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ABSTRACT 1 

Understanding species-specific responses to urbanization is essential to mitigate and preserve 2 

biodiversity in the face of increasing urbanization, but a major challenge is how to estimate 3 

urban tolerances for a wide array of species applicable over disparate regions. A promising 4 

approach is to assess urban tolerance by integrating geo-referenced information on species 5 

detections from citizen science data with estimations of urbanization intensity based on 6 

remotely-sensed night-time lights. While such citizen science urbanness scores (CSUS) are 7 

cost-effective, intuitive, and easily-repeatable anywhere in the world, whether the scores 8 

accurately describe urban tolerance still awaits empirical verification. By analyzing >900 bird 9 

species worldwide, we find that CSUS correlates well with a standard measure of urban 10 

tolerance based on changes in abundance between urbanized and non-urbanized nearby 11 

habitats. Our analyses show that there is substantial variability in the relationship between 12 

these two metrics, but nevertheless highlights the potential for the CSUS approach in the 13 

future. Future improvements to the index, including incorporating rare species, and 14 

understanding the influence of intra-specific variability in response to urbanization, will be 15 

necessary to maximize the broad utility of the approach.  16 

 17 
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INTRODUCTION 21 

Cities are novel environments relative to the evolutionary history of nearly all terrestrial 22 

organisms. In such artificial environments, natural vegetation is replaced by artificial 23 

structures (Kenneth et al. 2005), perturbations associated with human activities become 24 

pervasive, the levels of chemical, noise, and light pollution dramatically increase (Swaileh 25 

and Sansur 2006, Francis et al. 2011, La Sorte et al. 2017), and primary productivity 26 

substantially decreases (Milesi et al. 2003). These novel challenges may generate 27 

maladaptations, causing many species to avoid cities or lead to their failure to persist there 28 

(Sol et al. 2014). However, not all species are negatively affected by urbanization. In fact, in 29 

urban environments some species are even doing better than ever, to the point they become 30 

pests. With a projected increase in urban land cover of around 2-3 billion km2 by 2050 31 

(Huang et al. 2019), identifying which species will be ‘losers’ or ‘winners’ when facing 32 

urbanization has become essential to assess the impact of urbanization on biodiversity and to 33 

help prioritize conservation plans within cities. 34 

 35 

There has historically been a suite of vastly different approaches to quantify urban tolerance 36 

— defined as the ability of a species to persist in urban environments (reviewed in Sol et al. 37 

2013). Ranked from simple to complex, these include: (1) assigning species as being either 38 

‘urban’ or ‘non-urban’ based on their presence in the respective habitats at any given time 39 

(Møller et al. 2009); (2) classifying species based on the mention of human-built structures in 40 

published habitat descriptions (Cardoso 2014); (3) classifying species based on breeding 41 

evidence in a city (e.g., Croci et al. 2008); (4) circulating surveys to birdwatchers and 42 

ornithologists to compile lists of common native breeding birds in their respective cities 43 

(Bonier et al. 2007); and (5) estimating species sensitivity to urbanization by quantifying 44 

changes in their relative abundances or densities along urbanization gradients (Evans et al. 45 



2011, Sol et al. 2014, Sol et al. 2017, Sayol et al. 2020). Although the application of these 46 

metrics has largely improved our understanding of organismal responses to urbanization, they 47 

have limitations when it comes to uncovering patterns at large spatial scales. For example, 48 

categorizing species based on their presence/absence in cities fails to account for the 49 

continuous nature of species-specific responses to urbanization (Evans et al. 2011, Sol et al. 50 

2013, Callaghan et al. 2020), and is likely to inadequately identify species which do not 51 

tolerate cities well, but are present there through source-sink dynamics. It also ignores that a 52 

species can be absent in the city not because it cannot tolerate it, but because it is too scarce 53 

in the surrounding habitats to generate propagules (Sol et al. 2013, 2014). Moreover, a 54 

species categorized as an urban adapter in one city may be an urban avoider in another city. 55 

