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Editor: Catherine Sheard Methods: We compile seven ecological traits and quantify coverage as the proportion

of species for which an estimate is available. For a species, we define completeness
as the proportion of non-missing values across traits. We assess whether coverage
and completeness differ across classes and examine phylogenetic biases in trait data.
To investigate spatial biases, we test whether wider-ranging species have more com-
plete trait data than narrow-ranging species. Additionally, we test whether species-
rich regions, which are of most concern for conservation, are less well sampled than
species-poor regions.

Results: Mammals and birds are well sampled even in species-rich regions. For rep-
tiles and amphibians (herptiles), only body size presents a high coverage (>80%), in
addition to habitat-related variables (amphibians). Herptiles are poorly sampled for
other traits. The shortfalls are particularly acute in some species-rich regions and for
certain clades. Across all classes, geographically rarer species have less complete trait
information.

Main conclusions: Trait information is less available on average in some of the most
diverse areas and in geographically rarer species, both of which crucial for biodiver-
sity conservation. Gaps in trait data might impede our ability to conduct large-scale
analyses, whereas biases can impact the validity of extrapolations. A short-term so-
lution to the problem is to estimate missing trait data using imputation techniques,
whereas a longer-term and more robust filling of existing gaps requires continued

data-collection efforts.
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1 | INTRODUCTION

Species traits are fundamental to ecological and evolutionary research.
Comparative studies regularly use trait data across organisms to un-
derstand evolutionary processes and species coexistence (Escudero &
Valladares, 2016; Zamudio et al., 2016), to investigate global patterns of
life-forms and functions (Diaz et al., 2016) or to assess the vulnerability
of species to environmental changes (Bohm et al., 2016; Pacifici et al.,
2015; Pearson et al., 2014). Given that traits influence the ability of
species to cope with environmental changes (Newbold et al., 2013) and
underpin the contributions of species to ecosystem processes (Lavorel
& Garnier, 2002; Violle et al., 2007; Wong et al., 2018), they play an
increasingly important role in functional and conservation ecology.

Past and recent efforts to collate and release trait data in the
public domain have facilitated the development of trait-based re-
search. For instance, a global trait database has been published for
plants (Kattge et al., 2011). As of May 2020, data from this database
had been used in 305 publications since its release (activity report,
15 September 2020, https://www.try-db.org/TryWeb/Home.php).
Such databases constitute invaluable research tools and have the
potential to advance the field greatly.

Vertebrates are one of the most studied taxa (Titley et al,
2017). There are now diverse sources of ecological traits for ver-
tebrate groups (primates: Galan-Acedo et al., 2019; mammals:
“PanTHERIA”", Jones et al., 2009; amniotes: Myhrvold et al., 2015;
amphibians: “AmphiBIO”, Oliveira et al., 2017). These datasets stem
from important efforts to collate published estimates of trait data
and make them readily available. Trait data have also been made
available on online platforms [for instance, the Global Assessment
of Reptile Distribution initiative: http://www.gardinitiative.org/; the
International Union for Conservation of Nature (IUCN) Red List of
Threatened Species: https://www.iucnredlist.org/; BirdLife data
zone: http://datazone.birdlife.org/home].

Nevertheless, despite the importance of vertebrate species in
global research outputs, there is no single source for vertebrate
ecological traits. Consequently, researchers wishing to conduct
comparative studies across vertebrate groups might have to col-
late trait data from a range of sources (such as in the studies by
Cooke, Bates, & Eigenbrod, 2019; Cooke, Eigenbrod, & Bates,
2019; Gonzalez-Suarez et al., 2018), a time-consuming prerequi-
site that might be a limiting step of the research process. Indeed,
collating data from heterogeneously formatted sources presents
many challenges (Schneider et al., 2019), particularly when work-
ing across a large number of species. For instance, traits might be
measured differently across datasets; units might be inconsistent;
and taxonomic resolution and nomenclature might vary.

The lack of a curated, readily available global database for ver-

tebrate ecological traits impedes our ability to conduct cross-taxon

BOX 1 Definitions

Trait: Sensu stricto, a characteristic measurable at the level
of an individual and that influences organismal fitness or
performance (Violle et al., 2007). In this paper, we broaden
this definition to include “ecological” traits (e.g., number
of habitats used by a species), where the relationship of a
species to the surrounding environment needs to be con-
sidered. Ecological traits are estimated by aggregating data
across multiple individuals.

Trait completeness: For a given species, the proportion of
traits for which an estimate is available.

Trait coverage: For a given trait, the proportion of species
for which an estimate is available.

comparative studies at global scales. However, efforts to collate data
into a single database are limited by the availability of underlying
data. Given that there are important gaps in biodiversity knowl-
edge (Hortal et al., 2015), trait datasets are often incomplete, with
many species lacking estimates for many traits. The incompleteness
of ecological trait data at the species level has been termed the
“Raunkizeran shortfall” by Hortal et al. (2015). Furthermore, incom-
plete trait data are likely to be biased. Biases in trait data can be
the consequence of uneven taxonomic and spatial collection effort,
with a set of charismatic or easily detectable species being more
completely sampled. For instance, Gonzalez-Suarez et al. (2012) in-
vestigated biases in global trait information in mammals. Notably,
they found that the availability of mammalian trait data were geo-
graphically and phylogenetically biased, with larger and more widely
distributed species being better sampled. In addition, data avail-
ability also differed across IUCN Red List extinction risk catego-
ries, with threatened species (Critically Endangered, Endangered or
Vulnerable) being less well sampled for traits than non-threatened
species (Least Concern or Near Threatened).

