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ABSTRACT 

 

Technological advances have furthered the development and understanding of trace 

materials such that DNA and fingerprints have become the foundation of human identification. 

However, when a body undergoes damage such as in cases of arson, these methods of 

identification may not be possible, and alternative methods of identification become critical.  

Previous studies have quantified the variability of the paranasal sinuses between individuals and 

have begun to explore their ability to provide biological information. However, the published 

literature investigating these structures in a forensic anthropology context offers variable 

findings. This study presents a new approach for establishing a biological profile using three-

dimensional (3D) reconstructions of the paranasal sinuses. 3D models were produced from a 

database of modern CT scans provided by University College London Hospital (UCLH), 

London, UK. Elliptic Fourier and linear analysis produced from the 3D models demonstrated 

notable variations and patterns for discriminating age, sex, and ancestry across three distinct 

ethnic groups. The most promising classification rates ranged from 82.8% (p=.027) to 76.9% 

(p=.003) for age and sex prediction. The findings offer insights into the potential for using the 

paranasal sinuses as an attribute for discriminating between individuals and the identification of 

unknown human remains in crime reconstruction investigations. 
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Introduction 

 

Human identification can be an essential element in a forensic investigation. A forensic 

anthropologist aims to assist law enforcement in establishing the biological profile to unknown 

remains using various metric and visual methods 1, 2. These methods become crucial when 

human remains are severely damaged or burned and standard methods for positive identification 

such as DNA or fingerprints are not possible 3, 4. However, the majority of traditional metric and 

non-metric methods used in the establishment of a biological profile by forensic anthropologists 

were developed using North American populations, and therefore have shown differing accuracy 

rates when applied to skeletal remains outside of the reference sample 1,5-9.  For example, 

MacLaughlin et al. 5 tested the reliability and accuracy of the Phenice 10  method for correct sex 

assessments on European adult skeletal remains and could not support the original results 

observed by Phenice10. Ubelaker et al.6 also found that the experience of the observer contributed 

significantly to the accuracy of this method. Similar issues are presented in standard age 

estimations where only a limited number of studies have examined the reliability of these 

methods across Europe and fewer within the UK11-14. Methods based on modern populations are 

vital in order to validate and further improve the existing body of knowledge for both global and 

population-based methods15. Therefore, complementary studies that reflect modern UK 

populations are needed to support new and more sophisticated methods of measurement and 

analysis to ultimately aid in robust identifications15-17. 

Published research 18- 20 has quantified the variability of the frontal sinus between individuals 

and has likened the distinctiveness of this structure to that of fingerprint comparison. The 

variability of the frontal sinus between individuals has resulted in its successful use as a primary 

source for identification supported by expert testimony in the court of law 21, 22. Previous studies 



have relied on a range of methods for analysis of the sinuses, including codifying certain features 

or acquiring measurements from radiographic data, such as computed tomography (CT) scans or 

X-rays 18, 23- 25. However, three-dimensional (3D) modelling is crucial in examining the paranasal 

sinuses due to its documented accuracy and utility in examining anatomical structures 26-28 and 

should be employed where possible. Therefore, utilizing 3D modelling to determine the 

effectiveness to paranasal sinuses in determining age, sex, and ancestry as a potential tool in 

establishing a biological profile is a valuable next step.  

The existing published literature on the paranasal sinuses 29- 33 include studies with varying 

emphasis on each sinus (frontal, maxillary, ethmoid and sphenoid) and are typically targeted 

towards practicing physicians for medical care and not explicitly intended for establishing sex, 

age, or ancestry to establish a biological profile. Consequently, research investigating the ability 

of the paranasal sinuses to provide biological information to ultimately assist with forensic 

identification of unknown human remains on modern UK populations could not be identified. 

Furthermore, methods developed from modern UK populations to assist with establishing a 

biological profile are essentially non-existent.   

This paper presents a preliminary study that was developed to demonstrate proof of concept 

for developing a tool to assess the potential of these structures to provide biological information 

that includes age, sex, and ancestry indicators elicited from 3D models of paranasal sinuses on a 

modern UK population.  Elliptic Fourier and linear analysis were employed on 120 three-

dimensional paranasal sinus models produced from CT data of 30 individuals to determine if this 

approach was able to reveal notable patterns in size and shape that might exist to aid 

discrimination on the basis of age, sex, and ancestry across three ethnic groups. This study 

therefore aims to lay the foundation for establishing a new and reliable method to assist in the 



generating of biological profiles of a modern UK population in forensic anthropology through 

the use of computer-assisted methods for three-dimensional reconstructions of the paranasal 

sinuses. 

