions. Despite the fact that the OP 1 is assumed
to be isotonic, the UMLE yields 5172 < 0 and 3173 > ,@174. Similar violations occur
with the second ordinal predictor (antitonic), with 3273 < 5274. By contrast, the
results of the CMLEs imposed monotonicity constraints, with the estimate for 3 »
being greater than zero, the estimate for 3, 4 being slightly greater than the one for
B1,3, and where the estimate for 3, 4 was slightly lesser than the one for 3, 3. The

monotonicity directions were established in the first step of the MDC procedure,
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therefore the methods ‘CMLE MDC S1’, ‘CMLE MDC S2’ and ‘CMLE MDC S3’
provided the same result. Similarly, the first step of the MDC procedure did not
classify OPs 1 or 2 as ‘none’, and both monotonicity tests (based on Bonferroni
and confidence regions) did not reject the null hypothesis of monotonicity for any
of these two OPs, therefore ‘CMLE Bonferroni’, ‘CMLE Conf. Reg.” and ‘CMLE
filtered’ are not shown.

In this particular example, the CMLEs for the parameter estimates associated
with both intercepts and interval-scaled covariates were hardly affected by the
monotonicity assumption when comparing the CMLE to the UMLE.

Regardless of the sample size, imposing monotonicity constraints reduces the
parameter space, which affects the distribution of the parameter estimates when
they are active. To visualise this, Figure 6.2 uses boxplots to show the distribution
of each parameter estimate resulting from several methods together with the true
parameters used in the data generation process for the 1,000 simulation iterations

with n = 100.

UMLE
CMLE MDC S1
8 CMLE MDC S3
oo o CMLE Conf. Reg.
N oo o =  CMLE filtered
H == True Parameters

® 00 o0
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Parameter values
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Figure 6.2: Unconstrained MLE, different methods with constrained MLE and true
parameters used for 1,000 simulated data sets with 2 independent OPs, example

for n = 100.

The effect of the monotonicity constraints is depicted by the range of values

that the parameter estimates take for an OP in some of the constrained approaches,
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which differs from the one of the UMLEs in two aspects. First, when the parameter
estimates are correctly constrained, they are compatible with their monotonicity
direction, i.e., they take positive values for the isotonic case and negative for the
antitonic one. This is why the boxes of some constrained approaches seem to be
truncated at zero for 312 and (5. The second difference is a generalisation of the
first one as any constrained parameter estimate is greater/lower than the one of
the preceding category rather than greater/lower than zero only. Hence, the lower
extremes of their boxplots show shorter whiskers than the ones of the UMLE when
there is an isotonic relationship, and the same effect occurs for the upper whiskers

when the relationship is antitonic.

The results of ‘CMLE MDC S1’ are the closest to the ones of the unconstrained
method. This is due to the fact that ‘CMLE MDC S1’ drops the monotonicity con-
straints more frequently than any other constrained method. Conversely, ‘CMLE
MDC S3’ is the furthest because it does not drop constraints. Other constrained
methods are in between these two. The approaches ‘CMLE MDC S3’ and ‘CMLE
Bonferroni’ delivered the same results because the monotonicity tests did not reject
monotonicity for any OP. Compared to ‘CMLE MDC S3’ and ‘CMLE Bonferroni’,
the results of ‘CMLE filtered’ are slightly different because there are only 18 cases
where the OP 2 was considered as non-monotonic and only 3 for OP 1, for which
the monotonicity constraints were not imposed. The results of ‘CMLE Conf. Reg.’
are different to the ones of ‘CMLE MDC S3’, ‘CMLE Bonferroni’ and ‘CMLE fil-
tered” because there are 49 cases where OP 1 was classified as non-monotonic and
102 for OP 2, which makes extreme values of the parameter estimates more fre-
quent than in other constrained methods. In general, unconstrained cases together
with misclassification of the monotonicity direction are the reason why there are
some negative values for the estimates of OP 1 and positive values for the ones of

OP 2 in the constrained approaches.

Based on the results of the 1,000 simulation iterations, the mean-squared error
(MSE) was computed for each parameter. The MSE decomposition allows to
compute the variance of the estimates, and therefore their standard error (SE).

The MSE and SE of the parameter estimates are shown in Table 6.4, averaged
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over all parameters belonging to an OP. The values for the constrained methods

are given relative to the values for UMLE.

Measures of performance are estimations, and therefore they are subject to
error as a result of variability (see Morris et al. (2019)). Hence, comments in-
volving pairwise comparisons of MSEs are based on a two-sided paired t-test for
Hy: E(MSE,,) = E(MSE,,;) with m; and m; being a subindex identifying the
model to be considered given a certain setting based on a combination of OP,
ordinal category, and sample size. Similarly to the analysis of the comparisons of
proportions, a high number of comparisons of mean-squared errors was required
in order to assess whether the MSE of one method is statistically different to the
MSE of another method. However, in this case the number of comparisons is much
higher because one extra model is being considered (UMLE), making a total of 7
models, and the fact that there is one MSE for each parameter associated with
the categories of the ordinal predictors. Therefore, for each OP, ordinal category,
and sample size, there are 21 pairs of MSEs to be compared (7 x 6/2). Now, given
that there are three parameters to be estimated for OP 1, five for OP 2, and five
sample sizes, the number of tests for OP 1 is 315 and 525 for OP 2.

As an exploratory exercise, in order to conclude about a specific comparison
of models for a given OP and sample size, the Bonferroni correction was used as a
multiple testing approach within each one of these settings, where the number of
tests is equal to the number of parameters belonging to the corresponding OP. This
will allow comments for an OP at a certain level for a given sample size. Therefore,
the Bonferroni correction set a significance level of o = 0.01/3 = 3.33E-03 for the
comparisons of MSEs of parameters belonging to OP 1, and o = 0.01/5 = 0.002
for those of OP 2. These will be referred to as the ‘Bonferroni level’ for OP 1 or
2. Thus, the exploratory exercise summarises the results for each OP and sample
size by counting the number of tests where the null hypothesis was rejected at
the corresponding ‘Bonferroni level’, resulting values between 0 and the number
of parameter estimates associated with the categories of the corresponding OP (3
for OP 1 and 5 for OP 2) for each comparison of models. Table 6.3 shows an
illustration of this for OP 1 and n = 100.
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MDC MDC MDC CMLE CMLE CMLE

S1 S2 S3  Bonferroni Conf. Reg. filtered

UMLE 3 3 2 2
MDC S1 - 1
MDC S2 - -
MDC S3 - - -
CMLE Bonferroni - - - -
CMLE Conf. Reg. - - -

my;
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Table 6.3: Number of tests where the null hypothesis Hy : E(MSE,,) =
E(MSE,,) was rejected at the ‘Bonferroni level’ of @ = 0.01/3 for OP 1 and

sample size n = 100. The total number of tests for each cell is three.

For example, Table 6.3 shows that the null hypothesis Hy : E(MSEypc s2) =
E(MSEcymLE fitterea) Was rejected for all of the parameters associated with OP
1 when n = 100 at a significance level of & = 0.01/3. This kind of results will be
interpreted as that the MSE of ‘CMLE filtered’ is significantly different than the
one of ‘MDC S2’ for OP 1. These kind of results are complementary to the ones
of Table 6.4, which also indicates the direction in which the MSEs of these models
are different. In addition, the number of tests for which the null hypothesis was
rejected will usually be mentioned.

Given that there are two ordinal predictors and five sample sizes, the total
number of tables like Table 6.3 is 10. Therefore, comments will be based on a
selected number of comparisons only. This method of comparison between two
dependent averaged MSEs will also be used for the analysis of other tables about
MSEs in the current Section 6.2.



True pattern

OP 1: Isotonic

OP 2: Antitonic

Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000
VILE MSEumLe 175 073 0.1 005 001|648 1.26 025 0.12 0.02
U SEumLe 0.04 0.03 0.01 001 0.00 | 022 0.04 0.02 001 0.00
vpe sy MSE/MSEqyp [ 095 088 084 086 095 | 100 088 080 079 0.94
SE/SEyyie 0.97 0.94 091 092 097 | 1.00 093 086 0.87 097

CMLE pogy MSE/MSEyye [ 094 086 083 086 095 | 100 086 075 0.74 093
SE/SEyy s 097 093 09 092 097 | 1.00 091 083 084 0.96

vDe g3 MSE/MSEqyp [ 095 075 082 086 095 | 099 074 075 074 093
SE/SEyaie 097 085 0.9 092 097 | 099 083 082 084 0.96

OMLE Bonferroni MSE/MSEuyg | 095 075 082 086 095 | 099 074 075 074 093
OMCHTOM B /SE e 0.97 085 0.9 092 097 | 099 083 082 084 0.96
CMLE Conf. Teg,  MSE/MSEuyyp [ 096 081 084 087 095 | 100 083 081 079 094
oM N8 SE/SE e 0.98 089 091 093 097 | 099 090 087 087 097
CMLE fltered MSE/MSE . | 095 0.75 0.82 086 095 | 1.00 0.74 080 0.79 0.94
tere SE/SE i 0.97 085 0.9 092 097 | 099 084 086 087 097

Table 6.4: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEuyyLE
and SEyyre). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEymig,
and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEympe and SE/SEymig).

Independent covariates.
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In terms of MSE, there is a significant difference at the corresponding Bonfer-
roni level between the unconstrained method and any constrained method in at
least one of the parameters of the categories of both OPs irrespective of the sam-
ple size, where the MSE of any constrained method is lower than the one of the
UMLE. For any given constrained method, the MSE ratio with respect to the one
of UMLE is higher for both the smallest and largest sample sizes than for the in-
termediate ones. There is a reason for this to happen at each one of these extreme
cases. For the largest sample size and given truly monotonic ordinal predictors
as in this simulation, the constrained methods provide results close to UMLE in
terms of MSE because for large enough n the UMLE reveals the true monotonic
patterns, and therefore the results of the constrained and unconstrained methods
get closer to each other. For the smallest sample size, the MSE results of the con-
strained methods are fairly close to the ones of UMLESs because the variability of
their parameter estimates is affected by a considerable misclassification rate when

imposing monotonicity constraints.

When comparing the MSE between pairs of constrained methods, the methods
‘CMLE MDC S3’, ‘CMLE Bonferroni’, and ‘CMLE filtered’” do not show a signif-
icant difference at the Bonferroni level for any of the parameters associated with
the categories of OP 1 and any sample size. However, regarding OP 2, the same

occurs for ‘CMLE MDC S3” and ‘CMLE Bonferroni’ only.

For OP 1 and n > 1000, comparisons among constrained methods show not
significant difference at the Bonferroni level between the MSEs of their correspond-
ing parameters. For OP 2 and n = 5000 the same results were obtained. This
means that for large enough n, when n increases the choice of the constrained

method is less relevant in terms of MSE.

For OP 2 and n = 50, despite the fact that the MSEs seem to be close to each
other, the one of UMLE is significantly different to the one of any other constrained
method as mentioned before, with at least 3 parameters with MSE significantly
smaller at the Bonferroni level of OP 2 (o = 0.01/5). Among constrained methods,
there are three that are the best in terms of MSE compared to the one of UMLE,
‘CMLE MDC S3’, ‘CMLE Bonferroni’, and ‘CMLE filtered’. These do not show
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a significant difference between each other at the Bonferroni level. All the other
constrained methods are better than UMLE but worse than ‘CMLE MDC S3’,
‘CMLE Bonferroni’, and ‘CMLE filtered’, and when making comparisons among

them they show at least two parameters with significant different MSE.
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Figure 6.3: Mean-squared error for unconstrained and constrained MLEs and its

decomposition, example for n = 100.

As an example of the analysis of the MSE, consider the results for n = 100
shown in Figure 6.3. The total MSE is notably smaller for the constrained ap-
proaches (depicted by the height of the bars). On average, the ‘CMLE MDC
S1’ (grey bars) shows a 10.2% smaller MSE compared to the MSE of UMLE for
the intercepts, 10.7% smaller for the first ordinal predictor, and 11.2% smaller
for the second. The corresponding figures for ‘CMLE MDS S3’ (blue bars) are
24.2%, 24.6% and 24.9%. The figures for ‘CMLE filtered’ are 22.9%, 24.1% and
24.6%, being similar to the ones for ‘CMLE MDS S3’ because there are few cases
of unconstrained parameter estimates for the categories of the ordinal predictors,
whereas these percentages are 13.4%, 18.5% and 16.5% for ‘CMLE Conf. Reg.’,
which are between the ones of ‘CMLE MDS S1” and ‘CMLE MDS S3’, but closer
to the former because there are more cases where the monotonicity constraints are
dropped.

The performance of ‘CMLE Bonferroni’ is almost identical to ‘CMLE MDC
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S3’. The results of ‘CMLE MDC S2’ lie between those of ‘CMLE MDC S1’" and
‘CMLE MDC S3’. These are not shown in Figure 6.3 nor later.

Despite the fact that the squared bias makes a markedly small contribution
to the total MSE (lighter colours in Figure 6.3), it is clearly higher for some
constrained parameter estimates, specially for those of OP 2. Its sixth category
produced the highest squared bias, which represents from 3.9% of its total MSE
for ‘CMLE MDC S1’ up to 10.0% for ‘CMLE filtered’. The squared bias of the
constrained approaches associated with the remaining categories of OP 2 together
with the first OP and the intercepts represent, on average, between 1.4% and
3.4% of the MSE depending on the constrained method (‘CMLE MDC S1’ being
the smallest and both ‘CMLE MDC S3’ and ‘CMLE Bonferroni’ the largest).
Consequently, the MSEs are dominated by variances, which are considerably lower
than the ones of the UMLE not only for the parameters associated with the ordinal
predictor categories, but also for the intercepts.

