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ABSTRACT
To achieve effective facial expression recognition (FER), it is of
great importance to address various disturbing factors, including
pose, illumination, identity, and so on. However, a number of FER
databases merely provide the labels of facial expression, identity,
and pose, but lack the label information for other disturbing fac-
tors. As a result, many methods are only able to cope with one or
two disturbing factors, ignoring the heavy entanglement between
facial expression and multiple disturbing factors. In this paper, we
propose a novel Deep Disturbance-disentangled Learning (DDL)
method for FER. DDL is capable of simultaneously and explicitly
disentangling multiple disturbing factors by taking advantage of
multi-task learning and adversarial transfer learning. The training
of DDL involves two stages. First, a Disturbance Feature Extrac-
tion Model (DFEM) is pre-trained to perform multi-task learning
for classifying multiple disturbing factors on the large-scale face
database (which has the label information for various disturbing
factors). Second, a Disturbance-Disentangled Model (DDM), which
contains a global shared sub-network and two task-specific (i.e.,
expression and disturbance) sub-networks, is learned to encode
the disturbance-disentangled information for expression recogni-
tion. The expression sub-network adopts a multi-level attention
mechanism to extract expression-specific features, while the distur-
bance sub-network leverages adversarial transfer learning to extract
disturbance-specific features based on the pre-trained DFEM. Ex-
perimental results on both the in-the-lab FER databases (including
CK+, MMI, and Oulu-CASIA) and the in-the-wild FER databases
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Figure 1: Facial expression images with (a) high inter-class
similarity (the images are from the CK+ database [20]) and
(b) high intra-class difference (the images are from the SFEW
database [5]).

(including RAF-DB and SFEW) demonstrate the superiority of our
proposed method compared with several state-of-the-art methods.
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1 INTRODUCTION
Facial expression is an effective communicative signal for human
beings to express their inner states [3]. Facial expression recognition
(FER), as an important and fundamental task in computer vision
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and multimedia, has attracted much attention due to its variety of
applications in security, digital entertainment, driver monitoring,
and so on [38, 39].

Over the past few years, inspired by the outstanding perfor-
mance of deep learning [15], convolutional neural network (CNN)
based FER methods [17, 22, 23, 25, 29, 32, 35] have shown promising
recognition accuracy. Despite significant progress, FER is still a very
challenging task. In particular, facial expression images are often
intertwined with various disturbing factors, such as pose, identity,
illumination, age, gender, etc. These disturbing factors have a sub-
stantial influence on the natural appearance of facial images. As
shown in Figure 1, facial expression images show significant inter-
class similarities and intra-class differences because of different
disturbing factors. For each row in Figure 1(a), the two images of
different expressions exhibit high similarity due to the same illumi-
nation and identity. For the images in Figure 1(b), the four images
of the same expression show great differences due to variations
in gender, age, race, identity, illumination, and pose. Obviously,
these disturbing factors seriously interfere with the extraction of
expression-related information.

Hence, it is critical to disentangle the disturbance information
while retaining the expression-related information for deep features.
Many CNN based FER methods [23, 36] have been developed to
implicitly suppress the disturbance information in facial expression
images. Generally, the training of CNN requires a large amount of
labeled data to ensure excellent performance. However, many FER
databases only provide limited training data. Therefore, the CNN
models obtained by these methods may not effectively alleviate the
influence of various disturbing factors, given limited training data.

Recently, some disturbance-disentangled based FER methods
[22, 29, 39] have been proposed to explicitly disentangle the dis-
turbing factors for FER. Nevertheless, many FER databases merely
provide the labels of facial expression and identity (or pose), and
lack the label information for other disturbing factors. As a result,
these methods usually consider only a few disturbing factors, since
manually labeling various disturbing factors is time-consuming.
The performance of these methods is still far from being satisfac-
tory.

Fortunately, there exist some large-scale face databases contain-
ing a large number of facial images with the label information for
different disturbing factors (e.g., Multi-PIE [8] offers the labels of
identity, pose, and illumination; RAF-DB [17] gives the labels of
gender, race, and age). In this paper, we exploit the available dis-
turbance label information (i.e., the labels of disturbing factors)
in these large-scale face databases to perform adversarial transfer
learning for identifying expressions on the disturbance unlabeled
FER databases. As a consequence, the problems of limited training
data and the lack of disturbance labels can be effectively addressed.