A major issue with incomplete, biased data is the introduction of
bias in subsequent analyses. Assessing the amount of missing data in
addition to the so-called “missingness mechanism” (whether missing
data are missing at random, as opposed to there being systematic bi-
ases in the way missing values are distributed; see Baraldi & Enders,
2010) is an important prerequisite. Indeed, there exist diverse tech-
niques to deal with data missingness. The simplest one consists of
retaining complete cases only by filtering out missing values (case
deletion; see Nakagawa & Freckleton (2008)). Nevertheless, case

deletion can lead to biased parameter estimates and erroneous
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conclusions when values are not missing at random (Gonzalez-
Suédrez et al., 2012). Therefore, it is crucial to determine the most
appropriate way to deal with data incompleteness. For instance,
previous studies using terrestrial vertebrate trait data have imple-
mented multiple imputation techniques to fill in the gaps (Cooke,
Bates, et al., 2019; Gonzalez-Suérez et al., 2012). Nevertheless, im-
putation techniques could be sensitive to non-randomness in trait
data. Phylogenetic biases (where some clades are undersampled
compared with other clades) could notably impact the performance
of several imputation approaches. It is thus vital to characterize the
gaps in trait data before any analysis. However, there has been no
study to date investigating global patterns in the availability of trait
data across terrestrial vertebrates.

Here, we aim to assess the global state of trait data in ter-
restrial vertebrates. We focus on a set of traits that are available
across the four classes and that are commonly used by ecologists:
body size; litter or clutch size; longevity; trophic level; activity
time; habitat breath; and a measure of habitat specialization.
We quantify and compare the gaps in trait data across classes
by calculating the coverage of each trait across species and the
completeness of trait estimates for each species (Box 1). We in-
vestigate taxonomic, spatial and phylogenetic biases in trait cov-
erage and completeness.

Given that biodiversity research is biased globally towards birds
and mammals (Titley et al., 2017), we hypothesize that herptiles are
less well sampled for traits than mammals and birds, having both
lower coverage and completeness.

Furthermore, building upon previous studies conducted on mam-
mals (Gonzélez-Sudrez et al., 2012), we hypothesize that species rar-
ity influences completeness, focusing on the geographical range size
of species as one aspect of rarity. Widely distributed species could
be better sampled than narrowly distributed species because their
ranges overlap with more study sites, regardless of their abundance.
As such, we test whether the geographical range size of species ex-
plains trait completeness.

It is well established that global research effort is distributed
unequally (United Nations Educational Scientific and Cultural &
Organization, 2015), with patterns underpinned by various geo-
graphical and socio-economic factors. For instance, countries with
higher gross domestic product tend to host a larger number of re-
search institutions (Martin,Blossey, & Ellis, 2012). The proximity of
research infrastructures and the accessibility of survey sites play an
important part in explaining the global distribution of knowledge
(Hortal et al., 2015). As a result of these factors, biodiversity data
gaps tend to be greater in tropical areas (Collen et al., 2008). Tropical
areas have the greatest species richness, and therefore these data
biases are of great concern for biodiversity conservation. It is thus
important to assess whether species-rich regions are systematically
undersampled for traits compared with species-poor regions, given
the significance of species-rich areas for global conservation. Here,
we investigate spatial biases in trait completeness, hypothesizing
that species-rich areas are on average less well sampled than spe-

cies-poor areas.
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Finally, we investigate phylogenetic biases in the trait data. We
assess whether particular clades have received more attention than
others by looking for patterns in the distribution of trait complete-

ness across the terminal branches of phylogenetic trees in each class.

2 | METHODS

We produced class-specific trait datasets that we have made avail-
able on figshare (https://doi.org/10.6084/m9.figshare.10075421).

Data compilation and all analyses were conducted with R v.3.5.1
(R Core Team, 2018). Distribution maps were processed using both
R and the ArcPy package available in ArcGIS v.10.6 (ESRI, 2011) (im-
plemented in Python v.2.7; van Rossum, 1995).

2.1 | Trait data collection
2.1.1 | Sources and taxonomic matching

We used freely accessible secondary sources in our compilation
(Table 1), selected for their broad taxonomic coverage and/or for
their frequent use in macroecological studies. Across sources, similar
species could appear under synonymic names. This was a potential
problem for matching sources by binomial names. Indeed, synonymy
can artefactually decrease trait coverage, when trait information is
not available across all synonyms. Notably, difficulties arise when
species have been divided into several subspecies or when different
subspecies are clumped together. Systematic manual checks could
not be applied considering the scale of the data collection (there
were >39,000 unique binomial names across sources). We devel-
oped a procedure aiming at identifying one accepted name for each
of the binomial names found across sources. When we could not find
an accepted name, we used the original name. Figure 1 summarizes
the main steps; similar solutions have been used in other large-scale
studies (Cooke, Bates, et al., 2019).

Briefly, the procedure consisted of extracting synonyms from the
IUCN (IUCN, 2020) or from the Integrated Taxonomic Information
System (ITIS; https://www.itis.gov/), using the rredlist (Chamberlain,
2018) and taxize (Chamberlain & Szocs, 2013) R packages. One
accepted name was assigned to each synonym. We produced a
“Synonym” dataset that we have also made available. We then nor-
malized taxonomy across sources by replacing binomial names with
their identified accepted name where applicable.

Given that different taxonomic backbones could be used to
correct for taxonomy, we make two versions of our trait compila-
tions available (corrected and not corrected for taxonomy), mean-
ing that users are free to apply their own corrections; for example,
taxonomy could be aligned to that of class-specific sources, such as
The Reptile Database, the American Museum of Natural History’s
Amphibian Species of the World, the Mammal Diversity Database
or the International Ornithological Congress World Bird List.