The simulation was repeated with dependence among covariates. In order to
simulate the predictors, a set of four variables was generated from a multivariate
normal distribution with means equal to zero and unit variances for the two or-
dinal variables and the same means and variances that were used in the setting
with independent covariates for the two interval-scaled variables. The correlation

structure was set allowing different magnitudes and directions as follows:

1 =03 06 0.7
-03 1 =05 —-0.2
06 —-05 1 0.2
0.7 =02 0.2 1

The categorisation of the ordinal variables resulted from classifying each simu-
lated value within the limits defined by the normal quantiles corresponding to
the cumulative probabilities obtained from the marginal distributions that were
previously set for those OPs with 4 and 6 categories (see Figure 2.2).

The monotonicity direction classification results obtained from the setting with
correlated predictors are shown in Table 6.5. For sample sizes n = 50 and n = 100,
there is more misclassification for OP 1 in the scenario with correlated covariates.

For larger sample sizes (n > 500), the results of the setting with correlated covari-
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ates are nearly as good as the ones with independent covariates for OP 1. The
latter occurs for OP 2 also, but this time regardless of the sample size, including
the smallest.

The proportion of cases where OP 1 was classified as ‘Isotonic’ is significantly
smaller at the Bonferroni level (aw = 0.05/300) when comparing ‘CMLE MDC S1’
or ‘CMLE MDC S2’ versus any other method for n < 500, while for n=1000 these
two methods are not significantly different from ‘CMLE Conf. Reg.”, whereas the
latter is the only method whose proportion of 99.3% of cases classified as ‘Isotonic’
is significantly smaller to any other method for n = 5000.

Regarding the classification of OP 2 as ‘Antitonic’, all the proportions are not
significantly different when n = 5000. For n = 500 or 1000, the proportions of
‘Antitonic’ for methods ‘MDC S1’, ‘CMLE Conf. Reg.” and ‘CMLE filtered’, with
a minimum of 97.8%, are significantly smaller to the one of any other method
but not between each other at the Bonferroni level when n = 500 and mixed
levels (Bonferroni level or 0.01) when n = 1000. For smaller sample sizes, n <
100, the proportions of ‘Antitonic’ for methods ‘MDC S1’, ‘MDC S2” and ‘CMLE
Conf. Reg.” are significantly smaller to any other method, including comparisons
between each other, at the Bonferroni level.

Table 6.6 shows the MSE results with correlated predictors. Compared to
the scenario with independent covariates, the MSE of the version with correlated
covariates is always higher, regardless of the sample size and method. In general,
the MSEs decrease as n increases and the magnitude of the reduction depends on
the method and the sample size. For example, for ‘CMLE MDC S3’ and other
highly constrained methods, with correlated predictors the ratio MSE/MSE ;1 5
increases for OP 1 when n changes from 50 to 100. Despite the fact that OP 1 is
often misclassified by the more restrictive methods such as ‘CMLE MDC S3’, their
MSE ratio is still low when n = 50 because of the high variance of the UMLE,
which is amended by the constrained methods.

All of the constrained methods show an MSE statistically smaller than the one
of UMLE, for both OPs and every sample size. Among the constrained methods
and for the parameters of OP 1, the MSE of ‘CMLE MDC S3’ or ‘CMLE Bon-
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ferroni’ or ‘CMLE Conf. Reg.” or ‘CMLE filtered’ is significantly smaller than
the one of either ‘CMLE MDC S1’ or ‘CMLE MDC S2’ in at least one of their
parameters when n < 500 only. This is still true for OP 2 but for n < 100.



True pattern

OP 1: Isotonic

OP 2: Antitonic

Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000

Isotonic 25.0 35.6 874 98.7 100 | 29 23 0.0 0.0 0.0

MDC S1 Antitonic 59 29 03 0.0 0.0 | 27.8 61.0 97.8 985 100

Both 69.0 61.5 122 1.3 0.0 | 689 355 00 0.0 0.0

None 01 00 0.1 0.0 0.0 04 12 2.2 1.5 0.0

CMLE Isotonic 33.1 439 923 992 100 | 45 43 0.0 0.0 0.0
MDC S Antitonic 74 44 08 0.2 0.0 | 35.0 67.0 100 100 100

2 Both 59.5 51.7 69 0.6 0.0 | 60.5 287 0.0 0.0 0.0

None 0.0 00 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0

S Isotonic 58.5 T73.7 989 998 100 | 98 51 0.0 0.0 0.0

MDCS3 A titonic | 415 263 1.1 02 00 | 902 949 100 100 100

Unconstrained 00 00 0.0 0.0 0.0 0.0 00 0.1 0.1 0.0

CMLE Bonferroni MDC S Isotonic 58.5 73.7 989 998 100 | 98 51 0.0 0.0 0.0
3 Antitonic 415 26.3 1.1 0.2 0.0 {90.2 949 999 999 100

Unconstrained 52 4.0 3.0 1.6 0.7 | 11.5 6.1 3.0 1.9 0.3

CMLE Conf. Reg. MDC S Isotonic 579 723 969 984 993 | 55 16 0.0 0.0 0.0
3 Antitonic 369 23.7 0.1 0.0 0.0 | 83.0 923 97.0 98.1 99.7

Unconstrained 0.1 0.0 0.1 0.0 0.0 0.4 1.2 2.2 1.5 0.0

CMLE filtered MDC S Isotonic 58.5 739 989 998 100 | 9.7 43 0.0 0.0 0.0
3 Antitonic 414 26.1 1.0 0.2 0.0 | 89.9 945 97.8 985 100

Table 6.5: Classification of monotonicity direction of two OPs based on six methods with 1,000 simulated data sets, different sample

sizes and correlated covariates (%).
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True pattern

OP 1: Isotonic

OP 2: Antitonic

Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000
VILE MSEumLE 868 0.84 0.14 008 001 |87.62 4363 028 0.14 0.02
v SEumLE 0.09 0.03 0.01 001 0.00 | 025 019 002 001 0.00
vpe sy MSE/MSEgyp [ 099 098 094 094 097 | 098 100 092 092 093

SE/SE s 1.00 098 097 096 098 | 098 1.00 095 095 0.96

CMLE pogy MSE/MSEyye [ 099 098 094 095 097 | 097 100 089 090 093
SE/SE 15 1.00 098 0.96 097 098 | 097 1.00 093 093 0.96

vDe g3 MSE/MSEpyp [ 070 101 092 094 097 | 095 100 089 090 093

SE/SE e 0.84 098 095 096 098 | 095 1.00 093 093 0.96

OMLE Bonferroni VSE/MSEuypg [ 070 101 092 094 097 | 095 100 089 090 093
OMCTTOM ™ SE/SE e 0.84 098 095 096 098 | 095 1.00 093 094 0.96
OMLE Conf. Teg.  VSE/MSEyyg [ 073101 092 094 097 | 097 100 092 092 093
oMt N8 SE/SE e 0.86 0.99 0.95 096 098 | 097 099 095 095 0.96

CMLE fltered MSE/MSE | 070 1.01 092 094 097 | 095 1.00 092 092 093
tere SE/SEi i 0.84 098 095 096 098 | 095 1.00 095 095 0.96

Table 6.6: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEuyyLE
and SEyyre). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEymiE,
and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEyppe and SE/SEymig).

Correlated covariates.
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In the simulation presented above, no non-monotonic ordinal predictor was
included and its results showed that any constrained approach performed better
than the unconstrained one in almost every simulated scenario. In order to analyse
their performance in presence of non-monotonic OPs, consider another simulation
setting for model (2.3.4). This time an ordinal response with four categories is
used, i.e., k =4 and j = 1,2, 3; four ordinal predictors (¢t = 4) with p; = 3, p, = 4,
p3 = 5, and py = 6 categories correspondingly; and one interval-scaled predictor
(v =1). Again, several sample sizes were considered: n = 50, 100, 500, 1000, 5000.
The chosen parameters for the intercepts were oy = —1.4, ag = —0.1, and a3 =
1.7; for OP 1, B} = (0.5,1); for OP 2, @, = (—0.65,—0.70, —1.60); for OP 3,
B35 = (0,0,0,0); for OP 4, B, = (—0.8,—1.6,—0.6,0.6,1.6); and for the interval-
scaled predictor f; = 0.3. The parameters of the OPs 1 to 4 were chosen to
be isotonic, antitonic, zero, and non-monotonic correspondingly. For OP 3, all
the parameters were set to zero, and therefore, optimally, the monotonicity tests
should not reject monotonicity and the first and second step of the MDC procedure
should classify it as ‘both’.

This model was fitted for 1,000 simulated data sets and for every sample size.
The ordinal predictors were drawn from the population distributions showed in
Figure 2.2. The interval-scaled predictor was randomly generated from a normal
distribution N(1,4).

The MDC procedure was executed with a 90% confidence level in the first step
(¢ = 0.90) and tolerance levels & = 0.85 and &/* = 0.999 for s = 1,2,3,4 in the
second step.

Table 6.7 shows the results of the MDC for the constrained estimation methods.
OPs 1 and 2 follow the same trends as in the earlier simulation. OPs 3 and 4 make
the constrained methods differ markedly, mainly because smaller sample sizes do
not only increase the probability of misclassification of the monotonicity direction,
but also decrease the probability of dropping monotonicity constraints for an OP
that is truly non-monotonic, which is the case for OP 4 in this simulation. This

also affects the classification of OP 3 with true pattern ‘both’.
For ‘CMLE MDC S1’, OP 3 shows a high percentage of ‘both’ classifications
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for any sample size, and OP 4 was correctly classified when n > 500. However,
the effects of OP 4 were constrained to be either ‘isotonic’ or ‘antitonic’ in a
total of 50.1% of the data sets when n = 50, which is relatively high considering
that ‘CMLE MDC S1’ is the less restrictive method. The monotonicity direction
classification of ‘CMLE MDC S2’ is hardly affected when n > 1000, whereas for
smaller sample sizes it is always between ‘CMLE MDC S1’ and ‘CMLE MDC
S3’, being significantly different from them with a p-value of 0.0015 or smaller for
n < 100 (better than ‘CMLE MDC S1’ and worse than ‘CMLE MDC S3’ for OP
1 and 2). The classification of OPs 3 and 4 by ‘CMLE MDC S3’ is more evenly
distributed for small sample sizes, which is not unreasonable for an OP that is set
to be ‘both’ (OP 3) and an OP of class ‘none’ (OP 4). However, for larger sample
sizes (n > 500), the classification of OP 3 is more concentrated in ‘antitonic’,
whereas OP 4 is highly concentrated in ‘isotonic’, which is due to the fact that
an isotonic monotonicity direction dominates throughout the pattern of OP 4.
‘CMLE Bonferroni’ does not drop monotonicity constraints of OP 4 for small
sample sizes. Therefore, its performance is almost identical to the one of ‘CMLE
MDC S3” when n < 100, except for OP 4, n = 100, and ‘Antitonic’ classification,
where the proportion resulting from these methods is not significantly different (p-
value 0.0015). For larger sample sizes, the monotonicity constraints are dropped
much more frequently for OP 4, and the classification of OP 3 remains consistent
with its definition of ‘both’. Regarding the method ‘CMLE Conf. Reg.” for large
sample sizes (n > 500), it drops the monotonicity constraints for OP 3 in at
most 2.2% and the classification of each monotonicity direction is around 50%
of the cases, being consistent with its true pattern ‘both’. However, for small
sample sizes (n < 100), it drops the monotonicity constraints for OP 3 more
frequently than any other method, reaching 16.3% of the cases when n = 50,
unbalancing the distribution of monotonicity directions for those cases that are
still constrained. For OP 4, ‘CMLE Conf. Reg.” is the method that drops the
monotonicity constraints more frequently than any other even for small sample
sizes being consistent with the true pattern ‘none’ of OP 4 (54.2% for n = 50 and
68.6% for n = 100), resulting in the best method at identifying patterns that are
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truly non-monotonic. The results of ‘CMLE filtered’ are similar to those of ‘CMLE
Bonferroni’ for OPs 1, 2 and 3. For OP 4, it was constrained less frequently by
‘CMLE filtered’ than by ‘CMLE Bonferroni’, regardless of the sample size, but
more constrained than by ‘CMLE Conf. Reg.’.

Based on the results of the average MSE (see Table 6.8) and given that there
is a non-monotonic ordinal predictor, ‘CMLE MDC S3’ is the only method that
is occasionally notably worse than UMLE, because it always imposes constraints
on an OP that is non-monotonic; but for n = 50 the MSE of the UMLE is still
so high that the one of ‘CMLE MDC S3’ is better, whose MSE is statistically
smaller than the one of UMLE for four parameters of OP 4 at a significance level
of 0.01 (and for OP 1 to 3 at least one parameter is significantly smaller too).
The performance of the remaining constrained methods depends on the degree
of conservativeness when establishing the set of OPs with non-monotonic effects.
The less conservative the method, the closer is its MSE to the one of UMLE.
The best options are ‘CMLE Bonferroni’ and ‘CMLE filtered’ because they drop
constraints for OP 4 and not for other OPs, specially when n > 500, although they
are still good options for smaller sample sizes. ‘CMLE Conf. Reg.” is also a good
option when n > 500. However, for smaller sample sizes it drops the monotonicity
constraints for OP 3 more frequently than in other more conservative methods
such as ‘CMLE Bonferroni’ and, in this case, ‘CMLE filtered’, making the MSEs
of the parameter estimates associated with its ordinal categories higher. On the
other hand, the relatively high MSE for OP 3 resulting from ‘CMLE Conf. Reg.’
is compensated by a smaller MSE for OP 4, which is a consequence of being the

method that drops monotonicity constraints for OP 4 more frequently.

