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Abstract

Metric learning aims to learn a distance measure that can benefit distance-based1

methods such as the nearest neighbor (NN) classifier. While considerable efforts2

have been made to improve its empirical performance and analyze its generalization3

ability by focusing on the data structure and model complexity, an unresolved ques-4

tion is how choices of algorithmic parameters such as training time affect metric5

learning as it is typically formulated as an optimization problem and nowadays6

more often as a non-convex problem. In this paper, we theoretically address this7

question and prove the agnostic Probably Approximately Correct (PAC) learnabil-8

ity for metric learning algorithms with non-convex objective functions optimized9

via gradient descent (GD); in particular, our theoretical guarantee takes training10

time into account. We first show that the generalization PAC bound is a sufficient11

condition for agnostic PAC learnability and this bound can be obtained by ensuring12

the uniform convergence on a densely concentrated subset of the parameter space.13

We then show that, for classifiers optimized via GD, their generalizability can14

be guaranteed if the classifier and loss function are both Lipschitz smooth, and15

further improved by using fewer iterations. To illustrate and exploit the theoretical16

findings, we finally propose a novel metric learning method called Smooth Metric17

and representative Instance LEarning (SMILE), designed to satisfy the Lipschitz18

smoothness property and learned via GD with an early stopping mechanism for19

better discriminability and less computational cost of NN.20

1 Introduction21

A good measure of distance between instances is important to many machine learning algorithms,22

such as the nearest neighbor (NN) classifier and k-means clustering. As it is difficult to handcraft23

an optimal distance for each task, metric learning appears as an appealing technique to learn the24

distance metric automatically and directly from the data. The most widely studied metric is the25

Mahalanobis distance and it is often learned as an optimization problem [46, 16, 44]. To enhance the26

discriminability of the learned metric, various loss functions have been designed, considering the local27

property of heterogeneous data [14, 42, 21, 4, 33, 49, 39, 11] and the nonlinear geometry of the sample28

space [22, 53, 7]. Meanwhile, to achieve good generalization and robustness, different regularizations29

have been imposed to control the model complexity [27, 24, 45, and references therein]. In addition to30

methodological advances, theoretical guarantees of metric learning algorithms, as well as guarantees31

of metric-based classifiers [2, 18], have been provided. In particular, generalization bounds have32

been founded on the complexity measure of the model class [50, 3, 6, 41, 29, 48], algorithmic33

stability [25, 18, 15], and algorithmic robustness [1]. The intrinsic complexity of the dataset has also34

been considered in recent works [41, 29].35
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While the data structure and model complexity play a vital role in metric learning, an equally36

important but as yet poorly understood factor is the choice of optimization algorithms and the37

associated parameters [37]. For example, when metric learning is formulated as a non-convex38

problem and optimized by using the gradient descent algorithm, its solution is inevitably influenced39

by factors such as the learning rate and the number of training iterations; different local minima will40

then exhibit different generalization behavior.41

Therefore, the goal of this paper is to provide a new route to theoretical exploration and exploitation42

of the effect of the gradient descent (GD) algorithm on metric learning methods. To this end, we43

provide a generalization bound which suggests that early stopping, smooth classifier and smooth loss44

function have crucial influence on the generalization error. We highlight that our results are obtained45

without using any property of convex optimization, and hence are applicable to non-convex metric46

learning methods. The contributions of this paper are fourfold.47

1. We show that the generalization Probably Approximately Correct (PAC) bound, which is a weaker48

notion than the uniform convergence condition, is a sufficient condition for a parametric hypothesis49

class to be agnostic PAC learnable (Theorem 1).50

2. To facilitate the derivation of the generalization PAC bound of a hypothesis class, we propose51

a new decomposition theorem to decompose the bound into two terms that can be easily guaran-52

teed (Theorem 2). The first term constrains the space of the estimated parameters of the hypothesis,53

reducing it from the entire parameter space to a high-confidence subset of the parameter space. The54

second term considers the uniform convergence condition of the concentrated subset.55

3. Based on the decomposition theorem, we obtain the generalization PAC bound for classifiers56

learned with the gradient descent algorithm (Theorem 3). The bound shows that the generalization gap57

increases over iterations, thus providing a theoretical support for the practical use of early stopping.58

Moreover, it shows that a Lipschitz smooth (i.e. Lipschitz continuous of the gradient) classifier and a59

Lipschitz smooth loss function are necessary for generalization guarantee.60

4. We propose a novel metric learning method as a concrete example of using the generalization PAC61

bound. When classifying a test instance, the NN classifier has to store the entire training set and62

calculate its distances to all training instances, thereby incurring high storage and computational costs.63

To reduce these costs and improve the generalization performance, we propose to simultaneously64

learn the distance metric and few representative instances which serve as the reference points for65

testing; the new method is called Smooth Metric and representative Instance LEearning (SMILE).66

More specific, to ensure good test performance, SMILE adopts a Lipschitz smooth classifier and67

loss function and is optimized via GD with a designed early stopping mechanism. The method is68

evaluated on 12 datasets and shows competitive performance against existing methods.69

1.1 Related work70

Generalization bound of GD with early stopping Early stopping in regularizing the model com-71

plexity and its effect on the generalization ability have been extensively studied for a wide range of72

methods, such as perceptron algorithm [8], kernel regression [47], and deep neural networks [31]. Our73

algorithm-dependent PAC bound is motivated by [20], which proves the generalizability for models74

learned with stochastic GD. The main difference between [20] and our work is that [20] studies75

the expected generalization gap, which is not a sufficient condition for agnostic PAC learnablility,76

whereas the generalization PAC bound studied in this paper is a sufficient condition. Consequently,77

we need a new decomposition theorem so that the generalization PAC bound can be used to analyze78

models learned with GD.79

Generalization bounds for Lipschitz classifiers and losses [28, 17] use Lipschitz functions as80

large margin classifiers in general metric spaces and provide generalization bounds for Lipschitz81

classifiers. Our theoretical guarantee is different from their work in two aspects. First, the input82

space of the Lipschitz constant is the data space in [28, 17], whereas the input space is the parameter83

space in our paper. Second, owing to this difference, the generalization bound obtained in our work84

has a faster convergence in most cases. [41] derives the generalization bound for metric learning85

algorithms with Lipschitz continuous loss functions. However, when taking the influence of GD into86

account, Lipschitz continuity is not sufficient to guarantee the generalizability; Lipschitz smoothness87

is also needed. [48] makes use of a smooth loss function to obtain a fast generalization. However,88
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their work requires the objective function to be strongly convex, which is different from our focus on89

non-convex problems.90

Metric learning with representative instances Reducing the amount of necessary training data91

as a way of reducing the storage and computational costs of NN has been extensively studied, e.g.92

in [30, 52, 35]. Among these methods, SNC [26] and ProtoNN [19] are the most relevant to our work,93

as they also learn the distance metric and representative instances simultaneously. Our method differs94

from them in the loss function and regularization terms, both of which are designed in our work to95

provide a theoretical guarantee on the classification performance.96

2 Preliminaries97

2.1 Notation98

This paper focuses on binary classification problems. Let zn = {zi = (xi, yi), i = 1, . . . , n} 2 Z
n99

denote the set of n independent and identically distributed (i.i.d.) training instance and label pairs,100

sampled from an unknown joint distribution p(z) = p(x, y). Let h(x,w) be a function with instance101

x and parameter w 2W ✓ RQ. The output of h(x,w) is restricted to be a real value; sign [h(x,w)]102

returns the classification decision, where sign[·] denotes the sign function.103

During the training process of the classifier, given zn, a classifier or hypothesis ĥ can be obtained104

from an optimization algorithm, such as GD. Rn(zn, ĥ) := 1
n

P
i r(zi, ĥ) :=

1
n

P
i l(ĥ(xi), yi) is105

called the training error, where r(·, ·) denotes the risk function and l(·, ·) denotes the loss function.106

Let s 2 S denote a fixed setting of the algorithm, including e.g. the initial values, the number107

of iterations and the learning rate. With a parametric classifier, ĥ can be fully represented by ŵ.108