Materials and Methods 

Dataset 

Three-dimensional models were produced from a database of modern clinical sinus CT 

scans from living individuals in the UK population provided by University College London 

Hospital (UCLH) London, UK. The sinus CT scans were anonymized prior to collection by the 

picture archiving and communications (PACS) department at UCLH with only age, sex, and self-

assigned ethnic group provided. The CT scans were provided in DICOM (Digital Imaging and 

Communications in Medicine) imaging format at 1 mm slice thickness. This study was approved 

by the Health Research Authority (HRA) and was exempt from requiring further NHS REC 

approval by the HRA.  

This preliminary study utilised the sinus-specific 3D modelling method developed by 

Robles et al.34 to produce three-dimensional models of the paranasal sinuses. An initial sample of 

n=30 sinus CT scans were taken from a larger dataset created from a modern UK population 

(Table 1). A smaller sample size for this study was selected to demonstrate proof of concept of 

not only the capability and feasibility of the Robles et al.34 method but to also assess the 

challenges and potential limitations of employing this method and any subsequent analysis at a 

larger scale. It was also undertaken to establish whether it was possible to identify potential 

trends in the data generated from the initial small sample set in order to establish a robust 

approach for a larger and more substantive study of the full dataset available. Similar sample 

sizes have been employed in numerous studies to determine populational variations in both pilot 



and full-scale studies 28,31,35-40. A sample of 30 CT scans resulted in a sizable dataset as n=120 

models were ultimately produced as each individual typically has four paranasal sinuses. The 

subsequent measurement and analysis of these models resulted in a considerable dataset of 

n=480 measurements (height, width, length and volume across 120 models) and a robust dataset 

of shape descriptors.  

The sample dataset for this study consisted of 10 individuals from three different ethnic 

groups (White British, Black African, and Chinese) all of which were chosen randomly from the 

larger dataset provided by UCLH.  The ethnic group assigned to each CT scan was self-reported 

by the patient. Uncertainty is a noted limitation when using self-reported ethnic groups and is 

inherent with this dataset. However, this is a baseline study to determine potential patterns 

between groups that might prove valuable in forensic reconstructions. 

 Male and female subjects were chosen from each ethnic group randomly with an equal 

number of each sex distributed within each group (see Table 1). Additionally, the size and shape 

of the sinuses may change with age due to pneumatisation 41, 42. Therefore, the division of age 

groups was intended as a potential identifier in possible aging patterns and preliminary trends to 

inform future studies if age groups could be examined. Individuals were divided into a simple 

split between two age groups; <49 years and 50+ years. The database provided by UCLH 

included the ages of each individual in years, months not included. Consequently, individuals 

that fell between the ages of 49 and 50 were considered 49 years old.  The selection of 49 years 

as a cut-off was selected for equal sample size distribution 43. The sample excluded individuals 

with visible trauma or pathology to the sinuses.  

 

Table 1. Dataset composition 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Collection and Processing 

 

3D reconstructions were integral to the data collection process. The accuracy and 

precision of 3D models is well documented 27, 28, 44 and have been demonstrated to have 

significant value when examining the sinuses 20, 26,45 given the three-dimensional nature of the 

sinuses26 in contrast to measurements taken from 2D images. There are a range of visualization 

programs that have the potential to produce three-dimensional models from CT scans. However, 

commercial visualization programmes are not always cost-effective or accessible across 

platforms 46. Furthermore, there is no significant difference between models produced from 

commercial and open-source software 47. Therefore, the open source software program 3D 

SlicerTM 46 was used to produce the three-dimensional models in this study. This software 

program is a DICOM viewer allowing for easy exportation and importation of STL 

(stereolithography) files to other platforms. Figure 1 presents the overall workflow employed in 

this study, from the production of the 3D models to the subsequent measurements and analysis. 

Preliminary Dataset 

Number of Subjects (N=30) 

Ethnic Groups 
Sex Age 

Male Female <49 yrs 50+ yrs 

White British 10 5 5 4 6 

Black African 10 5 5 6 4 

Chinese 10 5 5 4 6 

Overall 30 15 15 14 16 



 

 

First, the CT scans were imported into 3D SlicerTM following the method developed by 

Robles et al.34 for importing; cropping; segmenting; and thresholding to produce the final 3D 

models of the paranasal sinuses. The Robles et al. 34 method requires the analyst to produce a 

model of each sinus separately for analysis as opposed to producing the paranasal sinuses at the 

same time allowing for a faster segmentation and thresholding process (see Robles et al., 34). The 

method also allowed for individual analysis of each sinus to determine if one sinus provided 

more discriminatory capability in terms of biological patterns over others. The final three-

dimensional models of each sinus (frontal, maxillary, ethmoid, and sphenoid) were then saved as 

an STL file. The STL file was then exported to MeshLabTM 48 and ImageJTM 49 for subsequent 

measurement and analysis (see Figures 2 and 3).  