Measuring tolerance to urbanization using indices derived from surveys along urbanization 56 

gradients provides higher resolution, yet sampling assemblages over large regions is costly 57 

and time-consuming. This means that information is only available for some regions, mostly 58 

from highly-developed countries (Sol et al. 2020). Moreover, combining information from 59 

different regions is challenging because different studies often use different survey protocols 60 

and different definitions of urbanization gradients (but see Sol et al. 2014, 2020). A more 61 

general measure of urban tolerance — applicable from local to global scales — is clearly 62 

needed to enhance our understanding of organismal responses to urbanization. 63 

 64 

Recently, Callaghan et al. (2019a, 2020a) proposed an alternative measure of urban tolerance 65 

that capitalizes on citizen science data, providing species-specific urbanness scores (CSUS, 66 

hereafter). The CSUS approach intersects broad-scale citizen science observations of species 67 

with estimates of human settlements based on globally available, remotely-sensed, VIIRS 68 

(Visible Infrared Imaging Radiometer Suite) night-time lights. Species’ urban tolerances are 69 

defined as the median VIIRS night-time lights across their range of observations (urbanness 70 



scores, hereafter). Assuming that species’ observations are equally sampled in urban and non-71 

urban areas, species with high urbanness scores are interpreted to be more urban-tolerant than 72 

species with low urbanness scores (Callaghan et al. 2020a). 73 

 74 

Although the CSUS metric is based on occurrences rather than abundances, it has the 75 

advantage of being cost-effective, intuitive, and easily-repeatable anywhere in the world. The 76 

CSUS approach assumes that species’ observations across an urbanization gradient represent 77 

a species’ likelihood of using habitats along this urbanization gradient, and severe violations 78 

of this assumption could make the CSUS metric imprecise and thus unreliable in 79 

macroecological analyses. Therefore, a limitation of the approach is the need of relatively 80 

large numbers of observations to accurately capture the species-specific variation in response 81 

to urbanization. However, this limitation is currently less important in the “big data” era, 82 

particularly for taxonomic groups like plants and birds which are easy to observe and for 83 

which observations are rapidly accumulating worldwide. In birds, for example, the eBird 84 

project (Sullivan et al. 2009) currently has more than 800 million observations all over the 85 

worlds. In birds, the CSUS approach has been used to assess ecological and life-history traits 86 

associated with urban tolerance (Callaghan et al. 2019a) and assign community-measures of 87 

urbanness (Callaghan et al. 2019b), albeit this approach is currently restricted to the common 88 

species.  89 

 90 

While the CSUS approach provides promise for advancing our understanding of species’ 91 

tolerance to urbanization (see Callaghan et al. 2020a), its robustness remains to be 92 

demonstrated. Testing the general validity of the approach is the goal of the present study. 93 

Specifically, we estimate the urbanness scores for >900 species from 26 cities worldwide, 94 

and compare the scores with previously published information on species tolerance to 95 



urbanization from the same regions estimated as changes in abundance between urban and 96 

non-urban surrounding environments. Our analyses show that there is substantial variability 97 

in the relationship between these two metrics, but nevertheless highlights the potential for the 98 

CSUS approach in the future.  99 

 100 

METHODS 101 

Urbanness scores 102 

We followed Callaghan et al. (2019a, 2020a) to assign species-specific urbanness scores. We 103 

first gathered all available observations in the eBird citizen science dataset (version 104 

ebd_relMay-2019; Sullivan et al. 2009) for the species from the 26 cities studied, excluding 105 

species that primarily rely on coast-lines and/or large water bodies (habitats that are little 106 

represented in the studied cities). After filtering the eBird data by removing potential outliers 107 

(see Callaghan et al. 2019b), we assigned a measure of VIIRS night-time lights to each 108 

observation. Monthly scenes of average radiance (nW cm-2 sr-1) between January 1st, 2014 109 

and January 1st, 2019 were used, and the temporal median radiance was calculated per pixel 110 

at the native 500 m resolution, which was reprojected into a pixel size of 5 km using a 111 

composite stack of the 2014-2019 VIIRS night-time light layers. Finally, we estimated the 112 

urbanness score for each species at two spatial scales: as the median value across all 113 

observations within a 250 km buffer around the city (regional scale) or the entire continent 114 

where a city was located (Table S1). A 250 km buffer was chosen to incorporate landscape-115 

scale observations, and assumes that the common species sampled within this buffer have an 116 

equal opportunity to occupy the area throughout the buffer (i.e., their range encompasses the 117 

entire buffer), depending on habitat preferences (i.e., level of urban tolerance). A test with 118 