Datasets corrected for taxonomy contain 11,634 species of birds,
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*LwiLev- TR = R
TABLE 1 Data sources for each trait
Traits

Sources Taxa BM BL L/ML MA GL LCS TL DA RS H
Oliveira et al. (2017) Amphibians V) v V) v v ~ v
Cooper et al. (2008) v
Sodhi et al. (2008) v
Wilman et al. (2014) Birds v ~f 4

BirdLife® v v v
Jones et al. (2009) Mammals v (V) (V) V) v v

Kissling et al. (2014) v
Gainsbury et al. v

(2018)
Wilman et al. (2014) v v
Pacifici et al. (2015) v v
Scharf et al. (2015) Reptiles v v (V) v v 4
Vidan et al. (2017) v
Stark et al. (2018) v v v 4
Schwarz and Meiri v

(2017)

Novosolov et al. v v

(2017)
Novosolov et al. v

(2013)
Slavenko et al. (2016) v
Feldman et al. (2016) v
Meiri (2018) v v v v
Meiri et al. (2015) v 4
Roll et al. (2017) v
Myhrvold et al. B, M, R v v v (v) v

(2015)
IUCN (2020)° A,B,M v
IUCN (2020)° All v

Abbreviations: A = amphibians; B = birds; BL = body length; BM = body mass; DA = diel activity time; GL = generation length; H = habitat data; LCS
= litter or clutch size; L/ML = longevity or maximum longevity; M = mammals; MA = age at sexual maturity; R = reptiles; RS = range size; TL = trophic
level. Note. Data sources may contain more traits than shown here. Tick marks in parentheses indicate that the trait was present in the data source
but that another closely related trait with a better coverage was used instead. The tilde character (~) before a tick mark indicates that we derived

trophic levels from species diet.
*http://datazone.birdlife.org/home
bhttps://www.iucnredIist.org/resources/spatiaI-da’ca-download
http://apiv3.iucnredlist.org/api/v3/docs#general

5,381 mammals, 10,612 reptiles and 6,990 amphibians. Where no
taxonomic correction was applied when matching sources, the com-
piled datasets contain 13,501 birds, 5,791 mammals, 11,012 reptiles
and 8,583 amphibians. For more information, see the Supporting

Information (Appendix S1; Figure S1).

2.1.2 | Compilation methods

For continuous traits, we took the median value within species

when multiple estimates were available from different sources, after

removal of any repeated values, which were assumed to represent
estimates duplicated across secondary compilations and derived
from the same underlying primary sources. Although intraspecific
variation is increasingly being recognized to have important effects
on ecological systems (Bolnick et al., 2011; Des Roches et al., 2018;
Gonzalez-Suérez & Revilla, 2013; Siefert et al., 2015), it was not fea-
sible to obtain measures of intraspecific variability from all sources;
therefore, estimates were provided as a single measure for each
species. For some species and some traits, measures were provided
separately for females and males. In such cases, we first obtained

the mean of these two measures.
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FIGURE 1 Procedure used to identify
the accepted names of species. We
extracted, where possible, the accepted

Unique binomial names taxize)
across all sources
(>38,000)

Correct for typos

I o Accepted: store potential synonyms
gnr_resolve in

Red List query:
status of names
(rl_synonyms
in rredlist)

Not Accepted:
find corresponding accepted name
store potential other synonyms

names of species from either the Red List
or the Integrated Taxonomic Information
System (ITIS).

Across sources, there were multiple traits related to each
of body size and life span. For instance, body mass and/or body
length information could be provided. Different proxies were also
available for life span, such as the age at sexual maturity or gener-
ation length. In such cases, we focused on the trait presenting the

highest coverage.

Body size

Adult body mass estimates were compiled for mammals, birds
and reptiles. Body length information was compiled for amphib-
ians, because the coverage for body length was higher than that
for body mass. Body mass and body length are known to scale
allometrically, although the allometric relationship differs across
amphibian clades (Santini et al., 2018). In our amphibian data-
set, Pearson’s correlation coefficient between log(Body mass)
and log(Body length) was .71 (data points shown in Supporting

Information Figure S2).

Longevity

We defined longevity as the life span of an individual and maxi-
mum longevity as the longest life span reported. We used closely
related traits when longevity/maximum longevity was not avail-
able or when longevity/maximum longevity had a poorer cover-
age than a related trait. We selected the age at sexual maturity for
amphibians; Pearson’s correlation coefficient between log(Age at
sexual maturity) and log(Maximum longevity) was .55 (Supporting
Information Figure S2). We compiled the generation length for mam-
mals and birds. The correlation between log(Generation length) and
log(Longevity) was .74 for mammals and .70 for birds (Supporting
Information Figure S3). Finally, we used maximum longevity directly

for reptiles.

Litter or clutch size

The number of offspring (litter size) or eggs (clutch size) was com-
piled directly from the sources and treated as equivalent across
classes. We reported measures of central tendencies provided by
the sources where applicable; otherwise, we calculated range mid-
points (mean of smallest and largest reported litter/clutch sizes).

Trophic level
In all classes, species were described as omnivores, carnivores or

herbivores. For reptiles and mammals, this information was compiled

No match in the Red List:
ITIS query (get_tsn in taxize)

Accepted: store potential synonyms ~€——

Not Accepted:
find corresponding accepted name
store potential other synonyms

No match in the ITIS:
use original name

directly from the sources. For amphibians and birds, trophic levels
were not provided. For these two classes, we inferred trophic levels
from dietary information (Table 1). For birds, we used the primary
diet (based on food items recorded as composing 250% of the diet of
a species). Diet for amphibians was described without respect to the
percentage use of food items; simply as a binary record of whether
or not food items were used. In both cases, species recorded to only
consume plant-based resources (seeds, nectar, fruit or other plant
material) were classified as herbivores. Species consuming only ani-
mal resources (invertebrates or vertebrates) were classified as car-
nivores. Species consuming a mixture of plant and animal resources

were classified as omnivores.