Next, the measurements from each sinus model were calibrated automatically in 

MeshlabTM to ensure uniform, accurate and speedy analysis. Linear measurements including 

height, width, length, and total volume were recorded in millimetres on each model. The 

Figure 1. Process and workflow 



measurements were not taken manually, and landmarks were not employed but rather the 

dimensions of the models were automatically detected and recorded in MeshlabTM (see Figure 2). 

Therefore, measurement validation between observers was not necessary as measurements were 

not collected manually. However, the measurements provided by MeshlabTM were further 

confirmed in an alternate software program to ensure the measurements were consistent across 

platforms. 

 

 
Figure 2. Measurements taken from three-dimensional model of a frontal sinus in MeshlabTM.  

 

 

Elliptic Fourier analysis (EFA) was then performed to determine if the outline shape of 

the 3D model of the frontal sinuses could provide more discriminatory variables to assist in 

establishing age, sex, and ancestry of the individual.  EFA is a method that can capture the 

extreme variation of paranasal sinuses as it does not require homologues or equally spaced 

landmark points unlike other methods of morphological analysis 50. The method is a 

mathematical tool developed to quantitatively describe a closed outline using sine and cosine 



terms 50, 51. To carry out EFA, the coordinate data from the outlines of the 3D models were 

collected.   

To collect the x,y coordinates for EFA, the 3D models were converted into 2D images 

and transferred to the free software programme ImageJTM where the outline coordinates of the 

sinuses were extracted. The 3D models were turned into 2D images in order to quickly and easily 

capture the outline of the 3D models rather than have to manually select and trace each sinus 

outline from a specific CT slice consistently across every individual CT dataset18,23. The images 

were then scaled and then turned into ‘8-bit’ and made ‘binary’ to accurately establish the 

outline of the sinus (see Figure 3).  

 

 

Figure 3. Outline of three-dimensional model of frontal sinus. 

 

 

The coordinates were converted into elliptic Fourier coefficients to allow for statistical 

analysis 50, 52 to be undertaken on the shape data (see Figure 4) to directly compare the statistical 

results from the linear measurements and the elliptic Fourier coefficients. In this way it was 

possible to assess the degree to which the elliptic Fourier coefficients were able to act as 

discriminant independent variables.  



 
Figure 4. Harmonics of the frontal sinus. 

 

The coefficients were produced in Past3TM and were provided in sets of four where each 

set was defined as one harmonic in increasing order from 1 to 30. Figure 4 presents a depiction 

of increasing number of harmonics where each additional harmonic depicts a sharper and clearer 

approximation of the original sinus outline.  The calculations in Past3TM53 also ensured that the 

coefficients were invariant to size and positional translation. 

 

 

 

Data Analysis  

The statistical software package IBM SPSS  Statistics for Macintosh Software Version 

26.0 (Armonk, NY:IBM Corp.) was used to undertake discriminant function analysis to 

determine how well the measurements of the sinuses act as predictors in correctly classifying the 

age, sex, and ancestry of the each individual. Fisher’s linear discriminant function analysis 

(DFA) was applied as it is commonly used to assess whether skeletal measurements can correctly 

predict the elements of a biological profile 54, 55. Furthermore, DFA derives rules from data that 

is classified into predetermined groups to assist with classifying new data on the basis of the 

observed variable values55. The test evaluates how well the discriminant function of the variables 

perform in their predictions by providing a classification rate. The classification rate is the 

number of subjects or cases correctly classified into the known sex, age, ethnic groups according 

to the discriminant rule, demonstrated by a percentage 56.  



To mitigate for the small sample size40 the statistical analyses were performed with 

bootstrapping (with 1000 bootstrap samples) at 95% confidence intervals (CI). Separate one-way 

ANOVA tests were included in the DFA output and were initially assessed to determine 

significant group differences. Depending on the significance of the one-way ANOVA results, 

DFA was then carried out on the linear measurements for each sinus model separately excluding 

major outliers. Following this, one-way ANOVA was carried out within each ethnic group to 

determine if there were significant differences between groups means.  