The relationship between w and zn is represented as ŵ = m(zn; s), where m : Zn
⇥ S ! W;109

m(zn; s) will sometimes be abbreviated to m(zn) for notational simplicity. Since ŵ is a function110

of random samples zn, ŵ is also a random variable. In the parametric case, the training error will be111

represented as Rn(zn, ŵ) := 1
n

P
i r(zi, ŵ) := 1

n

P
i l(h(xi, ŵ), yi).112

During the test process, a test pair z0 = (x0, y0) is sampled from the same unknown distribution p(z).113

The predicted value h(x0, ĥ) will be compared with the true label y0 to evaluate the performance of114

the algorithm. R(ĥ) := Ez0r(z0, ĥ) := Ez0 l(h(x0, ĥ), y0) is called the test error. With a parametric115

classifier, the following notations will be used R(ŵ) := Ez0r(z0, ŵ) := Ez0 l(h(x0, ŵ), y0).116

The gap between the training error and the test error, R(ŵ)�Rn(zn, ŵ), is called the generalization117

gap. A good classifier should have small training error and small generalization gap so as to perform118

well on test instances.119

Let kak2 denote the L2-norm of a vector a and kAkF denote the Frobenius norm of a matrix A.120

The subscript of norm will be dropped when it is clear from the context. a[q] denotes the qth element121

of a vector a.122

2.2 Definitions123

Definition 1. [43] Let (⇥, ⇢⇥), (V, ⇢V) be two metric spaces. A function h : ⇥ ! V is called124

Lipschitz continuous if 9L <1, 8✓1,✓2 2 ⇥,125

⇢V(h(✓1), h(✓2))  L⇢⇥(✓1,✓2).

The Lipschitz constant of h with respect to the input space ⇥, denoted by lip(h;V  ⇥) or126

lip(h ✓) for short, is the smallest L such that the above inequality holds.127

Definition 2. A function r : ⇥! R is called Lipschitz smooth, if 9⌘ <1, 8✓1,✓2 2 ⇥,128

krr(✓1)�rr(✓2)k  ⌘k✓1 � ✓2k.

The Lipschitz constant of the derivative of r with respect to ⇥, denoted by lip( @r@✓  ✓), is the129

smallest ⌘ such that the above inequality holds.130

Some properties of Lipschitz functions are frequently used in the paper, such as constructing sophisti-131

cated Lipschitz functions from the basic ones and bounding the Lipschitz constant via the gradient of132

differentiable functions; details are listed in Appendix A.133
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Definition 3. [43] The diameter of a set V is defined as134

diam(V) = max
vi,vj2V

kvi � vjk.

3 Learnablility via the generalization PAC Bound135

In this section, we first introduce the generalization PAC bound and establish its link with the agnostic136

PAC learnablility. We then propose a decomposition theorem. Finally, we apply the theorem to prove137

the learnability of the gradient descent algorithm.138

3.1 Generalization PAC bound and agnostic PAC learnability139

One classical way of determining whether a hypothesis class is agnostic PAC learnable is to verify140

the uniform convergence condition, which bounds the generalization gap over all hypotheses of141

the class. However, as some hypotheses are not searched under a fixed setting of the optimization142

algorithm, [5] proposes to bound the generalization gap for specific algorithms. We adopt this notion143

and formally define the generalization PAC bound as follows.144

Definition 4. A hypothesis class H has the generalization PAC bound if there exists a function145

nG
H

: (0, 1)2 ! N such that for every ✏, � 2 (0, 1) and for every probability distribution DZ over Z ,146

if zn is a sample of n � nG
H
(✏, �) i.i.d. examples drawn from DZ , the algorithm returns a hypothesis147

ĥ such that the following inequality is satisfied:148

Pzn [R(ĥ)�Rn(z
n, ĥ)  ✏] � 1� �. (1)

First, we note that ĥ is regarded as a random variable in this paper. Second, while the generalization149

PAC bound is a weaker condition than the uniform convergence, as shown in Lemma 1, it is still a150

sufficient condition for the agnostic PAC learnability, as shown in Theorem 1. Proofs of theorems151

and lemmas are given in Appendix C.152

Lemma 1. The relationship between the generalization PAC bound and the uniform convergence153

bound is as follows:154

Pzn [R(ĥ)�Rn(z
n, ĥ)  ✏] � Pzn

h
max
h2H

�
R(h)�Rn(z

n, h)
�
 ✏

i
. (2)

Theorem 1. Suppose ERMH exists for a class H, where ERMH denotes the empirical risk155

minimization learner over the class H. If H has the generalization PAC bound with a func-156

tion nG
H

: (0, 1)2 ! N, then H is agnostic PAC learnable with the sample complexity function157

nAL
H

(✏, �)  max[nG
H
(✏/2, �/2), 2C2

r
✏2 ln 4

� ], where the range of the risk function r(z, h) is [0, Cr].158

Furthermore, in this case, ERMH is a successful agnostic PAC learner for H.159

3.2 Decomposition theorem for the generalization PAC bound160

Directly bounding Eq. 1 is difficult due to the random nature of zn and ĥ in Rn. To disentangle these161

two quantities, we propose the following decomposition theorem. Its core idea is to use the uniform162

convergence bound in a much smaller set.163

Theorem 2. (Decomposition Theorem) Let W denote the set of all possible values of w and Ŵ ✓W ;164

let �1, �2 � 0. If165

Pzn [ŵ 2 Ŵ] � 1� �1 (3)
and166

Pzn

h
max
w2Ŵ

�
R(w)�Rn(z

n,w)
�
 ✏

i
� 1� �2, (4)

then the following inequality holds:167

Pzn [R(ŵ)�Rn(z
n, ŵ)  ✏] � 1� �1 � �2. (5)

Theorem 2 decomposes the generalization PAC bound into two terms which are easier to be con-168

trolled, namely (i) a smaller parameter space Ŵ that includes estimated parameter vectors with169

high probability; (ii) uniform convergence of Ŵ . In the following section, the theorem is applied to170

analyze the generalization ability of the gradient descent algorithm. We show that term (i) can be171

bounded by applying the concentration inequality to the random variables ŵ and term (ii) can be172

bounded based on the covering number.173
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3.3 Learnability of the gradient descent algorithm174

3.3.1 Settings175

The updating equation of the most conventional GD algorithm is as follows:176

ŵ(1) = w(0)
�

↵(1)

n

nX

i=1

@r(zi,w)

@w
|ŵ(0) ;

177
...

178

ŵ(T ) = ŵ(T�1)
�

↵(T )

n

nX

i=1

@r(zi,w)

@w
|ŵ(T�1)

= w(0)
�

TX

t=1

↵(t)

n

nX

i=1

@r(zi,w)

@w
|ŵ(t�1) ,

where ↵(t)
� 0 denotes the learning rate at iteration t; ŵ(t) denotes the estimated parameters of179

the classifier obtained after t iterations; w(0) denotes the initial parameter of the algorithm. Here180

the number of iterations T and the learning rate ↵(t) are treated as the setting parameters of the GD181

algorithm and determined in advance, i.e. s = {T,↵(t), t = 1, . . . , T}. The initial weight w(0) is182

assumed to be fixed.183

3.3.2 Concentration of ŵ(T )184

Recall that m(T )(zn; s) = ŵ(T )
2 RQ and m(T )

[q] (z
n; s) denotes the qth element of m(T )(zn; s).185

To prove that the first term of Theorem 2 holds, we set Ŵ as the Euclidean ball centered at186

Eznm(zn; s) with radius ✏, denoted by ball
�
Eznm(zn; s), ✏

�
. The condition that ŵ 2 Ŵ with187

high probability is equivalent to the condition that m(zn; s) 2 ball
�
Eznm(zn; s), ✏

