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Abstract 

 

Objective To investigate whether enlarged perivascular spaces within the basal ganglia or 

deep cerebral white matter are risk factors for intracranial hemorrhage in patients taking oral 

anticoagulants (OAC), independent of established clinical and radiological risk factors, we 

conducted a post hoc analysis of CROMIS-2 (AF), a prospective inception cohort study. 

 

Methods Patients with atrial fibrillation and recent TIA or ischaemic stroke underwent 

standardised MR imaging prior to starting OAC. We rated basal ganglia (BGPVS) and 

centrum semiovale (CSOPVS) perivascular spaces, cerebral microbleeds (CMBs), white 

matter hyperintensities and lacunes. We dichotomized the PVS rating using a threshold of 

>10 PVS in the relevant region of either cerebral hemisphere. The primary outcome was 

symptomatic intracranial hemorrhage (sICH). We identified risk factors for sICH using Cox 

regression. 

 

Results 1386 participants with available clinical and imaging variables were followed up for 

a mean of 2.34 years. 14 sICH occurred (11 intracerebral). In univariable analysis, diabetes, 

CMB presence, lacune presence and >10 BGPVS, but not CSOPVS, were associated with 

sICH. In a multivariable model incorporating all variables with significant associations in 

univariable analysis, >10 BGPVS (HR 8.96, 95% CI 2.41 – 33.4, p = 0.001) and diabetes 

(HR 3.91, 95% CI 1.34 – 11.4) remained significant risk factors for sICH.  
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Conclusion Enlarged BGPVS might be a novel risk factor for OAC-related ICH. The 

strength of this association and potential use in predicting ICH in clinical practice should be 

investigated in larger cohorts. 

Introduction 

 

Within the brain, the perivascular space is the compartment bounded by the wall of 

penetrating cerebral blood vessels and the glia limitans, which might facilitate fluid 

circulation and clearance of soluble waste, including amyloid-beta, from brain parenchyma 1-

3. In age and disease, perivascular spaces may enlarge and become MRI-visible, as fluid-

filled structures most easily assessed within the basal ganglia and the centrum semiovale 

white matter. Cross-sectional studies of intracerebral haemorrhage (ICH) survivors have 

associated enlarged basal ganglia perivascular spaces (BGPVS) with deep ICH, increased 

white matter hyperintensity volume, and deep cerebral microhemorhages (CMBs), and 

enlarged centrum semiovale perivascular spaces (CSOPVS) with lobar ICH and cerebral 

amyloid angiopathy (CAA) 4-6. In cognitively-impaired patients, BGPVS are associated with 

hypertension, deep CMBs and lacunes, and CSOPVS with lobar CMBS, cortical superficial 

siderosis and Alzheimer’s disease 7-9.  

Together, these data suggest that BGPVS might be markers of deep perforator arteriopathy, 

and CSOPVS of amyloid-beta pathology, including CAA. PVS might therefore also indicate 

increased ICH risk. A prospective study of patients with TIA or ischaemic stroke found an 

association between >20 BGPVS in either hemisphere and incident ICH, though this was not 

statistically significant when adjusted for vascular risk factors 10. We wished to investigate 

this question in patients with atrial fibrillation taking oral anticoagulants (OAC) after 

ischaemic stroke or TIA. We hypothesized that BGPVS and CSOPVS would be associated 

with anticoagulant-related intracranial hemorrhage (OAC-ICH), independent of other 
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markers of cerebral small vessel disease linked to OAC-ICH, notably CMBs and white matter 

hyperintensities 11,12. 