DFA was also carried out (with bootstrapping with 95% CI) on the elliptic Fourier 

coefficients excluding major outliers. The outline measurements and subsequently the elliptic 

Fourier coefficients were only taken from the frontal sinus. This was to determine if outline 

analysis was a feasible form of measurement on these structures. The elliptic Fourier coefficients 

produced from the frontal sinus were tested against the entire sample (n=30) to determine age, 

sex, and ancestry using DFA. Due to the small sample size, the analysis was only run over the 

entire sample and not within each ethnic group.    

Finally, the most discriminant variables that resulted with the highest classification rates 

from the linear measurements were analysed together with the elliptic Fourier Coefficients to 

determine if the classification results increased in the overall sample size. This was carried out to 

determine if using both forms of measurements (Linear and elliptic Fourier Coefficients) 

performed better at determining age, sex and ancestry than each form of measurement alone (see 

Figure 1).  

 

 

 



Results 

Biological Patterns of the Paranasal Sinuses 

Descriptive statistics from each paranasal sinus measurement were analysed 

(bootstrapped at a 95% CI). The average mean and standard deviation of the linear and 

volumetric measurements between each sinus over the entire sample (n=30) are presented in 

Table 2.  The results of the discriminant function analysis are provided in tables 3-21 wherein the 

one-way ANOVA; classification results; cross-validation results; p-values and other statistics are 

presented. 

 

Table 2. Descriptive Statistics of the linear and volumetric measurements (mm). 

 
Descriptive Statistics (mm) 

 Bootstrapped (95% Confidence Interval) 

White British (N=10) Height Width Length Volume 

Frontal Sinus Mean 19.86 18.26 56.41 4543.4 

 Std. Deviation 6.34 5.05 12.04 3067.73 

95% CI 
Upper 23.67 21.15 63.13 6418.85 

Lower 16.08 15.19 48.84 2714.88 

Maxillary 

Sinus 
Mean 39.46 39.19 71.32 2472 

 Std. Deviation 5.49 3.01 15.46 902.74 

95% CI 
Upper 42.73 40.85 78.57 3008.5 

Lower 36.49 37.47 59.87 1949.45 

Ethmoid 

Sinus 
Mean 29.65 35.6 33.97 4372.61 

 Std. Deviation 6.28 4.51 4.65 2103.56 

95% CI 
Upper 33.36 38.28 36.98 5590.3 

Lower 26.23 32.91 31.44 3157.13 

Sphenoid 

Sinus 
Mean 26.22 29.31 33.14 12201.48 

 Std. Deviation 3.59 5.77 5.96 16096.61 

95% CI 
Upper 28.34 32.62 36.8 23166.24 

Lower 24.21 25.74 29.55 5459.69 

Chinese (N=10) 

 



Frontal Sinus Mean 17.48 15.43 47.38 3305 

 Std. Deviation 6.57 4.83 16.39 2032.85 

95% CI 
Upper 21.71 18.45 56.17 4554.79 

Lower 13.92 12.66 36.66 2124.05 

Maxillary 

Sinus 
Mean 39.56 38.73 83.06 3340.7 

 Std. Deviation 8.08 3.63 11.98 1477.72 

95% CI 
Upper 44 40.74 89.68 4243.62 

Lower 34.45 36.47 75.59 2472.31 

Ethmoid 

Sinus 
Mean 26.2 37.02 37.37 5947.659 

 Std. Deviation 5.34 4.57 4.39 1934.7319 

95% CI 
Upper 29.3748 39.5225 39.939 7224.77 

Lower 23.0475 34.237 34.8848 4902.31 

Sphenoid 

Sinus 
Mean 28 33.19 41.95 10872.698 

 Std. Deviation 6.2 6.82 7.72 5264.38872 

95% CI 
Upper 31.85 37.01 46.57 13976.19 

Lower 24.6283 28.7119 37.5713 7756 

Black African (N=10) 

 

Frontal Sinus Mean 18.49 17.42 52 3689.1 

 Std. Deviation 8.47 8.22 21.02 4423.4 

95% CI 
Upper 23.61 22.57 64.12 6458.76 

Lower 13.73 13.1 40.22 1490.1 

Maxillary 

Sinus 
Mean 42.14 43.34 85.51 3313.9 

 Std. Deviation 6.49 4.94 8.57 1325.69424 

95% CI 
Upper 46.7044 46.3549 90.0293 4194.6908 

Lower 38.9931 40.5144 80.3359 2625.6229 

Ethmoid 

Sinus 
Mean 28.1 40.33 39.83 7733.34 

 Std. Deviation 7.4 4.4 4.7 2506.55 

95% CI 
Upper 32.53 43.44 42.73 9196.7 

Lower 23.8 37.91 37.09 6174.03 

Sphenoid 

Sinus 
Mean 27.42 32.83 40.47 11647.679 

 Std. Deviation 4.4 2.8 8 3929.86 

95% CI 
Upper 30.23 34.65 45.09 14175.04 

Lower 24.93 31.3 35.97 9416.46 

 

 

 



Frontal Sinus  

The results of the one-way ANOVA and Welch test did not indicate significant 

differences between group means according to age or ethnicity (p>0.05). However, significant 

differences were seen in the group means according to sex (p<.05) (see Tables 3 and 4). DFA 

found that the frontal sinus measurements did not provide significant results in discriminating 

between sex (p=0.06) (p>0.05).  