�
with high188

probability. With a fixed setting s and any fixed initial parameter vector w(0), given the training189

samples zn, the value of m(T )
[q] (z

n; s) is determined. In other words, m(T )
[q] (z

n; s) is a function from190

Z
n to R. By applying the McDiarmid’s inequality (Lemma B.1), we obtain the following lemma on191

the concentration property of m(T )(zn; s).192

Lemma 2. The following bound holds for any fixed s and w(0):193

Pzn

h
m(T )(zn; s) 2 ball

�
Eznm(T )(zn; s), ✏

�i
� 1� 2Q exp

✓
�2✏2n

QC2

◆
, (6)

where m(T )(zn; s) 2 RQ; C = 2
�PT

t=1 ⌘
T�t↵(t)

�
lip (r  w); ⌘ = lip(G  w) and194

G(m(t�1)(zn)) = m(t�1)(zn) � ↵(t)

n

P
j2[n]/i

@r(zj ,w)
@w |m(t�1)(zn); [n]/i denotes the set which195

contains the integers from 1 to n without i.196

The key idea behind the proof is as follows. Randomness of sampling leads to randomness of the197

learned parameter vector ŵ. After one iteration of gradient update, the difference between ŵ learned198

on the random samples and that learned on the population is controlled by the Lipschitz constant of r199

and G. Such differences will accumulate over iterations, thereby affecting the concentration property.200

3.3.3 Uniform convergence inside Ŵ201

The following uniform convergence condition is obtained based on the covering number and Dudley’s202

chaining integral [13]. By using the Lipschitz constant, we can bound the covering number of the203

hypothesis class by the covering number of the parameter space.204

Lemma 3. Suppose lip(r  w)  L and diam(W)  B, then the following inequality holds:205

Pzn

h
max
w2W

�
R(w)�Rn(z

n,w)
�
 CLB

r
Q

n
+

r
ln(1/�)

2n

i
� 1� �, (7)

where C is a universal constant.206
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3.3.4 Application of the decomposition theorem207

Theorem 3. Suppose lip(h  w)  L1 and lip(r  h)  Ll. Then with probability at least208

1� �1 � �2, the following bound holds:209

R(m(zn; s))�Rn(z
n,m(zn; s)) 

C1C2L2
1L

2
lQ

p
ln(2Q/�1)

n
+

r
ln(1/�2)

2n
, (8)

where w 2 RQ; C1 is a universal constant; C2 =
PT

t=1 ⌘
T�t↵(t), in which T denotes the number210

of iterations, ↵(t) denotes the learning rate at time t, ⌘ = lip(G  w), and G(m(t�1)(zn)) =211

m(t�1)(zn)� ↵(t)

n

P
j2[n]/i

@r(zj ,w)
@w |m(t�1)(zn); [n]/i denotes the set which contains the integers212

from 1 to n without i.213

Theorem 3 suggests that the following factors will affect the generalizability of the learned model.214

1) T : A smaller number of iterations leads to better concentration property and thus better generaliza-215

tion performance. Thus, when optimizing via GD, we select the model from the earliest iteration t216

that yields the minimum training error; the test stage is implemented using the parameters learned217

at t;218

2) Q: A smaller value of Q, i.e. fewer parameters, gives a tighter generalization bound;219

3) L1, Ll: Using a classifier and loss function with smaller Lipschitz constants will improve the220

generalizability;221

4) ⌘: Based on the definition of G and the addition property of Lipschitz functions (Appendix A),222

if lip(@r(zj ,w)
@w  w) is bounded by Ls, then ⌘ is bounded by 1 + ↵Ls. Based on the composition223

property of Lipschitz functions, we have224

lip(
@r

@w
 w) = lip(

@r

@h

@h

@w
 w)  lip(

@r

@h
 w) lip(

@h

@w
 w).

Thus ⌘ is bounded if both lip( @h
@w  w) and lip( @r@h  h) are bounded. In other words, the classifier225

and loss function should be Lipschitz smooth.226

4 Smooth metric and representative instance learning (SMILE)227

Theorem 3 shows that Lipschitz smoothness is indispensable for ensuring generalization. To enjoy228

and illustrate the practical exploitation of this appealing theoretical result, we establish a simple yet229

theoretically well-founded and new metric learning method called SMILE with a smooth classifier230

and a smooth loss function. SMILE learns a Mahalanobis distance to enhance the classification231

performance of NN classifier. Meanwhile, to reduce the storage and computational cost of NN,232

SMILE learns few representative instances in the training stage and calculate the distances between233

the test instance and representative instances only in the test stage. In this section, we present the234

classifier, the loss function, the optimization problem, and some experimental results of SMILE.235

4.1 The classifier of SMILE236

For any two instances xi and xj , the generalized (squared) Mahalanobis distance is defined as237

d2M (xi,xj) = (xi � xj)TM(xi � xj), where M is a positive semidefinite (PSD) matrix. Owing238

to the PSD property, M = LTL and thus d2M (xi,xj) = d(Lxi,Lxj) = kLxi �Lxjk
2
2.239

The classifier of SMILE is simply defined as follows:240

h(x; rm,L) =
X

j

exp(�d2(Lx, r+j ))�
X

k

exp(�d2(Lx, r�k )), (9)

where rm and L are the parameters of the classifier; r+j and r�k denote the jth representative instance241

of the positive class and the kth representative instance of the negative class, respectively; m denotes242

the total number of learned representative instances. The test instance x is classified to the positive243

class when h(x) � 0 and to the negative class when h(x) < 0.244

As shown in Appendix D, a sufficient condition for h to be Lipschitz smooth is that diam(L),245

diam(x) and diam(r) are bounded. With a slight abuse of notation, diam(L) denotes the diameter246

of the set which contains all possible values of L; diam(x) and diam(r) are defined similarly. To247

bound these quantities, we will constrain the Frobenius norm of L and the L2-norm of x and r.248
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4.2 The loss function of SMILE249

Similarly to the Huber loss for regression [23], we propose the following loss function defined by250

combining a quadratic and a linear function:251

l(a) =

8
<

:

1� a if a  0;
1
4 (a� 2)2 if 0 < a  2;
0 if a > 2.

(10)

The derivative of l(a) is as follows:

l0(a) =

8
<

:

�1 if a  0;
a�2
2 if 0 < a  2;

0 if a > 2.

The loss function and its derivative are illustrated in Figure 1. The
Lipschitz constant of l0(a) is 1

2 , meaning that the proposed loss is
a Lipschitz smooth function.

Figure 1: An illustration of the pro-
posed Lipschitz smooth loss func-
tion and its derivative.

252

4.3 The optimization problem of SMILE253

Using the classifier defined in Eq. 9, the loss function defined in Eq. 10, and the convex regularization254

terms
P

j kr
+
j k

2
2 +

P
k kr

�

k k
2
2 + kLk

2
F , the following optimization problem is proposed for SMILE:255

256

min
⇥

1

n

nX

i=1

l(yih(xi; r
m,L)) + �

⇣ m+X

j=1

kr+j k
2
2 +

m�X

k=1

kr�k k
2
2 + kLk

2
F

⌘
, (11)

where ⇥ = {rm,L} denotes the set of parameters to be optimized; rm = {r+j , r
�

k ; j =257

1, . . . ,m+, k = 1, . . . ,m�} denotes the set of representative instances with m+ instances for258

the positive class and m� instances for the negative class; and � is a trade-off parameter balancing259

the loss term and the regularization term.260

The objective function is not convex due to the non-convexity of h(x; rm,M). We apply the gradient261

descent algorithm to learn the parameters; detailed formulae are given in Appendix D.262

4.4 Illustrative results of SMILE263

Experimental settings We illustrate the effectiveness of SMILE by comparing it with nine widely264

adopted metric learning methods: NCA [16], LMNN [44], ITML [9], R2LML [21], SCML [38],265

RVML [34], GMML [51], DMLMJ [32], and SNC [26]. NCA is implemented by using the drTool-266

box [40]; LMNN and ITML are implemented by using the metric-learn toolbox [10]; and R2LML,267

SCML, RVML, GMML, DMLMJ, and SNC are implemented by using the authors’ code.268

The experiment focuses on binary classification of 12 publicly available datasets from the websites of269