To be specific, we propose an effective FER method termed Deep
Disturbance-disentangled Learning (DDL), which is capable of dis-
entanglingmultiple disturbing factors from facial expression images
and learning expression-specific features, by taking advantage of
multi-task learning and adversarial transfer learning. The training
of DDL involves a two-stage learning procedure. First, a Distur-
bance Feature Extraction Model (DFEM) is pre-trained to classify
multiple disturbing factors. Second, a Disturbance-Disentangled
Model (DDM) is trained to disentangle the disturbance information

and obtain expression-specific features. The DDM is comprised
of a global shared sub-network and two task-specific (i.e., expres-
sion and disturbance) sub-networks. The expression sub-network
is designed to extract expression-specific features, while the dis-
turbance sub-network aims to extract disturbance-specific features
based on the pre-trained DFEM. In particular, a multi-level attention
mechanism is adopted to exploit both low-level spatial features and
high-level semantic features in the expression sub-network.

In summary, the main contributions of our work include:
(1) We propose a novel DDL method, which consists of two mod-

els (i.e., a DFEM and a DDM), for effective FER. The proposed
method is able to simultaneously disentangle multiple disturb-
ing factors and encode the expression-related information for ex-
pression recognition. To the best of our knowledge, the proposed
method is the first work to harness the available disturbance label
information from the large-scale face database to perform transfer
learning on the disturbance unlabeled FER database.

(2) We elaborately design two task-specific sub-networks in the
DDM. For the expression sub-network, a multi-level attentionmech-
anism is developed to extract expression-specific features. For the
disturbance sub-network, adversarial transfer learning is adopted
to learn disturbance-specific features. We jointly train the two sub-
networks based on the global shared sub-network from low-level
layers to high-level layers.

(3) The proposed DDL is extensively evaluated on both the in-
the-lab and in-the-wild FER databases. Experimental results show
that our proposed method consistently outperforms several state-
of-the-art methods, which can verify the importance of disturbance
disentangling for effective FER.

2 RELATEDWORK
In this section, we respectively discuss the existing works about
CNN based FER methods, disturbance-disentangled based FER
methods, and attention mechanisms, which are closely related to
our proposed method.

2.1 CNN Based FER Methods
Due to its powerful representation capability, CNN has attracted
significant attention in the areas of multimedia and computer vision.
Currently, the CNN based FER methods [15] have achieved state-of-
the-art performance. For example, Yu and Zhang [36] propose an
ensemble of CNNs, which shows promising results in the EmotiW
challenge. Mollahosseini et al. [23] develop a network consisting
of two convolutional layers and four Inception layers [27] for FER.
Hu et al. [12] propose a supervised scoring ensemble (SSE) method
based on ResNet [9], where the supervision signal is not only used
for the deep layers, but also used for the intermediate and shallow
layers.

These CNN based FER methods implicitly alleviate the influence
of various disturbing factors involved in facial expression images.
Note that CNN usually requires a large number of training data
to learn powerful feature representations. However, many FER
databases do not have sufficient training samples. Therefore, one
potential problem of these methods is that the trained CNN models
are not robust to handle various disturbing factors.



2.2 Disturbance-Disentangled Based FER
Methods

Recently, some methods have been proposed to explicitly per-
form disturbance disentangling for FER. For example, Zhang et
al. [39] propose a generative adversarial network (GAN) based
pose-invariant method for simultaneous facial image synthesis and
FER, by exploiting the relationship between different poses and
expressions. Therefore, the influence of pose variations on FER is
effectively mitigated. Meng et al. [22] propose an identity-aware
convolutional neural network (IACNN) method to alleviate the
variations caused by the facial identity, where an identity-sensitive
contrastive loss is adopted to learn the identity-related information.
Wang et al. [29] propose an adversarial feature learning method to
disentangle the disturbances caused by pose and identity.

The above disturbance-disentangled based FER methods require
the labels of disturbing factors in the FER databases. Unfortunately,
many FER databases only provide the labels of facial expression
and some facial attributes (such as identity and pose), but the la-
bel information for other disturbing factors is not available. Thus,
these methods are only able to handle one or two disturbing factors.
Different from the above methods, our method can effectively dis-
entangle multiple disturbing factors from facial expression images
by capitalizing on the disturbance label information available in
large-scale face databases to perform transfer learning.

2.3 Attention Mechanisms
In recent years, some attention mechanism based CNN methods
have been developed in a variety of tasks, such as fine-grained
recognition [7, 11, 43], image caption [34], person re-identification
[31], and human pose estimation [2].

On the one hand, psychologists have shown that salient facial
regions (such as mouth, nose, and eyes) play a crucial role for FER
[26]. On the other hand, attention mechanisms have shown a great
capability to select salient features. Therefore, attention mecha-
nisms are beneficial to predict facial expressions. For instance, Xie
et al. [32] propose a deep attentive multi-path CNN (DAM-CNN)
method, where a spatial attention mechanism is adopted to ob-
tain salient regions. Wang et al. [30] propose a novel region atten-
tion network (RAN) to adaptively capture salient facial regions for
occlusion-invariant and pose-invariant FER. In general, these atten-
tion mechanism based FER methods leverage high-level semantic
features of CNN for expression recognition.