Activity time

Species were described as being either nocturnal or non-nocturnal.
Despite a higher resolution of activity time information in some of
the sources (e.g., species being described as cathemeral, crepuscular
or diurnal), we adopted the classification of the source with the low-
est resolution (EltonTraits: Wilman et al. (2014), for birds), in order
to have consistent information across classes. As such, all species
defined as diurnal, cathemeral or crepuscular were classified as non-

nocturnal, as opposed to species classified as strictly nocturnal.

Habitat breadth

We used IUCN habitat data (IUCN, 2020), which describe species
habitat preferences and the suitability and importance of each
habitat. We defined habitat breadth as the number of habitats
a species was known to use, using level 2 of the IUCN Habitat
Classification Scheme for description of habitat types (divided
into: Forest, Savanna, Shrubland, Grassland, Wetland, Rocky
areas, Caves and subterranean, Desert, Marine, Marine intertidal
or coastal/supratidal, Artificial, Introduced vegetation, and Other/
Unknown.) Note that the sum could be weighted to account for
habitat suitability and importance, but we used unweighted sums

in this work.

Use of artificial habitats
For a species, we recorded whether any artificial habitat was re-
ported to be suitable in the IUCN habitat data.

Finally, our compiled datasets contain an additional column,
“Note”, where we reported species found to be extinct or extinct

in the wild (EW). We used species Red List status and information
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from Meiri (2018) to flag such species. We reported 75 extinct/EW TABLE 2 Number of species for each analysis
species for mammals, 160 for birds, 34 for amphibians and 53 for (©
reptiles. It is likely that our datasets contain extinct species that we (a) Taxonomic (b) Phylogenetic Spatial
could not flag, because they were not recorded as extinct in the biases biases biases
sources we used. Amphibians 6,990 6,170 5,650
Birds 11,634 8,315 10,802

. Mammals 5,381 5,171 5,046

2.1.3 | PhyIOgemes Reptiles 10,612 9,404 9,382

We used class-specific phylogenetic trees downloaded on 13 April
2020. For mammals, we used “complete” trees from Faurby et al.,
(2018, 2020), downloaded from https://zenodo.org/record/36908
67#.Xyc5wyhKhPZ. For amphibians, birds and squamates, we ob-
tained trees from https://data.vertlife.org/. The original sources
were as follows: Jetz et al. (2012) for birds; Jetz & Pyron (2018) for
amphibians; and Tonini et al. (2016) for squamates. For each class, a
distribution of 1,000 trees was available. For plotting purposes, we
obtained consensus trees using the TreeAnnotator program of the
BEAST software (Bouckaert et al., 2014).

2.1.4 | Species distributions

We obtained extent-of-occurrence distribution maps for reptiles
from Roll et al. (2017), available at: https://datadryad.org/stash/
dataset/doi:10.5061/dryad.83s7k (downloaded 13 April 2020). For
mammals and amphibians, species distribution maps were obtained
from the IUCN Red List (IUCN (2020), downloaded 13 April 2020);
for birds, they were obtained from BirdLife International (http://
datazone.birdlife.org/species/requestdis, downloaded 17 April
2020).

For amphibians, mammals and birds, we selected areas of extant
or probably extant presence only. Additionally, we selected areas
where species were resident or present during the breeding season,
and we excluded areas occupied during the non-breeding season or
where species were considered vagrant.

In addition, for all classes, we excluded occupied areas that fell
outside the known elevational limits of species, where such data
were available. Lower and upper elevational limits were retrieved
from the IUCN Red List (queried using the rredlist package) and
were available for approximately half of the species (Supporting
Information Figure S4). Decreases in range sizes were observed
after cutting distribution maps by the known elevational limits
(Supporting Information Figure S5).

2.2 | Investigating gaps and biases in trait data

We used trait coverage and completeness to investigate taxonomic,
phylogenetic and spatial biases in the trait data. Table 2 summarizes
the sample sizes (humber of species) in each of the following analy-
ses. Note that species for which completeness was 0% were included

in all analyses (for more details, see Figure 2). Also note that we did

All species represented in the trait datasets were included in (a).

All species from the class-specific phylogenetic trees or from the
distribution maps that matched with species in the trait datasets were
included in (b) and (c).

not filter out species identified as extinct or extinct in the wild, be-
cause they represented a small proportion of the datasets (.48% for
amphibians, 1.4% for both birds and mammals, and .50% for reptiles)
and also because we could not exclude such species systematically,

because it is likely that we did not flag them all.

2.2.1 | Taxonomic biases

We tested whether completeness varied across taxonomic class
using pairwise Wilcoxon rank sum tests. We tested for the extent
and performance of our taxonomic corrections by looking at trait
coverage when taxonomic corrections are applied and when no cor-

rection is applied (Supporting Information Figure Sé).

2.2.2 | Phylogenetic biases

Initially, to assess whether more closely related species were more
likely to be similar in trait completeness, we estimated the phyloge-
netic signal in completeness with Pagel’s A (Pagel, 1999) in each class.
We used a bootstrapping approach, calculating A for each of 50 trees
randomly sampled in each class (using the phylosig function of the
phytools R package; Revell, 2012). We then estimated the mean and
95% confidence intervals (95% Cls) of L. Sample sizes for computing
A (number of species represented in both the phylogenies and trait
datasets) are shown in Table 2.

