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Abstract 
The present paper reports on the development and cross-
validation of a number of light switch-on behaviour 
models with a focus on the implications of inter-occupant 
and site-specific diversities. To this end, the study models 
light switch-on actions by occupants at three office 
buildings in London, Ottawa and Vienna. The models, 
which are developed at both single-occupant and office-
level granularities are subjected to on-site and off-site 
cross-validations. Thus, the study can examine if the 
inclusion of behavioural diversity information enhances 
the predictive potential of occupant behaviour models in 
different settings. The results of the study suggest that 
light switch-on models with single-occupant granularity 
can better predict the occupants, based on the occupant for 
whom they are developed. This, however, does not 
translate into more accurate predictions of other 
occupants in different settings. Reflecting on the obtained 
results, the authors highlight other potential benefits of 
occupant behavioural diversity information for building 
performance simulation, which need to be further 
explored. 

Introduction 
The building simulation community has increased its 
efforts to reduce the gap between predicted and actual 
building energy use through probabilistic representations 
of occupants in buildings (Schweiker 2017). However, 
several studies have demonstrated that the use of existing 
occupant behaviour models involves considerable 
uncertainties and does not necessarily lead to a more 
reliable performance assessment (e.g., Tahmasebi & 
Mahdavi 2017; Gilani et al. 2018). Specifically, it is 
shown that without proper treatment of the diversity in 
occupants’ behaviour, probabilistic occupancy-related 
models fail to provide representative ranges of occupant 
behaviour possibilities as intended (O’Brien et al. 2017; 
Tahmasebi & Mahdavi 2016). To address this issue, 
different approaches for inclusion of diversity in occupant 
behaviour modelling efforts have been examined 
(Reinhart 2004; Mahdavi 2017; O’Brien et al. 2017; Haldi 
et al. 2017). However, with regard to the usefulness of 
including diversity information in occupant behaviour 
models, previous studies have yielded somewhat 
contradictory results (Gilani et al. 2018; Tahmasebi & 
Mahdavi 2018). Consequently, the potential benefits of 

supplying occupant behaviour models with inter-
occupant diversity information are not conclusively 
established. In this context, the current contribution 
revisits the problem to investigate three research 
questions:  

1. Does modelling the inter-occupant diversity in 
light switch-on models contribute to better 
predictions of light use in the same setting?  

2. To which extent do the data-driven light switch-
on models offer a predictive potential in new 
settings across different countries?  

3. Does inclusion of the inter-occupant diversity 
information in the modelling effort enhance the 
models’ predictive performance in these new 
settings?  

Method 
Buildings and occupant data 
The current study focuses on three office buildings in 
London, Ottawa and Vienna. The monitored areas in 
London and Ottawa offices each include 11 workstations 
and the Vienna office comprises of 8 workstations. In all 
three office areas the occupants have access to a light 
switch to control the lighting conditions of the workplace. 
The current study deploys streams of 15-min interval data 
on occupants’ presence, state of the light and indoor 
illuminance from the offices. In the case of the London 
offices, workplane indoor illuminance has been 
measured, while at Ottawa and Vienna offices ceiling-
mounted sensors have measured illuminance. The study 
uses one-year datasets from London and Vienna offices 
along with two years’ worth of data from Ottawa offices 
(referred to as estimation period) to infer three sets of light 
switch-on models. A separate two-year-long dataset from 
Ottawa offices (referred to as validation period) serves to 
test the predictive potential of the developed models. 
Table 1 includes basic information on the use of lights in 
the studied offices. Specifically, to provide an impression 
of the state of the lights during occupied and unoccupied 
intervals and the number of light switch-on actions, three 
indicators are shown in the table: Fraction of occupied 
intervals with switched-on lights, fraction of unoccupied 
intervals with switched-on lights and light switch-on rate 
at occupied intervals. The table includes the values of the 
metrics for individual occupants together with the mean 
and standard deviation of the metrics across occupants. 
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Table 1: Fraction of occupied and unoccupied intervals with switched-on light and rate of light switch-on actions at the 
studied offices in London, Ottawa and Vienna. 

