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ORIGINAL RESEARCH

Role of the Metabolic Profile in Mediating 
the Relationship Between Body Mass Index 
and Left Ventricular Mass in Adolescents: 
Analysis of a Prospective Cohort Study
Alice R. Carter , MSc; Diana L. Santos Ferreira , PhD; Amy E. Taylor, PhD; Deborah A. Lawlor , PhD; 
George Davey Smith , DSc; Naveed Sattar , PhD; Nishi Chaturvedi , MD; Alun D. Hughes , PhD;  
Laura D. Howe , PhD

BACKGROUND: We aimed to quantify the role of the plasma metabolic profile in explaining the effect of adiposity on cardiac 
structure.

METHODS AND RESULTS: Body mass index (BMI) was measured at age 11 in the Avon Longitudinal Study of Parents and 
Children. Left ventricular mass indexed to height2.7 (LVMI) was assessed by echocardiography at age 17. The metabolic profile 
was quantified via 1H-nuclear magnetic resonance spectroscopy at age 15. Multivariable confounder (maternal age, parity, 
highest qualification, maternal smoking, prepregnancy BMI, prepregnancy height, household social class, adolescent birth-
weight, adolescent smoking, fruit and vegetable consumption, and physical activity)–adjusted linear regression estimated the 
association of BMI with LVMI and mediation by metabolic traits. We considered 156 metabolomic traits individually and jointly 
as principal components explaining 95% of the variance in the nuclear magnetic resonance platform and assessed whether 
the principal components for the metabolic traits added to the proportion of the association explained by putative cardiovas-
cular risk factors (systolic and diastolic blood pressures, insulin, triglycerides, low-density lipoprotein cholesterol, and glucose). 
A 1 kg/m2 higher BMI was associated with a 0.70 g/m2.7 (95% CI, 0.53–0.88 g/m2.7) and 0.66 g/m2.7 (95% CI, 0.53–0.79 g/
m2.7) higher LVMI in males (n=437) and females (n=536), respectively. Putative risk factors explained 3% (95% CI, 2%–5%) of 
this association in males, increasing to 10% (95% CI, 8%–13%) when including metabolic principal components. In females, 
the standard risk factors explained 3% (95% CI, 2%–5%) of the association and did not increase when including the metabolic 
principal components.

CONCLUSIONS: The addition of the nuclear magnetic resonance-measured metabolic traits appears to mediate more of the 
association of BMI on LVMI than the putative risk factors alone in adolescent males, but not females.
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Cardiovascular disease (CVD) remains the lead-
ing cause of death globally,1 and adiposity is a 
key CVD risk factor.2 Mediation analysis can be 

used to gain a wider etiologic understanding of an 
exposure, in addition to identifying modifiable inter-
mediate variables linking the exposure to a particular 

outcome.3 Interventions to prevent or treat high lev-
els of adiposity have had limited impact; therefore, 
identifying novel modifiable intermediate processes 
between adiposity and CVD provide an opportu-
nity for future interventions aiming to reduce risk  
of CVD.4–6
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Blood pressure, glucose, insulin, and lipid levels have 
been identified as major contributors to the association 
between adiposity and CVD. These factors have been 
estimated to explain 46% and 76% of the association 
between BMI and coronary heart disease and stroke, 
respectively.7 The availability of metabolomic data in 

cohort studies, specifically the numerous lipid-based 
measures determined via nuclear magnetic resonance 
(NMR) spectroscopy, has led to an increased under-
standing of the causal effects of body mass index 
(BMI) on circulating metabolites8 as well as the role of 
such metabolites on CVD risk.9,10 Therefore, metabolic 
intermediates are strong candidates as intermediates 
on the causal pathway from adiposity to CVD risk, 
which importantly, can be intervened on. For example, 
harmful cholesterol levels are already targeted using 
statin medication, which is widely prescribed in routine 
general practice.

Although adverse cardiovascular events largely 
occur in adult life, cardiovascular pathology has been 
shown to have its origins in early life,11–14 with levels 
of adiposity and cardiovascular risk factors known to 
track from childhood through to adulthood.15 Measures 
of cardiac structure and function in adults are pre-
clinical markers of CVD,16 and there is evidence that 
cardiac structure in young adults is associated with 
future risk of CVD events.17 Previous analyses car-
ried out in the cohort used in this study (ALSPAC [the 
Avon Longitudinal Study of Parents and Children]) have 
demonstrated a causal relationship between BMI and 
left ventricular mass indexed to height2.7 (LVMI), a mea-
sure of cardiac structure, in adolescents.18

In this study, we use data from adolescents in 
ALSPAC, a UK prospective cohort study, to assess the 
role of NMR-measured metabolic traits as mediators 
of the association between BMI and LVMI. Mediation 
analysis is inherently a causal inference method, 
where causality is assumed between the exposure 
and outcome, exposure and mediator, and mediator 
and outcome.3 Therefore, these analyses focus on the 
association between BMI and LVMI given the existing 
evidence for a causal relationship.18 Our primary aim is 
to identify whether considering the whole of the NMR-
measured metabolic profile results in a greater propor-
tion of the BMI–LVMI relationship being explained over 
and above the amount explained by putative intermedi-
ate risk factors (systolic blood pressure [SBP], diastolic 
blood pressure [DBP], insulin, triglycerides, low-den-
sity lipoprotein cholesterol [LDL-C], and glucose).

METHODS
Participants
ALSPAC is a population-based birth cohort study. 
Pregnant women living in the former county of Avon, 
South West England, with an expected delivery date 
between April 1, 1991 and December 31, 1992, were 
eligible for enrollment. In total, 14  541 women were 
enrolled in to ALSPAC, with 14  901 children born. 
The participants have been followed up since birth, 
with questionnaires and links with routine data and 

CLINICAL PERSPECTIVE

What Is New?
• A number of cardiovascular risk factors have 

been identified as putative mediators between 
body mass index and cardiac structure, in-
cluding systolic and diastolic blood pressures, 
insulin, triglycerides, low-density lipoprotein 
cholesterol, and glucose. However, much of the 
effect remains unexplained.

• In an adolescent cohort, the nuclear magnetic 
resonance–measured metabolic profile ap-
peared to mediate more of the association 
between body mass index and left ventricular 
mass indexed to height2.7 than putative risk fac-
tors alone in adolescent males, but not females.

• There was little evidence that any individual met-
abolic trait mediated the association between 
body mass index and left ventricular mass in-
dexed to height2.7, in both males and females.

What Are the Clinical Implications?
• The metabolic profile may present additional 

targets for lifestyle or pharmaceutical interven-
tions to reduce the harmful effect of adiposity 
on cardiovascular health, particularly in males.

• To have large effects, interventions would require 
broad approaches to improve whole lipid or lipo-
protein profiles and some other small molecules, 
rather than targeting individual measures.

Nonstandard Abbreviations and Acronyms

ALSPAC Avon Longitudinal Study of Parents 
and Children

DBP diastolic blood pressure
DXA dual x-ray absorptiometry
LAI left arterial index
LVIDD left ventricular internal diameter
LVMI left ventricular mass indexed to 

height2.7
NMR nuclear magnetic resonance
PC principal components
RWT relative wall thickness
SBP systolic blood pressure
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research clinics. Full details of the cohort have been 
reported previously.19,20 All participants have given in-
formed consent to be involved in the ALSPAC study. 
Ethical approval for this specific project was obtained 
from the ALSPAC law and ethics committee and local 
ethics committees. The study website contains details 
of all the data that are available through a fully search-
able data dictionary and variable search tool (http://
www.brist ol.ac.uk/alspa c/resea rcher s/our-data/).21 To 
maintain temporal sequencing of our exposures, me-
diators, and outcomes, we used adiposity measures 
from age 11, metabolic traits assessed at age 15, and 
cardiac structure assessed at age 17 years.