The simulation of the current model using four OPs was done again with depen-
dence among covariates. The OPs and the interval-scaled predictor were generated

from a multivariate normal distribution with the same means and variances as the
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ones used in the previous simulation scenario. The correlation structure is now:

1 -05 —01 03 06
05 1 0 —04 —0.6
p=1|-01 0 1 02 0.1
03 —04 02 1 07
06 -06 01 07 1

The ordinal categories of the OPs were obtained through categorisation as previ-
ously described but using the marginals of OPs according to those shown in Figure
2.2.

As an example to visualise the behaviour of the parameter estimates resulting
from some selected methods under the simulation scenario with correlated covari-
ates, Figure 6.4 shows their boxplots when n = 500. In general, the constrained
methods perform in almost the same way as the unconstrained one for OP 1 and
better for OP 2 and 3. As expected, the non-monotonic OP 4 produces more
differences for ‘CMLE MDC S3’ than for other constrained methods, which are

much closer to the unconstrained results for a non-monotonic OP.

Hiii = UMLE
tren = CMLE MDC S1
T = CMLE MDC S3
IREERI CMLE Conf. Reg. =

N iSads: = CMLE filtered
§838% IRRRE == True Parameters ||
Littl o ..., ©00O0O N
teee teeee cog0 occoe !
teee IREEN o veree
[RENN}
e
L

Parameter values
0
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Figure 6.4: Unconstrained MLE, different methods with constrained MLE and true
parameters used for 1,000 simulated data sets with 4 correlated OPs, example for

n = 500.

Table 6.9 shows the MDC results with correlated predictors. Compared to the

independent covariates scenario, the general trends remain the same. The results
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of the largest sample size are hardly affected, whereas the others are somewhat
worse. Regarding the MSE, the correlation among covariates increased the MSE
in all the methods, specially when n = 50 and for OP 4 with n < 100. However,
the constrained results are better or almost equal to those of the UMLE, except

for ‘CMLE MDC S3” when n > 500.



True pattern OP 1: Isotonic OP 2: Antitonic OP 3: Both OP 4: None
Sample size | 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000
Isotonic 44.5 63.4 99.1 100 100 | 3.8 1.1 0.0 0.0 0.0 |17.3 15.0 13.5 14.1 11.8(26.3 33.7 2.7 0.0 0.0
MDC S Antitonic 35 0.8 0.0 0.0 0.01[52.6 74.7 100 100 100 |19.3 16.7 11.3 13.7 11.2|23.8 21.4 0.0 0.0 0.0
1 Both 51.9 35.8 0.9 0.0 0.0 [43.0 239 0.0 0.0 0.0 [62.1 67.7 75.2 72.2 77.0|36.6 13.8 0.0 0.0 0.0
None 0.1 0.0 00 00 00|06 03 00 00 00|13 06 0.0 0.0 0.0 133 31.1 97.3 100 100
CMLE Isotonic 51.1 70.0 99.3 100 100 | 5.8 2.3 0.0 0.0 0.0 [22.7 21.6 18.8 19.4 17.3|34.9 43.7 31.6 2.8 0.0
MDC S2 Antitonic 49 1.3 0.0 0.0 0.0(60.1 80.0 100 100 100 |[25.2 22.8 16.7 20.3 16.3|39.3 48.4 15.4 0.0 0.0
Both 44.0 28.7 0.7 0.0 0.0 {34.1 17.7 0.0 0.0 0.0 |51.9 55.6 64.5 60.3 66.4(25.6 7.7 0.0 0.0 0.0
None 0.0 0.0 00 00 0.0|00 0.0 00 00 00]02 00 0.0 00 00102 02 53.097.2 100
MDC S Isotonic 68.8 83.4 99.7 100 100 [14.0 6.6 0.0 0.0 0.0 [41.4 44.5 29.9 21.9 17.7 |48.0 49.0 64.9 81.0 98.6
3 Antitonic 31.2 16.6 0.3 0.0 0.0 |86.0 93.4 100 100 100 |58.6 55.5 70.1 78.1 82.3|52.0 51.0 35.1 19.0 1.4
Unconstrained 0.0 0.0 00 00 0.0|00 00 00 00 00]01 00 0.0 00 00]04 1.3 852 99.7 100
CMLE Bonferroni Isotonic 68.8 83.3 99.5 100 100 [14.0 6.6 0.0 0.0 0.0 [41.5 44.4 45.6 50.0 48.6|47.9 489 13.8 0.3 0.0
MDC 53 Antitonic 31.2 16.7 0.5 0.0 0.0 [86.0 93.4 100 100 100 [58.4 55.6 54.4 50.0 51.4|51.7 49.8 1.0 0.0 0.0
Unconstrained 35 1.1 00 00 001]93 46 05 01 0.0 (163 6.1 22 1.5 1.7 |54.2 68.6 98.4 100 100
CMLE Conf. Reg. MDC S Isotonic 68.5 83.9 99.6 100 100 | 8.7 3.0 0.0 0.0 0.0 [35.2 42.2 47.7 49.0 47.9|35.4 29.9 0.0 0.0 0.0
3 Antitonic 28.0 15.0 0.4 0.0 0.0 [82.0 92.4 99.5 99.9 100 |48.5 51.7 50.1 49.5 50.4(10.4 1.5 1.6 0.0 0.0
Unconstrained 0.1 0.0 00 00 00|06 03 00 00 00|13 06 0.0 0.0 0.0 133 31.1 97.3 100 100
CMLE filtered MDC S Isotonic 68.2 83.5 99.6 100 100 [13.1 5.2 0.0 0.0 0.0 |40.6 42.5 48.7 50.0 48.6 [45.5 41.7 2.7 0.0 0.0
3 Antitonic 31.7 16.5 0.4 0.0 0.0 [86.3 94.5 100 100 100 [58.1 56.9 51.3 50.0 51.4|41.2 27.2 0.0 0.0 0.0

Table 6.7: Classification of monotonicity direction of four OPs based on six methods with 1,000 simulated data sets and independent

covariates (%).
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True pattern OP 1: Isotonic OP 2: Antitonic OP 3: Both OP 4: None
Sample size 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000
UMLE MSEumiEe 2.74 0.49 0.06 0.03 0.01]6.39 0.87 0.11 0.05 0.01]9.24 0.93 0.12 0.06 0.01|24.07 1.34 0.21 0.09 0.02
SEumMLE 0.05 0.02 0.01 0.01 0.00|0.08 0.03 0.01 0.01 0.00|0.09 0.03 0.01 0.01 0.00| 0.15 0.04 0.01 0.01 0.00
MDC S1 MSE/MSE 5,15 [0-98 0.98 0.99 1.00 1.00]0.98 0.95 0.93 0.96 0.96[0.92 0.92 0.93 0.93 0.95] 0.92 1.29 1.05 1.00 1.00
SE/SEumiE 0.99 0.99 1.00 1.00 1.00 |0.99 0.97 0.96 0.97 0.98 |0.97 0.96 0.96 0.97 0.97| 0.97 1.11 1.02 1.00 1.00
CMLE \ o oo MSE/MSE ;.5 |0.98 0.98 0.99 1.00 1.00]0.97 0.95 0.93 0.96 0.96[0.90 0.89 0.91 0.91 0.92]0.90 1.61 2.94 1.15 1.00
SE/SEumLe 0.98 0.98 1.00 1.00 1.00 |0.98 0.97 0.96 0.97 0.98 |0.96 0.95 0.95 0.95 0.96| 0.96 1.07 1.56 1.07 1.00
MDC $3 MSE/MSE ;15 [0-99 1.05 1.00 1.00 1.00]0.91 0.91 0.93 0.96 0.96[0.69 0.80 0.74 0.74 0.74| 0.85 1.65 5.45 9.83 39.49
SE/SEumLE 1.00 1.03 1.00 1.00 1.00|0.94 0.94 0.96 0.97 0.98 [0.84 0.89 0.85 0.84 0.84|0.92 1.07 1.52 1.73 1.15
CMLE Bonferron MSE/MSE 5,15 [0-99 1.05 1.02 1.00 1.00]0.91 0.91 0.93 0.96 0.96 [0.69 0.80 0.81 0.83 0.82] 0.85 1.64 1.40 1.01 1.00
OMIETTON B /SEy\vLE 1.00 1.03 1.01 1.00 1.00|0.94 0.94 0.96 0.97 0.98|0.84 0.89 0.89 0.91 0.90| 0.92 1.08 1.16 1.01 1.00
CMLE Conf. R MSE/MSE ;15[ 1.00 1.05 1.01 1.00 1.00]0.87 0.91 0.94 0.96 0.96|0.80 0.86 0.84 0.84 0.84]0.96 1.08 1.03 1.00 1.00
ont- K8 SE /SEumLe 1.01 1.03 1.00 1.00 1.00 [0.92 0.94 0.97 0.98 0.98 |0.91 0.92 0.91 0.91 0.91| 0.98 1.04 1.01 1.00 1.00
CMLE filtered MSE/MSE ;.5 0.99 1.05 1.01 1.00 1.00]0.91 0.9 0.93 0.96 0.96[0.69 0.81 0.82 0.83 0.82] 0.86 1.37 1.05 1.00 1.00
tere SE/SEumLE 1.00 1.03 1.00 1.00 1.00|0.94 0.93 0.96 0.97 0.98 [0.85 0.90 0.90 0.91 0.90| 0.94 1.13 1.02 1.00 1.00

Table 6.8: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEuyypE
and SEyypge). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEyyLE,
and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEyype and SE/SEymig).

Independent covariates.
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True pattern OP 1: Isotonic OP 2: Antitonic OP 3: Both OP 4: None
Sample size | 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000
Isotonic 35.9 47.6 94.6 99.9 100 |53 2.6 0.0 0.0 0.0 |16.4 14.2 12.1 12.3 11.2|12.8 249 55 0.2 0.0
Antitonic 35 1.0 0.0 0.0 0.0 |34.1 56.8 99.8 100 100 |18.1 15.0 13.3 13.0 13.7(30.5 28.9 0.0 0.0 0.0
MDC 51 Both 60.4 51.4 54 0.1 0.0 |60.2 40.5 0.1 0.0 0.0 |65.1 70.4 74.5 74.5 75.1[53.4 31.9 0.0 0.0 0.0
None 0.2 0.0 00 00 00|04 01 01 00 00|04 04 01 02 00133 14.3 94.5 99.8 100
CMLE Isotonic 43.2 55.3 97.0 99.9 100 | 7.8 4.5 0.0 0.0 0.0 [22.1 20.6 18.2 16.0 17.3|17.1 33.0 33.1 8.8 0.0
Antitonic 53 2.0 0.1 0.0 0.0[41.9 65.1 99.9 100 100 |23.5 20.4 19.4 17.4 18.6|38.1 46.3 52.4 1.4 0.0
MDC 52 Both 51.5 42.7 2.9 0.1 0.0 [50.3 30.4 0.1 0.0 0.0 |54.4 59.0 62.4 66.6 64.1[44.8 20.7 0.0 0.0 0.0
None 0.0 0.0 00 00 0.0|00 0.0 00 00 00|00 00 0.0 00 00]00 00 14.5 89.8 100

Isotonic 60.6 75.5 99.0 99.9 100 [19.6 10.2 0.0 0.0 0.0 [42.1 44.2 51.9 19.7 18.3 |46.4 45.3 43.5 71.0 93.8

MDC 83 ) titonic  [39.4 245 1.0 0.1 0.0 |80.4 89.8 100 100 100 |57.9 55.8 48.1 80.3 S1.7|53.6 54.7 56.5 20.0 6.2

Unconstrained 0.0 00 00 00 00]00 00 00 00 00]00 00 00 00 00]00 02 635 97.9 100

CMLE Bonferroni Tsotonic 60.6 75.5 99.2 99.9 100 |19.6 10.3 0.0 0.0 0.0 |42.1 44.2 47.1 46.6 50.6 |46.4 45.2 22.2 2.1 0.0
MDC S3 pptitonic 394 24.5 0.8 0.1 0.0 |80.4 89.7 100 100 100 |57.9 55.8 52.9 53.4 49.4|53.6 54.6 14.3 0.0 0.0

Unconstrained 48 09 00 00 00[11.0 63 06 07 01 [17.7 54 1.8 1.3 1.5 |45.9 59.7 97.6 100 100

CMLE Conf. Reg. o, Isotonic 58.3 72.5 99.3 99.9 100 |13.4 6.3 0.0 0.0 0.0 |32.2 39.8 48.8 46.6 49.6|38.0 34.8 2.4 0.0 0.0
3 Antitonic  [36.9 26.6 0.7 0.1 0.0 |75.6 87.4 99.4 99.3 99.9|50.1 54.8 49.4 52.1 48.9|16.1 55 0.0 0.0 0.0

Unconstrained 02 00 00 00 00]04 01 01 00 00]04 04 01 02 00|33 143 945 99.8 100

CMLE filtered Tsotonic 60.1 73.9 99.3 99.9 100 |19.1 10.0 0.0 0.0 0.0 |41.5 41.6 48.9 46.8 50.6 |45.8 42.5 55 02 0.0

MDC 53 Antitonic 39.7 26.1 0.7 0.1 0.0 [80.5 89.9 99.9 100 100 [58.1 58.0 51.0 53.0 49.4|50.9 43.2 0.0 0.0 0.0