Occupant 

Fraction of occupied intervals 
with switched-on lights [-] 

Fraction of unoccupied intervals 
with switched-on lights [-] 

Light switch-on rate in occupied 
intervals [1/hour] 

London Ottawa Vienna London Ottawa Vienna London Ottawa Vienna 

L01 0.89 0.32 0.04 0.03 0.03 0.00 0.35 0.29 0.16 
L02 0.73 0.93 0.04 0.23 0.08 0.00 0.44 0.41 0.15 
L03 0.84 0.86 0.01 0.28 0.08 0.00 0.51 0.31 0.03 
L04 0.84 0.28 0.01 0.28 0.04 0.00 0.51 0.34 0.03 
L05 0.82 0.15 0.01 0.27 0.01 0.00 0.50 0.18 0.03 
L06 0.82 0.79 0.01 0.27 0.09 0.00 0.50 0.62 0.04 
L07 0.83 0.38 0.04 0.18 0.02 0.00 0.28 0.26 0.13 
L08 0.83 0.13 0.01 0.18 0.04 0.00 0.28 0.12 0.04 
L09 0.31 0.41 - 0.03 0.01 - 0.18 0.37 - 
L10 0.33 0.78 - 0.02 0.01 - 0.18 0.73 - 
L11 0.92 0.43 - 0.15 0.11 - 0.34 0.48 - 

Mean 0.74 0.50 0.02 0.17 0.05 0.00 0.37 0.37 0.08 
STD 0.20 0.28 0.02 0.10 0.04 0.00 0.12 0.17 0.06 

 

Light switch-on models 
To explore the research questions, the authors developed 
the following types of light switch-on models based on 
the monitored data obtained from the offices in the 
estimation period: 

• Aggregate models (AGG), which were derived 
based on the data obtained from all occupants and 
light switches in each office area without any 
weighting factor; 

• Individual models (L1-L11 in London and 
Ottawa offices, L1-L8 in Vienna office), which 
were derived based on the data obtained from 
each occupant and their associated light switch. 
 

Each model is a logistic regression, which estimates the 
probability of turning on the lights based on indoor 
illuminance: 
 

𝑃𝑃 =
exp (𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝑖𝑖𝑖𝑖)

1 + exp (𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝑖𝑖𝑖𝑖) 

 
Where P is the probability of a light switch-on action, Ein 
is the indoor illuminance, β0 is the intercept and β1 is the 
regression coefficient. Note that, without a distinctive 
treatment of different occupancy phases (arrival, 
intermediate and departure times) and by skipping a 
comprehensive variable selection procedure, the models 
are kept simple to focus the effort on the research 
questions. It should be also mentioned that, to determine 
the state of the lights in a building performance model 
throughout the simulation period, these models must be 

accompanied by switch-off models. This is, however, out 
of the scope of the current study. 

Cross-validation scenarios 
The present contribution follows two scenarios to 
examine the implications of inter-occupant and location-
specific diversity for the explanatory power of light 
switch-on models. 
Firstly, to answer the first research question in an ideal 
scenario, each single-occupant model from Ottawa 
dataset is used to predict the occupant, based on whom the 
model is developed. Thus, the study can explore the 
potential advantages of integrating inter-occupant 
diversity information in light switch-on models. 
Secondly, to answer the second and third research 
questions, the models developed based on London and 
Vienna offices are tested to predict the occupants at 
Ottawa offices. Thereby, both aggregate and individual 
models are deployed to examine the explanatory power of 
the models in different settings with and without inclusion 
of inter-occupant diversity. In this scenario, the individual 
models are randomly assigned to the occupants in the new 
setting.  