 

Methods 

 

Study design 

We conducted a post hoc analysis of the CROMIS-2 (AF) study, a multicenter prospective 

inception cohort study of the relationship between cerebral microbleeds and anticoagulant-

related symptomatic intracranial hemorrhage. The design, full description of the cohort, and 

primary results of this study have been published elsewhere11. Briefly, we recruited adult 

patients with atrial fibrillation initiating oral anticoagulation after recent ischaemic stroke or 

TIA from 79 hospitals in the United Kingdom and one in the Netherlands, between August 

2011 and July 2015. MR imaging was performed at baseline according to a standardised 

protocol, including axial T1- and T2 –weighted, coronal fluid-attenuated inversion recovery 

(FLAIR), diffusion-weighted, and T2*-weighted GRE sequences. To reduce selection bias, 

imaging was performed after study enrolment, and we only enrolled participants whose 

responsible clinician had already decided to treat with an anticoagulant. We followed up 

participants for 24 months using multiple overlapping methods, including postal 

questionnaires, telephone interviews, and hospital episode statistics. The primary outcome 

was symptomatic intracranial hemorrhage (sICH), defined as brain-imaging evidence of non-

traumatic spontaneous intracranial hemorrhage with appropriate clinical symptoms.  

 

Neuroimaging analysis 

We analyzed participants’ MR imaging for markers of cerebral small vessel disease 

according to STRIVE definitions 13. Trained research fellows (JGB, DW, GB, HD) 
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performed ratings blinded to the occurrence of sICH during follow-up, using validated rating 

scales where available. One of two raters (GB, HD) rated PVS at the level of the basal 

ganglia and centrum semiovale separately, using a five-level scale which assigns a score of 0 

to no visible perivascular spaces, 1 to 1 – 10, 2 to 11 – 20, 3 to >21 – 40, and 4 to >40 

perivascular spaces 14.   We rated each hemisphere, unless prevented by the presence of a 

focal lesion, and used the higher of the two values. We rated cerebral microbleeds (CMBs) 

using the Microbleed Anatomical Rating Scale 15, and white matter hyperintensities using the 

Age-Related White Matter Changes (ARWMC) scale (DW) 16. We identified and counted 

lacunes (GB, HD). 

Given the possibility that enlarged perivascular spaces might predominantly reflect cerebral 

atrophy, one of two raters (GB, JGB) rated each participant’s imaging using the simplified 

Pasquier Scale 17, which quantifies the global severity of cortical atrophy (GCA) on a four-

level scale (0: no atrophy, 1: sulcal widening, 2: gyral volume loss, 3: ‘knife-blade’ atrophy).  

We used axial T1 or FLAIR images for rating if available, and inverted axial T2 images if 

not. When a significant focal lesion was present, we rated the non-lesioned hemisphere. 

When more than one rater rated a marker, we assessed inter-rater agreement on a random 

sample using Cohen’s Kappa, weighted for ordinal variables. 

 

Statistical analysis 

We investigated the association between enlarged perivascular spaces and the hazard of 

symptomatic intracranial hemorrhage using Cox regression. As well as BGPVS and 

CSOPVS, we prespecified age, sex, clinical history of diabetes mellitus and clinical history of 

hypertension as clinical independent variables and ARWMC score, cerebral microbleeds, 

lacunes and GCA as additional imaging independent variables. We chose not to include 

cortical superficial siderosis (cSS) due to its very low prevalence in our study population. 
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Using a predetermined threshold previously associated with the presence of other small 

vessel disease markers 14 and incorporated into a validated composite small vessel disease 

score as representing moderate to severe PVS18, we dichotomised perivascular space counts 

in our analysis as 0 – 10 or >10, equivalent to a PVS score of 0 – 1 and 2 – 4 respectively. 

We dichotomised cerebral microbleeds and lacunes as present or absent. We included the 

ARWMC score as a continuous variable. As very few participants received a GCA rating of 

three, we combined categories 2 and 3 to give a three-level ordinal variable comprising no 

atrophy (0), minor atrophy (1), and moderate-severe atrophy (2-3). To reduce the risk of 

overfitting, we initially performed univariable analysis for each variable, and included only 

variables with an association at the 20% level in our final multivariable analysis. We checked 

the proportional hazards assumption using visual inspection of log-log plots of the log 

cumulative hazard against log time and through post-estimation tests based on Schoenfeld 

residuals. We summarized our results graphically using plots of the Kaplan-Meier failure (1 – 

survival) function. Statistical analysis was performed using Stata version 15.0. 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

The UK National Health Service Research Ethics Committee approved the CROMIS-2 study. 