Table 6.9: Classification of monotonicity direction of four OPs based on six methods with 1,000 simulated data sets and correlated

covariates (%).
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True pattern OP 1: Isotonic OP 2: Antitonic OP 3: Both OP 4: None
Sample size 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000| 50 100 500 1000 5000
MLE MSEuie 6.99 0.71 0.09 0.04 0.01]23.52 1.03 0.15 0.08 0.01]15.59 1.09 0.13 0.06 0.01|70.3 17.62 0.24 0.14 0.03
U SEuMLE 0.08 0.03 0.01 0.01 0.00|0.15 0.03 0.01 0.01 0.00|0.12 0.03 0.01 0.01 0.00|0.24 0.12 0.02 0.01 0.01
MDC S1 MSE/MSE 1.5 [0-99 0.98 0.99 1.00 1.00 | 0.99 0.97 0.93 0.96 0.97 | 0.93 0.94 0.94 0.94 0.94[0.94 0.93 1.09 1.00 1.00
SE/SEumLE 0.99 0.99 1.00 1.00 1.00| 1.00 0.98 0.96 0.98 0.99| 0.97 0.97 0.97 0.97 0.97|1.00 0.98 1.05 1.00 1.00
CMLE | 0 o MSE/MSE 15 0-99 0.98 0.99 1.00 1.00 | 0.99 0.97 0.92 0.96 0.97 | 0.91 0.91 0.91 0.92 0.92[0.92 0.91 4.91 1.49 1.00
SE/SEumLE 0.99 0.99 1.00 1.00 1.00| 1.00 0.98 0.96 0.98 0.99| 0.96 0.95 0.96 0.96 0.96[0.99 0.97 1.59 1.20 1.00
MDC S MSE/MSE ;15 [0.79 1.04 1.03 1.00 1.00 | 0.94 0.91 0.92 0.96 0.97 | 0.74 0.80 0.76 0.74 0.73]0.82 0.90 5.45 7.64 28.01
3 SE/SEuwie 0.89 1.02 1.01 1.00 1.00| 0.97 0.94 0.96 0.98 0.99| 0.87 0.89 0.87 0.83 0.82(0.93 0.96 1.48 1.70 1.82
CMLE Bont _ MSE/MSE 15 ]0.79 1.04 1.02 1.00 1.00| 0.94 0.91 0.92 0.96 0.97 | 0.74 0.80 0.81 0.82 0.83]0.82 0.90 2.29 1.07 1.00
OMIETTON B /SEy\vLE 0.89 1.02 1.01 1.00 1.00 | 0.97 0.94 0.96 0.98 0.99 | 0.87 0.89 0.89 0.90 0.90 [0.93 0.96 1.42 1.04 1.00
CMLE Conf. R MSE/MSE 15 [0.74 1.07 1.01 1.00 1.00 | 0.98 0.93 0.93 0.97 0.97 | 0.83 0.85 0.84 0.84 0.84[0.91 1.00 1.03 1.00 1.00
ont- K8 SE /SEumLe 0.87 1.03 1.01 1.00 1.00| 0.99 0.96 0.96 0.98 0.99| 0.92 0.92 0.91 0.91 0.91[0.96 1.00 1.02 1.00 1.00
CMLE filtered MSE/MSE 15 0.79 1.06 1.01 1.00 1.00 | 0.94 0.91 0.92 0.96 0.97 | 0.74 0.81 0.83 0.83 0.83[0.82 0.90 1.09 1.00 1.00
tere SE/SEumLE 0.9 1.02 1.01 1.00 1.00| 0.97 0.94 0.96 0.98 0.99| 0.87 0.90 0.90 0.90 0.90|0.94 0.97 1.05 1.00 1.00

Table 6.10: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEuyyLE

and SEyypge). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEyyLE,

and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEyype and SE/SEymig).

Correlated covariates.
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6.2.1 CMLE MDC S3 versus monotonicity direction clas-
sification by Maximum Likelihood over all possible

combinations

As discussed in Chapter 5, the MDC procedure described in Section 2.4 and the
method of monotonicity direction classification by Maximum Likelihood over all
possible combinations (see Section 5.2) are two methods that impose monotonicity
constraints on all of the OPs. These two methods will be referred to as ‘CMLE
MDC S3” and ‘MDC ML’. In this section it will be shown through the analysis of
simulations that their results differ and the reasons why this is so will be discussed.
Two of the previous settings used in Section 6.2 will be replicated but now with
the purpose of assessing these two restrictive methods only. The first setting that
will be analysed corresponds to the one with two OPs (OP 1: ‘isotonic’ and OP 2:
‘antitonic’) and independent covariates (see the first simulation setting of Section
6.2), and the second setting to be used is the one with four OPs (OP 1: ‘isotonic’,
OP 2: ‘antitonic’, OP 3: ‘both’ and OP 4: ‘none’) and independent covariates (see
the third simulation setting of Section 6.2). The first is called simulation setting
MO (monotonic only) and the second simulation setting M&NM (monotonic and

non-monotonic).

The simulation setting MO uses two OPs whose effects are truly monotonic.
Given that both ‘CMLE MDC S3” and ‘MDC ML’ impose monotonicity constraints
on those two OPs, the monotonicity direction classification resulting from these
methods tends to be the same as n increases according to the results shown in
Table 6.11. For small sample size (n = 50), ‘MDC ML’ shows a better accuracy
of the monotonicity direction classification for both, OP 1 and OP 2. This is
because this method fits four models according to the four possible combinations
of monotonicity directions and then chooses the one that maximises the likelihood
across the four models, whereas ‘CMLE MDC S3’ fails more frequently because
of its initial steps one and two (see Section 2.4) where the relative position among
confidence intervals are compared, which are affected by the small sample size

leading to misclassification.
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In terms of MSE, the results shown in Table 6.12 indicate that for large enough
n (see n = 5000) the results of these two restrictive methods are the same. How-
ever, for most of the cases of smaller n the average MSE of ‘MDC ML’ is greater

than the one of ‘CMLE MDC S3’, and the case of n = 50 is the only exception.

Both the accuracy in terms of monotonicity direction and the average MSE
(Tables 6.11 and 6.12) indicate that, when the effects associated with the OPs are
monotonic, the performance of ‘CMLE MDC S3’ is better than or equal to the
one of ‘MDC ML’ for n > 100, whereas for n = 50 the performance of ‘MDC ML’
is better than the one of ‘CMLE MDC S3’.

The simulation setting M&NM uses four OPs, where the true monotonicity
directions are the following: OP 1 is ‘isotonic’, OP 2 is ‘antitonic’, OP 3 is ‘both’,
and OP 4 is ‘none’. Given that both ‘CMLE MDC S3’ and ‘MDC ML’ impose
monotonicity constraints on all of the OPs, the monotonicity direction classifica-
tion resulting from these methods is heavily affected by imposing monotonicity
constraints on OP 4, whose true effects are non-monotonic, as shown in Table
6.13. The main difference between these methods is in the monotonicity direc-
tion classification of OP 1. As n increases, the proportion of cases where OP 1 is
classified as ‘isotonic’ by ‘MDC ML’ decreases, whereas for ‘CMLE MDC S3’ it

rapidly increases reaching 99.7% of accuracy for n = 500.

Something similar occurs in terms of average MSE. The one of ‘MDC ML’ is
much worse than the one of ‘CMLE MDC S3’ for OP 1 when n > 500 as shown
in Table 6.14. For smaller sample sizes, the results of the two methods are similar
to each other when comparing for n = 50 and they are mixed for n = 100. The

largest differences are the ones for OP 1 when n > 500.

According to the results of accuracy and average MSE, see Tables 6.13 and
6.14, ‘MDC ML’ performs poorly compared to ‘CMLE MDC S3’ for OP 1 and
n > 100. To see why, an exemplary simulated data set is used to illustrate one of
the 911 cases where OP 1 was misclassified by ‘MDC ML’ for the largest sample
size used in the simulations, n = 5000 (see Figure 6.5). Under the same setting,

there is no case like this in the results of ‘CMLE MDC S3’.
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Figure 6.5: An exemplary simulated data set for which OP 1 is classified as ‘anti-

tonic” by ‘MDC ML’, n = 5000.

The misclassification of OP 1 produced by ‘MDC ML’ like the one shown in
Figure 6.5, happens because when ‘MDC ML’ imposes monotonicity constraints
on OP 4, it forces the parameter estimates of (349, (13, and 844 to be positive
despite the fact that their true parameters are actually negative, and, in most of
the cases, their unconstrained MLEs too. This implies that the maximum like-
lihood approach modifies other constrained parameter estimates like the ones of
OP 1 mainly, which in the simulation setting M&NM leads to misclassification too
frequently. The same situation does not happen with ‘CMLE MDC S3’ because
it is not based on maximum likelihood only. It compares the relative positions
of the confidence intervals of the unconstrained parameter estimates for each OP
in its steps 1 and 2 in order to classify their monotonicity direction and then, for
those OPs that are still not classified as ‘isotonic’ or ‘antitonic’, uses the maximum
likelihood approach to choose the monotonicity direction of those remaining un-
classified OPs. This means that ‘CMLE MDC S3’ offers two instances where the
monotonicity direction could be found before using constrained maximum like-
lihood. In this setting, OP 1 was classified as ‘isotonic’ in step 1 mainly, and
therefore its classification was not affected by the maximum likelihood approach

used in step 3.



True pattern OP 1: Isotonic OP 2: Antitonic
Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000
CMLE MDC S Isotonic 69.2 929 998 100 100 | 9.1 57 0.0 0.0 0.0
3 Antitonic 308 7.1 0.2 0.0 0.0 | 909 943 100 100 100
Isotonic 84.1 90.8 100 100 100 | 5.5 2.6 0.0 0.0 0.0
MDC ML o
Antitonic 159 92 0.0 0.0 0.0 | 945 974 100 100 100

Table 6.11: Classification of monotonicity direction of two OPs based on two methods with 1,000 simulated data sets, different

sample sizes and independent covariates (%).

True pattern OP 1: Isotonic OP 2: Antitonic

Sample size 50 100 500 1000 5000 50 100 500 1000 5000
UMLE MSEumLE 1.75 0.73 0.10 0.05 0.01 | 6486 1.26 0.25 0.12 0.02

SEuME 0.04 0.03 001 001 0.00 | 022 004 0.02 0.01 0.00
OMLE MDC S3 MSE/MSE g | 095 075 082 086 095 | 099 074 0.75 0.74 093

SE/SEyyLe 097 085 090 092 097 | 099 083 082 0.84 0.96
MDC ML MSE/MSE ;1 | 0.86 090 089 092 095 | 099 082 0.89 0.88 0.93

SE/SEymLE 092 093 093 095 097 | 099 089 093 0.93 0.96

Table 6.12: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEymiE
and SEympe). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEymiE,
and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEympe and SE/SEymig).

Independent covariates.
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True pattern
Sample size

OP 1: Isotonic
50 100 500 1000 5000

OP 2: Antitonic

50 100 500 1000 5000| 50

OP 3: Both
100 500 1000 5000

50

OP 4: None
100 500 1000 5000

CMLE MDC S Isotonic 68.8 83.4 99.7 100 100 [14.0 6.6 0.0 0.0 0.0 |41.4 44.5 29.9 21.9 17.7|48.0 49.0 64.9 81.0 98.6
3 Antitonic 31.2 16.6 0.3 0.0 0.0 [86.0 93.4 100 100 100 |[58.6 55.5 70.1 78.1 82.3|52.0 51.0 35.1 19.0 1.4

MDC ML Isotonic 69.8 70.5 50.2 34.3 89 9.5 2.0 0.0 0.0 0.0 [39.4 32.7 17.7 22.8 54.1|71.6 77.7 94.0 99.2 100
Antitonic 30.2 29.5 49.8 65.7 91.1|90.5 98.0 100 100 100 [60.6 67.3 82.3 77.2 459|284 22.3 6.0 0.8 0.0

Table 6.13: Classification of monotonicity direction of four OPs based on two methods with 1,000 simulated data sets and indepen-

dent covariates (%).

True pattern OP 1: Isotonic OP 2: Antitonic OP 3: Both OP 4: None
Sample size 50 100 500 1000 5000 | 50 100 500 1000 5000| 50 100 500 1000 5000 50 100 500 1000 5000
UMLE MSEuMLE 2.74 0.49 0.06 0.03 0.01 |6.39 0.87 0.11 0.05 0.01]9.24 0.93 0.12 0.06 0.01 [24.07 1.34 0.21 0.09 0.02
SEuMLE 0.05 0.02 0.01 0.01 0.00 |{0.08 0.03 0.01 0.01 0.00]0.09 0.03 0.01 0.01 0.00|0.15 0.04 0.01 0.01 0.00
CMLE MDC S3 MSE/MSE ;g [0.99 1.05 1.00 1.00 1.00 [0.91 0.91 0.93 0.96 0.96 {0.69 0.8 0.74 0.74 0.74] 0.85 1.65 5.45 9.83 39.49
SE/SEuMLE 1.00 1.03 1.00 1.00 1.00 [0.94 0.94 0.96 0.97 0.98|0.84 0.89 0.85 0.84 0.84| 0.92 1.07 1.52 1.73 1.15
MDC ML MSE/MSE ;1 10.94 1.14 5.64 13.76 109.72|0.92 0.83 0.93 0.96 0.96 |0.68 0.71 0.45 0.44 0.53 | 0.90 1.38 4.16 8.02 38.83
SE/SEuMLE 0.98 1.08 1.78 2.31 3.11 |0.95 0.89 0.96 0.97 0.98 0.84 0.83 0.61 0.62 0.72| 0.93 0.96 0.93 0.65 0.40

Table 6.14: Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEymiE

and SEympe). Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEymiE,

and ratio of the average standard errors of a constrained method to the one of the UMLE (MSE/MSEypmpe and SE/SEymig).

Independent covariates.
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6.3 CMLE models versus scoring systems for

the treatment of ordinal predictors

In the context of regression analysis for an ordinal dependent variable with
ordinal predictors, in some literature with real data applications the chosen model
is the proportional odds cumulative logit model whereas the ordinal predictors
are transformed into interval-scaled variables (e.g. Alvarez-Galvez et al. (2013);
Lanfranchi et al. (2014); Corathers et al. (2017)). In this section, this approach
was taken in order to compare the results of using different scoring systems for
the treatment of ordinal predictors against the use of the six constrained models
proposed in previous sections: the most restrictive method “CMLE S3” (Sections
2.3 and 3.2.1) and five other methods that allow dropping monotonicity constraints
(see Section 5.3).