We then plotted within-family median completeness in phylo-
genetic trees built at the family level, using the consensus trees.
Within-family median completeness was calculated using taxonomic
information in the trait datasets (sample sizes shown in Table 2).

2.2.3 | Spatial biases

We first investigated whether wider-ranging species were more
likely to be better sampled than narrow-ranging species. We tested
for a relationship between species range size and trait completeness.
We fitted a generalized linear model with a Poisson error distribu-

" rather than

tion [directly using the number of sampled traits, “N, ...,
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FIGURE 2 Trait coverage and completeness across species. (a) We defined coverage as the proportion of species for which an estimate is
available for a given trait. The dashed line represents 50% coverage. (b) Trait completeness is the proportion of estimated traits for a species.
Here, we show the distribution of completeness. Continuous lines represent the mean trait completeness for each class, whereas dashed
lines represent the median trait completeness. Note that there were species with 0% completeness (230 species for amphibians, 3.3%

of amphibian species in our trait data; nine for birds, .077% of species; seven for mammals, .13% of species; and 161 for reptiles, 1.5% of
species). Species with 0% completeness were retained in the datasets when there was information for traits we did not select in the analyses
but no known value for the traits we did select. For instance, the body mass of the amphibian species Rhinella centralis was known, but other
trait values (including body length) were missing, meaning that Rhinella centralis had 0% completeness for the set of traits we considered.

the proportion (completeness)]. Class was added as a predictor inter-
acting with range size; thus the model was:

Niraits ~ log(Range size) x Class.

Second, we mapped assemblage-level median completeness.
Assemblages were characterized at the pixel level at 50 km? resolu-
tion. We determined pixel-level composition and richness by stacking
species geographical distributions. We then calculated median com-
pleteness across species in each pixel. We show the resulting maps for
herptiles in the main text, and for mammals and birds in Supporting
Information Figure S7 (median completeness was very high across
most pixels for mammals and birds). In addition, we provide maps of
assemblage-level mean completeness and standard deviation for all
classes in the Supporting Information (Figures S8 and S9 show maps;
Figure S10 shows standard deviation against species richness).

We then tested for a spatial correlation between species rich-
ness and median completeness. Given that median completeness
was very high across most pixels for mammals and birds, we fitted
such models for herptiles only. We fitted spatial autoregressive lag
models to explain assemblage-level median completeness as a func-
tion of species richness [using the function lagsarlm of the spatialreg
package (Bivand, Pebesma, & Gémez-Rubio, 2013; Bivand & Piras,
2015; Bivand, Hauke, & Kossowski, 2013)]. Given that responses
could vary geographically, we included the biogeographical realm
as an interacting factor [using the World Wide Fund for Nature
(WWEF) ecoregion shapefile to characterise realms, obtained from
https://www.worldwildlife.org/publications/terrestrial-ecoregions
-of-the-world]; the considered realms were Afrotropics, Australasia,

Indo-Malayan, Nearctic, Neotropics and Palaearctic. To improve

normality, we arc-sin square-root transformed completeness values
and log-transformed species richness. The lagsarlm function allows
for a consideration of spatial autocorrelation in the dependent vari-
able by estimating the autoregressive lag coefficient, p, associated

with an n-by-n matrix of spatial weights, W. The final model was:
arcsin(y/Completeness) ~ log(Species richness) x realm+ p - W - arcsin(y/Completeness).

The value of W was estimated using the functions tri2nb and
nb2listw of the spdep package (Bivand, Pebesma, et al., 2013; Bivand
& Wong, 2018). Fitting the model using all grid cells was computation-
ally intractable; therefore, we randomly sampled cells for this analy-
sis (using 30% of the grid cells in each realm). We selected grid cells
where species richness was higher than three to avoid sampling issues.
We fitted separate models for amphibians and reptiles, because when
adding class as an interacting predictor, the same cells (with the same
coordinates) might be sampled for multiple classes, whereas the tri2nb

function does not tolerate duplicated coordinates.

3 | Results

3.1 | Taxonomic biases in trait information

Trait coverage for mammals and birds was high overall (Figure 2a;
mean and median coverage across traits: 89% and 95% for mammals;
84% and 85% for birds). In both cases, litter/clutch size was the trait
with the poorest coverage (61% for mammals and 59% for birds).
Coverage exceeded 80% for all other traits (except trophic level for

birds, at 75% coverage).


https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

Global Ecology Adoumalof

ETARD ET AL.

* | wiLey

Conversely, trait coverage was more variable for herptiles, and
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poorer overall (Figure 2a; mean and median trait coverage: 47% and
32% for amphibians; 46% and 38% for reptiles). Coverage exceeded
80% only for body size in both reptiles and amphibians and for habi-
tat-related traits in amphibians only. In all other cases, coverage was
<55%, with very little information available for longevity-related
traits.

Trait completeness (proportion of non-missing trait values for a
species) reflected similar biases (Figure 2b). The distribution of trait
completeness varied significantly among classes (pairwise Wilcoxon
rank sum test: p < .0001 in all cases). Distributions were highly left
skewed in mammals and birds (skewness: -2 and -1.6). Eighty-four
per cent of all mammalian species and 80% of avian species fell in
the 80%-100% completeness range. Moreover, the completeness
distribution was moderately right skewed for reptiles (skewness: .4)
and slightly right skewed for amphibians (skewness: .02). Fifty-six
per cent of all reptiles and 57% of amphibians fell in the 0%-50%

completeness range.