Patients with capacity provided written informed consent. We obtained proxy written 

informed consent if patients lacked capacity to consent, following relevant local legislation. 

 

Data Availability 

We will share anonymized data on reasonable request, following consideration by the 

CROMIS-2 steering committee and execution of a data sharing agreement. Requests should 

be submitted to d.werring@ucl.ac.uk. 
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Results 

 

The primary analysis of the CROMIS-2(AF) study included 1447 participants who met the 

main study inclusion criteria and had follow-up data available. Of these, 1386 participants 

(95.8%) had all additional variables of interest needed for this secondary analysis (Figure 1). 

Participants excluded from our secondary analysis due to missing variables were more likely 

to be female and have hypertension.  As other variables were comparable (Table 1) and the 

overall proportion of missing data was very low, we performed a complete case analysis.  

During 3251 participant-years of follow-up, 14 sICH occurred (11 intracerebral, two 

subdural, 1 subarachnoid). The median time from anticoagulation initiation to sICH was 272 

days (IQR 211 – 657). Of the ten intracerebral haemorrhages for which data on location was 

available, two were deep, four were infratentorial, and four were lobar. Table 2 summarizes 

the clinical and radiological characteristics of participants with and without sICH during 

follow-up.  Interrater agreement for dichotomized PVS score was excellent (k = 0.82) within 

the basal ganglia and substantial (k = 0.80) within the centrum semiovale (n = 50). 

Agreement for GCA rating was moderate (k = 0.53; n = 100), comparable to that in other 

existing literature 19.  We observed a weak correlation between GCA and BGPVS grade 

(Spearman’s rho 0.17, 95% CI 0.12 – 0.22), but not CSOPVS grade (r = 0.04, 95% CI -0.01 – 

0.01). 

Univariable Cox regression showed associations between BGPVS, diabetes, lacune presence, 

and cerebral microbleed presence and sICH (Table 3). We found no evidence of an 

association between CSOPVS and sICH. In a multivariable model incorporating diabetes, 

BGPVS, cerebral microbleed presence and lacune presence, we found strong evidence of an 

association with sICH for enlarged BGPVS and diabetes, and weak evidence of an 

association for cerebral microbleed presence. No evidence of an association was found for 
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lacune presence. Figure 2 shows the cumulative incidence of sICH during study follow-up 

for participants with 0 – 10 and >10 BGPVS. The absolute rate of sICH in participants with 

>10 BGPVS was 1.38/100 participant-years (95% CI 0.69 – 2.47), compared to 0.12/100 

participant-years (95% CI 0.025 – 0.36) in participants with 0 – 10 BGPVS. 

 Given the number of variables included in our multivariable model relative to the number of 

outcome events, we performed additional sensitivity analyses, testing each combination of 

BGPVS presence and diabetes, cerebral microbleed presence or lacune presence individually 

(Table 4). The result of each analysis was similar to that of the main multivariable model. We 

also undertook a sensitivity analysis to investigate the effect of dichotomising PVS as 0 – 20 

or >20, rather than 0 – 10 or >10. Using this threshold, we did not find an association 

between higher BGPVS or CSOPVS counts and sICH (BGPVS: HR 1.0, 95% CI 0.13 – 7.5; 

CSOPVS: HR 1.3, 95% CI 0.36 – 4.6);  however, few participants in our study had counts 

>20 in either location (Table 2), and confidence intervals for both estimates were wide. 

For each model, visual inspection of log-log plots suggested no violation of the proportional 

hazards assumption. Although post-estimation tests provided some evidence that the 

assumption was violated for hypertension (p = 0.037), the estimate of the hazard ratio for 

sICH for hypertension provided no evidence for an association, and hypertension was not 

included in our multivariable model. 