The study was based on simulations. The number of simulated data sets was
1,000, from which 500 were used to train the models and 500 to test them. For each
one of the 1,000 data sets the number of categories for the dependent variable, their
distribution, the number of ordinal predictors together with their categories and
distributions, the type of non-ordinal predictor, and all the parameters were the
same as those described in Section 6.2 for the last simulation setup. In addition,
the number of observations defined four different scenarios, n =100, 200, 500 and
1,000.

For each simulated data set, the six constrained methods and 10 other methods
were fitted. The unconstrained methods were used according to 10 different scoring
systems. As in Tutz and Hechenbichler (2005), the assessment of the results

considered three measures of accuracy:

1. Misclassification rate (MR):
(1/n)zlyﬁ’égi' (6.3.1)
i=1
2. Mean absolute prediction error (MAPE):

(1/n) Z lyi — Gil- (6.3.2)
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3. Mean-squared prediction error (MSPE):

n

(1/n) ) (i — 90)* (6.3.3)

i=1
All of these measures are not specially designed for ordinal variables. On the one
hand, the main drawback of the first measure, the misclassification rate, is that
it does not consider the order of categories because failures in the prediction do
not incorporate information about the error distance at all, assuming that predic-
tion errors have the same value no matter whether the predictions are far away
from the true category or not, which is a key distinction between nominal-scaled
variables and ordinal variables. On the other hand and in contrast to the first
measure of accuracy, the mean absolute predicted error and mean-squared pre-
dicted error do take into account the error distances. However, they both assume
that the distance between adjacent categories is known, which is indeed a key
difference between interval-scaled variables and ordinal variables. As in Tutz and
Hechenbichler (2005), the mean absolute predicted error and mean-squared pre-
dicted error assume that the four ordinal categories of the dependent variable are
transformed using the linear scores 1, 2, 3, 4, for the computation of the accu-
racy measure only. This suggests that the development of a measure of accuracy
for ordinal variables is still required. One possible approach is to compute, for
a given observed ordinal category, the distribution of predicted categories, from
which one of the predicted categories will be the true one and all the others will be
misclassification. This produces as many distributions as ordinal categories of the
dependent variable, which could be compared against those obtained from models
with different treatments of ordinal predictors. However, it still requires to find a
way of aggregating these distributions, which is left for future work, meaning that
the measures of accuracy presented above are used in the current section.

In Section 1.4 several scoring systems were presented, from which those that fit
the context of the current simulation setup are Veenhoven (see (1.4.3)), Cumulative
proportions (see (1.4.4)), Ridits (see Section 1.4.2), Normal median (see (1.4.7)),
Midranks (see Section 1.4.3), Van Der Waerden (see (1.4.11)), Blom (see (1.4.12)),
Tukey (see (1.4.14)) and Normal mean (see (1.4.15)). As seen in Section 1.4.3,
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Equation (1.4.6), there is a linear relationship between Ridits and Midranks that
makes them equivalent, which will be confirmed by the results of the simulations.
Other approaches in Section 1.4 work in a different context, were extra variables
provide information to transform each ordinal predictor into interval-scaled pre-
dictors, which is not assumed in the current simulation setup. In addition, the
latent variable models for ordinal data (see Section 1.7.2) was used in the current
context as a dimensionality reduction technique (referred to as LVM), where the
four ordinal predictors were transformed into one latent variable and then factor
scores were computed for each one of the 360 possible combination of ordinal cat-
egories (the number of categories are 3, 4, 5, and 6). Those factors were obtained
using the expected a posteriori scores defined in Equation (1.7.16), which is avail-
able as the method EAP in the function factor.scores of the R package 1tm (see
Rizopoulos (2006)).

The latent variable approach is supported by the fact that the ordinal predic-
tors were simulated according to what is described in the last simulation setup of
Section 6.2, assuming that there is a correlation structure among them. However,
the simulated ordinal predictors do not result from the data generation process
of a true latent variable model. Therefore, loss of information was observed as a
consequence of the dimensionality reduction, as expected.

Given that the observed distribution of each ordinal predictor changes depend-

ing on the set where it is obtained, i.e.,
(i) training set,
(ii) test set, or
(iii) both sets together,

the scores resulting from the training set might not be the same compared to ei-
ther the ones resulting from (ii) or (iii). Thus, the following approach was taken.
First, the scores for the ordinal predictors based on the training set were com-
puted, with which the numeric assignments were defined for each scoring system,

and then those scores were used to transform the ordinal predictors according to
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the information provided by (ii), the test set. This approach was used because
using (ii) or (iii) to update the scores after having learnt the scores in the training
set would change the scores every time that new observations are included in the
test set, changing the definition of the transformed ordinal predictors and there-
fore the parameter estimates resulting from the training set would not necessarily
correspond to those that maximise the likelihood of the model if those new scores
were to be used in the training set.

As mentioned before, the models were assessed using the accuracy measures
MR, MAPE and MSPE. They were computed for each test set and every model.
Given that there were 500 simulated test sets, there are 500 MR, MAPE and
MSPE for each model. Hence, the analysis is based on their means and confi-
dence intervals for all of the sample sizes. The (1 — )% confidence intervals were

computed according to the formula:

_ Ga

A+ t0.975,499ﬁ>
for the accuracy measures A = MR, MAPE, or MSPE, and where N = 500, the
number of simulation replicates. In addition, boxplots for the selected sample
sizes n =100 and 1,000 were analysed (see Figures 6.6, 6.8, and 6.9). Comments
involving significance are stated using a 95% confidence level.

Figure 6.6(a) shows for n=100 (black lines) a higher MSPE for the proposed
constrained methods than for those using scoring systems as the treatment of or-
dinal predictors, except for ‘CMLE Conf. Reg.’, which is not statistically different
from them at a 95% confidence level (lower mean MSPE than ‘Veenoven’ though).
A special case is ‘LVM’, for which the loss of information of the dimensionality
reduction implied a decrement in accuracy compared to models where the number
of predictors was not reduced. However, for the smallest sample size of the anal-
ysis, this information loss did not produce a significant difference in the mean of
MSPE compared to the constrained models, except for ‘CMLE Conf. Reg.’.

Increasing the sample size from 100 to 200 significantly improved the mean

MSPE of the constrained methods. In fact, for any given constrained model, all

of the differences between the mean MSPE resulting from sample sizes 100 and
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Figure 6.6: Constrained methods versus methods using some scoring systems for

OPs.
(b) boxplots of MSPE resulting from different methods, for n=100 and 1000, grey

(a) Mean MSPE and 95% confidence intervals for different sample sizes,

boxplots correspond to constrained methods.

200 are significant, which does not occur for the models using scoring systems. In
general, the effect of the sample size is much greater on the constrained methods
than on those using scoring systems.

For n=200 (red lines) is already possible to see that some constrained methods
perform better than other models using scoring systems. ‘CMLE Conf. Reg.’
shows a significantly smaller mean MSPE compared to any other model using
scoring systems. ‘CMLE filtered’ is significantly better than any other model
using scoring systems except when being compared to ‘Ridits” or ‘Midranks’. In
fact, it can be seen that these two models show the same results. This is because
one is a linear function of the other, as shown by Equation (1.4.6) in Section
1.4.3 (see also Agresti (2010)). Another constrained method that rapidly becomes

better than other models using scoring systems as n increases is ‘MDC S1’°, which
results to be significantly better than ‘Cum. Prop.” and ‘Veenhoven’.

For greater sample sizes, n=500 or 1000, ‘MDC S1’, ‘CMLE Bonf.”, ‘CMLE
Conf. Reg.” and ‘CMLE Filtered’ are all significantly better than any other
model using scoring systems. The mean MSPE of ‘MDC S2’ is significantly higher

than the one of many other models using scoring systems when n=>500, but it is
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Figure 6.7: Distribution of monotonicity direction classification of different con-

strained methods for each one of the ordinal predictors. (a) n=100, (b) n=1,000.

significantly smaller than any of them when n increases to 1,000. ‘MDC S3’ is
the only constrained method that is not significantly better than any other model
using scoring systems for any sample size of the simulation study. This is because
it is the only constrained method that imposes monotonicity constraints on every
ordinal predictor, regardless of the values that their parameter estimates take.
‘MDC S3’ imposed monotonicity constraints to all of the OPs, including OP 3
and 4, which are assumed to represent ‘both’ monotonicity directions and ‘none’
monotonicity direction correspondingly. Figure 6.7 shows that ‘MDC S3’ is the
only method with no ‘not monotonic’ classifications. In the simulation setup OP
1 was assumed to be isotonic, OP 2 antitonic, for OP 3 all the parameters were set
at zero, indicating that both monotonicity directions were compatible with it, and
OP 4 was assumed to be non-monotonic. In particular, ‘MDC S3’ classified OP 3
and OP 4 as ‘Isotonic’ in 52.6% and 47.2% of the 500 training sets when n = 100,
despite the fact that their true patterns are ‘both’ and ‘non-monotonic’. The
corresponding figures when n = 1000 are 32.2% and 77.8%. These classifications
of model ‘MDC S3’ force the parameters of OP 3 and OP 4 to be monotonic,

leading to prediction errors.

Not only the confidence intervals for the mean of MSPE show great difference

in the results for large sample sizes but also the boxplots of the MSPE shown in
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Figure 6.6(b), where the interquartile ranges for the models with n=1,000 decrease
to approximately a third (on average) with respect to the ones for n=100. In
addition, when n=1,000 the boxes of the constrained models are almost fully
under the ones of the models using scoring systems (except for ‘MDC S3’ because
of the reasons discussed earlier). However, when n=100, the boxplots do not show
great difference in their locations.

Regarding the mean absolute prediction error, Figure 6.8(a) shows that the
effect of the sample size is still greater for constrained models than for models

using scoring systems.

(b)

SRR

SN
o b

068 - fl”]”[} 0_75_5
oo | | } , }’*{{ L i ELEd

% |

060 - |

0.64 —

o
e
o

0_457: T

Blom —
Tukey —
LVM —

Midranks —

MDC S3 —

CMLE Bonf. —
Cum. Prop. —|
Normal median —|
Van Der Waerden —|
Normal mean —

CMLE Conf. Reg. —
CMLE Filtered —

! Ridit |  Rank-based
Scoring Systems

Constrained Methods

Figure 6.8: Constrained methods versus methods using some scoring systems for
OPs. (a) Mean MAPE and 95% confidence intervals for different sample sizes, (b)
boxplots of MAPE resulting from different methods, for n=100 and 1,000, grey

boxplots correspond to constrained methods.

In general, the main results described for the analysis of the mean MSPE
remain approximately the same for the analysis of the mean MAPE when n =100
or 200 (compare Figure 6.8(a) against Figure 6.6(a)). However, for greater sample
sizes, there are some conclusions that are different. For n=500, the mean MAPE
shows that ‘CMLE Bonf.” is significantly better than some models using scoring
systems, while the mean MSPE showed that it is significantly better than all of
them. Also, according to the mean MAPE, ‘MDC S2” and ‘MDC S3’ became worse

than any other method except when being compared to ‘LVM’, while the mean
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MSPE showed that their performance was not significantly different from the one
of ‘Cum. Prop.” and ‘Veenhoven’. For n=1,000, all of the constrained models
show a better mean MAPE than those models using scoring systems, except for

‘MDC S3’, which is indeed worse than any other.

The boxplots of the MAPE (see Figure 6.8(b)) show that the constrained
methods perform better than the models using scoring systems, like the ones of
the MSPE, when n=1,000. However, the boxplots of the MAPE show a slightly

worse performance than the ones based on the MSPE.

The general conclusions based on the analysis of the mean MAPE are not so
different compared to those from the analysis of the mean misclassification rate
(mean MR) shown in Figure 6.9. However, despite the fact that many of the
differences between pairs of methods remain significant and in the same direction
(greater or smaller to each other), the mean MR of models using scoring systems
get closer to the ones of the constrained methods when the latter perform better
than the former in mean MAPE (n =500 or 1,000), and, vice versa, the mean MR
of models using scoring systems get further away from the ones of the constrained
methods when the latter perform worse than the former in mean MAPE (n =100
or 200), namely, the relative performance of constrained methods in mean MR is
good but not as good as the one based on mean MAPE when n=500 or 1,000,
and the relative performance of constrained methods in mean MR is bad and even

worse than the one based on mean MAPE when n=100 or 200.