Anthropometric Measurements
At the age 11 follow-up clinic, height was measured 
using the Harpenden stadiometer, without shoes. 
Weight was measured using the Tanita body fat ana-
lyzer. BMI was then calculated as weight in kilograms 
divided by the square of height in meters.

Mediator Measurements
Fasting (overnight or minimum 6 hours) plasma meta-
bolic traits were quantified via high-throughput 1H-
NMR spectroscopy (referred to as NMR) (Nightingale 
Health, Helsinki, Finland), at age 15. For samples taken 
in the morning the fasting period was overnight and 
for afternoon samples (after 14:00) individuals were 
required to fast for at least 6 hours. The protocol for 
this method and uses of this method in epidemio-
logic analyses has been described extensively in the 
literature.22–24 In brief, NMR spectroscopy detects all 
signatures from all components containing protons. 
Three main molecular windows are identified; (1) the 
LIPO window, which characterizes macromolecules, 
mainly those of lipoprotein lipids; (2) the low-molecular-
weight molecule, which suppresses macromolecules 
and identifies smaller solutes such as amino acids and 
glycolysis-related metabolites; and (3) LIPID, which 
identifies serum lipid constituents.9 Traits are mostly 
quantified in clinically meaningful concentrations (eg, 
mmol/L). Fatty acids are considered in original units 
and as ratios to total fatty acids. A total of 229 meta-
bolic traits were measured, consisting of 149 con-
centration measures and 80 ratio measures. With the 
exception of fatty acid ratios, all other ratios measured 
were excluding resulting in 156 metabolites for analy-
sis. These 156 metabolic traits represent 14 lipoprotein 
subclasses and covering a broad spectrum of meta-
bolic pathways (Table S1).

Putative mediators were identified from the liter-
ature, where there was existing causal evidence of 
them being (1) affected by adiposity or anthropomet-
ric traits and (2) independent risk factors for CVD or 
they had previously been identified as mediators of the 

association. Metabolic traits included as putative me-
diators were measured using fasting plasma glucose 
samples. Fasting plasma glucose was measured using 
an automated assay. Insulin was measured from blood 
samples using an enzyme-linked immunosorbent 
assay (Mercodia, Uppsala, Sweden). Plasma lipid con-
centrations, including triglycerides and LDL-C, were 
taken from venous blood samples and measured by 
using enzymatic reagents for lipid determination. The 
Friedewald equation was used to estimate LDL-C.25 
Where traits, such as LDL-C are measured both in the 
NMR platform and as putative mediators from plasma 
glucose, the traits were excluded from the NMR plat-
form (see Statistical Analysis full details).

Resting SBP and DBP were measured at least 
twice during clinics, using a Dinamap 9301 vital signs 
monitor (Morton Medical, London, UK)  and cuff size 
appropriate for the child. A mean of the final two mea-
sures was used.

Cardiac Structure Measures
Left ventricular mass was assessed by echocardi-
ography in a quasi-random subset of participants in 
ALSPAC at the age 17 clinic. Echocardiography was 
performed using a HDI 5000 ultrasound machine 
(Philips) equipped with a P4-2 phased-array ultrasound 
transducer. All measurements were made according to 
the American Society of Echocardiography guidelines, 
and validated equations were used to calculate LVMI.26

Confounder Assessment
Mediation assumes causal effects and therefore that 
there is no confounding between the exposure and 
outcome, exposure and mediator, and mediator and 
outcome as well as no intermediate confounders (that 
being a confounder of the mediator and outcome that 
is itself influenced by the exposure).3 Confounders in-
cluded in analyses were selected based on a priori 
knowledge and were included in all analysis models as 
either confounders of the exposure and mediator, me-
diator and outcome, or exposure and outcome or be-
tween all three (see Figure 1). Maternal confounders in 
this analysis were age, parity, education, prepregnancy 
height, prepregnancy BMI, and smoking. Adolescent 
confounders were birthweight, smoking (at age 15), 
physical activity (at age 15), and diet (at age 15) meas-
ured by fruit and vegetable intake. Household social 
class, around the time of pregnancy, was also included 
as a confounder. Full details of all confounders and 
their measurement are provided in Data S1.

Participants were excluded if a value below zero 
was recorded for any anthropometric trait (BMI, waist 
circumference and dual X-ray absorptiometry (DXA)-
determined fat mass; n=22 excluded). Additionally, 
one individual was excluded because he or she was an 
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analytical outlier on the NMR platform. The Friedewald 
equation used to measure LDL-C excludes samples 
with a plasma triglyceride level of >400 mg/dL; no in-
dividuals included in this analysis met this criterion and 
no exclusions were made. Confounders with a value 
below zero (mainly reflecting missing data) were re-
coded as missing and multiply imputed as with other 
missing data (Table S2).

Statistical Analysis
All analyses were run on Stata 15; statistical code is 
available from the corresponding author on request. 
Access to the ALSPAC data resource can be re-
quested through the executive committee. Based on 
previous literature indicating different cardiac risk pro-
files in males and females, it was decided a priori to 
carry out all analyses stratified by sex.27–30

Multivariable linear regression was used to test the 
association between (1) BMI and LVMI (total effect), 
(2) the association between BMI and each metabolic 
trait individually, and (3) the association between each 
individual metabolic trait and LVMI. All analyses were 
adjusted for the confounders specified in the previous 
section.

Because mediation analysis assumes causal effects 
it uses a terminology (eg, total effects) to reflect that, 
as we do here (we discuss the extent to which the as-
sumptions of mediation analyses are likely to be violated 
under Discussion). Several mediation models were car-
ried out to assess the extent to which the total effect 
was explained by the metabolomic profile and putative 
risk factors. The models considered were (1) each meta-
bolic trait considered individually; (2) all traits in the NMR-
measured metabolic platform considered together (as 
principal components [PCs]); (3) a set of putative car-
diovascular risk factors (SBP, DBP, insulin, triglycerides, 
LDL-C, and glucose); and (4) the putative cardiovascu-
lar risk factors and NMR-measured metabolic traits (as 
PCs, described below) together. When considered indi-
vidually, the NMR-measured metabolic traits were stan-
dardized to set the means to 0 and SDs to 1.

Mediation was assessed in a counterfactual frame-
work, where interactions between BMI and NMR-
measured metabolic traits were allowed in individual 
mediation models, and in multiple mediator models we 
assumed no interaction between BMI and the medi-
ators.31 We report natural direct effects (the effect of 
BMI on LVMI not via mediators, for a 1 kg/m2 increase 
in BMI where the value of the mediator is allowed to 

Figure 1. Directed acyclic graph depicting causal assumptions made in mediation analyses assessing the role of metabolic 
mediators on the association between BMI and LVMI.
BMI indicates body mass index; LDL-C, low-density lipoprotein cholesterol; LVMI, left ventricular mass indexed to height2.7; and  
SEP, socioeconomic position.
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vary for each individual) and natural indirect effects (the 
mediated effect of the association between BMI and 
LVMI, for a 1 SD increase in NMR-measured metabolic 
traits).3,31,32 The CI for the indirect effect was obtained 
via bootstrapping with 1000 replications. The propor-
tion mediated is calculated by dividing the indirect effect 
by the total effect and CIs derived by bootstrapping.

PCs for Metabolic Traits
In multiple mediator analyses considering multiple 
NMR-measured metabolic traits in a single model 
(models 2–4), PCs of the standardized values of 
the NMR-measured metabolic traits were used to 
account for collinearity. The inclusion of multiple 
collinear variables in a model can result in inflated 
standard errors.33

Principal component analysis is a data reduction 
technique, taking a set of correlated variables and 
extracting a set of uncorrelated PCs. Each PC is 
a linear combination of the original variables in the 
data.34

A number of putative risk factors (insulin, tri-
glycerides, LDL-C, and glucose) are included in the 
NMR-measured metabolic traits. To avoid double 
counting these mediators in models considering the 
role of the NMR-measured metabolic traits in addition 
to putative risk factors (model 4), the NMR measure-
ments of these putative risk factors were excluded 
when generating the PCs.