 

Discussion 

 

Our main finding is an association between enlarged PVS within the basal ganglia, but not 

centrum semiovale, and OAC-ICH, independent of major vascular risk factors and other 

markers of cerebral small vessel disease. The estimate and 95% confidence interval of the 

hazard ratio was consistent with a clinically meaningful association, and was highly 
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statistically significant, though lacked precision. Although preliminary, our finding raises the 

possibility that enlarged BGPVS might be a clinically-relevant marker of OAC-ICH risk. 

Other studies have provided supportive observational evidence that incorporating small 

vessel disease markers, specifically CMB presence and WMH severity, can improve the 

performance of clinical risk scores for ICH 11,12, and the current analysis  suggests that 

incorporating BGPVS status into these scores might usefully be investigated.  An advantage 

of BGPVS status as a marker might be that it can be quantified on axial T2 imaging, a routine 

component of nearly all clinical MRI brain imaging. 

Our findings add to the evidence linking enlarged PVS to cerebrovascular disease, but why 

PVS enlargement might occur in the setting of hemorrhage-prone cerebral small vessel 

disease remains unclear. PVS enlargement might reflect extravasation of fluid across 

damaged small vessel walls, possibly compounded by recruitment of inflammatory cells to 

the perivascular space, where they might promote further loss of blood-brain barrier integrity 

and impair perivascular fluid transport 20. In cerebral amyloid angiopathy, perivascular 

aggregation of amyloid-beta may also impair drainage 21, but this is less likely to mediate the 

association between BGPVS and ICH we observed. It is possible that more advanced cerebral 

small vessel disease might lead directly to PVS enlargement through ischemic brain atrophy. 

We consider this less likely, as we corrected for a measure of overall cerebral atrophy, and 

observed an association which was independent of other cerebral small vessel disease 

markers, more consistent with BGPVS enlargement being a sensitive marker or early feature 

of cerebral small vessel disease. Finally, the association between BGPVS and ICH might be 

mediated by a shared underlying mechanism. For example, arterial stiffening has recently 

been associated with BGPVS 22, adjusted for major vascular risk factors, and also with deep 

ICH cross-sectionally and new CMB formation prospectively 23,24. By reducing damping of 

the cardiac impulse and increasing transmission of pulsatile force to small cerebral arteries 25, 
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arterial stiffening might increase ICH risk, and promote PVS formation by altering small 

vessel pulsatility, thought to be a key driver of perivascular fluid transport 26,27. 

Unexpectedly, we did not find an association between CSOPVS and sICH, despite evidence 

linking CSOPVS to cerebral amyloid angiopathy. We considered whether CSOPVS might 

simply be more difficult to measure reliably than BGPVS, leading to increased statistical 

noise and difficulty in detected any associations which do exist, but our excellent interrater 

reliability for both BGPVS and CSOPVS argues against this. More likely explanations 

include the low specificity of the association between CSOPVS and CAA, as CSOPVS 

enlargement also occurs in Alzheimer’s disease without clinical CAA, and the low proportion 

of our study population (3%) who met modified Boston criteria for CAA, probably because 

such patients are not generally viewed as eligible for anticoagulation. Lastly, differences in 

regional vascular anatomy might contribute. Whereas the hemispheric white matter is 

supplied by penetrating branches of distal cortical arteries, the basal region of the brain is 

supplied by small perforating arteries which arise directly from large cerebral arteries. These 

vessels are therefore exposed to higher peak blood pressures 28, and so to the effects of 

systemic hypertension and, potentially, arterial stiffening. BGPVS enlargement might 

therefore be a more sensitive marker of these processes than CSOPVS. 