By definition, given that MSPE assigns larger values to greater distances be-
tween the predicted and observed ordinal category than MAPE, then the larger
the prediction error, the greater the MSPE with respect to the MAPE. In ad-
dition, comparisons between the results of the mean MSPE and the ones of the
mean MAPE, shown in Figures 6.6 and 6.8 correspondingly, indicate that the re-
sults of the constrained methods compared to models using scoring systems are
even better when they are assessed using the mean MSPE. Consequently, for large
sample sizes, n =500 and 1,000, the constrained methods (except for ‘MDC S3’
and in some settings ‘MDC S2’) not only show a better classification rate, but also

a much better MSPE than the models using scoring systems, whereas for smaller
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Figure 6.9: Constrained methods versus methods using some scoring systems for
OPs. (a) Overall MR and 95% confidence intervals for different sample sizes,
(b) boxplots of MR resulting from different methods, for n=100 and 1,000, grey

boxplots correspond to constrained methods.

sample sizes, n =100 and 200, the misclassification rate is in general higher for
the constrained methods, which is compensated by a relative improvement of the
mean MSPE for the constrained methods, where in some settings the differences
in mean MSPE with respect to the ones of the models using scoring systems are

not significant or even show a better mean MSPE, even when the sample size is

small.
6.4 Application to quality of life assessment in

Chile

As an illustration of the proposed methodologies, we analyse the association
between a quality of life self-assessment variable (10-point Likert scale) and ordinal
and other predictors from a Chilean survey, the National Socio-Economic Char-
acterisation 2013 (CASEN). More recent surveys, 2015 and 2017, do not include
the question about quality of life self-assessment. This survey retrieves informa-
tion with the aim of characterising the population of people and households. Our
analysis is based on 7,374 householders, namely those who live in the capital and

have reported the quality of life self-assessment.
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The set of covariates was chosen on the basis of previous research in the field
(for example, Di Tella et al. (2003); Cheung and Lucas (2014); Boes and Winkel-
mann (2010)). The data set was published by the Ministry of Social Development
of Chile and it is available online at: http://observatorio.ministeriodesarro
llosocial.gob.cl/casen-multidimensional/casen/basedatos.php. The de-

tailed data preprocessing is described in Appendix B.

The response variable is a self assessment of the quality of life (QoL). The
question was ‘Considering everything, how satisfied are you with your life at this
moment?’. The possible alternatives were: ‘1 Completely Unsatisfied’, ‘2°,..., ‘9,

‘10 Completely Satisfied’.

The model was fitted with ordinal, ratio and nominal-scaled covariates. For the
ordinal and nominal-scaled ones, the first category to be mentioned was considered
as the baseline. The ordinal covariates are Educational Level (Edu) with categories
‘Not Educated’, ‘Primary’, ‘Secondary’, and ‘Higher’; Income Quintile (Inc) with
levels from ‘Q1’ to ‘Q5” where ‘Q5’ represents the highest income; Health Status
(Hea), a health self-assessment reported as ordinal Likert scale from 1 to 7, with 7
being the best possible status; Ouvercrowding (Ove), which is an index representing
the number of people living in the household per bedroom, with categories ‘Not
Overcrowded’ for less than 2.5, ‘[2.5,3.5); ¢[3.5,5.0)’, and ‘5.0 or more’; and Chil-
dren (Chi), a grouped version of the number of people under 15 years old living
in the household, with categories ‘0’,1’, ‘2’; ‘3’, and ‘4 or more’. The ratio-scaled
variable is Age. The nominal-scaled ones are Activity (Act), with categories ‘Eco-
nomically Inactive’, ‘Unemployed’, and ‘Employed’; and Sex (‘Male’, ‘Female’).
Therefore, the set of ordinal predictors is S = { Edu, Inc, Hea, Ove, Chi}.

An unconstrained version of the model (2.3.4) was fitted to obtain the param-
eter estimates and their standard errors. The unconstrained parameter estimates
and their 95% confidence intervals are shown in Figure 6.10. The definition of the
variables suggests a monotonic association with respect to the response and the
unconstrained results seem to be consistent with the monotonicity assumption for
all the OPs. We also used the monotonicity tests described in Section 4.2 and Sec-

tion 4.3 as a complementary assessment of the monotonicity assumptions. Both
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Figure 6.10: CMLEs and UMLESs for a model applied on real data with an or-
dinal response, ordinal predictors and others. The first category of each ordinal
or nominal predictor is assumed as the reference category. Intercept parameter

estimates omitted. The 95% confidence intervals correspond to the UMLEs.

of them did not reject the null hypothesis of monotonicity for any of the OPs with
a* = 0.05, in fact, their p-values were grater than 0.998 in both tests for every OP.
Therefore, the assumption of monotonicity was imposed on all of them and the
approach ‘CMLE MDC S3’ was chosen to be the constrained method to compute
the CMLEs.

Each set of parameter estimates associated with the ordinal predictors in S was
classified as either ‘antitonic’ or ‘isotonic’. The interpretation for the relationship
between an ordinal predictor and the response variable with ‘antitonic’ pattern is
that the further away an ordinal category is from its baseline, the smaller P(y; <
Jjlx;) is, i.e., the probability of self-assessing QQoL in the jth category or smaller. In
other words, ‘antitonic’ patterns mean that higher categories of ordinal variables

are associated with more probability of self-assessing QoL in a higher part of the
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scale. The inverse interpretation applies for ‘isotonic’ patterns.

With a 95% individual confidence level (¢ = 0.95), the MDC procedure classi-
fied the sets of parameters associated with three ordinal variables as ‘antitonic’ in
its first step (Income Quintile, Health Status, and Children), whereas Overcrowding
was classified as ‘isotonic’ and Educational Level as ‘both’. There was no ordinal
predictor classified as ‘none’ by the end of the first step. Therefore, there was
no need of making a decision on whether dropping the monotonicity constraints
for variables classified as ‘none’. Hence, A; = {Inc, Hea,Chi}, Z; = {Ove}, and
By = {Edu}.

FEducational Level was the only variable in the MDC procedure’s second step.
To perform this step, a tolerance level of 0.9 was set together with steps of 1%
when gradually decreasing the confidence level starting from the one analysed
in step one, 95%. As a result of this step, Educational Level was classified as
‘antitonic’ with a 92% confidence level for each confidence interval.

There was no need to execute the third step of the MDC procedure because all
of the monotonicity directions were established earlier. All the ordinal predictors
were finally classified as ‘antitonic’ except for Quvercrowding, which was classified
as ‘isotonic’. Therefore, only one constrained model was fitted.

Some of the parameter estimators resulting from UMLE are not in line with the
monotonicity assumption. For example, keeping all the other variables constant,
an improvement in the Income Quintile from ‘Q3’ to ‘Q4’, i.e., an increment in
the income level, increases the probability of self-assessing QoL in lower categories
of the scale, according to the UMLE. The same happens with Health Status, for
which changes from ‘2’ to ‘3’, i.e., improving the health status, seemingly increases
the probability of reporting a low self-assessment of QQoL. These particular uncon-
strained results are counterintuitive. Therefore, it is reasonable to think that these
may have been the result of random variation, and to impose the monotonicity
assumption.

In fact, in these cases there is little difference between neighbouring UMLESs, so
in terms of the parameter values constrained and unconstrained results are fairly

similar, but the proposed methodology can assure the user that monotonicity is
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compatible with the data.

For the OP FEducational Level, the UMLE allows both positive and negative
values in all confidence intervals, but after having classified this OP as antitonic,
with the baseline parameter fixed at zero and using the CMLE, all further param-
eters can only be negative.

In general, the UMLESs are compatible with a monotonic association between
ordinal predictors and the response variable, but the parameter estimates produce
violations of monotonicity. The CMLEs avoid these, and allow for a simpler and
more consistent interpretation.

Given that the sample size is relatively large, the individual confidence intervals
are relatively small, which allows the first step of the MDC procedure to classify
all but one OP as either isotonic or antitonic. In order to explore a situation
with a smaller sample size, we ran the methodology on a random subsample of
n = 200, i.e., 2.7% of the full sample size. All of the OPs were classified by the
end of the MDC procedure in the same way as the one of the previous setting,
although Educational Level (s = 1) and Overcrowding (s = 4) remained classified
as ‘both’ until the end of step 2 even with a low tolerance level of & = 0.8 for
s = 1 and s = 4. This is an appropriate reflection of the bigger uncertainty in

classification when using a smaller sample size.

6.4.1 Results based on the proposed constrained methods

In Section 5.3 five estimation methods were proposed taking into account different
ways to make the decision of dropping monotonicity constraints. In the current
real data application, the unconstrained results shown in Figure 6.10 indicate that
imposing the monotonicity constraints on all of the OPs seems to be a sensible de-
cision. This is supported by the results of the remaining five proposed constrained

methods because of the following reasons:

e ‘CMLE MDC S1’ was the only method that dropped the monotonicity con-
straint of an ordinal predictor. Given that Educational Level was classified
as ‘both’ in the first step of the MDC procedure, ‘CMLE MDC S1’ did not

impose a monotonicity constraint on its parameter estimates. However, the



222 Application to quality of life assessment in Chile

unconstrained parameter estimates for Fducational Level were the same as
the constrained ones, which can also be seen in Figure 6.10. This is because
the unconstrained pattern of parameter estimates resulted to be monotonic,
meaning that the monotonicity constraints were not needed. Therefore,

‘CMLE MDC S3’ is confirmed as a sensible option.

e ‘CMLE MDC S2’, ‘CMLE Bonferroni’, ‘CMLE Conf. Reg.” and ‘CMLE
Filtered’ did not drop any monotonicity constraint. Therefore, their results

were exactly the same as the ones of ‘CMLE MDC S3’.

6.4.2 Using scoring systems for the treatment of ordinal

predictors

As in Section 6.3, several scoring systems were used to transform the ordinal
predictors into interval-scaled variables. The scoring systems correspond to those
that were described in Section 1.4 and fit the context of the real data application,
that is Veenhoven (see (1.4.3)), Cumulative proportions (see (1.4.4)), Ridits (see
Section 1.4.2), Normal median (see (1.4.7)), Midranks (see Section 1.4.3), Van Der
Waerden (see (1.4.11)), Blom (see (1.4.12)), Tukey (see (1.4.14)) and Normal mean
(see (1.4.15)). Other approaches in Section 1.4 do not fit the context of the real
data application because they require extra variables that provide information to
transform each ordinal predictor into interval-scaled predictors, which is not part
of the current analysis. In addition, the latent variable models for ordinal data
(see Section 1.7.2) was used as a dimensionality reduction technique, however its
results are excluded from the analysis because the low correlation among ordinal
predictors does not contribute to make this approach a good candidate to be used.

The whole sample of 7,374 observations was split in two parts randomly, 50%
for the training set and 50% for the test set. As discussed in Section 6.3, the scores
for the OPs resulting from the training set might not be the same compared to
ones obtained based on the test set. Thus, the scores for the ordinal predictors
were computed based on the training set first, and then the resulting numeric

assignments were used to transform the ordinal predictors in the test set. This
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avoids to make the scores a function of the set being used for each replication.

The total number of replicates for the splits is N = 500.

Once the ordinal predictors were transformed using the scoring systems listed
above, the new variables were used to fit the POCLM for the ordinal response
QoL in the training set and then to make predictions in the test set. In order to
compare the results among models, two measures of accuracy were used in the test
set, the misclassification rate defined in Equation (6.3.1) and the mean-squared

prediction error (MSPE) defined in Equation (6.3.3).

Rather than comparing the results among different scoring systems, they will
be compared to the ones of the ‘CMLE MDC S3’, the method used in the real
data application of Section 6.4. In turn, the unconstrained results (UMLE) were

also included to be compared against the constrained ones too.

The differences between the accuracy measures of ‘CMLE MDC S3’ versus
the ones of other methods are significant in most of the cases. The observed
mean MR is shown in Figure 6.11(A) and the mean MSPE in Figure 6.11(B).
Confidence intervals were computed following the same reasoning as in Section
6.3. Their relative positions with respect to the one of ‘CMLE MDCS3’ suggest
that some differences could be not significant, therefore this was tested. In order
to test whether their means are equal or not, a hypothesis test was conducted for
each pairwise comparison between the MR or MSPE population mean of ‘CMLE
MDC S3’ against the one of other methods. Given that each measure of accuracy
was computed for each method based on the same training/test set split (500
times), then the comparisons are based on a two-sided paired t-test. According to
the results of these tests for differences of MR population means, the 10 p-values
of the pairwise comparisons of ‘CME MDC S3’ against the other methods are
smaller than 1%, where the highest is 0.0022 for ‘CMLE MDC S3’ versus ‘Ridits’ or
‘Midranks’ (recall these two methods are mathematically equivalent as previously
stated), which means that there is even stronger evidence against equality of MR
population means for pairwise comparisons between the one of ‘CMLE MDC S3’
versus the one of any other method. Regarding the mean MSPE, the results are

even more extreme except for the case of ‘CMLE MDC S3’ versus ‘UMLE’, where
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the null hypothesis Hy : E(MSPEcuiE mpe s3) = E(MSPEyumLg) is not rejected.

All other pairwise tests were rejected with p-values even smaller than 0.001%.
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Figure 6.11: (A) mean of the misclassification rate (MR) and (B) mean of the
mean-squared prediction error (MSPE). Lines correspond to 95% CIs based on
500 replicates. Both include the results of the UMLE, CMLE, and other methods

using scoring systems for the treatment of ordinal predictors.
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When comparing the results of the unconstrained POCLM, referred here to
as UMLE, against the ones of ‘CMLE MDC S3’, the performance of the latter
is better than the one of the former or at least the same. The misclassification
rate (MR), which treats an ordinal response as categorical in terms of measure of
accuracy, is much better for ‘CMLE MDC S3’ than for ‘UMLE’ as shown in Figure
6.11(A), whereas the analysis of the mean-squared prediction error (MSPE), which
treats an ordinal response as of interval scale type in terms of measure of accuracy
(see Figure 6.11(B)), does not provide evidence against the null hypothesis of
equal population means. This means that, on average, ‘CMLE MDC S3’ makes
the right prediction more frequently than ‘UMLE’, but when it fails the distance
from its predicted value to the right one is, on average, higher than the one of
‘UMLE’. In this case, a similar performance in at least one measure of accuracy
(see Figure 6.11(B)) was expected because the monotonicity constraints are active
on only two parameters of the ordinal predictors Income Quintile, Health Status,
and Overcrowding, and the effect of the monotonicity constraints produces a not
significant change in the parameter estimates, although they contribute to improve

the interpretability of the results and to reduce the misclassification rate.