UCI [12] and Delve [36]. Sample size and feature dimension are listed in Table 1 of Appendix E. All270

datasets are pre-processed by firstly subtracting the mean and dividing by the standard deviation, and271

then normalizing the L2-norm of each instance to 1.272

For each dataset, we randomly select 60% of instances to form a training set and the rest are273

used for testing. This process is repeated 10 times and we report the mean accuracy and the274

standard deviation. 10-fold cross-validation is used to select the trade-off parameters in the com-275

pared algorithms, namely the regularization parameter of LMNN (from {0.1, 0.3, . . . , 0.9}), � in276

ITML (from {0.25, 0.5, 1, 2, 4}), � in RVML (from {10�5, 10�4, . . . , 10}), t in GMML (from277

{0.1, 0.3, . . . , 0.9}), and ratio in SNC (from {0.01, 0.02, 0.04, 0.08, 0.16}). All other parameters are278

set as default. For the proposed SMILE, the parameters are set as follows: L is initialized as the279

identity matrix; rm are initialized as the k-means clustering centers of the positive and negative280

classes (by using MATLAB kmeans function with random initial values); the number of representative281

instances for each class is set as 2; the trade-off parameter � is set as 1; and the learning rate ↵282

is set as 0.001. The maximum number of iterations is set as 5000 and the final result is based on283

the parameters at time t, which is the earliest time when the smallest training error is obtained, to284

conform to early stopping as suggested by Theorem 3.285
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Table 1: Comparison of classification performances. Mean accuracy and standard deviations are
reported with the best ones in bold; ‘# of best’ denotes the number of datasets on which the proposed
SMILE obtains the highest accuracy.

Dataset NCA LMNN ITML R2LML SCML RVML GMML DMLMJ SNC SMILE

Australian 80.0±1.6 78.8±2.6 77.2±1.9 84.7±1.3 82.3±1.4 83.0±1.6 84.4±1.0 83.9±1.3 81.8±8.8 86.0±0.7
Cancer 95.4±1.3 96.0±0.7 96.1±1.1 96.7±0.8 96.5±0.5 95.2±1.0 96.5±0.8 96.5±0.5 95.1±1.7 96.8±0.6
Climate 91.5±2.1 91.8±1.3 86.7±1.0 91.7±1.7 91.5±1.5 92.2±1.1 91.3±2.5 92.9±1.9 92.0±1.7 93.5±1.7
Credit 80.6±2.0 82.2±1.4 77.6±2.0 86.1±1.5 83.5±1.2 83.5±1.8 85.9±1.7 84.6±1.4 83.4±3.7 85.6±1.9
German 70.0±2.9 67.9±1.5 67.0±2.1 72.9±1.8 70.9±2.7 71.7±1.8 71.6±1.1 69.3±2.7 70.1±3.3 75.5±1.1
Haberman 67.4±3.3 67.9±3.3 68.0±4.1 71.1±3.4 69.2±2.5 66.7±2.3 71.2±3.4 68.5±3.2 72.0±5.2 72.4±3.3
Heart 75.6±2.0 76.2±3.8 76.9±3.3 82.0±3.8 79.0±3.2 77.7±4.1 81.2±2.7 80.6±2.8 77.0±5.3 84.0±2.2
ILPD 66.8±1.2 67.0±2.1 68.7±2.8 65.9±2.2 68.0±2.9 68.0±2.9 67.1±2.2 68.0±1.6 68.9±2.7 71.3±1.7
Liver 59.8±3.4 61.0±4.8 57.2±4.0 66.8±3.7 61.7±4.6 64.6±3.9 63.8±5.4 60.9±3.8 63.3±5.2 62.8±5.8
Pima 65.9±3.0 68.5±1.6 68.0±2.0 72.3±1.5 71.1±2.6 69.5±1.7 73.0±1.8 71.1±2.3 74.0±2.6 73.2±2.0
Ringnorm 69.3±0.7 65.2±0.7 65.8±0.9 NA 70.9±0.7 72.3±0.6 72.5±0.5 73.9±0.7 71.3±0.6 77.1±0.5
Twonorm 96.7±0.4 95.6±0.5 96.4±0.3 NA 97.3±0.4 97.3±0.3 97.5±0.3 97.7±0.2 97.3±0.2 97.9±0.3

Average 76.6 76.5 75.5 NA 78.5 78.5 78.8 79.7 79.0 81.3
# of best 0 0 0 2 0 0 0 0 1 9

Evaluation on classification performance As shown in Table 1, with only two representative286

instances learned for each class, the proposed SMILE achieves the best accuracy on 9 out of the 12287

datasets; none of the other methods performs the best on more than 2 datasets. The average accuracy288

of SMILE is also the highest. These results suggest that SMILE, though simple, enjoys competitive289

performance against existing metric learning algorithms, thanks to its theoretical foundation.290

Figure 2: Effect of training itera-
tions and sample size on parameter
concentration.

Visualization of the concentration behavior Our theoreti-291

cal finding suggests that randomness of parameters is caused292

by random sampling and will accumulate over iterations. We293

now verify this finding with an empirical study on the dataset294

German. More specifically, we learn parameters L, rm from a295

subset of the data, which serves as m(T )(zn) in Lemma 2,296

learn parameters from the entire dataset, which serves as297

Eznm(T )(zn), and quantify their differences via the L2-norm.298

The total sample size is 1000 and the subset size is selected299

as {100, 200, . . . , 500}. After randomly sampling the subset300

for 100 times, we calculate the 95th percentile of the norm301

differences and denote this value as ✏95%. ✏95% can be interpreted as the minimum radius ✏ of302

ball
�
Eznm(T )(zn), ✏

�
such that the bound (Eq. 6) holds with 95% probability. From Fig. 2, we first303

see that learning from fewer training instances leads to a larger value of ✏95%, which signifies that304

sampling randomness contributes to the variance of learned parameters. Second, we see that learning305

with more iterations increases ✏95%, which is also consistent with the theoretical result. Moreover,306

the rate of increase is exponential in the early stage of training and decreases gradually towards zero,307

which implies that parameters are optimized to local minima and will no longer be updated.308

5 Conclusion309

This paper presents a new route to the generalization guarantee on classifiers optimized via GD,310

considering the influence of sampling randomness to the concentration property of parameters and311

embracing algorithmic parameters. We propose a new decomposition theorem to obtain the general-312

ization PAC bound, which consequently guarantees the agnostic PAC learnability. We demonstrate313

the necessity of Lipschitz smooth classifiers and loss functions for generalization and theoretically314

justify the benefit of early stopping. Our results are derived based only on the Lipschitz property over315

the parameter space, and hence are applicable to non-convex optimization problems. In addition, we316

propose a new metric learning method as an illustrative example to demonstrate the practicability317

of the appealing theoretical results. In the future, we intend to investigate the link between the318

concentration property and the local convergence behavior, and take it into account to derive tighter319

bounds.320
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Broader Impact321

This paper is a theoretical analysis relating to gradient descent and metric learning algorithms, and322

hence does not make a direct impact on ethical and societal issues. The findings can be used to323

design more effective training strategies or algorithms, and consequently benefit the downstream324

applications.325
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Abstract

Sec. A lists properties of Lipschitz functions. Sec. B includes established definitions1

and theorems that will be used in the proof, including definitions of PAC learnability2

and agnostic PAC learnability, the McDiarmid’s Inequality. Sec. C provides proofs3

of theorems and lemmas. Sec. D shows that the classifier of SMILE is smooth and4

gives the updating equations of the gradient descent algorithm. Sec. E lists the5

information about the datasets.6

A Properties of Lipschitz functions7

The Lipschitz constant of differentiable functions can be obtained from their gradients; this follows8

from the mean value theorem as shown below.9

Theorem A.1. [3] Let U 2 Rn
be open, h : U ! R be differentiable and the line segment10

[u1,u2] 2 U , where [u1,u2] = {v | v = u1 + t(u2 � u1), t 2 [0, 1]} joins u1 to u2. Based on the11

Mean Value Theorem, there exists a u 2 [u1,u2]12

f(u2)� f(u1) = f 0(u)T (u2 � u1).

Corollary A.1. Let U 2 Rn
be open and convex, h : U ! R be differentiable inside U , then the13

following inequality holds:14

lip(h u) = max
u1,u22U,u1 6=u2

|h(u2)� h(u1)|

ku2 � u1k
 max

u2U

kh0(u)k.