Model evaluation metrics 
In order to measure the models’ ability to discriminate 
between occurrence and non-occurrence of light switch-
on, the authors deployed a rather novel metric in this field, 
namely the coefficient of discrimination. This metric is 
suggested by Tjur (2009) in the context of logistic 
regression as an analogue to coefficient of determination 
(R-squared) in ordinary regression models. Coefficient of 
discrimination (CoD) is calculated as follows: 
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𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃�1 −  𝑃𝑃�0 
 
Where 𝑃𝑃�1 and 𝑃𝑃�𝑜𝑜 denote the average estimated 
probabilities of light switch-on, respectively, for the so-
called successes (intervals, in which a switch-on has been 
observed) and failures (intervals, in which a switch-on has 
not been observed). Coefficient of discrimination takes 
values between 0 and 1. A value of 0 corresponds to “no 
explanatory power” (all fitted values are equal), and a 
value of 1 corresponds to “perfect fit” (the fitted values 
coincide with the observations). This indicator offers two 
advantages in evaluation of occupant behaviour models: 
Firstly, it is obtained without conducting Monte Carlo 
simulation of the model (as it deploys the estimated 
probabilities and not the randomly-sampled states). 
Secondly, it does not require the inclusion of models’ 
feedback as it examines the models’ predictions in a set 
of disconnected time intervals. 
With this probability-based approach to model evaluation, 
it is also possible to estimate a number of widely-used 
metrics for occupant behaviour models (e.g. Schweiker et 
al. 2012) without relying on the state of devices through 
the Monte Carlo simulation of the model. These metrics, 
which in the present study serve to evaluate the models in 
terms of the agreement between predicted and monitored 
switch-on actions, are as follows: 

• TPR (True Positive Rate), as the proportion of 
actual switch-on actions, which are correctly 
predicted. This metric is equivalent to 𝑃𝑃�1. 

• FPR (False Positive Rate), denoting the 
proportion of intervals without a switch-on 
action, for which occurrence of a switch-on 
action is predicted, as an equivalent of 𝑃𝑃�0. 

• TNR (True Negative Rate), denoting the 
proportion of intervals without a switch-on 
action, which are correctly predicted. This metric 
is equivalent to 1 − 𝑃𝑃�0. 

• FNR (False Negative Rate) as the proportion of 
actual switch-on actions, which are wrongly 
predicted, as an equivalent of 1 − 𝑃𝑃�1. 

 
In addition, the authors included another widely used 
metric in occupant behaviour studies referred to as 
Accuracy (ACC). While it has been argued that the way, 
in which this metric has promoted occupant behaviour 
models can be misleading, it can serve to put the models’ 
predictive performance in perspective. In the present 
study, ACC is seen as an indicator for the models’ 
potential in discriminating actions and nonactions 
weighted by their numbers, which is calculated as 
follows: 
 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑃𝑃�1𝑠𝑠 + (1 − 𝑃𝑃�0)𝑓𝑓

𝑠𝑠 + 𝑓𝑓
 

 

Where s denotes the number of successes (occurrence of 
light switch-on actions), and f denotes the number of 
failures (non-occurrence of light switch-on actions). 

Results 
Light switch-on models 
Table 2 provides the estimated coefficients of logistic 
regression models for the individual and aggregate light 
switch-on behaviour at London, Ottawa and Vienna 
offices. Figure 1 to Figure 3 illustrate the models’ 
response curves at indoor illuminance of 0 to 300 lux. 
Note that the models based on the data from London 
offices use workplane illuminance, whereas the Ottawa 
and Vienna models take ceiling illuminance as input. 

 
Table 2: Estimated coefficients for logistic regression 

models of light switch-on based on single occupant/light 
data (L1 – L11) and the aggregate data from all 
occupants and lights in each office area (AGG). 