As a matter of fact, both high-level features and low-level fea-
tures of CNN are advantageous to improve the FER performance.
Therefore, in this paper, unlike previous methods, we adopt a multi-
level attention mechanism, which aggregates the attentive features
from different layers of the network. The attention mechanism
effectively exploits both the spatial-aware and semantic-aware in-
formation to extract discriminative features for identifying facial
expressions.

3 PROPOSED METHOD
In this section, we introduce the proposed DDL method in detail.
An overview of the proposed method is first introduced. Each com-
ponent of the proposed method is then described in detail. Finally,
some discussions about the proposed method are given.

3.1 Overview
An overview of the proposed DDLmethod is shown in Figure 2. The
training of DDL involves two stages. In the first stage, a Disturbance
Feature Extraction Model (DFEM) is pre-trained to simultaneously
classify various disturbing factors (such as gender, race, and age)
using the disturbance labeled face database. In this way, the fea-
tures extracted by the DFEM effectively encode the disturbance
information about these disturbing factors. In the second stage,
a Disturbance-Disentangled Model (DDM) is learned to perform
FER on the disturbance unlabeled FER database. The DDM consists
of a global shared sub-network, an expression sub-network, and
a disturbance sub-network. The expression sub-network adopts
a multi-level attention mechanism to extract expression-specific
features. The disturbance sub-network extracts disturbance-specific
features by exploiting adversarial transfer learning. During training,
by optimizing different loss functions for the expression and distur-
bance sub-networks, expression-specific features and disturbance-
specific features are respectively extracted based on the common
global shared features, and thus the disturbance can be explicitly
disentangled.

3.2 Disturbance Feature Extraction Model
The network architecture of the DFEM consists of the shared lay-
ers and the task-specific layers for classifying different disturbing
factors, as shown in Figure 2(a).

Specifically, a facial image is first fed to several shared layers to
obtain high-level shared features. In this paper, we adopt the PreAct
ResNet-18 [10] as the shared layers. Each task-specific layer consists
of a fully-connected layer to extract discriminative features for
classifying a disturbing factor. In this way, the features obtained by
the shared layers are ensured to encode the disturbance information.

Given a disturbance labeled face database, we have a training set
T𝑙 with 𝑅 images and their corresponding labels: T𝑙 = {x𝑙

𝑖
, y𝑖 }𝑅𝑖=1,

where x𝑙
𝑖
denotes the 𝑖-th training image and y𝑖 is an𝑀-dimensional

vector consisting of the labels of the disturbing factors.𝑀 denotes
the number of disturbing factors. The optimization problem of the
DFEM is expressed as:

argmin
w𝑐 ,{w𝑗 }𝑀𝑗=1

𝑅∑
𝑖=1

𝑀∑
𝑗=1

L 𝑗

𝐶𝐸
(𝑦 𝑗
𝑖
, F𝑗 (x𝑙𝑖 ,w𝑐 ,w𝑗 )), (1)

where the network parameter w𝑐 controls feature sharing among
all the disturbing factors, and the network parameter w𝑗 controls
the update of the features with respect to each disturbing factor;
F𝑗 (·, ·, ·) represents the prediction function for the 𝑗-th disturbing
factor, given the input x𝑖 , the network parameters w𝑐 and w𝑗 ;
𝑦
𝑗
𝑖
denotes the label of the i-th image corresponding to the j-th

disturbing factor; L 𝑗

𝐶𝐸
(·, ·) represents the cross-entropy (CE) loss

between the result estimated by F𝑗 and the corresponding ground
truth label 𝑦 𝑗

𝑖
. The formula of the CE loss is defined as:

L 𝑗

𝐶𝐸
= −

𝐾 𝑗∑
𝑘=1

Π [𝑘=𝑦 𝑗

𝑖
] log(F𝑗 (x

𝑙
𝑖 ,w𝑐 ,w𝑗 )), (2)
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Figure 2: An overview of the proposed DDLmethod. DDL involves two stages. (a) Pre-training a DFEM consisting of the shared
layers and the task-specific layers. The DFEM extracts features for identifyingmultiple disturbing factors. (b) Training a DDM
consisting of a global shared sub-network (𝑆𝑔), an expression sub-network (𝑆𝑒 ), and a disturbance sub-network (𝑆𝑑 ). The DDM
extracts expression-specific features by disentangling the disturbance information.

where log(·) denotes the logarithm function; 𝐾 𝑗 denotes the class
number of the 𝑗-th disturbing factor; Π [𝑘=𝑦 𝑗

𝑖
] outputs 1 when 𝑘 =

𝑦
𝑗
𝑖
, and 0 otherwise.

3.3 Disturbance-Disentangled Model
Based on the pre-trained DFEM on the large-scale face database, a
DDM is trained to explicitly disentangle the disturbances from facial
images on the disturbance unlabeled FER database. The network
architecture of the DDM consists of a global shared sub-network
and two task-specific sub-networks, as given in Figure 2(b).