Principal components were estimated separately 
for males and females. For use in mediation analysis, 
we included the number of PCs required to estimate 
95% of the variance in the NMR-measured meta-
bolic traits. For model 2 (all NMR-measured metabolic 
traits), this was 18 PCs in the females and 19 PCs in 
the males. For model 4 (putative risk factors plus NMR-
measured metabolic measures), 20 PCs were included 
in the analysis of females and 21 PCs for males. Taken 
together, these PCs capture variation across the meta-
bolic profile. Therefore, we cannot use these analyses 
to identify the contribution of specific metabolic traits 
to mediation.

Multiple Imputation
To maximize power and potentially reduce bias, 
multivariable multiple imputation was carried out to 
impute missing confounders. The proportion of miss-
ingness is available in Table S2. The sample for im-
putation was defined as all individuals with complete 
data on all adiposity variables at ages 11, mediators 
(including NMR-measured metabolic platform and 
putative risk factors) at age 15, and echocardiogra-
phy data at age 17. The PCs reflecting 95% of the 
variance in all NMR-measured metabolic traits were 
included in the imputation model, rather than all 

NMR-measured metabolic traits, to avoid collinearity 
and convergence problems. We created 20 imputed 
data sets. The distribution of these imputed variables 
was assessed to confirm that the imputed data were 
consistent with the original data. Each imputed data 
set was analyzed separately, with the results com-
bined using Rubin’s rules.

Sensitivity Analyses
Although sex-stratified analyses were prespecified 
a priori, a likelihood ratio test was carried out to test 
whether a model for the total effect accounting for in-
teraction by sex was a better fit than when interactions 
were not considered.27–29 It was determined a priori to 
use BMI, mediators (including metabolic traits), and 
LVMI all measured at different time points. The pair-
wise correlation between BMI measures at age 11 
and BMI measured at age 15 was assessed to identify 
whether BMI was stable across puberty.

In addition to BMI, all analyses (including all in-
dividual mediator models and all multiple mediator 
models) were replicated using waist circumference 
and DXA-determined fat mass as measures of adi-
posity. Three additional measures of cardiac struc-
ture that have been linked to cardiovascular health 
were also considered in sensitivity analyses, namely, 
left atrial size indexed to height (LAI), left ventricular 
internal diameter (LVIDD), and relative wall thickness 
(RWT). In total, the association between each expo-
sure (BMI, waist circumference, and DXA-determined 
fat mass) was assessed with each outcome (LVMI, 
LAI, LVIDD, and RWT). For each of these exposure 
and outcome combinations the mediating effects of 
(1) individual metabolic traits, (2) PCs for the meta-
bolic profile, (3) putative risk factors, and (4) putative 
risk factors plus PCs for the metabolic profile were 
estimated. Full details of the additional adiposity 
and cardiac structure measurements are available 
in Data S1.

From the individual metabolic trait mediation re-
sults, small very-low-density lipoproteins (VLDL) as a 
group appeared to have a stronger mediating effect 
(ie, a larger indirect effect) than other groups of NMR-
measured metabolic traits. Therefore, as a post hoc 
sensitivity analysis to understand whether the effects of 
the NMR-measured metabolic traits considered jointly 
were driven by the small VLDL class of lipoproteins, we 
ran sensitivity analyses including only these in a model 
with putative cardiovascular risk factors across all ex-
posure and outcome combinations.

To evaluate whether total effects and indirect ef-
fects were independent of puberty, age at peak height 
velocity,35 an indicator of timing of puberty, was in-
cluded as a covariate in multiple mediator models as-
sessing mediation between BMI and LVMI with (1) the 
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metabolic PCs and (2) joint model with the metabolic 
PCs and putative risk factors.

In addition to analyses using imputed data, com-
plete case analyses were carried out for the associ-
ation between BMI and LVMI and the extent to which 
the total effect was explained by the mediators consid-
ered in the main analyses.

RESULTS
Participant Characteristics
A total of 1004 participants were eligible for analysis. 
Of these, 467 were males and 537 were females. A 
study flow chart is shown in Figure 2. Full participant 
characteristics are presented in Table 1, and compari-
sons between the imputed data, nonimputed eligible 
sample, and whole ALSPAC sample at relevant ages 
are presented in Table S3.

Association Between Adiposity, Risk 
Factors, and Cardiac Structure
A 1 kg/m2 higher BMI in females was associated with 
an increase in mean LVMI of 0.66  g/m2.7 (95% CI, 
0.53–0.79 g/m2.7). Similarly, in males, a 1 kg/m2 higher 
BMI was associated with an increase in mean LVMI of 
0.70 g/m2.7 (95% CI, 0.53–0.88 g/m2.7; Table 2).

The association between BMI and individual meta-
bolic traits was mixed; for example, BMI was positively 
associated with all subclasses of VLDL, but there was 
little evidence of an association between BMI and the 
low-density lipoproteins (LDL), fatty acids, or fatty acid 
ratios. BMI was mostly negatively associated with the 
high-density lipoprotein subclass of metabolic traits. 
There was evidence of a positive association between 
BMI and branched-chain amino acids in males, but not 
in females (Figure S1).

In all VLDL subclasses, there was a positive trend in 
the association with LVMI in both males and females. 

Figure 2. Flow chart of study recruitment to inclusion in analyses.
BMI indicates body mass index; and DXA, dual X-ray absorptiometry.
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With the exception of the triglyceride metabolic traits, 
large, medium, and small LDL traits were positively asso-
ciated with LVMI. There was some evidence in males of 
a positive association between fatty acids and LVMI, al-
though this was less consistent in females. In both males 
and females, citrate was negatively associated with LVMI. 
There was some evidence of an association between 
branched-chain amino acids and LVMI (Figure S2).

Mediation of the Association Between 
Adiposity and Cardiac Structure

Considered separately, each metabolic trait ex-
plained only a small proportion of the association 
between BMI and LVMI. In males, the median pro-
portion mediated for the association between BMI 
and LVMI was 0.5% (95% CI, 0.5%–0.5%) and the 

Table 1. Imputed Sample Study Characteristics in All Eligible Participants, Males and Females

All Participants (N=1004) 
mean (standard 

deviation) or proportion 
(standard error)

Male (n=437) mean (standard 
deviation) or proportion 

(standard error)

Female (n=536) mean 
(standard deviation) or 

proportion (standard error)

Exposures

BMI, kg/m2 19.07 (3.17) 18.72 (3.00) 19.37 (3.29)

Waist circumference, cm 68.25 (8.85) 68.62 (9.03) 67.93 (8.69)

Total body fat mass, g 15 217.25 (8397.65) 10 889.04 (7246.14) 18 981.27 (7469.77)

Outcomes

LVMI, g/m2.7 28.00 (5.87) 29.92 (5.95) 26.32 (5.27)

LAI 0.00 (0.19) −0.01 (0.24) 0.00 (0.12)

RWT 0.38 (0.06) 0.39 (0.06) 0.37 (0.06)

LVIDD average, cm 4.53 (0.46) 4.73 (0.49) 4.35 (0.36)

Covariates (offspring)

Sex (% male) 0.30 (0.03)

Offspring birthweight, g 3463.90 (525.00) 3549.90 (558.76) 3389.12 (481.91)

Adolescent smoking (% smoked in 
past 30 d or more)

0.54 (0.03) 0.54 (0.06) 0.54 (0.03)

Frequency of fresh fruit consumption 
(% consumed less than once per day)

0.83 (0.01) 0.85 (0.02) 0.82 (0.02)

Frequency of fresh vegetable 
consumption (% consumed less than 
three times per week)