The ‘CMLE MDC S3’ showed to be a better option than ‘UMLE’ because
of the advantages discussed above. However, this conclusion is not the same
when comparing ‘CMLE MDC S3’ against other methods using scoring systems
to transform ordinal predictors. ‘CMLE MDC S3’ provides information about the
parts of the scale within each ordinal predictor that produce smaller or greater
effects on the response variable, which is information that is not possible to obtain
when using scoring systems. Also, ‘CMLE MDC S3’ is significantly better than
‘Ridits’ and ‘Midranks’ in MR and better than ‘Veenhoven’ in MSPE. However,
its performance is worse than the one of other methods using scoring systems in
terms of both MR and MSPE. Despite the fact that scoring systems assign to the
resulting interval-scaled variable information that is not provided by the original
ordinal scale, in practice their use has shown to be respectable in some instances

in terms of the measures of accuracy used in this section and Section 6.3.
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6.5 Implementation

An R package called crov (constrained regression for ordinal variables) was
created containing the implementation of the constrained regression models for
ordinal predictors discussed in Section 2.3 and Section 5.3. In addition to the
constrained and unconstrained parameter estimates, it makes available the re-
sults of each step of the MDC procedure in terms of their monotonicity direc-
tion classification and their corresponding confidence levels according to what is
defined in Section 2.4. The main function is called mdcp (monotonicity direc-
tion classification procedure) and its optional parameter method allows to specify
the required method, for which the current alternatives are: “MDCS1”, “MDCS2”,
“MDCS3”, “CMLEbonferroni”, “CMLEconfReg”’, and “CMLEfiltered”. Further-
more, the monotonicity test based on the Bonferroni correction and the one based
on confidence regions (see Section 4.2 and Section 4.3 correspondingly) are avail-

able too.

6.6 Conclusions

In the simulation study of Section 6.2 the following four simulation settings

were considered:
(A) Two uncorrelated ordinal predictors with monotonic effects.
(B) Two correlated ordinal predictors with monotonic effects.

(C) Four uncorrelated ordinal predictors, each one with parameters representing
a different monotonicity direction classification: ‘isotonic’, ‘antitonic’, ‘both’

or ‘none’.

(D) Four correlated ordinal predictors, each one with parameters representing a

different monotonicity direction classification.

All of them for sample sizes n = 50, 100, 500, 1,000, and 5,000. For each setting,
the relative performance of the constrained methods proposed in Chapter 2 and

Chapter 5 was analysed from two perspectives:
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(i) the monotonicity direction classification (‘isotonic’, ‘antitonic’, ‘both’ or

‘none’), and

(ii) the deviation of the parameter estimates from their corresponding true val-

ues.

The first will be referred to as the ‘MDC results’ and the second as the ‘MSE
results’.

The empirical distributions of monotonicity direction classifications are shown
in Table 6.1 for setting (A). The MDC results show a high proportion of correct
monotonicity direction classifications of at least 88.9% of the cases when n > 100
except for ‘CMLE MDC S1’ and ‘CMLE MDC S2’. Given that the distances
between adjacent true parameters of each OP are not large enough to prevent
their confidence intervals to overlap (see Figure 6.1), these two methods classify the
ordinal predictors as ‘both’ in upto 56.9% of the cases when n < 100. However, this
figure rapidly reduces to 1.4% when n > 500. In addition, when n > 500 ‘CMLE
Conf. Reg.” is the one that drops monotonicity constraints more frequently,
showing that for large sample sizes this method is the less conservative in terms
of identifying not monotonic patterns.

In terms of the MSE results of setting (A), the constrained methods show a
lower MSE compared to the one of the unconstrained model (upto 26% lower),
except for particular cases, namely the less restrictive methods when n = 50 and
for OP 2 only (see Table 6.4).

With correlated covariates (setting (B)), the MDC results require a larger
sample size compared to the ones of setting (A) to show a high proportion of
correct monotonicity direction classifications. When n > 500 this proportion is at
least 96.9% of the cases except for ‘CMLE MDC S1’ and ‘CMLE MDC S2’, whereas
for smaller sample sizes, the misclassification rate is higher than the one of setting
(A) for OP 1, the ordinal predictor with less clear monotonicity of effects (see
Table 6.5). In terms of MSE, the ones corresponding to the constrained methods
remain significantly smaller or equal to the ones of the unconstrained model (see

Tables 6.4 and 6.6).
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With monotonic ordinal predictors only (settings (A) and (B)), the MDC re-
sults show that more restrictive constrained methods are highly accurate when
n > 100 and the MSE results show that any constrained approach performs bet-

ter than the unconstrained one in almost every simulated scenario.

For setting (C), the MDC and MSE results associated with the ‘isotonic’ and
‘antitonic’ ordinal predictors (OP 1 and 2 correspondingly) are similar to the ones
of setting (A), whereas the OPs representing patterns ‘both’ and ‘none’ (OP 3 and
4) contribute to differentiate the results of the constrained methods (see Tables

6.7 and 6.8).

Given that the true pattern of OP 3 is ‘both’, its monotonicity constraint is
expected to be not dropped and its MDC results are expected to show an evenly
distributed proportion of ‘isotonic’ and ‘antitonic’ monotonicity directions. These
expectations are met by the constrained methods, except for ‘CMLE MDC S3’
because it is too restrictive in this context. This method imposes monotonicity
constraints on all of the ordinal predictors, classifying OP 4 as either ‘isotonic’
or ‘antitonic’ despite the fact that it is non-monotonic, which in turn affects the
classification of OP 3. Therefore, when there is evidence of non-monotonicity for
some OP, ‘CMLE MDC S3’ not only assigns a monotonicity direction to a non-
monotonic OP but it might also affect the monotonicity direction classification
of others. On the positive side of the results, the constrained method that drops
monotonicity constraints more frequently for the non-monotonic ordinal predictor
is ‘CMLE Conf. Reg.’; and it only requires a sample size of 500 observations to
do it in 98.4% of the cases. When n = 50 it drops the constraints in only 54.2%
of the cases. However, its MSE for the smallest sample size is always significantly
smaller or equal than the one of the unconstrained model. For greater sample sizes
this still holds for the MSE of all or the majority of the parameters associated with
any OP (see Table 6.8).

For setting (D), where correlation among covariates is considered, the general
trends of the conclusions of setting (C) remain the same for n > 500. For smaller

sample sizes, the MDC results increase their misclassification rate, but the MSE

results of the constrained methods are better (see Tables 6.9 and 6.10).
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Given that multiple factors can affect the results of the models, it is not possible
to generalise many of the conclusions. However, the effect of the sample size seems
to be one of the common effects for the different settings under analysis. In general,
the MDC results show that smaller sample sizes increase the misclassification of
monotonicity directions or indicate not monotonic patterns, but it is necessary
to reach n = 100 or 500 to observe accuracy rates higher than 90% (see Tables
6.1, 6.5, 6.7 and 6.9). In terms of the MSE results, for the smallest and largest
sample sizes, the MSE of the constrained methods gets closer to the one of the
unconstrained model (except for ‘CMLE MDC S3’” with non-monotonic OP for the
reasons discussed earlier). In the first case, when n = 50, high misclassification
rates make the constraint methods to increase the variance of their parameter
estimates because they are being constrained in the wrong parameter space more
frequently. In the second case, when n = 5,000, the estimates of all the methods,
including the unconstrained one, get closer to the true model, and therefore their
MSE too, meaning that for large enough n, when n increases the choice of the

constrained method is less relevant.

Regarding the comparison between ‘CMLE MDC S3” and ‘MDC ML’ discussed
in Section 6.2.1, for n > 100, the former is better than the latter when there are
OPs whose effects are non-monotonic, and the performance of ‘CMLE MDC S3’ is
better than or equal to the one of ‘MDC ML’ when all of the OPs are monotonic.
For n = 50 the results show a better performance of ‘MDC ML’, which requires
to fit 2" models though, where ¢ is the number of OPs.

In Section 6.3 the results of using the constrained methods were compared
against the ones of models using scoring systems to transform ordinal predictors
into interval-scaled variables. The simulation setting includes a non-monotonic
ordinal predictor, therefore the results of the most restrictive constrained approach
‘CMLE MDC 83’ is the only one that is not superior than the methods using
scoring systems even for the largest sample size, n = 1000 (see Figure 6.6). The
best constrained method is ‘CMLE Conf. Reg.’, which only requires n > 200
to show a significantly smaller MSPE than any method using scoring systems. In

addition, ‘CMLE MDC S1’ and ‘CMLE filtered’, that are among the less restrictive
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methods too, show a better performance than methods using scoring systems in
terms of MSPE when n > 200.

Regarding the performance according to the MAPE, ‘CMLE Conf. Reg.” re-
mains as the best method for n > 200. Similarly, ‘CMLE MDC S1’ and ‘CMLE
filtered’ are still statistically better than every other method using scoring systems
when n > 500, but not for n = 200 as in MSPE (see Figure 6.8).

In terms of misclassification rate, ‘CMLE MDC S1’, ‘CMLE Conf. Reg.” and
‘CMLE filtered’, which are constrained methods among the less restrictive ones,
confirm their better performance when n > 500 (see Figure 6.9). However, when
n = 100 or 200, they are not statistically different from others, and sometimes they
are even worse. Given that the response variable is ordinal, the misclassification
rate should not be considered as the only accuracy measure to assess the perfor-
mance of a method, but rather it should be a complementary measure to MSPE,
keeping in mind that the latter is not an accuracy method for ordinal responses
either, but at least it takes into consideration the distance of each prediction error
from the true value.

In general, for n > 500 the results of less restrictive constrained methods
perform better than any other method using scoring systems. However, when
n = 100 or 200 the performance of constrained methods is not significantly better
than the one of methods using scoring systems, except for ‘CMLE MDC S1’,
‘CMLE Conf. Reg.” and ‘CMLE filtered’ that are still better than methods using
scoring systems in terms of MSPE when n = 200.

Finally, the proposed methods were used in a real data application in Sec-
tion 6.4. Given that the unconstrained results showed patterns that were close to
be considered as monotonic, the most restrictive method was chosen to be used,
‘CMLE MDC S3’, imposing monotonicity constraints on all of the OPs (see Figure
6.10). This real data application is a good example of a case when a constrained
method improves interpretability compared to the unconstrained one, in partic-
ular, the interpretation of the constrained effects of Income Quintile and Health
Status. The results of other constrained methods supported the choice of ‘CMLE
MDC S3’ as the one to be used (see Section 6.4.1). In addition, although the use
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of scoring systems to transform ordinal predictors is not considered here as a good
practice because it overstate the information provided by the order of categories of
OPs, the results of using ‘CMLE MDC S3” were compared against methods using
scoring systems for the treatment of ordinal predictors. Section 6.4.2 shows that
the performance of ‘CMLE MDC S3’ is better than the one of ‘UMLE’ but worse
than the one of some methods using scoring systems. However, ‘CMLE MDC S3’
is still a valid option based on the relative advantages that it offers, for instance,
it does not transform the ordinal predictors, it estimates different effects for each
category of the ordinal predictors providing more information about the associ-
ation between the ordinal covariate and the response variable than the methods

using interval-scaled transformations, and it also improves their interpretability.



Chapter 7

Concluding remarks

7.1 Contributions

A constrained regression model for an ordinal response with ordinal predic-
tors is proposed in Chapter 2, which can involve other types of predictors. The
information provided by the order of categories of the ordinal predictors is used
appropriately for ordinal data, rather than ignoring it (treating categories as of
nominal scale) or overstating it as interval-scaled.

Each set of parameters associated with an ordinal predictor’s categories can be
enforced to be monotonic. For those that are assumed to be monotonic, the mono-
tonicity direction classification procedure is also proposed in Chapter 2. It decides
automatically whether associations between ordinal predictors and the response
variable are isotonic or antitonic, and it can also classify variables as compati-
ble with both monotonicity directions or none. The researcher may sometimes
prefer to leave out variables compatible with both directions and statistically not
significant parameters, and to drop the monotonicity constraint for variables in-
compatible with either direction, which can easily be done within the framework
presented here.

The MDC relies on the choice of a pre-specified range of confidence levels
between & and ¢&2*, but the regression model itself does not require a tuning

parameter and does deliver monotonic parameter estimates.

In Chapter 3, the contribution is the development of asymptotic theory for the

232
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constrained MLE of the POCLM. Asymptotic existence and strong consistency
of the unconstrained MLE of the POCLM are analysed in detail, starting from
the analysis of the corresponding unconstrained results in Fahrmeir and Kauf-
mann (1985). Asymptotic normality is also discussed. All of these properties of
the constrained MLE allow to find that, under monotonic effects of ordinal pre-
dictors, the unconstrained and constrained MLEs are asymptotically equivalent.
Consequently, the approximate confidence region for the constrained parameters
is asymptotically the same as the one for the unconstrained ones. However, for
finite n, there are some situations in which there is some doubt about the quality
of the approximation. These situations are classified in three cases and discussed.
Another contribution is the definition of different confidence regions, which are
compared through simulations. Similarly, asymptotic confidence intervals for the
constrained and unconstrained MLE are also the same under the assumption that
the parameters associated with the ordinal predictors of the POCLM are mono-
tonic. For finite n, the problem of identifying a parameter value that belongs to a
confidence interval and violates monotonicity is analysed. Given that the compu-
tation of confidence intervals is still of interest, then some possible definitions of
confidence intervals are proposed, despite the fact that there is an identification

problem for those parameter values that violate monotonicity.

In Chapter 4, two monotonicity tests are proposed to assess the validity of the
monotonicity assumption for an ordinal predictor. One is based on the Bonferroni
correction and the other on the analysis of confidence regions. The first checks
whether the set of confidence intervals belonging to the parameters of an ordinal
predictor is compatible with monotonicity or not. As this is based on the Bon-
ferroni correction of confidence levels, it can be very conservative, and therefore
a more powerful tests was also developed, which is the second monotonicity test.
It uses the confidence region of the unconstrained parameters associated with an
ordinal predictor to assess whether monotonic parameter vectors resulting from
the constrained MLE belong to the confidence region or not. It is shown that the
monotonicity test based on confidence regions is invariant under change of base

category and that equivalent results are obtained when using a reparametrised
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model based on the differences between adjacent parameters associated with an

ordinal predictor.