Global Shared Sub-network. The global shared sub-network
(denoted as 𝑆𝑔) is designed based on the PreAct ResNet-18 [10],
where we remove the final average pooling layer and the fully-
connected layer. 𝑆𝑔 extracts the global shared features of the input
image.

Task-specific Sub-networks. The expression sub-network (de-
noted as 𝑆𝑒 ) consists of a set of attention blocks, followed by an aver-
age pooling layer and two fully-connected layers. 𝑆𝑒 is designed to
learn expression-specific features by applying the attention blocks
to the global shared sub-network 𝑆𝑔 . Here, the attention block gen-
erates a soft attention mask, which can indicate the importance of
each position in the feature map. Moreover, a multi-level attention

mechanism is employed to exploit features at different levels of the
network.

Given a disturbance unlabeled FER database, we have a train-
ing set T𝑢 with 𝑁 images and their corresponding labels: T𝑢 =

{x𝑢
𝑖
, 𝑦𝑖 }𝑁𝑖=1, where x

𝑢
𝑖
denotes the 𝑖-th training image and 𝑦𝑖 is the

expression label corresponding to x𝑢
𝑖
. The goal of 𝑆𝑒 is to optimize

the following problem:

argmin
w𝑔,w𝑒

𝑁∑
𝑖=1

L𝐶𝐸 (𝑦𝑖 , F𝑒 (x𝑢𝑖 ,w𝑔,w𝑒 )), (3)

where w𝑔 denotes the network parameter in the global shared sub-
network 𝑆𝑔 ; w𝑒 denotes the network parameter in the expression
sub-network 𝑆𝑒 ; F𝑒 (·, ·, ·) denotes the prediction function; and L𝐶𝐸
indicates the CE loss between the ground truth expression label 𝑦𝑖
and the predicted result by F𝑒 , which is expressed as:

L𝐶𝐸 = −
𝐾∑
𝑘=1

Π [𝑘=𝑦𝑖 ] log(F𝑒 (x
𝑢
𝑖 ,w𝑔,w𝑒 )), (4)

where 𝐾 is the number of expression categories.
Analogously, the disturbance sub-network (denoted as 𝑆𝑑 ) also

contains a set of attention blocks, followed by an average pooling
layer and a fully-connected layer. The goal of 𝑆𝑑 is to learn the
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Figure 3: The network architecture of the attention block.

disturbance-specific features (f𝑑 ), whose distribution is as similar
as possible to that of the features (f𝑝 ) extracted by the pre-trained
DFEM. To achieve this, we take advantage of adversarial transfer
learning. In particular, 𝑆𝑑 and the discriminator 𝐷 play an adversar-
ial game, where 𝑆𝑑 tries to minimize the divergence of the feature
distributions between f𝑑 and f𝑝 , while 𝐷 aims to distinguish f𝑑

from f𝑝 . The objective of adversarial training is formulated as:

min
𝐷

max
𝑆𝑑

L𝐴𝐷 (𝑆𝑑 , 𝐷), (5)

where the adversarial loss L𝐴𝐷 is defined as follows:

L𝐴𝐷 = −E[log(𝐷 (f𝑝 ))] − E[log(1 − 𝐷 (f𝑑 ))] . (6)

To facilitate the transfer of prior knowledge from the pre-trained
DFEM to 𝑆𝑑 , it is natural that the distributions of both the final
output features and the intermediate attention maps of 𝑆𝑑 are sta-
tistically close to those of the pre-trained DFEM. Therefore, we
also apply the attention transfer [38], which has been proven to be
effective in bridging the gap between the source domain and the
target domain, by transferring attention knowledge. The attention
transfer loss is expressed as:

L𝐴𝑇 =

𝐿∑
𝑗=1

| |
q𝑗
𝑑

| |q𝑗
𝑑
| |2

−
q𝑗𝑝

| |q𝑗𝑝 | |2
| |2, (7)

where q𝑗
𝑑
and q𝑗𝑝 are the 𝑗-th attention maps pair associated with

the 𝑆𝑑 and the pre-trained DFEM in the vectorized forms; 𝐿 denotes
the number of attention blocks. In this paper, 𝐿 is set to five, since
five blocks are used in the PreAct ResNet-18 [10].

By combining the adversarial loss and attention transfer loss,
the knowledge from the disturbance labeled face database is suc-
cessfully transferred to the disturbance unlabeled FER database.

Attention Block. Inspired by [19], we develop an attention
block. The network architecture of the attention block is given in
Figure 3.