Model Parameter 
Estimate 

London Ottawa Vienna 

L01 
β0 -1.4203 -1.2938 -2.0994 

β1 -0.0029 -0.0450 -0.0120 

L02 
β0 -1.6457 1.2943 -2.2482 

β1 -0.0027 -0.0172 -0.0098 

L03 
β0 -2.1927 0.3499 -3.9995 

β1 -0.0011 -0.0197 -0.0110 

L04 
β0 -2.0588 -1.3910 -3.6027 

β1 -0.0030 -0.0131 -0.0240 

L05 
β0 -2.3964 -0.6994 -3.3241 

β1 -0.0017 -0.0597 -0.0166 

L06 
β0 -2.6852 0.7360 -3.6342 

β1 -0.0013 -0.2909 -0.0048 

L07 
β0 -1.2908 -0.1651 -1.8020 

β1 -0.0139 -0.5580 -0.0315 

L08 
β0 -1.0894 -1.6749 -2.8064 

β1 -0.0078 -0.5726 -0.0140 

L09 
β0 -1.9434 -1.2640 - 

β1 -0.0059 -0.0844 - 

L10 
β0 -1.4360 0.3004 - 

β1 -0.0206 -0.1099 - 

L11 
β0 -1.6678 -0.4881 - 

β1 -0.0014 -0.1083 - 

AGG 
β0 -2.1230 -1.0403 -2.9109 

β1 -0.0020 -0.0193 -0.0107 
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Figure 1: Estimated single-occupant and aggregate 

light switch-on probabilities at London offices. 
 

 
Figure 2: Estimated single-occupant and aggregate 

light switch-on probabilities at Ottawa offices. 
 

 
Figure 3: Estimated single-occupant and aggregate 

light switch-on probabilities at Vienna offices. 
 

Models’ predictive performance 
Table 3 provides the values of 𝑃𝑃�1, 𝑃𝑃�𝑜𝑜, Coefficient of 
Discrimination (CoD), TPR, FPR, TNR, FNR and ACC 
for the aggregate and individual models developed based 
on London, Ottawa and Vienna data as tested on the 
Ottawa offices in the validation period. The table also 

includes a pseudo-model that does not return any switch-
on actions (i.e. it assumes the lights are always switched 
off) to put the models explanatory power in context.  
Moreover, to better compare the performance of Ottawa 
models in discriminating light switch-on actions, Figure 4 
shows the predicted switch-on probabilities by aggregate 
and individual models for separate sets of intervals as 
follows: a) intervals with a switched-off light, where a 
switch-on actions is observed (i.e. the ideal prediction 
equals 1) on the left-hand side histograms; b) intervals 
with a switched-off light, where a switch-on action is not 
observed (i.e. the ideal prediction equals 0) on the right-
hand side histograms.  

Discussion and conclusion 
Models’ explanatory power in the same setting  
Focusing on the predictive performance of Ottawa-based 
models to answer the first research question, the values of 
CoD and ACC provided in Table 3 indicate that the 
individual light switch-on models outperform the 
aggregate model (CoD of 0.1 versus 0.03, and ACC of 
0.85 versus 0.79). The higher explanatory power of 
individual models can be also seen in Figure 4. 
Comparing the two histograms on the left-hand side 
shows that the individual models have, to some extent, 
pushed the histogram mass to the right endpoint (toward 
the ideal prediction of 1). More noticeably, contrasting the 
histograms on the right-hand side reveals that the 
individual models have pushed the histogram mass to the 
left end point (toward the ideal prediction of 0).  
As mentioned at the outset, this validation procedure 
represents an ideal scenario, in that model estimation and 
validation happens at the same setting (Ottawa offices) 
and the single-occupant models predict the very 
occupants, based on whom they are developed. 
Nonetheless, the results underline the theoretical potential 
of inter-occupant diversity information toward enhancing 
the explanatory power of occupant behaviour models. 

Models’ explanatory power in different settings 
In view of the applicability of the models in different 
settings (research questions 2 and 3), the results provided 
in Table 3 suggest the following: The models’ predictive 
performance is far from satisfactory and the inclusion of 
inter-occupancy information, if anything, reduces the 
models’ explanatory power. This can be seen, in 
particular, by the extremely low values of CoD (and by 
the lack of improvement due to the inclusion of inter-
occupant diversity information) in testing London and 
Vienna models based on Ottawa data.  
In this regard, one may argue that the high values of ACC, 
namely above 0.85 in four cross-validation tests, are 
promising. However, the ACC value of 0.98 resulting 
from the no-switch-on pseudo model (which does not 
require any modelling effort) put this in a better 
perspective. Note that, ACC is obtained by weighting the 
models’ predictions based on the number of observed 
intervals with and without actions. Arguably, in any study 
on the use of lights, the intervals in which a switch-on 
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action is observed comprise a very small portion of the 
intervals in which the occupant has the possibility to turn 
on the light. In the current case study, the proportion is as 
small as 1.7%, which results in an ACC value of 98.3% 
for a pseudo model that assumes that the occupants never 

turn on the lights. Therefore, since the occupant behaviour 
models are intended to capture the – perhaps infrequent 
but arguably influential – adaptive actions, an indicator 
such as CoD can better direct the researchers toward 
enhancing the explanatory power of the models. 