3.2 | Phylogenetic biases in trait completeness

As expected from the distribution of trait completeness in mam-
mals and birds (Figure 2), within-family median trait completeness
was high across most tips of the phylogenetic trees (Supporting
Information Figure S11 and S12; we present the avian and mam-
malian phylogenies in the Supporting Information because there
was little variation in completeness across tips). For birds, A was .71
(+ .0053). For mammals, A was .78 (+ .0035). This indicated that,
despite completeness generally being high across tips, the sampling
was not evenly distributed across the phylogeny.

In herptiles, clusters of families with similar median trait com-
pleteness appeared (Figure 3). In amphibians, groups of families
belonging to the order Anura (frogs) showed both the best and
worst median completeness (Figure 3a). The best-sampled families
included the tailed frogs of the family Ascaphidae (two species) and
species of the family Leiopelmatidae (four species endemic to New
Zealand). The family Ceratobatrachidae (containing c. 90 species
occurring in Southeast Asia and in some Pacific islands), the fam-
ily Ranidae (true frogs, 450 species considered here) and the family
Rhacophoridae (shrub frogs, 382 species considered here) figured
among the worst-sampled families. For amphibians, A was .63
(+ .0039). In reptiles, most snakes were poorly sampled, whereas
families in other suborders appeared to be sampled better overall
(Figure 3b). Within snakes, the pythons, boas, the three species of
the family Acrochordidae and the python-like species of the fam-
ily Loxocemidae were better sampled than other snake families. In
reptiles, A was .69 (+.0032). The sampling in herptiles was thus also
uneven with regard to the phylogeny.

It is important to underline that Figure 3 shows within-family
median completeness, masking the considerable variation in species
richness across families, hence masking potential important varia-

tion in completeness across species within families. For example, in

the amphibian family Allophrynidae (three recognized species), the
within-family median completeness was 50%; but our dataset com-
prised two species of completeness 14% and 86%, respectively. We
present similar plots to those in Figure 3 showing the within-family
standard deviation in completeness in the Supporting Information
(Figure S13). Within-family standard deviation tended to increase
with within-family species richness (Supporting Information
Figure S14).

3.3 | Spatial biases in trait completeness

Range size was significantly correlated with the number of sampled
traits. Larger range sizes were associated with a higher number of
sampled traits (i.e., with higher completeness; Figure 4; Supporting
Information Table S1). Similar results were obtained when using dis-
tribution maps not cut by elevational limits (Supporting Information
Table S2; Figure S15). The rate of increase was steepest for reptiles,
then for amphibians, then for birds and mammals (slope estimates
for birds and mammals were not significantly different from each
other; Supporting Information Table S1).

There were marked spatial variations in median trait complete-
ness in herptiles (Figure 5). North America and Europe were well
sampled for both amphibians and reptiles. Moreover, Southeast Asia
and the Congo basin were on average less well sampled. In other
regions, contrasting patterns emerged between amphibians and rep-
tiles. For instance, median completeness was poorer for amphibians
than for reptiles in Australia, but opposite patterns were observed
in South America. As in the phylogenetic analyses, assemblage-level
median completeness could mask potential important variation in
completeness within species of a given assemblage. Assemblage-
level mean and standard deviation maps are shown in the Supporting
Information (Figures S8 and S9). There was a trend for increasing
standard deviation with increasing species richness, with a larger
spread in standard deviation at lower species richness (Supporting
Information Figure S10).

Spatial models showed that species richness explained median
trait completeness in herptiles in most realms (Figure 6; Supporting
Information Tables S3 and S4); including spatial lags improved the
models (reptiles: p = .91, p < .0001; amphibians: p = .92, p <.0001).
For reptiles, completeness was negatively correlated with species
richness in the most species-rich realms (Afrotropics, Indo-Malayan
and Neotropics) and in the Palaearctic; the relationship was steep-
est in the Afrotropics and shallowest in the Palaearctic. In the
Australasian and Nearctic realms, completeness tended to increase
with species richness. For amphibians, negative relationships were
observed in the Indo-Malay and Nearctic realms, whereas positive
trends were observed in the Neotropics and the Palaearctic. The
opposite trends between reptiles and amphibians observed in the
Australasian and Neotropical realms reflected patterns observed on
the maps. The Indo-Malayan was the only realm where median com-
pleteness tended to decrease with species richness for both reptiles

and amphibians.
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FIGURE 3 Within-family median trait
completeness in herptiles. The number
next to each family name represents

the number of species included in the
calculation of the median.

4 | Discussion

Our work illustrates the taxonomic, spatial and phylogenetic dimen-
sions of the knowledge gaps in trait data, termed the Raunkizran
shortfall by Hortal et al. (2015). To the best of our knowledge, this
study constitutes the first comparative assessment of global gaps for
terrestrial vertebrate trait data, despite their use in numerous stud-
ies. We showed that the trait data presents important taxonomic,

spatial and phylogenetic biases, with contrasts in the availability of
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trait information between, on the one hand, herptiles and, on the
other hand, birds and mammals.

Birds and mammals are globally well sampled for the set of
traits we considered, even in the most species-rich assemblages.
Moreover, the availability of trait information for herptiles is lower
overall and phylogenetically and geographically biased. Several fac-
tors could interplay to shape these patterns. For instance, species
that are more easily detectable (for example, wider ranging) and more

charismatic are likely to be better sampled. Diverse socio-economic
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predictors could also contribute to geographical biases in trait data
sampling; global biases in primary data collection are likely to be
one of the most important contributors to the patterns we observe.
Nevertheless, biases in the data could have been introduced at later
stages, notably with the selection of sources and traits. Our global
compilation reflects, in part, the interest and focus of the second-
ary data sources we used. It is possible that the addition of new
sources from regional journals or other authorities could diminish

7
E
=6
=t
=
1= — Amphibians
§ > — Birds
b — Mammals
7 4 Reptiles
2
=
=
4

0 5 10 15
Range size (log km?)