0.72 (0.01) 0.71 (0.02) 0.72 (0.02)

Physical activity (% takes part 
in sport with friends)

0.64 (0.02) 0.75 (0.02) 0.55 (0.02)

Covariates (maternal)

Maternal age 29.50 (4.45) 29.63 (4.30) 29.40 (4.58)

Maternal parity 0.70 (0.83) 0.68 (0.83) 0.72 (0.83)

Maternal prepregnancy BMI 22.95 (3.57) 22.98 (3.43) 22.92 (3.70)

Maternal prepregnancy 
height (inches)

64.68 (2.68) 64.78 (2.82) 64.60 (2.56)

Maternal smoking (% ever smoker) 0.38 (0.02) 0.36 (0.02) 0.40 (0.02)

Mother’s highest qualification

Less than O-level 0.15 (0.01) 0.14 (0.02) 0.17 (0.02)

O-level 0.35 (0.02) 0.34 (0.02) 0.35 (0.02)

A-level 0.29 (0.01) 0.30 (0.02) 0.27 (0.02)

Degree or above 0.21 (0.01) 0.22 (0.02) 0.20 (0.02)

Household social class

I (highest) 0.21 (0.01) 0.24 (0.02) 0.19 (0.02)

II 0.45 (0.02) 0.47 (0.02) 0.45 (0.02)

IIINM 0.21 (0.01) 0.18 (0.02) 0.24 (0.02)

IIIM 0.08 (0.01) 0.07 (0.01) 0.08 (0.01)

IV or V (lowest) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)

BMI indicates body mass index; LAI, left arterial index; LVIDD, left ventricular internal diameter; LVMI, left ventricular mass indexed to height2.7; and RWT, 
relative wall thickness.
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maximum was 9% (95% CI, 9%–9%; explained by 
citrate). In females, the median proportion mediated 
was 0.3% (95% CI, 0.3%–0.3%) and the maximum 
was 3% (95% CI, 3%–3%; explained by acetoace-
tate; Figure 3).

Together, the PCs explaining 95% of variance in the 
NMR-measured metabolic traits explained 16% (95% 
CI, 12%–19%) of the association between BMI and 
LVMI in males, and 5% (95% CI, 3%–6%) in females 
(Table 3).

The putative cardiovascular risk factors (SBP, DBP, 
insulin, triglycerides, LDL-C, and glucose) explained 
3% (95% CI, 2%–5%) of the association between BMI 
and LVMI in males. This increased to 10% (95% CI, 
8%–13%) when the metabolic PCs were included in the 
model alongside the putative risk factors (Table 3).

In females the proportion of the association be-
tween BMI and LVMI explained by the putative car-
diovascular risk factors was 3% (95% CI, 2%–5%), but 
when the metabolic PCs were included in the model 
with the putative mediators this reduced to 2% (95% 
CI, 1%–4%; Table 3).

Sensitivity Analyses

There was little evidence of a statistical interaction be-
tween males and females for the total effect of BMI on 
LVMI (P valueinteraction=0.51; Table S4). BMI measured 
at age 11 was highly correlated with BMI measured at 
age 15 (pairwise correlation=0.8).

The association between waist circumference and 
separately between DXA-determined fat mass and in-
dividual metabolic traits was consistent with the as-
sociation between BMI and individual metabolic traits 
(Figures S3 and S4). There was little evidence of an as-
sociation between any individual metabolic traits and 
LAI, LVIDD, and RWT (Figures S5 through S7).

In mediation models considering each metabolic 
trait individually each metabolic trait explained little of 
the association between BMI and LAI, LVIDD, or RWT. 
Similar results were observed for waist circumference 
and DXA-determined fat mass with each outcome 
(Figures S8 through S18).

In multiple mediator analyses, considering BMI as 
the exposure the metabolic PCs increased the amount 

Table 2. The Total Effect of BMI on Cardiac Structure Assessed Using Multivariable Linear Regression Stratified by Sex

Exposure (1 kg/m2 Increase) Outcome
Females Mean Difference  

(95% CI) (n=536)
Males Mean Difference  

(95% CI) (n=437)

BMI LVMI 0.661 (0.529 to 0.793) 0.701 (0.525 to 0.877)

LAI −0.002 (−0.006 to 0.001) −0.006 (−0.016 to 0.003)

LVIDD 0.027 (0.017 to 0.036) 0.012 (0.027 to 0.042)

RWT 0.001 (−0.0001 to 0.003) 0.002 (2.86 × 10–5 to 0.004)

Models adjusted for maternal covariables—age, parity, education, prepregnancy height, prepregnancy BMI, smoking, and household social class; and 
adolescent covariables—birthweight, smoking, physical activity, and diet. BMI indicates body mass index; LAI, left arterial index; LVIDD, left ventricular internal 
diameter; LVMI, left ventricular mass indexed to height2.7; and RWT, relative wall thickness.

Figure 3. Forest plot showing the natural indirect effect of each NMR-measured metabolic trait individually on the 
association between BMI to LVMI stratified by sex.
Models adjusted for maternal age, maternal parity, maternal education, maternal prepregnancy height, maternal prepregnancy BMI, 
maternal smoking, household social class, adolescent birthweight, adolescent smoking, adolescent diet and adolescent physical 
activity. BMI indicates body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LVMI, left ventricular mass 
indexed to height; NMR, nuclear magnetic resonance; and VLDL, very-low-density lipoprotein. All results are g/m2.7 of LVMI per 1 kg/
m2 higher BMI.
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explained between BMI and LAI and for the associa-
tion between BMI and LVIDD, compared with the pu-
tative risk factors alone. In females, there was evidence 
that the metabolic profile mediated more of the effect 
of BMI on RWT than the putative risk factors alone, but 
not in males (Table 3).

In multiple mediator models, there was little evi-
dence in females that the PCs for the metabolic traits 
mediate more of the effect of waist circumference on 
LVMI compared with the putative risk factors. However, 
in males, the PCs for the metabolic traits did mediate 
more of the effect. This pattern of results was similar 
when considering DXA-determined fat mass as the 
exposure. For both waist circumference and DXA-
determined fat mass there was greater evidence of 
mediation by the metabolic traits when considering LAI 
and RWT as the outcomes (Figure S19).

In both males and females, the proportion mediated 
by total small VLDL were higher than for other meta-
bolic subgroups. However, when including the small 
VLDL with putative the putative mediators they ex-
plained no more of the association between BMI and 
LVMI than the putative mediators alone.

In both males and females, including age at peak 
height velocity in the models had little effect on the 
estimates of the proportion mediated (Table S5). The 
point estimates for the total effects estimated using 
complete case data were typically larger than those 
from multiply imputed data, but with wider levels of im-
precision (Table S6).

DISCUSSION
In this cohort of UK adolescents, we have demon-
strated in males but not females that the wider met-
abolic profile may contribute to the burden of CVD 
attributable to BMI, over and above the amount ex-
plained by putative intermediate risk factors alone 
(SBP, DBP, insulin, triglycerides, LDL-C, and glu-
cose). Individually, the metabolic traits explained lit-
tle of the association between BMI and LVMI. These 
results were consistent when considering additional 
measures of adiposity (waist circumference and 
DXA-determined fat mass) and cardiac structure 
(LAI, LVIDD, and RWT).

Results in Context
To our knowledge, no other study has examined the 
role of NMR-measured metabolic traits as mediators 
of the association between BMI and LVMI. With the 
same data as used in this analysis (ALSPAC), a causal 
effect of BMI and LVMI has been demonstrated,18 
providing the motivation for identifying intermedi-
ate variables that may mediate this effect. LVMI is a Ta
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precursor to adverse cardiovascular events in adult-
hood.36 Therefore, identifying intermediate variables 
from BMI may provide an opportunity to identify po-
tential therapeutic targets.

