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Abstract 

The valence of new information influences learning rates in humans: outcomes confirming the 

current decision preferentially reinforce the associated action. We have investigated this 

learning bias in four experiments, by systematically manipulating the source of the action 

(free vs. forced choices), outcome contingencies (rich vs. poor environments) and motor 

requirements (go vs. no-go choices). Analysis of model-estimated learning rates showed that 

the confirmation bias in learning rates was specific to free-choices, but was independent of 

outcome contingencies. The bias was also unaffected by the motor requirements, thus 

suggesting that it operates in the representational space of decisions, rather than motoric 

actions. Finally, model simulations suggested that the learning rates we measured in our tasks 

had the effect of maximizing performance and minimizing variance in performance. We 

therefore suggest that choice confirmation bias in action-outcome learning may have an 

important adaptive value.  

 

Keywords: Reinforcement learning; Counterfactual learning; Valence; Confirmation bias; 

Free choice; Agency; Control. 
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Introduction  

Standard reinforcement learning models conceive agents as impartial learners: they learn 

equally well from positive and negative outcomes alike (Barto and Sutton, 1998). However, 

empirical studies have recently come to challenge this view by demonstrating that human 

learners, rather than processing information impartially, consistently display a valence-

induced bias: when faced with uncertain choice options, they tend to disregard bad news by 

integrating worse-than-expected outcomes (negative prediction errors) at a lower rate relative 

to better-than-expected ones (positive prediction errors) (Lefebvre et al. 2017; Aberg et al., 

2016; Frank et al., 2007). This “positivity” bias would echo the asymmetric processing of 

self-relevant information in probabilistic reasoning, whereby good news on average receives 

more weight than bad news (Sharot and Garrett, 2016; Kuzmanovic et al., 2018). 

A bias for learning preferentially from better-than-expected outcomes would reflect a 

preference for positive events in general. This prediction is however at odds with recent 

findings. In a two-armed bandit task featuring complete feedback information, we previously 

found that participants would learn preferentially from better-than-expected obtained 

outcomes, while preferentially learning from worse-than-expected forgone outcomes, i.e., 

from the outcome associated with the option they had not chosen (Palminteri et al., 2017). 

This learning asymmetry suggests that what has been previously characterized as a 

“positivity” bias may, in fact, be the upshot of a more general, and perhaps ubiquitous, 

“choice-confirmation” bias, whereby human agents preferentially integrate information that 

confirms their previous decision (Nickerson, 1998).  

Building on these previous findings, we reasoned that if human reinforcement learning 

is indeed biased in a ‘choice-confirmatory’ manner, learning from action-outcome couplings 

that were not voluntarily chosen by the subject (“forced choice”) should present no bias. To 

test this hypothesis, we conducted three experiments involving instrumental learning and 
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computational model-based analyses. Participants were administrated new variants of a 

probabilistic learning task in which they could either “freely” choose between two options, or 

were “forced” to implement the choice made by a computer. In the first experiment (N = 24), 

participants were only shown the obtained outcome corresponding to their choice (factual 

learning). In the second experiment (N = 24), participants were shown both the obtained and 

the forgone outcome (counterfactual learning). The third experiment (N = 30) only featured 

factual learning but both free- and forced-choice trials included a condition with a random 

reward schedule (50/50). We had three key predictions. With regard to factual learning, 

participants should learn better from positive prediction error, but they should only do so 

when free to choose (free-choice trials), while showing no effect when forced to match a 

computer’s choice (forced-choice trials). With regard to counterfactual learning from forgone 

outcomes, we expect the opposite pattern: in free-choice trials, negative prediction errors 

should be more likely to be taken into account than positive prediction errors, while we expect 

no bias in forced-choice trials. Put another way, we expect to observe a confirmation bias 

only when outcomes derive from self-determined choices. Finally, we predict that including a 

random reward schedule in both forced- and free-choice conditions would not reduce, nor 

would it negate, the confirmation bias in self-determined trials. 

To verify our predictions, we fitted subjects’ behavioural data with several variants of 

reinforcement learning model, including different learning rates as a function of whether the 

outcome was positive or negative, obtained or forgone, and followed a free or a forced choice. 

Learning rate analyses were coupled with model comparison analyses aimed at evaluating 

evidence for the current hypothesis (i.e., no confirmation bias in observational learning) and 

ruling out alternative interpretations of the results (i.e., a perseveration bias, see Katahira, 

2018).   
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Another central question regarding the nature of the valence-induced bias concerns its 

relation with action requirements. An influential theory and related previous findings suggest 

that positive outcomes favour learning of choices involving action execution, while negative 

outcomes would favour learning of choices involving action withdrawal (e.g., Boureau and 

Dayan, 2011; Guitart-Masip et al., 2012). Extending this framework to feedback processing, 

one should expect the positivity bias to disappear, or even reverse, following trials in which 

decision is made by “refraining” from action. However, if the positivity bias emerges as a 

consequence of choice confirmation, then only making a choice (vs. following an instruction) 

should matter, irrespective of whether this choice is executed through making an action or 

not. Using a modified version of our design, we tested this prediction in a fourth experiment 

that varied the requirements of motor execution by including both “go” and “no-go” trials 

(N=24). Learning rates were analysed as function of both outcome valence (negative vs. 

positive) and the requirement for motor execution in order to implement the selected action 

(key press vs. no key press). 
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Results  

Participants performed instrumental learning tasks, involving free- and forced- choice trials, 

and “go” or “no-go” trials (see Methods and Table 1). The task consisted in cumulating as 

many points as possible by selecting whichever of two symbols was associated with the 

highest probability of reward. Symbols were always presented in pairs, which comprised one 

more rewarding and one less rewarding option. In all experiments, each block was associated 

with a specific pair of symbols, meaning that the participant had to learn from scratch the 

reward contingencies at the beginning of each block. 

In the first three experiments, free-choice trials were interleaved with forced-choice 

trials. In the latter, the computer randomly preselected a symbol, forcing the participant to 

match the computer’s choice (Figure 1A). Experiment 1 (N = 24) featured “partial” feedback 

information, since only the obtained outcome (i.e., the outcome of the chosen symbol) was 

shown (“Exp.1”, Figure 1A, top panel). Experiment 2 (N = 24) featured “complete” feedback 

information, since both the obtained and forgone outcomes (i.e., the outcome of the unchosen 

symbols) were shown (“Exp.2”, Figure 1A, bottom panel). As for experiment 1, experiment 3 

(N = 30) only featured partial feedback. In contrast to the other experiments, both free- and 

forced-choice trials of experiment 3 implemented a condition with a random reward schedule 

(50/50) (“Exp.3”, Figure 1A, top panel). In Experiment 4 (N = 24), action requirements were 

varied within trials where the choice could either be made by performing an action (key press, 

“go” trials) or by refraining from acting (no key press, “no-go” trials) (“Exp.4”, Figure 1B). 

Note that the nature of the trial (“Go” or “No-Go”) was not manipulated by design but 

depended on the participant’s choice (pressing a key or refraining from pressing a key). 
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<< Insert Figure 1 here >> 

<< Insert Table 1 here >> 
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Figure 1. Schematic of trial procedure and stimuli. (A) Description of the four trial 
types implemented in Experiments 1 & 3 (top panel) and Experiment 2 (bottom panel). 
In free-choice trials (“Actor”), participants could freely choose between two options, 
while in forced-choice trials (“Observer”) participants had to match a preselected 
option, which was indicated by a red square. In “partial” trials, participants were only 
shown the outcome (+1 or -1) associated to the chosen option, while in “complete” 
trials participants were shown the outcomes associated to both chosen and unchosen 
options. Experiment 1 included a condition with only free-choice trials, and a condition 
with intermixed free- and forced-choice trials. Only “partial” trials were used. In 
Experiment 2, free- and forced-choice trials were intermixed, within two conditions: 
one with “partial” trials, and one with “complete” trials, where the outcomes of both 
chosen and unchosen options were shown. Experiment 3 featured a condition with a 
random reward schedule (50/50) in both free- and forced-choice trials (B) Description 
of the two conditions implemented in Experiment 4. Action requirements were varied 
within trials where the choice of an option could either be made by pressing a key 
(“Go” trials) or by refraining from pressing any key (“No-Go” trials). This experiment 
only featured “free-choice” trials and “partial” feedback. 
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Table 1. Sociodemographic and design information for the four experiments.  

Variable Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Subjects 24 24 30 24 

Mean age (±SD) 25.1 (± 0.8) 23.9 (± 0.5) 24.2 (± 0.9) 24.8 (± 0.7) 

Forced choice Yes Yes Yes No 

Forgone outcome No Yes No No 

No-Go choice No No No Yes 

Number of blocks 12 16 12 6 

Number of trials 720 640 360 600 

Contingencies 90/60 & 40/10 90/60 & 40/10 70/30 & 50/50 70/30 & 50/50 
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Learning performance 

To verify that participants understood the task correctly, we analysed correct choice rate (i.e., 

the rate of choosing the most rewarding symbol) in free-choice trials and found it significantly 

higher than chance level in all 4 experiments (two-tailed t-tests against 50%: all t’s > 10, all 

p’s < 10-8). To assess learning dynamics, we also verified that learning performance was 

higher in the second, relative to the first, half of the learning block (see Figure 2A). Note that 

in conditions mixing free- and forced-choice trials, a modest boost in performance can be 

observed in free-choice trials (“free+forced” conditions, Figure 2A). This boost in 

performance indicates that participants also learned from forced-choice trials. This was 

expected, as in forced-choice trials options featured the same outcome contingencies as in 

free-choice trials. 