Proof. Since U is convex, 8u1,u2 2 U ,u1 6= u2, the line segment [u1,u2] = {v | v = u1 +15

t(u2 � u1), t 2 [0, 1]} 2 U .16

|h(u2)� h(u1)| =(a) |h
0(u)T (u2 � u1)| (b) kh

0(u)kku2 � u1k (c) max
u2U

kh0(u)kku2 � u1k,

where equality (a) is due to Theorem A.1; inequality (b) is due to the Cauchy-Schwarz inequality;17

inequality (c) is due to kh0(u)k  maxu2U kh0(u)k.18

Sophisticated Lipschitz functions can be constructed from the basic ones using the following lemma.19

Lemma A.1. [4, 10] Let lip(h1  u)  L1, lip(h2  u)  L2 and lip(h2 � h1  h1)  L3,20

where � denotes the composition of functions. Then21

(a) lip(ah1  u)  |a|L1, where a is a constant;22

(b) lip(h1 + h2  u)  L1 + L2, lip(h1 � h2  u)  L1 + L2;23

(c) lip(min(h1, h2)  u)  max{L1, L2}, lip(max(h1, h2)  u)  max{L1, L2}, where24

min(h1, h2) or max(h1, h2) denote the pointwise minimum or maximum of functions h1 and h2;25

(d) lip(h2 � h1  u)  L1L3.26

This lemma illustrates that after the operations of multiplication by constant, addition, subtraction,27

minimization, maximization and function composition, the functions are still Lipschitz continuous.28
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B Preliminaries29

Definition B.1. [6, 8] A hypothesis class H is Probably Approximately Correct (PAC) learnable if30

there exist a function nL
H

: (0, 1)2 ! N and a learning algorithm with the following property: For31

every ✏, � 2 (0, 1), for every distribution DX over X , and for every target function g 2 G, if there32

exists an h⇤
2 H which returns the same classification result as g, then when running the learning33

algorithm on n � nL
H
(✏, �) independent and identically distributed (i.i.d.) instances generated by34

DX and labeled by g, the algorithm returns a hypothesis ĥ such that, with probability at least 1� �,35

R(ĥ)  ✏; this can be equivalently written as36

Pxn [R(ĥ)  ✏] � 1� �,

or37

Pxn

h
Ex0
⇥
l
�
ĥ(x0), g(x0)

�⇤
 ✏
i
� 1� �,

where the probability is taken over xn and ĥ is a random variable related to xn.38

Definition B.2. [6, 2] A hypothesis class H is agnostic PAC learnable or has agnostic PAC learnabil-39

ity if there exist a function nAL
H

: (0, 1)2 ! N and a learning algorithm with the following property:40

For every ✏, � 2 (0, 1) and for every distribution DZ over Z , when running the learning algorithm on41

n � nAL
H

(✏, �) i.i.d. instances generated by DZ , the algorithm returns a hypothesis ĥ such that, with42

probability at least 1� �, R(ĥ)�minh2H R(h)  ✏; this can be equivalently written as43

Pzn

h
R(ĥ)�min

h2H

R(h)  ✏
i
� 1� �,

or44

Pzn

h
Ez0
⇥
l
�
ĥ(x0), y

�⇤
�min

h2H

Ez0
⇥
l
�
h(x0), y

�⇤
 ✏
i
� 1� �.

where the probability is taken over zn and ĥ is a random variable related to zn.45

Lemma B.1. [5, (McDiarmid’s Inequality)] Let zn = {z1, . . . , zi�1, zi, zi+1, . . . , zn} be n inde-46

pendent samples. Let zn,i = {z1, . . . , zi�1, z0

i, zi+1, . . . , zn}, where the replacement example z0

i is47

assumed to be drawn from the same distribution of zi and is independent from zn
. Furthermore, let48

m : Zn
! R be a function of z1, . . . , zn that satisfies 8i, 8zn, 8zn,i49

|m(zn)�m(zn,i)|  ci, (1)

for some constant ci. Then for all ✏ > 0,50

Pzn [m(zn)� Ezn [m(zn)] � ✏]  exp

✓
�2✏2Pn
i=1 c

2
i

◆
,

51

Pzn [Ezn [m(zn)]�m(zn) � ✏]  exp

✓
�2✏2Pn
i=1 c

2
i

◆
;

that is,52

Pzn [|m(zn)� Ezn [m(zn)]| � ✏]  2 exp

✓
�2✏2Pn
i=1 c

2
i

◆
. (2)

C Proofs of theorems and lemmas53

C.1 Proof of Lemma 154

Proof. Let E1 be the set of events of R(ĥ) � Rn(zn, ĥ)  ✏ and E2 be the set of events of55

maxh2H

�
R(h)�Rn(zn, h)

�
 ✏. The probabilities of these two events are given as follows:56

Pzn(E1) =

Z
(p(zn)1[E1]) dz

n

Pzn(E2) =

Z
(p(zn)1[E2]) dz

n.
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1. At the points zn
where 1[E2] = 1, we have 1[E1] = 1 and thus57

p(zn)1[E1] = p(zn)1[E2].

2. At the points zn
where 1[E2] = 0, we have58

p(zn)1[E1] � 0 = p(zn)1[E2].

Therefore, integrating over all possible points zn
, we have

�R
p(zn)1[E1]

�
�
�R

p(zn)1[E2]
�
. That59

is, Pzn(E1) � Pzn(E2).60

C.2 Proof of Theorem 161

After proving Proposition C.1, Theorem 1 is proved.62

Proposition C.1. Suppose the range of the risk function r(z, h) is [0, Cr], then63

Pzn

h
min
h2H

Rn(z
n, h)� Ezn

⇥
min
h2H

Rn(z
n, h)

⇤
� ✏
⌘
 exp

✓
�2n✏2

C2
r

◆
.

Proof. Given zn
and a fixed hypothesis class of H, the value of a(zn) = minh2H Rn(zn, h)64

is fixed and the mapping a : Z
n
! R is a function. Therefore, the McDiarmid’s inequality65

(Lemma B.1) can be applied as long as the bounded difference condition (Eq. 1) holds. We show that66

|minh2H Rn(zn, h)�minh2H Rn(zn,i, h)| is bounded as follows:67

min
h2H

Rn(z
n,i, h)

=min
h2H

⇣
Rn(z

n, h)�
r(zi, h)

n
+

r(z0i, h)

n

⌘

min
h2H

⇣
Rn(z

n, h)� 0 +
Cr

n

⌘

=min
h2H

Rn(z
n, h) +

Cr

n
.

Similarly,68

min
h2H

Rn(z
n, h)  min

h2H

Rn(z
n,i, h) +

Cr

n
.

Therefore69
���min
h2H

Rn(z
n, h)�min

h2H

Rn(z
n,i, h)

��� 
Cr

n
.

The result is obtained by substituting ci =
Cr
n into Lemma B.1.70

Theorem 1 is proved as follows.71

Proof. Let ĥ 2 argminh2H
Rn(zn, h), we have72

Rn(z
n, ĥ) = min

h2H

Rn(z
n, h).

Suppose73

Pzn [R(ĥ)�Rn(z
n, ĥ)  ✏/2] � 1� �/2,

74

Pzn

⇥
Rn(z

n, ĥ)� Ezn [Rn(z
n, ĥ)]  ✏/2

⇤
� 1� �/2.