A recent Mendelian randomization study investi-
gating the mediating effects of lipids and glycemic 
traits found stronger mediating effects than our re-
sults for the putative set of risk factors.37 In our anal-
ysis we have considered the role of the metabolic 
profile in adolescence, whereas in a Mendelian ran-
domization analysis, the estimates reflect a lifetime 
effect of an exposure (or mediator).36 Therefore, it 
may be possible that the mediating role of the met-
abolic profile between BMI and LVMI (and adipos-
ity and cardiac structure more broadly) emerges 
throughout the life course.

Sex differences in cardiometabolic profiles have 
been shown in a number of studies in both children 
and adults.28,29 In a previous study using ALSPAC 
data, it was shown that the association between BMI 
and cardiovascular risk factors was stronger in males 
than females.28 Additionally, sex differences in the as-
sociation of adiposity and the metabolic profile have 
previously been shown.8 Although we found consistent 
estimates of the proportion mediated by the putative 
risk factors in males and females for the association 
between BMI and LVMI, we found some evidence of 
stronger mediating effects of the NMR-measured PC 
profiles in males. Although there was no strong evi-
dence for a statistical difference between males and 
females, it is likely that we had insufficient statistical 
power to detect this.

In this analysis, we found less evidence of an 
association between BMI and individual metabolic 
traits than previous, larger analyses. Our smaller 
sample size is likely to be contributing to these dif-
ferences.8 Additionally, previous analyses have used 
Mendelian randomization to explore the causal effect 
of BMI on individual metabolic traits, which as pre-
viously noted will be estimating lifetime effects of an 
exposure, which may not yet be present in our ado-
lescent cohort.

Previous studies have found evidence of an asso-
ciation between aromatic amino acids, phenylalanine, 
and tyrosine and increased CVD risk factors, including 
insulin, SBP, and DBP,38 in addition to incident cardio-
vascular events.39 However, in this analysis, we only 
found evidence of an association between tyrosine 
and LVMI in males.

We also found evidence of an association between 
BMI and branched-chain amino acids in males, but 
not females. Additionally, in both males and female, 
branched-chain amino acids were positively asso-
ciated with LVMI. However, there was little evidence 
that they mediated the association of BMI and LVMI. 
Associations have previously been identified between 

branched-chain amino acids and diabetes40 and 
CVD.41,42 These previous studies have been in adult 
populations; therefore, these effects may not yet be 
present in our adolescent population.

Strengths and Limitations
In this multivariable regression analysis, residual con-
founding of associations cannot be ruled out. We con-
trolled for all measured potential confounders of the 
exposure and outcome, exposure and mediator, and 
mediator and outcome associations, but residual con-
founding may be present where the variables included 
in analyses fail to accurately measure the confounder. 
For example, diet was considered a confounder, and 
we adjusted for fruit and vegetable intake. However, 
the confounding effect of diet between BMI and LVMI 
is likely to be more complex than just considering fruit 
and vegetable intake. Adolescent smoking was con-
sidered as a confounder of the mediator (including 
metabolic traits and blood pressure traits) and LVMI 
association in this analysis. However, there is evi-
dence of bidirectional associations between BMI and 
smoking, where although increased smoking is widely 
reported to lead to reduced BMI,43 there is some evi-
dence that increased BMI is associated with increased 
smoking,44 and smoking could also be a mediator of 
BMI and LVMI. As such, there is potential for overad-
justment by including smoking in the model. However, 
in this adolescent cohort we expect the strongest rela-
tionship is likely to be smoking influencing the media-
tors and therefore we adjusted for smoking.

Mediation analysis could be biased by reverse cau-
sality due to a misspecified model, for example, if the 
metabolic profile influenced adiposity rather than the 
converse. All variables considered were measured pro-
spectively, with appropriate temporal ordering of the ex-
posure, mediators, and outcomes, alleviating concerns 
over reverse causality or bias from the use of cross-sec-
tional data in mediation analysis.45 Additionally, as an 
adolescent population, individuals included in these 
analyses are unlikely to have experienced an adverse 
major cardiac event or be on preventative medication 
for cardiovascular diseases (such as statins). This fur-
ther lessens concerns over reverse causality and po-
tential bias caused by treatment effects.

It is possible that age 11 is too young to clearly iden-
tify the effects of BMI on metabolites and subsequently 
LVMI, particularly as trajectories of BMI are shown to 
change through puberty.28 However, given the high cor-
relation between BMI at age 11 and BMI at age 15 in this 
cohort where the pairwise correlation for BMI at both 
ages was 0.8, the results presented here are unlikely to 
be biased by trajectories of BMI during puberty.

In addition to reverse causality and residual con-
founding, mediation analysis can be biased by 
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measurement error, particularly in the mediator.46 This 
analysis uses objectively measured metabolic data, 
representing a broad range of metabolic traits, typi-
cally not captured by standard biochemical assays. 
However, these measures are only a snapshot of one 
time point (age 15) and may not be capturing the full life 
course effect of these metabolic traits.

Although the primary analyses focused on the as-
sociation between BMI and LVMI, other measures of 
adiposity and cardiac structure were considered in 
analyses. BMI is often criticized as a poor indicator of 
overall adiposity, particularly due to its inability to dif-
ferentiate between lean and fat mass. DXA-determined 
fat mass may be a better measure for distinguishing 
between types of body fat and assessing overall adi-
posity.47 However, consistent with previous analyses in 
ALSPAC28 and other cohorts,48 our estimates of medi-
ation were similar when waist circumference of DXA-
determined fat mass were considered as exposures 
instead of BMI.

The ALSPAC sample is a large contemporary cohort 
with more than 14 000 participants enrolled in the orig-
inal cohort. However, when the analysis was restricted 
to the subset of individuals with all relevant data on an-
thropometry, NMR-measured metabolic platform, pu-
tative cardiovascular risk factors, and cardiac structure 
the sample was just over 1000 individuals. Our findings 
need to be replicated in a larger cohort, particularly if 
replication could involve using causal inference meth-
ods such as Mendelian randomization to triangulate 
results.49,50 However, instrumenting the multiple meta-
bolic traits may prove challenging.

A limitation of examining these mediating effects in 
a younger cohort is that some effects of either the ex-
posure or the metabolic profile may only become ap-
parent later in life. As more large-scale biobanks with 
adult populations release metabolic data, replicating 
these analyses in adult populations would be import-
ant to see whether these results are replicated with 
clinical CVD events as outcomes.

Clinical and Public Health Implications
We show that metabolic traits, acting together, medi-
ate some of the effect of BMI on cardiac structure in 
adolescence. In these analyses, we have not identified 
a clear intervenable target by a single lipid or metabolic 
trait or metabolic group. The PCs included in mediation 
analysis reflect the variation in metabolic traits across 
the metabolic profile. To this extent, they are unlikely 
to be estimating the effect of a single metabolic trait or 
metabolic group. Rather, they explore the effect across 
the metabolic profile. Early intervention on these mul-
tiple mediators might therefore be a useful strategy to 
reduce future cardiovascular disease. Future studies 
examining the effect of interventions such as exercise 

or dietary modification on complex metabolic profiles 
may be useful in guiding CVD prevention strategies in 
young people.

CONCLUSIONS
This study demonstrates that in an adolescent popu-
lation, the metabolic profile may present additional 
targets for lifestyle or pharmaceutical interventions to 
reduce the harmful effect of adiposity on cardiovas-
cular health, particularly in males. However, our re-
sults suggest that to have large effects, interventions 
would require broad approaches to improve whole 
lipid or lipoprotein profiles and some other small 
molecules, rather than targeting individual meas-
ures. Furthermore, these findings need replication 
in larger independent samples, analyses to establish 
causality, and to be explored in adult populations to 
investigate whether this association is observed with 
clinical CVD outcomes.
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Data S1. 