   Table 3. One-way ANOVA results according to sex 

    

Sex df1 df2 F Sig. 

Height 1 25 9.962 0.004 

Width 1 25 35.196 0 

 

Table 4. Welch test for variables that violated test of Homogeneity of Variance 

 

 

 

 

 

 

Maxillary Sinus 

 Results from the one-way ANOVA (bootstrapped at 95% CI) did not show significance 

differences in the group means for any measurement variable across age (p=.339-.888) or sex 

(p=.126 -.999) (p>0.5) therefore additional analysis was not carried out. Significant differences 

were demonstrated according to ethnic group at the width variable (p=.031) (p<.05). However, 

the DFA results violated the Box’s M tests of the null hypothesis of equal population covariance 

matrices (p=0.008) therefore the results of the DFA were not reliable. 

 

 

Robust Tests of Equality of Means (Welch) 

 Statistica df1 df2 Sig. 

Length 12.802 1 15.887 0.003 

Volume 13.972 1 16.455 0.002 

a Asymptotically F distributed. 



Ethmoid Sinus  

One-way ANOVA analyses indicated significant differences between mean 

measurements according to age where volume provided the most significant mean difference 

(f1,27=6.927, p=0.014) (p<0.05). DFA was carried on these variables to classify age. Tables 5 

provides the Eigenvalues and Wilks’ Lambda with a significant p-value (p=0.027) which 

indicates the model is a good fit for the data. Tables 6 and 7demonstrate the variables that 

contributed most to the classification model. Table 8 provides the cut-score obtained by 

calculating the arithmetic mean of the centroid group values55. The application of this 

discriminant rule provided a classification rate of 82.8% (cross-validated 72.4%) (see table 9). 

Significant differences of group means were not found according to sex (p>0.05) and no 

further analysis was undertaken.  

Significant group differences were found according to ethnic group where volume 

provided a significant result (f2,26=6.825, p=.0004). DFA found that measurements produced a 

low classification rate of 51.7 % (Cross-validated=48.3%) (p-value=.016) (p-value<.05). The 

corresponding output tables will not be listed as this classification rate, while significant, does 

not indicate an effective discriminating pattern. 

 

Table 5. Summary of Canonical Discriminant Functions and Wilks’ Lambda Statistics 

Eigenvalues 

 

 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 .551a 100 100 0.596 

 
For split file bootstrap split=0, first 1 canonical discriminant functions were used in the analysis. 

 

 

Wilks' Lambda 

 

Test of 

Function(s) 
Wilks' Lambda Chi-square df Sig. 

1 0.645 10.979 4 0.027 



 

 

  Table 6. Standardized Canonical Discriminant Function Coefficients 

 Function Coefficient Bootstrap    

   Bias 
Std. 

Error 
95% CI  

     Lower Upper 

Height 1 -0.104 0.135 0.42 -0.884 0.779 

Width 1 -0.009 0.124 0.354 -0.594 0.839 

Length 1 -0.941 0.525 0.921 -1.698 1.401 

Volume 1 1.372 -0.708 1.189 -1.827 1.917 

a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 

 

 

Table 7. Canonical Discriminant Function Coefficients 

 
 Function Coefficient Bootstrap    

   Bias 
Std. 

Error 

95% Confidence 

Interval 
 

     Lower Upper 

Volume 1 0.001 0 0.001 -0.001 0.001 

Height 1 -0.017 0.024 0.074 -0.151 0.155 

Length 1 -0.188 0.112 0.201 -0.341 0.338 

Width 1 -0.002 0.029 0.079 -0.127 0.192 

(Constant) 1 3.896 -4.096 5.958 -13.31 7.511 

Unstandardized coefficients 
a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 

Table 8. Functions at Group Centroids 

Age Group Function Cut-off  

Score 

 

1 

0.0745 <49 years 0.795 

50+ -0.646 

Unstandardized canonical discriminant 

functions evaluated at group means 

 

Table 9. Classification results of the ethmoid measurements in classifying age group 

 Age Group 
Predicted Group 

Membership 
Total 

   <49 years 50+  

Original Count <49 years 11 2 13 



 

 

Sphenoid Sinus  

One-way ANOVA did not show significant differences in groups means for any 

variable according to age (p=.305-.916) sex (p=.250-.933), or ethnic group (p=.053-.702) 

(p>0.05). 