The first attention block in 𝑆𝑒 or 𝑆𝑑 takes the features u1 from
the first convolution block in 𝑆𝑔 as the input. For the subsequent
attention block at the 𝑗-th layer, the element-wise weighted addition
between the global shared features u𝑗 in 𝑆𝑔 and the task-specific
features a𝑡

𝑗−1 (𝑡 ∈ {𝑒, 𝑑}) from the previous layer in 𝑆𝑡 (𝑡 ∈ {𝑒, 𝑑}), is
taken as the input, as illustrated in Figure 2(b). Then, the attention
maskm𝑡

𝑗
(𝑡 ∈ {𝑒, 𝑑}) generated from the 𝑗-th layer in 𝑆𝑡 (𝑡 ∈ {𝑒, 𝑑})

is expressed as:

m𝑡
𝑗 =

{
g(u𝑗 ), 𝑗 = 1,
g(𝛿1u𝑗 + 𝛿2a𝑡𝑗−1), 𝑗 ≥ 2,

(8)

where 𝛿1 and 𝛿2 are the learnable parameters that respectively deter-
mine the importance of global shared features u𝑗 and task-specific

shallow	layer deep	layer

Figure 4: Visualization of the output feature maps from dif-
ferent levels of the 𝑆𝑒 sub-network.

features a𝑖
𝑗−1; g(·) denotes the aggregation of a batch normalization

layer, a parametric ReLU layer, a 1 × 1 convolutional layer, another
batch normalization layer, and a sigmoid layer that constrains the
output within the range of (0, 1).

The output feature maps of the 𝑗-th attention block for 𝑆𝑡 (𝑡 ∈
{𝑒, 𝑑}) are given as:

a𝑡𝑗 = h(m𝑡
𝑗 ⊙ u𝑗 ), (9)

where ⊙ denotes the element-wise multiplication; h(·) denotes a
3×3 convolutional layer to match the channels between the task-
specific features in the 𝑗-th layer and the global shared features
in the ( 𝑗 + 1)-th layer, followed by a batch normalization layer, a
parametric ReLU layer, and a max pooling layer to match the sizes
of the feature maps between two types of features.

Multi-level Attention Mechanism. The features from differ-
ent levels of the network are complementary. An example of the
output feature maps in 𝑆𝑒 is illustrated in Figure 4. We can see
that high-level features extracted from deep layers are beneficial
to locate salient regions, while low-level features extracted from
shallow layers can be used to determine salient boundaries.

Based on the above observations, a multi-level attention mech-
anism is introduced in 𝑆𝑒 . To be specific, we combine the output
feature maps from different layers of 𝑆𝑒 by cross-channel concate-
nation. Considering that the sizes of feature maps vary from layer
to layer, we utilize several max pooling layers to ensure the same
size of the feature maps from different attention blocks (except for
the last block). Then, these resized feature maps are concatenated
as:

a𝑜𝑢𝑡 = [â𝑒1; · · · ; a
𝑒
𝐿], (10)

where â𝑒
𝑗
is the output feature maps of the corresponding max

pooling layer for a𝑒
𝑗
. a𝑜𝑢𝑡 is the final combined feature maps. In

this way, both low-level spatial features and high-level semantic
features are aggregated to extract expression-specific features.

Joint Loss Function. The joint loss function for the DDM is
defined as:

L = L𝐶𝐸 + 𝜆1L𝐴𝐷 + 𝜆2L𝐴𝑇 , (11)

where 𝜆1 and 𝜆2 denote the weights of the adversarial loss and
attention transfer loss, respectively.

By minimizing the joint loss function, the DDM is able to extract
discriminative expression-specific features.

3.4 Discussions
A number of existing CNN based FER methods [23, 36] suffer from
the problem that the final expression-specific features contain the
disturbance information because of limited training data. Some



disturbance-disentangled based FER methods [22, 39] may not ac-
curately recognize expressions in the disturbance unlabeled FER
databases. In contrast, in our method, the two task-specific sub-
networks are learned in a collaborative way. By explicitly designing
a disturbance sub-network, the disturbance information can be ef-
fectively disentangled from the features used for expression recog-
nition. Such a manner significantly improves the discriminability
of expression-specific features. Meanwhile, based on adversarial
transfer learning, the knowledge in the DFEM learned from the
large-scale face database can be successfully transferred to the
DDM to perform expression recognition on the disturbance unla-
beled FER database. Therefore, the problems due to limited training
data and the lack of disturbance label information can be greatly
alleviated.

4 EXPERIMENTS
In this section, extensive experiments are performed to show the ef-
fectiveness of our proposedmethod.We first introduce the databases.
Then, we show the implementation details. Next, we conduct the ab-
lation studies to evaluate each component of our proposed method.
Finally, we compare our method with several state-of-the-art FER
methods.