3



Let E1 = {zn
|R(ĥ) � Rn(zn, ĥ)  ✏/2} and E2 = {zn

|Rn(zn, ĥ) � Ezn [Rn(zn, ĥ)]  ✏/2}.75

8zn
2 E1 \ E2, we have76

R(ĥ)

(a) Rn(z
n, ĥ) +

✏

2

(b) Ezn [Rn(z
n, ĥ)] + ✏

(c) =Ezn min
h2H

Pn
i=1 r(zi, h)

n
+ ✏

(d) min
h2H

Ezn

Pn
i=1 r(zi, h)

n
+ ✏

(e) =min
h2H

Ezr(z, h) + ✏

(f) =min
h2H

R(h) + ✏,

where inequality (a) is due to R(ĥ) � Rn(zn, ĥ)  ✏/2; inequality (b) is due to Rn(zn, ĥ) �77

Ezn [Rn(zn, ĥ)]  ✏/2; equality (c) is due to the definitions of Rn(zn, h) and ĥ; inequality (d) is78

due to change the order of Ezn and minh2H; equality (e) is due to the identical assumption of zn
;79

equality (f) is due to the definition of R(h).80

Therefore81

Pzn

h
R(ĥ)  min

h2H

R(h) + ✏
i

(a) �Pzn [E1 \ E2]

(b) �1� �/2� �/2,

where inequality (a) is due to the relationship between E1 \ E2 and R(ĥ)  minh2H R(h) + ✏;82

inequality (b) is due to the probability of union of sets.83

Based on Proposition C.1, in order to guaranteePzn

⇥
Rn(zn, ĥ)�Ezn [Rn(zn, ĥ)]  ✏/2

⇤
� 1��/2,84

2C2
r

✏2 ln 4
� instances are required. Meanwhile, based on the definition of generalization PAC bound85

(Definition 4 of the main text), in order to guarantee Pzn [R(ĥ) � Rn(zn, ĥ)  ✏/2] � 1 � �/2,86

mG
H
(✏/2, �/2) instances are required. Therefore, with more than max

�
mG

H
(✏/2, �/2), 2C2

r
✏2 ln 4

�

�
87

instances, Pzn

⇥
R(ĥ)  minh2H R(h) + ✏

⇤
� 1 � � is satisfied. Based on the definition of the88

agnostic PAC learnability (Definition B.2), the hypothesis class is agnostic PAC learnable and the89

agnostic PAC learner for H is ERMH.90

C.3 Proof of Theorem 291

Proof. Let E1 denote the set of events R(ŵ)�Rn(zn, ŵ)  ✏, E2 denote the set of events w 2 Ŵ ,92

and E3 denote the set of events maxw2Ŵ
[R(w)�Rn(zn,w)]  ✏.93

Pzn [¬E1]

=Pzn [¬E1, E2] + Pzn [¬E1,¬E2]

(a) Pzn [¬E1, E2] + �1
(b) Pzn [¬E3] + �1

=�2 + �1;

where inequality (a) is due to Pzn [¬E1,¬E2]  Pzn [¬E2] = 1� Pzn [E2]  �1; inequality (b) is94

based on the relationship between 1[E2]1[¬E1] and 1[E3]. At the points zn
that satisfy m(zn) =95

ŵ 2 Ŵ , 1[¬E1] = 1 ) 1[¬E3] = 1, thus 1[E2]1[¬E1]  1[¬E3] and Pzn [¬E1, E2] 96

Pzn [¬E3].97

C.4 Proof of Lemma 298

Proof. To show that m(T )
[q] (z

n; s) is concentrated around its expectation, we make use of the Mc-99

Diarmid’s Inequality (Lemma B.1). First, we note that m(T )
[q] (z

n; s) : Zn
! R is function map-100
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ping from random variables to a real value, and zn
satisfies the independent assumption. Second,101

we show that |m(T )
[q] (z

n; s) �m(T )
[q] (z

n,i; s)| is bounded. m(T )(zn; s) and m(T )
[q] (z

n; s) are tem-102

porarily simplified to m(T )(zn) and m(T )
[q] (z

n), respectively. 8s, 8q, |m(T )
[q] (z

n)�m(T )
[q] (z

n,i)| 103

km(T )(zn)�m(T )(zn,i)k, where k ·k denotes the vector L2-norm
1
. We will now discuss the bound104

of km(T )(zn)�m(T )(zn,i)k.105

(1) Decompose m(t)(zn). To understand the influence of zi, the updating equation of m(t)(zn) is106

divided into two parts:107

m(t)(zn) =

 
m(t�1)(zn)�

X

j2[n]/i

↵(t)

n

@r(zj ,w)

@w
|m(t�1)(zn)

!
�

↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn).

Representing the above updating process via the function G gives:108

m(t)(zn) = G(m(t�1)(zn))�
↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn).

For both zn
and zn,i

, G(m(t�1)(zn)) = G(m(t�1)(zn,i)) because the training instances considered109

in G are the same. Then110

km(t)(zn)�m(t)(zn,i)k

=
���G(m(t�1)(zn))�

↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn)�

G(m(t�1)(zn,i)) +
↵(t)

n

@r(z0

i,w)

@w
|m(t�1)(zn,i)

���



���
↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn) �

↵(t)

n

@r(z0

i,w)

@w
|m(t�1)(zn,i)

��� (Term 1)+

kG(m(t�1)(zn))�G(m(t�1)(zn,i))k (Term 2).

Term 1 and Term 2 in the inequality can be bounded by using the Lipschitz constant of a function r111

with respect to w and the Lipschitz constant of G with respect to w, respectively.112

(2) Bound Term 1. Recall that the Lipschitz constant is defined as:113

lip(r  w) = max
w1,w22W,w1 6=w2,z2Z

|r(z;w1)� r(z;w2)|

kw1 �w2k
.

Term 1 is bounded as follows:114
���
↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn) �

↵(t)

n

@r(z0

i,w)

@w
|m(t�1)(zn,i)

���



���
↵(t)

n

@r(zi,w)

@w
|m(t�1)(zn)

�����+

�����
↵(t)

n

@r(z0

i,w)

@w
|m(t�1)(zn,i)

���


2↵(t)

n
lip (r  w).

(3) Bound Term 2. Let ⌘ = lip (G w).115

kG(m(t�1)(zn))�G(m(t�1)(zn,i))k  ⌘km(t�1)(zn)�m(t�1)(zn,i)
���

(4) Bound km(T )(zn)�m(T )(zn,i)k116

t = 1117

km(1)(zn)�m(1)(zn,i)k



���
↵(1)

n

@r(zi,w)

@w
|w0 �

↵(1)

n

@r(z0

i,w)

@w
|w0

���+ kG(w0)�G(w0)k


2↵(1)

n
lip (r  w);

1
In the cases of m being a matrix, the matrix will be reshaped into a vector and the vector L2-norm can then

be used; this is equivalent to using the matrix Frobenius norm directly.

5



t = 2118

km(2)(zn)�m(2)(zn,i)k



���
↵(2)

n

@r(zi,w)

@w
|m(1)(zn) �

↵(2)

n

@r(z0

i,w)

@w
|m(1)(zn,i)

���+

kG(m(1)(zn))�G(m(1)(zn,i))k


2↵(2)

n
lip (r  w) + ⌘

2↵(1)

n
lip (r  w)

=
2(⌘↵(1) + ↵(2)) lip (r  w)

n
;

.

.

.119

t = T120

km(T )(zn)�m(T )(zn,i)k



���
↵(T )

n

@r(zi,w)

@w
|m(T�1)(zn) �

↵(T )

n

@r(z0

i,w)

@w
|m(T�1)(zn,i)

���+

kG(m(T�1)(zn))�G(m(T�1)(zn,i))k



2
⇣PT

t=1 ⌘
T�t↵(t)

⌘
lip (r  w)

n
.

(5) Derive the concentration inequality121

|m(T )
[q] (z

n)�m(T )
[q] (z

n,0)|

km(T )(zn)�m(T )(zn,i)k



2
⇣PT

t=1 ⌘
T�t↵(t)

⌘
lip (r  w)

n

=
C

n
,

where C = 2
⇣PT

t=1 ⌘
T�t↵(t)

⌘
lip (r  w).122

Based on Lemma B.1, m(T )
[q] (z

n) can be bounded as123

Pzn

h��m(T )
[q] (z

n)� Eznm(T )
[q] (z

n)
��  ✏
p
Q

i
� 1� 2 exp

� �2✏2

Q
Pn

i=1 c
2
i

�

= 1� 2 exp
⇣
�2✏2n

QC2

⌘
.