100 km buffer showed qualitatively similar results to that of a 250 km buffer. We used a 119 

random sampling analysis to test the influence of sample size in the estimation of urbanness 120 



scores and found that at ~100 observations the variation in the urbanness score was 121 

significantly lower for most species (see Figure S1). Thus, we only estimated urbanness 122 

scores for species with a minimum of 100 eBird observations (Callaghan et al. 2019a). 123 

However, we note that a cutoff of 250 observations yielded qualitatively similar results. We 124 

also restricted the analyses to cities with a minimum of 10 species. After filtering, we were 125 

left with a total of 771 species from 25 cities for the regional-scale comparison (Figure S2), 126 

incorporating 22,839,841 species’ observations. For the continental-scale comparison, after 127 

filtering, we were left with a total of 934 species from 26 cities (Figure 1; Figure S3), 128 

incorporating 226,388,416 species’ observations. 129 

 130 

Urban tolerance based on abundance data 131 

We used a dataset of bird assemblages across 26 cities worldwide (Sol et al. 2014, 2017, 132 

Sayol et al. 2020) to derive an abundance-based measure of urban tolerance (Figure 1). These 133 

data are a comprehensive compilation of published datasets incorporating characterized 134 

assemblages with local survey data available in both urban and nearby rural/natural habitats. 135 

The 26 cities were spread among 7 regions: Africa (N=1); Asia (N=4); Australia (N=3); 136 

Europe (N=5); New Zealand (N=1); North America (N=8); and South America (N=4). To the 137 

best of our knowledge, this is the most robust dataset available for comparison with the 138 

CSUS approach. Importantly, although we use these data to show the correlation with the 139 

CSUS approach, the data for the CSUS approach (i.e., eBird data) are generally globally-140 

available (although heterogeneous across the world) as are the VIIRS night-time lights data. 141 

For each city in the dataset, bird abundances were available within built-up urban 142 

environments and in the surrounding non-urbanized habitats. The dataset comprises 143 

assemblages sampled in four types of habitats, ranging from natural vegetation, little 144 

urbanized environments, moderately urbanized environments, and highly urbanized 145 



environments (Sol et al. 2020). The urban tolerance index of a species was estimated as the 146 

log-log difference between its abundance within (i.e., from the highest possible urbanization 147 

category a species was observed) and outside (i.e., natural vegetation) the city (see Sol et al. 148 

2014, Sayol et al. 2020). A positive value indicates that the species was more common in the 149 

city than in the surrounding natural habitats whereas a negative value indicates that the 150 

species was less common in the city than in the surrounding natural habitats. Because values 151 

close to zero are difficult to interpret (Sol et al. 2013), we further categorized the urban 152 

tolerance abundance index into four categories (sensu Sol et al. 2014; 2017): (1) Urban 153 

Absent (i.e., a species was observed only in wild areas); (2) Urban Increase (i.e., a species’ 154 

abundance was greater in urban than in wild habitats); (3) Wild Increase (i.e., a species’ 155 

abundance was greater in wild than in urban habitats); and (4) Wild Absent (i.e., a species 156 

was observed only in urban areas). 157 

 158 

Statistical analysis 159 

All analyses were conducted in R statistical software (R Core Team 2020). We tested the 160 

extent to which our CSUS approach is predicted by the local-scale abundance-based urban 161 

tolerance by means of a phylogenetic mixed-effects model. The response variable was log-162 

transformed urbanness scores and the predictor variable was the local-scale abundance-based 163 

urban tolerance index. We used the MCMCglmm R-package (Hadfield 2010) to fit a mixed 164 

model that included both city and phylogeny as random effects. Cities were included as a 165 

random effect to account for possible significant differences among cities (e.g., level of 166 

urbanization, size, differing population density dynamics). For these models, we used an 167 

inverse-wishart priors for the random effects (V = 1, nu = 0.002), and ran the models for 168 

1010000 iterations, with a burn-in of 10000 and a thinning interval of 1000, resulting in a 169 

posterior distribution of 1000 samples. We ensured that the autocorrelation of samples was 170 



below 0.1 and that the model converged properly. We also fit these models with only the 171 

intercept to assess the variability in the response determined by phylogeny and city. The 172 

phylogenetic tree included in the models was a MCC tree from the posterior distribution of 173 

all trees with Ericsson backbone, extracted from the BirdTree.org project (Jetz et al. 2012). 174 