 

Intra-variability of Ethnic Groups - Linear Measurements 

One-way ANOVA (bootstrapped at 95% CI) was run within each ethnic group to 

determine rates of intra-and inter-variability in determining age, sex, and ethnic group. The 

sample size of ten was not sufficient for discriminant function analysis.   

Only the linear measurements of frontal sinus provided significant group differences for 

the White British and Chinese dataset (see tables 10 and 11). The Black African group did not 

provide significant differences in the groups means according to age or sex across all of the 

paranasal sinuses. 

 

White British Dataset 

  50+ 3 13 16 

 % <49 years 84.6 15.4 100 

  50+ 18.8 81.3 100 

Cross-

validated 
Count <49 years 10 3 13 

  50+ 5 11 16 

 % <49 years 76.9 23.1 100 
  50+ 31.3 68.8 100 

For split file bootstrap split=0, 82.8% of original grouped cases correctly classified. 

 

 

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by 

the functions derived from all cases other than that case. 

 

 

For split file bootstrap split=0, 72.4% of cross-validated grouped cases correctly classified. 

 



Separate one-way ANOVA did not find significate differences in group means according 

age or ethnic groups across all of the sinuses in this group (p>0.05). However, significant group 

mean differences were found in the frontal sinus measurements according to sex (see Table 10) 

Table 10. Width and height contribute to differences in groups means according to sex 

Sex 

 df1 df2 F Sig. 

Width 1 8 9.814 0.014 

Height 1 8 6.42 0.035 

Length 1 8 0.754 0.41 

Volume 1 8 1.454 0.262 

 

Chinese Dataset 

One-way ANOVA analyses did not indicate significant differences in group means 

according age (p>0.05). Significant differences in groups means were found according to sex 

(see Table 11). Volume was not included in analysis as violated the assumption of non-

multicollinearity. One-way ANOVA tests did not find significant mean differences for any other 

sinus (maxillary, ethmoid, or sphenoid) in this sample according to age or ethnic group (p>0.05) 

 

Table 11. Width contributes to differences in groups means according to sex 

Sex 

 df1 df2 F Sig. 

Width 1 8 
13.11 

 

0.007 

 

Height 1 8 1.609 0.24 

Length 1 8 4.481 0.067 

 

Black African Dataset 

One-way ANOVA tests did not find significate differences in group means according to 

age or sex across all paranasal sinuses within this group (p>0.05).  

 



Outline Measurements  

One-way ANOVA tests showed significant differences in the groups means according to 

age (Siny3, f1,28= 4.66, p=.04). However, further DFA did not find the discriminant function 

significant (p=0.121). One-way ANOVA tests found significant differences in the groups means 

according to sex (Siny1, f1,24= 5.72, p= 0.025). However, this dataset failed the Box’s M test of 

equal population covariance matrices (p=.006) therefore DFA was not carried out. One-way 

ANOVA tests found significant differences in the groups means according to ethnic group 

(Sinx2 Welch 1,11= 10.479, p= 0.002). However, DFA did not find this discriminant function 

significant (p= 0.376). 

 

Linear Measurements and EFA coefficients  

One-way ANOVA tests identified significant differences in groups means of the ethmoid 

volume and cosy 2 according to age (f1,24= 4.522, p=.044) (f1,24= 4.31, p=.049). These variables 

were then tested together in the DFA. DFA (bootstrapped with 95% CI) on these variables 

provided a significant p-value (p=.005 )(p<0.05) (see Table 12).  Tables 13 and 14 demonstrate 

variables that contributed to the discriminant function rule. Table 15 provided a cut-off score 

which provided a classification rate of 80.8% (cross-validated at 73.1%) (see table 16).  

 

Table 12. Summary of Canonical Discriminant Functions and Wilks’ Lambda Statistics 

 
Eigenvalues 

 

 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 

 

.580a 

 

100 100 0.606 

For split file bootstrap split=0, first 1 canonical discriminant functions were used in the analysis. 

 

 

Wilks' Lambda 

 



Test of 

Function(s) 
Wilks' Lambda Chi-square df Sig. 