4.1 Databases
CK+: The Extended Cohn-Kanade (CK+) database contains 327
video sequences annotated with expression labels, including six
basic expressions (i.e., angry, happy, surprise, sad, disgust, fear) and
one non-basic expression (contempt). We choose the three peak
expressional frames from each sequence to construct the training
set and the test set. We employ the popular ten-fold cross-validation
protocol for evaluation in this paper, as done in [6, 22, 35, 44].
MMI: The MMI database is composed of 205 image sequences
captured in the frontal view, and the sequences are labeled with six
basic facial expressions. Similar to the CK+ database, we select the
three peak expressional frames in each sequence for training and
testing. The subject-independent ten-fold cross-validation is also
conducted.
Oulu-CASIA: The Oulu-CASIA database contains videos of 80
subjects and six basic expressions. The images are captured with
two imaging systems (i.e., near-infrared and visible light), under
three different illumination conditions, including normal indoor
illumination, weak illumination, and dark illumination. As done
in [35], the last three frames in each sequence captured with the
visible light and strong illumination are used in our experiments.
The subject-independent ten-fold cross-validation is conducted.
RAF-DB: The real-world affective face database (RAF-DB) is a real-
world database that contains 15,331 images labeled with six basic
facial expressions and a neutral expression, where 12,271 and 3,068
images are used for training and testing, respectively. In addition
to the expression label, the images in RAF are also labeled with the
facial attributes of age, gender, and race.
SFEW: The SFEW database is created by selecting the static frames
from the AFEW database [4]. It is very challenging because it cov-
ers unconstrained facial expressions, varied head poses, large age
range, varied focus, different resolutions of faces and real-world
illumination. Each image is assigned to one of six basic expression

Table 1: The details of the three baseline methods and six
DDL variants.

Methods 𝑆𝑔
𝑆𝑒 𝑆𝑑

w/o multi gen age race id ill pose
Baseline

√
- - - - - - - -

Baseline_at
√ √

- - - - - - -
Baseline_mat

√
-

√
- - - - - -

DDL_g
√

-
√ √

- - - - -
DDL_ga

√
-

√ √ √
- - - -

DDL_gar
√

-
√ √ √ √

- - -
DDL_gar&id

√
-

√ √ √ √ √
- -

DDL_gar&id&il
√

-
√ √ √ √ √ √

-
DDL_gar&id&il&p

√
-

√ √ √ √ √ √ √

“w/o” and “multi” respectively represent that 𝑆𝑒 is trained with-
out and with the multi-level attention mechanism; “gen”, “age”,
“race”, “id”, “ill”, and “pose” denote that the DFEM is pre-trained to
predict gender, age, race, identity, illumination, and pose, respec-
tively.

or the neutral expression. The training set contains 847 images and
the test set contains 409 images.

4.2 Implementation Details
For all the databases, the face in each image is detected and cropped
according to the eye positions. Then, the facial image is resized
to the size of 100 × 100. During training, the facial images are
randomly cropped to the size of 90 × 90, and the cropped images
are further processed by using the horizontal flip. By default, the
PreAct ResNet-18 is pre-trained on the AffectNet database [24].

The values of 𝜆1 and 𝜆2 in Eq. (11) are empirically set to 1.0 and
0.05, respectively. The dimension of disturbance-specific features is
128 and that of expression-specific features is equal to the number
of expression categories (6 or 7 in the FER database). We train the
networks using the Adam algorithm [14] with the initial learning
rate of 0.0001, 𝛽1 = 0.500, and 𝛽2 = 0.999. The learning rate is
further divided by 10 after 10, 18, 25, and 32 epochs. All the models
are trained on a single NVIDIA GTX 1080 Ti using Pytorch for 40
epochs with a batch size of 16 for RAF-DB and 8 for the other FER
databases.

The DFEM is pre-trained on the Multi-PIE face database [8]
to extract features for classifying identity, pose, and illumination,
where Multi-PIE contains 755,370 images from 337 subjects under
15 viewpoints and 20 light conditions. The DFEM is also pre-trained
on the RAF-DB database to extract features for classifying gender,
age, and race. When all the six disturbing factors are considered, the
DFEM is pre-trained by combining Multi-PIE and RAF-DB, where
missing labels are ignored during back-propagation.

4.3 Ablation Studies
In order to show the effectiveness of the proposed DDL method,
we conduct the ablation studies to evaluate the influence of the
attention block, the multi-level attention mechanism, and different
disturbing factors on the performance of our proposed method.
Specifically, we evaluate the performance of three baseline methods
and six DDL variants, whose details are summarized in Table 1.



Table 2: The recognition accuracy (%) obtained by three baselines and six DDL variants. The best results are boldfaced.