All models were run at the regional and continental scales separately. Lastly, we used a linear 175 

model to test how our urbanness measures categorically separated species, based on 176 

categorical classifications of the local-scale abundance-based urban tolerance index. Effect 177 

sizes of pairwise differences among categories were extracted using the emmeans R-package 178 

(Lenth 2020).  179 

 180 

RESULTS 181 

Our analyses revealed a good correspondence between the urbanness scores and the local-182 

scale abundance-based urban tolerance indices. At the regional-scale, the urbanness scores 183 

showed a clear positive relationship, albeit with a small effect size, with the continuous 184 

version of the local-scale abundance-based urban tolerance index after controlling for city 185 

and phylogenetic effects (posterior mean and 95% C.I. ß=0.035 [0.028-0.043], 186 

pMCMC<0.001; Figure 2a; Figure S4a). We also found evidence for phylogenetic signal in 187 

the urbanness scores (Intra-class coefficient = 0.529, 95% C.I. = 0.525 to 0.533), and some 188 

heterogeneity among cities (Intra-class coefficient = 0.234, 95% C.I. = 0.230 to 0.238). The 189 

urbanness scores were also well-predicted by the categorical representation of the local-scale 190 

abundance-based urban tolerance (Figure 2a), with the lowest mean being derived from the 191 

urban absence category (1.49 ± 2.28), substantially lower than that in the wild absence 192 

category (4.31 ± 6.34) and the urban increase category (5.48 ± 8.03) and the pairwise effect 193 

sizes supported these comparisons (Table S2). When looking at city-specific correlations 194 



(Figure S5; Table S3), all cities were positively correlated with the exception of Tornio, Santa 195 

Fe, La Paz, and Cayenne (average correlation = 0.16, range 0.005-0.44). 196 

 197 

As with the regional-level analyses, the continental-scale analysis of urbanness scores also 198 

revealed a positive relationship with the local-scale abundance-based urban tolerance once 199 

city and phylogenetic effects were accounted for (posterior mean and 95% C.I. ß=0.012 200 

[0.005-0.018], pMCMC<0.001); Figure 2b; Figure S4b). However, this relationship was 201 

much weaker than that for the regional-scale analysis (Figure S4). We also found evidence 202 

for phylogenetic signal in the urbanness scores calculated at the continental-scale (Intra-class 203 

coefficient = 0.910, 95% C.I. = 0.908 to 0.911), and less heterogeneity among cities (Intra-204 

class coefficient = 0.041 95% C.I. = 0.040 to 0.042). The urbanness scores were also well-205 

predicted by the categorical representation of the local-scale abundance-based urban 206 

tolerance (Figure 2b) with the lowest mean urbanness score being derived from the wild 207 

increase category (1.52 ± 1.6) followed by the urban absence category (1.57 ± 3.43) and the 208 

highest mean being derived from the wild absence category (3.58 ± 7.30) followed by urban 209 

increase (3.21 ± 4.88) and the effect sizes confirmed these patterns (Table S2). When looking 210 

at city-specific correlations (Figure S5; Table S3), nearly all cities had a positive correlation 211 

between both metrics (average correlation = 0.15, range 0.0002-0.48). 212 

 213 

DISCUSSION 214 

We leveraged increasingly available and accessible citizen science data and provided 215 

evidence that a simple and intuitive method of deriving species-specific urbanness scores 216 

correlates with local-level abundance data from 26 cities across the world (Figure 2), and that 217 

the accuracy improves with the number of observations used to assess the species-specific 218 

urbanness scores (Figure S1). This study is the broadest validation of the CSUS approach, 219 



demonstrating its potential future utility in urban ecology. Importantly, while the CSUS 220 

approach showed correlation with local-scale survey data from a subset of worldwide cities 221 

(Figure 1), the data used to derive the CSUS approach are globally-applicable (i.e., eBird data 222 

are nearly global, albeit heterogeneously distributed; and VIIRS night-time lights are globally 223 

available). 224 

 225 

The urbanness scores calculated at the regional-scale were more strongly related to the local-226 

scale abundance-based urban tolerance than those derived from continental-scales, and the 227 

relationship at the continental scale was overall quite weak. However, both relationships were 228 

statistically significant and positive (Figure 2; Figure S4), confirming that continental-scale 229 

data correlates, albeit weakly, with regional-scale responses to urbanization (Callaghan et al. 230 