1 0.633 10.527 2 0.005 

 

Table 13. Standardized Canonical Discriminant Function Coefficients 

 

 

 

 

 

 

 

 

Table 14. Canonical 

Discriminant Function 

Coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. Cut-off score based off Group Centroid functions 

 

Age Group Function Cut-off  

Score 

 

1 

0.0565 <49 years -0.678 

50+ 0.791 

Unstandardized canonical discriminant 

functions evaluated at group means 

 

Table 16. The classification results for classifying age groups 

 Age 

Group 
Predicted Group Membership Total 

   <49 years 50+  

Original Count <49 years 13 1 14 

  50+ 4 8 12 

 % <49 years 92.9 7.1 100 

  50+ 33.3 66.7 100 

 Function Coefficient Bootstrap    

   Bias 
Std. 

Error 
95% CI  

     Lower Upper 

Ethmoid 

Volume 
1 0.893 -0.803 0.92 -1.223 1.247 

Cosy 2 1 -0.883 1.058 0.905 -1.113 1.396 

a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 

 

 Function Coefficient Bootstrapa    

   Bias Std. Error 95% CI  

     Lower Upper 

Cosy  2 1 -4.154 5.255 4.645 -5.371 7.703 

Ethmoid 

Volume 
1 0 0 0 -0.001 0.001 

(Constant) 1 -1.979 1.685 2.182 -3.272 2.791 

Unstandardized coefficients 
a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 



Cross-

validated Count <49 years 13 1 14 

  50+ 6 6 12 

 % <49 years 92.9 7.1 100 

  50+ 50 50 100 

For split file bootstrap split=0, 80.8% of original grouped cases correctly classified. 

 

 

Cross validation is done only for those cases in the analysis. In cross validation, each case is 

classified by the functions derived from all cases other than that case. 

 

 

For split file bootstrap split=0, 73.1% of cross-validated grouped cases correctly classified. 

 

 

One-way ANOVA tests showed potentially significant differences in the groups means in 

frontal sinus volume and cosx4 according to sex (Welch1,20.2= 8.75, p=.008) (f1,24=4.036, 

p=.056). These variables were then tested together in the DFA. Table 17 demonstrates a p-value 

that indicates the model is a good fit for the data (p-value=.003, p-value<.05).  Tables 18 and 19 

demonstrate the contribution each variable to the discriminant rule and final classifications. 

Table 20 provides the cut-off score which provided a classification result of 76.9% (cross-

validated 76.9%) when classifying sex (see Table 21).   

 

Table 17. Summary of Canonical Discriminant Functions and Wilks’ Lambda Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 18. Standardized Canonical Discriminant Function Coefficients 

Eigenvalues 

 

 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 
.647a 

 
100 100 

0.627 

 

For split file bootstrap split=0, first 1 canonical discriminant functions were used in the analysis 

 

 

Wilks' Lambda 

 

Test of Function(s) Wilks' Lambda Chi-square df Sig. 

1 0.607 11.475 2 0.003 

 Function Coefficient Bootstrap    

   Bias 
Std. 

Error 

95% 

CI 
 



 

 

 

 

 

 

 

Table 19. Canonical Discriminant Function Coefficients 

 

 

 

 

 

Table 20. Cut-off score according to Group centroid Functions 

Sex  Function Cut-off  

Score 

 

1 

0 Male 0.773 

Female -0.773 

Unstandardized canonical discriminant 

functions evaluated at group means 

 

Table 21. Classification results of these variables in assigning sex 

 Sex Predicted Group Membership Total 

   Male Female  

Original Count Male 8 5 13 

  Female 1 12 13 

 % Male 61.5 38.5 100 

  Female 7.7 92.3 100 

Cross-

validated Count Male 8 5 13 

  Female 1 12 13 

 % Male 61.5 38.5 100 

  Female 7.7 92.3 100 

For split file bootstrap split=0, 76.9% of original grouped cases correctly classified. 

 

 

     Lower Upper 

Frontal Sinus 

Volume 
1 0.871 -0.231 0.609 -0.813 1.073 

Cosx 4 1 -0.646 0.312 0.58 -0.928 0.924 

a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 

 

 Function Coefficient Bootstrapa    

   Bias Std. Error 95% CI  

     Lower Upper 

Cosx 4 1 -8.962 3.751 8.435 -14.095 14.422 

Frontal Sinus 

Volume 
1 0 0 0 0 0.001 

(Constant) 1 -1.112 0.194 0.899 -2.041 1.274 

Unstandardized coefficients 
a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

 



Cross validation is done only for those cases in the analysis. In cross validation, each case is 

classified by the functions derived from all cases other than that case. 

 

 

 For split file bootstrap split=0, 76.9% of cross-validated grouped cases correctly classified. 