Switching choice after a negative outcome, and repeating a choice after receiving a 

positive outcome, is a hallmark of feedback-based adaptive behaviour. To verify that 

participants took into account both free and forced choice outcomes, we analysed the switch 

rate as a function of switches depending on (i) whether the previous obtained outcome was 

positive or negative, but also on (ii) whether the previous trial was a free- or forced-choice 

trial (Exp. 1, 2 and 3) or a go or a no-go trial (Exp. 4), and on (iii) whether the forgone 

outcome was positive or negative (Experiment 2 only), and on (iv) the reward contingency 

being implemented (50/50 vs. 70/30, Experiment 3 only). 

The repeated-measures ANOVAs revealed a main effect of the obtained outcome on 

switch choices in all experiments (all F’s > 16, all p’s < 10-3). Thus, as expected, participants 

switched more often options after receiving a negative, relative to a positive, outcome. This 

effect was observed after both a free- and a forced-choice trial alike, and in both go and no-go 

trials. As expected, we also found a main effect of the forgone outcome in Experiment 2 (F1,23 

= 39, p = 3.6  10-9), with participants switching choices significantly more when the 
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outcome associated with the unchosen option was positive, relative to negative (see Figure 

2B). Finally, in the first 3 experiments the main effect of the type of choice was significant 

(all F’s > 36, all p’s < 10-7), with participants switching more often after a forced-choice trial 

than after a free-choice trial. This effect can be accounted for by the fact that the chosen 

symbol was pseudo-randomly selected in forced-choice trials, while subjects preferentially 

chose the “correct” option in free-choice trials – thus forced-choice trials were more likely to 

involve incorrect choices. In Experiment 4, neither the main effect of the execution mode (key 

press vs. no key press) or the execution-by-valence interaction effect was significant (all p’s > 

0.05). 

 

<< Insert Figure 2 here >> 
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Figure 2. Behavioural results. (A) Mean proportion of correct choices in the first and 
second halves of each learning block, for the two conditions (free only; intermixed free and 
forced) of Experiment 1, for the two conditions (partial; complete) of Experiment 2, for the 
two reward contingencies (70/30; 50/50) used in Experiment 3, and for go and no-go trials 
in Experiment 3. (B) Proportion of choice switches between trial t and t-1 as a function of 
the obtained outcome (factual, F) and the forgone (counterfactual, CF) outcome seen on 
trial t-1, depending on whether this trial was a free- or a forced-choice trial (Exp. 1, 2 & 3), 
or a go or a no-go trial (Exp. 4), and depending on the reward contingency being 
implemented (50/50 or 70/30, Exp. 3). For Experiments 1 and 2, the analysis was made on 
“partial” intermixed trials. For the Experiment 2, the analysis was made on “complete” 
intermixed trials, which contained both obtained and forgone outcomes. The “free + forced” 
data represent the correct choice rate in free-choice trials only (by definition, correct choice 
rate in forced-choice trials is bounded to be 50) within blocks where both free- and forced-
choice trials were mixed. For each learning rate, individual data points are displayed within 
an area representing their probability density function; the mean and the s.e.m. are shown 
within a box whose height corresponds to the 95% confidence interval.  
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Model parameter analyses 

To test the influence of outcome valence and choice type on learning, we fitted the data with a 

modified Rescorla-Wagner model assuming different learning rates for positive and negative 

outcomes (+ and -) and for free- and forced-choice trials (Experiments 1, 2 & 3), or for Go 

and No-Go trials (Experiment 4). In Experiment 2, different learning rates were also assumed 

for obtained and forgone outcomes (Figure 3, top right), whereas in Experiment 3 different 

learning rates were fitted for the 50/50 and 70/30 reward contingencies (Figure 3, bottom 

left). We refer to these models as “full” models, because they present the highest number of 

parameters in the considered model space. In Experiment 1, the resulting learning rates were 

subjected to a 2 × 2 repeated-measures ANOVA with outcome valence (positive vs. negative) 

and choice type (free vs. forced) as within-subject factors. In Experiment 2, learning rates 

were subjected to a 2 × 2 × 2 repeated-measures ANOVA with outcome valence (positive vs. 

negative), choice type (free vs. forced), and outcome type (obtained vs. forgone), as within-

subject factors. In Experiment 3, learning rates were subjected to a 2 × 2 × 2 repeated-

measures ANOVA with outcome valence (positive vs. negative), choice type (free vs. forced), 

and reward contingency (50/50 vs. 70/30), as within-subject factors. Finally, in Experiment 4, 

learning rates were subjected to a 2 × 2 repeated-measures ANOVA with outcome valence 

(positive vs. negative) and execution mode (key press vs. no key press), as within-subject 

factors. 

In both Experiments 1 and 2, no main effect was significant. In Experiment 3, the main 

effects of valence, choice and contingency were significant (all F1,29 = 6.06, all p’s < 2.0  10-

2). In Experiment 4, only the main effect of outcome valence was significant (F1,19 = 26,8, p < 

1.0  10-3). In Experiment 1, we found a significant valence-by-choice interaction (F1,23 = 7.4, 

p = 7.6  10-3). We found a significant valence-by-outcome (F1,23 = 11, p = 1.2  10-3) and a 

significant valence-by-choice-by-outcome (F1,23 = 6.8, p = 1.0  10-2) interaction in 
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Experiment 2. In Experiment 3, the choice-by-valence (F1,29 = 7.73, p = 9.0  10-3) and the 

contingency-by-choice interaction (F1,29 = 6.18, p = 1.8  10-2) were significant. Critically, 

the contingency-by-valence (F1,29 = 0.47, p = 0.49) and the contingency-by-valence-by-choice 

interactions (F1,29 = 0.44, p = 0.51) were not significant. The valence-by-execution-mode 

interaction was not significant in Experiment 4 (Figure 3 and Table 2). We performed post-

hoc t-tests to further investigate significant choice-by-valence interactions found in the first 

three experiments. The difference between positive and negative learning rates was significant 

in free-choice trials for all experiments (Exp. 1, obtained outcomes: t23 = 2.5, p = 2.0  10-2; 

Exp. 2, obtained outcomes: t23 = 4.1, p = 4.3  10-4; forgone outcomes: t23 = -6.2, p = 2.6  10-

6; Exp. 3, 50/50 contingency: t29 = 2.6, p = 1.45  10-2; 70/30 contingency: t29 = 2.59, p = 1.47 

 10-2), but was not significant in forced-choice trials (Exp. 1, obtained: t23 = -2.0, p = 0.055; 

Exp. 2, obtained: t23 = -1.3, p = 0.20; and forgone: t23 = -1.5, p = 0.14; Exp. 3, 50/50 

contingency: t29 = -0.14, p = 0.88; 70/30 contingency: t29 = 0.01, p = 0.98; see Figure 3).  

To sum up, we replicate that participants learned preferentially from positive compared, 

to negative, prediction errors, whereas the opposite was true for forgone outcomes (Palminteri 

et al., 2017). Crucially, we found that this learning asymmetry was significant only in free-

choice trials, and was undetectable when participants were forced to match the computer’s 

decision. Implementing a random reward schedule (Exp. 3) or varying action requirements 

across go and no-go trials (Exp. 4) had no effect on the learning asymmetry.  

 

<< Insert Table 2 here >> 

<< Insert Figure 3 here >> 
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Table 2. Mean parameter values (± standard errors) of the winning model in all 4 
experiments.   
 

  

 Param. Factual Counterfactual 

  +free -free forced +free -free forced 

Exp. 1 
4.2 

(± 0.50) 
0.35 

(± 0.063) 
0.14 

(± 0.054) 
0.13 

(± 0.036) 
- - - 

Exp. 2 
6.3 

(± 0.60) 
0.30 

(± 0.035) 
0.11 

(± 0.020) 
0.14 

(± 0.022) 
0.065 

(± 0.011) 
0.27 

(± 0.033) 
0.089 

(± 0.011) 

Exp. 3 
2.7 

(± 0.26) 
0.44 

(± 0.04) 
0.21 

(± 0.04) 
0.22 

(± 0.05) 
- - - 

  Go trials.                NoGo trials    

   +
Go -

Go  +
NoGo  -

NoGo    

Exp. 4 
 

4.0 
(± 0.97) 

0.34 
(± 0.05) 

0.09 
(± 0.03) 

0.35 
(± 0.06) 

0.10 
(± 0.03) 

- - - 
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Figure 3. Parameter results of the “full” model from all 4 experiments. Top left panel: 
Fitted factual learning rates from free- and forced-choice trials of Experiment 1. Top 
middle and right panels: Fitted factual and counterfactual learning rates from free- and 
forced-choice trials of Experiment 2. Bottom left and middle panels: Fitted factual learning 
rates from free- and forced-choice trials, and from 50/50 and 70/30 reward-contingency 
conditions of Experiment 3. Bottom right panel: Fitted learning rates from Go and No-Go 
trials of Experiment 4. Note that only obtained outcomes were shown in Experiments 1, 3 
& 4, whereas both obtained and forgone outcomes were displayed in Experiment 2, which 
allowed for fitting counterfactual learning rates. Positive (α+) and negative (α-) learning 
rates were represented in blue and red, respectively. For each learning rate, individual data 
points are displayed within an area representing their probability density function; the 
mean and the s.e.m. are shown within a box whose height corresponds to the 95% 
confidence interval. 
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Parsimony-driven parameter reduction 

Although we found no valence-induced bias in forced-choice learning rates on average, one 

cannot rule out that participants had opposite – significant – biases (e.g., some would learn 

better from positive forced-choice outcomes, while some others would learn better from 

negative forced-choice outcomes). We therefore ran a parsimony-driven parameter reduction 

to assess whether fitting different learning rates in (i) forced-choice trials and (ii) go and no-

go trials, better predicted participants' data (see Figure 4A). The full models (i.e., the model 

with 4 learning rates () in experiments 1 and 4, and 8 learning rates () in experiments 2 and 

3) were compared with reduced versions including either a valence-induced bias only for free-

choice outcomes or no bias at all. We compared the models using a Bayesian model selection 

procedure (Daunizeau et al., 2014) based on the Bayesian Information Criterion (BIC). In all 

experiments, “intermediate” models (i.e., models including valence-induced bias only for 

free-choice outcomes) were found to better account for the data: their average posterior 

probabilities were higher than the posterior probabilities of the other models in the set (see 

Figure 4B).  