 

Supplemental Methods 
 

Adiposity measures 
Adiposity was measured at age 11. Waist circumference was measured to the nearest millimetre 

using the Harpenden anthropometric tape. Whole body DXA scans were carried out using a Lunar 

prodigy narrow fan beam densitometer and used to estimate total-body-less-head fat mass. 

Cardiac structure measures 
Cardiac structure was assessed by echocardiography in a quasi-random subset of participants in 

ALSPAC at the age 17 clinic. The measures used in this analysis were LVMI, LAI, LVIDD and RWT. 

Echocardiography was performed using a HDI 5000 ultrasound machine (Philips).  All measurements 

were made according to the American Society of Echocardiography guidelines, where the validated 

equations were used to calculate LVMI and RWT (23). Average measures of LAI and LVIDD were 

calculated as the mean of three measurements taken. 

Covariate measurements 
During pregnancy, mothers of ALSPAC children were required to fill in a number of questionnaires 

answer questions on their age at delivery, the number of pregnancies they have had, their highest 

educational qualification (less than O-level, O-level, A-level or degree and above), their smoking 

status (ever versus never), their weight and height before pregnancy (including certainty) and 

household social class (based on parental occupation, education, type of neighbourhood and use of 

car).  

Offspring covariables included sex (reported at baseline clinics) and birthweight (from birth records, 

obstetric data and clinic measurements). Adolescent variables considered as confounders were 

smoking, diet and physical activity. Smoking was self-reported by individuals at age 15 clinics. 

Participants were defined as a smoker if they had smoked in at least the 30 days prior to attending 

clinics. Although food frequency questionnaires have been carried out in ALSPAC, these were for a 

small subset, so although a slightly crude measure of diet fruit and vegetable intake were used to 

approximate healthy diets. Fruit intake was dichotomised to less than once per day or at least once 

per day. Vegetable intake was dichotomised to three times or less per week or at least four times 

per week. Physical activity was defined according to whether the individual takes part in sport with 

friends as reported by the individual in Focus at 15 clinics.  

Age at peak height velocity was considered as a covariate in sensitivity analyses. This was estimated 

using Superimposition by Translation and Rotation (SITAR) mixed effects growth curve analysis. 

Repeated measures of height from trained fieldworkers at assessment clinics between the ages of 5 

and 20, with at least one measurement for all of ages 5-<10, 10 to <15 and 15 to 20 years were used. 

For a full description of the methods used see Frysz et al (32).   
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Table S1. List of metabolites used in analysis. 
 

Metabolic class Metabolite 

Extremely large very low density 
lipoprotein 

Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Very large very low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Large very low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Medium very low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Small very low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Very small very low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 
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Intermediate density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Large low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Medium low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Small low density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Very large high density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Large high density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Medium high density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 
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 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Small high density lipoprotein Particle concentration 

 Total Lipids 

 Phospholipids 

 Total cholesterol 

 Cholesterol esters 

 Free cholesterol 

 Triglycerides 

Lipoprotein particle size Very large density lipoprotein particle size 

 Large density lipoprotein particle size 

 High density lipoprotein particle size 

Cholesterol Total Cholesterol 

 Very low density lipoprotein cholesterol 

 Remnant cholesterol 

 Low density lipoprotein cholesterol 

 High density lipoprotein cholesterol 

 Low density lipoprotein cholesterol 3 

 Low density lipoprotein cholesterol 2 

 Esterified cholesterol 

 Free cholesterol 

Glycerides and phospholipids Triglycerides 

 Low density lipoprotein triglycerides 

 High density lipoprotein triglycerides 

 Diacylglycerol 

 Phosphoglycerides 

 Phosphatidylcholine and other cholines 

 Cholines 

Apolipoprotein Apolipoprotein A-I 

 Apolipoprotein B 

 Apolipoprotein B/A-I 

Fatty acids Total fatty acids 

 Fatty acid chain length 

 Degree of unsaturation 

 Docosahexaenoic acid 

 Linoleic acid 

 n-3 fatty acids 

 n-6 fatty acids 

 Polyunsaturated fatty acids 

 Monounsaturated fatty acids 

Fatty acid ratios Docosahexaenoic acid (%) 

 Linoleic acid (%) 

 Conjugated linoleic acid (%) 

 n-3 fatty acids (%) 

 n-6 fatty acids (%) 
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 Monounsaturated fatty acids (%) 

 Saturated fatty acids (%) 

Glycolysis related metabolites Glucose 

 Lactate 

 Pyruvate 

 Citrate 

Amino acids Alanine 

 Glutamine 

 Histidine 

Branched chain amino acids Isoleucine 

 Leucine 

 Valine 

Aromatic amino acids Phenylalanine 

 Tyrosine 

Ketone Bodies Acetate 

 Acetoacetate 

 Beta-hydroxybutate 

Fluid balance Creatinine 

 Albumin 

Inflammation Glycoprotein acetyls 

  

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 12, 2020



 

 

Table S2. Table of missing data in covariables used in imputations models. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Maternal covariates N observations 
N outliers 
recoded as 
missing 

N missing 
(including 
recoded as 
missing) 

Maternal Age 954 50 50 

Maternal Parity 933 7 71 

Mother's highest qualification 935  69 

Maternal pre-pregnancy BMI  873 63 131 

Maternal pre-pregnancy height (inches) 917 19 87 

Household social class  910  94 

Maternal smoking (Ever smoker) 937 3 67 

Offspring covariates 

Offspring birthweight (g) 941 63 63 

Adolescent smoking (Smoked in last  
30 days or more) 

272 
 

732 

Frequency of fresh fruit consumption  
(less than once per day) 

859 
 

145 

Frequency of fresh  
vegetable consumption  
(less than three times per week) 

862 
 

142 

Takes part in sport with friends 
 (physical activity)  

1000 
 

4 
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Table S3. Imputed sample study characteristics compared with complete case analysis sample and full ALSPAC sample. 

 

Imputed Sample (analysis sample)  
Mean (SD) or proportion (SE) 

Eligible Sample  
Mean (SD) or proportion (SE) 

ALSPAC All  
Mean (SD) or proportion (SE) 

N All Male Female N All Male Female N All Male Female 

Exposures 

BMI kg/m2 1004 
19.07 
(3.17) 

18.72 
(3.00) 

19.37 (3.29) 1004 
19.07 
(3.17) 

18.72 
(3.00) 

19.37 (3.29) 7106 
19.11 
(3.45) 

18.85 (3.32) 19.38 (3.56) 

Waist Circumference 
(cm) 

1004 
68.25 
(8.85) 

68.62 
(9.03) 

67.93 (8.69) 1004 
68.25 
(8.85) 

68.62 
(9.03) 

67.93 (8.69) 7109 
68.40 
(9.51) 

68.71 (9.73) 68.15 (9.30) 

Total body fat mass (g) 1004 
15217.25 
(8397.65) 

10889.04 
(7246.14) 

18981.27 
(7469.77) 

1004 
15217.25  
(8397.65
) 

10889.04  
(7246.14) 

18981.27 
(7469.77) 

5150 
15378.78 
(9220.42) 

11431.67 
(8458.80) 

19065.85 
(8369.86) 

Outcomes 

LVMI g/m2.7 1004 
28.00 
(5.87) 

29.92 
(5.95) 

26.32 (5.27) 1004 
28.00 
(5.87) 

29.92 
(5.95) 

26.32 (5.27) 2047 
27.61 
(5.98) 

29.43 (6.28) 26.12 (5.28) 

LAI 1004 
0.00 
(0.19) 

-0.01 
(0.24) 

0.00 (0.12) 1004 
0.00 
(0.19) 

-0.01 (0.24) 0.00 (0.12) 1916 
0.00 
(0.19) 

-0.01 (0.24) 0.00 (0.15) 

RWT  1004 
0.38 
(0.06) 