As a secondary analysis of CROMIS-2 (AF), our study has methodological strengths: this 

was a large, multicenter prospective inception cohort study, recruiting a population similar in 

age, prevalence of vascular risk factors, and stroke severity, to the overall case mix of UK 

stroke units29. We obtained a >97% follow-up rate, and sICH events were adjudicated 

centrally without knowledge of CMB or PVS status. The MR imaging protocol was 

standardized between sites, and imaging markers were rated blinded to sICH during follow-

up. We obtained substantial or excellent interrater agreement for key small vessel disease 

markers. 
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Our study has limitations, which we acknowledge. Most importantly, as a post hoc analysis, 

our results should be considered hypothesis-generating. The need for verification of our 

findings in an independent cohort is emphasised by the low number of outcome events 

observed, although we attempted to limit overfitting of our multivariable regression model by 

using a variable-selection procedure, and undertook additional sensitivity analyses. We 

included a clinical history of hypertension as an independent variable in our analysis, but we 

lacked data on BP control prior to or during the study, as well as details of anticoagulation 

control intensity for warfarin-treated patients, and adherence to anticoagulation for all 

participants. As eligibility for anticoagulation was an inclusion criterion for the study, our 

cohort might not be fully representative of the overall population of AF patients in whom 

anticoagulation is considered, and although study-specific imaging was performed after the 

decision to treat with anticoagulation was made, we cannot exclude the possibility that patient 

selection to our study may have been influenced by the results of imaging already performed 

as part of clinical care. The generalizability of our result may be further affected by our 

predominantly (95%) Caucasian study population, and the low proportion of patients taking 

direct oral anticoagulants (37%), which are increasingly preferred to warfarin in clinical 

practice due to their lower risk of ICH. Of the 14 ICH events observed in our study, 12 were 

in warfarin-treated patients.  

As well as validating our findings, further study in a large independent cohort is needed to 

allow precise estimation of the strength of the association between BGPVS and OAC-ICH, 

and investigation of its association with BGPVS count or score, rather than the dichotomized 

rating used in this study. We failed to observe an association between >20 BGPVS and sICH, 

in contrast to a previous study 10, which we attribute to the low prevalence of higher PVS 

counts in our study and the small number of outcome events observed. However, the 

relationship between BGPVS count and sICH might also be non-linear, showing a ‘threshold’ 
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effect, and larger, better-powered studies might clarify this. Such studies might also 

investigate the relationship between PVS and different locations of sICH (for example, lobar 

vs deep/infratentorial intracerebral haemorrhage, or intracerebral vs subdural or subarachnoid 

haemorrhage), which have different biological mechanisms. 

The clinical importance of our finding will depend on whether adding BGPVS status to 

existing ICH risk models can improve their performance, which we chose not to investigate 

in our cohort due to the risk of overfitting, and clarification of whether BGPVS are also 

associated with ischaemic stroke, and the strength of this association, if present, relative to 

that with ICH. This information is needed to establish whether BGPVS status should 

influence the selection of pharmacological and non-pharmacological treatments for stroke 

prevention in patients with AF in clinical practice. Large-scale global collaboration between 

cohort studies of OAC-related ICH, such as the Microbleeds International Collaborative 

Network (MICON) 30, might provide a means by which to investigate these unanswered 

questions. 

 

Appendix 1: Authors 

Name Location Contribution 

Jonathan G Best, 

MRCP 

University College 

London 

Design of study; analysis and interpretation of 

data; drafting the manuscript for intellectual 

content. 

Carmen Barbato, 

MD 

University College 

London  

Analysis and interpretation of data; revising 

manuscript for intellectual content 

Gareth Ambler, 

PhD 

University College 

London 

Analysis of data; revising manuscript for 

intellectual content 

Houwei Du, MD Fujian Medical Analysis of data; revising manuscript for 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 16 

University intellectual content 

Gargi Banerjee, 

PhD, MRCP 

University College 

London 

Analysis of data; revising manuscript for 

intellectual content 

Duncan Wilson, 

PhD 

University College 

London 

Analysis of data; revising manuscript for 

intellectual content 

Clare Shakeshaft, 

MSc 

University College 

London 

Major role in acquisition of data; revising 

manuscript for intellectual content 

Hannah Cohen, 

MD, FRCP 

University College 

London 
Revising manuscript for intellectual content 

Tarek A Yousry, 

FRCR 

University College 

London 
Revising manuscript for intellectual content 

Rustam Al-Shahi 

Salman, PhD 
University of Edinburgh Revising manuscript for intellectual content 