Consistent with a previous study (Palminteri et al. 2017), we further found that 

Experiment 2 data were better explained by an even more parsimonious model assuming 

similar positive factual and negative counterfactual learning rates (𝛼ி
ା = 𝛼஼

ି =  𝛼௖௢௡௙), and 

similar negative factual and positive counterfactual learning rates (𝛼ி
ି = 𝛼஼

ା =  𝛼ௗ௜௦௖). This 

final model thus had 3 different learning rates: 𝛼௖௢௡௙, 𝛼ௗ௜௦௖, 𝛼௙௢௥௖௘ௗ (Figure 5). We refer to 

these learning rates as 𝛼௖௢௡௙ and 𝛼ௗ௜௦௖ because they embody learning from confirmatory 

(positive obtained and negative forgone) and disconfirmatory (negative obtained and positive 

forgone) outcomes, respectively.  

 

<< Insert Figures 4 & 5 here >> 
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Figure 4. Model comparison results from all 4 experiments. (A) Representation of the 
model space. Top left and middle panels: In experiments 1, 2 & 3, the “full” model (4𝛼 and 
8𝛼, respectively) has different learning rates for positive and negative prediction errors (blue 
and red squares, respectively), and for free- and forced-choice trials. The “intermediate” model 
(3𝛼 and 6𝛼, grey rectangle) has only single learning rate on forced-choice trials, whereas the 
“reduced” model (2𝛼 and 4𝛼) does not split learning rates by valence at all. The “reduced” 
model is thus nested within the “intermediate” model, which is itself nested within the “full” 
model. Note that in Experiment 2, the parameter reduction operates for both factual and 
counterfactual learning rates whereas in Experiment 3, the reduction operates for both 50/50 
and 70/30 reward-contingency learning rates. The grey rectangle signals the winning model in 
each experiment. Top right panel: In experiment 4, the “full” model (4 𝛼)  has different 
learning rates for positive and negative prediction errors (blue and red squares), and for Go 
and No-Go trials. Two reduced models were tested: (i) a model with 2 different learning rates 
for positive and negative outcomes (2𝛼-PN), and (ii) a model with 2 different learning rates 
for Go and No-Go trials (2𝛼-GNG). ‘PN’: Positive-Negative; ‘GNG’: Go-NoGo. (B) The 
expectations and the variance of the posterior probability for each model, based on the 
Bayesian Information Criterion (BIC) values, with the protected exceedance probability (PXP) 
for each model shown in small inserts. The winning model is indicated in bold.  
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Figure 5. Model comparison 
from Experiment 2. (A) 
Representation of the model 
space. The model with 6 
learning rates (top) corresponds 
to the winning model presented 
in Figure 4A (left panel). The 
black arrow indicates that this 
winning model can be reduced 
to a model with 3 learning rates, 
which embody learning in 
forced-choice trials ( 𝛼௙௢௥௖௘ௗ ) 
and learning from confirmatory 
( 𝛼௖௢௡௙ ) and disconfirmatory 
(𝛼ௗ௜௦௖ ) outcomes in free-choice 
trials. (B) Expectation and 
variance of the posterior 
probability for the initial 
winning model (6  𝛼 ) and the 
“reduced” model (3 𝛼), based on 
the Bayesian Information 
Criterion (BIC) values. The 
insert chart shows the protected 
exceedance probability (PXP) 
for each model. 
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Ruling out the perseveration bias 

In previous studies, a heightened choice hysteresis (i.e., an increased tendency to repeat a 

choice above and beyond outcome-related evidence) has been identified as a behavioral 

hallmark of positivity and confirmatory learning biases (Lefebvre et al., 2017; Palminteri et 

al., 2017). However, the same behavioral phenomenon may arise in the presence of a 

learning-independent choice repetition bias (often referred to as “perseveration” bias; see 

Correa et al., 2018), which is not to confound with motor inertia (which is avoided in our 

tasks by counterbalancing the spatial position of the cues). Even more concerning, positivity 

and confirmation biases may spuriously arise fitting multiple learning rates on data presenting 

a simple choice repetition bias (Katahira, 2018). To rule out this possibility we explicitly 

compared models including positivity (Exp.1: 𝛼௙௥௘௘
ା , 𝛼௙௥௘௘

ି , 𝛼௙௢௥௖௘ௗ) and confirmation (Exp.2: 

𝛼௖௢௡௙, 𝛼ௗ௜௦௖, 𝛼௙௢௥௖௘ௗ) learning biases to a model including a perseveration parameter. The 

models with different learning rates were found to better account for the data compared to the 

perseveration model, with a higher average posterior probability (protected exceedance 

probabilities: 0.87, 1.00 and 0.84 in Experiments 1, 2 & 3, respectively) (Figure 6A).  

To further quantify the extent to which the observed learning biases could be ascribed 

to the observed choice repetition bias, we simulated the perseveration model (using its best 

fitting parameters) and fitted the models with multiple learning rates on these synthetic data 

(Figure 6B). While model parameter analyses confirmed that positivity and confirmation 

biases may spuriously arise from data featuring a perseveration bias, the biases retrieved from 

the simulations were nonetheless significantly smaller compared to those observed in the 

participants’ data (Experiment 1: t = 2.18, p = 0.03; Experiment 2: t = 5.56, p < 0.001; 

Experiment 3: t = 2.49, p = 0.01).    

 
<< Insert Figure 6 here >> 
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Figure 6. Comparing the winning model (3) to a model with a simple 
perseveration parameter (“Pers.”). (A) Expectation and variance of the posterior 
probability for the perseveration model and the winning model with 3 learning rates, 
based on the Bayesian Information Criterion (BIC) values. The insert chart shows the 
protected exceedance probability (PXP) for each model. (B) The winning model was 
fitted on data from experiment 1 (left panel), experiment 2 (middle panel), and 
experiment 3 (right panel). The violin plots represent the learning rates fitted on the 
participants’ data, while the grey dots represent the learning rates fitted to artificial 
datasets, created by simulating the preservation model 10 times on each participant’s 
data. As can be seen on the figure, positivity and confirmation biases may spuriously 
arise from data featuring a perseveration bias, but the biases retrieved from the 
simulations (grey dots) were significantly smaller compared to those observed in the 
participants’ data (bars). Error bars indicate the s.e.m. 
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Parameter adaptation to task contingency  

In the first two experiments, we manipulated reward contingencies to include a ‘low-reward’ 

(reward probabilities set to 0.4 and 0.1) and a ‘high-reward’ condition (reward probabilities 

set to 0.9 and 0.6). This manipulation was included to first assess whether learning rates were 

adaptively modulated as a function of the amount of reward available in the task environment 

(low vs. high), and second, to test whether this modulation extended to forced-choice 

outcomes. Previous optimality analyses suggest that a positivity bias would be advantageous 

in low-reward conditions, while the opposite would be true in high-reward conditions (Cazé 

and van der Meer, 2013). In other terms, it would be optimal to exhibit a higher learning rate 

for rare outcomes (i.e., rewards in ‘low-reward’ conditions and punishments in ‘high-reward’ 

conditions). In a new computational analysis, we fitted different learning rates for high- and 

low-reward conditions, thus creating new models with 6 learning rates (3 (learning rate types) 

 2 (low, high)). We subjected the resulting parameter values to a 3 (learning rate types)  2 

(high- vs. low-reward conditions) repeated-measures ANOVA.  

As expected, the learning rate type had a significant main effect, although it was only 

marginal in Experiment 1 (Exp. 1: F1,23 = 3.6, p = 0.061; Exp. 2: F1,23 = 8.8, p = 3.7  10-3) 

(Figure 7A). Importantly, there was no main effect of the condition factor in both 

experiments (Exp. 1: F1,23 = 0.067, p = 0.80; Exp. 2: F1,23 = 1.0, p = 0.31). Regarding the 

condition-by-type interaction, the effect was equivocal: it was marginally significant in 

Experiment 1, but null in Experiment 2 (Exp. 1: F1,23 = 3.1, p = 0.082; Exp. 2: F1,23 = 0.27, p = 

0.60). To further support the absence of evidence in favour of learning rate adaptation we 

turned to model comparison. The models with different learning rates for high- and low-

reward conditions were compared to models without learning rate modulation (“pooled” 

models). In both experiments, we found that the model without contingency-dependent 

learning rates had the highest exceedance probability (PXP=1.00) (see Figure 7B). 
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Finally, using model simulations, we assessed how the observed pattern of learning 

rates compares to other patterns with respect to task performance (mean accuracy and 

variance) across low- and high-reward conditions. To do so, we simulated models with 

different learning rate patterns on 1000 datasets for each participant. We set learning rates to 

be either choice-confirmatory (CO), or valence-neutral (NT) or choice-disconfirmatory (CD), 

and the learning rate patterns could be different in free-choice and forced-choice trials (see 

Figure 7C and Table S1). Replicating and extending Cazé and van der Meer's findings 

(2013), we found the choice-confirmatory (CO) models to outperform the other models in 

low-reward conditions, and the choice-disconfirmatory (CD) models to have better 

performances in the high-reward conditions (Figure 7C). 