Databases Baseline Baseline_at Baseline_mat DDL
g ga gar gar&id gar&id&il gar&id&il&p

CK+ 96.37 97.93 98.08 98.19 98.41 98.96 99.10 99.16 98.78
MMI 77.68 79.23 79.43 82.05 82.72 83.17 83.19 83.67 83.01

Oulu-CASIA 83.40 86.18 86.53 87.22 87.36 87.78 88.26 87.85 87.64
RAF-DB 85.89 86.63 86.90 87.19 87.22 87.45 87.45 87.55 87.71
SFEW 55.96 56.42 57.34 58.03 58.26 58.49 59.60 59.63 59.86

CK+

MMI

Oulu-CASIA

RAF-DB

SFEW

Figure 5: Visualization of attentive featuremaps on the CK+,
MMI, Oulu-CASIA, RAF-DB, and SFEW databases. Left to
right in each panel: angry, surprise, disgust, fear, happy, and
sad.

Table 2 shows the recognition accuracy comparison obtained by
these nine methods.

Influence of Attention Block and Multi-level Attention
Mechanism. As shown in Table 2, compared with Baseline, Base-
line_at achieves 1.56%, 1.55% and 2.78% gains in terms of recognition
accuracy on the CK+,MMI, andOulu-CASIA databases, respectively.
For the in-the-wild databases, its accuracy is improved by 0.74%
and 0.46% on the RAF-DB and SFEW databases, respectively. These
results demonstrate the effectiveness of the attention block. Fur-
thermore, Baseline_mat achieves higher recognition accuracy than
Baseline_at. Specifically, compared with Baseline_at, the recogni-
tion accuracy of Baseline_mat is improved by 0.15%, 0.20%, 0.35%,
0.27%, 0.92% on CK+, MMI, Oulu-CASIA, RAF-DB, and SFEW, re-
spectively. This verifies the effectiveness of the multi-level attention
mechanism.

To show the importance of the multi-level attention mechanism,
we add the generated feature maps in 𝑆𝑒 to the input facial images
and visualize them in Figure 5. To be specific, the combined feature
maps (see Eq. (10)) with a size of 1472 × 6 × 6 before the fully-
connected layer are first added along the channel dimension, which
generates an attentive feature map with the size of 6 × 6. Then,
this feature map is resized to the same size as the input image.
Finally, we add the resized attentive feature map to the input image
and obtain the final results. As shown in Figure 5, the warm-toned
parts of an image correspond to the regions with large values in
the attentive feature map, and vice versa. We can observe that

the attentive feature map is able to focus on key facial regions
(especially the regions around eyes and mouth) that are critical for
expression recognition. In particular, for the images in the in-the-
lab databases, the corresponding attentive feature maps focus on
small facial patches. For the images in the in-the-wild databases,
the corresponding attentive feature maps tend to pay attention to
relatively large facial patches. This is because that the images in
the in-the-wild databases involve large pose variations and low
image quality. A larger facial patch is beneficial to extract more
discriminative features for predicting facial expressions on the in-
the-wild databases.

Influence of Different Disturbing Factors. The influence of
different disturbing factors on FER is also shown in Table 2.

We can observe that all the variants consistently perform bet-
ter than Baseline_mat, which demonstrates the importance of the
disturbance sub-network 𝑆𝑑 . 𝑆𝑑 is helpful to disentangle the distur-
bance information from facial expression images, and enable the
model to extract highly discriminative expression-specific features,
thus improving the final performance.

In addition, for the in-the-wild databases, the recognition accu-
racy obtained by DDL tends to be higher when more disturbing
factors are considered. The proposed method achieves the best
performance when all the disturbing factors are employed in the
DFEM. This is because that the images in the in-the-wild databases
usually contain severe variations caused by multiple disturbing
factors. Explicitly disentangling these disturbing information has a
positive influence on the extraction of effective expression-specific
features. However, the proposed method obtains the top accuracy
on the CK+ and MMI databases when all the disturbing factors ex-
cept for the pose are considered. This is because the images in the
in-the-lab database are all frontal images. As a result, considering
the pose as the disturbing factor in the DFEM leads to performance
decrease. Meanwhile, the proposed method performs best on the
Oulu-CASIA database, when all the disturbing factors except for the
pose and illumination are considered. This can be ascribed to the
fact that the images in Oulu-CASIA do not contain obvious pose and
illumination variations. Therefore, it is critical to properly choose
the disturbing factors by taking into account the characteristics of
the FER database.

4.4 Comparisons with State-of-the-Art FER
Methods

In this subsection, we compare the proposed method with several
state-of-the-art FER methods. Table 3 and Table 4 give the perfor-
mance obtained by all the competing methods on the in-the-lab
databases and the in-the-wild databases, respectively.



Table 3: Performance comparisons on the in-the-lab
databases (i.e., CK+, MMI, and Oulu-CASIA). The best
results are boldfaced.