Gregory Y H Lip, 

FRCP 

University of Liverpool, 

UK; Liverpool Heart 

and Chest Hospital, UK; 

Aalborg University, 

Denmark 

Revising manuscript for intellectual content 

Henry Houlden, 

MRCP 

University College 

London 
Revising manuscript for intellectual content 

Martin M Brown, 

FRCP 

University College 

London 
Revising manuscript for intellectual content 

Keith W Muir, MD, 

FRCP 
University of Glasgow Revising manuscript for intellectual content 

Hans Rolf Jäger, University College Analysis of data; revising manuscript for 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 17 

MD, FRCR London intellectual content 

David J Werring, 

PhD 

University College 

London 

Study conceptualisation and design; 

interpretation of data; revising manuscript for 

intellectual content 

 

References 

 

1.  Pollock H, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal 

ganglia of the human brain: Their relationship to lacunes. J Anat. 1997; 191(3):337-346.  

2.  Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through 

the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl 

Med. 2012; 4(147):147ra111. 

3.  Preston SD, Steart P V., Wilkinson A, Nicoll JAR, Weller RO. Capillary and arterial 

cerebral amyloid angiopathy in Alzheimer’s disease: Defining the perivascular route for the 

elimination of amyloid β from the human brain. Neuropathol. Appl. Neurobiol. 2003; 

29(2):106-117.  

4.  Charidimou A, Meegahage R, Fox Z, et al. Enlarged perivascular spaces as a marker 

of underlying arteriopathy in intracerebral haemorrhage: A multicentre MRI cohort study. J 

Neurol Neurosurg Psychiatry. 2013; 84(6):624-629.  

5.  Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral 

amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017; 88(12):1157-1164. 

6.  Koo HW, Jo K Il, Yeon JY, Kim JS, Hong SC. Clinical features of high-degree 

centrum semiovale-perivascular spaces in cerebral amyloid angiopathy. J Neurol Sci. 2016; 

367:89-94.  

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 18 

7.  Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, et al. Topography of dilated 

perivascular spaces in subjects from a memory clinic cohort. Neurology. 2013; 80(17):1551-

1556. 

8.  Shams S, Martola J, Charidimou A, et al. Topography and Determinants of Magnetic 

Resonance Imaging (MRI)-Visible Perivascular Spaces in a Large Memory Clinic Cohort. J 

Am Heart Assoc. 2017; 6(9):e006279  

9.  Banerjee G, Kim HJ, Fox Z, et al. MRI-visible perivascular space location is 

associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017; 

140(4):1107-1116.  

10.  Lau KK, Li L, Schulz U, et al. Total small vessel disease score and risk of recurrent 

stroke. Neurology. 2017; 88(24):2260-2267. 

11.  Wilson D, Ambler G, Shakeshaft C, et al. Cerebral microbleeds and intracranial 

haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke 

or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet 

Neurol. 2018; 17:539–547.  

12.  Martí-Fàbregas J, Medrano-Martorell S, Merino E, et al. MRI predicts intracranial 

hemorrhage in patients who receive long-term oral anticoagulation. Neurology. 2019; 

92(21):e2432-e2443.  

13.  Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into 

small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 

2013; 12:822–838.  

14.  Doubal FN, MacLullich AMJ, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged 

Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke. 2010; 

41(3):450-454 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 19 

15.  Gregoire SM, Chaudhary UJ, Brown MM, et al. The Microbleed Anatomical Rating 

Scale (MARS): Reliability of a tool to map brain microbleeds. Neurology. 2009; 

73(21):1759-66.  

16.  Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white 

matter changes applicable to MRI and CT. Stroke. 2001; 32(6):1318-1322.  

17.  Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: A 

critical evaluation of MRI atrophy scales. J. Neurol. Neurosurg. Psychiatry. 2015; 

86(11):1225-1233  

18. Staals J, Makin SDJ, Doubal FN, et al. Stroke subtype, vascular risk factors, and total 

MRI brain small-vessel disease burden. Neurology. 2014; 83(14):1228-1234. 