When we looked at the general performance across both conditions, we found that the 

model corresponding to the participants' learning rate patterns, i.e., the CO & NT model 

whose learning rates were choice-confirmatory in free choices, and valence-neutral in forced 

choices, was among the highest performing model (Figure 7C). In Experiment 1, the CO & 

NT model had a performance of 83.2%, while the CO & CD model had a slightly higher 

performance of 84.2%. In Experiment 2, the CO & NT model had a performance of 86.6% 

while the CO & CD model had a slightly lower performance of 85.7%. Therefore, the 

learning rate patterns found in our participants can be said to be optimal, or close to optimal, 

in the set-up of our task and within the considered range of model parameters.  

Interestingly, the performances of the CO & NT model were also quite similar across 

the high- and low-reward conditions. In Experiment 1, the difference in performances 

between high- and low-reward conditions was 2% for the CO & NT model and 1.9% for the 

CO & CD model, while this difference was over 3% for the other models. In Experiment 2, 

the difference in performances was the smallest for the CO & NT model (0.4% versus 0.8% 

for the CO & CD model, and 0.5% for the NT & CO model). Not only the participants’ best-
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fitting pattern was very advantageous in terms of accuracy, but it also exhibited highly stable 

performances across low- and high-reward conditions. Crucially, our participant also showed 

similar performances across both conditions (paired t-tests for Exp. 1: t23 = 0.25, p = 0.80; for 

Exp. 2: t23 = -0.027, p = 0.98). 

 

<< Insert Figure 7 here >> 

  



 25

 

 
 

  

Figure 7. Learning rate analysis and 
model comparison for “High & Low” 
models. (A) The best-fitting learning rates 
of the “High & Low” model. For each 
learning rate, individual data points are 
displayed within an area representing their 
probability density function; the mean and 
the s.e.m. are shown within a box whose 
height corresponds to the 95% confidence 
interval. (B) The posterior and exceedance 
probabilities of the “Pooled” (P) and 
“High & Low” (H&L) models. In contrast 
to the High & Low model, learning rates 
of the “Pooled” model are not modulated 
by the amount of reward available. (C) 
Parameter optimality was tested by 
simulating models with different 
learning rate patterns in Experiments 1 
and 2. The models were labelled 
according to their learning rate patterns, 
shown in the bottom panel. For example, 
“CO & NT” designates a model with 
choice-confirmatory (CO) learning rates in 
free-choice trials, and valence-neutral 
(NT) learning rates in forced-choice trials 
(CD = choice-disconfirmatory). The 
diamonds and the squares correspond to 
the performance in high- and low-reward 
conditions, respectively. The black circles 
correspond to the performance averaged 
across the two conditions. Error-bars were 
plotted, although they were often too small 
to be seen. Bottom: the participants' 
pattern of learning rates was highlighted 
with a dashed square.  
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Discussion  

While standard accounts of belief (or value) prescribe that an agent should learn equally well 

from positive and negative information (e.g., Barto and Sutton, 1998; Benjamin, 2018 for a 

review), previous studies have consistently shown that people exhibit valence-induced biases 

(e.g., Lefebvre et al., 2017; Kuzmanovic et al., 2018). These biases are traditionally 

exemplified in the so-called “good news/bad news” effect whereby people tend to overweight 

good news relative to bad news when updating self-relevant beliefs (Sharot and Garrett, 

2016). An important moderator of these self-related biases would be the extent to which an 

individual believes she/he is able to control (i.e., choose) the dimension concerned. Thus, it 

has been shown that individuals tend to rate themselves as above average on positive 

controllable, but not uncontrollable, traits (Alicke and Govorun, 2005). Likewise, people 

would self-attribute positive outcomes when perceived controllability of the environment is 

high (Harris and Osman, 2012), and would enact different behaviours (Ajzen, 2002) or 

process differently behavioural consequences (Kool et al., 2013) when these consequences are 

under their direct control, relative to uncontrollable self-relevant outcomes (e.g., an asthma 

attack). In the present study, we sought to investigate further the link between outcome 

processing and control (i.e., voluntary choice) in four instrumental learning experiments 

comparing trials with and without voluntary choices (Exp. 1 & 2), featuring factual and 

counterfactual learning (Exp. 2), and presenting different reward contingencies (Exp. 3) and 

distinct action requirements (Exp. 4). 

In the first experiment, learning performance was compared between trials in which 

the subject could either freely choose which option to select, or was “forced” to match a 

computer’s choice. As predicted, we found that participants learned better and faster from 

positive, relative to negative, prediction errors (PE), i.e., from better-than-expected outcomes. 

Crucially, this learning asymmetry (positive > negative PE) was present when participants 
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were free to choose between options, but absent, if not reversed (negative > positive), when 

participants were forced to match an external choice. In other terms, we observed a positivity 

bias, i.e., a learning bias in favour of positively valued outcomes, only when learning was 

driven by self-determined choices. 

In the second experiment, we combined free- and forced-choice trials with learning 

from factual (chosen action) or counterfactual (unchosen action) outcomes. Replicating 

previous results (Palminteri et al., 2017), we observed that prediction error valence biased 

factual and counterfactual learning in opposite directions: when learning from obtained 

outcomes (chosen action), positive prediction errors were preferentially taken into account 

than negative prediction errors. In contrast, when learning from forgone outcomes (unchosen 

action), participants integrated equally well positive and negative prediction errors. In other 

words, only positive outcomes that supported the participant’s current choice (positive 

outcomes associated with the chosen option, i.e., factual outcomes) were preferentially taken 

into account, whereas positive outcomes that contradicted this choice (notably, positive 

outcomes associated with the unchosen option, i.e., counterfactual outcomes) were 

discounted. Experiment 3 further confirmed that this learning asymmetry was not driven by 

potential differences in outcome sampling between free- and forced-choice trials, as the 

learning bias was also present in the 50/50 condition. Taken together, these findings suggest 

that the well documented “positivity bias” may be a special case of a more general “choice-

confirmation bias”, whereby individuals tend to overweight positive information when it 

confirms their previous choice. When no choice is involved, in contrast, positive and negative 

information are weighted equally (Figure 8). 

Importantly, if learning asymmetry does reflect a choice-confirmation bias, then it 

should arise from the very first stage of the action processing chain, that is at the decision 

stage rather than at the action stage. Thus, a pure choice-supportive bias should be oblivious 
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to how the choice is implemented, e.g., either through performing an action or refraining from 

acting. In contrast, a “cognitive dissonance” account would state that making an action is, in 

and of itself, sufficient to induce a learning asymmetry. Indeed, in the absence of any prior 

intention or reason to act, the mere fact of producing an action would strongly commit the 

agent with regard to the outcome. This commitment would then be retrospectively justified by 

shaping the individual’s preferences in such a way that they align post hoc with subsequent 

action outcomes (post-action dissonance reduction, see Izuma et al., 2010). Critically, most of 

the paradigms confound choice and action execution, and hence are not well suited to 

disentangle the influence of choice and action execution on valence-dependent learning 

asymmetries. In the fourth experiment, we directly addressed this issue by varying action 

requirements across “go” and “no-go” trials. Learning rates were analysed as function of both 

outcome valence (negative vs. positive) and execution mode (go vs. no-go). We replicated 

learning asymmetries found in free choice trials of the first three experiments, with positive 

PE being taken into account more than negative PE. Crucially, we found no difference 

between trials where the response was made by performing an action (key press) or by 

refraining from acting (no key press). Both dimensionality reduction and model comparison 

procedures supported these results. Thus, the choice confirmation bias is truly related to 

choices, rather than to the physical motor events that implement those choices. 

 

<< Insert Figure 8 here >> 
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Figure 8. Valence-dependent learning biases as a function of the choice type, 
execution mode and outcome type. Top: self-determined choice stream. A valence-
dependent learning asymmetry only arises when the individual is an agent, i.e., she 
“controls” the choice made. Positive (obtained) outcomes are better integrated than 
negative (obtained) outcomes – blue and red bars, respectively. This pattern reverses 
when learning from forgone outcomes, demonstrating that learning asymmetry reflects a 
choice-confirmation bias rather than a true positivity bias. Note this bias emerges early 
in the action processing chain, i.e., at the decision (or choice) rather than at the action 
stage. Bottom: imposed choice stream. No learning asymmetry is observed when the 
individual is not an agent, i.e., she does not control the choice made but only matches 
the computer’s decision. In this situation, participants learn from positive and negative 
outcomes alike.    
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Previous studies have suggested that learning rate asymmetries naturally implicate the 

development of choice hysteresis, where subjects tend to repeat previously rewarded options, 

despite current negative outcomes (e.g., Lefebvre et al., 2017). However, the very same 

choice behaviour may, in principle, derive from choice inertia, i.e., the tendency to repeat a 

previously enacted choice (Lau and Glimcher, 2005; Katahira, 2018). To settle this issue, we 

directly compared these two accounts and found that choice hysteresis was overall better 

explained by a choice-confirmation bias is terms of both model comparison and parameter 

retrieval. Thus, in our task we suggest that choice perseveration is better explained as biases 

in learning and updating. However, this does not exclude the possibility that learning-

independent choice perseveration plays a role in decision-making, for instance, when the 

same pairs of cues are presented at the same spatial position across a higher number of trials. 