Methods Accuracy (%)
CK+ MMI Oulu-CASIA

LBP-TOP [42] 88.99‡ 59.51 68.13
PPDN [44] 97.30† - 72.40
IACNN [22] 95.37‡ 71.55 -

DLP-CNN [16] 95.78† 78.46 -
DTAGN* [13] 97.25‡ 70.20 81.46
IPA2LT [37] 92.45‡ 65.61 61.49

DAM-CNN [32] 95.88† - -
L2-sparseness[33] 97.59‡ 78.54 82.92

DeRL [35] 97.37‡ 73.23 88.00
PHRNN-MSCNN* [40] 98.50‡ 81.18 86.25

FN2EN [6] 98.60† - 87.71
DDL (proposed) 99.16‡ 83.67 88.26

‡ and † respectively denote that seven expression categories
and six expression categories are used in CK+; * indicates that the
method is trained based on the image sequences.

As shown in Table 3, we can observe that almost all the meth-
ods obtain high recognition accuracy on the CK+ database, while
achieving relatively worse performance on the MMI and Oulu-
CASIA databases. This is because that the images from CK+ are of
high quality and the intensities of different expressions are rela-
tively strong, while those from MMI are affected by the glasses and
the expression intensities from Oulu-CASIA are relatively weak.

Among all the competing methods, the top three methods are our
proposedDDL, FN2EN [6], and PHRNN-MSCNN [40]. Our proposed
DDL achieves better performance than FN2EN, even though our
test set is more challenging. The FN2EN method only classifies
the basic six expression categories in CK+. On the contrary, our
method classifies not only the basic six expressions, but also the
contempt category in CK+. The recurrent neural network (RNN)
is used in PHRNN-MSCNN, where both the facial image and the
facial landmarks are used as the inputs. In contrast, our proposed
method only uses a single image as the input. Nevertheless, our
proposed DDL still achieves the best performance among all the
competing methods, which can be ascribed to the effectiveness
of our proposed deep disturbance-disentangled learning and the
multi-level attention mechanism.

As shown in Table 4, we compare our method with eight state-of-
the-art methods on the in-the-wild databases. Among them, DLP-
CNN [17] proposes a locality preserving loss to implicitly address
the disturbance problem and reduce the intra-class distance. IPA2LT
[37] addresses the problem of inconsistent annotations in the FER
databases. SPDNet [1] introduces the covariance pooling into FER
and achieves state-of-the-art performance. However, the above
methods do not explicitly deal with the disturbing factors, thus
leading to inferior performance.

IACNN [22] proposes an identity-aware network by taking iden-
tity into account. IPFR [29] simultaneously considers identity and
pose in their framework. These methods can only address one or
two disturbing factors, whose labels are given in the FER databases.
Different from the above methods, our proposed method is able

Table 4: Performance comparisons on the in-the-wild
databases (i.e., RAF-DB and SFEW). The best results are bold-
faced.

Methods Accuracy (%)
RAF-DB SFEW

IACNN [22] - 50.98
DLP-CNN [17] 84.13 51.05
gACNN [18] 85.07 -
IPA2LT [37] 86.77 58.29
SPDNet [1] 87.00 58.14
IPFR [29] - 57.40

DAM-CNN [32] - 42.30
RAN [30] 86.90 56.40

DDL (proposed) 87.71 59.86

to explicitly disentangle multiple disturbing factors by leveraging
adversarial transfer learning, even though disturbing factors are not
labeled in the FER databases. gACNN [18] and RAN [30] explicitly
handle the occlusion problem through combining local learning
and global learning. However, these two methods only utilize the
high-level features to perform FER. Unlike these two methods, our
proposed method exploits both high-level features and low-level
features, thereby achieving the best performance. This is due to the
fact that we take advantage of the large-scale disturbance labeled
face database to explicitly learn the distribution of multiple disturb-
ing factors, and entangle the disturbance by elaborately designing
an expression sub-network and a disturbance sub-network based
on a global shared sub-network.

5 CONCLUSIONS
In this paper, we propose a novel DDL method for FER. DDL is able
to simultaneously disentangle multiple disturbing factors (even
when the labels of these disturbing factors are not available in the
FER databases) and effectively extract the expression-related infor-
mation, by taking advantage of multi-task learning and adversarial
transfer learning. The training of DDL contains two stages: pre-
train a DFEM to extract features for classifying multiple disturbing
factors, and train a DDM to extract expression-specific features and
disturbance-specific features. In particular, a multi-level attention
mechanism is employed in the expression-specific sub-network
to make full use of both low-level and high-level features. Exten-
sive experiments conducted on three in-the-lab FER databases and
two in-the-wild FER databases have demonstrated the superior
performance of our proposed method.

Currently, our method cannot adaptively choose the disturbing
factors when evaluated on a FER database. In the future, we intend
to investigate effective ways to adaptively disentangle appropriate
disturbing factors on different FER databases.
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