19.  Henneman WJP, Sluimer JD, Cordonnier C, et al. MRI biomarkers of vascular 

damage and atrophy predicting mortality in a memory clinic population. Stroke. 2009; 

40(2):492-498.  

20.  Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular 

space in cerebral small vessel disease. Cardiovasc. Res. 2018; 114(11):1462-1473. 

21.  Charidimou A, Boulouis G, Gurol ME, et al. Emerging concepts in sporadic cerebral 

amyloid angiopathy. Brain. 2017; 140(7): 1829-1850. 

22.  Riba-Llena I, Jiménez-Balado J, Castañé X, et al. Arterial stiffness is associated with 

basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke. 

2018; 49(5):1279-1281. 

23.  Acampa M, Guideri F, Di Donato I, et al. Arterial Stiffness in Patients with Deep and 

Lobar Intracerebral Hemorrhage. J Stroke. 2014; 16(3):184-8.  

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 20 

24.  Ding J, Mitchell GF, Bots ML, et al. Carotid arterial stiffness and risk of incident 

cerebral microbleeds in older people: The Age, Gene/Environment Susceptibility (AGES)-

Reykjavik study. Arterioscler Thromb Vasc Biol. 2015; 35(8):1889-95. 

25.  Mitchell GF, Van Buchem MA, Sigurdsson S, et al. Arterial stiffness, pressure and 

flow pulsatility and brain structure and function: The Age, Gene/Environment Susceptibility-

Reykjavik Study. Brain. 2011; 134(11):3398-3407.  

26.  Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial 

pulsations and is reduced in hypertension. Nat Commun. 2018; 9(1):4878. 

27.  Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives 

paravascular CSF-Interstitial fluid exchange in the murine brain. J Neurosci. 2013; 

33(46):18190-18199.  

28.  Spence JD. Blood pressure gradients in the brain: Their importance to understanding 

pathogenesis of cerebral small vessel disease. Brain Sci. 2019; 9(2):e21. 

29.  SSNAP national audit data, January - March 2019 [online]. Accessed October 3 2019 

at: https://www.strokeaudit.org/Documents/National/Clinical/JanMar2019/JanMar2019-

FullResultsPortfolio.aspx  

30.  Wilson D, Ambler G, Lee KJ, et al. Cerebral microbleeds and stroke risk after 

ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data 

from cohort studies. Lancet Neurol. 2019; 18(7):653-665.  

 

 

 

 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



WERRING 21 

Table 1: characteristics of study population 

Comparison of characteristics of participants included in analysis to those excluded for 

missing at least one variable. Values show prevalence for categorical variables, and mean 

(SD) or median (IQR) for continuous variables.  

 

Characteristic Included (n = 1386) Excluded (n = 61) 

Age 75.8 (10.4) 78.2 (9.2) 

Female sex 575/1386 (41.5%) 36/61 (59.0%) 

Hypertension 876/1386 (63.2%) 30/39 (76.9%) 

Diabetes 229/1386 (16.5%) 13/59 (22.03%) 

>10 BGPVS 363/1386 (26.2%) 14/48 (29.2%) 

>10 CSOPVS 665/1386 (48.0%) 23/48 (47.9%) 

Lacune presence 286/1386 (20.6%) 9/41 (22.0%) 

CMB presence 288/1386 (20.8%) 16/61 (26.2%) 

ARWMC score 1 (0 – 3) 1 (0 – 3) 

cSS presence 5/1386 (0.35%) 0 (0%) 

0 461/1386 (33.3%) 17/59 (28.8%) 

1 613/1386 (44.2%) 29/59 (49.2%) 

GCA score 

2 - 3 312/1386 (22.5%) 13/59 (22.0%) 

sICH during follow-up 14/1386 (1%) 0/61 (0%) 
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Table 2: characteristics of patients with and without sICH 

Comparison of characteristics of participants included in analysis with and without sICH 

during follow-up. Values show prevalence for categorical variables, and mean (SD) or 

median (IQR) for continuous variables.  