Interestingly, theoretical simulations have suggested that preferentially learning from 

positive or negative prediction errors would be suboptimal in most circumstances, being only 

advantageous under specific and restrictive conditions – i.e., in environments with extremely 

distributed resources. Thus, Cazé and van der Meer (2013) demonstrated that – over the long 

run – different learning rate asymmetries can be advantageous for certain reward 

contingencies, which they referred to as “low-reward” and “higher-reward” conditions (i.e., 

the reward probabilities associated with the two available options are both low, or both high, 

respectively). Consistent with previous reports, we found no detectable sign of learning rate 

adaptation as function of the amount of reward available (Palminteri 2017; Gershman, 2015). 

The absence of reward-dependent learning rates, if confirmed, is actually at odds with the 

above-mentioned optimality analysis, positing that it is more advantageous to have a lower 

positive than negative learning rate in high-reward conditions. 

At first sight, it may be surprising that a “biased” model best accounts for participants’ 

data in a task where the rewards are dependent on participants’ performance. As a matter of 
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fact, confirmation bias has been implicated in various suboptimal decisions, from wrongful 

convictions in judicial process (Findley and Scott, 2006) to academic underachievement 

(Rosenthal and Jacobson, 1992) and misinterpretation of scientific evidence (Loehle, 1987). 

While biased learning may be suboptimal locally or under specific conditions (e.g., being 

overly pessimistic about the consequences of other people’s decisions), it could be on average 

well suited to adapt to periodically changing environments. In real-world situations, both the 

amount of resources and the causes that bring about these resources – as when one is free to 

choose vs. forced to take actions under influence or coercion – may vary from time to time. 

Overweighting positive consequences resulting from voluntary choices, while keeping 

impartiality when acting under influence, might be the most robust pattern to deal with the 

intrinsic volatility of disposable resources (low/high) as well as the variety of their causal 

sources (internal/external). Accordingly, we found that our best-fitting model (choice-

confirmatory in free choices, valence-neutral in forced-choices) was not only very 

advantageous in terms of accuracy, but it also exhibited the most stable performances across 

low- and high-reward conditions, relative to other models with alternative patterns of learning 

rates (see Figure 7C). 

Previous discussions of confirmation bias often focussed on “person-level” constructs, 

such as self-esteem, self-confidence, and post-decisional dissonance. However, we 

additionally suggest that a choice-confirmation bias could be adaptive in the context of the 

natural environment in which the learning system evolved (Fawcett et al., 2014). Previous 

accounts have highlighted the numerous benefits and facilitative effects of self-determined 

(vs. forced) choices on learning performance (e.g., Murayama et al., 2013). Besides 

enhancing memory encoding and retention (e.g., Voss et al., 2011) and boosting selectivity to 

choice-consistent evidence (Talluri et al., 2018; Chambon et al., 2017), making self-

determined choices improves learning of perceptual categories (e.g., Markant and Gureckis, 
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2010) and would allow for better generalization of prior knowledge to novel objects and 

situations (e.g., Wu and Tenenbaum, 2007). Choice allows people to control the stream of 

evidence they experience, and hence to focus effort on information that aligns with their 

current needs or interests, resulting in better and better-targeted learning (Gureckis and 

Markant, 2012, for a review). Choice is a powerful instrument to manipulate the environment 

so as to satisfy an individual’s needs (Leotti et al., 2010). A choice-confirmation bias would 

lead to preferentially reinforce actions that are most likely to meet these needs, i.e., freely 

chosen actions. In contrast, outcomes obtained from “forced” actions should be treated 

impartially as they do not necessarily align with the individual’s needs, interests or values, 

and hence should not be assigned any special value in self-determined decisions (Cockburn et 

al., 2014).  

Our results bear intriguing resemblance with recent findings on self-attribution in 

causal inference. In a reinforcement learning task manipulating the probability of hidden-

agent interventions, Dorfman and colleagues showed that when a participant believes that a 

benevolent agent has intervened, she learns more from negative than positive outcomes (i.e., 

she infers that the negative outcome is a consequence of her own choice rather than due to the 

benevolent agent). Conversely, when she believes that an adversarial agent has intervened, the 

participant is more likely to learn from positive than negative outcomes (Dorfman et al., 

2019). These findings highlight the relation between valence-induced learning biases and 

control beliefs, and support the notion that people interpret feedback/changes in the 

environment differently according to perceived controllability. Controllability is a possible 

auxiliary hypothesis for interpreting changes in the environment (Gershman, 2019). Thus, if 

controllability is high, then negative outcomes are presumably not a consequence of one’s 

enacted choice, and so are underweighted (optimistic belief). In our task, likewise, we found 

that people overweight positive outcomes when selection of an option was under their direct 
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control (free choice), yet are more impartial when they simply implement an instructed 

choice. Note that both Dorfman’s findings and ours are consistent with the notion that 

optimistic bias does not exclusively reflect preference for positive events in general – hence is 

not only a consequence of increased salience of positive outcomes. Rather, it would reflect 

biased (control) beliefs about one’s own causal power and the controllability of the 

environment (see also Chambon et al., 2018). Different beliefs about controllability might 

account for commonly observed differences between internal and external attribution profiles 

(Rotter, 1954) as well as between optimistic and pessimistic explanatory styles (Abramson et 

al., 1978). 

 

Conclusions 

In four studies mixing free- and forced-choice trials, featuring both factual and counterfactual 

learning, and implementing distinct reward contingencies and action requirements, we 

showed that participants’ behaviour was best accounted for by a learning model featuring a 

choice-confirmation bias – i.e., a model amplifying positive prediction errors in free-choice 

trials while being valence-neutral on forced-choice trials. We suggest that such a bias could 

be adaptive in the context of the natural environment in which the learning system evolved. 

Voluntary choices allow individuals to focus effort on information that aligns with their 

current needs. A choice-confirmation bias would thus lead to preferentially reinforce freely 

chosen actions, which are most likely to meet these needs. In contrast, outcomes obtained 

from unchosen (“forced") actions should be treated impartially as they do not necessarily 

align with the individual’s needs, interests or values, and hence should not be assigned any 

special value in self-determined decisions. Interestingly, choice can be seen as an opportunity 

to exert control over the environment. Our results support the notion that people interpret 
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action feedback differently depending on how controllable their environment is, in line with 

previous findings about self-serving bias in causal inference. 

 

Methods  

 

Participants 

The study included 4 experiments. Experiments 1, 2 and 4 involved 24 participants 

(Experiment 1: 13 males, mean age = 25.1 ± 0.8; Experiment 2: 9 males, mean age = 23.9 ± 

0.5; Experiment 4: 10 males, mean age = 24.8 ± 0.7, Table 1), whereas experiment 3 involved 

30 participants (15 males, mean age = 24.2 ± 0.9). The sample size was chosen based on 

previous studies (Palminteri et al., 2015, 2017). In the experiment 4, four participants were 

excluded from further analysis because they pressed a computer key during the No-Go trials 

more than 35% of the time. The local ethics committee approved the study (CPP C07-28). All 

participants gave written informed consent before inclusion in the study, which was carried 

out in accordance with the declaration of Helsinki (1964, revised 2013). The inclusion criteria 

were being older than 18 years, reporting no history of neurological or psychiatric disorders 

and a normal or corrected-to-normal vision. Participants were paid 10, 15 or 20 euros, 

depending on the number of points they had accumulated during the experiment. 

 

General procedure 

Participants performed a probabilistic instrumental learning task modified from previous 

studies (Lefebvre et al., 2017; Palminteri et al., 2017). The task required choosing between 

two symbols that were associated with stationary outcome probabilities. The possible 

outcomes were either winning or losing a point. Participants were encouraged to accumulate 

as many points as possible and were informed that one symbol would result in winning more 
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often than the other. They were given no explicit information about the exact reward 

probabilities, which they had to learn through trial and error.  

Participants were also informed that some trials (indicated by the word “observer” displayed 

in the centre of the screen) were purely observational: the observed outcome would not be 

added to the total of points obtained so far, but it would allow them to gain knowledge about 

what would have happened should they have chosen the selected symbol (Figure 1A). 

Crucially, in forced-choice trials, the two symbols were pseudo-randomly preselected, thus 

ensuring equal sampling from both low- and high-reward options. In Experiment 2, 

participants were also informed that in some blocks, they would see the outcome associated 

with the unchosen symbol, although they would only accumulate the points associated with 

the chosen symbol (Figure 1A). In Experiment 3, both free- and forced-choice trials included 

a condition with a random reward schedule (50/50). The rationale for implementing this 

schedule was to test whether the confirmation bias was not due to potential sampling 

differences between types of trials: in the free-choice condition, the most rewarding symbol is 

indeed increasingly selected as the subject learns the structure of the task. Having a random 

reward schedule eliminates the possibility of such unbalanced sampling between free- and 

forced-choice conditions. In Experiment 4, finally, the “observer” manipulation was not 

included, but subjects were instructed to express their decision by either making a key press 

(“go” trials) or refraining from making a key press (“no-go” trials) (Figure 1B). 

 

Conditions 

Experiments 1, 2 & 3 included four types of trials. In “free-choice” trials, participants could 

freely select between two possible symbols, while in “forced-choice” trials, participants had 

to match a preselected option. In “partial” trials, participants were only shown the outcome 

(“+1” or “-1”) associated to the chosen option, while in “complete” trials, participants were 
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shown the outcome of both the chosen and unchosen symbols (Figure 1). The experiments 1 

& 3 included two conditions: a condition with only “partial” free-choice trials (40 trials per 

block), and a condition with intermixed “partial” free- and forced-choice trials (40 + 40 = 80 

trials per block). In this “intermixed” condition, the free- and forced-choice trials were 

pseudo-randomly presented within the block, and the same pair of symbols was used in both 

types of trial.  