 

 

Discussion 

This study evaluated 30 sinus CT scans by employing 3D modelling to determine if 

biological patterns exist using linear and elliptic Fourier analysis that could potentially aid in 

victim identification. Quantitative analysis of the 3D paranasal sinus models created for this 

initial study has demonstrated that there is potential in discriminating between individuals with 

regard to age and sex using the Robles et al.34 method. These preliminary results also indicated 

that volume and shape analysis may provide the most discriminatory method for identification in 

determining age and sex.  

One-way ANOVA of the frontal sinus measurements only provided significant mean 

differences according to sex, but not age or ethnicity. However, additional DFA did not find the 

model to be a good fit for the data. The maxillary sinus also provided similar results where group 

differences were not observed across age, sex, or ethnic group. The measurements from the 

ethmoid sinus provided a higher classification rate in predicting age at 82.8% (cross-validated 

72.4%). The standardized canonical discriminant function coefficient table indicated volume 

provides the greatest contribution to the discrimination between groups. One-way ANOVA from 

the sphenoid sinus measurements did not indicate significant differences in groups means for any 

variable according to age, sex, or ethnic group (p>0.05) and therefore additional discriminant 

analysis was not carried out. This is in contrast to some studies that found the volume of the 

sphenoid sinus deviates with age 57, 58. 

The results suggested that the White British and Chinese dataset may provide more 

discriminant variables in the frontal sinus according to sex than the Black African dataset. 



However, as the sample sizes were too low to reliably measure intra-variability, this will need to 

be confirmed with greater sample sizes. It was also observed that the elliptic Fourier coefficients 

were less effective in determining the age, sex, or ethnic group alone. While one-way ANOVA 

found variables that contributed to significant differences in group means, DFA did not find 

these variables contributed to the discrimination between groups.  

Discriminant function analysis demonstrated higher classification rates when certain 

volumetric measurements and the elliptic Fourier coefficients were analysed together. The one-

way ANOVA of frontal sinus measurements indicated significant mean differences according to 

sex. Although these measurements did not provide significant classification results initially, 

when these measurements were tested with the EFA coefficients the classification results 

increased. The most notable results included the volume of the frontal sinus and EFA coefficient 

(Cosx 4) where the classification rate increased to 76.9% when predicting sex (p<0.05).  This 

also occurred when the ethmoid volume and EFA coefficient (Cosy 2) were analysed together 

where the classification rate increased to 80.0% when predicting age (p<0.05). These results 

indicate higher classification results than reported for linear measurements in other studies26,42,59-

61. However, these results along with the cut-scores provided are preliminary and will need to be 

confirmed with further research.  

Although the discriminatory characteristics of sinuses have been identified in the 

previously published literature 18-20, 23-26, 29-33, 60 ,61 the complex anatomical structure of sinuses 

has provided significant limitations in terms of the ability to produce standardised methods of 

measurement across each paranasal sinus.  The self-assigned ethnic group also provided a 

limitation in this study as it is difficult to ascertain how the individuals defined their ethnicity. 

However, this approach was based on modern UK populations (as opposed to historic 



collections) which ensures greater relevance for crime reconstruction approaches in 

contemporary forensic investigations. This study confirms the utility of the Robles et al.34 

method and the potential for reliable identification methods to be produced using computer-

assisted methods considering three-dimensional reconstructions of the paranasal sinuses in 

establishing the biological profile in unknown modern skeletal remains. 

 

 

Conclusion 

This preliminary study sought to determine if the size and shape of the paranasal sinuses 

have the potential to determine age, sex, and ancestry in order to assist with establishing a 

biological profile to be used in crime reconstructions. The findings from this study showed that 

the volume and linear measurements of the frontal and ethmoid sinuses provided the highest 

classification rates when predicting sex and age over the entire sample. In addition, the volume 

of the frontal and ethmoid sinus showed classification rates increased when combined with EFA 

coefficients in predicting age and sex. The results also demonstrated that both forms of 

measurements were limited in their ability to predict ethnic groups. Furthermore, intra-variability 

was predominate in the White British and Chinese datasets in predicting age and sex, however 

the Black African dataset did not provide discriminant variables for any predetermined group. 

Finally, the measurements from the sphenoid sinus did not provide discriminant results that 

could assist with establishing a biological profile.  

The key development of this preliminary study was the validation of the three-

dimensional reconstruction method that facilitated and supported accurate data collection. This 

preliminary study also indicates that the paranasal sinuses may be able to offer valuable 



discriminatory characteristics that can be deployed in reconstruction approaches. However, 

further studies are needed to test and explore the capabilities of this approach with a larger 

dataset that also includes additional ethnic groups which will be the basis of a future study that 

utilises the full dataset available. 
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