Characteristic No sICH (n = 1372) sICH (n = 14) 

Age 75.8 (10.4) 78.6 (10.5) 

Female sex 570/1372 (41.6%) 5/14 (35.7%) 

Hypertension 868/1372 (63.3%) 8/14 (57.1%) 

Diabetes 223/1372 (16.3%) 6/14 (42.9%) 

>10 BGPVS 352/1372 (25.7%) 11/14 (78.6%) 

0 62/1372 (4.5%) 0/14 (0%) 

1 - 10 958/1372 (69.8%) 3/14 (21.4%) 

11 - 20 247/1372 (18.0%) 10/14 (71.4%) 

21 - 40 86/1372 (6.3%) 1/14 (7.1%) 

BGPVS 

count 

>40 19/1372 (1.4%) 0/14 (0%) 

>10 CSOPVS 658/1372 (48.0%) 7/14 (50.0%) 

0 80/1372 (5.8%) 0/14 (0.0%) 

1 - 10 634/1372 (46.2%) 7/14 (50.0%) 

11 - 20 421/1372 (30.7%) 4/14 (28.6%) 

21 - 40 197/1372 (14.4%) 3/14 (21.4%) 

CSOPVS 

count 

>40 40/1372 (2.9%) 0/14 (0.0%) 

Lacune presence 280/1372 (20.4%) 6/14 (42.9%) 

CMB presence 281/1372 (20.5%) 7/14 (50.0%) 

CMB Deep 113/1372 (8.2%) 1/14 (7.1%) 
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Lobar 102/1372 (7.4%) 3/14 (21.4%) distribution 

Mixed 66/1372 (4.8%) 3/14 (21.4%) 

ARWMC score 1 (0 – 3) 1.5 (0 – 5) 

cSS presence 4/1372 (0.3%) 1/14 (7.1%) 

0 455/1372 (33.2%) 6/14 (42.9%) 

1 607/1372 (44.2%) 6/14 (42.9%) 

GCA score 

2 - 3 310/1372 (22.6%) 2/14 (14.3%) 
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Table 3: Associations between variables and sICH 

Hazard ratios (with 95% CI) in univariable analysis are shown for each study variable. 

Multivariable hazard ratios refer to a model incorporating all variables with p < 0.2 in 

univariable analysis. 

Characteristic Univariable HR P value Multivariable HR P value 

Age 1.04 (0.98 – 1.09) 0.22 NA NA 

Female sex 0.82 (0.27 – 2.43) 0.72 NA NA 

Hypertension 0.79 (0.28 – 2.29) 0.67 NA NA 

Diabetes 3.88 (1.35 – 11.2) 0.012 3.91 (1.34 – 11.4) 0.012 

>10 BGPVS 10.8 (3.01 – 38.7) 0.000 8.96 (2.41 – 33.4) 0.001 

>10 CSOPVS 1.06 (0.37 – 3.01) 0.92 NA NA 

Lacune presence 2.97 (1.03 – 8.57) 0.044 1.54 (0.52 – 4.59) 0.43 

CMB presence 3.80 (1.33 – 10.8) 0.013 2.61 (0.90 – 7.54) 0.077 

ARWMC score 1.07 (0.86 – 1.34) 0.55 NA NA 

GCA score: 1 0.76 (0.25 – 2.37) 0.64 NA NA 

                    2 - 3 0.52 (0.11 – 2.59) 0.43 NA NA 
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Table 4: sensitivity analyses 

Multivariable hazard ratio (with 95% CI) is shown for each variable in each model tested. 

 

Model Components Multivariable HR 

1 >10 BGPVS 11.5 (3.20 – 41.3) 

 Diabetes 4.37 (1.51 – 12.6) 

2 >10 BGPVS 9.46 (2.6 – 34.2) 

 CMB presence 2.84 (0.99 – 8.17) 

3 >10 BGPVS 9.55 (2.60 – 35.1) 

 Lacune presence 1.77 (0.60 – 5.20) 
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Figure 1: Study flowchart 

 

 

Figure 2: Cumulative probability of symptomatic ICH by BGPVS rating 
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