In addition to the condition with intermixed partial free- and forced-choice trials, the 

Experiment 2 also consisted in a condition with intermixed “complete” free- and forced-

choice trials. For the sake of duration, the number of trials was halved in Experiment 2 (20 

free-choice trials + 20 forced-choice trials = 40 trials per block) (see Table 1).  

Experiment 4 consisted of two “free-choice” conditions: a “go” and a “no-go” condition 

in which half of the participants had to press a computer key to select the top symbol, and to 

refrain from pressing any key to select the bottom symbol (the converse for the other half: 

press=bottom, refrain=top). 

In Experiment 1, participants underwent 12 blocks of either 40 (free) or 80 (intermixed 

free+forced) trials each. Six blocks were "high-reward” blocks and six blocks were “low-

reward” blocks. In high-reward blocks, one of the two symbols was associated with a .9 

probability of winning (+1 point) – and hence with a .1 probability of loss (-1 point). The 

other symbol was associated with a .6 probability of winning. In low-reward blocks, one 

symbol was associated with a .4 probability of winning and the other with a .1 probability of 

winning. In Experiment 2, each condition consisted in 8 blocks of 40 (intermixed free+forced) 

trials each. Half of them were high-reward blocks. The low- and high-reward blocks were 

associated with the same reward contingencies as in Experiment 1. In Experiment 3, 

participants underwent 12 blocks of either 20 (free) or 40 (intermixed free+forced) trials each. 

Six blocks were "random” blocks and six blocks were “instrumental” blocks. In “random” 
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blocks (50/50), each symbol was associated with .5 probability of winning and losing (i.e., 

there was no correct response in these blocks). Since the issue concerning the adaptive 

modulation of learning rates was addressed in Experiments 1 and 2, we switched back to the 

contingencies used in a previous study (Palminteri et al., 2017) to define the “instrumental” 

blocks. Thus, in half of the “instrumental” blocks, one symbol was associated with .7 

probability of winning (+1 point) – and hence with a .3 probability of loss (-1 point) – and the 

other symbol was associated with a .3 probability of winning. In Experiment 4, participants 

underwent 6 blocks of 100 (intermixed Go+No-Go) trials each. Reward contingencies were 

the same as those used in experiment 3.  

In all experiments, each block was associated with a specific pair of symbols, meaning 

that the participant had to learn from scratch the reward contingencies at the beginning of 

each block. The first block was preceded by a short training (60 trials for Experiment 1; 40 

trials for Experiments 2 & 3; 40 trials for Experiment 3). To ensure participants would not be 

biased toward expecting more frequent positive or negative outcomes in the subsequent 

experiment, the reward probabilities were set to .5 for all symbols during the training block.  

 

Trial structure 

In the first three experiments, trials began with a fixation cross, except when free- and forced-

choice trials were intermixed, in which case the words “actor” or “observer” appeared for 

1000ms prior to each trial, depending on the type of choice involved (free- or forced-choice, 

respectively) (see Figure 1A). A pair of symbols was then presented in the left and right part 

of the screen (pseudo-randomly assigned on each trial). Participants made their choice by 

pressing the right or left key arrow with their right hand.  

In forced-choice trials, the preselected cue was surrounded by a square. Participants had 

to press the corresponding arrow in order to move to the subsequent trial (nothing happened if 
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they tried to press the other arrow). The cues were preselected to ensure equal sampling: one 

symbol was preselected in half of the trials, and the other symbol in the remaining trials. The 

obtained outcome was then presented in the same part of the screen as the chosen symbol. In 

“complete” trials, the foregone outcome was shown in the same part as the unchosen symbol. 

In intermixed free- and forced-choice trials, to ensure that participants paid attention to the 

outcomes presented, they were asked to press the up key arrow when winning a point and the 

down key arrow when losing a point.  

In Experiment 4, trials began with a fixation cross for 1000ms (Figure 1B). A pair of 

symbols was then presented at the top or bottom of the screen (pseudo-randomly assigned on 

each trial). Participants had 1500ms to press the instructed key: the up key arrow for half of 

the participants, and bottom key arrow for the other half (Go trials). If no key was pressed 

after that delay, the other symbol was automatically selected (No-Go trials). In both Go and 

No-Go trials, a feedback associated with the selected symbol was then displayed for 1500ms. 

 

Computational modelling 

We fitted the data with modified versions of a Q-learning model, including different learning 

rates following positive and negative prediction errors, and different learning rates in free- 

and forced-choice trials, in 50/50 and 70/30 reward-contingency conditions, or in Go and No-

Go trials (see below). For each pair of symbols, the model estimates the expected value (also 

called Q-value) of the two options (Sutton & Barto 1991). The Q-values were set to 0 at the 

beginning of each block, corresponding to the a priori expectation of an equal probability of 

winning or losing 1 point. After each trial t, the value of the chosen option in a given state (s) 

is updated based on the prediction error, which measures the discrepancy between actual 

outcome value and the expected outcome for the chosen symbol, i.e., the chosen (c) Q-value, 

as follows: 
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δ௧(c) = 𝑅௧(c) − 𝑄௧(𝑐, 𝑠) 

where 𝑅௧(c) represents the obtained (factual) outcome on trial t. 

The prediction error is then used to update the chosen Q-value: 

𝑄௧ାଵ(𝑐, 𝑠) =  𝑄௧(𝑐, 𝑠) + 𝛼 ×  δ௧(c) 

where  represents the learning rate parameter. 

 In the “complete” condition experienced in Experiment 2, participants could learn from 

both the obtained and the forgone outcomes. Thus, in these trials, the unchosen Q-value was 

also updated with the forgone (or unchosen: u) outcome using to the same rule: 

δ௧(u) = 𝑅௧(u) − 𝑄௧(𝑢, 𝑠) 

𝑄௧ାଵ(𝑢, 𝑠) =  𝑄௧(𝑢, 𝑠) + 𝛼 × δ௧(u) 

 

As mentioned above, different learning rates (+ and -) were fitted to reflect different 

updating processes after a positive or negative outcome (Lefebvre et al., 2017; Palminteri et 

al., 2017). R could take the following values 𝑅 ∈ {−1, +1}, depending on the subject winning 

or not a point. The Q-values were initialized as such 𝑄(1) = 0, which corresponds to 

unbiased prior expectations, and to the average outcome experienced during the training 

phase. Because we were interested in the specific effect of choice type on learning, different 

pairs of asymmetrical learning rates in free- and forced-choice trials (Experiments 1, 2 & 3), 

and for factual and counterfactual outcomes (Experiment 2 only), were also fitted. The “Full” 

model thus had 4 learning rates in Experiment 1, and 8 learning rates in Experiment 2. In 

Experiment 3, different pairs of learning rates were also fitted in “random” (50/50 reward-

contingency) and “instrumental” (70/30 reward-contingency) blocks, in addition to positive 

and negative outcomes and free- and forced-choice trials. The full model therefore included 8 



 40

learning rates. In Experiment 4, different pairs of learning rates were fitted for Go and No-Go 

trials were fitted, and the full model included 4 learning rates (as in Experiment 1). 

In the reinforcement learning framework, the stimuli with the highest Q-value is more 

likely to be selected. The probability of selecting the stimulus with the highest value was 

estimated with a softmax function, as follows: 

𝑃௧(𝑎, 𝑠) =
𝑒ஒ × ொ೟(௔,௦)

𝑒ஒ × ொ೟(௔,௦) + 𝑒ஒ × ொ೟(௕,௦)
 

where  is the exploitation intensity parameter, which represents the strength of the Q-values 

on choice selection, and a and b being the two options available in a given state s. We fitted a 

unique parameter  for all trials and outcome types, to avoid biasing the learning rate 

comparison procedure. We also designed simpler versions of the full models in order to 

assess, for each experiment, what was the maximum number of parameters authorized, when 

penalizing for their complexity (parsimony-driven dimensionality reduction). The model 

space ranged from “full” models assuming different learning rates all possible outcomes 

(obtained and forgone), choice (free and forced), reward contingencies (50/50 and 70/30), and 

action (go and no-go) types, to fully “reduced” model, assuming no bias at all.  

Perseveration model 

Following Katahira’s critique (2017), suggesting that learning rates asymmetries may be 

artifactually be driven by a repetition (or perseveration) bias, we compared our models to a 

model including a ‘stickiness’ parameter. In the latter, the action selection rule was modified 

as follows: 

𝑃௧(𝑎, 𝑠) =
𝑒ஒ × (ொ೟(௔,௦)ା  × ஼೟(௔,௦))

𝑒ஒ × (ொ೟(௔,௦)ା  × ஼೟(௔,௦)) + 𝑒ஒ × (ொ೟(௕,௦) ା  × ஼೟(௕,௦))
 

where the parameter  represents the participant’s tendency to perseverate, and 𝐶௧(𝑥, 𝑠) 
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indicates which stimulus was chosen on the previous trial: 

𝐶௧(𝑥, 𝑠)  =  ቄ
1 𝑖𝑓 𝑥  𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑟𝑖𝑎𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

When the participants were forced to match the preselected option, we considered that 

they would not tend to perseverate in that choice. In the subsequent free trials, we thus set 

𝐶௧(𝑥, 𝑠) to zero for both the preselected and the other stimuli. 

 

Parameter estimation  

We fitted the model parameters based on participants' choices on each free-choice trial, for 

each participant. We used a maximum posterior approach (or MAP, Bishop 2006) to avoid 

degenerate parameter estimates. The best parameters were those maximizing the logarithm of 

the posterior probability (LPP): 

ln (𝑝(𝜃|𝐶ℎ𝑜𝑖𝑐𝑒ଵ:ே)) ∝ ln(𝑝(𝜃)) + ෍ ln (𝑝(𝐶ℎ𝑜𝑖𝑐𝑒௧|𝜃))

ே

௧ୀଵ

 

where  represents our parameter set, N is the total number of trials in the experiment, and 

𝑝(𝐶ℎ𝑜𝑖𝑐𝑒௧|𝜃) is the probability that the model would choose the same stimulus as the 

participant on trial t. To maximize the LPP with respect to , we used the Matlab's “fmincon” 

function with the following ranges: 0 <    < Infinite, and 0 < i < 1. 