 
Table 3: Values of the model evaluation metrics for aggregate and individual light switch-on models developed for 

London, Ottawa and Vienna offices as tested for Ottawa offices in the validation period. 

Model(s) 
type 

Estimation 
location 

Validation 
location 𝑷𝑷�𝟏𝟏 𝑷𝑷�𝟎𝟎 CoD TPR FPR TNR FNR ACC 

Aggregate 
Ottawa  0.24 0.20 0.03 0.24 0.20 0.80 0.76 0.79 

Individual 0.23 0.14 0.10 0.23 0.14 0.86 0.77 0.85 

Aggregate 
London Ottawa 

0.11 0.10 0.01 0.11 0.10 0.90 0.89 0.88 

Individual 0.13 0.13 0.00 0.13 0.14 0.86 0.87 0.85 

Aggregate 
Vienna  

0.03 0.02 0.01 0.03 0.02 0.98 0.97 0.97 

Individual 0.10 0.09 0.01 0.10 0.09 0.91 0.90 0.90 

No switch-on -  0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.98 

 

     

     

Figure 4: Histograms of predicted light switch-on probabilities for the Ottawa offices in the validation period provided 
by aggregate (top) and individual (bottom) models from the same offices in Ottawa. The histograms on the left-hand 

side show the predictions for the intervals in which a light switch-on is observed. The histograms on the right-hand side 
show the predictions for the intervals in which a light switch-on is not observed.  
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Reflections on the challenges and future research 
Setting the findings on the three research questions side 
by side, the authors argue that, in principle, the inclusion 
of inter-occupant diversity in behaviour models can 
enhance their predictive power. However, this does not 
constitute an easy solution to extend the applicability and 
reliability of occupant behaviour models in different 
settings. In fact, given the very diverse nature of occupant 
behaviour in the three buildings studied here, relying on 
the off-site aggregate models to capture the average 
tendencies in occupants’ use of lights seemed to a be more 
reasonable choice.  
More specifically, as compared with other aspects of 
occupant adaptive behaviour in buildings, use of electric 
lighting seems to pose a greater challenge to develop 
occupant behaviour models for different settings. As it 
stands, indoor illuminance measurements are conducted 
differently from one place to another. Besides, given the 
evolving nature of everyday activities, setting an 
appropriate metric to represent the perceived adequacy of 
illumination does not seem to be a trivial task (see 
Raynham et al. 2019, as a recent effort in this area). 
All in all, the authors believe that the motivation behind 
understanding and modelling inter-occupant behavioural 
diversity is not solely to enhance the accuracy of occupant 
behaviour predictions in different settings. Rather, to 
provide effective simulation-based design support, 
occupant models would have to be based on statistically 
representative diversity information. The necessity for 
inclusion of diversity depends on the design questions. 
For example, studies focused on robustness (e.g., O’Brien 
and Gunay, 2015) and other probabilistic results require 
that inter-occupant diversity be quantified. In contrast, for 
large building or community-scale projects, inter-
occupant diversity tends to cancel out, with predictions 
converging on the equivalent of an average occupant 
(Gilani et al., 2018). However, there is little risk in 
including diversity; the main cost is the required model 
training and minor additional effort in interpretation of the 
model and simulation output.   
The current results highlight the need for larger numbers 
of coordinated behavioural studies including diversity 
considerations. Moreover, further concerted efforts are 
necessary to formulate and implement practically feasible 
inclusion of diversity information in models of occupants' 
control-oriented actions in buildings.  
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