2020a). The main advantage of a continental-scale approach is to broaden species coverage 231 

by increasing the number of observations. In our case, this meant an increase from 771 to 934 232 

species by the addition of species which met the threshold for the minimum number of 233 

observations. However, the use of a continental-scale approach likely comes at a cost of more 234 

variability in species-specific responses, and as the sample sizes continue to increase in 235 

global citizen science data, regional-scale urbanness scores will likely be easier to calculate 236 

for a broader suite of species (i.e., more species will meet the necessary sample thresholds). 237 

 238 

Although we found a consistent correspondence between the urbanness scores and local-scale 239 

abundance-based urban tolerance (Figure 2), there still remained variability among cities, 240 

especially at the regional scale (i.e., 23% of the variability in the model was explained by 241 

city). The cities that showed the weakest correlation (e.g., Valencia) tended to be coastal 242 

cities, where the VIIRS night-time lights measures are more likely to be affected by large 243 

bodies of water. The differences among cities could also be a result of the differing 244 



likelihoods of detection for species in different regions or the differing patterns of use in 245 

eBird among the different regions in our analysis. For example, cities in the US were all 246 

relatively well-correlated, with Gainesville having the highest correlation among cities 247 

(R2=0.44), and Iowa (R2=0.26), and Minneapolis/St. Paul (R2=0.24) were also strongly-248 

correlated, likely reflecting the fact that the United States is where eBird data are currently 249 

most numerous. There are many other city-specific differences that likely influences the 250 

variability among cities, including the connectivity of green areas, the compactness of a city 251 

(i.e., land sharing vs land sparing), the biophysical characteristics of a city, and the human 252 

population density throughout a city. Each of these factors should be further explored in the 253 

context of how the CSUS performs on a city-by-city basis. Although more research is needed 254 

to fully understand the differences among cities, our results suggest that as eBird, and other 255 

large-scale citizen science projects, grow in popularity in other parts of the world, the utility 256 

of our approach may also increase.  257 

 258 

Importantly, we found evidence of phylogenetic effects in the urbanness scores at both the 259 

regional and continental scales, confirming previous results (Sol et al. 2014) with a 260 

conceptually distinct metric. The existence of phylogenetic effect suggests that closely-261 

related species tend to respond to urbanization in a similar way. This is to be expected 262 

considering that some of the adaptations found to affect tolerance to urbanization, like an 263 

encephalized brain or a slow life history strategy, are highly conserved phylogenetically. 264 

Interestingly, we found a much stronger effect of phylogeny when considering urbanness 265 

scores calculated at the continental-scale than the regional-scale, likely a result of 266 

macroecological differences in habitat use reflected by phylogeny over the larger 267 

macroecological scales. Our CSUS approach provides the necessary data to further 268 



disentangle the degree to which urban tolerance is phylogenetically conserved for many 269 

species. 270 

 271 

Our CSUS approach clearly shows promise, but future work should build upon this 272 

foundation and improve this approach to further maximize its utility and validity. First, we 273 

currently focus on macro-ecological patterns (i.e., regional to continental scales), but it is 274 

possible this approach could be used to further inform more localized patterns. For example, 275 

some species change their adaptability to urbanization through time (e.g., Evans et al. 2009), 276 

and future research should test the ability of this approach to appropriately track species’ 277 

changes to urban tolerance through time; both intra-annually and inter-annually. For example, 278 

the utility of VIIRS night-time lights for understanding intra-annual patterns of individual 279 

gulls at a local-scale using GPS-tracking data has recently highlighted the potential for future 280 

work on local-scale urban tolerance (Ramírez et al. 2020). Second, we currently only look at 281 

the presence or absence of a species across an urbanization gradient. Yet, eBird data can 282 

provide relative abundance estimates across this gradient. Future work should thus test 283 

whether there are significant differences between presence/absence and abundance-weighted 284 

measures of the CSUS approach because abundance-weighted measures could provide 285 

valuable insights and more power to differentiate among species-specific responses to 286 

urbanization (e.g., Sol et al. 2020). Third, our approach does not account for the differing 287 

levels of available urban habitat among species’ geographic ranges, potentially influencing 288 