Therefore,124

Pzn [km(T )(zn)� Eznm(T )(zn)k  ✏]

(a) �Pzn

"
Q\

q=1

��m(T )
[q] (z

n)� Eznm(T )
[q] (z

n)
��  ✏
p
Q

#

(b) �1� 2Q exp
⇣
�2✏2n

QC2

⌘
,

where inequality (a) is due the relationship between the events; inequality (b) is due to a Frechet125

inequality.126

C.5 Proof of Lemma 3127

First, the definitions of Rademacher complexity, uniform convergence and covering number are128

introduced. Dudley’s Integral Theorem that uses covering number to bound Rademacher complexity129

is also introduced. Then, by using the Lipschitz constant, the covering number of functional space is130

shown to be bounded by the covering number of parameter space. Finally, based on Dudley’s Integral131

Theorem, Lemma 3 is shown.132
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C.5.1 Preliminary133

Definition C.1. [5] Let ✏n = {✏1, . . . ✏n} be i.i.d. random variables with P (✏i = 1) = P (✏i =134

�1) = 1
2 . zn = {z1, . . . , zn} are i.i.d. samples. The empirical Rademacher complexity is defined as135

ˆRadn(H) = E✏n

h
max
h2H

1

n

X

i

✏ih(zi)
���zn
i
;

and the Rademacher complexity is defined as136

Rad(H) = Ezn

h
ˆRadn(H)

i
.

Theorem C.1. [5] With probability at least 1� � the following bound holds:137

R(h)�Rn(z
n, h)  2 ˆRadn(� �H) + 3

s
ln 2

�

2n
,

where � : R! R denotes the loss function l(h(x); y); � denotes the composition of functions.138

Lemma C.1. [5] Let � : R ! R be an L-Lipschitz function. Then, for any hypothesis set H of139

real-valued functions, Talagrand’s Lemma indicates the following inequality holds:140

ˆRadn(� �H)  L ˆRadn(H).

Corollary C.1. Suppose lip(r  h)  L, then with probability at least 1� � the following bound141

holds:142

R(h)�Rn(z
n, h)  2L ˆRadn(H) + 3

s
ln 2

�

2n

Proof. Substituting the result of Lemma C.1 into Theorem C.1 gives the result.143

Definition C.2. [9] An ✏-cover of a subset U of a metric space (V, ⇢) is a set Û ✓ U such that for144

each u 2 U there is a û 2 Û such that ⇢(u, û)  ✏. The ✏-cover number of U is145

N(✏,U , ⇢) = min{|Û | : Û is an ✏-cover of U}.

The following theorem illustrates how to bound the covering number.146

Theorem C.2. [9] Let U ✓ V = RD
. Then147

⇣1
✏

⌘D vol(U)

vol(B)
 N(✏,U , k · k) 

⇣vol(U + ✏
2B)

vol( ✏2B)

⌘

where + is the Minkovski sum, B is the unit norm ball and vol indicates the volume of the set.148

Remark: Consider U 2 RD
with diameter diam(U). Based on the last inequality, we have149

N(✏,U , k · k) 
⇣vol(U + ✏

2B)

vol( ✏2B)

⌘


⇣diam(U) + ✏

✏

⌘D
=
⇣
1 +

diam(U)

✏

⌘D
.

Definition C.3. Let 8h1, h2 2 H be two functions mapping z 2 Z into real value, ⇢H|zn is defined150

as follows:151

⇢H|zn(h1, h2) =

vuut 1

n

nX

i=1

(h1(zi)� h2(zi))2.

Theorem C.3. [7] With metric ⇢H|zn on H, Dudley’s integral indicates152

ˆRadn(H)  12

Z
1

0

r
logN(✏,H, ⇢H|zn)

n
d✏.

Dudley’s integral bounds the empirical Rademacher complexity by the covering number of the153

function space (with a metric based on the difference of the function value on n inputs).154
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C.5.2 Bound of the covering number of functional space155

To start with, another definition of metric in function space is given as follows.156

Definition C.4. A metric ⇢Hw in parametric function space is defined as follows:157

⇢Hw(h(·;w1), h(·;w2)) = max
x2X

|h(x;w1)� h(x;w2)|. (3)

lip(h;Hw  W) will be written as lip(h w) if W and Hw are clear from the context:158

lip(h w) = max
w1,w22W,w1 6=w2

⇢Hw

⇣
h(·; ·,w1), h(·; ·,w2)

⌘

⇢W(w1,w2)

= max
w1,w22W,w1 6=w2,x

|h(x;w1)� h(x;w2)|

kw1 �w2k
.

Proposition C.2. For all spaces of parametric functions Hw, 8✏, 8H,159

N(✏,H, ⇢H|zn)  N(✏,H, ⇢Hw), (4)

where w denotes all parameters of the function, ⇢H|zn is defined in Definition C.3 and ⇢Hw is defined160

in Definition C.4.161

Proof. Let {ĥ1, . . . , ĥN} be an ✏-covering set in Hw with metric ⇢Hw , then based on the definition162

of covering set,163

8h 2 H,min
j

⇢Hw(h, ĥj)  ✏.

Based on the definitions of ⇢H|zn and ⇢Hw , we have164

⇢H|zn(h, ĥj) =

vuut 1

n

nX

i=1

(h(zi)� ĥj(zi))2 

vuut 1

n

nX

i=1

�
max
z

|h(z)� ĥj(z)|
�2

=

r
1

n
⇥ n⇥

�
⇢Hw(h, ĥj)

�2
= ⇢Hw(h, ĥj)  ✏.

Therefore, {ĥ1, . . . , ĥN} is also an ✏-covering set of Hw with metric ⇢H|zn and165

N(✏,H, ⇢H|zn)  |{ĥ1, . . . , ĥN}| = N(✏,H, ⇢Hw).

166

Corollary C.2. The empirical Rademacher complexity can be bounded by the covering number with167

metric ⇢Hw as follows:168

ˆRadn(H)  12

Z
1

0

r
logN(✏,H, ⇢Hw)

n
d✏.

Proof. Substituting the result of Proposition C.2 into Theorem C.3 gives the result.169

Proposition C.3. Let h(z;w) be a parameterized function and w 2 W 2 RQ
. Suppose lip(h  170

w)  L. Then,171

N(✏,Hw, ⇢Hw)  N(✏/L,W, ⇢W) 
⇣
1 +

diam(W)L

✏

⌘Q
.

Proof. The second inequality follows from Theorem C.2. We now show the first inequality. Let172

{ŵ1, . . . , ŵN} be an (✏/L)-covering set in W . Based on the definition of covering set,173

8w 2W,min
i

⇢W(w, ŵi)  ✏/L.

Based on the definition of Lipschitz constant,174

8h(·;w) 2 Hw,min
i

⇢Hw

⇣
h(·;w), h(·; ŵi)

⌘
 Lmin

i
⇢W(w, ŵi)  ✏.

Therefore, {h(·; ŵ1), . . . , h(·; ŵN )} is a ✏-covering set of H and175

N(✏,H(w), ⇢Hw)
(c)
 |{h(·; ŵ1), . . . , h(·; ŵN )}|

(d)
 |{ŵ1, . . . , ŵN}| = N(✏/L,W, ⇢W),

where inequality (c) is based on the definition of covering number; inequality (d) is due to the fact176

that h is a function.177
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C.5.3 Proof of Lemma 3178

Proof. Based on the result of Corollary C.2,179

ˆRadn(H)

 12

Z
1

0

r
logN(✏,H, ⇢Hw)

n
d✏

(a)
= 12

Z LB

0

r
logN(✏,H, ⇢Hw)

n
d✏

(b)


12
p
n

Z LB

0

r
log
⇣
1 +

LB

✏

⌘Q
d✏

(c)
=

12LB
p
n

Z 1

0

r
Q log

⇣
1 +

1

✏0

⌘
d✏0

(d)
 12LB

r
Q

n

Z 1

0

p
log(2/✏0)d✏0

(e)
= 24LB

r
Q

n

Z 1/2

0

p
log(1/✏)d✏.