Six different approaches for the estimation method are proposed depending on
whether the researcher wishes to impose monotonicity constraints on all of the OPs
or on a subset of them. In the first case, the MDC procedure proposed in Chapter 2
is fully applied (‘CMLE MDC S3’). Otherwise, the five remaining approaches differ
in the way they identify the subset of OPs on which the monotonicity assumption
is not imposed. These methods are proposed in Chapter 5. ‘CMLE MDC S1’
imposes monotonicity constraints only in step 1 of the MDC procedure and gives
variables the biggest chance to be classified as either ‘none’ or ‘both’. ‘CMLE
MDC S2” will re-classify some of these variables as monotonic. ‘CMLE MDC S3’
will impose monotonicity on all OPs. ‘CMLE Bonferroni’ uses the monotonicity
test based on the Bonferroni correction for the decision of dropping constraints,
whereas ‘CMLE Conf. Reg.” uses the monotonicity test based on the confidence
region to make this decision. ‘CMLE filtered” will enforce monotonicity except if
the MDC gives a strong indication against it. This happens somewhat earlier than
under ‘CMLE Bonferroni’. Due to the conservativeness of the Bonferroni test, its
main use is to provide a test with a guaranteed low type I error probability, whereas
the other methods are probably more appropriate for classification in connection
with parameter estimation. In practice, the researcher will need to decide whether
monotonicity should be always enforced (‘CMLE MDC S3’), whether there is
a clear preference to impose monotonicity except if there is a clear indication
against it (‘CMLE filtered’, ‘CMLE Bonferroni’ or ‘CMLE Conf. Reg.” in case
that the significance level needs to be guaranteed), or whether it is fine to drop
monotonicity constraints more easily in case of doubt (‘CMLE MDC S1°), possibly
together with dropping variables completely that are classified as ‘both’; ‘CMLE
MDC 82’ is a compromise that will probably not play much of a role in practice

but was analysed here because it adds insight in the overall procedure.

The proposed approaches offer the researcher alternatives as a response to
various legitimate interests. The researcher may be in the first place interested in

the precision of the resulting estimates. However, in many applications, e.g., in
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social sciences, the precise numerical values can be of less interest than qualitative
statements about the monotonicity of the OPs. Monotonicity may be favoured
because of better interpretability in some cases in which OPs are by and large
approximately monotonic even if the true parameters show a mild deviation from
monotonicity. If sample sizes are small, monotonicity may be favoured because
constraints can support both precision and interpretation. However, in this case
the researcher cannot expect a strong power to detect non-monotonicity, and there
is always the risk that non-monotonic OPs are treated as monotonic, with loss of
precision. In some instances, particularly with small sample sizes and a relatively
high number of categories of the OPs, the researcher may prefer making decisions
about monotonicity based on the meaning of the OPs rather than in a data driven
manner. In addition, a large number of categories p, for an OP will imply that the
Bonferroni test is very conservative and a large number of observations may be
required to detect moderate deviations from monotonicity. It may be reasonable
in such a case to pool some categories and to make statements about monotonicity

at lower “granularity” with better power.

In Chapter 6, a set of simulation studies and a real data application are anal-
ysed with the purpose of comparing the performance of the constrained methods
against the one of the unconstrained POCLM with ordinal predictors treated as
of either nominal or interval scale types through the use of scoring systems. The
constrained methods are better than the UMLE of the POCLM with ordinal pre-
dictors treated as of nominal scale type when associations between the OPs and
the response are truly monotonic, in which case the more restrictive the better.
On the other hand, if there is a truly non-monotonic association, the most re-
strictive method ‘CMLE MDC S3’ could be bad depending on the sample size
(e.g., for n > 500), whereas the other constrained methods are good options, from
which the researcher can choose according to its degree of conservativeness when
establishing non-monotonic effects, with ‘CMLE Bonferroni’ and possibly ‘CMLE
filtered’ being the more conservative ones. In addition, the constrained methods
perform better than the UMLE when n = 50, despite the fact that their mis-

classification rate increases as n decreases and that they drop the monotonicity
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constraints less frequently (or never).

Regarding the comparison between the constrained methods and the UMLE
of the POCLM with ordinal predictors treated as of interval scale type, it is
hard to make a comparison because there is no measure of accuracy specifically
designed for ordinal responses. However, as in Tutz and Hechenbichler (2005),
the misclassification rate (MR), the mean absolute prediction error (MAPE), and
the mean-squared prediction error (MSPE) are used. The simulation results show
that when n > 500 the constrained methods perform better than the others in
terms of MR, MAPE and MSPE, except for the more restrictive ones because the
simulation setting considers four ordinal predictors of which one represents both
monotonicity directions and another is non-monotonic. When n = 100 or 200,
the results are mixed and in general against the constrained methods for n = 100,
except for ‘CMLE Conf. Reg.’, which is in general not significantly different from

methods using scoring systems but much better when n > 500.

For the real data application, ‘CMLE MDC S3’ enabled a consistent interpre-
tation for the ordinal variables’ categories, which would not have been the case

for the UMLE.

The approaches of imposing monotonicity constraints on ordinal predictors
allowing for both isotonic and antitonic patterns described in Section 5.3 can also
be used in situations in which the response variable is non-ordinal. In addition,
the MDC procedure itself can be performed on an ordinal predictor in models for
responses of any scale of measurement, as well as the monotonicity tests. An R
package crov was made available at CRAN with all of the proposed constrained

methods (see Chapter 2 and Chapter 5) and monotonicity tests (see Chapter 4).

7.2 Future work

The performance of the approximation of confidence regions for finite n based
on the analysis of coverage probabilities is studied in Section 3.7.1. The coverage
probabilities are computed for two types of cases according to the comparison
between the constrained and unconstrained MLE. These two cases correspond to

whether the MLE are the same or different. When they are different (Case 4 in
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Section 3.7.1), the UMLE does not belong to the constrained parameter space, and
therefore it is unclear why the approximation resulting from the asymptotic theory
developed in Chapter 3.7.1 should be good, meaning that there is no strong the-
oretical argument in using confidence regions for the constrained MLE. This case
is analysed in Section 3.7.1. However, when the constrained and unconstrained
MLE are the same, the finite n situation may also correspond to the one on which
the asymptotic theory of Chapter 3 was developed (Case 1 in Section 3.7.1) or
not (Case 2 and 3 in Section 3.7.1). Despite the fact that the situation “Same
MLE” was already analysed as a whole, the analysis of its three sub-cases, that
are already defined as Case 1, 2 and 3 in Section 3.7.1, is left for future work.
This requires to identify whether the confidence region is either fully in the con-
strained parameter space or contains not monotonic parameter vectors or allows
more than one possible combination of monotonicity directions for the constrained

parameters of the ordinal predictors.

Regarding monotonicity tests, given that to my knowledge there is no mono-
tonicity test for ordinal data in regression analysis, then one extension is to use
scoring systems to transform ordinal variables into interval-scaled variables and
then apply an existing monotonicity tests, such as the one proposed by van Beek
and Daniels (2014). This would give some insights about the association between
the transformed ordinal variable and the response variable. The results could be
compared against the ones without using scoring systems, i.e., using the mono-
tonicity test proposed in Chapter 4 on the POCLM with ordinal variables treated

as ordinal.

Another possible extension is about using the MDC procedure as a tool for
variable selection. When the MDC procedure classifies the pattern of parameter
estimates of an OP as ‘both’ at the end of its second step, it means that all
of the corresponding Cls contain zero, and therefore the OP as a whole can be
considered as not significant. This could be explored further by comparing this
approach against more formal tests, such as the log-likelihood test. In addition,
when more than one OP is classified as ‘both’, dropping those variables should be

carried out in a stepwise fashion, which could also be analysed in depth.
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Another future work arose when comparing models with different treatment
of ordinal predictors. In Section 6.3 the POCLM using constrained MLE versus
the POCLM using unconstrained MLE and transformations of ordinal predictors
into interval-scaled variables are compared. Different scoring systems were used
for the second set of models. The comparison of the performance among models
was based on the quality of their predictions, for which measures of accuracy were
required. However, to my knowledge, there is no specific definition of a measure
of accuracy for ordinal responses, and therefore the development of it is left for
future work. Next, some ideas about how to address this issue are presented.

Consider an ordinal response with k£ categories. Compute the distribution of
predicted categories for every given observed ordinal category. Therefore, there
are k distributions with k categories each. For each one of these distributions
there is one category being the true one and the others represent misclassification.
In order to obtain a single measure of accuracy, it is required to aggregate them.

Imposing monotonicity constraints as a treatment of ordinal predictors can be
extended from the POCLM to any other regression model with any other type of

response variable.
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Partial derivatives

Recall the Lagrangian presented in equation 2.3.11,

L({a;},8,X) = L({a;},8) = NCB(yq), (A.0.1)

where the log-likelihood function for the model (2.3.7) can be expressed as
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Now, for notation purposes, consider

ebi.i ebii

bi,j = Q5 +ﬂ/Xi7 G(bz,j) = m, and g(b%]) = m

In addition, the elements of C are denoted as ¢s ow cotumn, Where s specifies the
submatrix and the remaining subindexes represent the number of row and column
within the pre-specified C; as usual.

After differentiation, the likelihood equation for an effect parameter 3;, with [
being an index representing either the dummy variable corresponding to an ordinal

predictor and its category in the form (s, hs) or a non-ordinal covariate in the form
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Similarly, for the intercepts «y,
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The first derivatives of £ with respect to the Lagrange multipliers \; are
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The corresponding result for is

0L
O O,

izyw{ [aam <5j,lg(bi,j>) - aa <J 119(bij 1 )J bij-1)]

8041004 = = [G(bij) — G(bij-1)]
[%G(bm‘) - %g(bi,j—l)] [05,19(bij) — 0j-119(bij—1)]
(G (bs;) — G(bij-1)]?
n k
i=1 j—=1
j—1+8'x; _ eaj+ﬁ'xz‘_
[] 119(bij-1)0;- 1mW—5j,zg(bi,j)5ij] (G (bij) — G(bij-1)]
(G (bi;) — G(bsj-1)]?
gl — 9(bij—1)051m)[0519(bi ;) — 65-1,9(bij—1)] |
(G (bi;) — G (b j-1)]?
Finally,
2
0°L _o
8alé9Am
and,
2
0°L _0

ONON,,



Appendix B

Reproducibility of real data for

QoL self-assessment in Chile

In Section 6.4, a real data application to quality of life self assessment in Chile
was discussed. In order to assist reproducibility, the criteria used in the data
preprocessing stage to get the final data set from the raw data that is publicly
available online at: http://observatorio.ministeriodesarrollosocial.gob.

cl/casen-multidimensional/casen/basedatos.php is given.

B.1 Response variable and sample definition

The response variable is a self assessment of the quality of life (QoL), the name
of this variable in the original data set is r20 and its possible values are integers
from 1 to 10, representing the possible answers: ‘1 Completely Unsatisfied’, ‘2’,.. .,

‘9’, ‘10 Completely Satisfied” correspondingly.

The sample is defined as those householders who live in the capital and re-
ported the quality of life self assessment. In the original data set, householders
are identified with the value 1 of the variable pco, whereas the capital corresponds

to region=13 and the valid responses of QoL lie between 1 and 10.
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B.2 Predictors

B.2.1 Ordinal predictors

Educational Level: This variable takes into account the educational level, years
of schooling, and whether the householder knows how to read and/or write.

All these variables are treated in the following sequential steps:

1. Variable educ is grouped into four categories: values 0 and 99 in “Not
educated”, values 1 and 2 in “Primary”, values from 3 to 6 in “Sec-

ondary”, and from 7 to 12 in “Higher”.

2. Those classified as “Secondary” are moved to “Primary” if their years

of schooling are less than 9 (variable ESC>9).

3. Those classified as “Not educated” and with educ=99 are moved to

“Primary” if their years of schooling are more than 0 (variable ESC>0).

4. Those classified as “Primary” and with educ=99 are moved to “Sec-

ondary” if their years of schooling are more than 8 (variable ESC>8).

5. Those classified as “Secondary” and with educ=99 are moved to “Higher”

if their years of schooling are more than 12 (variable ESC>8).

6. Those classified as “Secondary” or “Higher”, and declared that they
do not know how to read and/or write (variable el is 2, 3, or 4), are

moved to “Primary”.
7. Those classified as “Not educated” and with educ=99 (value for ‘do not
know/do not answer’) are removed from the sample (28 cases, 0.37%).

Income Quintile: Raw variable QAUTR_MN is used.

Health Status: Variable s16 is used. Values from 1 to 7 are considered only and
those observations with value 99 (value for ‘do not know’) are removed from

the sample (36 cases, 0.48%).

Overcrowding: Variable hacinamiento is used. Values from 1 to 4 are consid-

ered only and those observations with value 9 (value for ‘NA’) are removed
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from the sample (21 cases, 0.28%).

Children: This is a special case, we use the whole data set and a dummy vari-
able to identify those people under 15 years old. Then grouping by the
house identifier called folio we get the number of children by house. We
incorporate this information back in the sample of householders living in the
capital and reported the quality of life self assessment. Finally, we grouped

the number of children when it was greater than or equal to 4.

B.2.2 Non-Ordinal predictors

None of the non-ordinal predictors was transformed. The name of variables “Age”,

“Activity”, and “Gender” are edad, activ, and sexo, correspondingly.
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