our urbanness scores (Callaghan et al. 2020b). For example, a species may be often observed 289 

in urban areas, yet have a low urbanness score because its geographic range is relatively non-290 

urban. Indeed, this is probably why we found a stronger relationship for regional-scale 291 

urbanness scores than continental-scale urbanness scores when compared with the local-scale 292 

abundance-based urban tolerance index. At a regional-scale (i.e., a 250km buffer) it would be 293 



unlikely that species’ have significantly differing range sizes and most species found within 294 

the city likely have ranges that encompassed the entire regional-buffer, whereas at a 295 

continental-scale species’ geographic ranges would more likely differ and thus the available 296 

urban habitat for that species could also differ; and this probably differentially affects 297 

generalists and specialists. However, methods which account for the available urban habitat 298 

in a species’ range (e.g., by standardizing urbanness scores by a range-wide urbanness 299 

measure) may further enhance our CSUS approach and this should be formally tested 300 

(Callaghan et al. 2020b). Fourth, the CSUS approach relies on the median of the distribution, 301 

potentially missing multimodal responses of a given species. A multimodal distributional 302 

response to urbanization is likely a result of sampling biases from citizen science data, where 303 

birdwatchers preferentially go to known sites for specific species. However, it is also possible 304 

that a given species could show intra-specific variability in their response to urbanization, for 305 

example where one population of a species is an urban adapter in one part of its range but an 306 

urban avoider in another part of its range. We suggest that at the regional-scale (i.e., 250 km 307 

buffer) this is unlikely to be the case because for the common species, they are most likely 308 

able to use any part of the habitat within that buffer. But at continental-scales, it is possible 309 

for species to have differing levels of urban tolerance. Currently, our approach cannot 310 

disentangle multimodal responses to urbanization, but future development should investigate 311 

possible statistical approaches to assess multimodal responses and when this represents 312 

biological variability versus underlying sampling biases. And lastly, while we demonstrate 313 

this approach with data using birds, many other taxa are increasingly studied in urban areas 314 

using citizen science projects, such as bees (Mason and Arathi 2019), butterflies (Matteson et 315 

al. 2012), and mammals (Williams et al. 2015). Therefore, our approach should be formally 316 

implemented using other taxa, potentially relying on broad-scale citizen science projects such 317 

as iNaturalist. 318 



 319 

Current methods of assigning urban tolerance to species have been fundamental in enhancing 320 

our understanding of biodiversity responses to urbanization, but they also have limitations 321 

concerning their interpretation and sampling biases (Sol et al. 2013, 2020). Our approach also 322 

has limitations, as described above, yet it extends previous methods by providing a 323 

continuous measure of tolerance for most species and regions of the planet. Moreover, 324 

integrating our approach with previous metrics will likely provide much promise in our 325 

ability to better predict the responses of biodiversity to urbanization (e.g., Fithian et al. 2014). 326 

The CSUS approach should be used to further our understanding of the effects of 327 

urbanization on biodiversity in under-studied regions where professionally-collected data are 328 

often lacking (e.g., tropical regions), across broad taxonomic coverage (e.g., including many 329 

more species than previously possible), through time (e.g., intra- and inter-annual changes in 330 

responses to urbanization), and across spatial scales (e.g., understanding how species respond 331 

to urbanization at different scales). In conclusion, we showed that there is strong potential in 332 

our CSUS approach, especially at regional scales, and future work should further unlock this 333 

potential and utilize this approach to make broad-scale comparisons advancing urban 334 

ecological and conservation research. 335 
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FIGURES 439 
 440 

 441 
Figure 1. A map showing the 26 cities used in our analysis, colored by general region. 442 
 443 
 444 



 445 
Figure 2. a) The relationship between our citizen science urbanness measure calculated at the 446 
regional-scale (i.e., within a 250 km buffer) and the urban tolerance abundance index for each 447 
city shown on a continuous scale and on a categorical scale. b) The same relationship, but 448 
shown with urban scores calculated using the continental-level spatial scale (see Table S1). 449 
The red line represents the slope and intercept extracted from our MCMCglmm and accounts 450 
for the random effect of city and phylogenetic effects, and the black dashed lines represent 451 
the 95% CI surrounding the slope. A species may be included more than once, if it is detected 452 
in different cities. 453 
 454 