FIGURE 4 Relationship between number of sampled traits and
geographical range size. Models were fitted using a Poisson error
distribution. Class was added as a predictor interacting with range
size. Rates of increase were not significantly different for mammals
and birds but differed for reptiles and amphibians, with the
steepest rates of increase for reptiles.

(a) Amphibians

spatial biases in the data by increasing coverage for certain areas.
Nevertheless, we argue that by focusing on widely used traits, our
results are likely to reflect the “true” availability of the data in pri-
mary sources and that the shortfalls for other, less used traits would
be more pronounced.

We believe that our results are robust to taxonomic uncertainty,
although taxonomic matching might potentially be improved fur-
ther using class-specific sources, such as the Reptile Database or
AmphibiaWeb, for identification of synonyms (but see Supporting
Information Appendix S9, Figure S16). We have made two versions
of our data compilations available, one in which our own correc-
tions were applied and one using the original binomial names of the
sources, meaning that users are free to use their own taxonomic
backbones and identify synonyms within the compilations.

We believe that taxonomic matching is a recurring issue when
working across thousands of species. Taxonomic synonymy artefac-
tually inflates the numbers of identified species, potentially lowering
trait coverage (whereas clumping subspecies together can have the
opposite effect). Tackling this problem is difficult (Isaac et al., 2004;
Jones et al., 2012), notably because there is no global curated da-
tabase recording the status of species names, and also because of
the nature of taxonomy and the debates around the species concept
(May, 2011). Nevertheless, taxonomic uncertainty can have import-
ant consequences. For instance, Cardoso et al. (2017) showed that
inaccuracies and errors in species checklists contributed to the over-
estimation of plant diversity in the Amazon.

Median completeness:

0O NA
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B 20-30%
8 30-40%
O 40—-50%
50 —60%
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E 70 —-80%
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FIGURE 5 Spatial distribution of assemblage-level median trait completeness in herptiles. Similar maps for birds and mammals are shown

in the Supporting Information (Figure S7).
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models (trends after accounting for spatial autocorrelation).

Biases in trait data have important implications for conserva-
tion planning. Past studies have shown that narrow-ranged species,
for which fewer trait data are available on average, have higher ex-
tinction risks (Collen et al., 2016; Purvis et al., 2000; Ripple et al.,
2017) and are more negatively impacted by anthropogenic pres-
sures (Newbold et al., 2018) than wider-ranging species. Trait in-
formation is also less available for herptiles in tropical regions such
as the Congo basin, Southeast Asia and South America, which are
some of the most diverse areas of crucial importance for worldwide
conservation (Barlow et al., 2018). Consequently, trait information is
on average less available where potentially more crucial to conser-
vation planning. Indeed, trait information can be incorporated into
vulnerability assessments and, as such, can help to prioritize conser-
vation efforts. Species traits have been found to mediate species re-
sponses to environmental changes across diverse taxonomic groups,
and thus can inform on the sensitivity of species to anthropogenic
pressures (Flynn et al., 2009; Newbold et al., 2013; Nowakowski
et al., 2017). Traits are now commonly used to estimate species vul-
nerability or extinction risks (Pacifici et al., 2015; Ramirez-Bautista
et al., 2020). As opposed to trend-based approaches, which rely
on historical population trends (changes in abundance or shifts in
distributions) to predict species’ vulnerability and extinction risks,
trait-based approaches rely on species’ intrinsic sensitivity to partic-
ular threats. The appeal of trait-based approaches to extinction risk
estimation is that, by providing mechanistic insights, they diminish
the amount of population information needed. If the responses of
species to a threat consistently relate to certain traits, it is possible
to generalize patterns across species for which population data are
less available (Verberk et al., 2013). Integrating traits into vulnerabil-
ity assessments is hence of particular interest when field monitoring

of species population sizes or distributions is difficult to achieve, but

biases in the data could mean that such information is lacking for
some of the most vulnerable species.

Traits that influence species responses to environmental changes
have been termed “response traits” (or “response-mediating traits”;
Luck et al., 2012), as opposed to “effect traits” that underpin eco-
system functioning (Lavorel & Garnier, 2002). For instance, relative
brain size and longevity have been characterized as response traits
in birds (Newbold et al., 2013; Sayol et al., 2020), whereas dietary
characteristics (e.g., trophic levels or guilds) are both response and
effect traits. Hortal et al. (2015) highlighted that, for plants, both
response and effect traits have been investigated, whereas for ver-
tebrates the research has been more focused on understanding
species responses. This could be because the way vertebrate traits
interact to shape some ecosystem processes has not yet been char-
acterized well.

Ecosystem processes sustained by animals might be harder to
quantify and might be influenced by a combination of traits. The
traits compiled in this work are likely to have a role in diverse pro-
cesses. Nevertheless, there was one important omission, in that we
did not compile species diet, potentially the most straightforward
trait to link with diverse processes, such as grazing, pollination, scav-
enging and seed dispersal. From a practical perspective, we chose
traits that had been estimated at least for some of the species in
each class, and that were readily available. Diet was excluded be-
cause although estimates were available for amphibians, birds and
mammals, there was no readily available database for reptilian diet.
Movement or dispersal abilities were also excluded because infor-
mation was not readily available for any class. Although we expect
that species diet and dispersal abilities would present similar sam-
pling biases to the ones presented in this work, the addition of such

traits to the compilation would represent a valuable contribution
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and would notably facilitate studies looking at the functional roles
of reptiles.