0.39 
(0.06) 

0.37 (0.06) 1004 
0.38 
(0.06) 

0.39 (0.06) 0.37 (0.06) 2056 
0.38 
(0.06) 

0.38 (0.06) 0.38 (0.06) 

LVIDD Average (cm) 1004 
4.53 
(0.46) 

4.73 
(0.49) 

4.35 (0.36) 1004 
4.53 
(0.46) 

4.73 (0.49) 4.35 (0.36) 2118 
4.50 
(0.44) 

4.74 (0.42) 4.74 (0.42) 

Covariates (offspring) 

Sex (% Male) 1004 0.30 (0.03) 1004 0.30 (0.03) 14 834 0.38 (0.01) 

Offspring birthweight 
(g) 

1004 
3463.90 
(525.00) 

3549.90 
(558.76) 

3389.12 
(481.91) 

941 
3465.45  
(514.14) 

3555.60  
(538.58) 

3386.61 
(478.56) 

13 883 
3381.51 
(580.57) 

3443.46 
(595.93) 

3339.49 
(536.85) 

Adolescent smoking (% 
smoked  
in last 30 days or more) 

1004 
0.54 
(0.03) 

0.54 
(0.06) 

0.54 (0.03) 272 
0.55 
(0.03) 

0.58 (0.06) 0.54 (0.04) 1719 
0.55 
(0.01) 

0.57 (0.02) 0.54 (0.02) 

Frequency of fresh fruit 
consumption  
(% consumed less than 
once per day) 

1004 
0.83 
(0.01) 

0.85 
(0.02) 

0.82 (0.02) 859 
0.85 
(0.02) 

0.86 (0.14) 0.85 (0.03) 8373 
0.85 
(0.01) 

0.85 (0.17) 0.85 (0.01) 
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Frequency of fresh  
vegetable consumption 
(% consumed less than 
three times per week) 

1004 
0.72 
(0.01) 

0.71 
(0.02) 

0.72 (0.02) 862 
0.77 
(0.03) 

0.71 (0.06) 0.80 (0.03) 8400 
0.74 
(0.01) 

0.80 (0.02) 0.75 (0.02) 

Physical activity 
(% takes part in sport 
with friends) 

1004 
0.64 
(0.02) 

0.75 
(0.02) 

0.55 (0.02) 1000 
0.65 
(0.03) 

0.77 (0.05) 0.60 (0.04) 7087 
0.65 
(0.01) 

0.77 (0.23) 0.57 (0.02) 

Covariates (maternal) 

Maternal Age 1004 
29.50 
(4.45) 

29.63 
(4.30) 

29.40 (4.58) 954 
29.50 
(4.44) 

29.63 
(4.28) 

29.39 (4.57) 14 062 
27.99 
(4.97) 

28.08 (5.01) 27.87 (4.93) 

Maternal Parity 1004 
0.70 
(0.83) 

0.68 
(0.83) 

0.72 (0.83) 933 
0.70 
(0.82) 

0.68 (0.83) 0.72 (0.82) 13 111 
0.84 
(1.00) 

0.86 (1.03) 0.83 (0.97) 

Maternal pre-pregnancy 
BMI 
 

1004 
22.95 
(3.57) 

22.98 
(3.43) 

22.92 (3.70) 873 
22.93 
(3.54) 

22.97 
(3.38) 

22.89 (3.68) 11 670 
22.92 
(3.83) 

22.97 (3.84) 22.89 (3.82) 

Maternal pre-pregnancy 
height (inches) 

1004 
64.68 
(2.68) 

64.78 
(2.82) 

64.60 (2.56) 917 
64.68 
(2.56) 

64.78 
(2.58) 

64.59 (2.54) 12 370 
64.56 
(2.65) 

64.57 (2.67) 64.53 (2.62) 

Maternal smoking (% 
ever smoker) 

1004 
0.38 
(0.02) 

0.36 
(0.02) 

0.40 (0.02) 937 
0.49 
(0.03) 

0.48 (0.06) 0.49 (0.04) 13 236 
0.51 
(0.01) 

0.52 (0.02) 0.51 (0.02) 

Mother's highest 
qualification 

1004 

 
 
 

935 

   

12 323 

   

Less than O-level 
0.15 
(0.01) 

0.14 
(0.02) 

0.17 (0.02) 
0.16 
(0.01) 

0.13 (0.02) 0.17 (0.02) 
0.30 
(0.01) 

0.30 (0.01) 0.30 (0.01) 

O-level 
0.35 
(0.02) 

0.34 
(0.02) 

0.35 (0.02) 
0.35 
(0.02) 

0.34 (0.02) 0.35 (0.02) 
0.35 
(0.01) 

0.35 (0.01) 0.35 (0.01) 

A-level 
0.29 
(0.01) 

0.30 
(0.02) 

0.27 (0.02) 
0.28 
(0.01) 

0.31 (0.02) 0.27 (0.02) 
-0.22 
(0.01) 

0.22 (0.01) 0.23 (0.01) 

Degree or above 
0.21 
(0.01) 

0.22 
(0.02) 

0.20 (0.02) 
0.21 
(0.01) 

0.26 (0.02) 0.20 (0.02) 
0.13 
(0.01) 

0.13 (0.01) 0.13 (0.01) 

Household social class  

1004 

 

910 

   

11 416 

   

I (highest) 
0.21 
(0.01) 

0.24 
(0.02) 

0.19 (0.02) 
0.21 
(0.01) 

0.24 (0.02) 0.19 (0.02) 
0.13 
(0.01) 

0.14 (0.01) 0.13 (0.01) 

II 
0.45 
(0.02) 

0.47 
(0.02) 

0.45 (0.02) 
0.45 
(0.01) 

0.47 (0.02) 0.45 (0.02) 
0.42 
(0.01) 

0.41 (0.01) 0.42 (0.01) 
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IIINM 
0.21 
(0.01) 

0.18 
(0.02) 

0.24 (0.02) 
0.23 
(0.01) 

0.18 (0.02) 0.24 (0.02) 
0.26 
(0.01) 

0.26 (0.01) 0.26 (0.01) 

IIIM 
0.08 
(0.01) 

0.07 
(0.01) 

0.08 (0.01) 
0.08 
(0.01) 

0.07 (0.01) 0.08 (0.01) 
0.13 
(0.01) 

0.14 (0.01) 0.13 (0.01) 

IV or V (lowest) 
0.04 
(0.01) 

0.04 
(0.01) 

0.04 (0.01) 
0.04 
(0.01) 

0.04 (0.01) 0.03 (0.01) 
0.06 
(0.01) 

0.06 (0.01) 0.06 (0.01) 
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Table S4. Total effects between adiposity and cardiac structure, excluding and including an 

interaction parameter for sex (complete case analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exposure Outcome 
Beta with no interaction 
parameter (95% CI) 

Beta with interaction 
parameter (95% CI) 

P value for 
interaction 

BMI 

LVMI 0.799 (0.567, 1.032) 0.688 (0.266, 1.11) 0.514 

LAI -0.009 (-0.015, -0.003) -0.015 (-0.026, -0.004) 0.216 

RWT 0.001 (-0.001, 0.004) 0.002 (-0.003, 0.006) 0.974 

LVIDD 0.035 (0.017, 0.053) 0.036 (0.003, 0.068) 0.970 

 

Waist 
Circumference 

LVMI 0.242 (0.153, 0.33) 0.191 (0.045, 0.336) 0.361 

LAI -0.003 (-0.006, -0.001) -0.005 (-0.008, -0.001) 0.334 

RWT 0.001 (0, 0.002) 0.001 (-0.001, 0.002) 0.733 

LVIDD 0.011 (0.005, 0.018) 0.011 (0, 0.022) 0.945 

 

DXA 

LVMI 
2.53E-04  
(1.53E-04, 3.54E-04) 