Equality (a) holds as the value of h is bounded by LB; if ✏ > LB, then logN(✏,H, ⇢Hw) = 0;180

inequality (b) is based on Proposition C.3; equality (c) follows from variable substitution ✏0 = ✏
LB ;181

inequality (d) is due to ✏0 2 [0, 1]; equality (e) follows from another variable substitution ✏ = ✏0

2 .182

Then we calculate the integral183

Z 1/2

0

p
log(1/✏)d✏

(a)
=

Z p
log2

1

yd(e�y2

)
(b)
= e�y2

y|
p
log 2

1
�

Z p
log 2

1

e�y2

dy

= e�y2

y|
p
log 2

1
+

Z
1

p
log 2

e�y2

dy  e�y2

y|
p
log 2

1
+

Z
1

0
e�y2

dy

=

p
log 2

2
+

p
⇡

2
,

where equality (a) is based on variable substitution y =
p

log(1/✏), i.e. ✏ = e�y2

and equality (b) is184

based on integration by parts.185

Therefore,186

ˆRadn(H)  24LB

r
Q

n

Z 1/2

0

p
log(1/✏)d✏

 24
�plog 2

2
+

p
⇡

2

�
LB

r
Q

n

= CLB

r
Q

n
,

where C = 12(
p
log 2 +

p
⇡).187

Finally, substituting the above bound of empirical Rademacher complexity into Corollary C.1 gives188

Lemma 3.189

C.6 Proof of Theorem 3190

Proof. Let ball(E, ✏) := ball
�
Eznm(T )(zn), ✏

�
denote the ball with the center at Eznm(T )(zn)191

and radius of ✏. Let L = lip(r  w). Based on Lemma 2, we have192

Pzn [m(zn) 2 ball(E, ✏)] � 1� �1, (5)

where �1 = 2Q exp( �2✏2n
Q(2C2)2L2 ), that is ✏ = C2L

q
2Q
n ln 2Q

�1
.193

Based on the result of Lemma 3,194

Pzn

"
max

w2ball(E,✏)

�
R(w)�Rn(z

n,w)
�
 CL(2✏)

r
Q

n
+

r
ln 1/�2
2n

#
� 1� �2.
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Substituting ✏ = C2L
q

2Q
n ln 2Q

�1
 C2L1Ll

q
2Q
n ln 2Q

�1
into the above formula, we have195

Pzn

h
max

w2ball(E,✏)

�
R(w)�Rn(z

n,w)
�
 ✏0

i
� 1� �2, (6)

where196

✏0 =
2CC2L2

1L
2
lQ
p

2 ln(2Q/�1)

n
+

r
ln(1/�2)

2n
.

Based on Theorem 2, the final result is obtained by combining Eqs. 5,6 and setting C1 = 2
p
2C:197

Pzn [R(m(zn))�Rn(z
n,m(zn))  ✏] � 1� �1 � �2.

198

D Lipschitz smoothness and updating equations of SMILE199

For a classifier h with convex constraints on parameters, the parameter w will be restricted to be200

inside a convex set, as explained in Sec. D.1. Then based on Corollary A.1, a sufficient condition for201

bounded lip( @h
@w  w) is to have finite values of the first and second partial derivatives.202

D.1 Equivalence between constrained optimization and the use of regularization terms203

Let us review two optimization problems.204

Problem 1:205
min
w

Rn(zn, hw) s.t. P(w)  C;

Problem 2:206
min
w

Rn(zn, hw) + �P(w).

The Lagrange function of Problem 1 is207

L(w, u) = Rn(zn, hw) + u(P(w)� C), u � 0,
where u is the Lagrangian multiplier.208

For Problem 1, the (KKT) necessary conditions imply209

Condition 1
@Rn(zn, hw)

@w
+ u

@P(w)

@w
= 0;

Condition 2 u(P(w)� C) = 0.

For Problem 2, the necessary condition implies210

@Rn(zn, hw)

@w
+ �

@P(w)

@w
= 0.

Suppose w⇤

1 and µ⇤
satisfy the necessary condition of Problem 1. Setting � = µ⇤

, we can see that211

w⇤

1 satisfies for the necessary condition of Problem 2. Suppose w⇤

2 satisfies the necessary condition212

of Problem 2. Setting µ = � and C = P(w⇤

2), we can see that Condition 1 and Condition 2 of213

Problem 1 are satisfied, so w⇤

2 satisfies the necessary condition of Problem 1 as well. Based on the214

above results, the necessary conditions of Problem 1 and Problem 2 are equivalent.215

Meanwhile, when the regularization term in Problem 2 is a convex function, the equivalent Problem 1216

constrains w inside the set of {w|P(w)  C}, which is a convex set [1].217

D.2 First partial derivative of SMILE classifier218

The first partial derivatives of the classifier (Eq. 9) are as follows:219

@h(x;W)

@r+j
=� exp(�kLx� r+j k

2)(2r+j � 2Lx)

@h(x;W)

@r�j
=exp(�kLx� r�k k

2)(2r�j � 2Lx)

@h(x;W)

@L[a,b]
=�

X

j

2(Lx� r+j )[a]x[b] exp(�kLx� r+j k
2)

+
X

k

2(Lx� r�k )[a]x[b] exp(�kLx� r�k k
2),
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where L[a,b] denotes the ath row and bth column element of matrix L and x[a] denotes the ath220

element of the vector x; (Lx� r)[a] =
P

i L[ai]x[i] � r[a] .221

@h(x;W)

@r+
j

and
@h(x;W)

@r�
j

are bounded by 2 diam(r�a ) + 2 diam(L) diam(x); @h(x;W)
@L is bounded222

by 4m(diam(r) + diam(L) diam(x)) diam(x), where m denotes the number of representative223

instances. All first partial derivatives have finite values as long as diam(L), diam(x) and diam(r)224

are bounded.225

D.3 Second partial derivative of SMILE classifier226

The second partial derivatives are as follows:227

@2h(x;W)

@r+2
i

=4 exp(�kLx� r+j k
2)(r+j �Lx)(r+j �Lx)T � 2 exp(�kLx� r+j k

2)I;

@2h(x;W)

@r�2
j

=� 4 exp(�kLx� r�k k
2)(r�j �Lx)(r�j �Lx)T + 2 exp(�kLx� r�k k

2)I;

@2h(x;W)

@L[a,b]
2 =

X

j

4(Lx� r+j )
2
[a]x

2
[b] exp(�kLx� r+j k

2)� 2
X

j

x2
[b] exp(�kLx� r+j k

2)

�

X

k

4(Lx� r�k )
2
[a]x

2
[b] exp(�kLx� r�k k

2) + 2
X

k

x2
[b] exp(�kLx� r�k k

2),

where I is the identity matrix. All second partial derivatives have finite values as long as diam(L),228

diam(x) and diam(r) are bounded.229

D.4 Updating equations of SMILE230

The updating equations of SMILE are as follows:231

r+,t+1
j =r+,t

j � 2�↵r+,t
j +

↵

n

nX

i=1

yil
0(yih(xi;W)) exp(�kLxi � r+j k

2)(2r+j � 2Lxi)|Wt ;

r�,t+1
k =r�,t

k � 2�↵r�,t
k �

↵

n

nX

i=1

yil
0(yih(xi;W)) exp(�kLxi � r�k k

2)(2r�k � 2Lxi)|Wt ;

Lt+1 =Lt
� 2�↵Lt +

↵

n

nX

i=1

yil
0(yih(xi;W))

X

j

exp(�kLxi � r+j k
2)2(Lxi � r+j )x

T
i |Wt

�
↵

n

nX

i=1

yil
0(yih(xi;W))

X

k

exp(�kLxi � r�k k
2)2(Lxi � r�k )x

T
i |Wt .

E Data description232
Table 1: Data description

Dataset Source # instances # features

Australian UCI 690 14

Cancer UCI 699 9

Climate UCI 540 18

Credit UCI 653 15

German UCI 1000 24

Haberman UCI 306 3

Heart UCI 270 13

ILPD UCI 583 10

Liver UCI 345 6

Pima UCI 768 8

Ringnorm Delve 7400 20

Twonorm Delve 7400 20

Table 1 lists information on sample233

size and feature dimension, as well as234

the source of studied datasets.235
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