For practical reasons, we did not consider intraspecific trait
variation. Intraspecific variation has been shown to have import-
ant effects on ecological systems, and a growing body of literature
encourages trait-based research to include intraspecific variability
(Guralnick et al., 2016). There have been several calls to produce
open-access, global trait datasets (Weiss & Ray, 2019), including a
representation of intraspecific trait variation (Kissling et al., 2018).
Notably, Schneider et al. (2019) designed a framework to store and
share inter- and intraspecific trait data, accompanied by an R pack-
age to standardize the data in a proposed format. Such a proposition
could constitute an important step towards the unification of indi-
vidual datasets into a single, comprehensive database for ecological
trait data.

The current spatial and taxonomic gaps in trait data might limit
our ability to scale studies up, whereas biases in the data can af-
fect the validity of extrapolations to groups or areas that are under-
sampled. More generally, biases and gaps in biodiversity data can
have important implications for ecological studies. Data gaps can
hinder our ability to draw conclusions on observed macroecolog-
ical patterns. For example, Chaudhary et al. (2016) proposed that
marine species richness follows a bimodal distribution, peaking at
mid-latitudinal locations, and argued that these patterns were not
underpinned by knowledge gaps in species distributions. Moreover,
Menegotto and Rangel (2018) attributed the tropical dip in marine
species richness to a lack of species distribution data, explained by
lower sampling efforts in tropical areas (“Wallacean” shortfall; Hortal
et al., 2015). Biases and gaps in trait data could also affect studies in
closely related fields, such as functional ecology [for instance, past
studies have shown that functional diversity indices are sensitive to
missing data (Majekova et al., 2016; Pakeman, 2014)] or community
assembly (Perronne et al., 2017).

Ecologists should, therefore, take particular care when design-
ing trait-based studies, because both data quality and data gaps
are likely to influence the results and the generality of the conclu-
sions. There exist diverse methods to deal with missing trait val-
ues, should data missingness be problematic. Complete removal
of missing values (“case deletion”) is commonly used but presents
several issues, because it reduces sample size and statistical power
and introduces potential bias in data subsamples (Nakagawa &
Freckleton, 2008). For example, retaining complete cases only
from our trait datasets would generate trait data disproportionally
representative of mammals and birds, which would be problematic
for conducting cross-taxon analysis on terrestrial vertebrates. As
such, it is recommended that case deletion be applied only when
data are missing completely at random, which is rarely the case
(Peugh & Enders, 2004).

Alternatives to case deletion consist of filling in the gaps. In
recent years, the development of imputation techniques has pro-
vided robust methods to handle missing data. Such imputation
techniques have been used to complete trait datasets in recent
studies (Cooke, Bates, et al., 2019). Penone et al. (2014) used a

simulation approach to evaluate the performance of four of these
techniques, namely PhyloPars (Bruggeman et al., 2009), random
forest algorithms as implemented in R with missForest (Stekhoven,
2016; Stekhoven & Bihlmann, 2012), multivariate imputation by
chained equations (MICE; Van Buuren & Groothuis-Oudshoorn,
2011) and k-nearest neighbour (kNN; Troyanskaya et al., 2001).
Penone et al. (2014) introduced missing values (10%-80%) in
a complete trait dataset of carnivorans and measured imputa-
tion performance in different scenarios. Given that phylogenetic
non-randomness in missing trait values can impact imputation ac-
curacy, Penone et al. (2014) removed values in three different ways
(completely at random; with a phylogenetic bias; and with a body
mass bias). Out of the four techniques, missForest and PhyloPars
performed best when species phylogenetic position was included
as a predictor of missing trait values. Such imputations appeared
to be robust even when trait coverage was as low as 40%, which
might be relevant for many reptilian and amphibian traits. The per-
formance was not significantly affected by phylogenetic non-ran-
domness of the data. Hence, missForest and PhyloPars appear
to be well suited when traits are phylogenetically conserved, be-
cause they allow species phylogenetic position to be included as a
predictor of missing trait values. The study by Penone et al. (2014)
highlights that there are robust imputation techniques allowing us
to deal with incomplete trait data where biases might otherwise be
problematic. Nevertheless, it is important to highlight that some
imputation techniques, such as single or mean imputation, can be
problematic because they do not allow an estimation of uncer-
tainty and suffer from a lack of accuracy (Nakagawa & Freckleton,
2008); indeed, imputation techniques sometimes perform no
better than case deletion. We believe that more work should be
conducted to assess imputation performance in various contexts,
and our compiled datasets might provide an opportunity for such
studies.

Although robust imputation techniques can be useful for filling
gaps in trait datasets, they are no substitute for continued data col-
lection efforts. Our results show that data are particularly lacking in
herptiles, notably in the Afrotropics, the Neotropics and the Indo-
Malayan realms. For these areas, incorporating regional databases
into existing datasets could contribute to the reduction of global
gaps. We believe that both primary research and subsequent efforts
to integrate new data and existing databases are required if we are
to strive towards the unification of trait databases.

To conclude, this work constitutes, to our knowledge, the first as-
sessment of the global gaps and biases in terrestrial vertebrate trait
information. We show that herptiles are undersampled compared
with mammals and birds, with important spatial and phylogenetic
variability in the availability of trait information. Imputation tech-
niques are one possible solution to these problems. Nevertheless,
we believe that primary research, combined with efforts to complete
existing datasets, is the only way to fill the current data gaps genu-
inely and robustly. We hope that the compiled trait dataset and our
findings can prove useful for guiding further data collection efforts

and for conducting macroecological analyses.
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