The parameter prior probabilities were based on Daw et al. (2011), and we used a 

gamma distribution with hyperparameters 1.2 and 5 for the β parameter, and a beta 

distribution with hyperparameters 1.1 and 1.1 for the learning rates (α) parameters. To avoid 

biasing the learning rate comparison procedure, the same priors were used for all learning 

rates.  

 

Parameter recovery 
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We performed a parameter recovery analysis to ensure that the values of the learning rates 

reflected true differences in learning, and were not an artifact of the parameter fitting 

procedure (Palminteri et al., 2017). The aim was to check the capacity of recovering the 

correct parameters using simulated datasets. To do so, we first simulated performance on the 

two behavioral experiments using virtual participants. For each of these virtual participants, a 

learning rate value was being randomly drawn from a uniform distribution between 0 and 1. 

We then averaged the correlation coefficients R and p-values from 100 correlations performed 

between the parameters manipulated and the parameters recovered from the fitting procedure 

applied to the simulated data set (see Meyniel et al., 2016). This analysis was conducted on all 

the learning rate parameters of the full models (see Supplementary Results, Figure S1). 

 

Model comparison 

The logarithm of the parameter posterior probability was used to compute the Bayesian 

Information Criterion (BIC; Schwarz, 1978) for each model and each participant, as follows: 

𝐵𝐼𝐶 = 𝑘 × ln(𝑁) − 2 × ln (𝑝(𝜃ெ஺௉|𝐶ℎ𝑜𝑖𝑐𝑒ଵ:ே)) 

where k is the number of parameters, and ln (𝑝(𝜃ெ஺௉|𝐶ℎ𝑜𝑖𝑐𝑒ଵ:ே)) is the logarithm of the 

posterior probability (LPP) of the MAP parameters given the participant's choice data. 

BIC of the different models were compared to verify that the extra learning rate 

parameters were justified by the data. As an approximation of the model evidence, individual 

BICs were fed into the MBB-VB toolbox (Daunizeau et al., 2014), a procedure that estimates 

how likely it is that a specific model generates the data of a randomly chosen subject (the 

posterior probability of a model) as well as the protected exceedance probability (PXP) of one 

model being more likely than any other models in the set.  
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Figure Legends 

 

Figure 1. Schematic of trial procedure and stimuli. (A) Description of the four trial types 

implemented in Experiments 1 & 3 (top panel) and Experiment 2 (bottom panel). In free-

choice trials (“Actor”), participants could freely choose between two options, while in forced-

choice trials (“Observer”) participants had to match a preselected option, which was indicated 

by a red square. In “partial” trials, participants were only shown the outcome (+1 or -1) 

associated to the chosen option, while in “complete” trials participants were shown the 

outcomes associated to both chosen and unchosen options. Experiment 1 included a condition 

with only free-choice trials, and a condition with intermixed free- and forced-choice trials. 

Only “partial” trials were used. In Experiment 2, free- and forced-choice trials were 

intermixed, within two conditions: one with “partial” trials, and one with “complete” trials, 

where the outcomes of both chosen and unchosen options were shown. Experiment 3 featured 

a condition with a random reward schedule (50/50) in both free- and forced-choice trials (B) 

Description of the two conditions implemented in Experiment 4. Action requirements were 

varied within trials where the choice of an option could either be made by pressing a key 

(“Go” trials) or by refraining from pressing any key (“No-Go” trials). This experiment only 

featured “free-choice” trials and “partial” feedback. 

 

Figure 2. Behavioural results. (A) Mean proportion of correct choices in the first and second 

halves of each learning block, for the two conditions (free only; intermixed free and forced) of 

Experiment 1, for the two conditions (partial; complete) of Experiment 2, for the two reward 

contingencies (70/30; 50/50) used in Experiment 3, and for go and no-go trials in Experiment 

3. (B) Proportion of choice switches between trial t and t-1 as a function of the obtained 

outcome (factual, F) and the forgone (counterfactual, CF) outcome seen on trial t-1, 
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depending on whether this trial was a free- or a forced-choice trial (Exp. 1, 2 & 3), or a go or 

a no-go trial (Exp. 4), and depending on the reward contingency being implemented (50/50 or 

70/30, Exp. 3). For Experiments 1 and 2, the analysis was made on “partial” intermixed trials. 

For the Experiment 2, the analysis was made on “complete” intermixed trials, which 

contained both obtained and forgone outcomes. The “free + forced” data represent the correct 

choice rate in free-choice trials only (by definition, correct choice rate in forced-choice trials 

is bounded to be 50) within blocks where both free- and forced-choice trials were mixed. For 

each learning rate, individual data points are displayed within an area representing their 

probability density function; the mean and the s.e.m. are shown within a box whose height 

corresponds to the 95% confidence interval.  

 

Figure 3. Parameter results of the “full” model from all 4 experiments. Top left panel: 

Fitted factual learning rates from free- and forced-choice trials of Experiment 1. Top middle 

and right panels: Fitted factual and counterfactual learning rates from free- and forced-choice 

trials of Experiment 2. Bottom left and middle panels: Fitted factual learning rates from free- 

and forced-choice trials, and from 50/50 and 70/30 reward-contingency conditions of 

Experiment 3. Bottom right panel: Fitted learning rates from Go and No-Go trials of 

Experiment 4. Note that only obtained outcomes were shown in Experiments 1, 3 & 4, 

whereas both obtained and forgone outcomes were displayed in Experiment 2, which allowed 

for fitting counterfactual learning rates. Positive (α+) and negative (α-) learning rates were 

represented in blue and red, respectively. For each learning rate, individual data points are 

displayed within an area representing their probability density function; the mean and the 

s.e.m. are shown within a box whose height corresponds to the 95% confidence interval. 
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Figure 4. Model comparison results from all 4 experiments. (A) Representation of the 

model space. Top left and middle panels: In experiments 1, 2 & 3, the “full” model (4𝛼 and 

8𝛼, respectively) has different learning rates for positive and negative prediction errors (blue 

and red squares, respectively), and for free- and forced-choice trials. The “intermediate” 

model (3𝛼  and 6𝛼 , grey rectangle) has only single learning rate on forced-choice trials, 

whereas the “reduced” model (2𝛼 and 4𝛼) does not split learning rates by valence at all. The 

“reduced” model is thus nested within the “intermediate” model, which is itself nested within 

the “full” model. Note that in Experiment 2, the parameter reduction operates for both factual 

and counterfactual learning rates whereas in Experiment 3, the reduction operates for both 

50/50 and 70/30 reward-contingency learning rates. The grey rectangle signals the winning 

model in each experiment. Top right panel: In experiment 4, the “full” model (4𝛼) has 

different learning rates for positive and negative prediction errors (blue and red squares), and 

for Go and No-Go trials. Two reduced models were tested: (i) a model with 2 different 

learning rates for positive and negative outcomes (2𝛼-PN), and (ii) a model with 2 different 

learning rates for Go and No-Go trials (2𝛼-GNG). ‘PN’: Positive-Negative; ‘GNG’: Go-

NoGo. (B) The expectations and the variance of the posterior probability for each model, 

based on the Bayesian Information Criterion (BIC) values, with the protected exceedance 

probability (PXP) for each model shown in small inserts. The winning model is indicated in 

bold.  

 

Figure 5. Model comparison from Experiment 2. (A) Representation of the model space. 

The model with 6 learning rates (top) corresponds to the winning model presented in Figure 

4A (left panel). The black arrow indicates that this winning model can be reduced to a model 

with 3 learning rates, which embody learning in forced-choice trials (𝛼௙௢௥௖௘ௗ ) and learning 

from confirmatory (𝛼௖௢௡௙) and disconfirmatory (𝛼ௗ௜௦௖ ) outcomes in free-choice trials. (B) 
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Expectation and variance of the posterior probability for the initial winning model (6 𝛼) and 

the “reduced” model (3 𝛼), based on the Bayesian Information Criterion (BIC) values. The 

insert chart shows the protected exceedance probability (PXP) for each model. 

 

Figure 6. Comparing the winning model (3) to a model with a simple perseveration 

parameter (“Pers.”). (A) Expectation and variance of the posterior probability for the 

perseveration model and the winning model with 3 learning rates, based on the Bayesian 

Information Criterion (BIC) values. The insert chart shows the protected exceedance 

probability (PXP) for each model. (B) The winning model was fitted on data from experiment 

1 (left panel), experiment 2 (middle panel), and experiment 3 (right panel). The violin plots 

represent the learning rates fitted on the participants’ data, while the grey dots represent the 

learning rates fitted to artificial datasets, created by simulating the preservation model 10 

times on each participant’s data. As can be seen on the figure, positivity and confirmation 

biases may spuriously arise from data featuring a perseveration bias, but the biases retrieved 

from the simulations (grey dots) were significantly smaller compared to those observed in the 

participants’ data (bars). Error bars indicate the s.e.m. 