1.42E-04  
(-0.000024, 3.07E-04) 

0.080 

LAI 
-3.1E-06  
(-5.6E-06, -5.5E-07) 

-4E-06  
(-8.2E-06, 2.11E-07) 

0.578 

RWT 
6.88E-07  
(-4.3E-07, 1.8E-06) 

7.33E-07 
 (-1.1E-06, 2.58E-06) 

0.949 

LVIDD 
1.15E-05  
(4.06E-06, 1.89E-05) 

5.33E-06  
(-6.9E-06, 1.76E-05) 

0.193 
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Table S5. The proportion mediated by standard cardiovascular risk factors alone, metabolites 

considered jointly as principal components and standard cardiovascular risk factors in 

addition to metabolite principle components on the association between BMI and left 

ventricular mass, adjusting for peak height velocity as a covariate 
 

Mediator Female Male 

Indirect effect Proportion 
mediated 

Indirect effect Proportion 
mediated 

Established risk 
factors 

0.02 (-0.02, 
0.06) 

2.77 (-2.31, 
7.86) 

0.02 (0.00, 
0.05) 

2.77 (0.28, 5.26) 

Metabolites 
only 

0.03 (-0.04, 
0.09) 

3.39 (-13.72, 
20.5) 

0.03 (-0.02, 
0.08) 

3.8 (-8.65, 16.26) 

Established risk 
factors plus 
metabolites 

0.02 (0.00, 
0.05) 

2.77 (0.28, 5.26) 0.08 (-0.14, 
0.31) 

10.68 (-0.86, 
22.23) 
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Table S6. Total effects between adiposity and cardiac structure for complete case analysis 

and multiply imputed data. 

Exposure Outcome 

Female Male 

Complete Case 
(N = 184) 

Multiply 
Imputed (N = 
536) 

Complete Case 
(N = 55) 

Multiply 
Imputed (N = 
437) 

BMI 

LVMI 
0.831 (0.559, 
1.102) 

0.661 (0.529, 
0.793) 

0.620 (0.167, 
1.072) 

0.701 (0.525, 
0.877) 

LAI 
-0.007 (-0.013, -
0.001) 

-0.002 (-0.006, 
0.001) 

-0.017 (-0.034, -
0.001) 

-0.006 (-0.016, 
0.003) 

RWT 
0.001 (-0.002, 
0.005) 

0.001 (-0.0001, 
0.003) 

0.001 (-0.004, 
0.005) 

0.002 (2.86E-05, 
0.004) 

LVIDD 
0.035 (0.012, 
0.057) 

0.027 (0.017, 
0.036) 

0.036 (0.005, 
0.067) 

0.012 (0.027, 
0.042) 

 

Waist Circumference 

LVMI 
0.251 (0.139, 
0.363) 

0.192 (0.14, 
0.243) 

0.167 (0.013, 
0.322) 

0.188 (0.128, 
0.248) 

LAI 
-0.003 (-0.005, 
0.0004) 

-0.001 (-0.002, 0) 
-0.006 (-0.011, -
0.0002) 

-0.003 (-0.006, 
0) 

RWT 
0.001 (-0.001, 
0.002) 

0.001 (0, 0.001) 
0.0003 (-0.001, 
0.002) 

0.001 (0, 0.001) 

LVIDD 
0.011 (0.002, 
0.020) 

0.009 (0.006, 
0.013) 

0.011 (0.0002, 
0.021) 

0.009 (0.004, 
0.014) 

 

DXA 

LVMI 
3.18E-04 (1.95E-
04, 4.41E-04) 

2.78E-04 (2.18E-
04, 3.39E-04) 

1.36E-04 (-
3.50E-05, 3.06E-
04) 

2.09E-04 (1.35E-
04, 2.84E-04) 

LAI 
-2.75E-06 (-
5.28E-06, -2.16E-
07) 

-7.30E-07 (-
2.19E-06, 7.30E-
07) 

3.78E-06 (9.75E-
06, 2.18E-06) 

-1.60E-06 (-
4.95E-06, 1.75E-
06) 

RWT 
6.74E-07 (9.17E-
07, 2.27E-06) 

7.47E-07 (1.93E-
08, 1.47E-06) 

5.18E-07 (-
1.05E-06, 2.18E-
06) 

1.33E-06 (5.27E-
07, 2.13E-06) 

LVIDD 
1.55E-05 (5.71E-
06, 2.53E-05) 

1.38E-05 (9.64E-
06, 1.81E-05) 

5.35E-06 (-
6.44E-06, 1.72E-
05) 

 
4.76E-06 (-
1.24E-06, 1.08E-
05) 
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Figure S1. The association between BMI and individual metabolic traits. 
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Figure S2. The association between individual metabolic traits and left ventricular mass indexed to height2.7 
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Figure S3. The association between waist circumference and individual metabolic traits. 
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Figure S4. The association between DXA-determined fat mass and individual metabolic traits. 
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Figure S5. The association between individual metabolic traits and left atrial size indexed to height. 
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Figure S6. The association between individual metabolic traits and left ventricular internal diameter. 
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Figure S7. The association between individual metabolic traits and relative wall thickness. 
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Figure S8. The indirect effect explained by each individual metabolic trait for the association of body mass index and left atrial size indexed to 

height  
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Figure S9. The indirect effect amount explained by each individual metabolic trait for the association of body mass index and left ventricular 

internal diameter.  
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Figure S10. The indirect effect amount explained by each individual metabolic trait for the association of body mass index and relative wall 

thickness  
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Figure S11. The indirect effect amount explained by each individual metabolic trait for the association of waist circumference and left ventricular 

mass indexed to height2.7  
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Figure S12. The indirect effect amount explained by each individual metabolic trait for the association of waist circumference and left atrial size 

indexed to height.  
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Figure S13. The indirect effect amount explained by each individual metabolic trait for the association of waist circumference and left ventricular 

internal diameter. 
 

 

 

 

  

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 12, 2020



 

 

Figure S14. The indirect effect amount explained by each individual metabolic trait for the association of waist circumference and relative wall 

thickness  
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Figure S15. The indirect effect amount explained by each individual metabolic trait for the association of DXA-determined fat mass and left 

ventricular mass indexed to height2.7  
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Figure S16. The indirect effect amount explained by each individual metabolic trait for the association of DXA-determined fat mass and left atrial 

size indexed to height  
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Figure S17. The indirect effect amount explained by each individual metabolic trait for the association of DXA-determined fat mass and left 

ventricular internal diameter  
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Figure S18. The indirect effect amount explained by each individual metabolic trait for the association of DXA-determined fat mass and relative 

wall thickness  

 

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 12, 2020



 

 

Figure S19. Forest plot showing the proportion mediated by measures of adiposity (Body 

mass index [BMI], waist circumference [waist] and dual x-ray absorptiometry [DXA]-

determined fat mass) with cardiac structure (left atrial size indexed to height [LAI], left 

ventricular mass indexed to height2.7  
 

 

Standard mediators: systolic blood pressure, diastolic blood pressure, insulin, low density lipoprotein 

and glucose. Models adjusted for: Maternal age, Maternal parity, Maternal education, Maternal pre-

pregnancy height, Maternal pre-pregnancy BMI, maternal smoking, household social class and 

adolescent birthweight. [LVMI], left ventricular internal diameter [LVIDD] and relative wall thickness 

[RWT]) measured using electrocardiography. Mediation was considered by i) standard risk factors ii) 

metabolic principal components (explaining 95% of the variation in the metabolic profile) iii) 

established risk factors plus metabolic PCs and iv) standard risk factors and small very low-density 

lipoproteins (VLDLs). Models for the effect of standard mediators plus small VLDLS in males for the 

association between DXA-determined fat mass and LVIDD and DXA-determined fat mass and RWT 

were out of the bounds of reasonable interpretation. 
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