 

Figure 7. Learning rate analysis and model comparison for “High & Low” models. (A) 

The best-fitting learning rates of the “High & Low” model. For each learning rate, individual 

data points are displayed within an area representing their probability density function; the 

mean and the s.e.m. are shown within a box whose height corresponds to the 95% confidence 

interval. (B) The posterior and exceedance probabilities of the “Pooled” (P) and “High & 

Low” (H&L) models. In contrast to the High & Low model, learning rates of the “Pooled” 

model are not modulated by the amount of reward available. (C) Parameter optimality was 

tested by simulating models with different learning rate patterns in Experiments 1 and 
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2. The models were labelled according to their learning rate patterns, shown in the bottom 

panel. For example, “CO & NT” designates a model with choice-confirmatory (CO) learning 

rates in free-choice trials, and valence-neutral (NT) learning rates in forced-choice trials (CD 

= choice-disconfirmatory). The diamonds and the squares correspond to the performance in 

high- and low-reward conditions, respectively. The black circles correspond to the 

performance averaged across the two conditions. Error-bars were plotted, although they were 

often too small to be seen. Bottom: the participants' pattern of learning rates was highlighted 

with a dashed square.  

 

Figure 8. Valence-dependent learning biases as a function of the choice type, execution 

mode and outcome type. Top: self-determined choice stream. A valence-dependent learning 

asymmetry only arises when the individual is an agent, i.e., she “controls” the choice made. 

Positive (obtained) outcomes are better integrated than negative (obtained) outcomes – blue 

and red bars, respectively. This pattern reverses when learning from forgone outcomes, 

demonstrating that learning asymmetry reflects a choice-confirmation bias rather than a true 

positivity bias. Note this bias emerges early in the action processing chain, i.e., at the decision 

(or choice) rather than at the action stage. Bottom: imposed choice stream. No learning 

asymmetry is observed when the individual is not an agent, i.e., she does not control the 

choice made but only matches the computer’s decision. In this situation, participants learn 

from positive and negative outcomes alike.    
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Tables 

Table 1. Sociodemographic and design information for the four experiments.  

Variable Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Subjects 24 24 30 24 

Mean age (±SD) 25.1 (± 0.8) 23.9 (± 0.5) 24.2 (± 0.9) 24.8 (± 0.7) 

Forced choice Yes Yes Yes No 

Forgone outcome No Yes No No 

No-Go choice No No No Yes 

Number of blocks 12 16 12 6 

Number of trials 720 640 360 600 

Contingencies 90/60 & 40/10 90/60 & 40/10 70/30 & 50/50 70/30 & 50/50 
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Table 2. Mean parameter values (± standard errors) of the winning model in all 4 
experiments.   
 

  

 Param. Factual Counterfactual 

  +free -free forced +free -free forced 

Exp. 1 
4.2 

(± 0.50) 
0.35 

(± 0.063) 
0.14 

(± 0.054) 
0.13 

(± 0.036) 
- - - 

Exp. 2 
6.3 

(± 0.60) 
0.30 

(± 0.035) 
0.11 

(± 0.020) 
0.14 

(± 0.022) 
0.065 

(± 0.011) 
0.27 

(± 0.033) 
0.089 

(± 0.011) 

Exp. 3 
2.7 

(± 0.26) 
0.44 

(± 0.04) 
0.21 

(± 0.04) 
0.22 

(± 0.05) 
- - - 

  Go trials.                NoGo trials    

   +
Go -

Go  +
NoGo  -

NoGo    

Exp. 4 
 

4.0 
(± 0.97) 

0.34 
(± 0.05) 

0.09 
(± 0.03) 

0.35 
(± 0.06) 

0.10 
(± 0.03) 

- - - 
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Supplementary Methods and Results 

 

Parameter recovery 

As a quality check for comparison between learning rates, we assessed parameter 

recoverability in both experiments 1 and 2 (see Methods, “Parameter recovery”). To do so, 

we fitted simulated datasets with known parameter values and found that learning rates were 

satisfactorily recovered on average (correlations on the diagonal:  R’s > 0.78, all p’s < 10-3, 

Figure S1). Crucially, our fitting procedure introduced no spurious correlations between the 

true parameters and the recovered parameters (correlations outside the diagonal: -0.058 < R’s 

< 0.082, all p’s > 0.43, Figure S1). 

 

  

Figure S1. Parameter recovery results of the “full” models with 4 (Experiments 1) or 
8 (Experiment 2) learning rates. The matrices show the averaged correlation coefficients 
(R). The correlations were computed between the parameters used to simulate artificial 
datasets (y-axis) and the parameters recovered from using our fitting procedure on these 
simulated datasets (x-axis). 
   



 58

Loss aversion: exploratory analysis 

In the present study, the asymmetric valuation of gains and losses is accounted for by fitting 

different learning rates for positive and negative outcomes. A similar principle is at the very 

foundations of the prospect theory, where people process and react differently to potential 

losses and gains (Kahneman & Tversky, 1979). This asymmetric treatment of gains and losses 

can be achieved by assuming that the subjective value of a given loss is, in absolute terms, 

greater than a comparable gain (Lejarraga & Hertwig, 2017). In reinforcement learning terms, 

this asymmetric valuation can be implemented by modeling the negative outcome as a free 

parameter whose value is bounded between –2 (similar to typical loss aversion value) and 0 

(the loss is completely discounted: loss neglect) (Mastumoto et al., 2007, for a similar 

approach). Fitting this model to our data, we should logically observe the same pattern of 

results than that described in our paper, namely: a loss neglect (𝑣neg > -1) for factual outcomes 

following free-choice trials; loss aversion (𝑣neg < -1) for counterfactual factual outcomes 

following free-choice trials; finally loss neutrality for outcomes following forced-choice 

trials. 

We defined new models endowed with such a “subjective loss” parameter, and we 

adapted the structure of these models to each of our 4 experiments. In this exploratory model 

comparison, the update rule for the prediction error is the same as before (see Methods, 

“Computational modelling”), except that the value of the negative outcome (subjective loss 

parameter: 𝑣neg ∈ {−2,0}) is fitted as an independent parameter, with 𝑣neg > –1 representing a 

discount of the negative outcome relative to its true value (loss neglect) and with 𝑣neg < –1 

representing loss aversion (i.e. a loss of 1 is perceived as a greater loss than of a comparable 

gain; Kahneman & Tversky, 1979).  

Thus, the “subjective loss” models have three main parameters, 𝛼, β, and 𝑣 neg. 

Depending on the experiment, different learning rates (𝛼) were fitted:  
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•  In experiment 1, two learning rates were fitted to reflect different updating processes 

in free- and forced-choice trials (𝛼forced and 𝛼free, respectively).  

•  In experiment 2, in addition to “free” and “forced” learning rates, two pairs of 

learning rates were fitted to account for possible differences in factual and counterfactual 

learning (𝛼F and 𝛼CF, respectively). 

•  In experiment 3, different learning rates were fitted in free- and forced-choice trials, 

but also in 50/50 and 70/30 contingency blocks (𝛼50 and 𝛼70, respectively).  

•  Finally, in the experiment 4, two pairs of learning rates only were fitted to reflect 

possible differences in the update process between Go and No-Go trials (𝛼 go and 𝛼 nogo, 

respectively).  

 

The results replicate those obtained with asymmetric learning rates for positive and 

negative outcomes, namely: 1. negative outcomes have on average a reduced size (𝑣neg > -1) 

for factual outcomes following free-choice trials (Figure S2, experiments 1 to 3); 2. the 

opposite result (𝑣neg < -1) is observed for counterfactual negative outcomes following free-

choice trials (≥ -1) (Figure S2, expt. 2); and finally 3. negative outcomes were found to be 

equally discounted in Go and No-Go trials (Figure S2, expt. 4), thus confirming that the bias 

arises at the decision stage rather than at the action stage. Let us note, however, that the 

“subjective loss” formalism has the limitation that it cannot be straightforwardly translated to 

tasks where the lowest possible outcome is not a loss but zero. This is problematic as the 

learning bias has also been found in such tasks (Lefebvre et al., 2017). 
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Figure S2. Parameter results of the “asymmetric valuation” model. Experiment 1, 
left and right panels, respectively: Fitted factual learning rates and fitted subjective loss 
values from free- and forced-choice trials. Experiment 2, left and right panels, 
respectively: Fitted factual and counterfactual learning rates and subjective loss values 
from free- and forced-choice trials. Experiment 3, left and right panels: Fitted factual 
learning rates and subjective loss values from free- and forced-choice trials, and from 
50/50 and 70/30 reward-contingency conditions. Experiment 4, left and right panels: 
Fitted learning rates and subjective loss values from Go and No-Go trials. The loss value 
parameter (𝑣neg ∈ {−2,0}) was fitted as an independent parameter (purple boxes), with 
𝑣neg > –1 representing a discount of the negative outcome relative to its true value (loss 
neglect) and with 𝑣neg < –1 representing loss aversion. For each parameter estimate, 
individual data points are displayed within an area representing their probability density 
function; the mean and the s.e.m. are shown within a box whose height corresponds to 
the 95% confidence interval. 
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Figure S3. Full learning trajectories (correct choice rate) in each condition of each 
experiment. Note that we could not represent learning trajectories for the Go and No-
Go conditions (Experiment 4) separately as the number of trials in each condition 
depended on the participant’s choice on each trial, and hence was not necessarily the 
same. For the Experiment 4, we thus rather chose to represent the learning curves 
associated with each contingency, which also convey useful information about 
participants’ learning behaviour. 
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Table S1. Learning rates used to simulate models with a choice-confirmatory (CO), a 
valence-neutral (NT) or a choice-disconfirmatory (CD) pattern on free- or forced-choice trials 
in Experiment 2. 
 

 Factual Counterfactual 

 + - + - 

CO 0.3 0.1 0.1 0.3 

NT 0.15 0.15 0.15 0.15 

CD 0.1 0.3 0.3 0.1 
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